WO2020147033A1 - Method, device and computer readable medium for estimating channel state information - Google Patents

Method, device and computer readable medium for estimating channel state information Download PDF

Info

Publication number
WO2020147033A1
WO2020147033A1 PCT/CN2019/071969 CN2019071969W WO2020147033A1 WO 2020147033 A1 WO2020147033 A1 WO 2020147033A1 CN 2019071969 W CN2019071969 W CN 2019071969W WO 2020147033 A1 WO2020147033 A1 WO 2020147033A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
antennas
terminal device
csi
antenna
Prior art date
Application number
PCT/CN2019/071969
Other languages
French (fr)
Inventor
Rana Ahmed Salem
Huan Sun
Eugene Visotsky
Frederick Vook
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2019/071969 priority Critical patent/WO2020147033A1/en
Priority to CN201980089248.0A priority patent/CN113366787B/en
Publication of WO2020147033A1 publication Critical patent/WO2020147033A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for estimating channel state information.
  • channel state information describes how signals propagate from the transmitter to the receiver.
  • downlink (DL) CSI is essential at the base station (for example, gNodeB (gNB) ) in multiple input multiple output (MIMO) systems.
  • the gNB performs DL transmissions and scheduling and the like according to the CSI.
  • FDD frequency division duplex
  • UL uplink
  • DL channels are not on the same frequency.
  • TDD time division duplex
  • embodiments of the present disclosure relate to a method for estimating channel state information and feeding back the CSI to the base stations and the corresponding communication devices.
  • inventions of the disclosure provide a network device.
  • the network device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to: perform a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of the terminal device.
  • the network device is further caused to determine, based on the measurement, a channel response between the network device and the least one reference antenna.
  • the network device is also caused to receive, from the terminal device, phase information associated with the plurality of antennas.
  • the network device is further caused to generate an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
  • CSI channel state information
  • inventions of the disclosure provide a terminal device.
  • the terminal device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to: transmit, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device.
  • SRS Sounding Reference Signals
  • the terminal device is also caused to transmit, to the network device, phase information associated with the plurality of antennas.
  • the terminal device is further caused to receive, from the network device, downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas.
  • CSI channel state information
  • embodiments of the present disclosure provide a method.
  • the method comprises: performing, at a network device, a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of a terminal device.
  • the method also comprises determining, based on the measurement, a channel response between the network device and the least one reference antenna.
  • the method further comprises receiving, from the terminal device, phase information associated with the plurality of antennas.
  • the method also comprises generating an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
  • CSI channel state information
  • embodiments of the present disclosure provide a method.
  • the method comprises: transmitting, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device.
  • SRS Sounding Reference Signals
  • the method further comprises transmitting, to the network device, phase information associated with the plurality of antennas.
  • the method also comprises receiving, from the network device the downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas.
  • CSI channel state information
  • inventions of the disclosure provide an apparatus for communication.
  • the apparatus comprises means for performing a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of a terminal device.
  • the apparatus further comprises means for determining, based on the measurement, a channel response between the network device and the least one reference antenna.
  • the apparatus also comprises means for receiving, from the terminal device, phase information associated with the plurality of antennas.
  • the apparatus further comprises means for generating an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
  • CSI channel state information
  • inventions of the disclosure provide an apparatus for communication.
  • the apparatus comprises means for transmitting, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device.
  • SRS Sounding Reference Signals
  • the apparatus further comprises means for transmitting, to the network device, phase information associated with the plurality of antennas.
  • the apparatus also comprises means for receiving, from the network device, downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas.
  • CSI channel state information
  • embodiments of the disclosure provide a computer readable medium.
  • the computer readable medium stores instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to implement the methods according to the third and fourth aspects.
  • Fig. 1 illustrates a schematic diagram of a communication system according to embodiments of the present disclosure
  • Fig. 2 illustrates a schematic diagram of a terminal device with a plurality of antennas according to embodiments of the present disclosure
  • Fig. 3 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure
  • Fig. 4 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure
  • Fig. 5 illustrates a schematic diagram of a device according to embodiments of the present disclosure.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system. For the purpose of illustrations, embodiments of the present disclosure will be described with reference to 5G communication system.
  • the term “network device” used herein includes, but not limited to, a base station (BS) , a gateway, a registration management entity, and other suitable device in a communication system.
  • base station or “BS” represents a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a low power node such as a femto, a pico
  • terminal device includes, but not limited to, “user equipment (UE) ” and other suitable end device capable of communicating with the network device.
  • the “terminal device” may refer to a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • MT Mobile Terminal
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • circuitry used herein may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • SRS sounding reference signal
  • channel state information used herein refers to known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance.
  • the UL-DL reciprocity is used where the network device utilizes UL SRS to acquire CSI in DL. Due to different terminal device capabilities there are some terminal devices which have less transmitting antenna ports than receiving antenna ports. Therefore, only those antennas with transmitting ports can be sounded using SRS signals in UL, with the result that only partial CSI is available at the network device, that is to say, partial channel reciprocity.
  • Solution 1 No-precoding matrix indicator (PMI) Feedback.
  • PMI No-precoding matrix indicator
  • Solution 2 Partial CSI feedback for gNB to acquire full CSI.
  • the DL CSI obtained by gNB is divided into two parts, one is based on SRS measurement, the other is based on CSI feedback from the UE.
