WO2020145497A1 - Method for measuring radio link in unlicensed band and device therefor - Google Patents

Method for measuring radio link in unlicensed band and device therefor Download PDF

Info

Publication number
WO2020145497A1
WO2020145497A1 PCT/KR2019/015301 KR2019015301W WO2020145497A1 WO 2020145497 A1 WO2020145497 A1 WO 2020145497A1 KR 2019015301 W KR2019015301 W KR 2019015301W WO 2020145497 A1 WO2020145497 A1 WO 2020145497A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
drs
radio link
terminal
sync
Prior art date
Application number
PCT/KR2019/015301
Other languages
French (fr)
Korean (ko)
Inventor
윤석현
안준기
김선욱
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020145497A1 publication Critical patent/WO2020145497A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present disclosure relates to a method for measuring a radio link in an unlicensed band and an apparatus therefor, and more particularly, to a method and apparatus for determining a radio link failure (RLF) in an unlicensed band.
  • RLF radio link failure
  • next generation 5G system which is an improved wireless broadband communication than the existing LTE system
  • NewRAT communication scenarios are classified into Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC).
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next-generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next-generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC is a next-generation mobile communication scenario with low cost, low energy, short packet, and massive connectivity characteristics. (e.g., IoT).
  • the present disclosure is to provide a method and apparatus for measuring a radio link in an unlicensed band.
  • a UE In a method for a UE to measure a radio link in an unlicensed band according to an embodiment of the present disclosure, information related to a reception window for a discovery reference signal (DRS) is received, and at least one DRS is received within the reception window , Receiving at least one Synchronization Signal Block (SSB) outside the reception window, and measuring radio link qualities for each of the at least one DRS and at least one SSB, wherein the at least one DRS and at least one Of the radio link qualities for the SSB of the one or more, based on the one or more radio link quality is greater than a threshold, the radio link is determined to be In-Sync, the radio link quality for the at least one DRS and at least one SSB Based on all of them being below the threshold, the radio link may be determined to be Out-of-Sync or the at least one DRS and the at least one SSB may be determined to be DTX (Discontinuous Transmission).
  • DRS discovery reference signal
  • SSB Synchronization Signal
  • the DRS may be SSB or CSI-RS (Channel State Information-Reference Signal).
  • the information related to the reception window includes information on the period of the reception window, and the at least one SSB may be received from the reception window during a time period for the period.
  • the previous report content may be reported again.
  • the transmission power of the at least one DRS and the transmission power of the at least one SSB may be different.
  • reporting period for reporting the radio link quality to the upper layer may be the same as the period of the reception window.
  • the terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
  • a terminal for measuring a radio link in an unlicensed band comprising: at least one transceiver; At least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
  • At least one transceiver receives information related to a reception window for a discovery reference signal (DRS), receives at least one DRS within the reception window through the at least one transceiver, and the at least one transceiver Through, receiving at least one Synchronization Signal Block (SSB) outside the receive window, and measuring radio link qualities for each of the at least one DRS and at least one SSB, wherein the at least one DRS and Of the radio link qualities for at least one SSB, one or more radio link qualities are greater than a threshold, and the radio link is determined to be In-Sync, and the radio for the at least one DRS and at least one SSB On the basis that all of the link qualities are below a threshold, the radio link may be determined to be Out-of-Sync or the at least one DRS and the at least one SSB may be determined to be DTX (Discontinuous Transmission).
  • DRS discovery reference signal
  • SSB Synchronization Signal Block
  • the DRS may be SSB or CSI-RS (Channel State Information-Reference Signal).
  • the information related to the reception window includes information on the period of the reception window, and the at least one SSB may be received from the reception window during a time period for the period.
  • the previous report content may be reported again.
  • the transmission power of the at least one DRS and the transmission power of the at least one SSB may be different.
  • reporting period for reporting the radio link quality to the upper layer may be the same as the period of the reception window.
  • the terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
  • An apparatus for measuring a radio link in an unlicensed band comprising: at least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
  • Discovery Reference Signal Receives information related to a receive window for (Discovery Reference Signal)
  • SSB Synchronization Signal Block
  • the radio link is determined to be In-Sync, and the radio links are determined to be out-of-sync based on the fact that all of the radio link qualities for the at least one DRS and the at least one SSB are below a threshold. It may be determined that the at least one DRS and the at least one SSB are DTX (Discontinuous Transmission).
  • radio link failure (RLF) of an unlicensed band may be more clearly determined.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the physical channels.
  • 3 to 5 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
  • FIG. 6 is a diagram for explaining analog beamforming in an NR system.
  • FIG. 7 shows a beam sweeping operation for a synchronization signal and system information in a downlink transmission process.
  • 8 to 9 are diagrams for explaining downlink channel transmission in an unlicensed band.
  • 10 to 11 are diagrams for explaining the composition and transmission method of the SS/PBCH block.
  • 12 is a diagram for explaining an example of reporting channel state information.
  • 13 to 16 are diagrams for explaining an example of an operation implementation of a base station and a terminal according to the present disclosure.
  • FIG. 17 shows an example of setting a DMTC (Discovery Measurement Timing Configuration) window and a DTTC (DRS Transmission Timing Configuration) window according to the present disclosure.
  • DMTC Discovery Measurement Timing Configuration
  • DTTC DRS Transmission Timing Configuration
  • 18 to 19 are diagrams for explaining an implementation example of determining In-sync/Out-of-sync according to the present disclosure.
  • FIG. 20 shows an example of a communication system to which embodiments of the present disclosure are applied.
  • 21 to 23 show examples of various wireless devices to which embodiments of the present disclosure are applied.
  • FIG. 24 shows an example of a signal processing circuit to which embodiments of the present disclosure are applied.
  • the name of the base station may be used as a comprehensive term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay a relay
  • the 3GPP-based communication standard includes downlink physical channels corresponding to resource elements carrying information originating from a higher layer and downlink corresponding to resource elements used by the physical layer but not carrying information originating from a higher layer.
  • Physical signals are defined.
  • the format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, and reference signals and synchronization signals Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predetermined special waveform known to each other by the gNB and the UE.
  • RS reference signal
  • UE cell specific RS
  • UE- A specific RS UE-specific RS
  • UE-RS positioning RS
  • channel state information RS channel state information RS, CSI-RS
  • 3GPP LTE/LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Defines uplink physical signals.
  • a physical uplink shared channel PUSCH
  • a physical uplink control channel PUCCH
  • a physical random access channel PRACH
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • PDCCH Physical Downlink Control CHannel
  • PCFICH Physical Control Format Indicator CHannel
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • ACK/NACK ACKnowlegement/Negative ACK
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • the expression that the user equipment transmits PUCCH/PUSCH/PRACH is uplink control information/uplink data on or through PUSCH/PUCCH/PRACH respectively. /Random access signal is used in the same sense as that..
  • the expression that the gNB transmits PDCCH/PCFICH/PHICH/PDSCH, respectively, on PDCCH/PCFICH/PHICH/PDSCH. It is used in the same sense as transmitting downlink data/control information through the network.
  • CRS/DMRS/CSI-RS/SRS/UE-RS is assigned or configured (configured) OFDM symbol/subcarrier/RE to CRS/DMRS/CSI-RS/SRS/UE-RS symbol/carrier It is called /subcarrier/RE.
  • an OFDM symbol to which tracking RS (TRS) is assigned or configured is called a TRS symbol
  • a subcarrier to which TRS is assigned or configured is called a TRS subcarrier
  • a TRS is assigned.
  • the configured RE is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is referred to as a broadcast subframe or a PBCH subframe
  • a subframe in which a synchronization signal (eg, PSS and/or SSS) is transmitted is a synchronization signal subframe or a PSS/SSS subframe. It is called.
  • the OFDM symbols/subcarriers/REs to which the PSS/SSS is assigned or configured are called PSS/SSS symbols/subcarriers/RE, respectively.
  • the CRS port, UE-RS port, CSI-RS port, and TRS port are antenna ports configured to transmit CRS and antenna ports configured to transmit UE-RS, respectively.
  • Antenna ports configured to transmit CRSs may be distinguished from each other by positions of REs occupied by CRSs according to CRS ports, and antenna ports configured to transmit UE-RSs are configured to UEs.
  • UE-RS may be distinguished by location of REs occupied, and antenna ports configured to transmit CSI-RSs are occupied by CSI-RS according to CSI-RS ports. It can be distinguished from each other by the location of the REs. Therefore, the term CRS/UE-RS/CSI-RS/TRS port is also used as a term for a pattern of REs occupied by CRS/UE-RS/CSI-RS/TRS in a certain resource region.
  • the three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Super-reliability and It includes the area of ultra-reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC ultra-reliable and low latency communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access, and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
  • Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
  • voice is expected to be handled as an application program simply using the data connection provided by the communication system.
  • the main causes for increased traffic volume are increased content size and increased number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video and mobile internet connections will become more widely used as more devices connect to the internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work in the cloud, requiring much lower end-to-end delay to maintain a good user experience when a tactile interface is used.
  • Entertainment For example, cloud gaming and video streaming are another key factor in increasing demand for mobile broadband capabilities. Entertainment is essential for smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires a very low delay and an instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, namely mMTC. It is predicted that by 2020, there are 20 billion potential IoT devices.
  • Industrial IoT is one of the areas where 5G plays a key role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will transform the industry through ultra-reliable/low-latency links, such as remote control of the main infrastructure and self-driving vehicles. Reliability and level of delay are essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means to provide streams rated at hundreds of megabits per second to gigabit per second. This fast speed is required to deliver TV in 4K (6K, 8K and above) resolutions as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications include almost immersive sports events. Certain application programs may require special network settings. For VR games, for example, game companies may need to integrate the core server with the network operator's edge network server to minimize latency.
  • Automotive is expected to be an important new driver for 5G, along with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. The reason is that future users continue to expect high quality connections regardless of their location and speed.
  • Another example of application in the automotive field is the augmented reality dashboard. It identifies objects in the dark over what the driver sees through the front window and superimposes information that tells the driver about the distance and movement of the object.
  • wireless modules will enable communication between vehicles, exchange of information between the vehicle and the supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system guides alternative courses of action to help the driver drive more safely, reducing the risk of accidents.
  • the next step will be remote control or a self-driven vehicle.
  • This is very reliable and requires very fast communication between different self-driving vehicles and between the vehicle and the infrastructure.
  • self-driving vehicles will perform all driving activities, and drivers will focus only on traffic beyond which the vehicle itself cannot identify.
  • the technical requirements of self-driving vehicles require ultra-low delays and ultra-high-speed reliability to increase traffic safety to levels beyond human reach.
  • Smart cities and smart homes will be embedded in high-density wireless sensor networks.
  • the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home. Similar settings can be made for each assumption.
  • Temperature sensors, window and heating controllers, burglar alarms and consumer electronics are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include supplier and consumer behavior, so smart grids can improve efficiency, reliability, economics, production sustainability and the distribution of fuels like electricity in an automated way.
  • the smart grid can be viewed as another sensor network with low latency.
  • the health sector has a number of applications that can benefit from mobile communications.
  • the communication system can support telemedicine that provides clinical care from a distance. This helps to reduce barriers to distance and can improve access to medical services that are not continuously available in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with wireless links that can be reconfigured is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operate with cable-like delay, reliability and capacity, and that management be simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using location-based information systems.
  • Logistics and cargo tracking use cases typically require low data rates, but require wide range and reliable location information.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane means a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted.
  • the first layer provides an information transfer service to an upper layer using a physical channel.
  • the physical layer is connected to the upper medium access control layer through a transmission channel. Data is moved between the medium access control layer and the physical layer through the transmission channel. Data is moved between the physical layer of the transmitting side and the receiving side through a physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated with OFDMA (Orthogonal Frequency Division Multiple Access) in the downlink, and modulated with Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a function block inside the MAC.
  • the packet data convergence protocol (PDCP) layer of the second layer performs a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 and IPv6 in a narrow bandwidth wireless interface.
  • PDCP packet data convergence protocol
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • the radio bearer means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layer of the terminal and the network exchanges RRC messages with each other. If there is an RRC connection (RRC Connected) between the terminal and the RRC layer of the network, the terminal is in the RRC connected state (Connected Mode), otherwise it is in the RRC idle state (Idle Mode).
  • the NAS (Non-Access Stratum) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) for transmitting system information, a PCH (Paging Channel) for transmitting paging messages, and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH Policy Channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transmission channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast. Traffic Channel
  • FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using them.
  • the terminal performs an initial cell search operation such as synchronizing with the base station when the power is turned on or newly enters the cell (S201).
  • the terminal can receive a primary synchronization channel (P-SCH) and a secondary synchronization channel (Secondary Synchronization Channel; S-SCH) from the base station to synchronize with the base station and obtain information such as cell ID. have.
  • P-SCH primary synchronization channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may acquire a physical broadcast channel from the base station to obtain intra-cell broadcast information.
  • the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the information carried on the PDCCH. It can be done (S202).
  • a physical downlink control channel (PDCCH)
  • a physical downlink control channel (PDSCH)
  • S202 the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the information carried on the PDCCH. It can be done (S202).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the UE may perform a random access procedure (RACH) to the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S204 and S206).
  • PRACH physical random access channel
  • an additional contention resolution procedure may be performed.
  • the UE that has performed the above-described procedure is a general uplink/downlink signal transmission procedure and then receives PDCCH/PDSCH (S207) and physical uplink shared channel (PUSCH)/physical uplink control channel (Physical Uplink). Control Channel (PUCCH) transmission (S208) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and formats are different depending on the purpose of use.
  • control information that the UE transmits to the base station through the uplink or that the UE receives from the base station includes a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ) And the like.
  • the UE may transmit the control information such as CQI/PMI/RI described above through PUSCH and/or PUCCH.
  • the NR system is considering using a high ultra-high frequency band, that is, a millimeter frequency band of 6 GHz or more, to transmit data while maintaining a high transmission rate to a plurality of users using a wide frequency band.
  • 3GPP uses this under the name NR, and in the present disclosure, it will be referred to as an NR system in the future.
  • 3 illustrates the structure of a radio frame used in NR.
  • uplink and downlink transmission are composed of frames.
  • the radio frame has a length of 10 ms, and is defined as two 5 ms half-frames (HFs).
  • the half-frame is defined by five 1ms subframes (Subframe, SF).
  • the subframe is divided into one or more slots, and the number of slots in the subframe depends on Subcarrier Spacing (SCS).
  • SCS Subcarrier Spacing
  • Each slot includes 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP). Normally, if CP is used, each slot contains 14 symbols. When an extended CP is used, each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 exemplifies that when a CP is normally used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • Table 2 illustrates that when an extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • a (absolute time) section of a time resource eg, SF, slot, or TTI
  • TU Time Unit
  • 4 illustrates the slot structure of the NR frame.
  • a slot contains multiple symbols in the time domain. For example, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot includes 6 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P contiguous
  • the carrier may include up to N (eg, 4) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-contained structure in which a DL control channel, DL or UL data, UL control channel, etc. can all be included in one slot.
  • a DL control channel hereinafter, DL control region
  • the last M symbols in the slot can be used to transmit the UL control channel (hereinafter, UL control region).
  • N and M are each an integer of 0 or more.
  • the resource region hereinafter referred to as a data region
  • the resource region (hereinafter referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission.
  • the following configuration may be considered. Each section was listed in chronological order.
  • PDCCH may be transmitted in the DL control region, and PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • DCI downlink control information
  • DL data scheduling information for example, DL data scheduling information
  • UL data scheduling information may be transmitted.
  • uplink control information for example, ACK/NACK (Positive Acknowledgement/Negative Acknowledgement) information for DL data, CSI (Channel State Information) information, and SR (Scheduling Request) may be transmitted.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or the process from the reception mode to the transmission mode.
  • some symbols at a time point of switching from DL to UL may be set to GP.
  • FIG. 6 is a view showing an example of a block diagram of a transmitting end and a receiving end for hybrid beamforming (hybrid beamforming).
  • a beamforming method in which BS or UE transmits the same signal using an appropriate phase difference to a large number of antennas to increase energy only in a specific direction is mainly considered.
  • Such beamforming methods include digital beamforming, which creates a phase difference on a digital baseband signal, analog beamforming, which creates a phase difference using a time delay (ie, cyclic shift) on a modulated analog signal, digital beamforming, and analog beam. And hybrid beamforming using both forming. If an RF unit (or a transceiver unit (TXRU)) is provided to enable transmission power and phase adjustment for each antenna element, independent beamforming is possible for each frequency resource.
  • TXRU transceiver unit
  • the millimeter frequency band must be used by a large number of antennas to compensate for the rapid propagation attenuation characteristics, and digital beamforming corresponds to the number of antennas, so RF components (eg, digital analog converter (DAC), mixer, mixer, power) Since an amplifier (power amplifier, linear amplifier, etc.) is required, there is a problem in that the price of a communication device increases to implement digital beamforming in the millimeter frequency band. Therefore, when a large number of antennas are required, such as a millimeter frequency band, use of an analog beamforming or hybrid beamforming method is considered.
  • DAC digital analog converter
  • mixer mixer
  • power power amplifier
  • linear amplifier linear amplifier
  • the analog beamforming method maps a plurality of antenna elements to one TXRU and adjusts the direction of the beam with an analog phase shifter.
  • This analog beamforming method has a disadvantage in that it can make only one beam direction in the entire band and thus cannot perform frequency selective beamforming (BF).
  • Hybrid BF is a type of digital BF and analog BF, and has a number of B RF units less than Q antenna elements. In the case of the hybrid BF, although there are differences depending on the connection method of the B RF units and the Q antenna elements, the direction of beams that can be simultaneously transmitted is limited to B or less.
  • FIG. 7 is a diagram illustrating a beam sweeping operation for a synchronization signal and system information in a downlink transmission process.
  • a physical resource or physical channel in which system information of the New RAT system is broadcast is referred to as a physical broadcast channel (xPBCH).
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels within one symbol may be simultaneously transmitted, and in order to measure a channel for each analog beam, as shown in FIG. 9, to a specific antenna panel
  • a method for introducing a beam RS (BRS) that is a reference signal (RS) transmitted for a corresponding single analog beam is being discussed.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • the synchronization signal (Synchronization signal) or xPBCH can be transmitted for all analog beams (Analog beam) included in the analog beam group (Analog beam group) so that any UE can receive well.
  • the network uses a measurement reference signal (MRS) applied to each beam in order to allow the UE to perform measurement on beams used in the corresponding cell or used by the eNB (measurement reference signal; MRS), beam reference A known signal, such as a beam reference signal (BRS) and a beamformed channel state information reference signal (CSI-RS), may be configured.
  • MRS measurement reference signal
  • BRS beam reference signal
  • CSI-RS beamformed channel state information reference signal
  • the base station may transmit the BRS aperiodically/periodically, and the UE may select the eNB Tx beam suitable for the UE through the measurement of the BRS.
  • the UE may perform measurement using different Rx beams and select beam combinations considering the Tx beam of the eNB and the Rx beam of the UE. After performing this process, the Tx-Rx beam association between the eNB and the UE may be determined as explicit or implicit.
  • the network may instruct the UE to report the top X Tx-Rx beam combinations as a result of measurement.
  • the number of beam combinations to be reported may be defined in advance, delivered by a network through higher layer signaling, or the like, and all beam combinations in which a measurement result exceeds a certain threshold may be reported.
  • a specific threshold may be defined in advance or signaled by a network.
  • a category considering the decoding performance of the UE is defined, and thresholds for each category are defined. It might be.
  • the report on the beam combination may be performed periodically or aperiodically by instructions of the network.
  • event triggering reporting may be performed.
  • a predetermined level may be predefined or the network may signal through the upper layer.
  • the UE may report one or more beam associations determined by the above-described scheme.
  • priority may be given for each beam. For example, it can be reported to be interpreted in the form of 1 st preferred beam, 2 nd preferred beam, ⁇ .
  • the preferred beam reporting of the UE may be performed in the same manner as the explicit beam association proposed above.
  • the UE may receive a list including up to M TCI-state settings, in order to decode the PDSCH according to the detected PDCCH with DCI intended for the UE and a given cell.
  • M depends on UE capability.
  • Each TCI-State includes parameters for establishing a QCL relationship between one or two DL RSs and DM-RS ports of the PDSCH.
  • the QCL relationship is established with the RRC parameter qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS (if set).
  • the QCL type corresponding to each DL RS is given by the parameter'qcl-Type' in QCL-Info, and can take one of the following values:
  • the corresponding NZP CSI-RS antenna ports may be indicated/set as a specific TRS in the QCL-Type A perspective and a specific SSB and QCL in the QCL-Type D perspective. have.
  • UE receiving this indication/setting receives the corresponding NZP CSI-RS using the Doppler and delay values measured in QCL-TypeA TRS, and applies the received beam used for QCL-TypeD SSB reception to the corresponding NZP CSI-RS reception can do.
  • the serving cell may request the UE RRM measurement (measurement) information that is a measurement value for performing the RRM operation.
  • the UE may measure and report information such as cell search information for each cell, reference signal received power (RSRP), and reference signal received quality (RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the UE receives'measConfig' as a higher layer signal for RRM measurement from the serving cell. Then, the UE measures RSRP or RSRQ according to the information of the'measConfig'.
  • the definition of RSRP, RSRQ and RSSI according to TS 36.214 document of the LTE system is as follows.
  • RSRP the cell specific reference signal transmitted in the measurement bandwidth is defined as the linear average of the power contribution ([W]) of;; (RE Resource Element) resource elements of (Cell specific reference signal CRS) .
  • CRS R0 according to TS 36.211 is used for RSRP determination.
  • CRS R1 may be additionally used to increase reliability.
  • the reference point for RSRP should be the antenna connector of the UE, and when receive diversity is used, the reported RSRP value should not be lower than any one of the individual diversity RSRPs.
  • RSRQ is defined as N*RSRP/(RSSI of E-UTRA carrier). At this time, N is the RB number of the E-UTRA carrier RSSI measurement bandwidth. At this time, the measurement of'N*RSRP' and the measurement of'RSS of E-UTRA carrier' are performed through the same resource block set (RB set).
  • the E-UTRA carrier RSSI provides reference symbols for antenna port 0 on N resource blocks obtained from all sources including the same channel of a serving cell and a non-serving cell, adjacent channel interference, and thermal noise. It is obtained as a linear average value of the total received power measured only in the OFDM symbol.
  • the higher layer signaling indicates a specific subframe for performing RSRP measurement
  • RSSI is measured on all indicated OFDM symbols.
  • the reference point for the RSRQ should be the antenna connector of the UE, and when receive diversity is used, the reported RSRQ value should not be lower than any one of the individual diversity RSRQs.
  • RSSI means wideband received power including noise and thermal noise generated within a bandwidth defined by a receiver pulse shaping filter. Again, the reference point for the RSSI should be the antenna connector of the UE, and when receive diversity is used, the reported RSSI value should not be lower than any one of the individual diversity RSSIs.
  • the UE operating in the LTE system is 6, 15, 25, 50 through an allowable measurement bandwidth-related IE (information element) transmitted in system information block type 3 (SIB3) in case of intra-frequency measurement.
  • SIB3 system information block type 3
  • 75, 100 RB (resource block) is allowed to measure the RSRP in the bandwidth corresponding to one.
  • it is allowed to measure RSRP in a bandwidth corresponding to one of 6, 15, 25, 50, 75, and 100 RB (resource block) through the allowed measurement bandwidth transmitted in SIB5.
  • SIB5 system information block
  • RSRP can be measured in the frequency band of the entire downlink system by default.
  • the UE can think of the value as the maximum measurement bandwidth (maximum measurement bandwidth) and freely measure the value of RSRP within the value.
  • the serving cell transmits the IE defined as WB-RSRQ, and if the Allowed measurement bandwidth is set to 50 RB or more, the UE must calculate the RSRP value for the entire allowed measurement bandwidth.
  • RSSI RSSI is measured in the frequency band of the receiver of the UE according to the definition of the RSSI bandwidth.
  • NR communication systems are required to support significantly better performance than existing 4th generation (4G) systems in terms of data rate, capacity, latency, energy consumption and cost.
  • 4G 4th generation
  • NR systems need to make significant advances in the areas of bandwidth, spectral, energy, signaling efficiency, and cost per bit.
  • FIG 8 shows an example of a wireless communication system supporting unlicensed bands applicable to the present disclosure.
  • a cell operating in a license band (hereinafter, L-band) is defined as an L-cell, and a carrier of the L-cell is defined as (DL/UL) LCC.
  • a cell operating in an unlicensed band (hereinafter, U-band) is defined as a U-cell, and a carrier of the U-cell is defined as (DL/UL) UCC.
  • the carrier/carrier-frequency of the cell may mean the operating frequency (eg, center frequency) of the cell.
  • the cell/carrier (eg, CC) is collectively referred to as a cell.
  • LCC may be set to PCC (Primary CC) and UCC to SCC (Secondary CC).
  • the terminal and the base station may transmit and receive signals through a single UCC or a plurality of carrier-coupled UCCs. That is, the terminal and the base station can transmit and receive signals through only UCC(s) without LCC.
  • the signal transmission/reception operation in the unlicensed band described in the present disclosure may be performed based on all the above-described deployment scenarios (unless otherwise stated).
  • the NR frame structure of FIG. 3 may be used for operation in an unlicensed band.
  • the configuration of OFDM symbols occupied for uplink/downlink signal transmission in a frame structure for an unlicensed band may be set by a base station.
  • the OFDM symbol may be replaced with an SC-FDM(A) symbol.
  • the base station may inform the UE of the configuration of OFDM symbols used in subframe #n through signaling.
  • the subframe may be replaced with a slot or a time unit (TU).
  • the UE subframe #n-1 or subframe #n through a specific field in the DCI received from the base station (eg, Subframe configuration for LAA field, etc.) It is possible to assume (or identify) the configuration of the OFDM symbols occupied in n.
  • a specific field in the DCI received from the base station eg, Subframe configuration for LAA field, etc.
  • Table 3 shows the configuration of OFDM symbols in which the subframe configuration for LAA field in the LTE system is used for transmission of a downlink physical channel and/or physical signal in a current subframe and/or a next subframe. Illustrate the method shown.
  • the base station may inform the UE of information on the uplink transmission interval through signaling.
  • the UE may acquire'UL duration' and'UL offset' information for subframe #n through the'UL duration and offset' field in the detected DCI.
  • Table 4 illustrates a method in which the UL duration and offset field indicates the UL offset and UL duration configuration in the LTE system.
  • the base station may perform one of the following unlicensed band access procedures (eg, Channel Access Procedure, CAP) for downlink signal transmission in the unlicensed band.
  • CAP Channel Access Procedure
  • FIG. 9 is a flowchart of a CAP operation for transmitting a downlink signal through an unlicensed band of a base station.
  • the base station may initiate a channel access process (CAP) for downlink signal transmission over an unlicensed band (eg, signal transmission including PDSCH/PDCCH/EPDCCH) (S910).
  • CAP channel access process
  • the base station may arbitrarily select the backoff counter N within the contention window CW according to step 1.
  • the N value is set to the initial value N init (S920).
  • N init is selected as a random value between 0 and CW p .
  • the base station ends the CAP process (S932).
  • the base station may perform Tx burst transmission including PDSCH/PDCCH/EPDCCH (S934).
  • the base station decreases the backoff counter value by 1 according to step 2 (S940). Subsequently, the base station checks whether the channel of the U-cell(s) is idle (S950), and if the channel is idle (S950; Y), checks whether the backoff counter value is 0 (S930). On the contrary, if the channel is not idle in step S950, that is, if the channel is busy (S950; N), the base station according to step 5 has a longer delay time than the slot time (eg, 9usec) (defer duration T d ; 25usec or more) While, it is checked whether the corresponding channel is in an idle state (S960).
  • the slot time eg, 9usec
  • the base station can resume the CAP process again.
  • the delay period may be composed of 16usec intervals and m p consecutive slot times immediately following (eg, 9usec).
  • the base station again performs step S960 to check again whether the channel of the U-cell(s) is idle during the new delay period.
  • Table 5 exemplifies that m p , minimum CW, maximum CW, maximum channel occupancy time (MCOT), and allowed CW sizes applied to the CAP vary according to the channel access priority class. .
  • the contention window size applied to the first downlink CAP may be determined based on various methods. For example, the contention window size may be adjusted based on a probability that HARQ-ACK values corresponding to PDSCH transmission(s) in a certain time period (eg, a reference TU) are determined to be NACK.
  • a probability that HARQ-ACK values corresponding to PDSCH transmission(s) in a certain time period eg, a reference TU
  • the base station performs downlink signal transmission including the PDSCH associated with the channel access priority class p on the carrier
  • HARQ-ACK values corresponding to PDSCH transmission(s) in the reference subframe k (or reference slot k) are NACK.
  • the base station maintains the CW values set for each priority class as initial values.
  • the reference subframe (or reference slot) may be defined as a start subframe (or start slot) in which at least some HARQ-ACK feedback is available on which a most recent signal transmission on a corresponding carrier is performed.
  • the base station may perform a downlink signal transmission through an unlicensed band (eg, a signal transmission including discovery signal transmission and no PDSCH) based on the second downlink CAP method described later.
  • an unlicensed band eg, a signal transmission including discovery signal transmission and no PDSCH
  • the base station may perform the following CAP for downlink signal transmission through multiple carriers in an unlicensed band.
  • Type A The base station performs CAP on multiple carriers based on counter N (counter N considered in CAP) defined for each carrier, and performs downlink signal transmission based on this.
  • Counter N for each carrier is determined independently of each other, and downlink signal transmission through each carrier is performed based on the counter N for each carrier.
  • Counter N for each carrier is determined as an N value for the carrier having the largest contention window size, and downlink signal transmission through the carrier is performed based on the counter N for each carrier.
  • Type B The base station performs a CAP based on the counter N only for a specific carrier among a plurality of carriers, and performs downlink signal transmission by determining whether or not to channel idle for the remaining carriers before signal transmission on the specific carrier .
  • a single contention window size is defined for a plurality of carriers, and the base station utilizes a single contention window size when performing CAP based on Counter N for a specific carrier.
  • the contention window size is defined for each carrier, and when determining the N init value for a specific carrier, the largest contention window size among the contention window sizes is used.
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, DL measurement, and the like based on the SSB.
  • SSB is mixed with SS/PBCH (Synchronization Signal/Physical Broadcast channel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast channel
  • SSB is composed of PSS, SSS and PBCH.
  • SSB is composed of four consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol.
  • PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers
  • PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and quadrature phase shift keying (QPSK) are applied to the PBCH.
  • the PBCH is composed of a data RE and a DMRS (Demodulation Reference Signal) RE for each OFDM symbol. There are three DMRS REs for each RB, and three data REs exist between the DMRS REs.
  • Cell search refers to a process in which a terminal acquires time/frequency synchronization of a cell and detects a cell ID (eg, physical layer cell ID, PCID) of the cell.
  • PSS is used to detect a cell ID within a cell ID group
  • SSS is used to detect a cell ID group.
  • PBCH is used for SSB (time) index detection and half-frame detection.
  • the cell search process of the terminal may be summarized as in Table 6 below.
  • Type of Signals Operations 1 st step PSS * SS/PBCH block (SSB) symbol timing acquisition* Cell ID detection within a cell ID group (3 hypothesis) 2 nd Step SSS * Cell ID group detection (336 hypothesis) 3 rd Step PBCH DMRS * SSB index and Half frame (HF) index (Slot and frame boundary detection) 4 th Step PBCH * Time information (80 ms, System Frame Number (SFN), SSB index, HF) * Remaining Minimum System Information (RMSI) Control resource set (CORESET)/Search space configuration 5 th Step PDCCH and PDSCH * Cell access information* RACH configuration
  • SSB SS/PBCH block
  • 336 cell ID groups exist, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs.
  • Information about the cell ID group to which the cell ID of the cell belongs is provided/obtained through the SSS of the cell, and information about the cell ID among the 336 cells in the cell ID is provided/obtained through the PSS
  • 11 illustrates multi-beam transmission of SSB.
  • Beam sweeping means that a transmission reception point (TRP) (eg, a base station/cell) changes a beam (direction) of a radio signal according to time (hereinafter, the beam and beam direction may be mixed).
  • TRP transmission reception point
  • the SSB may be periodically transmitted using beam sweeping.
