WO2020147400A1 - 全桥模块、全桥模块的混合式直流断路器及应用方法 - Google Patents

全桥模块、全桥模块的混合式直流断路器及应用方法 Download PDF

Info

Publication number
WO2020147400A1
WO2020147400A1 PCT/CN2019/117572 CN2019117572W WO2020147400A1 WO 2020147400 A1 WO2020147400 A1 WO 2020147400A1 CN 2019117572 W CN2019117572 W CN 2019117572W WO 2020147400 A1 WO2020147400 A1 WO 2020147400A1
Authority
WO
WIPO (PCT)
Prior art keywords
full
power electronic
branch
circuit breaker
bridge module
Prior art date
Application number
PCT/CN2019/117572
Other languages
English (en)
French (fr)
Inventor
高冲
周万迪
魏晓光
王华峰
张升
李弸智
Original Assignee
全球能源互联网研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司, 国家电网有限公司 filed Critical 全球能源互联网研究院有限公司
Priority to EP19910433.2A priority Critical patent/EP3913805A4/en
Publication of WO2020147400A1 publication Critical patent/WO2020147400A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/105Modifications for increasing the maximum permissible switched voltage in thyristor switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08124Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in thyristor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08128Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/107Modifications for increasing the maximum permissible switched voltage in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/125Modifications for increasing the maximum permissible switched current in thyristor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/127Modifications for increasing the maximum permissible switched current in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K2017/515Mechanical switches; Electronic switches controlling mechanical switches, e.g. relais
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0009AC switches, i.e. delivering AC power to a load

