WO2020147070A1 - 双频四臂螺旋天线及通信设备 - Google Patents

双频四臂螺旋天线及通信设备 Download PDF

Info

Publication number
WO2020147070A1
WO2020147070A1 PCT/CN2019/072193 CN2019072193W WO2020147070A1 WO 2020147070 A1 WO2020147070 A1 WO 2020147070A1 CN 2019072193 W CN2019072193 W CN 2019072193W WO 2020147070 A1 WO2020147070 A1 WO 2020147070A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
antenna
helical
frequency
dual
Prior art date
Application number
PCT/CN2019/072193
Other languages
English (en)
French (fr)
Inventor
吕超
叶璐
尹航
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980003107.2A priority Critical patent/CN110832700A/zh
Priority to PCT/CN2019/072193 priority patent/WO2020147070A1/zh
Publication of WO2020147070A1 publication Critical patent/WO2020147070A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points

Definitions

  • the embodiment of the present invention relates to the technical field of communication antennas, in particular to a dual-frequency four-arm helical antenna and communication equipment.
  • the global satellite navigation system In the field of wireless communication, the global satellite navigation system has a wide range of applications in all aspects. Compared with a single satellite navigation system, the global satellite navigation system has a wide coverage, high navigation accuracy and stable operation, which has become the current navigation development trend.
  • dual-frequency four-arm helical antennas are widely used to enable communication equipment to realize data docking with global satellite navigation systems.
  • the dual-frequency four-arm helical antenna can be formed by stacking two single-frequency four-arm helical antennas up and down or nested inside and outside; it is also possible to arrange two single-frequency four-arm helical antennas on the same mold surface. The spiral direction is combined.
  • the dual-frequency four-arm helical antenna with the above-mentioned structure has a relatively large size, which cannot meet the miniaturization requirements of the antenna.
  • the purpose of the present invention is to provide a dual-frequency four-arm helical antenna and communication equipment.
  • the present invention can significantly shorten the height of the dual-frequency four-arm helical antenna, thereby reducing the size of the antenna. .
  • An embodiment of the present invention provides a dual-frequency four-arm helical antenna, which includes a printed circuit board and an antenna bearing portion arranged on the printed circuit board, and four sets of spirals with the same structure are provided on the surface of the antenna bearing portion.
  • the arm unit, each group of the spiral arm unit is electrically connected to the printed circuit board; the spiral arm unit extends upward from the lower end of the side surface of the antenna carrying portion, and at least part of the spiral arm unit is arranged on the antenna
  • the spiral direction of the spiral arm unit located on the top surface of the antenna supporting portion is the same as the spiral direction of the spiral arm unit located on the side surface of the antenna supporting portion.
  • Another embodiment of the present invention provides a communication device including the above-mentioned dual-frequency four-arm helical antenna.
  • the spiral arm unit is arranged on the top surface of the antenna bearing portion, and the spiral direction of the spiral arm unit on the top surface of the antenna bearing portion is the same as the spiral direction of the spiral arm unit on the side of the antenna bearing portion.
  • a part of the spiral arm unit is arranged on the top surface of the antenna bearing portion, which makes full use of the top space of the antenna bearing portion.
  • the side space of the antenna bearing portion is reduced. Therefore, the height of the antenna carrying part is reduced, that is, the height of the entire helical antenna is reduced, and the size of the antenna is reduced, which is beneficial to the miniaturization of the antenna.
  • FIG. 1 is a schematic structural diagram of a dual-frequency four-arm helical antenna provided by an embodiment of the present invention
  • Figure 2 is a top view of Figure 1;
  • Figure 3 is a front view of Figure 1;
  • FIG. 4 is a schematic diagram of the structure of a printed circuit board provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the return loss (S11) of the dual-frequency four-arm helical antenna provided by an embodiment of the present invention
  • FIG. 8 is a gain pattern of a second frequency band of a dual-frequency four-arm helical antenna according to an embodiment of the present invention.
  • FIG. 9 is a gain pattern of the first frequency band of the dual-frequency four-arm helical antenna provided by an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a dual-frequency four-arm helical antenna provided by an embodiment of the present invention
  • Fig. 2 is a top view of Fig. 1
  • Fig. 3 is a front view of Fig. 1
  • Fig. 4 is a printed circuit provided by an embodiment of the present invention
  • the structure diagram of the circuit board please refer to Figure 1 to Figure 4.
  • This embodiment provides a dual-frequency four-arm helical antenna, which includes a printed circuit board 100 and an antenna carrying part 200 arranged on the printed circuit board 100.
  • the surface of the antenna carrying part 200 is provided with four sets of spiral arm units with the same structure 300, each group of spiral arm units 300 are electrically connected to the printed circuit board 100; the spiral arm unit 300 extends upward from the lower end of the side of the antenna carrying part 200, and at least part of the spiral arm unit 300 is arranged on the top surface of the antenna carrying part 200, And the spiral direction of the spiral arm unit 300 located on the top surface of the antenna supporting portion 200 and the spiral arm unit 300 located on the side of the antenna supporting portion 200 are the same.
  • the dual-frequency four-arm helical antenna provided in this embodiment can be applied to various communication devices to meet the multi-mode navigation requirements of the device and improve navigation accuracy.
  • the helical antenna includes four sets of spiral arm units 300 with the same structure, the four sets of spiral arm units 300 are spirally wound on the antenna carrying portion 200, and the phases of the four sets of spiral arm units 300 are sequentially different by 90°.