  • Solution 3 CSI feedback with non-precoded/beamformed CSI-RS including CQI, RI and PMI.
  • the gNB acquires long-term/wideband DL CSI from the SRS measurement and forms beamformed CSI-RS based on that precoder.
  • Solution 4 SRS antenna switching.
  • UE transmits SRS from different antenna sets in different OFDM symbols or different subframes.
  • Scheme 2 Variations on scheme 2 are also enabled in recent the release Rel-15.
  • SRS from a UE can be used to determine a long-term beam, and UE-specific CSI-RS can then be precoded with that long-term beam to enable subsequent up-to-date RI/CQI/PMI feedback for the channel formed by the long term beam.
  • the CSI is estimated by SRS sounding on reference antennas instead of CSI feedback. In this way, the overhead has been reduced.
  • Fig. 1 illustrates a schematic diagram of a communication system 100 in which embodiments of the present disclosure can be implemented.
  • the communication system 100 which is a part of a communication network, comprises terminal devices 110-1, 110-2, ..., 110-N (collectively referred to as “terminal device (s) 110” where N is an integer number) , a network device 120.
  • terminal device (s) 110 where N is an integer number
  • the network device 120 may communicate with the terminal devices 110. It is to be understood that the numbers of terminal devices and network devices shown in Fig. 1 are given for the purpose of illustration without suggesting any limitations.
  • Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , including, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s including, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, including but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Divided Multiple Address
  • FDMA Frequency Divided Multiple Address
  • TDMA Time Divided Multiple Address
  • FDD Frequency Divided Duplexer
  • TDD Time Divided Duplexer
  • MIMO Multiple-Input Multiple-Output
  • OFDMA Orthogonal Frequency Divided Multiple Access
  • Fig. 2 illustrates a schematic diagram of a terminal device with a plurality of antennas.
  • the terminal device 110-1 may have the antennas 210-1, 210-2, ..., 210-M (collectively referred to as “antenna (s) 210” where M is an integer number) .
  • the antennas 210 may be cross-polarization antennas.
  • the antennas shown in Fig. 2 are only examples not limitations.
  • the terminal device 1101-1 may have any other suitable configurations of antennas.
  • Fig. 3 illustrates a flow chart of a method 300 in accordance with embodiments of the present disclosure.
  • the method 300 may be implemented at any suitable network devices. Only for the purpose of illustrations, the method 300 is described to be implemented at the network device 120.
  • the network device 120 performs a measurement of SRS on at least one reference antenna (for example, the antenna 210-1) selected from the plurality of antennas 210 of the terminal device 110-1. Ifthere is one reference antenna 210-1, the network device 120 may perform the measurement of SRS on the antenna 210-1 at both polarizations. Alternatively, there may be more than reference antennas, for example, the antennas 210-1 and 210-2. The network device 120 may perform the measurement of SRS on the antennas 210-1 and 210-2 with different polarization, respectively.
  • the antenna 210-1 for example, the antenna 210-1
  • the network device 120 may perform the measurement of SRS on the antennas 210-1 and 210-2 with different polarization, respectively.
  • the terminal device 110-1 may transmit the index of the at least one reference antenna.
  • the terminal device 110-1 may detect the antenna with the strongest overall coefficients for each polarization and send the index to the network device 120.
  • the network device 120 may determine the at least one reference antenna. For example, the network device 120 may obtain the configuration of the plurality of antennas 210. The network device 120 may also obtain historical DL CSI information. The network device 120 may determine the at least one reference antenna based on the configuration and the DL CSI information. The configuration may be obtained from the terminal device 110-1. Alternatively, the configuration may be stored in a storage device accessible by the network device 120. The network device 120 may transmit the index of the determined at least one reference antenna to the terminal device 110-1. The index may be transmitted via any suitable DL signaling.
  • the at least one reference antenna may be fixed for every antenna configuration. If the network device 120 obtains the configuration of antennas of the terminal device 110-1, the network device 120 may determine the fixed reference antenna for the terminal device 110-1. In this way, hardware complications are reduced since no antenna switching is needed. Only for the purpose of illustrations, the reference antenna used herein refers to the antenna 210-1.
  • the network device 120 may determine a channel response between the network device 120 and the reference antenna 210-1.
  • the channel response may be represented by the following matrices:
  • N is the number of receive antenna ports
  • B is the number of transmit antenna ports (beams)
  • N s is the channel support length
  • the network device 120 receives phase information associated with the plurality antennas from the terminal device 110-1.
  • the phase information may be related to all antennas excluding the reference antenna.
  • the terminal device 110-1 may transmit UL CSI feedback comprising the phase
  • the phase information may be represented by the following matrix.
  • n may be any suitable integer from 0 to M-1. Ifp equals 0, n does not equals m 0 and ifp equals 1, n does not equals m 1 .
  • the network device 110-1 generates an estimation of CSI between the network device 110-1 and the plurality of antennas 210 based on the phase information and the channel response.
  • the network device 110-1 may estimate amplitude information of the plurality of antennas 210 based on the channel response. For example, the terminal device 110-1 may perform the SRS measurement at two polarizations and obtain the channel response on both polarizations (for example, matrices 1 and 2) . The terminal device 120 may determine the amplitude of the antennas at polarization 0 to be the same as the amplitude of the reference antenna 210-1 at polarization 0 and determine the amplitude of the antennas at polarization 1 to be the same as the amplitude of the reference antenna 210-1 at polarization 1.
  • the network device may determine the CSI based on the channel response and the estimated amplitude information.
  • the overall UL overhead is (N s . B. (N-2) ) ⁇ N phase , where N phase is the number of bits used to quantize phase component. In this way, the overall overheads have been reduced.
  • the network device 120 may receive amplitude information from the terminal device 110-1.
  • the terminal device 110-1 may form the amplitude differential matrix by dot division.
  • the amplitude differential matrix may be presented as below:
  • the terminal device 110-1 may quantize the amplitude information in is quantized and feed it back to the network device 120.
  • the network device 120 may obtain the amplitude information based on and the amplitude information of the reference antenna 210-1.
  • the overall UL overhead is (N s . B. (N-2)) ⁇ (N phase + N ampD ) , where N phase is the number of bits used to quantize phase component and N ampD is the is the number of bits used to quantize amplitude part of the differential matrix. In this way, UL overhead is reduced with improved accuracy.