  • the SSB index is implicitly linked with the SSB beam.
  • the SSB beam may be changed in SSB (index) units, or may be changed in SSB (index) group units. In the latter case, the SSB beam remains the same within the SSB (index) group. That is, the transmission beam reflection of the SSB is repeated in a plurality of consecutive SSBs.
  • the maximum number of transmissions L of the SSB in the SSB burst set has a value of 4, 8 or 64 depending on the frequency band to which the carrier belongs. Therefore, the maximum number of SSB beams in the SSB burst set can also be given as follows according to the frequency band of the carrier.
  • the number of SSB beams is one.
  • the terminal may align the beam with the base station based on the SSB. For example, the terminal performs SSB detection and then identifies the best SSB. Thereafter, the UE may transmit the RACH preamble to the base station using the PRACH resource linked/corresponding to the index (ie, beam) of the best SSB.
  • SSB can be used to align the beam between the base station and the terminal even after the initial connection.
  • the user equipment (UE) is defined to report the channel state information (CSI) to the base station (BS).
  • the channel state information (CSI) refers to information that can indicate the quality of a radio channel (or link) formed between a UE and an antenna port.
  • CSI refers to information that can indicate the quality of a radio channel (or link) formed between a UE and an antenna port.
  • RI rank indicator
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • RI represents the rank information of the channel, which means the number of streams that the UE receives through the same time-frequency resource. Since this value is determined by being dependent on the long term fading of the channel, it is fed back from the UE to the BS with a period that is usually longer than the PMI and CQI.
  • PMI is a value reflecting channel space characteristics and indicates a precoding index preferred by the UE based on a metric such as SINR.
  • CQI is a value indicating the strength of a channel, and generally means a received SINR obtained when a BS uses PMI.
  • the base station sets a plurality of CSI processes to the UE, and can report and receive CSI for each process.
  • the CSI process consists of CSI-RS for measuring signal quality from a base station and CSI-interference measurement (CSI-IM) resource for interference measurement.
  • CSI-IM CSI-interference measurement
  • the channel state information-reference signal (CSI-RS) is time and/or frequency tracking (time/frequency tracking), CSI calculation (computation), RSRP (reference signal received power) calculation (computation) And for mobility.
  • CSI calculation is related to CSI acquisition
  • RSRP calculation is related to beam management (BM).
  • FIG. 12 is a flowchart illustrating an example of a CSI-related process.
  • the UE receives configuration information related to CSI from the BS through RRC signaling (S1201).
  • the CSI-related configuration information includes CSI-IM (interference management) resource related information, CSI measurement configuration related information, CSI resource configuration related information, and CSI-RS resource related information. Or, it may include at least one of CSI report configuration (report configuration) related information.
  • CSI-IM resource-related information may include CSI-IM resource information, CSI-IM resource set information, and the like.
  • the CSI-IM resource set is identified by the CSI-IM resource set ID, and one resource set includes at least one CSI-IM resource.
  • Each CSI-IM resource is identified by a CSI-IM resource ID.
  • CSI resource configuration related information may be expressed by CSI-ResourceConfig IE.
  • the CSI resource configuration related information defines a group including at least one of a non-zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set. That is, the CSI resource setting related information includes a CSI-RS resource set list, and the CSI-RS resource set list includes at least one of a NZP CSI-RS resource set list, a CSI-IM resource set list, or a CSI-SSB resource set list. It can contain one.
  • the CSI-RS resource set is identified by the CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource. Each CSI-RS resource is identified by a CSI-RS resource ID.
  • RRC parameters eg, BM-related'repetition' parameter, tracking-related'trs-Info' parameter
  • RRC parameters indicating the use of CSI-RS for each NZP CSI-RS resource set
  • CSI report configuration related information includes a report configuration type parameter indicating time domain behavior and a reportQuantity parameter indicating CSI related quantity for reporting.
  • the time domain behavior may be periodic, aperiodic or semi-persistent.
  • the UE measures the CSI based on the configuration information related to the CSI (S1203).
  • the CSI measurement may include (1) a CSI-RS reception process of the UE (S1205) and (2) a process of calculating CSI through the received CSI-RS (S1207).
  • CSI-RS resource element (RE) mapping of CSI-RS resources in a time and frequency domain is set by the RRC parameter CSI-RS-ResourceMapping.
  • the UE reports the measured CSI to the BS (S1209).
  • BFR Beam failure recovery
  • radio link failure may occur frequently due to UE rotation, movement, or beamforming blockage. Therefore, BFR is supported in the NR to prevent frequent RLF from occurring. BFR is similar to the radio link failure recovery process, and can be supported when the UE knows the new candidate beam(s).
  • the BS sets beam failure detection reference signals to the UE, and the UE has the number of beam failure indications from the physical layer of the UE within a period set by the RRC signaling of the BS.
  • the threshold set by RRC signaling is reached, a beam failure is declared.
  • the UE After beam failure is detected, the UE triggers beam failure recovery by initiating a random access process on the PCell; Beam failure recovery is performed by selecting a suitable beam (if the BS provides dedicated random access resources for certain beams, they are prioritized by the UE). Upon completion of the random access procedure, beam failure recovery is considered complete.
  • a radio link monitoring-reference signal which is a reference signal for radio link monitoring
  • BFD beam failure detection
  • radio link monitoring not only provides channel quality for the serving beam, but also the base station to the corresponding UE. It is possible to determine whether In-Sync/Out-of-Sync is based on channel quality for all potential beams.
  • a plurality of SS/PBCH blocks or a plurality of CSI-RS resources may be set as RLM-RS resources for RLM.
  • the SS/PBCH block can be used for various purposes such as cell acquisition, time & frequency tracking, and RRM measurement for mobility support.
  • the SS/PBCH block since the SS/PBCH block is always transmitted in the primary serving cell that controls call setup, it can be used for radio link monitoring without additional resource allocation.
  • the SS/PBCH block is transmitted in a narrow band even in a wideband system, the characteristics of the wideband channel cannot be fully reflected, and because it is composed of multiple OFDM symbols, in a system composed of very many beams, the SS/PBCH block Transmission can act as a large overhead.
  • CSI-RS is not only capable of broadband transmission depending on resource configuration, but also can be transmitted as one OFDM symbol. Therefore, depending on the configuration of the system, it may be advantageous to use CSI-RS for beam management and radio link monitoring.
  • radio link monitoring based on CSI-RS transmitted in such a wideband will be described.
  • the terms SS/PBCH block and CSI-RS are collectively referred to as embodiments of the present disclosure using the term RLM-RS.
  • radio link monitoring may be performed using a wideband RLM-RS.
  • the operation of performing RLM using a wideband RLM-RS may be performed in an unlicensed band.
  • NR-U operating an NR system in an unlicensed band operated by one operator, unlike licensed bands, other systems such as Wi-Fi and licensed-assisted LAA operated by other operators Access) and/or the NR-U system may be operated simultaneously in the same band.
  • a system operating in an unlicensed band performs a Channel Clearance Assessment (CCA) operation to determine whether a channel is occupied and used by another system before performing transmission for coexistence with other systems. . That is, the signal can be transmitted only when it is determined that the frequency band to be transmitted through the CCA is in an idle state.
  • CCA Channel Clearance Assessment
  • a frequency band that can be used in an NR-U system may be larger than a basic frequency band used by an existing system such as Wi-Fi.
  • the frequency band of the unlicensed band in which the NR-U system is operated is 80 MHz
  • a system such as Wi-Fi or LAA is operating in 20 MHz units
  • the channel is performed by CCA operation performed for 80 MHz.
  • the probability of being judged to be occupied can be much higher. In other words, even if only one 20MHz band is occupied by another system among four 20MHz unit bands included in the 80MHz band, it may be determined that the entire 80MHz band is occupied, so that the channel is determined to be occupied. The probability can be much higher.
  • the probability of determining that the channel is occupied may be increased due to the above-described problem, and accordingly, the periodic signal may be transmitted within a time period allocated for transmission of the periodic signal.
  • the probability of transmission failure may increase.
  • a channel is determined to be occupied by a CCA for a periodic signal
  • a plurality of transmittable candidate time positions during a specific time period may be preset in order to increase a transmission probability of the periodic signal.
  • the LBT Listen Before Talk
  • a periodic signal may be transmitted by delaying to the next possible candidate time location. In this case, due to the CCA of the entire band of the periodic signal transmitted over the wideband, if the channel is determined to be occupied, the UE may not perform an operation for periodically measuring the channel quality, and thus the reliability of the channel quality may decrease. have.
  • the base station may divide the entire frequency band to which the RLM-RS is allocated into a plurality of LBT subbands (S1301), and perform CCA in units of each LBT subband (S1303). Thereafter, the RLM-RS may be transmitted to the UE through each LBT subband based on the CCA performance result of each LBT subband (S1305).
  • a specific method for transmitting RLM-RS by performing CCA in units of LBT subbands in S1303 to S1305 may be based on the first embodiment.
  • the terminal receiving the RLM-RS transmitted through each of the LBT subbands measures the RLM-RS (S1307), and the radio link is in-sync or out based on the RLM-RS measurement result. It may be determined whether it is -of-sync (S1309). In this case, a method of determining whether the terminal is In-sync/Out-of-sync of a radio link in steps S1307 to S1309 may be based on Example 2 described below.
  • Embodiment 1 Wideband RLM-RS transmission and LBT operation
  • One RLM-RS resource may be allocated to have an arbitrary frequency band within the system frequency band for the UE.
  • the frequency band for RLM-RS resources is allocated to occupy all or most of the frequency bands of the system frequency band.
  • the system frequency band is broadband and the entire frequency band is used as a frequency band for performing CCA (hereinafter referred to as'LBT sub-band)'
  • RLM- within a time interval for RLM-RS transmission The probability that the periodic transmission of RS may fail may increase.
  • the frequency band for the LBT subband may be smaller than the entire system band, not the entire system band.
  • the LBT sub-band used when transmitting the RLM-RS may also be set smaller than the frequency band set for the RLM-RS.
  • 'broadband' may mean a wider frequency band than the basic frequency band used by other systems that coexist with the NR-U system.
  • the RLM-RS when the transmission frequency band of the RLM-RS is larger than the sub-band for the LBT, the RLM-RS may be transmitted through partial bands smaller than the set frequency band.
  • the RLM-RS may be transmitted according to the following embodiments, and the channel quality measurement method of the terminal may also be performed according to the following embodiments.
  • the M LBT sub-bands RLM-RS may be transmitted only through (sub-band) and RLM-RS may not be transmitted for NM LBT subbands.
  • the terminal measures the channel quality for at least one LBT subband (up to M LBT subbands) among the M LBT subbands, and derives the channel quality of the bandwidth of the entire broadband RLM-RS based on this. can do.
  • the channel quality measurement may be attempted at the location of the LBT subband where the RLM-RS is expected to be transmitted. If it is determined that the RLM-RS has not been transmitted by the base station in any LBT subband, attempts to detect the RLM-RS at the candidate time location allocated after the candidate time location for the RLM-RS that also measures the current channel quality. can do. For example, among the LBT subbands included in all candidate time positions, the UE may repeat the channel quality measurement until it is determined that the base station has successfully transmitted the RLM-RS through at least one LBT subband. .
  • the M LBT subs are determined. After transmitting the RLM-RS only through the sub-band and performing the CCA based on the LBT sub-band at the next candidate time location set for the delay transmission of the RLM-RS for the NM LBT sub-bands, the channel is idle. If it is determined that the (idle) state, it is possible to perform the delay transmission of the RLM-RS. In this case, the UE can measure the channel quality for all candidate time positions expected to be delayed and use all possible results as channel quality for the entire band. However, when deriving the final channel quality, how many LBT subbands to use for the measurement result can be determined by considering the accuracy of the channel quality for at least one LBT subband.
  • Examples 1-1 or 1-2 if the terminal is determined to be occupied frequently because the entire frequency band may need to be measured at all times, unnecessary channel quality measurement may be performed.
  • the base station sets a reference LBT sub-band among the LBT sub-bands when the frequency band of the RLM-RS is larger than the LBT sub-band, and the reference LBT sub
  • a plurality of candidate time locations capable of transmitting RLM-RS for a reference LBT sub-band may be defined.
  • the base station may attempt to delay transmission for transmission of the RLM-RS through the reference LBT subband. However, if it is determined that the channel is occupied at the first RLM-RS transmission location for the LBT subband other than the reference LBT subband, additional attempts for RLM-RS transmission may not be performed.
  • the UE determines channel quality measurement and RLM-RS transmission for all LBT subbands only at the first RLM-RS transmission location, and channel quality measurement only for reference LBT subbands for the remaining candidate time locations.
  • An operation for determining whether or not to transmit may be performed.
  • the complexity of the terminal can be alleviated through this.
  • the base station may set the operation of the embodiment 1-1 or the embodiment 1-2 to the terminal without transmitting the entire RLM-RS.
  • the terminal can also measure the channel quality based on Example 1-1 or Example 1-2 depending on the setting of the base station. If there is no setting in Examples 1-1 or 1-2, the UE may determine whether to transmit the RLM-RS for all bands and determine whether channel quality measurement performed for all frequency bands is valid. .
  • multiple beams for one beam RLM-RS resources may be allocated in units of LBT subbands, and a plurality of allocated RLM-RS resources may be bundled to configure an RLM-RS resource set. Since each of these RLM-RS resource sets corresponds to one beam, the UE can derive one measurement metric for one RLM-RS resource set.
  • the RLM-RS transmission operation of the base station and the operation of the terminal accordingly may be performed in the same manner as in Example 1-1 and Example 1-2.
  • Example 1-1 a partial band is transmitted for each LBT sub-band for one RLM-RS resource, but in the above-described case, the RLM-RS resource for each RLM-RS resource.
  • CCA and RLM-RS transmission may be performed in units of the included LBT subbands.
  • a plurality of RLM-RS resources are allocated, but derives one representative channel quality measurement result from RLM-RS resources in one RLM-RS resource set.
  • the LBT operation of the RLM-RS described above is RRM-RS (Radio Resource Management) for mobility support to perform operations similar to radio link monitoring as well as radio link monitoring.
  • RRM-RS Radio Resource Management
  • the same can be applied to RRM measurement using -Reference Signal) or beam tracking using BM-RS (Beam Management-Reference Signal).
  • Embodiment 2 In-Sync/Out-of-Sync determination method according to partial band transmission
  • the RLM-RS transmission method of Examples 1-1 to 1-4 enables partial band transmission of a broadband RLM-RS set for a broadband system.
  • the terminal may receive RLM-RS in LBT sub-band units.
  • the base station may determine whether to transmit the RLM-RS according to the LBT in LBT sub-band (sub-band) units.
  • a method for determining how to determine the channel quality for the entire system frequency band by the UE after determining whether the base station determines whether to transmit the RLM-RS in LBT sub-band units is described.
  • the method for determining channel quality may mean a method of determining In-sync/Out-of-sync for each beam for radio link monitoring.
  • the method for determining channel quality may mean a method of determining In-sync/Out-of-sync for each beam for radio link monitoring.
  • the channel quality for each beam of all configured beams is Out-of-sync, it can be determined as the final Out-of-sync. .
  • the UE determines whether to transmit RLM-RS in units of LBT sub-bands, and one representative LBT sub-band among LBT sub-bands determined to have been transmitted by RLM-RS. ).
  • the UE may calculate a subcarrier signal to noise ratio (SNR) for the selected LBT sub-band and obtain an average SNR or a hypothetical PDCCH BLER (Block Error Rate). Since the average SNR and/or virtual PDCCH BLER represents the channel quality for the entire frequency band, it is possible to determine whether In-sync/Out-of-sync using the average SNR or virtual PDCCH BLER and Qin/Qout values. have. In other words, the base station transmits the broadband RLM-RS through a plurality of LBT subbands, but the terminal can perform final radio link monitoring using one LBT subband. .
  • Example 2-2 a method for determining whether to perform in-sync/out-of-sync will be described so as to obtain channel quality for a wide frequency band as well as possible periodic transmission of RLM-RS.
  • the subcarrier SNR and the average SNR are calculated in LBT sub-band units, and after each LBT sub-band is determined to be LBT, the LBT sub-band in which the RLM-RS is determined is transmitted.
  • average SNR and/or hypothetical PDCCH BLER for RLM-RS resource or RLM-RS resource set can be obtained.
  • in-sync/out-of-sync using average SNR and/or hypothetical PDCCH BLER value and Qin/Qout value for the obtained RLM-RS resource or RLM-RS resource set Can judge.
  • determining whether to transmit the RLM-RS according to the LBT in a low SNR environment may result in a high missing probability or a high false alarm probability. In this case, it may be determined that the RLM-RS has not been transmitted even though the actual SNR is measured higher than Qout according to the decision metric used. Conversely, even though the actual SNR is measured lower than Qout, it may be determined that the RLM-RS is transmitted.
  • the RLM-RS has been transmitted even in at least one LBT subband (sub-band). It can be judged as sync. That is, if it is not determined that the RLM-RS is transmitted in any LBT sub-band, even if the SNRs of all LBT sub-bands are lower than Qout, it may not be determined to be out-of-sync.
  • In-Sync can be defined as a state other than Out-of-Sync.
  • the channel quality for the corresponding RLM-RS resource may be defined as In-Sync.
  • the average SNR and/or hypothetical PDCCH BLER is measured in units of LBT subbands, and In-sync based on the LBT subband with the highest average SNR and/or lowest BLER /Out-of-sync can be determined.
  • the determination it is possible to determine whether the corresponding RLM-RS resource or the corresponding RLM-RS resource set is In-sync/Out-of-sync.
  • 14 to 16 are diagrams for describing an example of an operation implementation of a terminal, a base station, and a network according to embodiments 3 to 4 of the present disclosure.
  • the UE may receive a Discovery Reference Signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window and measure the reception quality of the DRS (S1401). ).
  • the DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal).
  • the DRS may be an SSB or CSI-RS transmitted in a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window.
  • the terminal may receive the SSB outside the DMTC window and/or DTTC window, and measure the reception quality of the SSB (S1403).
  • the terminal may determine whether a radio link failure (RLF) occurs based on the result of measuring DRS in the DMTC window and/or DTTC window and the result of measuring the SSB outside the DMTC window and/or DTTC window (S1405). . That is, the terminal may determine whether In-sync/Out-of-sync is based on the result of measuring the DRS in the DMTC window and/or DTTC window and the result of measuring the SSB outside the DMTC window and/or DTTC window.
  • RLF radio link failure
  • the terminal according to FIG. 14 may be any one of various wireless devices disclosed in FIGS. 21 to 23.
  • the terminal may be the first wireless device 100 of FIG. 21 or the wireless devices 100 and 200 of FIG. 22.
  • the operation of the terminal according to FIG. 14 may be executed or performed by any one of various wireless devices disclosed in FIGS. 21 to 23.
  • the base station may transmit a discovery reference signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window (S1501).
  • the DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal).
  • the DRS may be an SSB or CSI-RS transmitted in a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window.
  • the base station may transmit the SSB outside the DMTC window and/or DTTC window (S1503). Meanwhile, specific operation processes of S1501 to S1503 may be based on Examples 3 to 4.
  • the base station according to FIG. 15 may be any one of various wireless devices disclosed in FIGS. 21 to 23.
  • the base station may be the second wireless device 200 of FIG. 21 or the wireless devices 100 and 200 of FIG. 22.
  • the operation of the base station according to FIG. 15 may be performed or performed by any one of various wireless devices disclosed in FIGS. 21 to 23.
  • the base station may transmit a discovery reference signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window (S1501).
  • DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal).
  • the terminal When the terminal receives the DRS, it can measure the reception quality of the received DRS (S1603). In addition, the base station may transmit the SSB outside the DMTC window and/or DTTC window (S1605). Upon receiving the SSB, the UE can measure the reception quality of the SSB (S1607). The terminal may determine whether radio link failure (RLF) occurs based on the result of measuring DRS in the DMTC window and/or DTTC window and the result of measuring SSB outside the DMTC window and/or DTTC window (S1609).
  • RLF radio link failure
  • the terminal may determine whether In-sync/Out-of-sync is based on the result of measuring the DRS in the DMTC window and/or DTTC window and the result of measuring the SSB outside the DMTC window and/or DTTC window.
  • a method for determining whether a specific RLF is generated may be based on Examples 3 to 4 described later.
  • Example 3 In-sync / out-of-sync instruction / judgment method considering the SSB transmission method
  • CCA Channel Clearance Assessment
  • a scheduler such as an NR system
  • a specific signal until the corresponding channel is determined to be idle. You can either delay the transmission of, or give up and reschedule the transmission of a specific signal.
  • SSB Synchronization Signal Block
  • SSB transmission must be waited for as long as the SSB transmission period until SSB is retransmitted. Can be delayed. This may significantly delay the connection of the terminal to be connected to the system or cause a delay in the measurement of the channel quality of the terminal measuring the channel quality of the corresponding cell, thereby significantly degrading the mobility quality of the terminal.
  • a DTRS (DRS transmission timing configuration) window for ensuring the maximum transmission of a discovery signal (DRS) is provided.
  • the DRS may include SSB and CSI-RS. That is, DRS may be one of SSB and CSI-RS, and among SSB or CSI-RS transmitted, an SSB or CSI-RS transmitted in a DMTC window or DTTC window may be referred to as DRS.
  • RLM-RS radio link monitoring-reference signal
  • RLM-RS means a reference signal for performing RLM, and may be, for example, SSB or CSI-RS.
  • RLM-RS and DRS may be signals of the same type.
  • the SSB or CSI-RS transmitted in the DMTC window or the DTTC window may mean DRS.
  • RLM-RS may mean the entire SSB or CSI-RS transmitted for RLM regardless of whether it is transmitted within the DMTC window or DTTC window or outside the DMTC window or DTTC window.
  • the base station shows the period of the DTTC window. It can be set longer than the transmission period of the SSB. Referring to FIG. 17, the SSB is transmitted at a time when the channel in the DTTC window is idle, and when the SSB transmission time determined based on the SSB transmission period outside the DTTC window is busy, the SSB is not transmitted until the next SSB transmission period without additional transmission. It may not.
  • receiving RLM using only the SSB corresponding to the DRS means that the SSB transmitted outside the DTTC window or the DMTC window is busy when the channel is busy. This is to ensure the maximum periodicity for channel quality measurement by using only the SSB corresponding to the DRS, since the periodicity of reporting on the channel quality cannot be secured when the SSB transmission is abandoned because the system abandons the transmission.
  • the periodicity for channel quality measurement should be secured as much as possible, so that the UE can reduce the burden on detecting whether the DTX for the RLM-RS is DTX. For example, when the UE determines that the channel quality value of the SSB is higher than the set threshold, it is determined that it is In-Sync, so it can be sure that it is not DTX. However, when it is determined that the channel quality value of the SSB is lower than the set threshold, it is necessary to determine whether the channel quality is bad or the SSB is not transmitted because the channel is busy.
  • SSB that is, DRS transmitted in the DTTC window may be used to minimize the effects of the above.
  • RLF radio link failure
  • the terminal can perform detection of channel quality in as many locations as possible. For example, even if a DMTC window and/or DTTC window is set, the terminal may perform RLM using an SSB transmitted outside the DMTC window and/or DTTC window. For example, referring to FIG.
  • the terminal measures the channel quality for the SSB transmitted outside the DMTC window and/or DTTC window, and when the channel quality is higher than a set threshold, the SSB in the DMTC window and/or DTTC window Even if the channel quality is lower than the set threshold, there is a possibility that the channel quality measured in the DMTC window and/or DTTC window is a detection error due to DTX, so that the terminal determines the RLM result as In-Sync and reports it. Can.
  • the terminal when the DMTC window and/or DTTC window for RLM is set, the terminal is an SSB transmitted outside the DMTC window and/or DTTC window, and a DRS transmitted within the DMTC window and/or DTTC window (eg, SSB and/or CSI-RS) channel quality is measured, and when it is determined that at least one channel quality corresponds to In-Sync, the UE may determine the radio link as In-Sync and periodically report it to the upper layer. have. At this time, the reporting period for reporting In-Sync/Out-of-Sync to the upper layer may be the same as the DMTC period for RLM.
  • a DRS transmitted within the DMTC window and/or DTTC window eg, SSB and/or CSI-RS
  • the reporting period is the same as the DMTC period, and the reporting period may not be changed. That is, SSBs transmitted between two DMTC windows and/or DTTC windows and DRSs transmitted in the corresponding DMTC window and/or DTTC window can be assumed as one channel quality report as one set. have.
  • the channel quality of the SSB transmitted between the DMTC window and/or DTTC window and the DRS (eg, SSB) transmitted within the DMTC window and/or DTTC window is measured, and all SSB and DRS If the channel quality does not correspond to In-Sync, the corresponding radio link can be defined as Out-Of-Sync and reported to the upper layer.
  • the reporting period for reporting In-Sync/Out-of-Sync to the upper layer may be the same as the DMTC period for RLM. In other words, even if the channel quality is measured outside the DMTC window and/or DTTC window, the reporting period is the same as the DMTC period, and the reporting period may not be changed. That is, SSBs transmitted between two DMTC windows and/or DTTC windows and DRSs transmitted in the corresponding DMTC window and/or DTTC window can be assumed as one channel quality report as one set. have.
  • In-Sync may mean that it is determined as Out-Of-Sync or DTX.
  • the terminal may determine that it is DTX for all SSBs.
  • the terminal secures the periodicity of reporting on In-Sync/Out-Of-Sync to the upper layer while minimizing the effect on the DTX detection error, RLM operation in a licensed band may be maintained.
  • the SSB transmitted outside the DMTC window and/or the DTTC window may be transmitted by changing transmission power according to the operation of the base station.
  • Q_IN/O_OUT for determining In-Sync/Out-Of-Sync may be separately set after measuring channel quality for SSBs other than DRS.
  • the RLM reporting period to the upper layer can be determined to be the same as the period of the DMTC window and/or DTTC window for RLM, but the RLM result is transmitted to the upper layer for each transmission period of the SSB for quick out-of-sync determination. You can also report.
  • In-Sync/Out-Of-Sync can be determined by reflecting the channel quality measured based on N SSBs before reporting the RLM result to the upper layer in order to minimize the effect of the DTX detection error.
  • the N SSBs may be SSBs transmitted in the DMTC window and/or DTTC window, or SSBs transmitted outside the DMTC window and/or DTTC window.
  • N may be determined as the number of SSBs that can be transmitted within the DTTC window and/or DMTC window period, or may be separately set by the base station.
  • the terminal when setting the DMTC window for RLM, the terminal proposes to use the SSB existing between the DMTC window and the DMTC window to determine In-Sync/Out-Of-Sync. .
  • the UE determines the channel quality of all SSBs as DTX
  • ambiguity may occur in the operation of the UE.
  • the operation in the case where the terminal determines to be DTX may be as follows.
  • the UE determines that the wireless link is Out-Of-Sync without additional judgment. By determining, the operation of all terminals can be the same as the operation of the RLM in a licensed band.
  • the terminal may finally determine as DTX, and maintain the previously reported status in the upper layer to report. For example, if in-sync is reported to the upper layer at the time of the previous report, if the channel quality of all SSBs is DTX, it can be reported as In-sync to the upper layer. Conversely, if out-of-sync is reported to the upper layer at the previous reporting time point, if the channel quality of all SSBs is DTX, it can be reported as out-of-sync to the upper layer.
  • the In-sync/Out-of-Sync report corresponding to the earliest time from the time when it is determined to be DTX can be reported identically.
  • the operation of the upper layer may be the same as the operation of the RLM in the licensed band.
  • the UE may report it to an upper layer, declare an RLF, or move to another frequency band.
  • the DTX may be reported to the upper layer.
  • a separate operation may be defined for DTX in the upper layer as described above.
  • the upper layer may determine the last reported In-Sync/Out-Of-Sync as the current channel quality. That is, if the channel quality report was previously In-Sync, even if DTX is reported, it can be assumed to be In-Sync.
  • the upper layer may maintain a value for a timer or counter and may not perform a separate operation.
  • Embodiment 4 Operation of the terminal when a plurality of SSBs are set in the frequency axis
  • the DRS transmitted in the DMTC window and/or DTTC window, as well as the SSB transmitted outside the DMTC window and/or DTTC window It was proposed to measure channel quality by using and to determine In-Sync/Out-Of-Sync based on this. This is to minimize errors in DTX detection, thereby minimizing possible system effects caused by incorrect judgment of In-Sync/Out-Of-Sync. For example, if there are multiple RS transmission candidate locations for RLM, it may be desirable to use RLM-RS transmitted from the serving cell as much as possible for the operation of the unlicensed band RLM.
  • the NR system supports broadband, and the terminal can operate in a narrower frequency band than the system band if necessary.
  • the base station may transmit a plurality of SSBs in the system band.
  • RLM/RRM can be performed.
  • the SSB used to access the cell may be referred to as a cell-defining SSB.
  • the frequency band for LBT (hereinafter referred to as'LBT subband') is smaller than the entire system frequency band LBT subband (sub-band) Not much can perform the LBT operation. Accordingly, according to the LBT result for each LBT subband, SSBs located at a specific frequency band may be transmitted even if SSBs located at a specific frequency band are not transmitted.
  • the UE knows that all SSBs are transmitted from the same base station and have the same cell ID in an environment in which a plurality of SSBs are set, the UE SSBs in all frequency bands where the SSB is likely to be transmitted for RLM. Channel quality can be measured using.
  • the terminal can determine whether In-Sync/Out-Of-Sync is performed using all possible SSBs.
  • the definition of In-Sync/Out-Of-Sync is one channel among channel qualities for all SSBs used by the UE for channel measurement among SSBs indicated similarly to the method presented in Example 3 If the quality is higher than the threshold, the terminal may determine the radio link as In-Sync.
  • the radio link may be determined as Out-Of-Sync. Meanwhile, the operation mentioned in Example 3 may be performed even when the detection for DTX is performed and it is determined that DTX is performed for all SSBs.
  • the SSB in Example 4 may include not only the SSB transmitted in the DMTC window and/or DTTC window, but also the SSB transmitted outside the DMTC window and/or DTTC window.
  • Example 4 can be performed in combination with the methods mentioned in Example 3.
  • RLM may be performed using a plurality of SSBs in the time axis according to Example 3 and the frequency axis according to Example 4, and In-Sync/Out-Of-Sync may be determined.
  • the communication system 1 applied to the present invention includes a wireless device, a base station and a network.
  • the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), Long Term Evolution (LTE)), and may be referred to as a communication/wireless/5G device.
  • a wireless access technology eg, 5G NR (New RAT), Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an XR (eXtended Reality) device 100c, a hand-held device 100d, and a home appliance 100e. ), Internet of Thing (IoT) device 100f, and AI device/server 400.
  • IoT Internet of Thing
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include a UAV (Unmanned Aerial Vehicle) (eg, a drone).
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices, Head-Mounted Device (HMD), Head-Up Display (HUD) provided in vehicles, televisions, smartphones, It may be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, or the like.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • Household appliances may include a TV, a refrigerator, and a washing machine.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may also be implemented as wireless devices, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also directly communicate (e.g. sidelink communication) without going through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be achieved between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200.
  • the wireless communication/connection is various wireless access such as uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR), and wireless devices/base stations/wireless devices, base stations and base stations can transmit/receive radio signals to each other through wireless communication/connections 150a, 150b, 150c.
  • the wireless communication/connections 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • various configuration information setting processes e.g, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes e.g., resource allocation processes, and the like.
  • 21 illustrates a wireless device that can be applied to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x), wireless device 100x in FIG. ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate the first information/signal, and then transmit the wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive the wireless signal including the second information/signal through the transceiver 106 and store the information obtained from the signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • memory 104 may be used to perform some or all of the processes controlled by processor 102, or instructions to perform the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 can be coupled to the processor 102 and can transmit and/or receive wireless signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and/or receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the following operations are described based on the control operation of the processor 102 from the viewpoint of the processor 102, but may be stored in the memory 104 or the like for software code for performing the operation.
  • the processor 102 controls the transceiver 106 to receive a Discovery Reference Signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window, and measures the reception quality of the DRS.
  • the DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal).
  • the DRS may be an SSB or CSI-RS transmitted in a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window.
  • the processor 102 may control the transceiver 106 to receive the SSB outside the DMTC window and/or the DTTC window, and measure the reception quality of the SSB.