  • the four sets of spiral arm units 300 are electrically connected to the printed circuit board 100, and the printed circuit board 100 provides the four sets of spiral arm units 300 with feed currents of the same magnitude and 90° phase difference sequentially, which can make the antenna have a cardioid pattern.
  • Good front-to-back ratio and excellent wide-beam circular polarization characteristics are very suitable for use as a receiving antenna for satellite positioning systems.
  • the number of spiral arm units 300 can also be set to an even number of 2, 6, 8, etc. according to needs, which is not further limited in this embodiment.
  • Each spiral arm unit 300 extends upward from the lower end of the side of the antenna carrying portion 200, at least part of the spiral arm unit 300 is arranged on the top surface of the antenna carrying portion 200, and the spiral arm unit 300 on the top surface of the antenna carrying portion 200 is connected to The spiral direction of the spiral arm unit 300 on the side of the antenna carrying portion 200 is the same to ensure the performance of the antenna.
  • a part of the spiral arm unit 300 is arranged on the top surface of the antenna carrying portion 200, which makes full use of the top space of the antenna carrying portion 200.
  • the requirement for the side space of the antenna carrying part 200 is reduced, thereby reducing the height of the antenna carrying part 200, that is, reducing the height of the entire helical antenna, so that the size of the antenna becomes smaller, which is beneficial to the miniaturization of the antenna.
  • each group of spiral wall units 300 includes a first spiral arm 310 and a second spiral arm 320 that are arranged adjacently.
  • the spiral directions of the first spiral arm 310 and the second spiral arm 320 are the same, and the first spiral arm 310 and The electrical length of the second spiral arm 320 is different.
  • the first spiral arm 310 generates resonance in the first frequency band
  • the second spiral arm 320 generates resonance in the second frequency band
  • the frequency of the first frequency band is different from the frequency of the second frequency band.
  • the first spiral arm 310 and the second spiral arm 320 have different electrical lengths, so that the first spiral arm 310 and the second spiral arm 320 can respectively radiate electromagnetic waves of different resonance frequencies, so that the overall antenna can have multiple frequency points to meet multiple requirements. System coverage requirements.
  • first spiral arm 310 may be a short-circuit arm
  • second spiral arm 320 may be an open-circuit arm, that is, four first spiral arms 310 are connected at one point to form a short-circuit structure, and the four second spiral arms 320 are not connected to each other. Form an open circuit structure.
  • the printed circuit board 100 feeds the electromagnetic wave signal of the first frequency band and the electromagnetic wave signal of the second frequency band to the first spiral arm 310 and the second spiral arm 320 respectively. Assuming that the frequency of the first frequency band is greater than the second frequency band, the first spiral arm 310 The resonance of the first frequency band is generated on the upper side, and the resonance of the second frequency band is generated on the second spiral arm 320, so that the electrical length of the first spiral arm 310 is greater than the electrical length of the second spiral arm 320.
  • the electrical length of the first spiral arm 310 is an even multiple of a quarter wavelength of the electromagnetic wave signal in the first frequency band to ensure that the first spiral arm 310 is a short-circuit arm; the electrical length of the second spiral arm 320 is the electromagnetic wave in the second frequency band An odd multiple of a quarter wavelength of the signal to ensure that the second spiral arm 320 is an open arm.
  • the first frequency band is 1.54 GHz-1.65 GHz
  • the second frequency band is 1.2 GHz-1.24 GHz. Since the first and second frequency bands of the Global Positioning System (Global Positioning System, GPS) are 1575.42 MHz and 1228 MHz, respectively, the first and second frequency bands of GLONASS are 1602+0.5625, respectively. *kMHz and 1246+0.4375*kMHz, the first frequency band and the second frequency band of the Beidou navigation system are 1559.052-1591.788MHz and 1166.22-1217.37MHz respectively. Therefore, the first frequency band and the second frequency band of this embodiment can cover GPS and GLONASS The first and second frequency bands of Beidou meet the requirements of multi-system coverage.
  • GPS Global Positioning System
  • the first spiral arm 310 is used to excite high frequencies
  • the second spiral arm 320 is used to excite low frequencies.
  • first spiral arm 310 can also be used to excite low frequencies
  • second spiral arm 320 can also be used to excite high frequencies
  • the first spiral arm 310 is arranged on the side and top surface of the antenna carrying part 200
  • the second spiral arm 320 is arranged on the side of the antenna carrying part 200.
  • the four first spiral arms 310 extend upward along the side of the antenna carrying portion 200, and are connected to the center of the top of the antenna carrying portion 200 after spiraling a certain distance on the top of the antenna carrying portion 200 ,
  • the four second spiral arms 320 extend upward along the side of the antenna carrying portion 200, and the four second spiral arms 320 are all located on the side of the antenna carrying portion 2000, and all the four second spiral arms 320 are arranged
  • the helical antenna surrounded by the four second helical arms 320 has a larger opening, thereby ensuring that the antenna has a larger gain.
  • the side surface of the antenna carrying portion 200 of this embodiment may be cylindrical or conical, and the antenna gain on the E surface in the pattern has been enhanced, which is beneficial to receiving weak satellite electromagnetic wave signals.
  • the antenna gain of the E-plane in the cone-shaped pattern is higher at the same size and has a better effect. If the antenna gain is the same as that of the cylindrical shape, the size of the conical antenna can be made smaller.