  • the network device 120 may perform DL transmission based on the estimated CSI. Alternatively or in addition, the network device 120 may schedule resources for the terminal device 110-1 based on the estimated CSI.
  • an apparatus for performing the method 300 may comprise respective means for performing the corresponding steps in the method 300.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprise: means for performing a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of a terminal device; means for determining, based on the measurement, a channel response between the network device and the least one reference antenna; means for receiving, from the terminal device, phase information associated with the plurality of antennas; and means for generating an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
  • SRS Sounding Reference Signals
  • CSI channel state information
  • the at least one reference antenna comprises a first cross-polarization antenna
  • the means for performing the measurement of SRS comprises means for performing the measurement of SRS on the first cross-polarization antenna at two polarizations.
  • the at least one reference antenna comprises a first cross-polarization antenna and a second cross-polarization antenna
  • the means for performing the measurement of SRS comprises: means for performing the measurement of SRS on the first cross-polarization antenna at a first polarization; and means for performing the measurement of SRS on the second cross-polarization antenna at a second polarization.
  • the means for generating the estimation of the CSI comprises: means for generating a further estimation of amplitude information associated with the plurality of antennas, based on the channel response; and means for generating the estimation of the CSI based on the estimated amplitude information and the phase information.
  • the means for generating the estimation of the CSI comprises: means for receiving, from the terminal device, differential amplitude information associated with the plurality of antennas; and means for generating the estimation of the CSI based on the differential amplitude information and the phase information.
  • the apparatus further comprises: means for receiving, from the terminal device, an index of the at least one reference antenna.
  • the apparatus further comprises: means for obtaining a configuration of the plurality of the antennas of the terminal device; and means for determining, based on the configuration, the at least one antenna.
  • Fig. 4 illustrates a flow chart of a method 400 in accordance with embodiments of the present disclosure.
  • the method 400 may be implemented at any suitable network devices. Only for the purpose of illustrations, the method 400 is described to be implemented at the terminal device 110-1.
  • the terminal device 110-1 may transmit the index of the at least one reference antenna. For example, the terminal device 110-1 may detect the antenna with coefficients for each antenna and select the reference antenna with the strongest overall coefficients on each polarization. The terminal device 110-1 may send the index to the network device 120.
  • the terminal device 110-1 transmits SRS with the plurality of antennas 210 to the network device 120.
  • the terminal device may transmit the SRS every two subframes at the most and every 32 frame (320 subframe) at the least.
  • SRS is transmitted at the last symbol of UL slot with full system band area and it is transmitted by a certain interval.
  • the terminal device 110-1 may transmit the SRS according to the configuration set by the signaling message (for example, Radio Resource Control (RRC) Connection Setup, RRC Connection Reconfiguration) .
  • RRC Radio Resource Control
  • the terminal device transmits phase information associated with the plurality of antennas 210 to the network device 120.
  • the terminal device 110-1 may transmit UL CSI feedback comprising the phase
  • the phase information may be related to all antennas excluding the reference antenna.
  • the terminal device 110-1 receives downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas.
  • the terminal device 110-1 may receives DL CSI channel frequency response (CFR) where N is the number of receive antenna ports, B is the number of transmit antenna ports (beams) and N a is the number of active subcarriers.
  • CFR DL CSI channel frequency response
  • N is the number of receive antenna ports
  • B the number of transmit antenna ports (beams)
  • N a is the number of active subcarriers.
  • CS compressive sensing scheme
  • the terminal device 110-1 may find out channel support (location of significant taps) vector of the time domain channel counterpart of where N s is the channel support length.
  • every short term feedback the time domain channel matrix is quantized and fed back to the network device 120, while every long term feedback the channel support vector is sent back to the network device 120 via a UL signalling.
  • an apparatus for performing the method 400 may comprise respective means for performing the corresponding steps in the method 400.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises: means for transmitting, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device; means for transmitting, to the network device, phase information associated with the plurality of antennas; and means for receiving, from the network device, downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas, the CSI being estimated based on the channel response and the phase information.
  • SRS Sounding Reference Signals
  • CSI channel state information
  • the apparatus further comprises: means for transmitting, to the network device, amplitude information associated with the plurality of antennas.
  • the apparatus further comprises: means for selecting, based on amplitude information associated with the plurality of antennas, the at least one reference antenna from the plurality of antennas; and means for transmitting, to the network device, an index of the at least one reference antenna.
  • Fig. 5 is a simplified block diagram of a device 500 that is suitable for implementing embodiments of the present disclosure.
  • the device 500 may be implemented at the network device 120.
  • the device 500 may also be implemented at the terminal device 110-1.
  • the device 500 includes one or more processors 510, one or more memories 520 coupled to the processor (s) 510, one or more transmitters and/or receivers (TX/RX) 540 coupled to the processor 510.
  • the processor 510 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 520 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples.
  • the memory 520 stores at least a part of a program 530.
  • the TX/RX 540 is for bidirectional communications.
  • the TX/RX 540 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the program 530 is assumed to include program instructions that, when executed by the associated processor 510, enable the device 500 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 3 and 4. That is, embodiments of the present disclosure can be implemented by computer software executable by the processor 510 of the device 500, or by hardware, or by a combination of software and hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the disclosure provide a method, device and computer readable medium for estimating control state information. According to embodiments of the present disclosure, the CSI is estimated by SRS sounding on reference antennas instead of CSI feedback. In this way, the overhead has been reduced.