Definitions

  • the present disclosure belongs to the field of power electronics technology, and for example relates to a full-bridge module, a hybrid DC circuit breaker of the full-bridge module, and an application method.
  • a full-bridge hybrid DC circuit breaker appeared in the related technology, which has the ability to cut off a 25kA fault current in 3ms, has good technical performance, and has laid a solid foundation for engineering applications.
  • each device in the topology of the full-bridge hybrid DC circuit breaker needs to connect a resistor-capacitor damping circuit in parallel, which requires a large number of capacitors, which increases the overall volume of the circuit breaker and is not conducive to compact design.
  • the related art also discloses a full-bridge sub-module.
  • the full-bridge sub-module requires a large number of insulated gate bipolar transistor (IGBT) devices, which increases the cost and volume of the circuit breaker; There are a large number of IGBTs, and each IGBT is driven separately, the required driving power is relatively large, and the secondary wiring is complicated. At the same time, the reliability of the drive control is reduced and the circuit breaker performance is affected.
  • IGBT insulated gate bipolar transistor
  • the present disclosure provides a full-bridge module, a hybrid DC circuit breaker of the full-bridge module, and an application method.
  • the embodiment of the present disclosure provides a full bridge module, including: two power electronic units, two diodes, a resistor and a capacitor;
  • Two diodes are connected in series with common anode or common cathode to form the lower bridge arm;
  • the embodiments of the present disclosure also provide a hybrid DC circuit breaker based on a full bridge module, the hybrid DC circuit breaker including: a main path branch, a transfer branch and an energy absorption branch connected in parallel;
  • main path branch includes a plurality of the full bridge modules
  • the transfer branch includes a plurality of fully-controlled power electronic devices or a plurality of units including the fully-controlled power electronic devices;
  • the main path branch further includes a switch, and the switch is connected in series with a plurality of full bridge modules.
  • the embodiment of the present disclosure also provides an application method of a hybrid DC circuit breaker, including:
  • the full bridge module of the main path branch is disconnected, and the fully-controlled power electronic device of the transfer branch remains in the triggered state. After reaching the transfer branch, the switch of the main path branch is turned off;
  • the hybrid DC circuit breaker clears the fault current.
  • FIG. 1(a) is a schematic diagram of the common anode connection structure of the lower-arm diodes of the full-bridge module provided by the embodiments of the disclosure;
  • FIG. 1(b) is a schematic diagram of the common cathode connection structure of the lower-arm diode of the full-bridge module provided by the embodiment of the disclosure;
  • Fig. 2(a) is a schematic structural diagram of a full-bridge module power electronic unit provided by an embodiment of the disclosure consisting of a single full-control power electronic device;
  • FIG. 2(b) is a schematic structural diagram of a full-bridge module power electronic unit provided by an embodiment of the disclosure, which is composed of fully-controlled power electronic devices in parallel;
  • FIG. 2(c) is a schematic structural diagram of a full-bridge module power electronic unit provided by an embodiment of the disclosure, which is composed of fully-controlled power electronic devices in series;
  • FIG. 2(d) is a schematic structural diagram of a full-bridge module power electronic unit provided by an embodiment of the disclosure, which is composed of fully-controlled power electronic devices in parallel and then in series;
  • FIG. 2(e) is a schematic structural diagram of a full-bridge module power electronic unit provided by an embodiment of the present disclosure, which is composed of fully-controlled power electronic devices in series and then in parallel;
  • FIG. 3(a) is a schematic diagram of the current flow path from left to right when the full-bridge module provided by the embodiment of the disclosure is turned on;
  • FIG. 3(b) is a schematic diagram of the current flow path from right to left when the full-bridge module provided by the embodiment of the disclosure is turned on;
  • Fig. 4(a) is a schematic diagram of the current flow path from left to right when the full-bridge module provided by an embodiment of the disclosure is turned off;
  • FIG. 4(b) is a schematic diagram of the current flow path from right to left when the full-bridge module provided by an embodiment of the disclosure is turned off;
  • FIG. 5 is a schematic diagram of the topology structure of a hybrid DC circuit breaker provided by an embodiment of the disclosure.
  • FIG. 6(a) is a schematic diagram of the configuration of the power electronic switches of the main path branch of the hybrid DC circuit breaker provided in an embodiment of the disclosure in series and then in parallel;
  • FIG. 6(b) is a schematic diagram of the configuration of the power electronic switches of the main path branch of the hybrid DC circuit breaker provided in an embodiment of the disclosure in parallel and then in series;
  • FIG. 7 is a schematic diagram of the topology structure of a hybrid DC circuit breaker using a full bridge module provided by an embodiment of the disclosure.
  • the present disclosure proposes a full-bridge module and its application in the hybrid DC circuit breaker, aiming at the characteristics of the hybrid DC circuit breaker with more damping components and more high-potential control units, resulting in complex structural design and complex control electrical wiring.
  • the application method simplifies the topology of the cascaded full-bridge DC circuit breaker, reduces the number of high-potential control units, electrical wiring and power requirements, and is conducive to reducing the overall volume of the circuit breaker and improving the working reliability.
  • the embodiment of the present disclosure provides a full bridge module, including: two power electronic units, two diodes, a resistor and a capacitor;
  • Two diodes are connected in series with common anode or common cathode to form the lower bridge arm;
  • the power electronic unit includes one or more sub-modules composed of a fully-controlled power electronic device in reverse parallel connection with a diode, and the diode of each power electronic unit corresponds to the diode of the lower bridge arm of the power electronic unit The direction is opposite.
  • connection manner of the multiple sub-modules includes: series connection, parallel connection, parallel connection after series connection, or series connection after parallel connection.
  • the fully-controlled power electronic devices include: IGBT, Integrated Gate Commutated Thyristors (IGCT), Injection Enhanced Gate Transistor (IEGT), or Gate Turnable Thyristor (Gate Turn) -off Thyristor, GTO).
  • IGBT Integrated Gate Commutated Thyristors
  • IEGT Injection Enhanced Gate Transistor
  • GTO Gate Turnable Thyristor
  • the embodiment of the present disclosure provides a hybrid DC circuit breaker based on a full bridge module, the hybrid DC circuit breaker including: a main path branch, a transfer branch and an energy absorption branch connected in parallel;
  • the main path branch includes a plurality of full bridge modules, wherein the full bridge module is the full bridge module described in any one of the above embodiments;
  • the transfer branch includes a plurality of fully-controlled power electronic devices or a plurality of units including the fully-controlled power electronic devices;
  • the main path branch further includes a switch, and the switch is connected in series with a plurality of full bridge modules.