  • the height of the antenna carrying portion 200 in this embodiment is 0.1-0.25 times the wavelength of the antenna electromagnetic wave, that is, the height of the antenna carrying portion 200 in this embodiment can be the wavelength of the electromagnetic wave signal in the first frequency band or the electromagnetic wave signal in the second frequency band. 0.1-0.25 times the wavelength of the electromagnetic wave, which is subject to the shorter electromagnetic signal wavelength.
  • the height of the antenna carrying portion 200 is 0.135 times the wavelength of the antenna electromagnetic wave, that is, the height of the antenna carrying portion 200 may be 0.135 times the wavelength of the shorter electromagnetic wave signal.
  • the material of the antenna carrying portion 200 is plastic, and the antenna carrying portion 200 is welded to the printed circuit board 100, and the antenna carrying portion 200 is welded to the printed circuit board 100 to define the whole helical antenna Structure, the designer can design the helical antenna on the structure, thus having a high degree of design freedom.
  • the printed circuit board 100 of this embodiment is provided with a chip 110 and four power feeding parts 120, and each power feeding part 120 includes an electrical connection port 121 and a first power feeding port 122.
  • each power feeding part 120 includes an electrical connection port 121 and a first power feeding port 122.
  • the second feed port 123, the electrical connection port 121 is electrically connected to the chip 110, the first feed port 122 is electrically connected to the first spiral arm 310, and the second feed port 123 is electrically connected to the second spiral arm 320,
  • the port 121, the first feeding port 122, and the second feeding port 123 are connected in sequence to form a short circuit structure.
  • the coupling coefficient of the antenna can be changed, and the standing wave ratio of the antenna can be adjusted, thereby improving the scope of application of this embodiment.
  • the power feeding unit 120 includes a connecting line 124, an arc line 125, and a short-circuit line 126.
  • the end of the connecting line 124 close to the chip 110 forms an electrical connection port 121, and the end of the connecting line 124 away from the chip 110 is connected to the arc line 125.
  • the connecting line 124 and the arc line 125 form a first feeding port 122, the end of the arc line 125 away from the connecting line 124 is connected to the first end of the short-circuit line 126, and the arc line 125 is connected to the short-circuit line 126
  • a second power feeding port 123 is formed at, and the second end of the short-circuit line 126 is connected to the connection line 124.
  • short-circuit structure in this embodiment is not limited to the above-mentioned form, and those skilled in the art can also provide other forms of short-circuit structure as needed.
  • the spiral arm unit 300 is arranged on the antenna carrying part 200 by using a laser engraving process.
  • the first spiral arm 310 and the second spiral arm 320 may also use other processes, such as printing using FPC or Fr4, and then being rolled up and pasted on the antenna carrying part 200.
  • the dual-frequency four-arm helical antenna includes four sets of spiral arm units 300 with the same structure.
  • Each set of spiral wall units 300 includes a first spiral arm 310 and a second spiral arm 320 that are arranged adjacently.
  • One spiral arm 310 is a short-circuit arm, and the four second spiral arms 320 are open-circuit arms.
  • FIG. 5 is a schematic diagram of the return loss (S11) of the dual-frequency four-arm helical antenna provided by an embodiment of the present invention; please refer to FIG. 5.
  • the abscissa in the figure is the frequency (GHz), and the ordinate is the S11 parameter (dB). It can be seen from Figure 5 that the antenna achieves S11 ⁇ -6.08dB at 1.18GHz-1.23GHz and 1.57GHz-1.66GHz, and the frequency covers the first and second frequency bands of GPS, GLONASS and Beidou, achieving a three-mode six-frequency positioning antenna design.
  • FIG. 6 is an axial ratio diagram of the second frequency band of the dual-frequency four-arm helical antenna provided by an embodiment of the present invention
  • FIG. 7 is the axial ratio direction of the first frequency band of the dual-frequency four-arm helical antenna provided by an embodiment of the present invention
  • Figure 8 is a gain pattern of the second frequency band of a dual-frequency four-arm helical antenna provided by an embodiment of the present invention
  • Figure 9 is a gain direction of the first frequency band of a dual-frequency four-arm helical antenna provided by an embodiment of the present invention Figure; please refer to Figure 6- Figure 9. It can be seen from Figs. 6-9 that the antenna of this embodiment has a better gain effect.
  • This embodiment provides a communication device, including the dual-frequency four-arm helical antenna as described in the first embodiment.
  • the communication device of this embodiment is equipped with the dual-frequency four-arm helical antenna described in the first embodiment, so it can be matched with different positioning systems, has high positioning accuracy and stability, and the helical antenna has relatively high positioning accuracy and stability. Small size, which can reduce the overall size of the communication device.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication between two elements or the interaction between two elements.
  • installed may be a fixed connection or a detachable connection , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication between two elements or the interaction between two elements.
  • first and second are only used to facilitate the description of different components, and cannot be understood as indicating or implying the order relationship, relative importance or implicitly indicating that The number of technical characteristics.
  • the features defined as “first” and “second” may include at least one of the features either explicitly or implicitly.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本发明提供一种双频四臂螺旋天线及通信设备,螺旋天线包括印制电路板和设置在印制电路板上的天线承载部,天线承载部的表面设有四组结构相同的螺旋臂单元,每组螺旋臂单元均与印制电路板电连接;螺旋臂单元由天线承载部的侧面下端向上延伸,至少部分螺旋臂单元设置在天线承载部的顶面上,且位于天线承载部顶面的螺旋臂单元与位于天线承载部侧面的螺旋臂单元的螺旋方向相同。本发明将部分螺旋臂单元设置在天线承载部的顶面上,充分利用了天线承载部的顶部空间,在保证螺旋臂单元天线性能的前提下,降低了对天线承载部侧面空间的需求,从而降低了天线承载部的高度,也即降低了整个螺旋天线的高度,使天线的尺寸变小,有利于天线的小型化。