Description

METHOD, DEVICE AND COMPUTER READABLE MEDIUM FOR ESTIMATING CHANNEL STATE INFORMATION FIELD
Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for estimating channel state information.
BACKGROUND
In wireless communication systems, channel state information (CSI) describes how signals propagate from the transmitter to the receiver. In particular, downlink (DL) CSI is essential at the base station (for example, gNodeB (gNB) ) in multiple input multiple output (MIMO) systems. The gNB performs DL transmissions and scheduling and the like according to the CSI. In frequency division duplex (FDD) systems, the terminal device needs to feed back the DL CSI back to the base station since the uplink (UL) and DL channels are not on the same frequency. In time division duplex (TDD) systems, the UL-DL reciprocity is exploited.
SUMMARY
Generally, embodiments of the present disclosure relate to a method for estimating channel state information and feeding back the CSI to the base stations and the corresponding communication devices.
In a first aspect, embodiments of the disclosure provide a network device. The network device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to: perform a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of the terminal device. The network device is further caused to determine, based on the measurement, a channel response between the network device and the least one reference antenna. The network device is also caused to receive, from the terminal device, phase information associated with the plurality of antennas.  The network device is further caused to generate an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
In a second aspect, embodiments of the disclosure provide a terminal device. The terminal device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to: transmit, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device. The terminal device is also caused to transmit, to the network device, phase information associated with the plurality of antennas. The terminal device is further caused to receive, from the network device, downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas. The CSI is estimated based on the channel response and the phase information.
In a third aspect, embodiments of the present disclosure provide a method. The method comprises: performing, at a network device, a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of a terminal device. The method also comprises determining, based on the measurement, a channel response between the network device and the least one reference antenna. The method further comprises receiving, from the terminal device, phase information associated with the plurality of antennas. The method also comprises generating an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
In a fourth aspect, embodiments of the present disclosure provide a method. The method comprises: transmitting, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device. The method further comprises transmitting, to the network device, phase information associated with the plurality of antennas. The method also comprises receiving, from  the network device the downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas. The CSI is estimated based on the channel response and the phase information.
In a fifth aspect, embodiments of the disclosure provide an apparatus for communication. The apparatus comprises means for performing a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of a terminal device. The apparatus further comprises means for determining, based on the measurement, a channel response between the network device and the least one reference antenna. The apparatus also comprises means for receiving, from the terminal device, phase information associated with the plurality of antennas. The apparatus further comprises means for generating an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
In a sixth aspect, embodiments of the disclosure provide an apparatus for communication. The apparatus comprises means for transmitting, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device. The apparatus further comprises means for transmitting, to the network device, phase information associated with the plurality of antennas. The apparatus also comprises means for receiving, from the network device, downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas. The CSI is estimated based on the channel response and the phase information.
In a seventh aspect, embodiments of the disclosure provide a computer readable medium. The computer readable medium stores instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to implement the methods according to the third and fourth aspects.
Other features and advantages of the embodiments of the present disclosure will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the disclosure are presented in the sense of examples and their advantages are explained in greater detail below, with reference to the accompanying drawings, where
Fig. 1 illustrates a schematic diagram of a communication system according to embodiments of the present disclosure;
Fig. 2 illustrates a schematic diagram of a terminal device with a plurality of antennas according to embodiments of the present disclosure;
Fig. 3 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure;
Fig. 4 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure; and
Fig. 5 illustrates a schematic diagram of a device according to embodiments of the present disclosure.
Throughout the figures, same or similar reference numbers indicate same or similar elements.
DETAILED DESCRIPTION OF EMBODIMENTS
The subject matter described herein will now be discussed with reference to several example embodiments. It should be understood these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the subject matter described herein, rather than suggesting any limitations on the scope of the subject matter.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a, ” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises, ” “comprising, ” “includes” and/or “including, ” when used herein, specify the presence of stated features, integers, steps, operations,  elements and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two functions or acts shown in succession may in fact be executed concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system. For the purpose of illustrations, embodiments of the present disclosure will be described with reference to 5G communication system.
The term “network device” used herein includes, but not limited to, a base station (BS) , a gateway, a registration management entity, and other suitable device in a communication system. The term “base station” or “BS” represents a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
The term “terminal device” used herein includes, but not limited to, “user equipment (UE) ” and other suitable end device capable of communicating with the network device. By way of example, the “terminal device” may refer to a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
The term “circuitry” used herein may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with
software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation. ”
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
The term “sounding reference signal (SRS) ” used herein refers to a reference signal transmitted by a terminal device in the uplink direction which is used by a network device to figure out the channel quality of uplink path for each subsections of frequency region.
The term “channel state information (CSI) ” used herein refers to known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance.
As mentioned above, in TDD systems, the UL-DL reciprocity is used where the network device utilizes UL SRS to acquire CSI in DL. Due to different terminal device capabilities there are some terminal devices which have less transmitting antenna ports than receiving antenna ports. Therefore, only those antennas with transmitting ports can be sounded using SRS signals in UL, with the result that only partial CSI is available at the network device, that is to say, partial channel reciprocity.
To deal with the problem of partial channel reciprocity, several solutions have been proposed.
Solution 1: No-precoding matrix indicator (PMI) Feedback. In this scheme, the gNB just uses the available SRS measurements to build the DL precoder. However, with partial channel reciprocity, the overall performance of the DL precoder is compromised.
Solution 2: Partial CSI feedback for gNB to acquire full CSI. In this scheme, the DL CSI obtained by gNB is divided into two parts, one is based on SRS measurement, the other is based on CSI feedback from the UE.
Solution 3: CSI feedback with non-precoded/beamformed CSI-RS including CQI, RI and PMI. In this scheme, the gNB acquires long-term/wideband DL CSI from the SRS measurement and forms beamformed CSI-RS based on that precoder.