  • the energy absorption branch includes a varistor.
  • the multiple full-bridge modules on the main path branch are connected in parallel and then connected in series or connected in series and connected in parallel.
  • the present disclosure also provides an application method of the hybrid DC circuit breaker, the method including:
  • the full-bridge module of the main path branch is disconnected, and the fully-controlled power electronic device of the transfer branch remains in the triggered state. After reaching the transfer branch, the switch of the main path branch is turned off;
  • the hybrid DC circuit breaker clears the fault current.
  • Trigger status when the system in which the hybrid DC circuit breaker is located is operating normally, the switch of the main path branch of the hybrid DC circuit breaker is closed, and the full bridge module of the main path branch remains Trigger status, including:
  • the current passes through the diode in anti-parallel connection with the full-control power electronic device in one power electronic unit of the upper bridge arm of the full-bridge module from the input, and then passes through the full-control power electronic unit in the other power electronic unit of the upper bridge arm. Electronic devices flow out of the full bridge module.
  • the full bridge module of the main path branch is disconnected, and the full control power electronic device of the transfer branch Keep the triggered state, after the fault current is transferred to the transfer branch, the switch of the main path branch is turned off, including:
  • the fully-controlled power electronic device of the full-bridge module of the main path branch is disconnected, and the capacitance of the full-bridge module of the main path branch is charged by the fault current;
  • the full-bridge module includes: two power electronic units, two diodes, resistors and capacitors; two power electronic units are connected in reverse series to form an upper bridge arm; and the two diodes share the anode in series or the cathode Connected in series to form the lower bridge arm; after the resistor and the capacitor are connected in parallel between the upper bridge arm and the lower bridge arm, the shared damping of the reverse series devices is realized, the number of passive components is reduced, and the topology design is simplified. Conducive to reducing equipment volume and cost.
  • the full-bridge module, the hybrid DC circuit breaker of the full-bridge module and the application method provided by the present disclosure realize the unification of the potential of the fully-controlled power electronic device, which is beneficial to reduce the number of high-potential control units and simplify the control electrical wiring , which helps to improve the overall reliability of the equipment.
  • the full-bridge module, the hybrid DC circuit breaker of the full-bridge module and the application method provided by the present disclosure realize the compact press-fit structure design of the full-control power electronic device of the hybrid DC circuit breaker, which is easy to reduce stray parameters and realize Overvoltage suppression improves overall application reliability and economy.
  • the full-bridge module is composed of power electronic units, diodes, resistors, and capacitors.
  • Two power electronic units and two diodes form a full-bridge structure.
  • the capacitor and resistor R are connected in parallel to the upper bridge arm of the full-bridge module. And the lower bridge arm.
  • the full-bridge module has two basic structures. Two diodes can be connected with a common anode, as shown in Figure 1(a), and two diodes can also be connected with a common cathode, as shown in Figure 1(b).
  • the power electronic unit in the full-bridge module also has two realization forms: it can be composed of a single full-control power electronic device, or it can be composed of a series and parallel combination of full-control power electronic devices.
  • the fully-controlled power electronic device may be a power electronic device such as IGBT, IGCT, IEGT or GTO. Examples are shown in Fig. 2(a), Fig. 2(b), Fig. 2(c), Fig. 2(d) and Fig. 2(e).
  • the working process of the full bridge module is as follows:
  • the hybrid DC circuit breaker includes three parallel branches: the main path branch, the transfer branch and the energy absorption branch.
  • the main path branch is composed of a fast mechanical switch K and a small amount of power electronic switches, which are set to carry the rated current of the system during normal operation of the system;
  • the transfer branch is composed of a unit series composed of a fully-controlled electronic electronic device or a fully-controlled power electronic device , Is set to break the system short-circuit current;
  • the energy absorption branch is composed of multiple sets of arrester units, and is set to absorb the inductive energy of the system to achieve fault current removal.
  • the full bridge module proposed in the present disclosure can be used in the design of power electronic switches in a hybrid DC circuit breaker.
  • the power electronic switch of the main path branch can be composed of multiple full-bridge modules in series and parallel, and there are two realization forms: first in series and then in parallel, as shown in Figure 6(a), and first in parallel and then in series as shown in Figure 6(b) Shown.
  • the power electronic switch on the transfer branch is formed by a full-control electronic electronic device or a plurality of units including a full-control power electronic device in series.
  • the hybrid DC circuit breaker topology of the full-bridge module is used to illustrate the workflow.
  • the load current only flows through the main path branch, that is, the load current only flows through the fast mechanical switch K and the main path branch power electronic switch.
  • the controllable device IGBT in the power electronic switch remains in the triggered state, and the load current flows through the diode in the upper arm of the full-bridge module that is in anti-parallel with the left IGBT, and flows through the two parallel IGBTs on the right side of the upper arm, and then flows out.
  • Bridge module the current does not flow through the capacitor branch in the module at this time.
  • the hybrid DC circuit breaker receives the system breaking command, the main circuit branch power electronic switch is opened and closed, and the transfer branch power electronic switch remains in the triggered state.
  • the IGBT in the power electronic switch of the main path branch is turned off. At this time, the fault current flows through the capacitor branch in the module to charge the capacitor.
  • the fault current flows from the main path branch to the The transfer branch is transferred; after the transfer is completed, the fast mechanical switch K is disconnected. After the fast mechanical switch K is disconnected, the power electronic switch of the transfer branch is blocked to realize the current transfer from the transfer branch to the energy absorption branch and complete the fault current disconnection.
  • the closing process of the DC circuit breaker is basically the same as that of the cascaded full-bridge DC circuit breaker.
  • the transfer branch is turned on. If it is closed on a sound line, the main path branch is triggered; if it is closed on the fault line, the transfer is blocked. Branch road.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, this application may use one or more computer-usable storage media (including disk storage, compact Disc Read-Only Memory (CD-ROM), optical storage, etc.) containing computer-usable program codes. ) In the form of a computer program product implemented on it.
  • CD-ROM compact Disc Read-Only Memory
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to generate computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