Description

双频四臂螺旋天线及通信设备 技术领域
本发明实施例涉及通信天线技术领域,尤其涉及一种双频四臂螺旋天线及通信设备。
背景技术
在无线通信领域,全球卫星导航系统在各个方面有着广泛的应用,较单一的卫星导航系统而言,全球卫星导航系统的覆盖范围广、导航精度高、运行稳定,已然成为现在导航发展的趋势。目前在无线通信领域中,广泛使用双频四臂螺旋天线以使通信设备与全球卫星导航系统实现数据对接。
已有技术中,双频四臂螺旋天线可以采用两个单频四臂螺旋天线上下叠层或内外嵌套形成;也可以将两个单频四臂螺旋天线设置在同一模具表面上,按同一螺旋方向组合而成。
但是,上述结构的双频四臂螺旋天线其尺寸均较大,不能够满足天线的小型化需求。
发明内容
为了克服现有技术下的上述缺陷,本发明的目的在于提供一种双频四臂螺旋天线及通信设备,本发明能够显著的缩短双频四臂螺旋天线的高度,从而使天线的尺寸变小。
本发明一实施例提供一种双频四臂螺旋天线,包括印制电路板和设置在所述印制电路板上的天线承载部,所述天线承载部的表面设有四组结构相同 的螺旋臂单元,每组所述螺旋臂单元均与所述印制电路板电连接;所述螺旋臂单元由所述天线承载部的侧面下端向上延伸,至少部分所述螺旋臂单元设置在所述天线承载部的顶面上,且位于所述天线承载部顶面的所述螺旋臂单元与位于所述天线承载部侧面的所述螺旋臂单元的螺旋方向相同。
本发明另一实施例提供一种通信设备,该通信设备包括如上所述的双频四臂螺旋天线。
本发明实施例将至少部分螺旋臂单元设置在天线承载部的顶面上,且位于天线承载部顶面的螺旋臂单元与位于天线承载部侧面的螺旋臂单元的螺旋方向相同,与已有技术相比,本申请将部分螺旋臂单元设置在天线承载部的顶面上,充分利用了天线承载部的顶部空间,在保证螺旋臂单元天线性能的前提下,降低了对天线承载部侧面空间的需求,从而降低了天线承载部的高度,也即降低了整个螺旋天线的高度,使天线的尺寸变小,有利于天线的小型化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的双频四臂螺旋天线的结构简图;
图2为图1的俯视图;
图3为图1的主视图;
图4为本发明一实施例提供的印制电路板的结构简图;
图5为本发明一实施例提供的双频四臂螺旋天线的回波损耗(S11)示意图;
图6为本发明一实施例提供的双频四臂螺旋天线的第二频段的轴比方向图;
图7为本发明一实施例提供的双频四臂螺旋天线的第一频段的轴比方向图;
图8为本发明一实施例提供的双频四臂螺旋天线的第二频段的增益方向图;
图9为本发明一实施例提供的双频四臂螺旋天线的第一频段的增益方向图。
附图标记:
100-印制电路板;                110-芯片;
120-馈电部;                    121-电连接端口;
122-第一馈电端口;              123-第二馈电端口;
124-连接线;                    125-圆弧线;
126-短路线;                    200-天线承载部;
300-螺旋臂单元;                310-第一螺旋臂;
320-第二螺旋臂。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
实施例一
图1为本发明一实施例提供的双频四臂螺旋天线的结构简图;图2为图1的俯视图;图3为图1的主视图;图4为本发明一实施例提供的印制电路板的结构简图;请参照图1-图4。本实施例提供一种双频四臂螺旋天线,包括印制电路板100和设置在印制电路板100上的天线承载部200,天线承载部200的表面设有四组结构相同的螺旋臂单元300,每组螺旋臂单元300均与印制电路板100电连接;螺旋臂单元300由天线承载部200的侧面下端向上延伸,至少部分螺旋臂单元300设置在天线承载部200的顶面上,且位于天线承载部200顶面的螺旋臂单元300与位于天线承载部200侧面的螺旋臂单元300的螺旋方向相同。
具体的,本实施例提供的双频四臂螺旋天线可应用于各种通信设备,以实现设备的多模导航需求,提高导航精度。