Solution 4: SRS antenna switching. In this scheme, UE transmits SRS from different antenna sets in different OFDM symbols or different subframes.
In recent the release Rel-15, it has decided to adopt the Scheme 4, that is, SRS antenna switching. However, there are two main drawbacks: (1) hardware related issue, like insertion loss and switch transient; (2) delay introduced by multiple SRS transmission. Channel matrix is estimated based on different SRS transmission, thus making it an ill choice for very fast users because of the channel aging effect.
Variations on scheme 2 are also enabled in recent the release Rel-15. For  example, SRS from a UE can be used to determine a long-term beam, and UE-specific CSI-RS can then be precoded with that long-term beam to enable subsequent up-to-date RI/CQI/PMI feedback for the channel formed by the long term beam.
In Scheme 2, a scheme with partial CSI feedback information is proposed where the 2nd part of CSI information is reported by explicitly signaling the reduced channel frequency response (CFR) part H 2 or by feeding back the covariance matrix information of H 2.
It is clear that sending back the quantized version of CFR with no special compression would consume a significant amount of UL overhead. Furthermore, in this solution, the correlation between partial information available at the gNB by SRS sounding, i.e. H 1 and the missing information H 2 hasn’t been used to reduce the overall required overhead, which means the required UL overhead is the same as that of an FDD system with no channel reciprocity at all.
Therefore, it is necessary to design a new scheme for acquiring the CSI. According to embodiments of the present disclosure, the CSI is estimated by SRS sounding on reference antennas instead of CSI feedback. In this way, the overhead has been reduced.
Fig. 1 illustrates a schematic diagram of a communication system 100 in which embodiments of the present disclosure can be implemented. The communication system 100, which is a part of a communication network, comprises terminal devices 110-1, 110-2, ..., 110-N (collectively referred to as “terminal device (s) 110” where N is an integer number) , a network device 120. It should be noted that the communication system 100 may also comprise other elements which are omitted for the purpose of clarity. The network device 120 may communicate with the terminal devices 110. It is to be understood that the numbers of terminal devices and network devices shown in Fig. 1 are given for the purpose of illustration without suggesting any limitations.
Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , including, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G)  and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, including but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
Fig. 2 illustrates a schematic diagram of a terminal device with a plurality of antennas. As shown in Fig. 2, the terminal device 110-1 may have the antennas 210-1, 210-2, ..., 210-M (collectively referred to as “antenna (s) 210” where M is an integer number) . In some embodiments, the antennas 210 may be cross-polarization antennas. For example, if the terminal device 110-1 has four cross-polarization antennas, there may be eight ports of the antennas. It should be noted that the antennas shown in Fig. 2 are only examples not limitations. The terminal device 1101-1 may have any other suitable configurations of antennas.
Fig. 3 illustrates a flow chart of a method 300 in accordance with embodiments of the present disclosure. The method 300 may be implemented at any suitable network devices. Only for the purpose of illustrations, the method 300 is described to be implemented at the network device 120.
At block 310, the network device 120 performs a measurement of SRS on at least one reference antenna (for example, the antenna 210-1) selected from the plurality of antennas 210 of the terminal device 110-1. Ifthere is one reference antenna 210-1, the network device 120 may perform the measurement of SRS on the antenna 210-1 at both polarizations. Alternatively, there may be more than reference antennas, for example, the antennas 210-1 and 210-2. The network device 120 may perform the measurement of SRS on the antennas 210-1 and 210-2 with different polarization, respectively.
In some embodiments, the terminal device 110-1 may transmit the index of the at least one reference antenna. For example, the terminal device 110-1 may detect the  antenna with the strongest overall coefficients for each polarization and send the index to the network device 120.
In other embodiments, the network device 120 may determine the at least one reference antenna. For example, the network device 120 may obtain the configuration of the plurality of antennas 210. The network device 120 may also obtain historical DL CSI information. The network device 120 may determine the at least one reference antenna based on the configuration and the DL CSI information. The configuration may be obtained from the terminal device 110-1. Alternatively, the configuration may be stored in a storage device accessible by the network device 120. The network device 120 may transmit the index of the determined at least one reference antenna to the terminal device 110-1. The index may be transmitted via any suitable DL signaling.
In some embodiments, the at least one reference antenna may be fixed for every antenna configuration. If the network device 120 obtains the configuration of antennas of the terminal device 110-1, the network device 120 may determine the fixed reference antenna for the terminal device 110-1. In this way, hardware complications are reduced since no antenna switching is needed. Only for the purpose of illustrations, the reference antenna used herein refers to the antenna 210-1.
At block 320, the network device 120 may determine a channel response between the network device 120 and the reference antenna 210-1. For example, the channel response may be represented by the following matrices:
Figure PCTCN2019071969-appb-000001
Figure PCTCN2019071969-appb-000002
where
Figure PCTCN2019071969-appb-000003
refers to the N s × B channel matrix between polarization 0 of antenna#m 0 and
Figure PCTCN2019071969-appb-000004
refers to o the N s × B channel matrix between polarization 1 of antenna#m 1; N is the number of receive antenna ports, B is the number of transmit antenna ports (beams) ; and N s is the channel support length.
At block 330, the network device 120 receives phase information associated with the plurality antennas from the terminal device 110-1. The phase information may be related to all antennas excluding the reference antenna. The terminal device 110-1 may transmit UL CSI feedback comprising the phase
Figure PCTCN2019071969-appb-000005
For example, the phase information may be represented by the following matrix.
Figure PCTCN2019071969-appb-000006
where n may be any suitable integer from 0 to M-1. Ifp equals 0, n does not equals m 0 and ifp equals 1, n does not equals m 1.
At block 340, the network device 110-1 generates an estimation of CSI between the network device 110-1 and the plurality of antennas 210 based on the phase information and the channel response.
In some embodiments, the network device 110-1 may estimate amplitude information of the plurality of antennas 210 based on the channel response. For example, the terminal device 110-1 may perform the SRS measurement at two polarizations and obtain the channel response on both polarizations (for example, matrices 1 and 2) . The terminal device 120 may determine the amplitude of the antennas at polarization 0 to be the same as the amplitude of the reference antenna 210-1 at polarization 0 and determine the amplitude of the antennas at polarization 1 to be the same as the amplitude of the reference antenna 210-1 at polarization 1.
The network device may determine the CSI based on the channel response and the estimated amplitude information. In this situation, the overall UL overhead is (N s. B. (N-2) ) × N phase, where N phase is the number of bits used to quantize phase component. In this way, the overall overheads have been reduced.
Alternatively, the network device 120 may receive amplitude information from the terminal device 110-1. For example, the terminal device 110-1 may form the amplitude differential matrix by dot division. The amplitude differential matrix may be presented as below:
Figure PCTCN2019071969-appb-000007
The terminal device 110-1 may quantize the amplitude information in
Figure PCTCN2019071969-appb-000008
is quantized and feed it back to the network device 120. The network device 120 may obtain the amplitude information based on
Figure PCTCN2019071969-appb-000009