一种全桥模块、全桥模块的混合式直流断路器及应用方法,该全桥模块包括:两个电力电子单元(1,2,3,4)、两个二极管(5,6)、电阻(R 1)和电容(C);两个电力电子单元(1,2,3,4)反向串联构成上桥臂;两个二极管(5,6)共阳极串联或共阴极串联,构成下桥臂;该电阻(R 1)和电容(C)并联后,连接于该上桥臂和下桥臂之间。

Description

全桥模块、全桥模块的混合式直流断路器及应用方法
本申请要求在2019年01月14日提交中国专利局、申请号为201910030591.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开属于电力电子技术领域,例如涉及一种全桥模块、全桥模块的混合式直流断路器及应用方法。
背景技术
随着基于电压源换流器(Voltage Source Converter,VSC)的多端柔性直流和直流电网技术的应用,高压直流断路器成为保证系统稳定安全可靠运行的关键设备之一。混合采用机械开关和全控型电力电子开关的直流断路器技术兼具了机械开关的低损耗特性和电力电子开关的快速分断特性,是应用高压输电系统中直流分断最为有效的技术途径之一。高压直流断路器应用于含有大容量的架空线柔性多端直流和直流电网时,除了具备快速和低损耗等特性外,还应具备强电流分断以及高工作可靠性。
相关技术中出现了一种全桥混合式直流断路器,具有能在3ms切断25kA故障电流的能力,具备了良好的技术性能,为工程应用奠定了坚实的基础。然而,该全桥混合式直流断路器的拓扑结构中每个器件都需并联阻容阻尼回路,所需的电容器数量较多,增大了断路器整体体积,不利于紧凑化设计。相关技术中还公开了一种全桥子模块,该全桥子模块所需绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)器件数量较多,增加成本与断路器整机体积;由于存在数量较多的IGBT,而每个IGBT被分别驱动,所需的驱动功率较大,二次布线复杂,同时还会使驱动控制的可靠性降低,影响断路器性能。
发明内容
为了解决相关技术中所存在的问题,本公开提供一种全桥模块、全桥模块的混合式直流断路器及应用方法。
本公开实施例提供了一种全桥模块,包括:两个电力电子单元、两个二极管、电阻和电容;
两个电力电子单元反向串联构成上桥臂;
两个二极管共阳极串联或共阴极串联,构成下桥臂;
所述电阻和电容并联后,连接于所述上桥臂和下桥臂之间。
本公开实施例还提供了一种基于全桥模块的混合式直流断路器,所述混合式直流断路器包括:并联的主通路支路、转移支路和能量吸收支路;
其中所述主通路支路包括多个所述的全桥模块;
所述转移支路包括多个全控型电力电子器件或者多个包括所述全控型电力电子器件的单元;
所述主通路支路还包括开关,所述开关与多个全桥模块串联。
本公开实施例还提供一种混合式直流断路器的应用方法,包括:
在所述混合式直流断路器所在的系统运行正常的情况下,所述混合式直流断路器的主通路支路的开关闭合,所述主通路支路的全桥模块保持触发状态;
在所述混合式直流断路器所在的系统运行故障的情况下,所述主通路支路的全桥模块断开,所述转移支路的全控型电力电子器件保持触发状态,在故障电流转移至所述转移支路后,所述主通路支路的开关断开;
在所述故障电流转移至所述混合式直流断路的器能量吸收支路后,所述混合式直流断路器清除所述故障电流。
附图说明
图1(a)为本公开实施例提供的全桥模块下桥臂二极管共阳极连接结构示意图;
图1(b)为本公开实施例提供的全桥模块下桥臂二极管共阴极连接结构示意图;
图2(a)为本公开实施例提供的全桥模块电力电子单元由单个全控型电力电子器件构成的结构示意图;
图2(b)为本公开实施例提供的全桥模块电力电子单元由全控型电力电子器件并联构成的结构示意图;
图2(c)为本公开实施例提供的全桥模块电力电子单元由全控型电力电子器件串联构成的结构示意图;
图2(d)为本公开实施例提供的全桥模块电力电子单元由全控型电力电子器件先并联后串联构成的结构示意图;
图2(e)为本公开实施例提供的全桥模块电力电子单元由全控型电力电子器件先串联后并联构成的结构示意图;
图3(a)为本公开实施例提供的全桥模块导通时电流由左向右流通路径示意图;
图3(b)为本公开实施例提供的全桥模块导通时电流由右向左流通路径示意图;
图4(a)为本公开实施例提供的全桥模块关断时电流由左向右流通路径示意图;
图4(b)为本公开实施例提供的全桥模块关断时电流由右向左流通路径示意图;
图5为本公开实施例提供的混合式直流断路器拓扑结构示意图;
图6(a)为本公开实施例提供的混合式直流断路器主通路支路电力电子开关先串联后并联的构成示意图;
图6(b)为本公开实施例提供的混合式直流断路器主通路支路电力电子开关先并联后串联的构成示意图;
图7为本公开实施例提供的采用全桥模块的混合式直流断路器拓扑结构示意图。
具体实施方式
为了理解本公开,下面结合说明书附图和实例对本公开的内容进行说明。
本公开针对混合式直流断路器阻尼部件较多、高电位控制单元较多,致使结构设计复杂、控制电气接线复杂的特点,提出了一种全桥模块,及其在混合式直流断路器中的应用方法,简化了级联全桥直流断路器拓扑构成,减少了高电位控制单元数量、电气接线及功率需求,有利于断路器整体体积减小和工作可靠性提升。
实施例一:
本公开实施例提供了一种全桥模块,包括:两个电力电子单元、两个二极管、电阻和电容;
两个电力电子单元反向串联构成上桥臂;
两个二极管共阳极串联或共阴极串联,构成下桥臂;
所述电阻和电容并联后,连接于所述上桥臂和下桥臂之间。
所述电力电子单元包括一个或多个由全控型电力电子器件反向并联一个二极管构成的子模块,且每个电力电子单元的二极管与所述电力电子单元对应的 所述下桥臂的二极管方向相反。
在所述子模块为多个的情况下,所述多个子模块的连接方式包括:串联、并联、串联后并联或并联后串联。
所述全控型电力电子器件包括:IGBT、集成门极换流晶闸管(Integrated Gate Commutated Thyristors,IGCT)、电子注入增强门极晶体管(Injection Enhanced Gate Transistor,IEGT)或门极可断晶闸管(Gate Turn-off Thyristor,GTO)。
本公开实施例提供了一种基于全桥模块的混合式直流断路器,所述混合式直流断路器包括:并联的主通路支路、转移支路和能量吸收支路;