  • the processor 102 may determine whether radio link failure (RLF) occurs based on the result of measuring DRS in the DMTC window and/or DTTC window and the result of measuring SSB outside the DMTC window and/or DTTC window. . That is, the processor 102 may determine whether In-sync/Out-of-sync based on the result of measuring DRS in the DMTC window and/or DTTC window and the result of measuring SSB outside the DMTC window and/or DTTC window. Can.
  • a method of determining whether a specific RLF is generated may be based on the above-described embodiments 3 to 4.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive the wireless signal including the fourth information/signal through the transceiver 206 and store the information obtained from the signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202, and may store various information related to the operation of the processor 202.
  • the memory 204 is an instruction to perform some or all of the processes controlled by the processor 202, or to perform the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 can be coupled to the processor 202 and can transmit and/or receive wireless signals through one or more antennas 208.
  • Transceiver 206 may include a transmitter and/or receiver.
  • Transceiver 206 may be mixed with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the following operations are described based on the control operation of the processor 202 from the viewpoint of the processor 202, but may be stored in the memory 204 in software code or the like for performing the operation.
  • the processor 202 may control the transceiver 206 to transmit a discovery reference signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window.
  • DRS discovery reference signal
  • the DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • the DRS may be an SSB or CSI-RS transmitted in a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window.
  • DMTC Discovery Measuring Timing Configuration
  • DTTC DRS Transmission Timing Configuration
  • the processor 202 may control the transceiver 206 to transmit the SSB outside the DMTC window and/or DTTC window.
  • the above-described operation process of the processor 202 may be based on the third to fourth embodiments.
  • one or more protocol layers may be implemented by one or more processors 102 and 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102 and 202 may include one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the one or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the one or more processors 102, 202 generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methods disclosed herein. , To one or more transceivers 106, 206.
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the fields.
  • signals eg, baseband signals
  • the one or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • the one or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein are either firmware or software set to perform or are stored in one or more processors 102, 202 or stored in one or more memories 104, 204. It can be driven by the above processors (102, 202).
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein may be implemented using firmware or software in the form of code, instructions and/or instructions.
  • the one or more memories 104, 204 may be coupled to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • the one or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof.
  • the one or more memories 104, 204 may be located inside and/or outside of the one or more processors 102, 202. Also, the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as a wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals/channels, and the like referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein from one or more other devices. have.
  • one or more transceivers 106, 206 may be coupled to one or more processors 102, 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 can control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, the one or more processors 102, 202 can control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and one or more transceivers 106, 206 may be described, functions described herein through one or more antennas 108, 208. , It may be set to transmit and receive user data, control information, radio signals/channels, etc.
  • the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106 and 206 process the received wireless signal/channel and the like in the RF band signal to process the received user data, control information, wireless signal/channel, and the like using one or more processors 102 and 202. It can be converted to a baseband signal.
  • the one or more transceivers 106 and 206 may convert user data, control information, and radio signals/channels processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • the one or more transceivers 106, 206 may include (analog) oscillators and/or filters.
  • the wireless device 22 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to usage-example/service (see FIG. 20).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 21, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • communication circuit 112 may include one or more processors 102,202 and/or one or more memories 104,204 of FIG.
  • the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 21.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls the overall operation of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, another communication device) through the wireless/wired interface through the communication unit 110, or externally (eg, through the communication unit 110). Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130. Accordingly, the operation process of the specific control unit 120 according to the present invention and the programs/codes/instructions/information stored in the memory unit 130 include at least one operation and memory 104, 204 of the processors 102, 202 of FIG. ).
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 20, 100A), vehicles (FIGS. 20, 100B-1, 100B-2), XR devices (FIGS. 20, 100C), portable devices (FIGS. 20, 100D), and household appliances. (Fig. 20, 100e), IoT device (Fig.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It may be implemented in the form of an AI server/device (Figs. 20 and 400), a base station (Figs. 20 and 200), and a network node.
  • the wireless device may be mobile or may be used in a fixed place depending on use-example/service.
  • various elements, components, units/parts, and/or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least some of them may be connected wirelessly through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit/unit, and/or module in the wireless devices 100 and 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • control unit 120 may include a set of communication control processor, application processor, electronic control unit (ECU), graphic processing processor, and memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory (non- volatile memory) and/or combinations thereof.
  • Vehicles or autonomous vehicles can be implemented as mobile robots, vehicles, trains, aerial vehicles (AVs), ships, and the like.
  • a vehicle or an autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving It may include a portion (140d).
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110/130/140a-140d correspond to blocks 110/130/140 in FIG. 22, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, a base station (e.g. base station, road side unit, etc.) and a server.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the controller 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, wheels, brakes, and steering devices.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, a tilt sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, and the like.
  • the autonomous driving unit 140d maintains a driving lane, automatically adjusts speed, such as adaptive cruise control, and automatically moves along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a such that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to a driving plan (eg, speed/direction adjustment).
  • a driving plan eg, speed/direction adjustment
  • the communication unit 110 may acquire the latest traffic information data non-periodically from an external server, and may acquire surrounding traffic information data from nearby vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on the information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • FIG. 24 illustrates a signal processing circuit for a transmission signal.
  • the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060.
  • the operations/functions of FIG. 24 may be performed in the processors 102, 202 and/or transceivers 106, 206 of FIG.
  • the hardware elements of FIG. 24 can be implemented in the processors 102, 202 and/or transceivers 106, 206 of FIG. 21.
  • blocks 1010 to 1060 may be implemented in processors 102 and 202 of FIG. 21.
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 21, and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 21.
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 24.
  • the codeword is an encoded bit sequence of an information block.
  • the information block may include a transport block (eg, UL-SCH transport block, DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010.
  • the scramble sequence used for scramble is generated based on the initialization value, and the initialization value may include ID information of the wireless device.
  • the scrambled bit sequence may be modulated by a modulator 1020 into a modulation symbol sequence.
  • the modulation method may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulated symbol sequence may be mapped to one or more transport layers by the layer mapper 1030.
  • the modulation symbols of each transport layer may be mapped to the corresponding antenna port(s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M.
  • N is the number of antenna ports and M is the number of transport layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transformation) on complex modulation symbols. Further, the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to time-frequency resources.
  • the time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbol, DFT-s-OFDMA symbol) in the time domain, and may include a plurality of subcarriers in the frequency domain.
  • the signal generator 1060 generates a radio signal from the mapped modulation symbols, and the generated radio signal can be transmitted to other devices through each antenna. To this end, the signal generator 1060 may include an Inverse Fast Fourier Transform (IFFT) module and a Cyclic Prefix (CP) inserter, a Digital-to-Analog Converter (DAC), a frequency uplink converter, etc. .
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • the signal processing process for the received signal in the wireless device may be configured as the inverse of the signal processing processes 1010 to 1060 of FIG. 19.
  • a wireless device eg, 100 and 200 in FIG. 17
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal recoverer may include a frequency downlink converter (ADC), an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
  • ADC frequency downlink converter
  • ADC analog-to-digital converter
  • CP remover a CP remover
  • FFT Fast Fourier Transform
  • the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process.
  • the codeword can be restored to the original information block through decoding.
  • the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a de-scrambler and a decoder.
  • a specific operation described as being performed by a base station may be performed by an upper node in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station can be performed by a base station or other network nodes other than the base station.
  • the base station may be replaced by terms such as a fixed station, gNode B (gNB), Node B, eNode B (eNB), access point, and the like.
  • a method for transmitting and receiving a reference signal for wireless link monitoring in the unlicensed band as described above and an apparatus therefor have been mainly described as an example applied to the 5th generation NewRAT system, but it is applicable to various wireless communication systems in addition to the 5th generation NewRAT system. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure provides a method for measuring a radio link in an unlicensed band by a terminal. Specifically, the method in the disclosure may include: receiving information concerning a receive window for discovery reference signals (DRSs); receiving at least one DRS from within the receive window; receiving at least one synchronization signal block (SSB) from outside the receive window; and measuring the respective radio link qualities of the at least one DRS and at least one SSB, wherein among the radio link qualities of the at least one DRS and at least one SSB, if one or more radio link qualities are greater than a threshold, the radio link is assessed as in-sync, and if all the radio link qualities of the at least one DRS and at least one SSB are smaller than or equal to the threshold, the radio link is assessed as out-of-sync or the at least one DRS and the at least one SSB are assessed as a discontinuous transmission (DTX).

Description

비면허 대역에서 무선 링크를 측정하는 방법 및 이를 위한 장치Method and apparatus for measuring radio link in unlicensed band
본 개시는 비면허 대역에서 무선 링크 측정하는 방법 및 이를 위한 장치를 위한 것으로서, 더욱 상세하게는, 비면허 대역에서 RLF (Radio Link Failure)를 판단하기 위한 방법 및 이를 위한 장치에 관한 것이다.The present disclosure relates to a method for measuring a radio link in an unlicensed band and an apparatus therefor, and more particularly, to a method and apparatus for determining a radio link failure (RLF) in an unlicensed band.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다. As more and more communication devices require more communication traffic according to the trend of the times, the next generation 5G system, which is an improved wireless broadband communication than the existing LTE system, is required. In the next generation 5G system, called NewRAT, communication scenarios are classified into Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC).
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).Here, eMBB is a next-generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next-generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc. And (eg, V2X, Emergency Service, Remote Control), mMTC is a next-generation mobile communication scenario with low cost, low energy, short packet, and massive connectivity characteristics. (e.g., IoT).
본 개시는 비면허 대역에서 무선 링크 측정하는 방법 및 이를 위한 장치를 제공하고자 한다.The present disclosure is to provide a method and apparatus for measuring a radio link in an unlicensed band.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present disclosure are not limited to the technical problems mentioned above, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the description below. Will be able to.
본 개시의 실시 예에 따른 비면허 대역에서 단말이 무선 링크를 측정하는 방법에 있어서, DRS (Discovery Reference Signal)를 위한 수신 윈도우에 관련된 정보를 수신하고, 상기 수신 윈도우 내에서 적어도 하나의 DRS를 수신하고, 상기 수신 윈도우 밖에서 적어도 하나의 SSB (Synchronization Signal Block)을 수신하고, 상기 적어도 하나의 DRS 및 적어도 하나의 SSB를 각각에 대한 무선 링크 품질들을 측정하는 것을 포함하고, 상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 중, 하나 이상의 무선 링크 품질이 임계값 보다 큰 것을 기반으로, 상기 무선 링크가 In-Sync로 결정되고, 상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 모두가 임계값 이하인 것을 기반으로, 상기 무선 링크가 Out-of-Sync로 결정되거나 상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB가 DTX (Discontinuous Transmission)인 것으로 결정될 수 있다.In a method for a UE to measure a radio link in an unlicensed band according to an embodiment of the present disclosure, information related to a reception window for a discovery reference signal (DRS) is received, and at least one DRS is received within the reception window , Receiving at least one Synchronization Signal Block (SSB) outside the reception window, and measuring radio link qualities for each of the at least one DRS and at least one SSB, wherein the at least one DRS and at least one Of the radio link qualities for the SSB of the one or more, based on the one or more radio link quality is greater than a threshold, the radio link is determined to be In-Sync, the radio link quality for the at least one DRS and at least one SSB Based on all of them being below the threshold, the radio link may be determined to be Out-of-Sync or the at least one DRS and the at least one SSB may be determined to be DTX (Discontinuous Transmission).
이 때, 상기 DRS는, SSB 또는 CSI-RS(Channel State Information - Reference Signal) 일 수 있다.In this case, the DRS may be SSB or CSI-RS (Channel State Information-Reference Signal).
또한, 상기 수신 윈도우에 관련된 정보는, 상기 수신 윈도우의 주기에 관한 정보를 포함하고, 상기 적어도 하나의 SSB는, 상기 수신 윈도우부터 상기 주기를 위한 시간 구간 동안 수신될 수 있다.Further, the information related to the reception window includes information on the period of the reception window, and the at least one SSB may be received from the reception window during a time period for the period.
또한, 상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB 모두가 DTX인 것으로 결정된 것을 기반으로, 이전 보고 내용이 다시 보고 될 수 있다.Further, based on the determination that both the at least one DRS and the at least one SSB are DTX, the previous report content may be reported again.
또한, 상기 적어도 하나의 DRS의 전송 전력과 상기 적어도 하나의 SSB의 전송 전력은 상이할 수 있다.In addition, the transmission power of the at least one DRS and the transmission power of the at least one SSB may be different.
또한, 상기 무선 링크 품질을 상위 계층으로 보고하는 보고 주기는, 상기 수신 윈도우의 주기와 동일할 수 있다.In addition, the reporting period for reporting the radio link quality to the upper layer may be the same as the period of the reception window.
또한, 상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.Further, the terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
본 개시에 따른 비면허 대역에서 무선 링크를 측정하기 위한 단말에 있어서, 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 상기 적어도 하나의 송수신기를 통해, DRS (Discovery Reference Signal)를 위한 수신 윈도우에 관련된 정보를 수신하고, 상기 적어도 하나의 송수신기를 통해, 상기 수신 윈도우 내에서 적어도 하나의 DRS를 수신하고, 상기 적어도 하나의 송수신기를 통해, 상기 수신 윈도우 밖에서 적어도 하나의 SSB (Synchronization Signal Block)을 수신하고, 상기 적어도 하나의 DRS 및 적어도 하나의 SSB를 각각에 대한 무선 링크 품질들을 측정하는 것을 포함하고, 상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 중, 하나 이상의 무선 링크 품질이 임계값 보다 큰 것을 기반으로, 상기 무선 링크가 In-Sync로 결정되고, 상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 모두가 임계값 이하인 것을 기반으로, 상기 무선 링크가 Out-of-Sync로 결정되거나 상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB가 DTX (Discontinuous Transmission)인 것으로 결정될 수 있다.A terminal for measuring a radio link in an unlicensed band according to the present disclosure, comprising: at least one transceiver; At least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation. Through at least one transceiver, receives information related to a reception window for a discovery reference signal (DRS), receives at least one DRS within the reception window through the at least one transceiver, and the at least one transceiver Through, receiving at least one Synchronization Signal Block (SSB) outside the receive window, and measuring radio link qualities for each of the at least one DRS and at least one SSB, wherein the at least one DRS and Of the radio link qualities for at least one SSB, one or more radio link qualities are greater than a threshold, and the radio link is determined to be In-Sync, and the radio for the at least one DRS and at least one SSB On the basis that all of the link qualities are below a threshold, the radio link may be determined to be Out-of-Sync or the at least one DRS and the at least one SSB may be determined to be DTX (Discontinuous Transmission).
이 때, 상기 DRS는, SSB 또는 CSI-RS(Channel State Information - Reference Signal) 일 수 있다.In this case, the DRS may be SSB or CSI-RS (Channel State Information-Reference Signal).
또한, 상기 수신 윈도우에 관련된 정보는, 상기 수신 윈도우의 주기에 관한 정보를 포함하고, 상기 적어도 하나의 SSB는, 상기 수신 윈도우부터 상기 주기를 위한 시간 구간 동안 수신될 수 있다.Further, the information related to the reception window includes information on the period of the reception window, and the at least one SSB may be received from the reception window during a time period for the period.
또한, 상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB 모두가 DTX인 것으로 결정된 것을 기반으로, 이전 보고 내용이 다시 보고 될 수 있다.Further, based on the determination that both the at least one DRS and the at least one SSB are DTX, the previous report content may be reported again.
또한, 상기 적어도 하나의 DRS의 전송 전력과 상기 적어도 하나의 SSB의 전송 전력은 상이할 수 있다.In addition, the transmission power of the at least one DRS and the transmission power of the at least one SSB may be different.
또한, 상기 무선 링크 품질을 상위 계층으로 보고하는 보고 주기는, 상기 수신 윈도우의 주기와 동일할 수 있다.In addition, the reporting period for reporting the radio link quality to the upper layer may be the same as the period of the reception window.
또한, 상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.Further, the terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
본 개시에 따른 비면허 대역에서 무선 링크를 측정하기 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, DRS (Discovery Reference Signal)를 위한 수신 윈도우에 관련된 정보를 수신하고, 상기 수신 윈도우 내에서 적어도 하나의 DRS를 수신하고, 상기 수신 윈도우 밖에서 적어도 하나의 SSB (Synchronization Signal Block)을 수신하고, 상기 적어도 하나의 DRS 및 적어도 하나의 SSB를 각각에 대한 무선 링크 품질들을 측정하는 것을 포함하고, 상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 중, 하나 이상의 무선 링크 품질이 임계값 보다 큰 것을 기반으로, 상기 무선 링크가 In-Sync로 결정되고, 상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 모두가 임계값 이하인 것을 기반으로, 상기 무선 링크가 Out-of-Sync로 결정되거나 상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB가 DTX (Discontinuous Transmission)인 것으로 결정될 수 있다.An apparatus for measuring a radio link in an unlicensed band according to the present disclosure, comprising: at least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation. Receives information related to a receive window for (Discovery Reference Signal), receives at least one DRS within the receive window, receives at least one Synchronization Signal Block (SSB) outside the receive window, and the at least one And measuring radio link qualities for each of the DRS and the at least one SSB, based on one or more of the radio link qualities for the at least one DRS and the at least one SSB, wherein the radio link quality is greater than a threshold value. As a result, the radio link is determined to be In-Sync, and the radio links are determined to be out-of-sync based on the fact that all of the radio link qualities for the at least one DRS and the at least one SSB are below a threshold. It may be determined that the at least one DRS and the at least one SSB are DTX (Discontinuous Transmission).
본 개시에 따르면, 비면허 대역의 RLF (Radio Link Failure)를 판단을 보다 명확히 할 수 있다.According to the present disclosure, determination of radio link failure (RLF) of an unlicensed band may be more clearly determined.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned may be clearly understood by those skilled in the art from the description below. will be.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the physical channels.
도 3 내지 도 5은 NR 시스템에서 사용되는 무선 프레임 및 슬롯의 구조를 설명하기 위한 도면이다.3 to 5 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
도 6은 NR 시스템에서의 아날로그 빔포밍(Analog Beamforming)을 설명하기 위한 도면이다.6 is a diagram for explaining analog beamforming in an NR system.
도 7은 하향링크 전송 과정에서 동기 신호와 시스템 정보에 대한 빔 스위핑(Beam Sweeping) 동작을 나타낸다.7 shows a beam sweeping operation for a synchronization signal and system information in a downlink transmission process.
도 8 내지 도 9는 비면허 대역에서의 하향링크 채널 전송을 설명하기 위한 도면이다.8 to 9 are diagrams for explaining downlink channel transmission in an unlicensed band.
도 10 내지 도 11은 SS/PBCH 블록의 구성(Composition) 및 전송 방법을 설명하기 위한 도면이다.10 to 11 are diagrams for explaining the composition and transmission method of the SS/PBCH block.
도 12는 채널 상태 정보를 보고하는 예시를 설명하기 위한 도면이다.12 is a diagram for explaining an example of reporting channel state information.
도 13 내지 도 16은 본 개시에 따른 기지국 및 단말의 동작 구현 예를 설명하기 위한 도면이다.13 to 16 are diagrams for explaining an example of an operation implementation of a base station and a terminal according to the present disclosure.
도 17은 본 개시에 따른 DMTC (Discovery Measurement Timing Configuration) 윈도우 및 DTTC (DRS Transmission Timing Configuration) 윈도우 설정 예를 나타낸다.17 shows an example of setting a DMTC (Discovery Measurement Timing Configuration) window and a DTTC (DRS Transmission Timing Configuration) window according to the present disclosure.
도 18 내지 도 19는 본 개시에 따른 In-sync/Out-of-sync를 판단하는 구현 예를 설명하기 위한 도면이다.18 to 19 are diagrams for explaining an implementation example of determining In-sync/Out-of-sync according to the present disclosure.
도 20은 본 개시의 실시 예들이 적용되는 통신 시스템의 예시를 나타낸다.20 shows an example of a communication system to which embodiments of the present disclosure are applied.
도 21 내지 도 23은 본 개시의 실시 예들이 적용되는 다양한 무선 기기의 예시들을 나타낸다.21 to 23 show examples of various wireless devices to which embodiments of the present disclosure are applied.
도 24는 본 개시의 실시 예들이 적용되는 신호 처리 회로의 예시를 나타낸다.24 shows an example of a signal processing circuit to which embodiments of the present disclosure are applied.
이하에서 첨부된 도면을 참조하여 설명된 본 개시의 실시예들에 의해 본 개시의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 개시의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.The configuration, operation, and other features of the present disclosure will be readily understood by embodiments of the present disclosure described with reference to the accompanying drawings below. The embodiments described below are examples in which technical features of the present disclosure are applied to a 3GPP system.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 개시의 실시예를 설명하지만, 이는 예시로서 본 개시의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. Although this specification describes an embodiment of the present disclosure using an LTE system, an LTE-A system, and an NR system, this is an example and the embodiment of the present disclosure can be applied to any communication system corresponding to the above definition.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.In addition, in this specification, the name of the base station may be used as a comprehensive term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.The 3GPP-based communication standard includes downlink physical channels corresponding to resource elements carrying information originating from a higher layer and downlink corresponding to resource elements used by the physical layer but not carrying information originating from a higher layer. Physical signals are defined. For example, a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (physical multicast channel, PMCH), a physical control format indicator channel (physical control) The format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, and reference signals and synchronization signals Is defined as downlink physical signals. A reference signal (RS), also referred to as a pilot, refers to a signal of a predetermined special waveform known to each other by the gNB and the UE. For example, cell specific RS (UE), UE- A specific RS (UE-specific RS, UE-RS), positioning RS (positioning RS, PRS) and channel state information RS (channel state information RS, CSI-RS) are defined as downlink reference signals. The 3GPP LTE/LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Defines uplink physical signals. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), a physical random access channel (physical random access channel, PRACH) as an uplink physical channel It is defined, and a demodulation reference signal (DMRS) for uplink control/data signals and a sounding reference signal (SRS) used for uplink channel measurement are defined.
본 개시에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 개시에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.In the present disclosure, PDCCH (Physical Downlink Control CHannel) / PCFICH (Physical Control Format Indicator CHannel) / PHICH ((Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel), respectively, DCI (Downlink Control Information) / CFI ( Control Format Indicator)/downlink ACK/NACK (ACKnowlegement/Negative ACK)/ means a set of time-frequency resources or a set of resource elements carrying downlink data, and PUCCH (Physical Uplink Control CHannel)/PUSCH (Physical) Uplink Shared CHannel)/PRACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI)/uplink data/random access signals, respectively. , PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH or time-frequency resource or resource element (RE) allocated to or belong to PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE or PDCCH, respectively. It is referred to as /PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH resource.In the following, the expression that the user equipment transmits PUCCH/PUSCH/PRACH is uplink control information/uplink data on or through PUSCH/PUCCH/PRACH respectively. /Random access signal is used in the same sense as that.. Also, the expression that the gNB transmits PDCCH/PCFICH/PHICH/PDSCH, respectively, on PDCCH/PCFICH/PHICH/PDSCH. It is used in the same sense as transmitting downlink data/control information through the network.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.Hereinafter, CRS/DMRS/CSI-RS/SRS/UE-RS is assigned or configured (configured) OFDM symbol/subcarrier/RE to CRS/DMRS/CSI-RS/SRS/UE-RS symbol/carrier It is called /subcarrier/RE. For example, an OFDM symbol to which tracking RS (TRS) is assigned or configured is called a TRS symbol, and a subcarrier to which TRS is assigned or configured is called a TRS subcarrier, and a TRS is assigned. Or, the configured RE is called a TRS RE. Also, a subframe configured for TRS transmission is called a TRS subframe. Also, a subframe in which a broadcast signal is transmitted is referred to as a broadcast subframe or a PBCH subframe, and a subframe in which a synchronization signal (eg, PSS and/or SSS) is transmitted is a synchronization signal subframe or a PSS/SSS subframe. It is called. The OFDM symbols/subcarriers/REs to which the PSS/SSS is assigned or configured are called PSS/SSS symbols/subcarriers/RE, respectively.
본 개시에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.In the present disclosure, the CRS port, UE-RS port, CSI-RS port, and TRS port are antenna ports configured to transmit CRS and antenna ports configured to transmit UE-RS, respectively. Refers to an antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS. Antenna ports configured to transmit CRSs may be distinguished from each other by positions of REs occupied by CRSs according to CRS ports, and antenna ports configured to transmit UE-RSs are configured to UEs. Depending on the RS ports, UE-RS may be distinguished by location of REs occupied, and antenna ports configured to transmit CSI-RSs are occupied by CSI-RS according to CSI-RS ports. It can be distinguished from each other by the location of the REs. Therefore, the term CRS/UE-RS/CSI-RS/TRS port is also used as a term for a pattern of REs occupied by CRS/UE-RS/CSI-RS/TRS in a certain resource region.
이제, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.Now, let's look at 5G communication including the NR system.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.The three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Super-reliability and It includes the area of ultra-reliable and low latency communications (URLLC).
일부 사용 예(Use Case)는 최적화를 위해 복수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.Some use cases may require multiple areas for optimization, and other use cases may focus only on one key performance indicator (KPI). 5G supports these various use cases in a flexible and reliable way.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.eMBB goes far beyond basic mobile Internet access, and covers media and entertainment applications in rich interactive work, cloud or augmented reality. Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era. In 5G, voice is expected to be handled as an application program simply using the data connection provided by the communication system. The main causes for increased traffic volume are increased content size and increased number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile internet connections will become more widely used as more devices connect to the internet. Many of these applications require always-on connectivity to push real-time information and notifications to users. Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment. And, cloud storage is a special use case that drives the growth of uplink data rates. 5G is also used for remote work in the cloud, requiring much lower end-to-end delay to maintain a good user experience when a tactile interface is used. Entertainment For example, cloud gaming and video streaming are another key factor in increasing demand for mobile broadband capabilities. Entertainment is essential for smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes. Another use case is augmented reality and information retrieval for entertainment. Here, augmented reality requires a very low delay and an instantaneous amount of data.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.In addition, one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, namely mMTC. It is predicted that by 2020, there are 20 billion potential IoT devices. Industrial IoT is one of the areas where 5G plays a key role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.URLLC includes new services that will transform the industry through ultra-reliable/low-latency links, such as remote control of the main infrastructure and self-driving vehicles. Reliability and level of delay are essential for smart grid control, industrial automation, robotics, drone control and coordination.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 복수의 사용 예들에 대해 보다 구체적으로 살펴본다.Next, a plurality of use cases in a 5G communication system including an NR system will be described in more detail.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means to provide streams rated at hundreds of megabits per second to gigabit per second. This fast speed is required to deliver TV in 4K (6K, 8K and above) resolutions as well as virtual and augmented reality. Virtual Reality (VR) and Augmented Reality (AR) applications include almost immersive sports events. Certain application programs may require special network settings. For VR games, for example, game companies may need to integrate the core server with the network operator's edge network server to minimize latency.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.Automotive is expected to be an important new driver for 5G, along with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. The reason is that future users continue to expect high quality connections regardless of their location and speed. Another example of application in the automotive field is the augmented reality dashboard. It identifies objects in the dark over what the driver sees through the front window and superimposes information that tells the driver about the distance and movement of the object. In the future, wireless modules will enable communication between vehicles, exchange of information between the vehicle and the supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians). The safety system guides alternative courses of action to help the driver drive more safely, reducing the risk of accidents. The next step will be remote control or a self-driven vehicle. This is very reliable and requires very fast communication between different self-driving vehicles and between the vehicle and the infrastructure. In the future, self-driving vehicles will perform all driving activities, and drivers will focus only on traffic beyond which the vehicle itself cannot identify. The technical requirements of self-driving vehicles require ultra-low delays and ultra-high-speed reliability to increase traffic safety to levels beyond human reach.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.Smart cities and smart homes, referred to as smart societies, will be embedded in high-density wireless sensor networks. The distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home. Similar settings can be made for each assumption. Temperature sensors, window and heating controllers, burglar alarms and consumer electronics are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.The consumption and distribution of energy, including heat or gas, is highly decentralized, requiring automated control of a distributed sensor network. The smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include supplier and consumer behavior, so smart grids can improve efficiency, reliability, economics, production sustainability and the distribution of fuels like electricity in an automated way. The smart grid can be viewed as another sensor network with low latency.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.The health sector has a number of applications that can benefit from mobile communications. The communication system can support telemedicine that provides clinical care from a distance. This helps to reduce barriers to distance and can improve access to medical services that are not continuously available in remote rural areas. It is also used to save lives in critical care and emergency situations. A mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with wireless links that can be reconfigured is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operate with cable-like delay, reliability and capacity, and that management be simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using location-based information systems. Logistics and cargo tracking use cases typically require low data rates, but require wide range and reliable location information.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard. The control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted. The user plane means a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.The first layer, the physical layer, provides an information transfer service to an upper layer using a physical channel. The physical layer is connected to the upper medium access control layer through a transmission channel. Data is moved between the medium access control layer and the physical layer through the transmission channel. Data is moved between the physical layer of the transmitting side and the receiving side through a physical channel. The physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated with OFDMA (Orthogonal Frequency Division Multiple Access) in the downlink, and modulated with Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.The medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel. The RLC layer of the second layer supports reliable data transmission. The function of the RLC layer may be implemented as a function block inside the MAC. The packet data convergence protocol (PDCP) layer of the second layer performs a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 and IPv6 in a narrow bandwidth wireless interface.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane. The RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers. The radio bearer means a service provided by the second layer for data transmission between the terminal and the network. To this end, the RRC layer of the terminal and the network exchanges RRC messages with each other. If there is an RRC connection (RRC Connected) between the terminal and the RRC layer of the network, the terminal is in the RRC connected state (Connected Mode), otherwise it is in the RRC idle state (Idle Mode). The NAS (Non-Access Stratum) layer above the RRC layer performs functions such as session management and mobility management.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.The downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) for transmitting system information, a PCH (Paging Channel) for transmitting paging messages, and a downlink shared channel (SCH) for transmitting user traffic or control messages. have. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, an uplink transmission channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. It is located on the top of the transmission channel, and the logical channels mapped to the transmission channels include BCCH (Broadcast Control Channel), PCCH (Paging Control Channel), CCCH (Common Control Channel), MCCH (Multicast Control Channel), and MTCH (Multicast). Traffic Channel).
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using them.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.The terminal performs an initial cell search operation such as synchronizing with the base station when the power is turned on or newly enters the cell (S201). To this end, the terminal can receive a primary synchronization channel (P-SCH) and a secondary synchronization channel (Secondary Synchronization Channel; S-SCH) from the base station to synchronize with the base station and obtain information such as cell ID. have. Thereafter, the terminal may acquire a physical broadcast channel from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).After completing the initial cell search, the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the information carried on the PDCCH. It can be done (S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.On the other hand, if the first access to the base station or there is no radio resource for signal transmission, the UE may perform a random access procedure (RACH) to the base station (steps S203 to S206). To this end, the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S204 and S206). In the case of the contention-based RACH, an additional contention resolution procedure may be performed.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다. The UE that has performed the above-described procedure is a general uplink/downlink signal transmission procedure and then receives PDCCH/PDSCH (S207) and physical uplink shared channel (PUSCH)/physical uplink control channel (Physical Uplink). Control Channel (PUCCH) transmission (S208) may be performed. In particular, the terminal receives downlink control information (DCI) through the PDCCH. Here, the DCI includes control information such as resource allocation information for the terminal, and formats are different depending on the purpose of use.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.Meanwhile, control information that the UE transmits to the base station through the uplink or that the UE receives from the base station includes a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ) And the like. In the case of a 3GPP LTE system, the UE may transmit the control information such as CQI/PMI/RI described above through PUSCH and/or PUCCH.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 복수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 개시에서는 앞으로 NR 시스템으로 칭한다.Meanwhile, the NR system is considering using a high ultra-high frequency band, that is, a millimeter frequency band of 6 GHz or more, to transmit data while maintaining a high transmission rate to a plurality of users using a wide frequency band. 3GPP uses this under the name NR, and in the present disclosure, it will be referred to as an NR system in the future.