and the amplitude information of the reference antenna 210-1. The overall UL overhead is (N s. B. (N-2)) ×(N phase + N ampD) , where N phase is the number of bits used to quantize phase component and N ampD is the is the number of bits used to quantize amplitude part of the differential matrix. In this way, UL overhead is reduced with improved accuracy.
In some embodiments, the network device 120 may perform DL transmission based on the estimated CSI. Alternatively or in addition, the network device 120 may schedule resources for the terminal device 110-1 based on the estimated CSI.
In some embodiments, an apparatus for performing the method 300 (for example, the network device 120) may comprise respective means for performing the corresponding steps in the method 300. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprise: means for performing a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of a terminal device; means for determining, based on the measurement, a channel response between the network device and the least one reference antenna; means for receiving, from the terminal device, phase information associated with the plurality of antennas; and means for generating an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
In some embodiments, the at least one reference antenna comprises a first cross-polarization antenna, and the means for performing the measurement of SRS comprises means for performing the measurement of SRS on the first cross-polarization antenna at two polarizations.
In some embodiments, the at least one reference antenna comprises a first cross-polarization antenna and a second cross-polarization antenna, and the means for performing the measurement of SRS comprises: means for performing the measurement  of SRS on the first cross-polarization antenna at a first polarization; and means for performing the measurement of SRS on the second cross-polarization antenna at a second polarization.
In some embodiments, the means for generating the estimation of the CSI comprises: means for generating a further estimation of amplitude information associated with the plurality of antennas, based on the channel response; and means for generating the estimation of the CSI based on the estimated amplitude information and the phase information.
In some embodiments, the means for generating the estimation of the CSI comprises: means for receiving, from the terminal device, differential amplitude information associated with the plurality of antennas; and means for generating the estimation of the CSI based on the differential amplitude information and the phase information.
In some embodiments, the apparatus further comprises: means for receiving, from the terminal device, an index of the at least one reference antenna.
In some embodiments, the apparatus further comprises: means for obtaining a configuration of the plurality of the antennas of the terminal device; and means for determining, based on the configuration, the at least one antenna.
Fig. 4 illustrates a flow chart of a method 400 in accordance with embodiments of the present disclosure. The method 400 may be implemented at any suitable network devices. Only for the purpose of illustrations, the method 400 is described to be implemented at the terminal device 110-1.
In some embodiments, the terminal device 110-1 may transmit the index of the at least one reference antenna. For example, the terminal device 110-1 may detect the antenna with coefficients for each antenna and select the reference antenna with the strongest overall coefficients on each polarization. The terminal device 110-1 may send the index to the network device 120.
At block 410, the terminal device 110-1 transmits SRS with the plurality of antennas 210 to the network device 120. For example, the terminal device may transmit the SRS every two subframes at the most and every 32 frame (320 subframe) at  the least. SRS is transmitted at the last symbol of UL slot with full system band area and it is transmitted by a certain interval.
The terminal device 110-1 may transmit the SRS according to the configuration set by the signaling message (for example, Radio Resource Control (RRC) Connection Setup, RRC Connection Reconfiguration) .
At block 420, the terminal device transmits phase information associated with the plurality of antennas 210 to the network device 120. The terminal device 110-1 may transmit UL CSI feedback comprising the phase
Figure PCTCN2019071969-appb-000010
The phase information may be related to all antennas excluding the reference antenna.
At bock 430, the terminal device 110-1 receives downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas. In some embodiments, the terminal device 110-1 may receives DL CSI channel frequency response (CFR) 
Figure PCTCN2019071969-appb-000011
where N is the number of receive antenna ports, B is the number of transmit antenna ports (beams) and N a is the number of active subcarriers. Through a compressive sensing scheme (CS) , the terminal device 110-1 may find out channel support (location of significant taps) vector 
Figure PCTCN2019071969-appb-000012
of the time domain channel counterpart of
Figure PCTCN2019071969-appb-000013
where N s is the channel support length.
In some embodiments, every short term feedback, the time domain channel matrix
Figure PCTCN2019071969-appb-000014
is quantized and fed back to the network device 120, while every long term feedback the channel support vector
Figure PCTCN2019071969-appb-000015
is sent back to the network device 120 via a UL signalling.
In some embodiments, an apparatus for performing the method 400 (for example, the terminal device 110-1) may comprise respective means for performing the corresponding steps in the method 400. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises: means for transmitting, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and  the network device by the network device; means for transmitting, to the network device, phase information associated with the plurality of antennas; and means for receiving, from the network device, downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas, the CSI being estimated based on the channel response and the phase information.
In some embodiments, the apparatus further comprises: means for transmitting, to the network device, amplitude information associated with the plurality of antennas.
In some embodiments, the apparatus further comprises: means for selecting, based on amplitude information associated with the plurality of antennas, the at least one reference antenna from the plurality of antennas; and means for transmitting, to the network device, an index of the at least one reference antenna.
Fig. 5 is a simplified block diagram of a device 500 that is suitable for implementing embodiments of the present disclosure. The device 500 may be implemented at the network device 120. The device 500 may also be implemented at the terminal device 110-1. As shown, the device 500 includes one or more processors 510, one or more memories 520 coupled to the processor (s) 510, one or more transmitters and/or receivers (TX/RX) 540 coupled to the processor 510.
The processor 510 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 520 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples.
The memory 520 stores at least a part of a program 530. The TX/RX 540 is for bidirectional communications. The TX/RX 540 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may  have several ones. The communication interface may represent any interface that is necessary for communication with other network elements.
The program 530 is assumed to include program instructions that, when executed by the associated processor 510, enable the device 500 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 3 and 4. That is, embodiments of the present disclosure can be implemented by computer software executable by the processor 510 of the device 500, or by hardware, or by a combination of software and hardware.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any disclosure or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular disclosures. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
Various modifications, adaptations to the foregoing exemplary embodiments of this disclosure may become apparent to those skilled in the relevant arts in view of the  foregoing description, when read in conjunction with the accompanying drawings. Any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure. Furthermore, other embodiments of the disclosures set forth herein will come to mind to one skilled in the art to which these embodiments of the disclosure pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the embodiments of the disclosure are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are used herein, they are used in a generic and descriptive sense only and not for purpose of limitation.