其中,所述主通路支路包括多个全桥模块,其中,所述全桥模块为上述任一实施例所述的全桥模块;
所述转移支路包括多个全控型电力电子器件或者多个包括所述全控型电力电子器件的单元;
所述主通路支路还包括开关,所述开关与多个全桥模块串联。
所述能量吸收支路包括压敏电阻。
所述主通路支路上的多个全桥模块先并联后串联或先串联后并联。
所述转移支路上的多个全控型电力电子器件串联或多个包括全控型电力电子器件的单元串联。
本公开还提供一种混合式直流断路器的应用方法,所述方法包括:
在所述混合式直流断路器所在的系统运行正常的情况下,所述混合式直流断路器的主通路支路的开关闭合,所述主通路支路的全桥模块保持触发状态;
在所述混合式直流断路器所在的系统运行故障的情况下,所述主通路支路的全桥模块断开,所述转移支路的全控型电力电子器件保持触发状态,在故障电流转移至所述转移支路后,所述主通路支路的开关断开;
在所述故障电流转移至所述混合式直流断路器的能量吸收支路后,所述混合式直流断路器清除所述故障电流。
在一实施例中,在所述混合式直流断路器所在的系统运行正常的情况下,所述混合式直流断路器的主通路支路的开关闭合,所述主通路支路的全桥模块保持触发状态,包括:
电流从输入端经过全桥模块的上桥臂的一个电力电子单元中与全控型电力电子器件反向并联的二极管后,经过所述上桥臂的另一个电力电子单元中的全控型电力电子器件,流出所述全桥模块。
在一实施例中,所述在所述混合式直流断路器所在的系统运行故障的情况下,所述主通路支路的全桥模块断开,所述转移支路的全控型电力电子器件保持触发状态,在故障电流转移至所述转移支路后,所述主通路支路的开关断开,包括:
基于接收的分断命令,所述主通路支路的全桥模块的全控型电力电子器件断开,所述主通路支路的全桥模块的电容通过所述故障电流进行充电;
在所述混合式直流断路器两端的电压达到所述转移支路的导通电压的情况下,所述故障电流向所述转移支路进行转移;
在所述故障电流转移完成后,所述主通路支路的开关断开。
1、本公开提供的全桥模块,包括:两个电力电子单元、两个二极管、电阻和电容;两个电力电子单元反向串联构成上桥臂;两个所述二极管共阳极串联或共阴极串联,构成下桥臂;所述电阻和电容并联后,连接于所述上桥臂和下桥臂之间,实现了反向串联器件共用阻尼,减少了无源元件数量,简化了拓扑设计,有利于降低设备体积与成本。
2、本公开提供的一种全桥模块、全桥模块的混合式直流断路器及应用方法,实现了全控型电力电子器件的电位统一,有利于减少高电位控制单元数量,简化控制电气接线,有利于提升设备整体可靠性。
3、本公开提供的一种全桥模块、全桥模块的混合式直流断路器及应用方法,实现混合式直流断路器全控型电力电子器件紧凑压装结构设计,易于降低杂散参数和实现过电压抑制,提高整体应用可靠性和经济性。
实施例二:
在一实施例中,全桥模块由电力电子单元、二极管、电阻和电容组成,由两个电力电子单元和两个二极管构成全桥结构,电容器与电阻R并联后连接于全桥模块上桥臂和下桥臂之间。如图1所示,该全桥模块有两种基本结构,两个二极管可以共阳极连接,如图1(a),两个二极管也可以共阴极连接,如图1(b)。全桥模块中的电力电子单元也有两种实现形式:可以由单个全控型电力电子器件构成,也可由全控型电力电子器件串、并联组合形式构成。其中,全控型电力电子器件可以是IGBT、IGCT、IEGT或GTO等电力电子器件。实施例如图2(a)、图2(b)、图2(c)、图2(d)和图2(e)所示。
在一实施例中,全桥模块工作过程如下:
全桥模块导通时,若电流由左向右流通,电流分别经IGBT1、IGBT2的反并联二极管以及IGBT3、IGBT4流通,如图3(a)所示;若电流由右向左流通,电流分别经IGBT3、IGBT4的反并联二极管以及IGBT1、IGBT2流通,如图3 (b)所示。
全桥模块关断时,若电流由左向右流通,电流分别经IGBT1、IGBT2的反并联二极管,模块电容以及二极管5流通,如图4(a)所示;若电流由右向左流通,电流分别经IGBT3、IGBT4的反并联二极管,模块电容以及二极管6流通,如图4(b)所示。
如图5所示,混合式直流断路器,包含有3条彼此之间相互并联支路:主通路支路、转移支路和能量吸收支路。其中,主通路支路由快速机械开关K和少量电力电子开关构成,设置为承载系统正常运行时的系统额定电流;转移支路由全控型电子电子器件或全控型电力电子器件构成的单元串联构成,设置为开断系统短路电流;能量吸收支路由多组避雷器单元构成,设置为吸收系统感性能量,实现故障电流清除。
本公开所提出的全桥模块可用于混合式直流断路器中电力电子开关设计。主通路支路的电力电子开关可由多个全桥模块串并联构成,实现形式有两种:先串联后并联方式如图6(a)所示,和先并联后串联方式如图6(b)所示。转移支路上的电力电子开关由全控型电子电子器件或多个包括全控型电力电子器件的单元串联而成。
如图7所示,采用全桥模块的混合式直流断路器拓扑来阐述工作流程。
系统正常运行时,负载电流只流经主通路支路,即负载电流只流过快速机械开关K和主通路支路电力电子开关。此时电力电子开关内的可控器件IGBT保持触发状态,负载电流流经全桥模块上桥臂中与左侧IGBT反向并联的二极管,流经上桥臂右侧两并联IGBT后,流出全桥模块,此时电流并不流过模块内的电容支路。故障发生后,混合式直流断路器收到系统分断命令,主通路支路电力电子开关闭锁,转移支路电力电子开关保持触发状态。主通路支路电力电子开关内的IGBT关断,此时故障电流流经模块内电容支路给电容充电,待断路器两端电压达到转移支路导通电压时,故障电流从主通路支路向转移支路转移;转移完成后,快速机械开关K分断,在快速机械开关K分断完成后,闭锁转移支路电力电子开关,实现电流从转移支路向能量吸收支路转移,完成故障电流分断。所述直流断路器关合流程与级联全桥直流断路器也基本相同,导通转移支路,若合闸于健全线路,则触发主通路支路;若合闸于故障线路,则闭锁转移支路。
本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括磁盘存储器、便携式紧凑磁盘只读存储器(Compact Disc  Read-Only Memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。本申请可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (11)