螺旋天线包括四组结构相同的螺旋臂单元300,四组螺旋臂单元300螺旋缠绕在天线承载部200上,且四组螺旋臂单元300相位依次相差90°。四组螺旋臂单元300与印制电路板100电连接,印制电路板100向四组螺旋臂单元300提供大小相同、相位依次相差90°的馈电电流,可使得天线具有心形方向图,良好的前后比及优异的宽波束圆极化特性,十分适合用作卫星定位系统的接收天线。
当然,在其他可能的实施方式中,还可以根据需要将螺旋臂单元300的数量设置成2个、6个、8个等偶数组,本实施例对此不做进一步限定。
每个螺旋臂单元300均由天线承载部200的侧面下端向上延伸,至少部分螺旋臂单元300设置在天线承载部200的顶面上,且位于天线承载部200顶面的螺旋臂单元300与位于天线承载部200侧面的螺旋臂单元300的螺旋方向相同,以保证该天线的性能。与已有技术相比,本实施例将部分螺旋臂单元300设置在天线承载部200的顶面上,充分利用了天线承载部200的顶部空间,在保证螺旋臂单元300天线性能的前提下,降低了对天线承载部200侧面空间的需求,从而降低了天线承载部200的高度,也即降低了整个螺旋天线的高度,使天线的尺寸变小,有利于天线的小型化。
进一步地,每组螺旋壁单元300均包括相邻设置的第一螺旋臂310和第二螺旋臂320,第一螺旋臂310和第二螺旋臂320的螺旋方向相同,且第一螺旋臂310与第二螺旋臂320的电长度不同。其中,第一螺旋臂310上产生第一频段的谐振,第二螺旋臂320上产生第二频段的谐振,第一频段的频率与第二频段的频率不同。第一螺旋臂310与第二螺旋臂320具有不同的电长度可以使得第一螺旋臂310与第二螺旋臂320分别能够辐射不同谐振频率的电磁波,从而可以使得整体天线具有多频点,满足多系统覆盖的要求。
可选的,第一螺旋臂310可以为短路臂,第二螺旋臂320可以为开路臂,即四个第一螺旋臂310连接在一点构成短路结构,四个第二螺旋臂320彼此各不相连构成开路结构。
印制电路板100向第一螺旋臂310与第二螺旋臂320分别馈入第一频段的电磁波信号和第二频段的电磁波信号,假设第一频段的频率大于第二频段,第一螺旋臂310上产生第一频段的谐振,第二螺旋臂320上产生第二频段的谐振,使得第一螺旋臂310的电长度大于第二螺旋臂320的电长度。第一螺旋臂310的电长度为第一频段的电磁波信号的四分之一波长的偶数倍,以保证第一螺旋臂310为短路臂;第二螺旋臂320的电长度为第二频段的电磁波 信号的四分之一波长的奇数倍,以保证第二螺旋臂320为开路臂。
进一步地,本实施例中第一频段为1.54GHz-1.65GHz,第二频段为1.2GHz-1.24GHz。由于全球卫星定位系统(Global Positioning System,GPS)的第一频段和第二频段分别为1575.42MHz和1228MHz,格洛纳斯全球定位系统(GLONASS)的第一频段和第二频段分别为1602+0.5625*kMHz和1246+0.4375*kMHz,北斗导航系统的第一频段和第二频段分别为1559.052-1591.788MHz和1166.22-1217.37MHz,因此,本实施例的第一频段和第二频段可以覆盖GPS、GLONASS和北斗的第一频段和第二频段,满足多系统覆盖的要求。
可选的,在一种可能的实施方式中,第一螺旋臂310用于激励高频,第二螺旋臂320用于激励低频。
在另一种可能的实施方式中,第一螺旋臂310也可以用于激励低频,第二螺旋臂320也可以用于激励高频。
进一步地,本实施例中第一螺旋臂310设置在天线承载部200的侧面和顶面,第二螺旋臂320设置在天线承载部200的侧面。
具体的,如图1-图3所示,四个第一螺旋臂310沿天线承载部200侧面向上延伸,且在天线承载部200的顶部螺旋一定距离后在天线承载部200的顶部中心相连接,从而构成短路结构;四个第二螺旋臂320沿天线承载部200侧面向上延伸,且四个第二螺旋臂320整体均位于天线承载部2000的侧面,将四个第二螺旋臂320全部设置在天线承载部200的侧面还可以保证四个第二螺旋臂320所围成的螺旋天线具有较大的开口,从而保证天线具有较大的增益。