Claims (24)

  1. A network device, comprising:
    at least one processor; and
    a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to:
    perform a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of the terminal device;
    determine, based on the measurement, a channel response between the network device and the least one reference antenna;
    receive, from the terminal device, phase information associated with the plurality of antennas; and
    generate an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
  2. The network device of claim 1, wherein the at least one reference antenna comprises a first cross-polarization antenna, wherein the network device is caused to perform the measurement of SRS by:
    performing the measurement of SRS on the first cross-polarization antenna at two polarizations.
  3. The network device of claim 1, wherein the at least one reference antenna comprises a first cross-polarization antenna and a second cross-polarization antenna, wherein the network device is caused to perform the measurement of SRS by:
    performing the measurement of SRS on the first cross-polarization antenna at a first polarization; and
    performing the measurement of SRS on the second cross-polarization antenna at a second polarization.
  4. The network device of claim 1, wherein the network device is caused to generate the estimation of the CSI by:
    generating a further estimation of amplitude information associated with the plurality of antennas, based on the channel response; and
    generating the estimation of the CSI based on the further estimation of estimated amplitude information and the phase information.
  5. The network device of claim 1, wherein the network device is caused to generate the estimation of the CSI by:
    receiving, from the terminal device, differential amplitude information associated with the plurality of antennas; and
    generating the estimation of the CSI based on the differential amplitude information and the phase information.
  6. The network device of claim 1, wherein the network device is further caused to:
    receive, from the terminal device, an index of the at least one reference antenna.
  7. The network device of claim 1, wherein the network device is further caused to:
    obtain a configuration of the plurality of the antennas of the terminal device; and
    determine, based on the configuration, the at least one antenna.
  8. A terminal device, comprising:
    at least one processor; and
    a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the terminal device to:
    transmit, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device;
    transmit, to the network device, phase information associated with the plurality of antennas; and
    receive, from the network device, downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas, the CSI being estimated based on the channel response and the phase information.
  9. The terminal device of claim 8, wherein the terminal device is further caused to:
    transmit, to the network device, amplitude information associated with the plurality of antennas.
  10. The terminal device of claim 8, wherein the terminal device is further caused to:
    select, based on amplitude information associated with the plurality of antennas, the at least one reference antenna from the plurality of antennas; and
    transmit, to the network device, an index of the at least one reference antenna.
  11. A method for communication, comprising:
    performing, at a network device, a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of a terminal device;
    determining, based on the measurement, a channel response between the network device and the least one reference antenna;
    receiving, from the terminal device, phase information associated with the plurality of antennas; and
    generating an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
  12. The method of claim 11, wherein the at least one reference antenna comprises a first cross-polarization antenna, and wherein performing the measurement of SRS comprises:
    performing the measurement of SRS on the first cross-polarization antenna at two polarizations.
  13. The method of claim 11, wherein the at least one reference antenna comprises a first cross-polarization antenna and a second cross-polarization antenna, and wherein performing the measurement of SRS comprises:
    performing the measurement of SRS on the first cross-polarization antenna at a first polarization; and
    performing the measurement of SRS on the second cross-polarization antenna at a second polarization.
  14. The method of claim 11, wherein generating the estimation of the CSI comprises:
    generating a further estimation of amplitude information associated with the plurality of antennas, based on the channel response; and
    generating the estimation of the CSI based on the further estimation of estimated amplitude information and the phase information.
  15. The method of claim 11, wherein generating the estimation of the CSI comprises:
    receiving, from the terminal device, differential amplitude information associated with the plurality of antennas; and
    generating the estimation of the CSI based on the differential amplitude information and the phase information.
  16. The method of claim 11, further comprising:
    receiving, from the terminal device, an index of the at least one reference antenna.
  17. The method of claim 11, further comprising:
    obtaining a configuration of the plurality of the antennas of the terminal device; and
    determining, based on the configuration, the at least one antenna.
  18. A method for communication, comprising:
    at a terminal device,
    transmitting, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device;
    transmitting, to the network device, phase information associated with the plurality of antennas; and
    receiving, from the network device, downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas, the CSI being estimated based on the channel response and the phase information.
  19. The method of claim 18, further comprising:
    transmitting, to the network device, amplitude information associated with the plurality of antennas.
  20. The method of claim 18, further comprising:
    selecting, based on amplitude information associated with the plurality of antennas, the at least one reference antenna from the plurality of antennas; and
    transmitting, to the network device, an index of the at least one reference antenna.
  21. A computer readable medium storing instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to perform the method according to any one of claims 11-17.
  22. A computer readable medium storing instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to perform the method according to any one of claims 18-20.
  23. An apparatus comprising:
    means for performing a measurement of Sounding Reference Signals (SRS) on at least one reference antenna selected from a plurality of antennas of a terminal device;
    means for determining, based on the measurement, a channel response between the network device and the least one reference antenna;
    means for receiving, from the terminal device, phase information associated with the plurality of antennas; and
    means for generating an estimation of channel state information (CSI) between the network device and the plurality of antennas, based on the phase information and the channel response.
  24. An apparatus comprising:
    means for transmitting, to a network device, Sounding Reference Signals (SRS) with a plurality of antennas of the terminal device to obtain a channel response between at least one reference antenna and the network device by the network device;
    means for transmitting, to the network device, phase information associated with the plurality of antennas; and
    means for receiving, from the network device, downlink transmission which is based on channel state information (CSI) between the network device and the plurality of antennas, the CSI being estimated based on the channel response and the phase information.
PCT/CN2019/071969 2019-01-16 2019-01-16 Method, device and computer readable medium for estimating channel state information WO2020147033A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/071969 WO2020147033A1 (en) 2019-01-16 2019-01-16 Method, device and computer readable medium for estimating channel state information
CN201980089248.0A CN113366787B (en) 2019-01-16 2019-01-16 Method, apparatus and computer readable medium for estimating channel state information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071969 WO2020147033A1 (en) 2019-01-16 2019-01-16 Method, device and computer readable medium for estimating channel state information