  1. 一种全桥模块,包括:两个电力电子单元、两个二极管、电阻和电容;
    所述两个电力电子单元反向串联构成上桥臂;
    所述两个二极管共阳极串联或共阴极串联,构成下桥臂;
    所述电阻和所述电容并联后,连接于所述上桥臂和所述下桥臂之间。
  2. 如权利要求1所述的全桥模块,其中,所述电力电子单元包括一个或多个由全控型电力电子器件反向并联一个二极管构成的子模块,且每个电力电子单元的二极管与所述电力电子单元对应的所述下桥臂的二极管方向相反。
  3. 如权利要求2所述的全桥模块,其中,在所述子模块为多个的情况下,所述多个子模块的连接方式包括:串联、并联、串联后并联或并联后串联。
  4. 如权利要求2所述的全桥模块,其中,所述全控型电力电子器件包括:绝缘栅双极型晶体管IGBT、集成门极换流晶闸管IGCT、电子注入增强门极晶体管IEGT或门极可断晶闸管GTO。
  5. 一种基于全桥模块的混合式直流断路器,包括:并联的主通路支路、转移支路和能量吸收支路;
    其中,所述主通路支路包括多个全桥模块,其中,所述全桥模块为权利要求1-4任一项所述的全桥模块;
    所述转移支路包括多个全控型电力电子器件或者多个包括所述全控型电力电子器件的单元;
    所述主通路支路还包括开关,所述开关与所述多个全桥模块串联。
  6. 如权利要求5所述的混合式直流断路器,其中,所述能量吸收支路包括压敏电阻。
  7. 如权利要求5所述的混合式直流断路器,其中,所述主通路支路上的所述多个全桥模块先并联后串联或先串联后并联。
  8. 如权利要求5所述的混合式直流断路器,其中,所述转移支路上的所述多个全控型电力电子器件串联或所述多个包括所述全控型电力电子器件的单元串联。
  9. 一种如权利要求5-8任一项所述的混合式直流断路器的应用方法,包括:
    在所述混合式直流断路器所在的系统运行正常的情况下,所述混合式直流断路器的主通路支路的开关闭合,所述主通路支路的全桥模块保持触发状态;
    在所述混合式直流断路器所在的系统运行故障的情况下,所述主通路支路的全桥模块断开,所述转移支路的全控型电力电子器件保持触发状态,在故障 电流转移至所述转移支路后,所述主通路支路的开关断开;
    在所述故障电流转移至所述混合式直流断路器的能量吸收支路后,所述混合式直流断路器清除所述故障电流。
  10. 如权利要求9所述的方法,其中,所述在所述混合式直流断路器所在的系统运行正常的情况下,所述混合式直流断路器的主通路支路的开关闭合,所述主通路支路的全桥模块保持触发状态,包括:
    电流从输入端经过所述全桥模块的上桥臂的一个电力电子单元中与全控型电力电子器件反向并联的二极管后,经过所述上桥臂的另一个电力电子单元中的全控型电力电子器件,流出所述全桥模块。
  11. 如权利要求9所述的方法,其中,所述在所述混合式直流断路器所在的系统运行故障的情况下,所述主通路支路的全桥模块断开,所述转移支路的全控型电力电子器件保持触发状态,在故障电流转移至所述转移支路后,所述主通路支路的开关断开,包括:
    基于接收的分断命令,所述主通路支路的全桥模块的全控型电力电子器件断开,所述主通路支路的全桥模块的电容通过所述故障电流进行充电;
    在所述混合式直流断路器两端的电压达到所述转移支路的导通电压的情况下,所述故障电流向所述转移支路进行转移;
    在所述故障电流转移完成后,所述主通路支路的开关断开。
PCT/CN2019/117572 2019-01-14 2019-11-12 全桥模块、全桥模块的混合式直流断路器及应用方法 WO2020147400A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19910433.2A EP3913805A4 (en) 2019-01-14 2019-11-12 FULL BRIDGE MODULE, HYBRID DC CIRCUIT BREAKER OF A FULL BRIDGE MODULE AND APPLICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910030591.XA CN109981092A (zh) 2019-01-14 2019-01-14 一种全桥模块、全桥模块的混合式直流断路器及应用方法
CN201910030591.X 2019-01-14