도 3은 NR에서 사용되는 무선 프레임의 구조를 예시한다.3 illustrates the structure of a radio frame used in NR.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.In NR, uplink and downlink transmission are composed of frames. The radio frame has a length of 10 ms, and is defined as two 5 ms half-frames (HFs). The half-frame is defined by five 1ms subframes (Subframe, SF). The subframe is divided into one or more slots, and the number of slots in the subframe depends on Subcarrier Spacing (SCS). Each slot includes 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP). Normally, if CP is used, each slot contains 14 symbols. When an extended CP is used, each slot includes 12 symbols. Here, the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다. Table 1 exemplifies that when a CP is normally used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
SCS (15*2^u)SCS (15*2^u) N slot symb N slot symb N frame,u slot N frame, u slot N subframe,u slot N subframe, u slot
15KHz (u=0)15KHz (u=0) 1414 1010 1One
30KHz (u=1)30KHz (u=1) 1414 2020 22
60KHz (u=2)60KHz (u=2) 1414 4040 44
120KHz (u=3)120KHz (u=3) 1414 8080 88
240KHz (u=4)240KHz (u=4) 1414 160160 1616
* N slot symb: 슬롯 내 심볼의 개수* N slot symb : Number of symbols in slot
* N frame,u slot: 프레임 내 슬롯의 개수* N frame,u slot : Number of slots in the frame
* N subframe,u slot: 서브프레임 내 슬롯의 개수* N subframe,u slot : Number of slots in the subframe
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.Table 2 illustrates that when an extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
SCS (15*2^u)SCS (15*2^u) N slot symb N slot symb N frame,u slot N frame, u slot N subframe,u slot N subframe, u slot
60KHz (u=2)60KHz (u=2) 1212 4040 44
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 도 4는 NR 프레임의 슬롯 구조를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 4개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.In the NR system, OFDM(A) numerology (eg, SCS, CP length, etc.) may be set differently among a plurality of cells merged into one UE. Accordingly, a (absolute time) section of a time resource (eg, SF, slot, or TTI) composed of the same number of symbols (for convenience, collectively referred to as TU (Time Unit)) may be set differently between merged cells. 4 illustrates the slot structure of the NR frame. A slot contains multiple symbols in the time domain. For example, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot includes 6 symbols. The carrier includes a plurality of subcarriers in the frequency domain. Resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain. BWP (Bandwidth Part) is defined as a plurality of contiguous (P)RBs in the frequency domain, and may correspond to one pneumonology (eg, SCS, CP length, etc.). The carrier may include up to N (eg, 4) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal. Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
도 5는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.5 illustrates the structure of a self-contained slot. In an NR system, a frame is characterized by a self-contained structure in which a DL control channel, DL or UL data, UL control channel, etc. can all be included in one slot. For example, the first N symbols in the slot are used to transmit the DL control channel (hereinafter, DL control region), and the last M symbols in the slot can be used to transmit the UL control channel (hereinafter, UL control region). N and M are each an integer of 0 or more. The resource region (hereinafter referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission. As an example, the following configuration may be considered. Each section was listed in chronological order.
1. DL only 구성1.DL only configuration
2. UL only 구성2. UL only configuration
3. Mixed UL-DL 구성3. Mixed UL-DL configuration
- DL 영역 + GP(Guard Period) + UL 제어 영역-DL area + GP (Guard Period) + UL control area
- DL 제어 영역 + GP + UL 영역-DL control area + GP + UL area
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역* DL area: (i) DL data area, (ii) DL control area + DL data area
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역 * UL area: (i) UL data area, (ii) UL data area + UL control area
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.PDCCH may be transmitted in the DL control region, and PDSCH may be transmitted in the DL data region. PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region. In the PDCCH, downlink control information (DCI), for example, DL data scheduling information and UL data scheduling information may be transmitted. In the PUCCH, uplink control information (UCI), for example, ACK/NACK (Positive Acknowledgement/Negative Acknowledgement) information for DL data, CSI (Channel State Information) information, and SR (Scheduling Request) may be transmitted. The GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or the process from the reception mode to the transmission mode. In a subframe, some symbols at a time point of switching from DL to UL may be set to GP.
도 6은 하이브리드 빔포밍(hybrid beamforming)을 위한 전송단 및 수신단의 블록도의 일례를 나타낸 도이다.6 is a view showing an example of a block diagram of a transmitting end and a receiving end for hybrid beamforming (hybrid beamforming).
밀리미터 주파수 대역에서 좁은 빔을 형성하기 위한 방법으로, BS나 UE에서 많은 수의 안테나에 적절한 위상차를 이용하여 동일한 신호를 전송함으로써 특정한 방향에서만 에너지가 높아지게 하는 빔포밍 방식이 주로 고려되고 있다. 이와 같은 빔포밍 방식에는 디지털 기저대역(baseband) 신호에 위상차를 만드는 디지털 빔포밍, 변조된 아날로그 신호에 시간 지연(즉, 순환 천이)을 이용하여 위상차를 만드는 아날로그 빔포밍, 디지털 빔포밍과 아날로그 빔포밍을 모두 이용하는 하이브리드 빔포밍 등이 있다. 안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 RF 유닛(혹은 트랜시버 유닛(transceiver unit, TXRU))을 가지면 주파수 자원별로 독립적인 빔포밍이 가능하다. 그러나 100여 개의 안테나 요소 모두에 RF 유닛를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 있다. 즉, 밀리미터 주파수 대역은 급격한 전파 감쇄 특성을 보상하기 위해 많은 수의 안테나가 사용해야 하고, 디지털 빔포밍은 안테나 수에 해당하는 만큼 RF 컴포넌트(예, 디지털 아날로그 컨버터(DAC), 믹서(mixer), 전력 증폭기(power amplifier), 선형 증폭기(linear amplifier) 등)를 필요로 하므로, 밀리미터 주파수 대역에서 디지털 빔포밍을 구현하려면 통신 기기의 가격이 증가하는 문제점이 있다. 그러므로 밀리미터 주파수 대역과 같이 안테나의 수가 많이 필요한 경우에는 아날로그 빔포밍 혹은 하이브리드 빔포밍 방식의 사용이 고려된다. 아날로그 빔포밍 방식은 하나의 TXRU에 복수 개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절한다. 이러한 아날로그 빔포밍 방식은 전체 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming, BF)을 해줄 수 없는 단점이 있다. 하이브리드 BF는 디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 RF 유닛을 갖는 방식이다. 하이브리드 BF의 경우, B개의 RF 유닛과 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.As a method for forming a narrow beam in the millimeter frequency band, a beamforming method in which BS or UE transmits the same signal using an appropriate phase difference to a large number of antennas to increase energy only in a specific direction is mainly considered. Such beamforming methods include digital beamforming, which creates a phase difference on a digital baseband signal, analog beamforming, which creates a phase difference using a time delay (ie, cyclic shift) on a modulated analog signal, digital beamforming, and analog beam. And hybrid beamforming using both forming. If an RF unit (or a transceiver unit (TXRU)) is provided to enable transmission power and phase adjustment for each antenna element, independent beamforming is possible for each frequency resource. However, there is a problem in that it is ineffective in terms of price to install the RF unit on all 100 antenna elements. In other words, the millimeter frequency band must be used by a large number of antennas to compensate for the rapid propagation attenuation characteristics, and digital beamforming corresponds to the number of antennas, so RF components (eg, digital analog converter (DAC), mixer, mixer, power) Since an amplifier (power amplifier, linear amplifier, etc.) is required, there is a problem in that the price of a communication device increases to implement digital beamforming in the millimeter frequency band. Therefore, when a large number of antennas are required, such as a millimeter frequency band, use of an analog beamforming or hybrid beamforming method is considered. The analog beamforming method maps a plurality of antenna elements to one TXRU and adjusts the direction of the beam with an analog phase shifter. This analog beamforming method has a disadvantage in that it can make only one beam direction in the entire band and thus cannot perform frequency selective beamforming (BF). Hybrid BF is a type of digital BF and analog BF, and has a number of B RF units less than Q antenna elements. In the case of the hybrid BF, although there are differences depending on the connection method of the B RF units and the Q antenna elements, the direction of beams that can be simultaneously transmitted is limited to B or less.
도 7은 하향링크 전송 과정에서 동기 신호와 시스템 정보에 대한 빔 스위핑(Beam sweeping) 동작을 도식화 한 것이다. 도 7에서 New RAT 시스템의 시스템 정보가 방송(Broadcasting)되는 물리적 자원 또는 물리 채널을 xPBCH (physical broadcast channel)로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔(Analog beam)들이 동시에 전송될 수 있으며, 아날로그 빔(Analog beam) 별 채널을 측정하기 위해, 도 9에 나타나 있는 바와 같이, 특정 안테나 패널에 대응되는 단일 아날로그 빔(Analog beam)을 위해 전송되는 참조 신호(Reference signal; RS)인 Beam RS (BRS)를 도입하는 방안이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔(Analog beam)에 대응될 수 있다. 이때, BRS와는 달리, 동기 신호(Synchronization signal) 또는 xPBCH는 임의의 UE가 잘 수신할 수 있도록 아날로그 빔 그룹(Analog beam group)에 포함된 모든 아날로그 빔(Analog beam)을 위해 전송될 수 있다.7 is a diagram illustrating a beam sweeping operation for a synchronization signal and system information in a downlink transmission process. In FIG. 7, a physical resource or physical channel in which system information of the New RAT system is broadcast is referred to as a physical broadcast channel (xPBCH). At this time, analog beams belonging to different antenna panels within one symbol may be simultaneously transmitted, and in order to measure a channel for each analog beam, as shown in FIG. 9, to a specific antenna panel A method for introducing a beam RS (BRS) that is a reference signal (RS) transmitted for a corresponding single analog beam is being discussed. The BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam. At this time, unlike the BRS, the synchronization signal (Synchronization signal) or xPBCH can be transmitted for all analog beams (Analog beam) included in the analog beam group (Analog beam group) so that any UE can receive well.
Tx-Rx 빔 연관(beam association)Tx-Rx beam association
네트워크는 해당 셀에서 사용하거나 eNB가 사용할 수 있는 빔(beam)들에 대한 측정(measurement)을 UE가 수행하도록 하기 위해 각 빔(beam)이 적용된 측정 참조 신호 (measurement reference signal; MRS), 빔 참조 신호 (beam reference signal; BRS) 및 빔포밍된 CSI-RS (channel state information reference signal) 등과 같은 알려진 신호(known signal) 등을 설정(Configuration)할 수 있다. 이하에서는 설명의 편의성의 위해 알려진 신호들을 BRS로 통칭한다. The network uses a measurement reference signal (MRS) applied to each beam in order to allow the UE to perform measurement on beams used in the corresponding cell or used by the eNB (measurement reference signal; MRS), beam reference A known signal, such as a beam reference signal (BRS) and a beamformed channel state information reference signal (CSI-RS), may be configured. Hereinafter, signals known for convenience of description are collectively referred to as BRS.
기지국은 BRS를 비주기적/주기적으로 전송할 수 있으며, UE는 BRS의 측정(measurement)을 통해 UE에게 적합한 eNB Tx 빔을 선별할 수 있다. UE의 Rx 빔까지 고려할 경우, UE는 서로 다른 Rx 빔을 사용하여 측정(measurement)을 수행하고 eNB의 Tx 빔과 UE의 Rx 빔을 고려한 빔 조합들을 선택할 수 있다. 이와 같은 과정을 수행한 이후 eNB와 UE의 Tx-Rx 빔 연관(beam association)은 명시적(explicit) 혹은 묵시적(implicit)으로 결정될 수 있다. The base station may transmit the BRS aperiodically/periodically, and the UE may select the eNB Tx beam suitable for the UE through the measurement of the BRS. When considering the Rx beam of the UE, the UE may perform measurement using different Rx beams and select beam combinations considering the Tx beam of the eNB and the Rx beam of the UE. After performing this process, the Tx-Rx beam association between the eNB and the UE may be determined as explicit or implicit.
1) 빔 연관 기반 네트워크 결정(Network decision based beam association)1) Network decision based beam association
네트워크는 UE에게 측정(measurement) 결과 상위 X개의 Tx-Rx 빔 조합을 보고하도록 지시할 수 있다. 이 때, 보고하는 빔 조합의 수는 사전에 정의되거나, 상위 계층 시그널링 등을 통하여 네트워크에 의해 전달되거나, 측정(measurement) 결과가 특정 임계치(threshold)를 초과하는 빔 조합을 모두 보고할 수 있다. The network may instruct the UE to report the top X Tx-Rx beam combinations as a result of measurement. At this time, the number of beam combinations to be reported may be defined in advance, delivered by a network through higher layer signaling, or the like, and all beam combinations in which a measurement result exceeds a certain threshold may be reported.
이 때, 특정 임계치는 사전에 정의되거나 네크워크에 의해 시그널링될 수 있으며, UE 별로 디코딩 성능이 다를 경우, UE의 디코딩 성능을 고려한 카테고리(category)가 정의되고, 카테고리(category) 별 임계치가 각각 정의될 수도 있다.At this time, a specific threshold may be defined in advance or signaled by a network. When decoding performance is different for each UE, a category considering the decoding performance of the UE is defined, and thresholds for each category are defined. It might be.
또한, 빔 조합에 대한 보고는 주기적 또는 비주기적으로 네트워크의 지시에 의해 수행될 수 있다. 아니면, 이전 보고 결과와 현재 측정(measurement) 결과가 일정 레벨 이상 변하면, 이벤트 트리거링 리포팅(event-triggered reporting)을 수행할 수도 있다. 이 때, 일정 레벨은 사전에 정의되거나 네트워크가 상위 계층을 통해 시그널링할 수 있다. In addition, the report on the beam combination may be performed periodically or aperiodically by instructions of the network. Alternatively, if the previous report result and the current measurement result change more than a certain level, event triggering reporting may be performed. At this time, a predetermined level may be predefined or the network may signal through the upper layer.
한편, UE는 상술한 방식에 의해 결정된 하나 이상의 빔 연관(beam association)을 보고할 수 있다. 복수의 빔 인덱스(beam index)가 보고될 경우, 빔 별 우선 순위(priority)가 부여될 수도 있다. 예를 들어, 1 st preferred beam, 2 nd preferred beam,쪋 과 같은 형태로 해석되도록 보고될 수 있다. Meanwhile, the UE may report one or more beam associations determined by the above-described scheme. When a plurality of beam indexes are reported, priority may be given for each beam. For example, it can be reported to be interpreted in the form of 1 st preferred beam, 2 nd preferred beam, 쪋.
2) 빔 연관 기반 UE 결정 (UE decision based beam association)2) UE decision based beam association (UE decision based beam association)
빔 연관 기반 UE 결정에서 UE의 선호 빔 보고(preferred beam reporting)는 위에서 제안한 명시적 빔 연관(explicit beam association)과 같은 방식으로 수행될 수 있다.In the beam association based UE determination, the preferred beam reporting of the UE may be performed in the same manner as the explicit beam association proposed above.
QCL(Quasi-Co Location)QCL(Quasi-Co Location)
UE는 상기 UE 및 주어진 셀에 대해 의도된(intended) DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, 최대 M개의 TCI-상태 설정들을 포함하는 리스트를 수신할 있다. 여기서, M은 UE 능력(capability)에 의존한다.The UE may receive a list including up to M TCI-state settings, in order to decode the PDSCH according to the detected PDCCH with DCI intended for the UE and a given cell. Here, M depends on UE capability.
각각의 TCI-State는 하나 또는 두 개의 DL RS와 PDSCH의 DM-RS 포트 간에 QCL 관계를 설정하기 위한 파라미터를 포함한다. QCL 관계는 첫 번째 DL RS에 대한 RRC 파라미터 qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)를 가지고 설정된다. Each TCI-State includes parameters for establishing a QCL relationship between one or two DL RSs and DM-RS ports of the PDSCH. The QCL relationship is established with the RRC parameter qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS (if set).
각 DL RS에 대응하는 QCL 타입은 QCL-Info 내 파라미터 'qcl-Type'에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:The QCL type corresponding to each DL RS is given by the parameter'qcl-Type' in QCL-Info, and can take one of the following values:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}-'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}-'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}-'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}-'QCL-TypeD': {Spatial Rx parameter}
예를 들어, 타겟 안테나 포트가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS 안테나 포트들은 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 UE는 QCL-TypeA TRS에서 측정된 도플러, 딜레이 값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.For example, when the target antenna port is a specific NZP CSI-RS, the corresponding NZP CSI-RS antenna ports may be indicated/set as a specific TRS in the QCL-Type A perspective and a specific SSB and QCL in the QCL-Type D perspective. have. UE receiving this indication/setting receives the corresponding NZP CSI-RS using the Doppler and delay values measured in QCL-TypeA TRS, and applies the received beam used for QCL-TypeD SSB reception to the corresponding NZP CSI-RS reception can do.
LTE에서의 RRM (Radio Resource Management) 측정 (Measurement)RRM (Radio Resource Management) measurement in LTE (Measurement)
LTE 시스템에서는 전력 제어(Power control), 스케줄링(Scheduling), 셀 탐색(Cell search), 셀 재선택(Cell reselection), 핸드오버(Handover), 무선 링크 또는 연결 모니터링(Radio link or Connection monitoring), 연결 획득/재획득 (Connection establish/re-establish)등을 포함하는 RRM 동작을 지원한다. 이 때, 서빙 셀(Serving Cell)은 UE에게 RRM 동작을 수행하기 위한 측정 값인 RRM 측정(measurement) 정보를 요청할 수 있다. 특히, LTE 시스템에서는 UE가 각 셀(Cell)에 대한 셀 탐색(Cell search) 정보, RSRP (reference signal received power), RSRQ (reference signal received quality) 등의 정보를 측정하여 보고할 수 있다. 구체적으로, LTE 시스템에서는 UE가 서빙 셀로부터 RRM 측정을 위한 상위 계층 신호로 'measConfig'를 수신한다. 그러면, UE는 상기 'measConfig'의 정보에 따라 RSRP 또는 RSRQ를 측정한다. 여기서 LTE 시스템의 TS 36.214 문서에 따른 RSRP, RSRQ 및 RSSI의 정의는 아래와 같다.In LTE system, power control, scheduling, cell search, cell reselection, handover, radio link or connection monitoring, connection It supports RRM operations including connection establish/re-establish. At this time, the serving cell (Serving Cell) may request the UE RRM measurement (measurement) information that is a measurement value for performing the RRM operation. In particular, in the LTE system, the UE may measure and report information such as cell search information for each cell, reference signal received power (RSRP), and reference signal received quality (RSRQ). Specifically, in the LTE system, the UE receives'measConfig' as a higher layer signal for RRM measurement from the serving cell. Then, the UE measures RSRP or RSRQ according to the information of the'measConfig'. Here, the definition of RSRP, RSRQ and RSSI according to TS 36.214 document of the LTE system is as follows.
- RSRP: RSRP는 측정 주파수 대역폭 내에서 전송되는, 셀 특정 참조 신호들(Cell specific reference signal; CRS)의 자원 요소 (Resource Element; RE)의 전력 기여도([W])에 대한 선형 평균으로 정의된다. 또한, RSRP 결정을 위해 TS 36.211에 따른 CRS R0가 사용된다. 경우에 따라, 신뢰성을 높이기 위하여, CRS R1이 추가로 이용될 수도 있다. RSRP를 위한 기준 점은 UE의 안테나 커넥터가 되어야 하며, 수신 다이버시티가 사용되는 경우, 보고되는 RSRP값은 개별 다이버시티들 중 어느 하나의 RSRP보다 낮아서는 안된다. - RSRP: RSRP, the cell specific reference signal transmitted in the measurement bandwidth is defined as the linear average of the power contribution ([W]) of;; (RE Resource Element) resource elements of (Cell specific reference signal CRS) . In addition, CRS R0 according to TS 36.211 is used for RSRP determination. In some cases, CRS R1 may be additionally used to increase reliability. The reference point for RSRP should be the antenna connector of the UE, and when receive diversity is used, the reported RSRP value should not be lower than any one of the individual diversity RSRPs.
- RSRQ: RSRQ는 N*RSRP/(E-UTRA 반송파의 RSSI)로 정의된다. 이 때, N은 E-UTRA 반송파 RSSI 측정 대역폭의 RB 수이다. 이 때, 'N*RSRP'의 측정과, 'E-UTRA 반송파의 RSSI'의 측정은 동일한 자원 블록 집합(RB set)을 통해 수행된다.-RSRQ: RSRQ is defined as N*RSRP/(RSSI of E-UTRA carrier). At this time, N is the RB number of the E-UTRA carrier RSSI measurement bandwidth. At this time, the measurement of'N*RSRP' and the measurement of'RSS of E-UTRA carrier' are performed through the same resource block set (RB set).
E-UTRA 반송파 RSSI는 서빙 셀과 넌 서빙 셀(non-serving cell)의 동일 채널, 인접 채널 간섭, 열 잡음 등을 포함하는 모든 소스로부터 얻어지는 N개의 자원 블록 상에서, 안테나 포트 0을 위한 참조 심볼들을 포함하는 OFDM 심볼에서만 측정된 총 수신 전력의 선형 평균값으로 획득되어진다.The E-UTRA carrier RSSI provides reference symbols for antenna port 0 on N resource blocks obtained from all sources including the same channel of a serving cell and a non-serving cell, adjacent channel interference, and thermal noise. It is obtained as a linear average value of the total received power measured only in the OFDM symbol.
만약, 상위 계층 시그널링이 RSRP 측정 수행을 위한 특정 서브 프레임을 지시한다면, RSSI는 지시된 모든 OFDM 심볼들 상에서 측정된다. 이 때에도, RSRQ를 위한 기준 점은 UE의 안테나 커넥터가 되어야 하며, 수신 다이버시티가 사용되는 경우, 보고되는 RSRQ값은 개별 다이버시티들 중 어느 하나의 RSRQ보다 낮아서는 안 된다.If the higher layer signaling indicates a specific subframe for performing RSRP measurement, RSSI is measured on all indicated OFDM symbols. At this time, the reference point for the RSRQ should be the antenna connector of the UE, and when receive diversity is used, the reported RSRQ value should not be lower than any one of the individual diversity RSRQs.
- RSSI: 수신기 펄스 정형 필터(Receiver Pulse Shaping Filter)에 의해 정의되는 대역폭 내에서 생성되는 잡음 및 열잡음을 포함하는 광대역 수신 전력(received wide band power)을 의미한다. 이 때에도, RSSI를 위한 기준 점은 UE의 안테나 커넥터가 되어야 하며, 수신 다이버시티가 사용되는 경우, 보고되는 RSSI값은 개별 다이버시티들 중 어느 하나의 RSSI보다 낮아서는 안 된다.RSSI: means wideband received power including noise and thermal noise generated within a bandwidth defined by a receiver pulse shaping filter. Again, the reference point for the RSSI should be the antenna connector of the UE, and when receive diversity is used, the reported RSSI value should not be lower than any one of the individual diversity RSSIs.
상술한 정의에 따라, 상기 LTE 시스템에서 동작하는 UE는 Intra-frequency measurement인 경우에는 SIB3 (system information block type 3)에서 전송되는 Allowed measurement bandwidth 관련 IE (information element)를 통해 6, 15, 25, 50, 75, 100RB (resource block) 중 하나에 대응되는 대역폭에서 RSRP를 측정하도록 허용 받는다. 또한, Inter-frequency measurement인 경우에는 SIB5에서 전송되는 Allowed measurement bandwidth을 통해 6, 15, 25, 50, 75, 100RB (resource block) 중 하나에 대응되는 대역폭에서 RSRP를 측정하도록 허용 받는다. 만약, IE가 없을 경우, 기본적(Default)으로 전체 하향링크 시스템의 주파수 대역에서 RSRP를 측정할 수 있다. 이때, UE가 Allowed measurement bandwidth를 수신하는 경우, UE는 해당 값을 최대 측정 대역폭(maximum measurement bandwidth)으로 생각하고 해당 값 이내에서 자유롭게 RSRP의 값을 측정할 수 있다.According to the above definition, the UE operating in the LTE system is 6, 15, 25, 50 through an allowable measurement bandwidth-related IE (information element) transmitted in system information block type 3 (SIB3) in case of intra-frequency measurement. , 75, 100 RB (resource block) is allowed to measure the RSRP in the bandwidth corresponding to one. In addition, in the case of inter-frequency measurement, it is allowed to measure RSRP in a bandwidth corresponding to one of 6, 15, 25, 50, 75, and 100 RB (resource block) through the allowed measurement bandwidth transmitted in SIB5. If there is no IE, RSRP can be measured in the frequency band of the entire downlink system by default. At this time, when the UE receives the Allowed measurement bandwidth, the UE can think of the value as the maximum measurement bandwidth (maximum measurement bandwidth) and freely measure the value of RSRP within the value.
다만, 서빙 셀(Serving Cell)이 WB-RSRQ로 정의되는 IE을 전송하고, Allowed measurement bandwidth을 50RB 이상으로 설정하면, UE는 전체 Allowed measurement bandwidth에 대한 RSRP 값을 계산하여야 한다. 한편, RSSI의 경우에는, RSSI 대역폭의 정의에 따라 UE의 수신기가 갖는 주파수 대역에서 RSSI를 측정한다.However, if the serving cell transmits the IE defined as WB-RSRQ, and if the Allowed measurement bandwidth is set to 50 RB or more, the UE must calculate the RSRP value for the entire allowed measurement bandwidth. On the other hand, in the case of RSSI, RSSI is measured in the frequency band of the receiver of the UE according to the definition of the RSSI bandwidth.
NR 통신 시스템은, 데이터 레이트, 용량(capacity), 지연(latency), 에너지 소비 및 비용 면에서, 기존 4세대(4G) 시스템보다 상당히 나은 성능을 지원할 것이 요구된다. 따라서, NR 시스템은 대역폭, 스펙트럴, 에너지, 시그널링 효율, 및 비트당 비용(cost)의 영역에서 상당한 진보를 이룰 필요가 있다NR communication systems are required to support significantly better performance than existing 4th generation (4G) systems in terms of data rate, capacity, latency, energy consumption and cost. Thus, NR systems need to make significant advances in the areas of bandwidth, spectral, energy, signaling efficiency, and cost per bit.
도 8은 본 개시에 적용 가능한 비면허 대역을 지원하는 무선 통신 시스템의 예시를 나타낸다. 8 shows an example of a wireless communication system supporting unlicensed bands applicable to the present disclosure.
이하 설명에 있어, 면허 대역(이하, L-band)에서 동작하는 셀을 L-cell로 정의하고, L-cell의 캐리어를 (DL/UL) LCC라고 정의한다. 또한, 비면허 대역 (이하, U-band)에서 동작하는 셀을 U-cell로 정의하고, U-cell의 캐리어를 (DL/UL) UCC라고 정의한다. 셀의 캐리어/캐리어-주파수는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, CC)는 셀로 통칭한다.In the following description, a cell operating in a license band (hereinafter, L-band) is defined as an L-cell, and a carrier of the L-cell is defined as (DL/UL) LCC. In addition, a cell operating in an unlicensed band (hereinafter, U-band) is defined as a U-cell, and a carrier of the U-cell is defined as (DL/UL) UCC. The carrier/carrier-frequency of the cell may mean the operating frequency (eg, center frequency) of the cell. The cell/carrier (eg, CC) is collectively referred to as a cell.
도 8(a)와 같이 단말과 기지국이 반송파 결합된 LCC 및 UCC를 통해 신호를 송수신하는 경우, LCC는 PCC (Primary CC)로 설정되고 UCC는 SCC (Secondary CC)로 설정될 수 있다. 도 8(b)와 같이, 단말과 기지국은 하나의 UCC 또는 반송파 결합된 복수의 UCC를 통해 신호를 송수신할 수 있다. 즉, 단말과 기지국은 LCC 없이 UCC(s)만을 통해 신호를 송수신할 수 있다.When the terminal and the base station transmit and receive signals through carrier-coupled LCC and UCC as shown in FIG. 8(a), LCC may be set to PCC (Primary CC) and UCC to SCC (Secondary CC). 8(b), the terminal and the base station may transmit and receive signals through a single UCC or a plurality of carrier-coupled UCCs. That is, the terminal and the base station can transmit and receive signals through only UCC(s) without LCC.
이하, 본 개시에서 상술하는 비면허 대역에서의 신호 송수신 동작은 (별도의 언급이 없으면) 상술한 모든 배치 시나리오에 기초하여 수행될 수 있다.Hereinafter, the signal transmission/reception operation in the unlicensed band described in the present disclosure may be performed based on all the above-described deployment scenarios (unless otherwise stated).
한편, 비면허 대역에서의 동작을 위해 도 3의 NR 프레임 구조가 사용될 수 있다. 비면허 대역을 위한 프레임 구조 내 상향링크/하향링크 신호 전송을 위해 점유되는 OFDM 심볼들의 구성은 기지국에 의해 설정될 수 있다. 여기서, OFDM 심볼은 SC-FDM(A) 심볼로 대체될 수 있다.Meanwhile, the NR frame structure of FIG. 3 may be used for operation in an unlicensed band. The configuration of OFDM symbols occupied for uplink/downlink signal transmission in a frame structure for an unlicensed band may be set by a base station. Here, the OFDM symbol may be replaced with an SC-FDM(A) symbol.
비면허 대역을 통한 하향링크 신호 전송을 위해, 기지국은 시그널링을 통해 서브프레임 #n에서 사용되는 OFDM 심볼들의 구성을 단말에게 알려줄 수 있다. 여기서, 서브프레임은 슬롯 또는 TU(Time Unit)로 대체될 수 있다.For downlink signal transmission through the unlicensed band, the base station may inform the UE of the configuration of OFDM symbols used in subframe #n through signaling. Here, the subframe may be replaced with a slot or a time unit (TU).
구체적으로, 비면허 대역을 지원하는 LTE 시스템의 경우, 단말은 서브프레임 #n-1 또는 서브프레임 #n에서 기지국으로부터 수신된 DCI 내 특정 필드(예, Subframe configuration for LAA 필드 등)를 통해 서브프레임 #n 내 점유된 OFDM 심볼의 구성을 가정 (또는 식별)할 수 있다.Specifically, in the case of an LTE system supporting an unlicensed band, the UE subframe #n-1 or subframe #n through a specific field in the DCI received from the base station (eg, Subframe configuration for LAA field, etc.) It is possible to assume (or identify) the configuration of the OFDM symbols occupied in n.
표 3은 LTE 시스템에서 Subframe configuration for LAA 필드가 현재 서브프레임 및/또는 다음 서브프레임(current and/or next subframe) 내 하향링크 물리 채널 및/또는 물리 신호의 전송을 위해 사용되는 OFDM 심볼들의 구성을 나타내는 방법을 예시한다. Table 3 shows the configuration of OFDM symbols in which the subframe configuration for LAA field in the LTE system is used for transmission of a downlink physical channel and/or physical signal in a current subframe and/or a next subframe. Illustrate the method shown.
Value of 'Value of ' SubframeSubframe configuration for configuration for LAALAA ' field in current subframe'field in current subframe Configuration of occupied OFDM symbolsConfiguration of occupied OFDM symbols (current subframe, next subframe)(current subframe, next subframe)
00000000 (-,14)(-,14)
00010001 (-,12)(-,12)
00100010 (-,11)(-,11)
00110011 (-,10)(-,10)
01000100 (-,9)(-,9)
01010101 (-,6)(-,6)
01100110 (-,3)(-,3)
01110111 (14,*)(14,*)
10001000 (12,-)(12,-)
10011001 (11,-)(11,-)
10101010 (10,-)(10,-)
10111011 (9,-)(9,-)
11001100 (6,-)(6,-)
11011101 (3,-)(3,-)
11101110 reservedreserved
11111111 reservedreserved
NOTE:- (-, Y) means UE may assume the first Y symbols are occupied in next subframe and other symbols in the next subframe are not occupied.- (X, -) means UE may assume the first X symbols are occupied in current subframe and other symbols in the current subframe are not occupied.- (X, *) means UE may assume the first X symbols are occupied in current subframe, and at least the first OFDM symbol of the next subframe is not occupied.NOTE:- (-, Y) means UE may assume the first Y symbols are occupied in next subframe and other symbols in the next subframe are not occupied.- (X, -) means UE may assume the first X symbols are occupied in current subframe and other symbols in the current subframe are not occupied.- (X, *) means UE may assume the first X symbols are occupied in current subframe, and at least the first OFDM symbol of the next subframe is not occupied.
비면허 대역을 통한 상향링크 신호 전송을 위해, 기지국은 시그널링을 통해 상향링크 전송 구간에 대한 정보를 단말에게 알려줄 수 있다.In order to transmit an uplink signal through an unlicensed band, the base station may inform the UE of information on the uplink transmission interval through signaling.