进一步地,本实施例的天线承载部200的侧面可以呈圆柱状或圆锥状,已增强方向图中E面的天线增益,有利于接收微弱的卫星的电磁波信号。相 比于圆柱形,在相同尺寸下,圆锥形的方向图中E面的天线增益更高一些,具有更好的效果。如设置和圆柱形相同的天线增益,则圆锥形的天线尺寸可以做的更小。
进一步地,本实施例中天线承载部200的高度为天线电磁波波长的0.1-0.25倍,即本实施例中天线承载部200的高度可以做到第一频段电磁波信号的波长或第二频段电磁波信号的波长的0.1-0.25倍,具体以较短的电磁波信号波长为准。
优选的,天线承载部200的高度为天线电磁波波长的0.135倍,即天线承载部200的高度可以为较短的电磁波信号波长的0.135倍。
进一步地,本实施例中天线承载部200的材料为塑料,天线承载部200与印制电路板100焊接连接,将天线承载部200焊接在印制电路板100后即限定出了螺旋天线的整体结构,设计者可在该结构上进行螺旋天线的设计,从而具有较高的设计自由度。
进一步地,如图4所示,本实施例的印制电路板100上设有芯片110和四个馈电部120,每个馈电部120均包括电连接端口121、第一馈电端口122和第二馈电端口123,电连接端口121与芯片110电连接,第一馈电端口122与第一螺旋臂310电连接,第二馈电端口123与第二螺旋臂320电连接,电连接端口121、第一馈电端口122和第二馈电端口123依次连接,共同组成短路结构。
本实施例通过调节短路结构的长度,可以改变天线的耦合系数,调节天线的驻波比,从而提高本实施例的适用范围。
具体的,馈电部120包括连接线124、圆弧线125和短路线126,连接线124靠近芯片110的一端构成电连接端口121,连接线124远离芯片110的一端与圆弧线125相连,且连接线124与圆弧线125相连接处构成第一馈电端 口122,圆弧线125远离连接线124的一端与短路线126的第一端相连,圆弧线125与短路线126相连接处构成第二馈电端口123,短路线126的第二端与连接线124相连。
当然,本实施例中的短路结构并不局限于上述形式,本领域技术人员还可以根据需要设置其他形式的短路结构。
可选的,螺旋臂单元300采用镭雕工艺设置在天线承载部200上。当然,第一螺旋臂310和第二螺旋臂320还可以使用其他工艺,例如使用FPC或Fr4印制后再卷起来贴在天线承载部200上。
下面提供一种实施例的天线的仿真结果,以说明本申请的技术方案的有益效果。
如图1所示,双频四臂螺旋天线包括四组结构相同的螺旋臂单元300,每组螺旋壁单元300均包括相邻设置的第一螺旋臂310和第二螺旋臂320,四个第一螺旋臂310为短路臂,四个第二螺旋臂320为开路臂。以此天线结构作为模型进行仿真,结果如下:
图5为本发明一实施例提供的双频四臂螺旋天线的回波损耗(S11)示意图;请参照图5。图中横坐标为频率(GHz),纵坐标为S11参数(dB)。由图5可知,天线在1.18GHz-1.23GHz和1.57GHz-1.66GHz实现了S11<-6.08dB,频率覆盖GPS、GLONASS和北斗的第一频段和第二频段,实现了三模六频定位天线设计。
图6为本发明一实施例提供的双频四臂螺旋天线的第二频段的轴比方向图;图7为本发明一实施例提供的双频四臂螺旋天线的第一频段的轴比方向图;图8为本发明一实施例提供的双频四臂螺旋天线的第二频段的增益方向图;图9为本发明一实施例提供的双频四臂螺旋天线的第一频段的增益方向图;请参照图6-图9。由图6-图9可看出,本实施例的天线具有较佳的增益 效果。
实施例二
本实施例提供一种通信设备,包括如实施例一中所述的双频四臂螺旋天线。
本实施例的通信设备,由于设置有上述实施例一中所述的双频四臂螺旋天线,因此能够与不同的定位系统相匹配,具有较高的定位精度和稳定性,且螺旋天线具有较小的体积,从而能够减小通信设备的整体尺寸。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
需要说明的是,在本发明的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或 者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 一种双频四臂螺旋天线,其特征在于,包括印制电路板和设置在所述印制电路板上的天线承载部,所述天线承载部的表面设有四组结构相同的螺旋臂单元,每组所述螺旋臂单元均与所述印制电路板电连接;