Publications (1)

Publication Number Publication Date
WO2020147400A1 true WO2020147400A1 (zh) 2020-07-23

Family

ID=67076572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117572 WO2020147400A1 (zh) 2019-01-14 2019-11-12 全桥模块、全桥模块的混合式直流断路器及应用方法

Country Status (3)

Country Link
EP (1) EP3913805A4 (zh)
CN (1) CN109981092A (zh)
WO (1) WO2020147400A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498546A (zh) * 2021-12-28 2022-05-13 清华大学 一种混合双重桥式直流断路器拓扑电路及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981092A (zh) * 2019-01-14 2019-07-05 全球能源互联网研究院有限公司 一种全桥模块、全桥模块的混合式直流断路器及应用方法
CN112865061A (zh) * 2021-01-07 2021-05-28 天津大学 基于电力电子器件的直流负荷开关及其投切方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160105018A1 (en) * 2014-10-09 2016-04-14 General Electric Company Hybrid direct-current circuit breaker
CN105896492A (zh) * 2016-06-16 2016-08-24 南方电网科学研究院有限责任公司 一种混合式直流断路器
CN205693347U (zh) * 2016-06-16 2016-11-16 南方电网科学研究院有限责任公司 一种混合式直流断路器
CN107482576A (zh) * 2017-09-15 2017-12-15 浙江大学 一种混合式高压直流断路器的启动控制策略
CN107748324A (zh) * 2017-10-16 2018-03-02 国网浙江省电力公司电力科学研究院 一种混合式直流断路器的保护分断电流试验方法及系统
CN109981092A (zh) * 2019-01-14 2019-07-05 全球能源互联网研究院有限公司 一种全桥模块、全桥模块的混合式直流断路器及应用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807216A (zh) * 2014-12-29 2016-07-27 国家电网公司 一种高压直流断路器全桥模块的试验装置及其试验方法
CN104635151B (zh) * 2014-12-29 2018-07-20 国家电网公司 一种级联全桥直流断路器低压等效试验电路及其检测方法
CN106558865B (zh) * 2015-09-25 2019-03-15 全球能源互联网研究院 一种改进型级联全桥高压直流断路器及其快速重合方法
CN105790234A (zh) * 2016-03-15 2016-07-20 许继电气股份有限公司 一种高压直流断路器
CN105655966A (zh) * 2016-03-15 2016-06-08 许继电气股份有限公司 一种直流断路器
CN107645154B (zh) * 2016-07-20 2020-03-06 全球能源互联网研究院有限公司 一种新型组合式直流断路器及其应用方法
CN107769179A (zh) * 2016-08-23 2018-03-06 全球能源互联网研究院 一种基于可关断阀的强迫电流转移型混合式限流器
CN106229952B (zh) * 2016-08-31 2018-12-07 许继电气股份有限公司 熔断器组合器件及控制方法、直流断路器及控制方法
CN108123423B (zh) * 2016-11-28 2019-10-18 华北电力大学 一种基于晶闸管全桥模块主断路开关型的混合高压直流断路器
CN107749616B (zh) * 2017-09-29 2019-01-04 浙江大学 一种降损式电容型直流断路器及其直流故障处理策略
CN107785867A (zh) * 2017-12-08 2018-03-09 浙江大学 一种可降低开断电流的直流断路器及其直流故障处理策略