구체적으로, 비면허 대역을 지원하는 LTE 시스템의 경우, 단말은 검출된 DCI 내 'UL duration and offset' 필드를 통해 서브프레임 #n에 대한 'UL duration' 및 'UL offset' 정보를 획득할 수 있다.Specifically, in the case of an LTE system supporting an unlicensed band, the UE may acquire'UL duration' and'UL offset' information for subframe #n through the'UL duration and offset' field in the detected DCI.
표 4는 LTE 시스템에서 UL duration and offset 필드가 UL offset 및 UL duration 구성을 나타내는 방법을 예시한다. Table 4 illustrates a method in which the UL duration and offset field indicates the UL offset and UL duration configuration in the LTE system.
Value of 'UL duration and offset' fieldValue of'UL duration and offset' field UL offset, l (in subframes) UL offset, l (in subframes) UL duration, d (in subframes) UL duration, d (in subframes)
0000000000 Not configuredNot configured Not configuredNot configured
0000100001 1One 1One
0001000010 1One 22
0001100011 1One 33
0010000100 1One 44
0010100101 1One 55
0011000110 1One 66
0011100111 22 1One
0100001000 22 22
0100101001 22 33
0101001010 22 44
0101101011 22 55
0110001100 22 66
0110101101 33 1One
0111001110 33 22
0111101111 33 33
1000010000 33 44
1000110001 33 55
1001010010 33 66
1001110011 44 1One
1010010100 44 22
1010110101 44 33
1011010110 44 44
1011110111 44 55
1100011000 44 66
1100111001 66 1One
1101011010 66 22
1101111011 66 33
1110011100 66 44
1110111101 66 55
1111011110 66 66
1111111111 reservedreserved reservedreserved
일 예로, UL duration and offset 필드가 서브프레임 #n에 대해 UL offset l 및 UL duration d를 설정(또는 지시)하는 경우, 단말은 서브프레임 #n+l+i (i=0,1,...,d-1) 내에서 하향링크 물리 채널 및/또는 물리 신호를 수신할 필요가 없다.As an example, when the UL duration and offset field sets (or indicates) UL offset l and UL duration d for subframe #n, the UE subframe #n+l+i (i=0,1,.. It is not necessary to receive downlink physical channels and/or physical signals within .,d-1).
기지국은 비면허 대역에서의 하향링크 신호 전송을 위해 다음 중 하나의 비면허 대역 접속 절차(예, Channel Access Procedure, CAP)를 수행할 수 있다.The base station may perform one of the following unlicensed band access procedures (eg, Channel Access Procedure, CAP) for downlink signal transmission in the unlicensed band.
(1) 제1 하향링크 CAP 방법(1) First downlink CAP method
도 9는 기지국의 비면허 대역을 통한 하향링크 신호 전송을 위한 CAP 동작 흐름도이다.9 is a flowchart of a CAP operation for transmitting a downlink signal through an unlicensed band of a base station.
기지국은 비면허 대역을 통한 하향링크 신호 전송(예, PDSCH/PDCCH/EPDCCH를 포함한 신호 전송)을 위해 채널 접속 과정(CAP)을 개시할 수 있다(S910). 기지국은 스텝 1에 따라 경쟁 윈도우(CW) 내에서 백오프 카운터 N을 임의로 선택할 수 있다. 이때, N 값은 초기 값 N init으로 설정된다(S920). N init 은 0 내지 CW p 사이의 값 중 랜덤 값으로 선택된다. 이어서, 스텝 4에 따라 백오프 카운터 값(N)이 0이라면(S930; Y), 기지국은 CAP 과정을 종료한다(S932). 이어, 기지국은 PDSCH/PDCCH/EPDCCH를 포함하는 Tx 버스트 전송을 수행할 수 있다(S934). 반면, 백오프 카운터 값이 0 이 아니라면(S930; N), 기지국은 스텝 2에 따라 백오프 카운터 값을 1만큼 줄인다(S940). 이어, 기지국은 U-cell(s)의 채널이 유휴 상태인지 여부를 확인하고(S950), 채널이 유휴 상태이면(S950; Y) 백오프 카운터 값이 0 인지 확인한다(S930). 반대로, S950 단계에서 채널이 유휴 상태가 아니면 즉, 채널이 비지 상태이면(S950; N), 기지국은 스텝 5에 따라 슬롯 시간(예, 9usec)보다 긴 지연 기간(defer duration T d; 25usec 이상) 동안 해당 채널이 유휴 상태인지 여부를 확인한다(S960). 지연 기간에 채널이 유휴 상태이면(S970; Y), 기지국은 다시 CAP 과정을 재개할 수 있다. 여기서, 지연 기간은 16usec 구간 및 바로 뒤따르는 m p 개의 연속하는 슬롯 시간(예, 9usec)으로 구성될 수 있다. 반면, 지연 기간 동안 채널이 비지 상태이면(S970; N), 기지국은 S960 단계를 재수행하여 새로운 지연 기간 동안 U-cell(s)의 채널이 유휴 상태인지 여부를 다시 확인한다.The base station may initiate a channel access process (CAP) for downlink signal transmission over an unlicensed band (eg, signal transmission including PDSCH/PDCCH/EPDCCH) (S910). The base station may arbitrarily select the backoff counter N within the contention window CW according to step 1. At this time, the N value is set to the initial value N init (S920). N init is selected as a random value between 0 and CW p . Subsequently, if the backoff counter value N is 0 according to step 4 (S930; Y), the base station ends the CAP process (S932). Subsequently, the base station may perform Tx burst transmission including PDSCH/PDCCH/EPDCCH (S934). On the other hand, if the backoff counter value is not 0 (S930; N), the base station decreases the backoff counter value by 1 according to step 2 (S940). Subsequently, the base station checks whether the channel of the U-cell(s) is idle (S950), and if the channel is idle (S950; Y), checks whether the backoff counter value is 0 (S930). On the contrary, if the channel is not idle in step S950, that is, if the channel is busy (S950; N), the base station according to step 5 has a longer delay time than the slot time (eg, 9usec) (defer duration T d ; 25usec or more) While, it is checked whether the corresponding channel is in an idle state (S960). If the channel is idle in the delay period (S970; Y), the base station can resume the CAP process again. Here, the delay period may be composed of 16usec intervals and m p consecutive slot times immediately following (eg, 9usec). On the other hand, if the channel is busy during the delay period (S970; N), the base station again performs step S960 to check again whether the channel of the U-cell(s) is idle during the new delay period.
표 5는 채널 접속 우선 순위 클래스에 따라 CAP에 적용되는 m p, 최소 CW, 최대 CW, 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.Table 5 exemplifies that m p , minimum CW, maximum CW, maximum channel occupancy time (MCOT), and allowed CW sizes applied to the CAP vary according to the channel access priority class. .
Channel Access Priority Class (p)Channel Access Priority Class (p) m p m p CW min,p CW min,p CW max,p CW max,p T ultcot,p T ultcot,p Allowed CW p sizesAllowed CW p sizes
1One 1One 33 77 2 ms2 ms {3,7}{3,7}
22 1One 77 1515 3 ms3 ms {7,15}{7,15}
33 33 1515 6363 8 or 10 ms8 or 10 ms {15,31,63}{15,31,63}
44 77 1515 10231023 8 or 10 ms8 or 10 ms {15,31,63,127,255,511,1023}{15,31,63,127,255,511,1023}
제1 하향링크 CAP에 적용되는 경쟁 윈도우 크기는 다양한 방법에 기초하여 결정될 수 있다. 일 예로, 경쟁 윈도우 크기는 일정 시간 구간(예, 참조 TU) 내 PDSCH 전송(들)에 대응하는 HARQ-ACK 값들이 NACK으로 결정되는 확률에 기초하여 조정될 수 있다. 기지국이 반송파 상에서 채널 접속 우선순위 클래스 p와 관련된 PDSCH를 포함한 하향링크 신호 전송을 수행하는 경우, 참조 서브프레임 k (또는 참조 슬롯 k) 내 PDSCH 전송(들)에 대응하는 HARQ-ACK 값들이 NACK으로 결정되는 확률이 적어도 Z = 80% 인 경우, 기지국은 각 우선순위 클래스에 대해서 설정된 CW 값들을 각각 허용된 다음 윗순위로 증가시킨다. 또는, 기지국은 각 우선순위 클래스에 대하여 설정된 CW 값들을 초기 값으로 유지한다. 참조 서브프레임 (또는 참조 슬롯)은 적어도 일부의 HARQ-ACK 피드백이 이용 가능한 해당 반송파 상의 가장 최근 신호 전송이 수행된 시작 서브프레임 (또는 시작 슬롯)으로 정의될 수 있다.The contention window size applied to the first downlink CAP may be determined based on various methods. For example, the contention window size may be adjusted based on a probability that HARQ-ACK values corresponding to PDSCH transmission(s) in a certain time period (eg, a reference TU) are determined to be NACK. When the base station performs downlink signal transmission including the PDSCH associated with the channel access priority class p on the carrier, HARQ-ACK values corresponding to PDSCH transmission(s) in the reference subframe k (or reference slot k) are NACK. When the probability to be determined is at least Z = 80%, the base station increases the CW values set for each priority class to the next higher priority. Alternatively, the base station maintains the CW values set for each priority class as initial values. The reference subframe (or reference slot) may be defined as a start subframe (or start slot) in which at least some HARQ-ACK feedback is available on which a most recent signal transmission on a corresponding carrier is performed.
(2) 제2 하향링크 CAP 방법(2) 2nd downlink CAP method
기지국은 후술하는 제2 하향링크 CAP 방법에 기초하여 비면허 대역을 통한 하향링크 신호 전송(예, 발견 신호 전송(discovery signal transmission)을 포함하고 PDSCH를 포함하지 않는 신호 전송)을 수행할 수 있다.The base station may perform a downlink signal transmission through an unlicensed band (eg, a signal transmission including discovery signal transmission and no PDSCH) based on the second downlink CAP method described later.
기지국의 신호 전송 구간의 길이가 1ms 이하인 경우, 기지국은 적어도 센싱 구간 T drs =25 us 동안 해당 채널이 아이들로 센싱된 이후 바로(immediately after) 비면허 대역을 통해 하향링크 신호(예, 발견 신호 전송을 포함하고 PDSCH를 포함하지 않는 신호)를 전송할 수 있다. 여기서, T drs는 하나의 슬롯 구간 T sl = 9us 바로 다음에 이어지는 구간 T f (=16us)로 구성된다.When the length of the signal transmission section of the base station is 1 ms or less, the base station transmits a downlink signal (eg, discovery signal transmission) through an unlicensed band immediately after the corresponding channel is sensed as idle for at least sensing period T drs =25 us. And PDSCH). Here, T drs is composed of one slot section T sl = 9us, followed by section T f (=16us).
(3) 제3 하향링크 CAP 방법(3) 3rd downlink CAP method
기지국은 비면허 대역 내 다중 반송파들을 통한 하향링크 신호 전송을 위해 다음과 같은 CAP를 수행할 수 있다.The base station may perform the following CAP for downlink signal transmission through multiple carriers in an unlicensed band.
1) Type A: 기지국은 각 반송파 별로 정의되는 카운터 N (CAP에서 고려되는 카운터 N)에 기초하여 다중 반송파들에 대해 CAP를 수행하고, 이에 기초하여 하향링크 신호 전송을 수행한다.1) Type A: The base station performs CAP on multiple carriers based on counter N (counter N considered in CAP) defined for each carrier, and performs downlink signal transmission based on this.
- Type A1: 각 반송파 별 카운터 N은 서로 독립적으로 결정되고, 각 반송파를 통한 하향링크 신호 전송은 각 반송파 별 카운터 N에 기초하여 수행된다.-Type A1: Counter N for each carrier is determined independently of each other, and downlink signal transmission through each carrier is performed based on the counter N for each carrier.
- Type A2: 각 반송파 별 카운터 N은 경쟁 윈도우 크기가 가장 큰 반송파를 위한 N 값으로 결정되고, 반송파를 통한 하향링크 신호 전송은 각 반송파 별 카운터 N에 기초하여 수행된다.-Type A2: Counter N for each carrier is determined as an N value for the carrier having the largest contention window size, and downlink signal transmission through the carrier is performed based on the counter N for each carrier.
2) Type B: 기지국은 복수의 반송파들 중 특정 반송파에 대해서만 카운터 N에 기반한 CAP를 수행하고, 특정 반송파 상에서의 신호 전송에 앞서 나머지 반송파에 대한 채널 아이들 여부를 판단하여 하향링크 신호 전송을 수행한다.2) Type B: The base station performs a CAP based on the counter N only for a specific carrier among a plurality of carriers, and performs downlink signal transmission by determining whether or not to channel idle for the remaining carriers before signal transmission on the specific carrier .
- Type B1: 복수의 반송파들에 대해 단일 경쟁 윈도우 크기가 정의되고, 기지국은 특정 반송파에 대한 카운터 N에 기반한 CAP 수행 시 단일 경쟁 윈도우 크기를 활용한다.-Type B1: A single contention window size is defined for a plurality of carriers, and the base station utilizes a single contention window size when performing CAP based on Counter N for a specific carrier.
- Type B2: 반송파 별로 경쟁 윈도우 크기가 정의되고, 특정 반송파를 위한 N init 값을 결정 시 경쟁 윈도우 크기들 중 가장 큰 경쟁 윈도우 크기를 활용한다.-Type B2: The contention window size is defined for each carrier, and when determining the N init value for a specific carrier, the largest contention window size among the contention window sizes is used.
도 10은 SSB 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.10 illustrates the SSB structure. The UE may perform cell search, system information acquisition, beam alignment for initial access, DL measurement, and the like based on the SSB. SSB is mixed with SS/PBCH (Synchronization Signal/Physical Broadcast channel) block.
도 10을 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.Referring to Figure 10, SSB is composed of PSS, SSS and PBCH. SSB is composed of four consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol. PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and PBCH is composed of 3 OFDM symbols and 576 subcarriers. Polar coding and quadrature phase shift keying (QPSK) are applied to the PBCH. The PBCH is composed of a data RE and a DMRS (Demodulation Reference Signal) RE for each OFDM symbol. There are three DMRS REs for each RB, and three data REs exist between the DMRS REs.
셀 탐색은 단말이 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.Cell search refers to a process in which a terminal acquires time/frequency synchronization of a cell and detects a cell ID (eg, physical layer cell ID, PCID) of the cell. PSS is used to detect a cell ID within a cell ID group, and SSS is used to detect a cell ID group. PBCH is used for SSB (time) index detection and half-frame detection.
단말의 셀 탐색 과정은 하기 표 6과 같이 정리될 수 있다.The cell search process of the terminal may be summarized as in Table 6 below.
Type of SignalsType of Signals OperationsOperations
1 st step1 st step PSSPSS * SS/PBCH block (SSB) symbol timing acquisition* Cell ID detection within a cell ID group(3 hypothesis)* SS/PBCH block (SSB) symbol timing acquisition* Cell ID detection within a cell ID group (3 hypothesis)
2 nd Step2 nd Step SSSSSS * Cell ID group detection (336 hypothesis)* Cell ID group detection (336 hypothesis)
3 rd Step3 rd Step PBCH DMRSPBCH DMRS * SSB index and Half frame (HF) index(Slot and frame boundary detection)* SSB index and Half frame (HF) index (Slot and frame boundary detection)
4 th Step4 th Step PBCHPBCH * Time information (80 ms, System Frame Number (SFN), SSB index, HF)* Remaining Minimum System Information (RMSI) Control resource set (CORESET)/Search space configuration* Time information (80 ms, System Frame Number (SFN), SSB index, HF) * Remaining Minimum System Information (RMSI) Control resource set (CORESET)/Search space configuration
5 th Step5 th Step PDCCH and PDSCHPDCCH and PDSCH * Cell access information* RACH configuration* Cell access information* RACH configuration
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다336 cell ID groups exist, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs. Information about the cell ID group to which the cell ID of the cell belongs is provided/obtained through the SSS of the cell, and information about the cell ID among the 336 cells in the cell ID is provided/obtained through the PSS
도 11은 SSB의 멀티-빔 전송을 예시한다.11 illustrates multi-beam transmission of SSB.
빔 스위핑은 TRP(Transmission Reception Point)(예, 기지국/셀)가 무선 신호의 빔 (방향)을 시간에 따라 다르게 하는 것을 의미한다 (이하에서, 빔과 빔 방향은 혼용될 수 있다). 도 8을 참조하면, SSB는 빔 스위핑을 이용하여 주기적으로 전송될 수 있다. 이 경우, SSB 인덱스는 SSB 빔과 묵시적(implicitly)으로 링크된다. SSB 빔은 SSB (인덱스) 단위로 변경되거나, SSB (인덱스) 그룹 단위로 변경될 수 있다. 후자의 경우, SSB 빔은 SSB (인덱스) 그룹 내에서 동일하게 유지된다. 즉, SSB의 전송 빔 반향이 복수의 연속된 SSB에서 반복된다. SSB 버스트 세트 내에서 SSB의 최대 전송 횟수 L은 캐리어가 속하는 주파수 대역에 따라 4, 8 또는 64의 값을 가진다. 따라서, SSB 버스트 세트 내에서 SSB 빔의 최대 개수도 캐리어의 주파수 대역에 따라 다음과 같이 주어질 수 있다.Beam sweeping means that a transmission reception point (TRP) (eg, a base station/cell) changes a beam (direction) of a radio signal according to time (hereinafter, the beam and beam direction may be mixed). Referring to FIG. 8, the SSB may be periodically transmitted using beam sweeping. In this case, the SSB index is implicitly linked with the SSB beam. The SSB beam may be changed in SSB (index) units, or may be changed in SSB (index) group units. In the latter case, the SSB beam remains the same within the SSB (index) group. That is, the transmission beam reflection of the SSB is repeated in a plurality of consecutive SSBs. The maximum number of transmissions L of the SSB in the SSB burst set has a value of 4, 8 or 64 depending on the frequency band to which the carrier belongs. Therefore, the maximum number of SSB beams in the SSB burst set can also be given as follows according to the frequency band of the carrier.
- For frequency range up to 3 GHz, Max number of beams = 4-For frequency range up to 3 GHz, Max number of beams = 4
- For frequency range from 3GHz to 6 GHz, Max number of beams = 8-For frequency range from 3GHz to 6 GHz, Max number of beams = 8
- For frequency range from 6 GHz to 52.6 GHz, Max number of beams = 64-For frequency range from 6 GHz to 52.6 GHz, Max number of beams = 64
다만, 멀티-빔 전송이 적용되지 않는 경우, SSB 빔의 개수는 1개이다.However, when multi-beam transmission is not applied, the number of SSB beams is one.
단말이 기지국에 초기 접속을 시도하는 경우, 단말은 SSB에 기반하여 기지국과 빔을 정렬할 수 있다. 예를 들어, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블을 기지국에게 전송할 수 있다. SSB는 초기 접속 이후에도 기지국과 단말간에 빔을 정렬하는데 사용될 수 있다.When the terminal attempts an initial access to the base station, the terminal may align the beam with the base station based on the SSB. For example, the terminal performs SSB detection and then identifies the best SSB. Thereafter, the UE may transmit the RACH preamble to the base station using the PRACH resource linked/corresponding to the index (ie, beam) of the best SSB. SSB can be used to align the beam between the base station and the terminal even after the initial connection.
CSI 피드백(Feedback)CSI Feedback
3GPP LTE(-A) 시스템에서는, 사용자 기기(UE)가 채널상태정보(CSI)를 기지국(BS)으로 보고하도록 정의되었다. 채널상태정보(CSI)라 함은 UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다. 예를 들어, 랭크 지시자(rank indicator, RI), 프리코딩행렬 지시자(precoding matrix indicator, PMI), 채널품질지시자(channel quality indicator, CQI) 등이 이에 해당할 수 있다. 여기서, RI는 채널의 랭크(rank) 정보를 나타내며, 이는 UE가 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. 이 값은 채널의 롱 텀 페이딩(fading)에 의해 종속되어 결정되므로, PMI, CQI보다 보통 더 긴 주기를 가지고 UE에서 BS로 피드백된다. PMI는 채널 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 UE가 선호하는 프리코딩 인덱스를 나타낸다. CQI는 채널의 세기를 나타내는 값으로 일반적으로 BS가 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.In the 3GPP LTE (-A) system, the user equipment (UE) is defined to report the channel state information (CSI) to the base station (BS). The channel state information (CSI) refers to information that can indicate the quality of a radio channel (or link) formed between a UE and an antenna port. For example, a rank indicator (RI), a precoding matrix indicator (PMI), and a channel quality indicator (CQI) may correspond to this. Here, RI represents the rank information of the channel, which means the number of streams that the UE receives through the same time-frequency resource. Since this value is determined by being dependent on the long term fading of the channel, it is fed back from the UE to the BS with a period that is usually longer than the PMI and CQI. PMI is a value reflecting channel space characteristics and indicates a precoding index preferred by the UE based on a metric such as SINR. CQI is a value indicating the strength of a channel, and generally means a received SINR obtained when a BS uses PMI.
3GPP LTE(-A) 시스템에서 기지국은 복수개의 CSI 프로세스를 UE에게 설정해 주고, 각 프로세스에 대한 CSI를 보고 받을 수 있다. 여기서 CSI 프로세스는 기지국으로부터의 신호 품질 측정을 위한 CSI-RS와 간섭 측정을 위한 CSI-interference measurement (CSI-IM) 자원으로 구성된다.In the 3GPP LTE (-A) system, the base station sets a plurality of CSI processes to the UE, and can report and receive CSI for each process. Here, the CSI process consists of CSI-RS for measuring signal quality from a base station and CSI-interference measurement (CSI-IM) resource for interference measurement.
CSI 관련 동작CSI-related behavior
NR(New Radio) 시스템에서, CSI-RS(channel state information-reference signal)은 시간 및/또는 주파수 트래킹(time/frequency tracking), CSI 계산(computation), RSRP(reference signal received power) 계산(computation) 및 이동성(mobility)를 위해 사용된다. 여기서, CSI 계산은 CSI 획득(acquisition)과 관련되며, RSRP 계산은 빔 관리(beam management, BM)와 관련된다.In the New Radio (NR) system, the channel state information-reference signal (CSI-RS) is time and/or frequency tracking (time/frequency tracking), CSI calculation (computation), RSRP (reference signal received power) calculation (computation) And for mobility. Here, CSI calculation is related to CSI acquisition, and RSRP calculation is related to beam management (BM).
도 12는 CSI 관련 과정의 일례를 나타낸 흐름도이다.12 is a flowchart illustrating an example of a CSI-related process.
- 상기와 같은 CSI-RS의 용도 중 하나를 수행하기 위해, UE은 CSI와 관련된 설정(configuration) 정보를 RRC 시그널링을 통해 BS로부터 수신한다(S1201).-To perform one of the uses of the CSI-RS, the UE receives configuration information related to CSI from the BS through RRC signaling (S1201).
상기 CSI와 관련된 설정 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, CSI-RS 자원(resource) 관련 정보 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다. The CSI-related configuration information includes CSI-IM (interference management) resource related information, CSI measurement configuration related information, CSI resource configuration related information, and CSI-RS resource related information. Or, it may include at least one of CSI report configuration (report configuration) related information.
i) CSI-IM 자원 관련 정보는 CSI-IM 자원 정보(resource information), CSI-IM 자원 세트 정보(resource set information) 등을 포함할 수 있다. CSI-IM 자원 세트는 CSI-IM 자원 세트 ID에 의해 식별되며, 하나의 자원 세트는 적어도 하나의 CSI-IM 자원를 포함한다. 각각의 CSI-IM 자원은 CSI-IM 자원 ID에 의해 식별된다.i) CSI-IM resource-related information may include CSI-IM resource information, CSI-IM resource set information, and the like. The CSI-IM resource set is identified by the CSI-IM resource set ID, and one resource set includes at least one CSI-IM resource. Each CSI-IM resource is identified by a CSI-IM resource ID.
ii) CSI 자원 설정 관련 정보는 CSI-ResourceConfig IE로 표현될 수 있다. CSI 자원 설정 관련 정보는 NZP(non zero power) CSI-RS 자원 세트, CSI-IM 자원 세트 또는 CSI-SSB 자원 세트 중 적어도 하나를 포함하는 그룹을 정의한다. 즉, 상기 CSI 자원 설정 관련 정보는 CSI-RS 자원 세트 리스트를 포함하며, 상기 CSI-RS 자원 세트 리스트는 NZP CSI-RS 자원 세트 리스트, CSI-IM 자원 세트 리스트 또는 CSI-SSB 자원 세트 리스트 중 적어도 하나를 포함할 수 있다. CSI-RS 자원 세트는 CSI-RS 자원 세트 ID에 의해 식별되고, 하나의 자원 세트는 적어도 하나의 CSI-RS 자원을 포함한다. 각각의 CSI-RS 자원은 CSI-RS 자원 ID에 의해 식별된다.ii) CSI resource configuration related information may be expressed by CSI-ResourceConfig IE. The CSI resource configuration related information defines a group including at least one of a non-zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set. That is, the CSI resource setting related information includes a CSI-RS resource set list, and the CSI-RS resource set list includes at least one of a NZP CSI-RS resource set list, a CSI-IM resource set list, or a CSI-SSB resource set list. It can contain one. The CSI-RS resource set is identified by the CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource. Each CSI-RS resource is identified by a CSI-RS resource ID.
NZP CSI-RS 자원 세트 별로 CSI-RS의 용도를 나타내는 RRC 파라미터들(예, BM 관련 'repetition' 파라미터, 트랙킹 관련 'trs-Info' 파라미터)이 설정될 수 있다.RRC parameters (eg, BM-related'repetition' parameter, tracking-related'trs-Info' parameter) indicating the use of CSI-RS for each NZP CSI-RS resource set may be set.
iii) CSI 보고 설정(report configuration) 관련 정보는 시간 도메인 행동(time domain behavior)을 나타내는 보고 설정 타입(reportConfigType) 파라미터 및 보고하기 위한 CSI 관련 양(quantity)를 나타내는 보고량(reportQuantity) 파라미터를 포함한다. 상기 시간 도메인 행동(time domain behavior)은 주기적, 비주기적 또는 준-지속적(semi-persistent)일 수 있다.iii) CSI report configuration related information includes a report configuration type parameter indicating time domain behavior and a reportQuantity parameter indicating CSI related quantity for reporting. . The time domain behavior may be periodic, aperiodic or semi-persistent.
- UE는 상기 CSI와 관련된 설정 정보에 기초하여 CSI를 측정(measurement)한다(S1203). 상기 CSI 측정은 (1) UE의 CSI-RS 수신 과정(S1205)과, (2) 수신된 CSI-RS를 통해 CSI를 계산(computation)하는 과정(S1207)을 포함할 수 있다. CSI-RS는 RRC 파라미터 CSI-RS-ResourceMapping에 의해 시간(time) 및 주파수(frequency) 도메인에서 CSI-RS 자원의 RE(resource element) 매핑이 설정된다.-The UE measures the CSI based on the configuration information related to the CSI (S1203). The CSI measurement may include (1) a CSI-RS reception process of the UE (S1205) and (2) a process of calculating CSI through the received CSI-RS (S1207). In CSI-RS, resource element (RE) mapping of CSI-RS resources in a time and frequency domain is set by the RRC parameter CSI-RS-ResourceMapping.
- UE는 상기 측정된 CSI를 BS으로 보고(report)한다(S1209).-The UE reports the measured CSI to the BS (S1209).
빔 실패 복구(beam failure recovery, BFR) 과정Beam failure recovery (BFR) process
빔포밍된 시스템에서, RLF(Radio Link Failure)는 UE의 회전(rotation), 이동(movement) 또는 빔포밍 블로키지(blockage)로 인해 자주 발생할 수 있다. 따라서, 잦은 RLF가 발생하는 것을 방지하기 위해 BFR이 NR에서 지원된다. BFR은 무선 링크 실패 복구 과정과 유사하고, UE가 새로운 후보 빔(들)을 아는 경우에 지원될 수 있다. In a beamformed system, radio link failure (RLF) may occur frequently due to UE rotation, movement, or beamforming blockage. Therefore, BFR is supported in the NR to prevent frequent RLF from occurring. BFR is similar to the radio link failure recovery process, and can be supported when the UE knows the new candidate beam(s).
빔 실패 검출을 위해, BS는 UE에게 빔 실패 검출 참조 신호들을 설정하고, 상기 UE는 상기 UE의 물리 계층으로부터의 빔 실패 지시(indication)들의 횟수가 BS의 RRC 시그널링에 의해 설정된 기간(period) 내에 RRC 시그널링에 의해 설정된 임계치(threshold)에 이르면(reach), 빔 실패를 선언(declare)한다. For beam failure detection, the BS sets beam failure detection reference signals to the UE, and the UE has the number of beam failure indications from the physical layer of the UE within a period set by the RRC signaling of the BS. When the threshold set by RRC signaling is reached, a beam failure is declared.
빔 실패가 검출된 후, 상기 UE는 PCell 상의 임의 접속 과정을 개시(initiate)함으로써 빔 실패 복구를 트리거하고; 적절한(suitable) 빔을 선택하여 빔 실패 복구를 수행한다(BS가 어떤(certain) 빔들에 대해 전용 임의 접속 자원들을 제공한 경우, 이들이 상기 UE에 의해 우선화된다). 상기 임의 접속 절차의 완료(completion) 시, 빔 실패 복구가 완료된 것으로 간주된다.After beam failure is detected, the UE triggers beam failure recovery by initiating a random access process on the PCell; Beam failure recovery is performed by selecting a suitable beam (if the BS provides dedicated random access resources for certain beams, they are prioritized by the UE). Upon completion of the random access procedure, beam failure recovery is considered complete.
NR 시스템에서는 무선 링크 모니터링(radio link monitoring)을 위한 참조 신호(reference signal)를 의미하는 RLM-RS(Radio Link Monitoring-Reference Signal)로 주기적인 전송 특성을 갖는 SS/PBCH 블록 및 CSI-RS를 사용할 수 있다. 특히, 다중 빔을 사용하는 경우, BFD(beam failure detection)는 서빙 빔에 대한 채널 품질에 기반해서 판단되지만, 무선 링크 모니터링(radio link monitoring)은 서빙 빔에 대한 채널 품질뿐만 아니라 기지국이 해당 단말에게 잠재적으로 사용할 가능성이 있는 모든 빔에 대한 채널 품질에 기반해서 In-Sync/Out-of-Sync 여부를 판단할 수 있다. 또한, 이를 위해 복수의 SS/PBCH 블록들 또는 복수의 CSI-RS 자원들을 RLM을 위한 RLM-RS 자원들로 설정할 수 있다. In the NR system, a radio link monitoring-reference signal (RLM-RS), which is a reference signal for radio link monitoring, can use SS/PBCH block and CSI-RS with periodic transmission characteristics. Can. In particular, in the case of using multiple beams, beam failure detection (BFD) is determined based on channel quality for the serving beam, but radio link monitoring not only provides channel quality for the serving beam, but also the base station to the corresponding UE. It is possible to determine whether In-Sync/Out-of-Sync is based on channel quality for all potential beams. Further, for this purpose, a plurality of SS/PBCH blocks or a plurality of CSI-RS resources may be set as RLM-RS resources for RLM.
여기에서, SS/PBCH 블록은 셀 획득(cell acquisition), 시간 및 주파수 추적(time & frequency tracking), 이동성(mobility) 지원을 위한 RRM 관리(measurement)등과 같은 다양한 목적으로 사용할 수 있다. 또한, 호 설정을 관장하는 주 서빙 셀(primary serving cell)에서는 항상 SS/PBCH 블록이 전송되기 때문에, 별도의 추가적인 자원 할당 없이 무선 링크 모니터링(radio link monitoring)을 위해 사용할 수 있다. Here, the SS/PBCH block can be used for various purposes such as cell acquisition, time & frequency tracking, and RRM measurement for mobility support. In addition, since the SS/PBCH block is always transmitted in the primary serving cell that controls call setup, it can be used for radio link monitoring without additional resource allocation.