Publications (1)

Publication Number Publication Date
WO2020147033A1 true WO2020147033A1 (en) 2020-07-23

Family

ID=71613520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071969 WO2020147033A1 (en) 2019-01-16 2019-01-16 Method, device and computer readable medium for estimating channel state information

Country Status (2)

Country Link
CN (1) CN113366787B (en)
WO (1) WO2020147033A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151303A1 (en) * 2021-01-15 2022-07-21 Qualcomm Incorporated Ue-assisted channel reconstruction based on partial spatial sounding
EP4044446A4 (en) * 2019-12-06 2022-11-09 Huawei Technologies Co., Ltd. Method and apparatus for determining channel information
WO2023000264A1 (en) * 2021-07-22 2023-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650364A (en) * 2011-07-01 2014-03-19 瑞典爱立信有限公司 Beamforming with phase compensation
CN106664144A (en) * 2014-06-13 2017-05-10 诺基亚通信公司 Method, apparatus and computer program
WO2018128453A1 (en) * 2017-01-09 2018-07-12 Lg Electronics Inc. Method of transmitting reference signal for channel state change measurement and apparatus therefor
WO2018194795A1 (en) * 2017-04-18 2018-10-25 Qualcomm Incorporated Precoded channel state information reference signals (csi-rs) for phase synchronization for reciprocity-based coordinated multipoint(comp) joint transmission operations
CN109075827A (en) * 2016-05-09 2018-12-21 高通股份有限公司 Reference signal and link adaptation for large capacity MIMO

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995850B2 (en) * 2010-09-29 2016-09-21 エルジー エレクトロニクス インコーポレイティド Efficient feedback method and apparatus in multi-antenna assisted wireless communication system
CN102237969B (en) * 2011-08-16 2014-05-21 电信科学技术研究院 Channel state information transmission method and device
CN106664192B (en) * 2015-01-30 2020-12-01 韩国电子通信研究院 Method and apparatus for configuring port numbers of CSI-RS antenna ports
CN107888246B (en) * 2016-09-29 2023-04-28 华为技术有限公司 Codebook-based channel state information feedback method and codebook-based channel state information feedback equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650364A (en) * 2011-07-01 2014-03-19 瑞典爱立信有限公司 Beamforming with phase compensation
CN106664144A (en) * 2014-06-13 2017-05-10 诺基亚通信公司 Method, apparatus and computer program
CN109075827A (en) * 2016-05-09 2018-12-21 高通股份有限公司 Reference signal and link adaptation for large capacity MIMO
WO2018128453A1 (en) * 2017-01-09 2018-07-12 Lg Electronics Inc. Method of transmitting reference signal for channel state change measurement and apparatus therefor
WO2018194795A1 (en) * 2017-04-18 2018-10-25 Qualcomm Incorporated Precoded channel state information reference signals (csi-rs) for phase synchronization for reciprocity-based coordinated multipoint(comp) joint transmission operations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4044446A4 (en) * 2019-12-06 2022-11-09 Huawei Technologies Co., Ltd. Method and apparatus for determining channel information
WO2022151303A1 (en) * 2021-01-15 2022-07-21 Qualcomm Incorporated Ue-assisted channel reconstruction based on partial spatial sounding
WO2023000264A1 (en) * 2021-07-22 2023-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmission

Also Published As

Publication number Publication date
CN113366787A (en) 2021-09-07
CN113366787B (en) 2023-06-23

Similar Documents

Publication Publication Date Title
US10924201B2 (en) Data sending method, signaling sending method, apparatus, and system
US11212794B2 (en) Base station and user equipment
US10972168B2 (en) User equipment and method for wireless communication
EP3228021B1 (en) Method and apparatus of downlink signaling for partially precoded csi-rs and csi feedback
US11108521B2 (en) Method for transmitting and receiving reference signal in wireless communication system
US10038481B2 (en) Multi-antenna transmission method, terminal and base station
EP3327941B1 (en) Method and apparatus for transmitting and receiving feedback information for inter-cell cooperative transmission in wireless communication cellular system
US9148208B2 (en) Antenna selection codebook for full dimensional MIMO systems
US20220109480A1 (en) Number of non-zero coefficients reporting for type ii csi codebook with frequency compression
US10206201B2 (en) Method and apparatus for transmitting and/or receiving reference signals
CN113243087B (en) Wireless communication device and method of operating a wireless communication device
US20140078934A1 (en) Delay feedback for coordinated multi-point transmission
EP2688220A1 (en) Method for transceiving channel state information and transceiving device
CN110268637B (en) User equipment and method for SRS transmission
US20200007213A1 (en) Method of csi reporting
WO2020147033A1 (en) Method, device and computer readable medium for estimating channel state information
WO2016179801A1 (en) Method and apparatus for channel state information feedback for full dimensional mimo
WO2022009151A1 (en) Shared csi-rs for partial-reciprocity based csi feedback
EP2983318A1 (en) Mobile station, base station, and communication control method
US11595087B2 (en) Methods and devices for channel state information transmission
US20220303076A1 (en) Method, device and computer readable medium for channel state information transmission
WO2019085637A1 (en) Channel measurement method and user equipment
US20230106790A1 (en) Methods for csi-rs transmission
US20220377747A1 (en) Method, device and computer readable medium for channel quality measurement
WO2019105215A1 (en) Transmission indication method, device and system, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910420

Country of ref document: EP

Kind code of ref document: A1