    所述螺旋臂单元由所述天线承载部的侧面下端向上延伸,至少部分所述螺旋臂单元设置在所述天线承载部的顶面上,且位于所述天线承载部顶面的所述螺旋臂单元与位于所述天线承载部侧面的所述螺旋臂单元的螺旋方向相同。
  2. 根据权利要求1所述的双频四臂螺旋天线,其特征在于,每组所述螺旋壁单元均包括相邻设置的第一螺旋臂和第二螺旋臂,所述第一螺旋臂和第二螺旋臂的螺旋方向相同,且所述第一螺旋臂与所述第二螺旋臂的电长度不同。
  3. 根据权利要求2所述的双频四臂螺旋天线,其特征在于,所述第一螺旋臂上产生第一频段的谐振,所述第二螺旋臂上产生第二频段的谐振,所述第一频段的频率与所述第二频段的频率不同。
  4. 根据权利要求3所述的双频四臂螺旋天线,其特征在于,所述第一螺旋臂为短路臂,所述第二螺旋臂为开路臂。
  5. 根据权利要求4所述的双频四臂螺旋天线,其特征在于,所述第一螺旋臂用于激励高频,所述第二螺旋臂用于激励低频。
  6. 根据权利要求4所述的双频四臂螺旋天线,其特征在于,所述第一螺旋臂用于激励低频,所述第二螺旋臂用于激励高频。
  7. 根据权利要求4所述的双频四臂螺旋天线,其特征在于,所述第一螺旋臂设置在所述天线承载部的侧面和顶面,所述第二螺旋臂设置在所述天线承载部的侧面。
  8. 根据权利要求3所述的双频四臂螺旋天线,其特征在于,所述第一频段为1.54GHz-1.65GHz,所述第二频段为1.2GHz-1.24GHz。
  9. 根据权利要求1所述的双频四臂螺旋天线,其特征在于,所述天线承载部的侧面呈圆柱状或圆锥状。
  10. 根据权利要求1所述的双频四臂螺旋天线,其特征在于,所述天线承载部的高度为所述天线电磁波波长的0.1-0.25倍。
  11. 根据权利要求10所述的双频四臂螺旋天线,其特征在于,所述天线承载部的高度为所述天线电磁波波长的0.135倍。
  12. 根据权利要求1所述的双频四臂螺旋天线,其特征在于,所述天线承载部的材料为塑料,所述天线承载部与所述印制电路板焊接连接。
  13. 根据权利要求12所述的双频四臂螺旋天线,其特征在于,所述印制电路板上设有芯片和四个馈电部,每个所述馈电部均包括电连接端口、第一馈电端口和第二馈电端口,所述电连接端口与所述芯片电连接,所述第一馈电端口与所述第一螺旋臂电连接,所述第二馈电端口与所述第二螺旋臂电连接,所述电连接端口、第一馈电端口和第二馈电端口依次连接,共同组成短路结构。
  14. 根据权利要求13所述的双频四臂螺旋天线,其特征在于,所述馈电部包括连接线、圆弧线和短路线,所述连接线靠近所述芯片的一端构成所述电连接端口,所述连接线远离所述芯片的一端与所述圆弧线相连,且所述连接线与所述圆弧线相连接处构成所述第一馈电端口,所述圆弧线远离所述连接线的一端与所述短路线的第一端相连,所述圆弧线与所述短路线相连接处构成所述第二馈电端口,所述短路线的第二端与所述连接线相连。
  15. 根据权利要求12所述的双频四臂螺旋天线,其特征在于,所述螺旋臂单元采用镭雕工艺设置在所述天线承载部上。
  16. 一种通信设备,其特征在于,包括如权利要求1-15中任一所述的双频四臂螺旋天线。
PCT/CN2019/072193 2019-01-17 2019-01-17 双频四臂螺旋天线及通信设备 WO2020147070A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980003107.2A CN110832700A (zh) 2019-01-17 2019-01-17 双频四臂螺旋天线及通信设备
PCT/CN2019/072193 WO2020147070A1 (zh) 2019-01-17 2019-01-17 双频四臂螺旋天线及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072193 WO2020147070A1 (zh) 2019-01-17 2019-01-17 双频四臂螺旋天线及通信设备