다만, SS/PBCH 블록은 광대역 시스템에서도 협대역으로 전송되므로, 광대역 채널의 특성을 완전히 반영할 수 없을 뿐만 아니라, 다수개의 OFDM 심볼로 구성되기 때문에 매우 많은 빔으로 구성되는 시스템에서는 SS/PBCH 블록의 전송이 큰 오버헤드로 작용할 수 있다. 반면, CSI-RS는 자원의 설정에 따라서는 광대역 전송이 가능할 뿐만 아니라 하나의 OFDM 심볼로 전송할 수 있다. 따라서, 시스템의 구성에 따라서는, 빔 관리(beam management) 및 무선 링크 모니터링(radio link monitoring)을 위해서는 CSI-RS를 사용하는 것이 유리할 수도 있다. 본 개시에서는 이와 같이 광대역으로 전송되는 CSI-RS에 기반한 무선 링크 모니터링(radio link monitoring)에 대해서 설명한다. 다만, 설명의 편의상, 본 개시에서는 상기와 같은 SS/PBCH 블록 및 CSI-RS를 통칭하는 용어로서, RLM-RS라는 용어를 사용하여 본 개시의 실시 예들을 설명하도록 한다.However, since the SS/PBCH block is transmitted in a narrow band even in a wideband system, the characteristics of the wideband channel cannot be fully reflected, and because it is composed of multiple OFDM symbols, in a system composed of very many beams, the SS/PBCH block Transmission can act as a large overhead. On the other hand, CSI-RS is not only capable of broadband transmission depending on resource configuration, but also can be transmitted as one OFDM symbol. Therefore, depending on the configuration of the system, it may be advantageous to use CSI-RS for beam management and radio link monitoring. In the present disclosure, radio link monitoring based on CSI-RS transmitted in such a wideband will be described. However, for convenience of description, in the present disclosure, the terms SS/PBCH block and CSI-RS are collectively referred to as embodiments of the present disclosure using the term RLM-RS.
NR 시스템에서 광대역 RLM-RS를 이용하여 무선 링크 모니터링(radio link monitoring; RLM)을 수행할 수 있다. 또한, 광대역 RLM-RS를 이용하여 RLM을 수행하는 동작은 비면허 대역(unlicensed band)에서도 수행될 수 있다. 하지만, 하나의 사업자가 운용하는 비면허 대역(unlicensed band)에서 NR 시스템을 운용하는 NR-U의 경우, 면허 대역(license band)과 달리 와이파이와 같은 다른 시스템, 다른 사업자들이 운용하는 LAA(Licensed-Assisted Access) 시스템 및/또는 NR-U 시스템과 동일 대역에서 동시에 운용될 수 있다. In an NR system, radio link monitoring (RLM) may be performed using a wideband RLM-RS. In addition, the operation of performing RLM using a wideband RLM-RS may be performed in an unlicensed band. However, in the case of NR-U operating an NR system in an unlicensed band operated by one operator, unlike licensed bands, other systems such as Wi-Fi and licensed-assisted LAA operated by other operators Access) and/or the NR-U system may be operated simultaneously in the same band.
이를 위해서 비면허 대역(unlicensed band)에서 운용되는 시스템은 다른 시스템들과의 공존을 위해 전송을 수행하기 전에 다른 시스템에 의해 채널이 점유되어 사용되는지 여부를 판단하는 CCA(Channel Clearance Assessment) 동작을 수행한다. 즉, CCA를 통해 전송하고자 하는 주파수 대역이 휴지(idle) 상태라고 판단되는 경우에만 신호를 전송할 수 있다. To this end, a system operating in an unlicensed band performs a Channel Clearance Assessment (CCA) operation to determine whether a channel is occupied and used by another system before performing transmission for coexistence with other systems. . That is, the signal can be transmitted only when it is determined that the frequency band to be transmitted through the CCA is in an idle state.
한편, 기본적으로 광대역의 RLM-RS에 대한 CCA의 경우에도 단말이 사용하는 시스템 대역 전체에 대해서 채널이 점유되었는지 여부를 판단할 수 있다. 하지만, 일반적으로 NR-U 시스템에서 사용될 수 있는 주파수 대역은 와이파이와 같은 기존 시스템이 사용하는 기본 주파수 대역보다 클 수 있다. 예를 들어, NR-U 시스템이 운용되는 비면허 대역(unlicensed band)의 주파수 대역이 80MHz인 반면에, 와이파이 또는 LAA와 같은 시스템이 20MHz 단위로 동작하고 있다면, 80MHz에 대해서 수행하는 CCA 동작에 의해 채널이 점유되어 있는 것으로 판단될 확률은 훨씬 높아질 수 있다. 다시 말해, 80MHz 대역 내에 포함된 4개의 20MHz 단위의 대역들 중, 하나의 20MHz 대역만이 다른 시스템에 의해 점유되어 있더라도, 80MHz 대역 전체가 점유된 것으로 판단될 수 있어, 채널이 점유된 것으로 판단될 확률이 훨씬 높아 질 수 있다.On the other hand, even in the case of the CCA for the RLM-RS of the broadband basically, it can be determined whether the channel is occupied for the entire system band used by the terminal. However, in general, a frequency band that can be used in an NR-U system may be larger than a basic frequency band used by an existing system such as Wi-Fi. For example, if the frequency band of the unlicensed band in which the NR-U system is operated is 80 MHz, while a system such as Wi-Fi or LAA is operating in 20 MHz units, the channel is performed by CCA operation performed for 80 MHz. The probability of being judged to be occupied can be much higher. In other words, even if only one 20MHz band is occupied by another system among four 20MHz unit bands included in the 80MHz band, it may be determined that the entire 80MHz band is occupied, so that the channel is determined to be occupied. The probability can be much higher.
특히, RLM-RS와 같이 주기적으로 전송되는 신호의 경우에는 상술한 문제에 의해서 채널이 점유된 것으로 판단될 확률이 높아질 수 있고, 따라서, 주기적 신호의 전송을 위해 할당된 시간 구간 내에서 주기적 신호의 전송이 실패할 확률이 높아질 수 있다. 예를 들어, 주기적 신호에 대해서는 CCA에 의해 채널이 점유 상태로 판단된 경우, 주기적 신호의 전송확률을 높이기 위해서 특정한 시간 구간 동안 복수의 전송 가능한 후보 시간 위치(time position)들을 미리 설정할 수 있다. 그리고 어느 하나의 후보 시간 위치에서 LBT(Listen Before Talk)에 실패한 경우, 전송 가능한 다음 후보 시간 위치로 지연하여 주기적 신호를 전송할 수 있다. 이러한 경우, 광대역으로 전송되는 주기적 신호의 전체 대역에 대한 CCA로 인해, 채널이 점유된 것으로 판단되면, 단말이 주기적으로 채널 품질 등을 측정하는 동작을 수행하지 못하여, 채널 품질의 신뢰도가 감소할 수 있다.In particular, in the case of a signal that is periodically transmitted, such as RLM-RS, the probability of determining that the channel is occupied may be increased due to the above-described problem, and accordingly, the periodic signal may be transmitted within a time period allocated for transmission of the periodic signal. The probability of transmission failure may increase. For example, when a channel is determined to be occupied by a CCA for a periodic signal, a plurality of transmittable candidate time positions during a specific time period may be preset in order to increase a transmission probability of the periodic signal. In addition, if the LBT (Listen Before Talk) fails at any one candidate time location, a periodic signal may be transmitted by delaying to the next possible candidate time location. In this case, due to the CCA of the entire band of the periodic signal transmitted over the wideband, if the channel is determined to be occupied, the UE may not perform an operation for periodically measuring the channel quality, and thus the reliability of the channel quality may decrease. have.
그러므로, 본 개시에서는 LBT를 고려하여, 광대역(wideband) RLM-RS를 주기적으로 전송하는 방법 및 이를 위한 자원 할당 방법을 제안하도록 한다. 또한, 본 개시의 실시 예에 따른 전송 방법 및 자원할당 방법을 기반으로 무선 링크 모니터링(radio link monitoring)의 측정 결과를 도출하는 방법에 대해서도 살펴보도록 한다.Therefore, in the present disclosure, considering the LBT, a method for periodically transmitting a wideband RLM-RS and a resource allocation method for the same are proposed. Also, a method of deriving a measurement result of radio link monitoring based on a transmission method and a resource allocation method according to an embodiment of the present disclosure will be described.
우선, 도 13을 참조하여, 본 개시의 실시 예 1 내지 실시 예 2에 따른 네트워크의 동작 구현 예를 살펴보도록 한다.First, referring to FIG. 13, an example of implementing an operation of a network according to embodiments 1 to 2 of the present disclosure will be described.
도 13을 참조하면, 기지국은 RLM-RS가 할당된 전체 주파수 대역을 복수의 LBT 서브 대역들로 구분하고(S1301), 각각의 LBT 서브 대역 단위로 CCA를 수행할 수 있다(S1303). 그 후, 각각의 LBT 서브 대역 단위의 CCA 수행 결과를 기반으로 각각의 LBT 서브 대역을 통해 RLM-RS를 단말에 전송할 수 있다(S1305). 이 때, S1303~S1305에서 LBT 서브 대역 단위로 CCA를 수행하여, RLM-RS를 전송하는 구체적인 방법은 실시 예 1을 기반으로 할 수 있다.Referring to FIG. 13, the base station may divide the entire frequency band to which the RLM-RS is allocated into a plurality of LBT subbands (S1301), and perform CCA in units of each LBT subband (S1303). Thereafter, the RLM-RS may be transmitted to the UE through each LBT subband based on the CCA performance result of each LBT subband (S1305). In this case, a specific method for transmitting RLM-RS by performing CCA in units of LBT subbands in S1303 to S1305 may be based on the first embodiment.
한편, 각각의 LBT 서브 대역들을 통해 전송된 RLM-RS를 수신한 단말은 RLM-RS를 측정하고(S1307), 상기 RLM-RS 측정 결과를 기반으로 무선 링크(Radio Link)가 In-sync인지 Out-of-sync인지를 판단할 수 있다(S1309). 이때, S1307~S1309 단계에서 단말이 무선 링크(Radio Link)의 In-sync/Out-of-sync인지를 판단하는 방법은 후술하는 실시 예 2를 기반으로 할 수 있다.On the other hand, the terminal receiving the RLM-RS transmitted through each of the LBT subbands measures the RLM-RS (S1307), and the radio link is in-sync or out based on the RLM-RS measurement result. It may be determined whether it is -of-sync (S1309). In this case, a method of determining whether the terminal is In-sync/Out-of-sync of a radio link in steps S1307 to S1309 may be based on Example 2 described below.
실시 예 1. 광대역(Wideband) RLM-RS 전송 및 LBT 동작(operation) Embodiment 1. Wideband RLM-RS transmission and LBT operation
하나의 RLM-RS 자원은 단말을 위한 시스템 주파수 대역 내에서 임의의 주파수 대역을 갖도록 할당될 수 있다. 하지만, 일반적으로는 상술한 바와 같이 RLM-RS 자원을 위한 주파수 대역은 시스템 주파수 대역의 전체 또는 대부분의 주파수 대역을 차지하도록 할당된다. 이러한 경우, 시스템 주파수 대역이 광대역이고, 전체 주파수 대역을 CCA를 수행하는 주파수 대역 (이하, 'LBT 서브 대역(sub-band))으로 사용하는 경우, RLM-RS 전송을 위한 시간 구간 내에서 RLM-RS의 주기적 전송이 실패할 확률이 높아질 수 있다.One RLM-RS resource may be allocated to have an arbitrary frequency band within the system frequency band for the UE. However, in general, as described above, the frequency band for RLM-RS resources is allocated to occupy all or most of the frequency bands of the system frequency band. In this case, when the system frequency band is broadband and the entire frequency band is used as a frequency band for performing CCA (hereinafter referred to as'LBT sub-band)', RLM- within a time interval for RLM-RS transmission The probability that the periodic transmission of RS may fail may increase.
그러므로 광대역 시스템의 경우, LBT 서브 대역을 위한 주파수 대역을 전체 시스템 대역이 아닌, 전체 시스템 대역보다 작게 설정하는 것이 바람직할 수 있다. 또한, RLM-RS를 전송할 때 사용되는 LBT 서브 대역(sub-band) 또한 RLM-RS에 대해서 설정된 주파수 대역보다 작게 설정할 수 있다. 한편, 본 개시에서 '광대역'은 일반적으로 NR-U 시스템과 공존하는 다른 시스템들이 사용하는 기본 주파수 대역에 비해서 넓은 주파수 대역을 의미할 수 있다.Therefore, in the case of a broadband system, it may be desirable to set the frequency band for the LBT subband to be smaller than the entire system band, not the entire system band. In addition, the LBT sub-band used when transmitting the RLM-RS may also be set smaller than the frequency band set for the RLM-RS. Meanwhile, in the present disclosure,'broadband' may mean a wider frequency band than the basic frequency band used by other systems that coexist with the NR-U system.
다시 말해, RLM-RS의 전송 주파수 대역이 LBT를 위한 서브 대역(sub-band) 보다 큰 경우, RLM-RS는 설정된 주파수 대역에 비해 작은 부분 대역(partial band)들을 통해 전송될 수 있다. 구체적으로 아래의 실시 예들에 따라 RLM-RS를 전송할 수 있으며, 단말의 채널 품질 측정 방법도 아래의 실시 예들에 따라 수행될 수 있다.In other words, when the transmission frequency band of the RLM-RS is larger than the sub-band for the LBT, the RLM-RS may be transmitted through partial bands smaller than the set frequency band. Specifically, the RLM-RS may be transmitted according to the following embodiments, and the channel quality measurement method of the terminal may also be performed according to the following embodiments.
(1) 실시 예 1-1(1) Example 1-1
광대역 RLM-RS의 대역폭(bandwidth)이 N개의 LBT 서브 대역(sub-band) 정도의 크기인 상태에서 M개의 LBT 서브 대역(sub-band)이 휴지(idle) 상태라고 판단되면 M개의 LBT 서브 대역(sub-band)을 통해서만 RLM-RS를 전송하고 N-M개의 LBT 서브 대역에 대해서는 RLM-RS를 전송하지 않을 수 있다. 이 경우, 단말은 M개의 LBT 서브 대역 중, 적어도 하나의 LBT 서브 대역(최대 M개의 LBT 서브 대역들)에 대하여 채널 품질을 측정하고, 이를 기반으로 전체 광대역 RLM-RS의 대역폭의 채널 품질을 도출할 수 있다. When the bandwidth of the wideband RLM-RS is about the size of the N LBT sub-bands, and the M LBT sub-bands are determined to be idle, the M LBT sub-bands RLM-RS may be transmitted only through (sub-band) and RLM-RS may not be transmitted for NM LBT subbands. In this case, the terminal measures the channel quality for at least one LBT subband (up to M LBT subbands) among the M LBT subbands, and derives the channel quality of the bandwidth of the entire broadband RLM-RS based on this. can do.
이러한 경우, RLM-RS가 전송될 것으로 예상되는 LBT 서브 대역의 위치에서 채널 품질 측정을 시도할 수 있다. 만약, RLM-RS가 어느 LBT 서브 대역에서도 기지국에 의해 전송되지 않았다고 판단되면, 현재 채널 품질 측정을 도하는 RLM-RS를 위한 후보 시간 위치 다음에 할당되는 후보 시간 위치에서 RLM-RS의 검출을 시도할 수 있다. 예를 들어, 단말은 모든 후보 시간 위치들에 포함된 LBT 서브 대역들 중에서, 적어도 하나의 LBT 서브 대역을 통해 기지국이 RLM-RS의 전송을 성공했다고 판단될 때까지 채널 품질 측정을 반복할 수 있다.In this case, the channel quality measurement may be attempted at the location of the LBT subband where the RLM-RS is expected to be transmitted. If it is determined that the RLM-RS has not been transmitted by the base station in any LBT subband, attempts to detect the RLM-RS at the candidate time location allocated after the candidate time location for the RLM-RS that also measures the current channel quality. can do. For example, among the LBT subbands included in all candidate time positions, the UE may repeat the channel quality measurement until it is determined that the base station has successfully transmitted the RLM-RS through at least one LBT subband. .
(2) 실시 예 1-2(2) Example 1-2
광대역 RLM-RS의 대역폭(bandwidth)이 N개의 LBT 서브 대역(sub-band) 정도의 크기인 상태에서 M개의 LBT 서브 대역(sub-band)이 휴지(idle) 상태라고 판단되면, M개의 LBT 서브 대역(sub-band)을 통해서만 RLM-RS를 전송하고 N-M개의 LBT 서브 대역에 대해서는 RLM-RS의 지연 전송을 위해 설정된 다음 후보 시간 위치에서 상기 LBT 서브 대역에 기반한 CCA를 수행한 후, 채널이 휴지(idle) 상태라고 판단되면 RLM-RS의 지연 전송을 수행할 수 있다. 이러한 경우, 단말은 지연 전송될 것으로 예상되는 모든 후보 시간 위치(candidate time position)에 대해서 채널 품질을 측정하고 가능한 모든 결과를 이용해서 전체 대역의 채널 품질로 사용할 수 있다. 다만, 최종 채널 품질을 도출할 때, 몇 개의 LBT 서브 대역에 대한 측정 결과를 사용할 것인지는 단말이 적어도 하나의 LBT 서브 대역 별 채널 품질의 정확도를 고려해서 판단할 수 있다.When it is determined that the M LBT sub-bands are idle while the bandwidth of the broadband RLM-RS is about the size of N LBT sub-bands, the M LBT subs are determined. After transmitting the RLM-RS only through the sub-band and performing the CCA based on the LBT sub-band at the next candidate time location set for the delay transmission of the RLM-RS for the NM LBT sub-bands, the channel is idle. If it is determined that the (idle) state, it is possible to perform the delay transmission of the RLM-RS. In this case, the UE can measure the channel quality for all candidate time positions expected to be delayed and use all possible results as channel quality for the entire band. However, when deriving the final channel quality, how many LBT subbands to use for the measurement result can be determined by considering the accuracy of the channel quality for at least one LBT subband.
(3) 실시 예 1-3(3) Examples 1-3
실시 예 1-1 또는 실시 예 1-2 에 대해서 단말은 전체 주파수 대역을 항상 측정해야 할 수 있기 때문에 채널이 자주 점유되었다고 판단되면, 불필요한 채널품질 측정을 수행할 수 있다. For Examples 1-1 or 1-2, if the terminal is determined to be occupied frequently because the entire frequency band may need to be measured at all times, unnecessary channel quality measurement may be performed.
이로 인한, 단말의 복잡도를 완화하기 위해서 기지국은 RLM-RS의 주파수 대역이 LBT 서브 대역 보다 큰 경우, 상기 LBT 서브 대역들 중에서 참조 LBT 서브 대역(reference LBT sub-band)를 설정하고, 참조 LBT 서브 대역(reference LBT sub-band)에 대하여 RLM-RS를 전송할 수 있는 복수의 후보 시간 위치들을 정의할 수 있다. 그리고, 참조 LBT 서브 대역에 대한 채널이 점유된 것으로 판단되는 경우, 기지국은 참조 LBT 서브 대역을 통한 RLM-RS의 전송에 대해서는 지연 전송을 시도할 수 있다. 다만, 참조 LBT 서브 대역 이외의 다른 LBT 서브 대역에 대해서는 최초의 RLM-RS 전송 위치에서 채널이 점유되었다고 판단되면 RLM-RS 전송에 대한 추가시도를 수행하지 않을 수 있다. 이러한 경우, 단말은 최초의 RLM-RS 전송 위치에서만 모든 LBT 서브 대역들에 대해서 채널 품질 측정 및 RLM-RS 전송 여부를 판단하고, 나머지 후보 시간 위치들에 대해서는 참조 LBT 서브 대역에 대해서만 채널 품질 측정 및 전송 여부 판단에 대한 동작을 수행할 수 있다. 또한, 이를 통해 단말의 복잡도를 완화할 수 있다.Due to this, in order to alleviate the complexity of the terminal, the base station sets a reference LBT sub-band among the LBT sub-bands when the frequency band of the RLM-RS is larger than the LBT sub-band, and the reference LBT sub A plurality of candidate time locations capable of transmitting RLM-RS for a reference LBT sub-band may be defined. And, when it is determined that the channel for the reference LBT subband is occupied, the base station may attempt to delay transmission for transmission of the RLM-RS through the reference LBT subband. However, if it is determined that the channel is occupied at the first RLM-RS transmission location for the LBT subband other than the reference LBT subband, additional attempts for RLM-RS transmission may not be performed. In this case, the UE determines channel quality measurement and RLM-RS transmission for all LBT subbands only at the first RLM-RS transmission location, and channel quality measurement only for reference LBT subbands for the remaining candidate time locations. An operation for determining whether or not to transmit may be performed. In addition, the complexity of the terminal can be alleviated through this.
(4) 실시 예 1-4(4) Example 1-4
LBT 서브 대역들 중, 하나의 LBT 서브 대역이라도 채널이 점유되었다고 판단되면, RLM-RS 전체를 전송하지 않고, 실시 예 1-1 또는 실시 예 1-2의 동작을 기지국이 단말에게 설정할 수 있다. 이러한 경우, 단말도 기지국의 설정에 따라서 실시 예 1-1 또는 실시 예 1-2를 기반으로 채널 품질을 측정할 수 있다. 만약, 실시 예 1-1 또는 실시 예 1-2 의 설정이 없으면 단말은 RLM-RS의 전송 여부를 전체 대역에 대해 판단하고, 전체 주파수 대역에 대해 수행한 채널 품질 측정이 유효한지를 판단할 수 있다.If it is determined that a channel is occupied even in one LBT sub-band among the LBT sub-bands, the base station may set the operation of the embodiment 1-1 or the embodiment 1-2 to the terminal without transmitting the entire RLM-RS. In this case, the terminal can also measure the channel quality based on Example 1-1 or Example 1-2 depending on the setting of the base station. If there is no setting in Examples 1-1 or 1-2, the UE may determine whether to transmit the RLM-RS for all bands and determine whether channel quality measurement performed for all frequency bands is valid. .
한편, 상술한 실시 예 1-1 내지 실시 예 1-4에서처럼, 하나의 RLM-RS 자원을 할당하고 CCA를 통한 부분 대역(partial band) 전송을 수행하는 것과 유사하게, 하나의 빔에 대한 복수의 RLM-RS 자원들을 LBT 서브 대역 단위로 할당하고, 할당된 복수의 RLM-RS 자원들을 묶어서 RLM-RS 자원 집합(resource set)을 구성할 수 있다. 이러한 RLM-RS 자원 집합(resource set)은 각각 하나의 빔에 대응하므로, 단말은 하나의 RLM-RS 자원 집합(resource set)에 대해서 하나의 측정 메트릭(measurement metric)을 도출할 수 있다. On the other hand, as in the above-described embodiments 1-1 to 1-4, similar to allocating one RLM-RS resource and performing partial band transmission through the CCA, multiple beams for one beam RLM-RS resources may be allocated in units of LBT subbands, and a plurality of allocated RLM-RS resources may be bundled to configure an RLM-RS resource set. Since each of these RLM-RS resource sets corresponds to one beam, the UE can derive one measurement metric for one RLM-RS resource set.
이 때, 기지국의 RLM-RS 전송 동작과 이에 따른 단말의 동작은 실시 예 1-1 및 실시 예 1-2와 동일하게 수행될 수 있다. 다만, 실시 예 1-1에서는 하나의 RLM-RS 자원에 대해서 LBT 서브 대역(sub-band) 별로 부분 대역(partial band) 전송을 수행하지만, 상술한 경우에는 RLM-RS 자원 별로 상기 RLM-RS 자원이 포함된 LBT 서브 대역 단위로 CCA 및 RLM-RS 전송을 수행할 수 있다.At this time, the RLM-RS transmission operation of the base station and the operation of the terminal accordingly may be performed in the same manner as in Example 1-1 and Example 1-2. However, in Example 1-1, a partial band is transmitted for each LBT sub-band for one RLM-RS resource, but in the above-described case, the RLM-RS resource for each RLM-RS resource. CCA and RLM-RS transmission may be performed in units of the included LBT subbands.
다시 말해, 단말은 채널 품질을 측정할 때, 복수의 RLM-RS 자원들이 할당되었지만, 하나의 RLM-RS 자원 집합(resource set) 내의 RLM-RS 자원들로부터 하나의 대표 채널 품질 측정 결과를 도출할 수 있다.In other words, when the UE measures channel quality, a plurality of RLM-RS resources are allocated, but derives one representative channel quality measurement result from RLM-RS resources in one RLM-RS resource set. Can.
한편, 상술한 RLM-RS의 LBT 동작은 단지 무선 링크 모니터링(radio link monitoring) 뿐만 아니라 무선 링크 모니터링(radio link monitoring)과 유사한 동작을 수행하는 이동성(mobility) 지원을 위한 RRM-RS (Radio Resource Management-Reference Signal)를 이용한 RRM 측정(measurement) 또는 BM-RS (Beam Management-Reference Signal)을 이용한 빔 트래킹(beam tracking)에 대해서도 동일하게 적용될 수 있다.On the other hand, the LBT operation of the RLM-RS described above is RRM-RS (Radio Resource Management) for mobility support to perform operations similar to radio link monitoring as well as radio link monitoring. The same can be applied to RRM measurement using -Reference Signal) or beam tracking using BM-RS (Beam Management-Reference Signal).
실시 예 2: 부분 대역 전송(Partial Band Transmission)에 따른 In-Sync/Out-of-Sync 판단 방법Embodiment 2: In-Sync/Out-of-Sync determination method according to partial band transmission
실시 예 1-1 내지 실시 예 1-4의 RLM-RS 전송 방법은 광대역 시스템에 대해서 설정된 광대역 RLM-RS의 부분 대역(partial band) 전송을 가능하게 한다. 이와 같은 광대역 신호의 부분 대역(partial band) 전송에 대해서 단말은 LBT 서브 대역(sub-band) 단위로 RLM-RS를 수신할 수 있다. 또한, 기지국은 LBT 서브 대역(sub-band) 단위로 LBT에 따른 RLM-RS 전송여부를 판단할 수 있다. The RLM-RS transmission method of Examples 1-1 to 1-4 enables partial band transmission of a broadband RLM-RS set for a broadband system. For partial band transmission of such a broadband signal, the terminal may receive RLM-RS in LBT sub-band units. In addition, the base station may determine whether to transmit the RLM-RS according to the LBT in LBT sub-band (sub-band) units.
실시 예 2에서는 기지국이 LBT 서브 대역(sub-band) 단위로 RLM-RS 전송 여부를 판단한 후, 이를 기반으로 단말이 전체 시스템 주파수 대역에 대한 채널 품질을 어떻게 판단할 것인지에 대한 방법을 설명하도록 한다.In the second embodiment, a method for determining how to determine the channel quality for the entire system frequency band by the UE after determining whether the base station determines whether to transmit the RLM-RS in LBT sub-band units is described.
여기서, 채널 품질에 대한 판단 방법이란, 무선 링크 모니터링(Radio link monitoring)에 대하여, 빔 별 In-sync/Out-of-sync를 결정하는 방법을 의미할 수 있다. NR 시스템에서는 셀에 대한 최종 In-sync/Out-of-sync 여부 판단 결과로서, 설정된 모든 빔의 빔 별 채널품질이 Out-of-sync 일 때 이를 최종적인 Out-of-sync 로 판단할 수 있다. 그러므로, 후술하는 실시 예 2-1 내지 실시 예 2-4에서 특별한 언급이 없으면 In-sync/Out-of-sync 여부 또는 채널 품질은 빔 별 In-sync/Out-of-sync 또는 빔 별 채널품질을 의미할 수 있다. 또한, 최종적인 채널 품질에 대한 결과는 NR 시스템에서의 In-sync/Out-of-sync 정의를 따를 수 있다.Here, the method for determining channel quality may mean a method of determining In-sync/Out-of-sync for each beam for radio link monitoring. In the NR system, as a result of determining whether the cell is the final In-sync/Out-of-sync, when the channel quality for each beam of all configured beams is Out-of-sync, it can be determined as the final Out-of-sync. . Therefore, if there is no special mention in Examples 2-1 to 2-4 described later, whether In-sync/Out-of-sync or channel quality is In-sync/Out-of-sync for each beam or channel quality for each beam Can mean In addition, the final channel quality result may follow the definition of In-sync/Out-of-sync in the NR system.
(1) 실시 예 2-1(1) Example 2-1
단말은 LBT 서브 대역(sub-band) 단위로 RLM-RS 전송 여부를 판단하고, RLM-RS가 전송된 것으로 판단된 LBT 서브 대역(sub-band)들 중에서 하나의 대표 LBT 서브 대역(sub-band)을 선택할 수 있다. 단말은 선택된 LBT 서브 대역(sub-band)에 대해서 부반송파 SNR(Signal to Noise Ratio) 를 산출하고, 이에 기반하여 평균 SNR 또는 가상(Hypothetical) PDCCH BLER (Block Error Rate)을 획득할 수 있다. 상기 평균 SNR 및/또는 가상 PDCCH BLER은 전체 주파수 대역에 대한 채널 품질을 대표하므로, 상기 평균 SNR 또는 가상 PDCCH BLER 및 Qin/Qout 값을 이용하여 In-sync/Out-of-sync 여부를 판단할 수 있다. 다시 말해, 기지국은 복수의 LBT 서브 대역들을 통해 광대역 RLM-RS를 전송하지만, 단말은 하나의 LBT 서브 대역(sub-band)을 이용하여 최종적인 무선 링크 모니터링(radio link monitoring)을 수행할 수 있다. The UE determines whether to transmit RLM-RS in units of LBT sub-bands, and one representative LBT sub-band among LBT sub-bands determined to have been transmitted by RLM-RS. ). The UE may calculate a subcarrier signal to noise ratio (SNR) for the selected LBT sub-band and obtain an average SNR or a hypothetical PDCCH BLER (Block Error Rate). Since the average SNR and/or virtual PDCCH BLER represents the channel quality for the entire frequency band, it is possible to determine whether In-sync/Out-of-sync using the average SNR or virtual PDCCH BLER and Qin/Qout values. have. In other words, the base station transmits the broadband RLM-RS through a plurality of LBT subbands, but the terminal can perform final radio link monitoring using one LBT subband. .
(2) 실시 예 2-2(2) Example 2-2
실시 예 2-1에 따르면, 광대역 RLM-RS 전송에 따른 광대역에 전체에 대한 채널 품질을 획득할 수 없으며, RLM-RS의 주기적인 전송 가능성만을 높일 수 있는 효과가 있다. 따라서, 실시 예 2-2에서는 RLM-RS의 주기적인 전송 가능성뿐만 아니라 가능한 넓은 주파수 대역에 대한 채널 품질을 얻을 수 있도록 In-sync/Out-of-sync 여부 판단 방법을 설명하도록 한다. According to the embodiment 2-1, it is not possible to acquire the channel quality for the entire broadband according to the broadband RLM-RS transmission, and there is an effect of increasing only the possibility of periodic transmission of the RLM-RS. Therefore, in Example 2-2, a method for determining whether to perform in-sync/out-of-sync will be described so as to obtain channel quality for a wide frequency band as well as possible periodic transmission of RLM-RS.
이를 위해, LBT 서브 대역(sub-band) 단위로 부반송파 SNR과 평균 SNR을 산출하고, 각각의 LBT 서브 대역(sub-band)에 대해서 LBT 여부 판단 후, RLM-RS가 전송되었다고 판단되는 LBT 서브 대역(sub-band)의 부반송파 SNR과 평균 SNR를 이용하여, RLM-RS 자원 또는 RLM-RS 자원 집합에 대한 평균(average) SNR 및/또는 가상(Hypothetical) PDCCH BLER을 획득할 수 있다. 또한, 상기 획득한 RLM-RS 자원 또는 RLM-RS 자원 집합에 대한 평균(average) SNR 및/또는 가상(Hypothetical) PDCCH BLER 값과 Qin/Qout 값을 이용하여 In-sync/Out-of-sync 여부를 판단할 수 있다.To this end, the subcarrier SNR and the average SNR are calculated in LBT sub-band units, and after each LBT sub-band is determined to be LBT, the LBT sub-band in which the RLM-RS is determined is transmitted. Using (sub-band) subcarrier SNR and average SNR, average SNR and/or hypothetical PDCCH BLER for RLM-RS resource or RLM-RS resource set can be obtained. In addition, in-sync/out-of-sync using average SNR and/or hypothetical PDCCH BLER value and Qin/Qout value for the obtained RLM-RS resource or RLM-RS resource set Can judge.