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160105018A1 (en) * 2014-10-09 2016-04-14 General Electric Company Hybrid direct-current circuit breaker
CN105896492A (zh) * 2016-06-16 2016-08-24 南方电网科学研究院有限责任公司 一种混合式直流断路器
CN205693347U (zh) * 2016-06-16 2016-11-16 南方电网科学研究院有限责任公司 一种混合式直流断路器
CN107482576A (zh) * 2017-09-15 2017-12-15 浙江大学 一种混合式高压直流断路器的启动控制策略
CN107748324A (zh) * 2017-10-16 2018-03-02 国网浙江省电力公司电力科学研究院 一种混合式直流断路器的保护分断电流试验方法及系统
CN109981092A (zh) * 2019-01-14 2019-07-05 全球能源互联网研究院有限公司 一种全桥模块、全桥模块的混合式直流断路器及应用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498546A (zh) * 2021-12-28 2022-05-13 清华大学 一种混合双重桥式直流断路器拓扑电路及其控制方法

Also Published As

Publication number Publication date
CN109981092A (zh) 2019-07-05
EP3913805A4 (en) 2022-09-14
EP3913805A1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
Wang et al. Reactor sizing criterion for the continuous operation of meshed HB-MMC-based MTDC system under DC faults
WO2020147400A1 (zh) 全桥模块、全桥模块的混合式直流断路器及应用方法
RU2674989C2 (ru) Подмодуль, защитный блок, преобразователь и способ управления преобразователем
EP3131166B1 (en) Passive high-voltage direct-current circuit breaker and implementation method therefor
EP3355431B1 (en) Cascaded full-bridge high-voltage dc circuit breaker
KR101924707B1 (ko) 전압원 멀티 레벨 컨버터, 직류 전력 전송 시스템 및 고장 처리 방법 및 디바이스
CN102931863B (zh) 一种建立模块化多电平换流器的混合结构模型的方法
US20160268915A1 (en) Submodule for modular multi-level converter and application thereof
RU2652690C2 (ru) Модульный многоточечный вентильный преобразователь для высоких напряжений
CN106786403B (zh) 一种带续流回路的直流固态断路器
Li et al. An auxiliary DC circuit breaker utilizing an augmented MMC
WO2017080354A1 (zh) 一种带耦合电抗器的高压直流断路器
Xiang et al. Research on fast solid state DC breaker based on a natural current zero-crossing point
CN104410101A (zh) 具有电网黑启动和直流故障穿越能力的mmc拓扑结构
CN112653087B (zh) 一种采用复合固态开关的直流断路器及其控制方法
Li et al. A DC fault handling method of the MMC-based DC system
CN104953873A (zh) 一种混合结构模块化多电平换流器仿真模型
CN111682788A (zh) 具有故障阻断能力的电流主动转移型mmc电力电子变压器
CN111509677A (zh) 一种全桥模块和一种直流断路器
CN107863760B (zh) 一种基于电容换流单元的限流式直流断路器及其控制方法
CN114204517B (zh) 一种混合式直流断路器及其控制方法
CN109217239B (zh) 一种具备选断功能的直流断路器
Zhang et al. Bridge-type multiport fault current limiter for applications in MTdc grids
Zhang et al. An improved sub-module topology for protecting MMC power devices under DC-side short circuit fault
CN104866656A (zh) 一种全桥结构模块化多电平换流器桥臂等效电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019910433

Country of ref document: EP

Effective date: 20210816