Publications (1)

Publication Number Publication Date
WO2020147070A1 true WO2020147070A1 (zh) 2020-07-23

Family

ID=69546575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072193 WO2020147070A1 (zh) 2019-01-17 2019-01-17 双频四臂螺旋天线及通信设备

Country Status (2)

Country Link
CN (1) CN110832700A (zh)
WO (1) WO2020147070A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080027052A (ko) * 2006-09-22 2008-03-26 민상보 쿼드리필러 나선형 안테나 구조
CN106532233A (zh) * 2016-06-29 2017-03-22 深圳市中兴物联科技股份有限公司 螺旋天线
CN107834175A (zh) * 2017-11-15 2018-03-23 福建福大北斗通信科技有限公司 一种小型化顶部加载双频四臂螺旋天线及其工作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080027052A (ko) * 2006-09-22 2008-03-26 민상보 쿼드리필러 나선형 안테나 구조
CN106532233A (zh) * 2016-06-29 2017-03-22 深圳市中兴物联科技股份有限公司 螺旋天线
CN107834175A (zh) * 2017-11-15 2018-03-23 福建福大北斗通信科技有限公司 一种小型化顶部加载双频四臂螺旋天线及其工作方法

Also Published As

Publication number Publication date
CN110832700A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
EP3726649B1 (en) Antenna module and electronic device
US8669907B2 (en) Ultra-wideband miniaturized omnidirectional antennas via multi-mode three-dimensional (3-D) traveling-wave (TW)
US8928544B2 (en) Wideband circularly polarized hybrid dielectric resonator antenna
US7245268B2 (en) Quadrifilar helical antenna
WO2004068634A1 (en) Low profile dual frequency dipole antenna structure
WO2020029060A1 (zh) 一种天线
CN110313104B (zh) 螺旋天线及通信设备
WO2020087391A1 (zh) 螺旋天线及通信设备
US9368858B2 (en) Internal LC antenna for wireless communication device
TWI412177B (zh) 天線模組及其應用之電子裝置
CN108155460B (zh) 一种双频全向耦合支节加载的螺旋天线及其制作方法
US20070236398A1 (en) Mobile communication terminal incorporating internal antenna
WO2024060865A1 (zh) 探头天线及其探头
CN111162375A (zh) 一种宽带圆极化贴片天线
CN109167160B (zh) 天线装置和gnss测量天线
WO2020147070A1 (zh) 双频四臂螺旋天线及通信设备
CN107611583B (zh) 耦合馈电式右旋圆极化天线
CN111883920A (zh) 一种八臂螺旋天线
KR100768788B1 (ko) 람다/4 단락 스터브를 이용한 위상 보정 기능을 갖는큐에이치에이 급전구조
US11557833B2 (en) Corrugated ground plane apparatus for an antenna
CN218827815U (zh) 一种四臂螺旋天线
CN211320319U (zh) 一种宽带圆极化贴片天线
CA2732644C (en) Wideband circularly polarized hybrid dielectric resonator antenna
CN210956978U (zh) 无断点天线结构及手表
CN206864630U (zh) 一种新型螺旋天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910595

Country of ref document: EP

Kind code of ref document: A1