(3) 실시 예 2-3(3) Example 2-3
한편, 낮은 SNR 환경에서 LBT에 따른 RLM-RS 전송 여부를 판단하는 것은 높은 누락(missing) 확률 또는 높은 거짓 경보(false alarm) 확률을 가져올 수 있다. 이러한 경우, 사용되는 결정 메트릭(decision metric)에 따라서 실제 SNR이 Qout에 비해 높게 측정되었음에도 불구하고 RLM-RS가 전송되지 않은 것으로 판단될 수 있다. 반대로, 실제 SNR은 Qout에 비해 낮게 측정되었음에도 RLM-RS가 전송된 것으로 판단될 수도 있다. On the other hand, determining whether to transmit the RLM-RS according to the LBT in a low SNR environment may result in a high missing probability or a high false alarm probability. In this case, it may be determined that the RLM-RS has not been transmitted even though the actual SNR is measured higher than Qout according to the decision metric used. Conversely, even though the actual SNR is measured lower than Qout, it may be determined that the RLM-RS is transmitted.
이와 같이 LBT 성공 여부에 대한 판단의 오류가 존재하는 경우, LBT에 따른 RLM-RS 전송 여부에 대한 판단의 정확성에 따라서, RLM-RS 자원 또는 RLM-RS 자원 집합에 대한 평균(average) SNR 및/또는 가상(Hypothetical) PDCCH BLER 은 많은 영향을 받을 수 있다. 이러한 영향을 줄이기 위해서 LBT 서브 대역(sub-band) 별로 In-sync/Out-of-sync 여부를 판단하고, 모든 LBT 서브 대역(sub-band)들에서 Out-of-sync 라고 판단된 경우, 해당 RLM-RS 자원 또는 RLM-RS 자원 집합에 대한 채널 품질을 Out-of-sync 라고 판단할 수 있다. 다만, 모든 LBT 서브 대역들이 Out-of-sync라고 판단된 경우, 적어도 하나의 LBT 서브 대역(sub-band)에서라도 RLM-RS가 전송되었다고 판단되어야 최종적으로 해당 RLM-RS 자원 에 대하여 Out-of-sync라고 판단할 수 있다. 즉, 어떠한 LBT 서브 대역에서도 RLM-RS가 전송된 것으로 판단되지 않은 경우에는 모든 LBT 서브 대역들의 SNR이 Qout보다 낮더라도, Out-of-sync라고 판단할 수 없을 수 있다.As such, if there is an error in the determination of the success or failure of the LBT, according to the accuracy of the determination of whether to transmit the RLM-RS according to the LBT, the average SNR and/or the RLM-RS resource or the RLM-RS resource set Or, the hypothetical PDCCH BLER can be affected a lot. In order to reduce this effect, it is determined whether in-sync/out-of-sync is performed for each LBT sub-band, and if it is determined to be out-of-sync in all LBT sub-bands, corresponding Channel quality for an RLM-RS resource or an RLM-RS resource set may be determined as out-of-sync. However, when it is determined that all LBT subbands are out-of-sync, it should be determined that the RLM-RS has been transmitted even in at least one LBT subband (sub-band). It can be judged as sync. That is, if it is not determined that the RLM-RS is transmitted in any LBT sub-band, even if the SNRs of all LBT sub-bands are lower than Qout, it may not be determined to be out-of-sync.
또한, In-Sync는 Out-of-Sync외의 나머지 상태로 정의할 수 있다. 다시 말해, 하나의 LBT 서브 대역이더라도 In-Sync라고 판단되면, 해당 RLM-RS 자원에 대한 채널 품질을 In-Sync라고 정의할 수 있다.In addition, In-Sync can be defined as a state other than Out-of-Sync. In other words, even if one LBT sub-band is determined to be In-Sync, the channel quality for the corresponding RLM-RS resource may be defined as In-Sync.
(4) 실시 예 2-4(4) Example 2-4
실시 예 2-3과 유사하게, LBT 서브 대역 단위로 평균 SNR 및/또는 가상(Hypothetical) PDCCH BLER를 측정하고, 가장 높은 평균 SNR 및/또는 가장 낮은 BLER을 갖는 LBT 서브 대역을 기준으로 In-sync/Out-of-sync 여부를 판단할 수 있다. 또한, 이러한 판단 여부에 따라, 해당 RLM-RS 자원 또는 해당 RLM-RS 자원 집합의 In-sync/Out-of-sync 여부를 결정할 수 있다.Similar to Example 2-3, the average SNR and/or hypothetical PDCCH BLER is measured in units of LBT subbands, and In-sync based on the LBT subband with the highest average SNR and/or lowest BLER /Out-of-sync can be determined. In addition, according to the determination, it is possible to determine whether the corresponding RLM-RS resource or the corresponding RLM-RS resource set is In-sync/Out-of-sync.
도 14 내지 도 16은 본 개시의 실시 예 3 내지 실시 예 4에 따른 단말, 기지국 및 네트워크의 동작 구현 예를 설명하기 위한 도면이다. 14 to 16 are diagrams for describing an example of an operation implementation of a terminal, a base station, and a network according to embodiments 3 to 4 of the present disclosure.
도 14는 본 개시에 따른 단말의 동작 구현 예를 설명하기 위한 도면이다. 도 14를 참조하면, 단말은 DMTC(Discovery Measuring Timing Configuration) 윈도우 및/또는 DTTC(DRS Transmission Timing Configuration) 윈도우 내에서 DRS (Discovery Reference Signal)을 수신하고, DRS의 수신 품질을 측정할 수 있다(S1401). 이 때, DRS에는 SSB (Synchronization Signal Block) 및 CSI-RS (Channel State Information - Reference Signal) 등이 포함될 수 있다. 예를 들어, DRS는 DMTC(Discovery Measuring Timing Configuration) 윈도우 및/또는 DTTC(DRS Transmission Timing Configuration) 윈도우 내에서 전송되는 SSB 또는 CSI-RS일 수 있다. 14 is a view for explaining an example of the operation of the terminal according to the present disclosure. Referring to FIG. 14, the UE may receive a Discovery Reference Signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window and measure the reception quality of the DRS (S1401). ). At this time, the DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal). For example, the DRS may be an SSB or CSI-RS transmitted in a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window.
또한, 단말은 DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 SSB를 수신하고, 상기 SSB의 수신 품질을 측정할 수 있다(S1403). 또한, 단말은 DMTC 윈도우 및/또는 DTTC 윈도우 내의 DRS를 측정한 결과 및 DMTC 윈도우 및/또는 DTTC 윈도우 밖의 SSB를 측정한 결과를 기반으로 RLF (Radio Link Failure)의 발생 여부를 결정할 수 있다(S1405). 즉, 단말은 DMTC 윈도우 및/또는 DTTC 윈도우 내의 DRS를 측정한 결과 및 DMTC 윈도우 및/또는 DTTC 윈도우 밖의 SSB를 측정한 결과를 기반으로 In-sync/Out-of-sync 여부를 판단할 수 있다. 이 때, 구체적인 RLF의 발생 여부 판단 방법은 후술하는 실시 예 3 내지 실시 예 4에 기반할 수 있다. 한편, 도 14에 따른 단말은 도 21 내지 도 23에 개시된 다양한 무선 장치들 중, 어느 하나일 수 있다. 예를 들어, 단말은 도 21의 제 1 무선 장치(100)이거나, 도 22의 무선 기기(100, 200)일 수 있다. 다시 말해, 도 14에 따른 단말의 동작은 도 21 내지 도 23에 개시된 다양한 무선 장치들 중, 어느 하나에 의해 실행되거나 수행될 수 있다.In addition, the terminal may receive the SSB outside the DMTC window and/or DTTC window, and measure the reception quality of the SSB (S1403). In addition, the terminal may determine whether a radio link failure (RLF) occurs based on the result of measuring DRS in the DMTC window and/or DTTC window and the result of measuring the SSB outside the DMTC window and/or DTTC window (S1405). . That is, the terminal may determine whether In-sync/Out-of-sync is based on the result of measuring the DRS in the DMTC window and/or DTTC window and the result of measuring the SSB outside the DMTC window and/or DTTC window. In this case, a method for determining whether a specific RLF is generated may be based on Examples 3 to 4 described later. Meanwhile, the terminal according to FIG. 14 may be any one of various wireless devices disclosed in FIGS. 21 to 23. For example, the terminal may be the first wireless device 100 of FIG. 21 or the wireless devices 100 and 200 of FIG. 22. In other words, the operation of the terminal according to FIG. 14 may be executed or performed by any one of various wireless devices disclosed in FIGS. 21 to 23.
도 15는 본 개시에 따른 기지국의 동작 구현 예를 설명하기 위한 도면이다. 도 15를 참조하면, 기지국은 DMTC(Discovery Measuring Timing Configuration) 윈도우 및/또는 DTTC(DRS Transmission Timing Configuration) 윈도우 내에서 DRS (Discovery Reference Signal)를 전송할 수 있다(S1501). 이 때, DRS에는 SSB (Synchronization Signal Block) 및 CSI-RS (Channel State Information - Reference Signal) 등이 포함될 수 있다. 예를 들어, DRS는 DMTC(Discovery Measuring Timing Configuration) 윈도우 및/또는 DTTC(DRS Transmission Timing Configuration) 윈도우 내에서 전송되는 SSB 또는 CSI-RS일 수 있다.15 is a view for explaining an example of the operation of the base station according to the present disclosure. Referring to FIG. 15, the base station may transmit a discovery reference signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window (S1501). At this time, the DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal). For example, the DRS may be an SSB or CSI-RS transmitted in a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window.
또한, 기지국은 DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 SSB를 전송할 수 있다(S1503). 한편, S1501 내지 S1503의 구체적인 동작 과정은 실시 예 3 내지 실시 예 4를 기반으로 할 수 있다.In addition, the base station may transmit the SSB outside the DMTC window and/or DTTC window (S1503). Meanwhile, specific operation processes of S1501 to S1503 may be based on Examples 3 to 4.
한편, 도 15에 따른 기지국은 도 21 내지 도 23에 개시된 다양한 무선 장치들 중, 어느 하나일 수 있다. 예를 들어, 기지국은 도 21의 제 2 무선 장치(200)이거나, 도 22의 무선 기기(100, 200)일 수 있다. 다시 말해, 도 15에 따른 기지국의 동작은 도 21 내지 도 23에 개시된 다양한 무선 장치들 중, 어느 하나에 의해 실행되거나 수행될 수 있다.Meanwhile, the base station according to FIG. 15 may be any one of various wireless devices disclosed in FIGS. 21 to 23. For example, the base station may be the second wireless device 200 of FIG. 21 or the wireless devices 100 and 200 of FIG. 22. In other words, the operation of the base station according to FIG. 15 may be performed or performed by any one of various wireless devices disclosed in FIGS. 21 to 23.
도 16은 본 개시에 따른 네트워크의 동작 구현 예를 설명하기 위한 도면이다. 도 16을 참조하면, 기지국은 DMTC(Discovery Measuring Timing Configuration) 윈도우 및/또는 DTTC(DRS Transmission Timing Configuration) 윈도우 내에서 DRS (Discovery Reference Signal)를 전송할 수 있다(S1501). 이 때, DRS에는 SSB (Synchronization Signal Block) 및 CSI-RS (Channel State Information - Reference Signal) 등이 포함될 수 있다.16 is a diagram for explaining an example of implementing an operation of a network according to the present disclosure. Referring to FIG. 16, the base station may transmit a discovery reference signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window (S1501). At this time, the DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal).
단말은 상기 DRS를 수신하면, 수신된 DRS의 수신 품질을 측정할 수 있다(S1603). 또한, 기지국은 DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 SSB를 전송할 수 있다(S1605). 단말은 상기 SSB를 수신하면, SSB의 수신 품질을 측정할 수 있다(S1607). 단말은 DMTC 윈도우 및/또는 DTTC 윈도우 내의 DRS를 측정한 결과 및 DMTC 윈도우 및/또는 DTTC 윈도우 밖의 SSB를 측정한 결과를 기반으로 RLF (Radio Link Failure)의 발생 여부를 결정할 수 있다(S1609). 즉, 단말은 DMTC 윈도우 및/또는 DTTC 윈도우 내의 DRS를 측정한 결과 및 DMTC 윈도우 및/또는 DTTC 윈도우 밖의 SSB를 측정한 결과를 기반으로 In-sync/Out-of-sync 여부를 판단할 수 있다. 이 때, 구체적인 RLF의 발생 여부 판단 방법은 후술하는 실시 예 3 내지 실시 예 4에 기반할 수 있다.When the terminal receives the DRS, it can measure the reception quality of the received DRS (S1603). In addition, the base station may transmit the SSB outside the DMTC window and/or DTTC window (S1605). Upon receiving the SSB, the UE can measure the reception quality of the SSB (S1607). The terminal may determine whether radio link failure (RLF) occurs based on the result of measuring DRS in the DMTC window and/or DTTC window and the result of measuring SSB outside the DMTC window and/or DTTC window (S1609). That is, the terminal may determine whether In-sync/Out-of-sync is based on the result of measuring the DRS in the DMTC window and/or DTTC window and the result of measuring the SSB outside the DMTC window and/or DTTC window. In this case, a method for determining whether a specific RLF is generated may be based on Examples 3 to 4 described later.
실시 예 3: SSB 전송 방식을 고려한 In-sync/Out-of-sync 지시/판단 방법Example 3: In-sync / out-of-sync instruction / judgment method considering the SSB transmission method
비면허 대역(Unlicensed band)에서는 다른 시스템과의 공존을 위해서 신호를 전송하기 전에, 해당 채널이 idle한지를 우선 검사한 후, 채널이 idle하다고 판단한 경우에 해당 신호를 전송할 수 있다. 이를 CCA (Channel Clearance Assessment)라고 명명할 수 있다. In the unlicensed band, prior to transmitting a signal for coexistence with other systems, it is first checked whether the corresponding channel is idle, and then the corresponding signal can be transmitted when it is determined that the channel is idle. This can be called CCA (Channel Clearance Assessment).
한편, NR 시스템과 같이 스케줄러에 의해 데이터 채널의 전송을 결정하는 시스템의 경우, 스케줄러가 특정 신호의 전송을 결정한 상태에서 CCA에 의해 채널이 busy하다고 판단되면 해당 채널이 idle하다고 판단될 때까지 특정 신호의 전송을 지연시키거나 특정 신호의 전송을 포기하고 재스케줄링 할 수 있다. 하지만, SSB (Synchronization Signal Block)와 같이 주기적인 전송 특성을 갖는 채널 혹은 신호의 경우에는 채널이 busy하다고 판단된다면, SSB가 재전송되기까지 SSB 주기만큼을 기다려야 하므로, SSB의 전송 주기만큼 SSB의 전송이 지연될 수 있다. 이는, 시스템에 접속하고자 하는 단말의 접속을 크게 지연시키거나, 해당 셀의 채널 품질을 측정하는 단말의 채널품질 측정의 지연을 발생시켜, 단말의 이동성 품질을 상당히 저하시킬 수 있다. On the other hand, in the case of a system that determines the transmission of a data channel by a scheduler, such as an NR system, if the channel is determined to be busy by the CCA in a state where the scheduler determines transmission of a specific signal, a specific signal until the corresponding channel is determined to be idle. You can either delay the transmission of, or give up and reschedule the transmission of a specific signal. However, in the case of a channel or a signal having a periodic transmission characteristic such as SSB (Synchronization Signal Block), if it is determined that the channel is busy, SSB transmission must be waited for as long as the SSB transmission period until SSB is retransmitted. Can be delayed. This may significantly delay the connection of the terminal to be connected to the system or cause a delay in the measurement of the channel quality of the terminal measuring the channel quality of the corresponding cell, thereby significantly degrading the mobility quality of the terminal.
따라서, NR-U 시스템의 경우, LAA (Licensed Assisted Access) 시스템의 DMTC (Discovery Measuring Timing Configuration) 윈도우와 유사하게, DRS (Discovery signal)의 전송을 최대한 보장하기 위한 DTTC (DRS transmission timing configuration) 윈도우를 정의할 수 있다. 한편, 상기 DRS는 SSB 및 CSI-RS를 포함할 수 있다. 즉, DRS는 SSB 및 CSI-RS 중 하나일 수 있으며, 전송되는 SSB 또는 CSI-RS 중, DMTC 윈도우 또는 DTTC 윈도우 내에서 전송되는 SSB 또는 CSI-RS를 DRS라고 명칭할 수 있다.Therefore, in the case of the NR-U system, similar to the Discovery Measuring Timing Configuration (DMTC) window of the Licensed Assisted Access (LAA) system, a DTRS (DRS transmission timing configuration) window for ensuring the maximum transmission of a discovery signal (DRS) is provided. Can be defined. Meanwhile, the DRS may include SSB and CSI-RS. That is, DRS may be one of SSB and CSI-RS, and among SSB or CSI-RS transmitted, an SSB or CSI-RS transmitted in a DMTC window or DTTC window may be referred to as DRS.
이러한 DTTC 윈도우 내에서는 채널이 busy하더라도 다음 주기까지 기다리지 않고 DTTC 윈도우 내에서 채널의 지연 전송을 허용할 수 있다. 이에 따라, NR-U 시스템에서는 DTTC 윈도우 내에서 전송되는 DRS의 전체 혹은 일부를 이용하여, SSB 기반의 RLM(radio link monitoring)을 수행할 수 있다. 따라서, 가능한 최대로 RLM을 위한 RLM-RS (radio link monitoring - reference signal)의 주기적인 전송을 보장할 수 있다. 여기서, RLM-RS는 RLM을 수행하기 위한 참조 신호를 의미하는 것으로서, 예를 들어, SSB 또는 CSI-RS일 수 있다. 다시 말해, 본 개시에는 RLM-RS와 DRS가 동일한 종류의 신호일 수 있다. 즉, 동일한 SSB 또는 CSI-RS 이더라도, DMTC 윈도우 또는 DTTC 윈도우 내에서 전송되는 SSB 또는 CSI-RS는 DRS를 의미할 수 있다. 반면, RLM-RS는 DMTC 윈도우 또는 DTTC 윈도우 내에서 전송되는지 아니면 DMTC 윈도우 또는 DTTC 윈도우 밖에서 전송되는지 여부에 관계 없이, RLM 용으로 전송되는 SSB 또는 CSI-RS 전체를 의미할 수 있다. In this DTTC window, even if the channel is busy, delay transmission of the channel can be allowed in the DTTC window without waiting for the next cycle. Accordingly, in the NR-U system, SSB-based radio link monitoring (RRM) may be performed using all or part of DRS transmitted in the DTTC window. Therefore, it is possible to ensure periodic transmission of RLM-RS (radio link monitoring-reference signal) for RLM as much as possible. Here, RLM-RS means a reference signal for performing RLM, and may be, for example, SSB or CSI-RS. In other words, in the present disclosure, RLM-RS and DRS may be signals of the same type. That is, even if it is the same SSB or CSI-RS, the SSB or CSI-RS transmitted in the DMTC window or the DTTC window may mean DRS. On the other hand, RLM-RS may mean the entire SSB or CSI-RS transmitted for RLM regardless of whether it is transmitted within the DMTC window or DTTC window or outside the DMTC window or DTTC window.
이와 같이 DTTC 윈도우를 통한 DRS를 이용하여 SSB 전송을 수행할 때, DTTC 윈도우(window)의 주기를 너무 작게 설정하면 시스템의 자원 효율성이 감소하므로, 도 17에서 보는 것과 같이, 기지국은 DTTC 윈도우의 주기를 SSB의 전송 주기보다 길게 설정할 수 있다. 도 17을 참고하면, SSB는 DTTC 윈도우 내의 채널이 idle한 시간에서 전송되고, DTTC 윈도우 밖에서는 SSB 전송 주기를 기반으로 결정된 SSB 전송 시간이 busy한 경우 추가적인 전송 없이 다음 SSB 전송 주기까지 SSB를 전송하지 않을 수 있다.As described above, when performing SSB transmission using DRS through the DTTC window, if the period of the DTTC window is set too small, the resource efficiency of the system decreases. As shown in FIG. 17, the base station shows the period of the DTTC window. It can be set longer than the transmission period of the SSB. Referring to FIG. 17, the SSB is transmitted at a time when the channel in the DTTC window is idle, and when the SSB transmission time determined based on the SSB transmission period outside the DTTC window is busy, the SSB is not transmitted until the next SSB transmission period without additional transmission. It may not.
상술한 바와 같이, 비면허 대역(unlicensed band)의 SSB에 기반한 RLM의 경우, DRS에 해당하는 SSB만을 이용하여 RLM을 수생하는 것은 DTTC 윈도우 또는 DMTC 윈도우 밖에서 전송되는 SSB는 채널이 busy한 경우, 해당 SSB에 대한 전송을 시스템이 포기하므로 SSB 전송이 포기되면, 채널 품질에 대한 보고의 주기성을 확보할 수 없기 때문에, DRS에 해당하는 SSB 만을 이용하여 채널 품질 측정에 대한 주기성을 최대한 확보하기 위함이다. As described above, in the case of RLM based on the unlicensed band SSB, receiving RLM using only the SSB corresponding to the DRS means that the SSB transmitted outside the DTTC window or the DMTC window is busy when the channel is busy. This is to ensure the maximum periodicity for channel quality measurement by using only the SSB corresponding to the DRS, since the periodicity of reporting on the channel quality cannot be secured when the SSB transmission is abandoned because the system abandons the transmission.
왜냐하면, 채널 품질 측정에 대한 주기성이 최대한 확보되어야만, 단말이 RLM-RS에 대한 DTX 여부를 검출하는데 부담을 감소시킬 수 있기 때문이다. 예를 들어, 단말은 SSB의 채널 품질의 값이 설정된 임계치에 비해서 높은 것으로 판단되는 경우, In-Sync라고 판단하게 되므로 DTX가 아니라고 확신할 수 있다. 하지만, SSB의 채널 품질의 값이 설정된 임계치에 비해서 낮다고 판단하는 경우에는, 실제로 채널 품질이 좋지 않은 것인지 채널이 busy해서 SSB가 전송되지 않은 것인지에 대해 판단해야 하는데, 이를 정확히 판단하는 것이 쉽지 않다. This is because the periodicity for channel quality measurement should be secured as much as possible, so that the UE can reduce the burden on detecting whether the DTX for the RLM-RS is DTX. For example, when the UE determines that the channel quality value of the SSB is higher than the set threshold, it is determined that it is In-Sync, so it can be sure that it is not DTX. However, when it is determined that the channel quality value of the SSB is lower than the set threshold, it is necessary to determine whether the channel quality is bad or the SSB is not transmitted because the channel is busy.
따라서, NR-U에서는 상술한 바에 따른 영향을 최소화하기 위해서 DTTC 윈도우 내에서 전송되는 SSB (즉, DRS)를 이용할 수 있다. 하지만, 이러한 경우에도, DRS에 대한 DTX 검출 오류가 발생할 가능성이 존재하고, DTX 검출 오류가 발생하는 경우, 불필요한 RLF(radio link failure) 선언이 발생할 수 있다. Therefore, in NR-U, SSB (that is, DRS) transmitted in the DTTC window may be used to minimize the effects of the above. However, even in this case, there is a possibility that a DTX detection error occurs for DRS, and when a DTX detection error occurs, unnecessary radio link failure (RLF) declaration may occur.
이러한 문제를 최대한 해결하기 위해, 단말은 채널 품질에 대한 검출을 최대한 많은 위치에서 수행해볼 수 있다. 예를 들어, 단말은 DMTC 윈도우 및/또는 DTTC 윈도우를 설정하더라도 DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 전송되는 SSB를 이용하여 RLM을 수행할 수 있다. 예를 들어, 도 18을 참조하면, 단말은 DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 전송되는 SSB에 대한 채널 품질을 측정하고 채널 품질이 설정한 임계치 보다 높은 경우, DMTC 윈도우 및/또는 DTTC 윈도우 내의 SSB의 채널 품질이 설정한 임계치 보다 낮더라도, DMTC 윈도우 및/또는 DTTC 윈도우 내에서 측정한 채널 품질이 DTX에 의한 검출 오류일 가능성도 존재하므로, 단말은 RLM 결과를 In-Sync로 판단하고, 이를 보고할 수 있다. In order to solve this problem as much as possible, the terminal can perform detection of channel quality in as many locations as possible. For example, even if a DMTC window and/or DTTC window is set, the terminal may perform RLM using an SSB transmitted outside the DMTC window and/or DTTC window. For example, referring to FIG. 18, the terminal measures the channel quality for the SSB transmitted outside the DMTC window and/or DTTC window, and when the channel quality is higher than a set threshold, the SSB in the DMTC window and/or DTTC window Even if the channel quality is lower than the set threshold, there is a possibility that the channel quality measured in the DMTC window and/or DTTC window is a detection error due to DTX, so that the terminal determines the RLM result as In-Sync and reports it. Can.
즉, RLM을 위한 DMTC 윈도우 및/또는 DTTC 윈도우가 설정된 경우, 단말은 DMTC 윈도우 및/또는 DTTC 윈도우 외에서 전송되는 SSB DMTC 윈도우 및/또는 DTTC 윈도우 내에서 전송되는 DRS (예를 들어, SSB 및/또는 CSI-RS)의 채널 품질을 측정하고, 그 중 적어도 하나의 채널 품질이 In-Sync에 해당한다고 판단되는 경우, 단말은 무선 링크를 In-Sync로 결정하고, 이를 상위 계층에 주기적으로 보고할 수 있다. 이 때, 상위 계층으로 In-Sync/Out-of-Sync를 보고하는 보고 주기는 RLM을 위한 DMTC 주기와 동일할 수 있다. 다시 말해, DMTC 윈도우 및/또는 DTTC 윈도우 외에서 채널 품질을 측정하더라도, 이를 보고하는 주기는 DMTC 주기와 동일하며, 보고 주기가 변경되지 않을 수 있다. 즉, 2개의 DMTC 윈도우 및/또는 DTTC 윈도우 사이에서 전송되는 SSB들과 이에 대응하는 DMTC 윈도우 및/또는 DTTC 윈도우 내에서 전송되는 DRS들을 하나의 채널 품질 보고를 하나의 집합(set)으로 가정할 수 있다.That is, when the DMTC window and/or DTTC window for RLM is set, the terminal is an SSB transmitted outside the DMTC window and/or DTTC window, and a DRS transmitted within the DMTC window and/or DTTC window (eg, SSB and/or CSI-RS) channel quality is measured, and when it is determined that at least one channel quality corresponds to In-Sync, the UE may determine the radio link as In-Sync and periodically report it to the upper layer. have. At this time, the reporting period for reporting In-Sync/Out-of-Sync to the upper layer may be the same as the DMTC period for RLM. In other words, even if the channel quality is measured outside the DMTC window and/or DTTC window, the reporting period is the same as the DMTC period, and the reporting period may not be changed. That is, SSBs transmitted between two DMTC windows and/or DTTC windows and DRSs transmitted in the corresponding DMTC window and/or DTTC window can be assumed as one channel quality report as one set. have.
반면, 도 19와 같이, DMTC 윈도우 및/또는 DTTC 윈도우 사이에서 전송되는 SSB 및 DMTC 윈도우 및/또는 DTTC 윈도우 내에서 전송되는 DRS (예를 들어, SSB)의 채널 품질을 측정하고 모든 SSB 및 DRS의 채널 품질이 In-Sync에 해당하지 않는 경우, 해당 무선 링크를 Out-Of-Sync로 정의하여, 이를 상위 계층에 보고할 수 있다. 이 때, 상위 계층으로 In-Sync/Out-of-Sync를 보고하는 보고 주기는 RLM을 위한 DMTC 주기와 동일할 수 있다. 다시 말해, DMTC 윈도우 및/또는 DTTC 윈도우 외에서 채널 품질을 측정하더라도, 이를 보고하는 주기는 DMTC 주기와 동일하며, 보고 주기가 변경되지 않을 수 있다. 즉, 2개의 DMTC 윈도우 및/또는 DTTC 윈도우 사이에서 전송되는 SSB들과 이에 대응하는 DMTC 윈도우 및/또는 DTTC 윈도우 내에서 전송되는 DRS들을 하나의 채널 품질 보고를 하나의 집합(set)으로 가정할 수 있다.On the other hand, as shown in FIG. 19, the channel quality of the SSB transmitted between the DMTC window and/or DTTC window and the DRS (eg, SSB) transmitted within the DMTC window and/or DTTC window is measured, and all SSB and DRS If the channel quality does not correspond to In-Sync, the corresponding radio link can be defined as Out-Of-Sync and reported to the upper layer. At this time, the reporting period for reporting In-Sync/Out-of-Sync to the upper layer may be the same as the DMTC period for RLM. In other words, even if the channel quality is measured outside the DMTC window and/or DTTC window, the reporting period is the same as the DMTC period, and the reporting period may not be changed. That is, SSBs transmitted between two DMTC windows and/or DTTC windows and DRSs transmitted in the corresponding DMTC window and/or DTTC window can be assumed as one channel quality report as one set. have.
여기서, In-Sync에 해당하지 않는다는 것은 Out-Of-Sync 또는 DTX로 판단됨을 의미할 수 있다. 이 때, 단말은 모든 SSB에 대해 DTX라고 판단할 수도 있다. 또한, 도 18 내지 도 19를 기반으로 서술한 설명들에 따르면, 단말은 DTX 검출 오류에 대한 영향을 최소화하면서, 상위 계층에 In-Sync/Out-Of-Sync에 대한 보고의 주기성을 확보하여, 면허 대역(licensed band)에서의 RLM 동작을 유지할 수 있다.Here, it does not correspond to In-Sync may mean that it is determined as Out-Of-Sync or DTX. At this time, the terminal may determine that it is DTX for all SSBs. In addition, according to the descriptions based on FIGS. 18 to 19, the terminal secures the periodicity of reporting on In-Sync/Out-Of-Sync to the upper layer while minimizing the effect on the DTX detection error, RLM operation in a licensed band may be maintained.
한편, DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 전송되는 SSB는 기지국의 운용에 따라서 전송전력을 변경하여 전송될 수도 있다. 이 경우, In-Sync/Out-Of-Sync를 판단하기 위한 Q_IN/Q_OUT의 값을 직접 적용하는 것이 바람직하지 않을 수 있다. 따라서, DRS 이외의 SSB에 대한 채널 품질 측정 후, In-Sync/Out-Of-Sync를 판단하기 위한 Q_IN/O_OUT을 별도로 설정할 수도 있다.Meanwhile, the SSB transmitted outside the DMTC window and/or the DTTC window may be transmitted by changing transmission power according to the operation of the base station. In this case, it may not be desirable to directly apply the value of Q_IN/Q_OUT for determining In-Sync/Out-Of-Sync. Accordingly, Q_IN/O_OUT for determining In-Sync/Out-Of-Sync may be separately set after measuring channel quality for SSBs other than DRS.
상술한 바와 같이 상위 계층으로의 RLM 보고 주기를 RLM용 DMTC 윈도우 및/또는 DTTC 윈도우의 주기와 동일하게 결정할 수 있지만, 신속한 Out-Of-Sync 판단을 위해 SSB의 전송 주기마다 RLM 결과를 상위 계층으로 보고할 수도 있다. 이러한 경우, DTX 검출 오류에 의한 영향을 최소화하기 위해서 RLM 결과를 상위 계층으로 보고 하기 이전 N개의 SSB들을 기반으로 측정한 채널 품질을 반영하여In-Sync/Out-Of-Sync를 판단할 수 있다. 한편, N개의 SSB들은 DMTC 윈도우 및/또는 DTTC 윈도우 내에서 전송되는 SSB들이거나, DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 전송되는 SSB들일 수 있다. 또한, DMTC 윈도우 및/또는 DTTC 윈도우 내부에 있는지 외부에 있는지에 관계 없이, RLM 보고 시점을 기준으로 가장 최근에 전송된 N개의 SSB들일 수도 있다. 여기에서, N은 DTTC 윈도우 및/또는 DMTC 윈도우 주기 내에서 전송 가능한 SSB의 개수로 결정되거나, 기지국에 의해서 별도로 설정될 수도 있다.As described above, the RLM reporting period to the upper layer can be determined to be the same as the period of the DMTC window and/or DTTC window for RLM, but the RLM result is transmitted to the upper layer for each transmission period of the SSB for quick out-of-sync determination. You can also report. In this case, In-Sync/Out-Of-Sync can be determined by reflecting the channel quality measured based on N SSBs before reporting the RLM result to the upper layer in order to minimize the effect of the DTX detection error. Meanwhile, the N SSBs may be SSBs transmitted in the DMTC window and/or DTTC window, or SSBs transmitted outside the DMTC window and/or DTTC window. In addition, regardless of whether it is inside or outside the DMTC window and/or the DTTC window, it may be the most recently transmitted N SSBs based on the RLM reporting time. Here, N may be determined as the number of SSBs that can be transmitted within the DTTC window and/or DMTC window period, or may be separately set by the base station.
한편, 상술한 바와 같이, 본 개시에서는 RLM을 위한 DMTC 윈도우를 설정할 때, 단말은 In-Sync/Out-Of-Sync에 대한 판단을 위해서 DMTC 윈도우와 DMTC 윈도우 사이에 존재하는 SSB를 이용하는 것을 제안하였다. 이 때, 단말이 모든 SSB의 채널 품질을 DTX로 판단하는 경우, 단말의 동작에 모호성이 발생할 수 있다. 예를 들어, 면허 대역(licensed band)에서 동작하는 NR 시스템의 경우, 무선 링크 품질(radio link quality) 측정 결과로서, In-Sync/Out-Of-Sync만이 존재했지만, 비면서 대역(unlicensed band)에서는 이와 달리 DTX도 존재하므로 이에 대한 단말의 동작을 정의할 필요가 있다. 예를 들어, 단말이 DTX로 판단하는 경우의 동작은 아래와 같을 수 있다.On the other hand, as described above, in the present disclosure, when setting the DMTC window for RLM, the terminal proposes to use the SSB existing between the DMTC window and the DMTC window to determine In-Sync/Out-Of-Sync. . At this time, when the UE determines the channel quality of all SSBs as DTX, ambiguity may occur in the operation of the UE. For example, in the case of an NR system operating in a licensed band, as a result of radio link quality measurement, only In-Sync/Out-Of-Sync existed, but unlicensed band Unlike in DTX, DTX also exists, so it is necessary to define the operation of the terminal. For example, the operation in the case where the terminal determines to be DTX may be as follows.
1) 하위 계층에서 In-Sync/Out-Of-Sync 이외의 DTX를 정의하지 않고, DTX에 의해 채널 품질이 매우 낮게 측정되는 경우, 단말은 별도의 판단 없이 무선 링크가 Out-Of-Sync 인 것으로 결정하여, 모든 단말의 동작이 면허 대역(licensed band)에서의 RLM 동작과 동일하도록 할 수 있다.1) If a DTX other than In-Sync/Out-Of-Sync is not defined in the lower layer, and the channel quality is measured very low by DTX, the UE determines that the wireless link is Out-Of-Sync without additional judgment. By determining, the operation of all terminals can be the same as the operation of the RLM in a licensed band.
2) 단말은 하위 계층에서 모든 SSB의 상태가 DTX인 경우, 최종적으로 DTX로 판단하고, 상위 계층에는 이전에 보고한 상태를 유지하여 보고할 수 있다. 예를 들어, 이전 보고 시점에 상위 계층에 In-sync임을 보고하였다면, 모든 SSB의 채널 품질이 DTX인 경우 상위 계층에 In-sync라고 보고할 수 있다. 반대로, 이전 보고 시점에 상위 계층에 Out-of-Sync임을 보고하였다면, 모든 SSB의 채널 품질이 DTX인 경우, 상위 계층에 Out-of-Sync라고 보고할 수 있다.2) When the status of all SSBs in the lower layer is DTX, the terminal may finally determine as DTX, and maintain the previously reported status in the upper layer to report. For example, if in-sync is reported to the upper layer at the time of the previous report, if the channel quality of all SSBs is DTX, it can be reported as In-sync to the upper layer. Conversely, if out-of-sync is reported to the upper layer at the previous reporting time point, if the channel quality of all SSBs is DTX, it can be reported as out-of-sync to the upper layer.
만약, 연속적으로 모든 SSB가 DTX인 것으로 판단되면, DTX인 것으로 판단되기 시작한 시점으로부터 가장 빠른 시점에 해당하는 In-sync/Out-of-Sync 보고를 동일하게 보고할 수 있다. 상위 계층의 동작은 면허 대역(licensed band)에서의 RLM 동작과 동일할 수 있다. 한편, 단말은 DTX가 일정 값 이상으로 연속적으로 검출되거나, DTX가 검출된 확률이 일정 이상이면, 이를 상위 계층에 보고하고, RLF를 선언하거나 다른 주파수 대역으로 이동할 수 있다. If it is determined that all SSBs are DTX continuously, the In-sync/Out-of-Sync report corresponding to the earliest time from the time when it is determined to be DTX can be reported identically. The operation of the upper layer may be the same as the operation of the RLM in the licensed band. On the other hand, if the DTX is continuously detected above a certain value, or if the probability that the DTX is detected is above a certain value, the UE may report it to an upper layer, declare an RLF, or move to another frequency band.
3) 하위 계층에서 상위 계층으로 RLM 결과를 보고할 때, DTX를 정의하고 모든 SSB의 채널 품질이 DTX인 경우, 상위 계층에 DTX를 보고할 수 있다. 이 때, 상위 계층에는 상술한 바와 같이 DTX에 대해서 별도의 동작을 정의할 수 있다. 예를 들어, 상위 계층이 DTX를 보고받은 경우, 상위 계층은 마지막으로 보고된 In-Sync/Out-Of-Sync 를 현재 채널 품질로 판단할 수 있다. 즉, 이전에 채널 품질 보고가 In-Sync 였다면, DTX를 보도 받더라도, In-Sync 인 것으로 가정할 수 있다. 또한, DTX를 보고받은 경우, 상위 계층은 타이머나 카운터에 대한 값을 유지하고 별도의 동작을 수행하지 않을 수 있다.3) When reporting the RLM results from the lower layer to the upper layer, when defining the DTX and channel quality of all SSBs is DTX, the DTX may be reported to the upper layer. At this time, a separate operation may be defined for DTX in the upper layer as described above. For example, when the upper layer reports DTX, the upper layer may determine the last reported In-Sync/Out-Of-Sync as the current channel quality. That is, if the channel quality report was previously In-Sync, even if DTX is reported, it can be assumed to be In-Sync. In addition, when the DTX is reported, the upper layer may maintain a value for a timer or counter and may not perform a separate operation.
실시 예 4: 주파수 축에서 복수의 SSB들이 설정된 경우 단말의 동작Embodiment 4: Operation of the terminal when a plurality of SSBs are set in the frequency axis
실시 예 3에서는 LBT (Listen Before Talk)와 같은 CCA 동작에 의해 SSB가 전송되지 않는 것을 고려하여, DMTC 윈도우 및/또는 DTTC 윈도우 내에서 전송되는 DRS 뿐만 아니라 DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 전송되는 SSB를 이용하여 채널 품질을 측정하고, 이를 기반으로 In-Sync/Out-Of-Sync 를 판단하는 것을 제안하였다. 이는 DTX 검출상의 오류를 최소화하여, In-Sync/Out-Of-Sync 에 대한 잘못된 판단으로 발생 가능한 시스템 영향을 최소화하기 위함이다. 예를 들어, RLM을 위한 RS 전송 후보 위치가 다수 존재한다면 서빙 셀로부터 송신되는 RLM-RS를 최대한 이용하는 것이 비면허 대역의 RLM을 위한 동작으로 바람직할 수 있다.In the third embodiment, considering that the SSB is not transmitted by the CCA operation such as LBT (Listen Before Talk), the DRS transmitted in the DMTC window and/or DTTC window, as well as the SSB transmitted outside the DMTC window and/or DTTC window It was proposed to measure channel quality by using and to determine In-Sync/Out-Of-Sync based on this. This is to minimize errors in DTX detection, thereby minimizing possible system effects caused by incorrect judgment of In-Sync/Out-Of-Sync. For example, if there are multiple RS transmission candidate locations for RLM, it may be desirable to use RLM-RS transmitted from the serving cell as much as possible for the operation of the unlicensed band RLM.
NR 시스템은 광대역을 지원하고, 단말은 필요에 따라서 시스템 대역보다 좁은 주파수 대역에서 동작할 수 있다. 이러한 환경에서 트래픽의 로드를 여러 주파수 대역에서 분산시키기 위하여, 기지국은 시스템 대역에서 복수의 SSB들을 전송할 수 있다. 하지만, NR 시스템에서는 동일 기지국으로부터 복수의 SSB들이 전송되더라도, 모든 SSB들을 단말의 동작에 이용할 필요가 없기 때문에, 모든 SSB들에 대한 정보를 제공하지 않고, 셀에 접속할 때 사용한 SSB만을 이용하여 서빙 셀에 대한 RLM/RRM등의 동작을 수행할 수 있다. 여기서, 셀에 접속할 때 사용한 SSB를 cell-defining SSB라고 명칭할 수도 있다.The NR system supports broadband, and the terminal can operate in a narrower frequency band than the system band if necessary. In this environment, in order to distribute the load of traffic in multiple frequency bands, the base station may transmit a plurality of SSBs in the system band. However, in the NR system, even if a plurality of SSBs are transmitted from the same base station, it is not necessary to use all of the SSBs for the operation of the terminal, and thus, information on all SSBs is not provided, and only the serving SSB used to access the cell is used. RLM/RRM can be performed. Here, the SSB used to access the cell may be referred to as a cell-defining SSB.
한편, 비면허 대역(unlicensed band)에서는 SSB들을 복수의 주파수들을 통해서 전송하는 경우, LBT를 위한 주파수 대역(이하 'LBT 서브 밴드')이 전체 시스템 주파수 대역에 비해서 작으면 LBT 서브 밴드(sub-band) 별로 LBT 동작을 수행할 수 있다. 따라서, 각각의 LBT 서브 밴드 별 LBT 결과에 따라, 특정 주파수 대역에 위치하는 SSB는 전송이 되지 않더라도 다른 주파수에 위치하는 SSB는 전송될 수 있다. 그러므로, 복수의 SSB들이 설정된 환경에서 모든 SSB들이 동일한 기지국으로부터 전송되고 동일한 셀(Cell) ID를 갖는다는 것을 단말이 알 수 있다면, 단말은 RLM을 위해 SSB가 전송될 가능성이 있는 모든 주파수 대역에서 SSB를 이용한 채널 품질을 측정할 수 있다. On the other hand, in the unlicensed band (unlicensed band), when transmitting the SSB through a plurality of frequencies, the frequency band for LBT (hereinafter referred to as'LBT subband') is smaller than the entire system frequency band LBT subband (sub-band) Not much can perform the LBT operation. Accordingly, according to the LBT result for each LBT subband, SSBs located at a specific frequency band may be transmitted even if SSBs located at a specific frequency band are not transmitted. Therefore, if the UE knows that all SSBs are transmitted from the same base station and have the same cell ID in an environment in which a plurality of SSBs are set, the UE SSBs in all frequency bands where the SSB is likely to be transmitted for RLM. Channel quality can be measured using.
따라서, 비면허 대역(unlicensed ban)에서 SSB-based RLM 동작을 위해, 복수의 주파수 대역들에서 SSB를 전송하는 경우, 해당 서빙 셀로부터 전송되는 SSB들의 주파수 위치 및 셀 ID 정보 등과 같은 관련 정보를 단말에게 알려주면, 단말은 가능한 모든 SSB들을 이용하여 In-Sync/Out-Of-Sync 여부를 판단할 수 있다. 이 때, In-Sync/Out-Of-Sync 에 대한 정의는 실시 예 3에서 제시한 방법과 유사하게 지시한 SSB들 중에서 단말이 채널 측정에 이용한 모든 SSB들에 대한 채널 품질들 중, 하나의 채널 품질이라도 임계치보다 높은 경우, 단말은 무선 링크를 In-Sync 로 판단할 수 있다. 이와 달리 지시한 SSB들 중에서 단말이 채널 측정에 이용한 모든 SSB들에 대한 채널 품질들이 모두 설정한 임계치보다 낮은 경우, 무선 링크를 Out-Of-Sync 로 판단할 수 있다. 한편, DTX에 대한 검출을 수행하고, 모든 SSB들에 대해서 DTX로 판단되는 경우에 대해서도 실시 예 3에서 언급한 동작이 수행될 수 있다.Therefore, for SSB-based RLM operation in an unlicensed ban, when SSBs are transmitted in a plurality of frequency bands, related information such as frequency location and cell ID information of SSBs transmitted from a corresponding serving cell to the UE If notified, the terminal can determine whether In-Sync/Out-Of-Sync is performed using all possible SSBs. At this time, the definition of In-Sync/Out-Of-Sync is one channel among channel qualities for all SSBs used by the UE for channel measurement among SSBs indicated similarly to the method presented in Example 3 If the quality is higher than the threshold, the terminal may determine the radio link as In-Sync. If the channel qualities for all SSBs used by the UE among the indicated SSBs are lower than a preset threshold, the radio link may be determined as Out-Of-Sync. Meanwhile, the operation mentioned in Example 3 may be performed even when the detection for DTX is performed and it is determined that DTX is performed for all SSBs.
한편, 실시 예 4에서의 SSB는 DMTC 윈도우 및/또는 DTTC 윈도우 내에서 전송되는 SSB 뿐만 아니라, DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 전송되는 SSB도 포함될 수 있다.Meanwhile, the SSB in Example 4 may include not only the SSB transmitted in the DMTC window and/or DTTC window, but also the SSB transmitted outside the DMTC window and/or DTTC window.
한편, 실시 예 4에서 언급된 방법들은 실시 예 3에서 언급한 방법들과 조합하여 수행될 수 있다. 예를 들어, 실시 예 3에 따른 시간 축과 실시 예 4에 따른 주파수 축에서의 복수의 SSB들을 이용하여 RLM을 수행하고, In-Sync/Out-Of-Sync를 판단할 수도 있다.Meanwhile, the methods mentioned in Example 4 can be performed in combination with the methods mentioned in Example 3. For example, RLM may be performed using a plurality of SSBs in the time axis according to Example 3 and the frequency axis according to Example 4, and In-Sync/Out-Of-Sync may be determined.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.Without being limited thereto, various descriptions, functions, procedures, suggestions, methods and/or operational flowcharts of the present invention disclosed in this document may be applied to various fields requiring wireless communication/connection (eg, 5G) between devices. have.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다. Hereinafter, with reference to the drawings will be illustrated in more detail. In the following drawings/description, the same reference numerals may exemplify the same or corresponding hardware blocks, software blocks, or functional blocks, unless otherwise indicated.
도 20은 본 발명에 적용되는 통신 시스템(1)을 예시한다.20 illustrates a communication system 1 applied to the present invention.
도 20을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.Referring to FIG. 20, the communication system 1 applied to the present invention includes a wireless device, a base station and a network. Here, the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), Long Term Evolution (LTE)), and may be referred to as a communication/wireless/5G device. Although not limited to this, the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an XR (eXtended Reality) device 100c, a hand-held device 100d, and a home appliance 100e. ), Internet of Thing (IoT) device 100f, and AI device/server 400. For example, the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like. Here, the vehicle may include a UAV (Unmanned Aerial Vehicle) (eg, a drone). XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices, Head-Mounted Device (HMD), Head-Up Display (HUD) provided in vehicles, televisions, smartphones, It may be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, or the like. The mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a notebook, etc.). Household appliances may include a TV, a refrigerator, and a washing machine. IoT devices may include sensors, smart meters, and the like. For example, the base station and the network may also be implemented as wireless devices, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.The wireless devices 100a to 100f may be connected to the network 300 through the base station 200. AI (Artificial Intelligence) technology may be applied to the wireless devices 100a to 100f, and the wireless devices 100a to 100f may be connected to the AI server 400 through the network 300. The network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network. The wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also directly communicate (e.g. sidelink communication) without going through the base station/network. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication). In addition, the IoT device (eg, sensor) may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication/ connections 150a, 150b, and 150c may be achieved between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200. Here, the wireless communication/connection is various wireless access such as uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR), and wireless devices/base stations/wireless devices, base stations and base stations can transmit/receive radio signals to each other through wireless communication/ connections 150a, 150b, 150c. For example, the wireless communication/ connections 150a, 150b, 150c can transmit/receive signals through various physical channels.To do this, based on various proposals of the present invention, for the transmission/reception of wireless signals, At least some of various configuration information setting processes, various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation processes, and the like may be performed.
도 21은 본 발명에 적용될 수 있는 무선 기기를 예시한다.21 illustrates a wireless device that can be applied to the present invention.
도 21을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 25의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 21, the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR). Here, {the first wireless device 100, the second wireless device 200} is {wireless device 100x, base station 200} and/or {wireless device 100x), wireless device 100x in FIG. }.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108. The processor 102 controls the memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. For example, the processor 102 may process information in the memory 104 to generate the first information/signal, and then transmit the wireless signal including the first information/signal through the transceiver 106. In addition, the processor 102 may receive the wireless signal including the second information/signal through the transceiver 106 and store the information obtained from the signal processing of the second information/signal in the memory 104. The memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may be used to perform some or all of the processes controlled by processor 102, or instructions to perform the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. You can store software code that includes Here, the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR). The transceiver 106 can be coupled to the processor 102 and can transmit and/or receive wireless signals through one or more antennas 108. The transceiver 106 may include a transmitter and/or receiver. The transceiver 106 may be mixed with a radio frequency (RF) unit. In the present invention, the wireless device may mean a communication modem/circuit/chip.
구체적으로 본 발명의 실시 예에 따른 제 1 무선 기기(100)의 프로세서(102)에 의해 제어되고, 메모리(104)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.Specifically, the command and/or operations controlled by the processor 102 of the first wireless device 100 according to an embodiment of the present invention and stored in the memory 104 will be described.
하기 동작들은 프로세서(102)의 관점에서 프로세서(102)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(104)에 저장될 수 있다.The following operations are described based on the control operation of the processor 102 from the viewpoint of the processor 102, but may be stored in the memory 104 or the like for software code for performing the operation.
프로세서(102)는 DMTC(Discovery Measuring Timing Configuration) 윈도우 및/또는 DTTC(DRS Transmission Timing Configuration) 윈도우 내에서 DRS (Discovery Reference Signal)을 수신하도록 송수신기(106)를 제어하고, DRS의 수신 품질을 측정할 수 있다. 이 때, DRS에는 SSB (Synchronization Signal Block) 및 CSI-RS (Channel State Information - Reference Signal) 등이 포함될 수 있다. 예를 들어, DRS는 DMTC(Discovery Measuring Timing Configuration) 윈도우 및/또는 DTTC(DRS Transmission Timing Configuration) 윈도우 내에서 전송되는 SSB 또는 CSI-RS일 수 있다.The processor 102 controls the transceiver 106 to receive a Discovery Reference Signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window, and measures the reception quality of the DRS. Can. At this time, the DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal). For example, the DRS may be an SSB or CSI-RS transmitted in a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window.
또한, 프로세서(102)는 DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 SSB를 수신하도록 송수신기(106)를 제어하고, 상기 SSB의 수신 품질을 측정할 수 있다. 또한, 프로세서(102)는 DMTC 윈도우 및/또는 DTTC 윈도우 내의 DRS를 측정한 결과 및 DMTC 윈도우 및/또는 DTTC 윈도우 밖의 SSB를 측정한 결과를 기반으로 RLF (Radio Link Failure)의 발생 여부를 결정할 수 있다. 즉, 프로세서(102)는 DMTC 윈도우 및/또는 DTTC 윈도우 내의 DRS를 측정한 결과 및 DMTC 윈도우 및/또는 DTTC 윈도우 밖의 SSB를 측정한 결과를 기반으로 In-sync/Out-of-sync 여부를 판단할 수 있다. 이 때, 구체적인 RLF의 발생 여부 판단 방법은 상술한 실시 예 3 내지 실시 예 4에 기반할 수 있다.Further, the processor 102 may control the transceiver 106 to receive the SSB outside the DMTC window and/or the DTTC window, and measure the reception quality of the SSB. In addition, the processor 102 may determine whether radio link failure (RLF) occurs based on the result of measuring DRS in the DMTC window and/or DTTC window and the result of measuring SSB outside the DMTC window and/or DTTC window. . That is, the processor 102 may determine whether In-sync/Out-of-sync based on the result of measuring DRS in the DMTC window and/or DTTC window and the result of measuring SSB outside the DMTC window and/or DTTC window. Can. At this time, a method of determining whether a specific RLF is generated may be based on the above-described embodiments 3 to 4.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208. Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. For example, the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206. In addition, the processor 202 may receive the wireless signal including the fourth information/signal through the transceiver 206 and store the information obtained from the signal processing of the fourth information/signal in the memory 204. The memory 204 may be connected to the processor 202, and may store various information related to the operation of the processor 202. For example, the memory 204 is an instruction to perform some or all of the processes controlled by the processor 202, or to perform the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. You can store software code that includes Here, the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR). The transceiver 206 can be coupled to the processor 202 and can transmit and/or receive wireless signals through one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. Transceiver 206 may be mixed with an RF unit. In the present invention, the wireless device may mean a communication modem/circuit/chip.
구체적으로 본 발명의 실시 예에 따른 제 2 무선 기기(200)의 프로세서(202)에 의해 제어되고, 메모리(204)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.Specifically, a command and/or operation controlled by the processor 202 of the second wireless device 200 according to an embodiment of the present invention and stored in the memory 204 will be described.
하기 동작들은 프로세서(202)의 관점에서 프로세서(202)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(204)에 저장될 수 있다.The following operations are described based on the control operation of the processor 202 from the viewpoint of the processor 202, but may be stored in the memory 204 in software code or the like for performing the operation.
프로세서(202)는 DMTC(Discovery Measuring Timing Configuration) 윈도우 및/또는 DTTC(DRS Transmission Timing Configuration) 윈도우 내에서 DRS (Discovery Reference Signal)를 전송하도록 송수신기(206)를 제어할 수 있다. 이 때, DRS에는 SSB (Synchronization Signal Block) 및 CSI-RS (Channel State Information - Reference Signal) 등이 포함될 수 있다. 예를 들어, DRS는 DMTC(Discovery Measuring Timing Configuration) 윈도우 및/또는 DTTC(DRS Transmission Timing Configuration) 윈도우 내에서 전송되는 SSB 또는 CSI-RS일 수 있다.The processor 202 may control the transceiver 206 to transmit a discovery reference signal (DRS) within a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window. At this time, the DRS may include SSB (Synchronization Signal Block) and CSI-RS (Channel State Information-Reference Signal). For example, the DRS may be an SSB or CSI-RS transmitted in a Discovery Measuring Timing Configuration (DMTC) window and/or a DRS Transmission Timing Configuration (DTTC) window.
또한, 프로세서(202)는 DMTC 윈도우 및/또는 DTTC 윈도우 밖에서 SSB를 전송하도록 송수신기(206)를 제어할 수 있다. 상술한 프로세서(202)의 동작 과정은 실시 예 3 내지 실시 예 4를 기반으로 할 수 있다.In addition, the processor 202 may control the transceiver 206 to transmit the SSB outside the DMTC window and/or DTTC window. The above-described operation process of the processor 202 may be based on the third to fourth embodiments.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless devices 100 and 200 will be described in more detail. Without being limited to this, one or more protocol layers may be implemented by one or more processors 102 and 202. For example, one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP). The one or more processors 102 and 202 may include one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Can be created. The one or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. The one or more processors 102, 202 generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methods disclosed herein. , To one or more transceivers 106, 206. One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the fields.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. The one or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer. The one or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more Application Specific Integrated Circuits (ASICs), one or more Digital Signal Processors (DSPs), one or more Digital Signal Processing Devices (DSPDs), one or more Programmable Logic Devices (PLDs), or one or more Field Programmable Gate Arrays (FPGAs) May be included in one or more processors 102, 202. Descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like. The descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein are either firmware or software set to perform or are stored in one or more processors 102, 202 or stored in one or more memories 104, 204. It can be driven by the above processors (102, 202). The descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein may be implemented using firmware or software in the form of code, instructions and/or instructions.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.The one or more memories 104, 204 may be coupled to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions. The one or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof. The one or more memories 104, 204 may be located inside and/or outside of the one or more processors 102, 202. Also, the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as a wired or wireless connection.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.The one or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like referred to in the methods and/or operational flowcharts of this document to one or more other devices. The one or more transceivers 106, 206 may receive user data, control information, radio signals/channels, and the like referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein from one or more other devices. have. For example, one or more transceivers 106, 206 may be coupled to one or more processors 102, 202, and may transmit and receive wireless signals. For example, one or more processors 102, 202 can control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, the one or more processors 102, 202 can control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and one or more transceivers 106, 206 may be described, functions described herein through one or more antennas 108, 208. , It may be set to transmit and receive user data, control information, radio signals/channels, etc. referred to in procedures, suggestions, methods and/or operation flowcharts. In this document, the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports). The one or more transceivers 106 and 206 process the received wireless signal/channel and the like in the RF band signal to process the received user data, control information, wireless signal/channel, and the like using one or more processors 102 and 202. It can be converted to a baseband signal. The one or more transceivers 106 and 206 may convert user data, control information, and radio signals/channels processed using one or more processors 102 and 202 from a baseband signal to an RF band signal. To this end, the one or more transceivers 106, 206 may include (analog) oscillators and/or filters.
도 22는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 20 참조).22 shows another example of a wireless device applied to the present invention. The wireless device may be implemented in various forms according to usage-example/service (see FIG. 20).
도 22를 참조하면, 무선 기기(100, 200)는 도 21의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 21의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 21의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다. 따라서, 본 발명에 따른 구체적인 제어부(120)의 동작 과정 및 메모리부(130)에 저장된 프로그램/코드/명령/정보들은 도 21의 프로세서 (102, 202) 중 적어도 하나의 동작 및 메모리(104, 204) 중 적어도 하나의 동작과 대응될 수 있다.Referring to FIG. 22, the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 21, and various elements, components, units/units, and/or modules ). For example, the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140. The communication unit may include a communication circuit 112 and a transceiver(s) 114. For example, communication circuit 112 may include one or more processors 102,202 and/or one or more memories 104,204 of FIG. For example, the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 21. The control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls the overall operation of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, another communication device) through the wireless/wired interface through the communication unit 110, or externally (eg, through the communication unit 110). Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130. Accordingly, the operation process of the specific control unit 120 according to the present invention and the programs/codes/instructions/information stored in the memory unit 130 include at least one operation and memory 104, 204 of the processors 102, 202 of FIG. ).
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 20, 100a), 차량(도 20, 100b-1, 100b-2), XR 기기(도 20, 100c), 휴대 기기(도 20, 100d), 가전(도 20, 100e), IoT 기기(도 20, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 20, 400), 기지국(도 20, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.The additional element 140 may be variously configured according to the type of wireless device. For example, the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit. Although not limited to this, wireless devices include robots (FIGS. 20, 100A), vehicles (FIGS. 20, 100B-1, 100B-2), XR devices (FIGS. 20, 100C), portable devices (FIGS. 20, 100D), and household appliances. (Fig. 20, 100e), IoT device (Fig. 20, 100f), digital broadcasting terminal, hologram device, public safety device, MTC device, medical device, fintech device (or financial device), security device, climate/environment device, It may be implemented in the form of an AI server/device (Figs. 20 and 400), a base station (Figs. 20 and 200), and a network node. The wireless device may be mobile or may be used in a fixed place depending on use-example/service.
도 22에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.In FIG. 22, various elements, components, units/parts, and/or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least some of them may be connected wirelessly through the communication unit 110. For example, in the wireless devices 100 and 200, the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110. It can be connected wirelessly. Further, each element, component, unit/unit, and/or module in the wireless devices 100 and 200 may further include one or more elements. For example, the controller 120 may be composed of one or more processor sets. For example, the control unit 120 may include a set of communication control processor, application processor, electronic control unit (ECU), graphic processing processor, and memory control processor. As another example, the memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory (non- volatile memory) and/or combinations thereof.
이하, 도 22의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.Hereinafter, the implementation example of FIG. 22 will be described in more detail with reference to the drawings.
도 23은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.23 illustrates a vehicle or an autonomous vehicle applied to the present invention. Vehicles or autonomous vehicles can be implemented as mobile robots, vehicles, trains, aerial vehicles (AVs), ships, and the like.
도 23을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 22의 블록 110/130/140에 대응한다.Referring to FIG. 23, a vehicle or an autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving It may include a portion (140d). The antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130/140a-140d correspond to blocks 110/130/140 in FIG. 22, respectively.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.The communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, a base station (e.g. base station, road side unit, etc.) and a server. The controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100. The controller 120 may include an electronic control unit (ECU). The driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground. The driving unit 140a may include an engine, a motor, a power train, wheels, brakes, and steering devices. The power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, and the like. The sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like. The sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, a tilt sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, and the like. The autonomous driving unit 140d maintains a driving lane, automatically adjusts speed, such as adaptive cruise control, and automatically moves along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.For example, the communication unit 110 may receive map data, traffic information data, and the like from an external server. The autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data. The controller 120 may control the driving unit 140a such that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to a driving plan (eg, speed/direction adjustment). During autonomous driving, the communication unit 110 may acquire the latest traffic information data non-periodically from an external server, and may acquire surrounding traffic information data from nearby vehicles. Also, during autonomous driving, the sensor unit 140c may acquire vehicle status and surrounding environment information. The autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information. The communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, and a driving plan to an external server. The external server may predict traffic information data in advance using AI technology or the like based on the information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
도 24는 전송 신호를 위한 신호 처리 회로를 예시한다.24 illustrates a signal processing circuit for a transmission signal.
도 24를 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 24의 동작/기능은 도 21의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 24의 하드웨어 요소는 도 21의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 21의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 21의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 21의 송수신기(106, 206)에서 구현될 수 있다.Referring to FIG. 24, the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060. have. Without being limited thereto, the operations/functions of FIG. 24 may be performed in the processors 102, 202 and/or transceivers 106, 206 of FIG. The hardware elements of FIG. 24 can be implemented in the processors 102, 202 and/or transceivers 106, 206 of FIG. 21. For example, blocks 1010 to 1060 may be implemented in processors 102 and 202 of FIG. 21. Also, blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 21, and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 21.
코드워드는 도 24의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.The codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 24. Here, the codeword is an encoded bit sequence of an information block. The information block may include a transport block (eg, UL-SCH transport block, DL-SCH transport block). The radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.Specifically, the codeword may be converted into a scrambled bit sequence by the scrambler 1010. The scramble sequence used for scramble is generated based on the initialization value, and the initialization value may include ID information of the wireless device. The scrambled bit sequence may be modulated by a modulator 1020 into a modulation symbol sequence. The modulation method may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like. The complex modulated symbol sequence may be mapped to one or more transport layers by the layer mapper 1030. The modulation symbols of each transport layer may be mapped to the corresponding antenna port(s) by the precoder 1040 (precoding). The output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M. Here, N is the number of antenna ports and M is the number of transport layers. Here, the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transformation) on complex modulation symbols. Further, the precoder 1040 may perform precoding without performing transform precoding.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.The resource mapper 1050 may map modulation symbols of each antenna port to time-frequency resources. The time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbol, DFT-s-OFDMA symbol) in the time domain, and may include a plurality of subcarriers in the frequency domain. The signal generator 1060 generates a radio signal from the mapped modulation symbols, and the generated radio signal can be transmitted to other devices through each antenna. To this end, the signal generator 1060 may include an Inverse Fast Fourier Transform (IFFT) module and a Cyclic Prefix (CP) inserter, a Digital-to-Analog Converter (DAC), a frequency uplink converter, etc. .
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 19의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 17의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.The signal processing process for the received signal in the wireless device may be configured as the inverse of the signal processing processes 1010 to 1060 of FIG. 19. For example, a wireless device (eg, 100 and 200 in FIG. 17) may receive a wireless signal from the outside through an antenna port/transceiver. The received radio signal may be converted into a baseband signal through a signal restorer. To this end, the signal recoverer may include a frequency downlink converter (ADC), an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module. Thereafter, the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process. The codeword can be restored to the original information block through decoding. Accordingly, the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a de-scrambler and a decoder.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are those in which the components and features of the present invention are combined in a predetermined form. Each component or feature should be considered optional unless stated otherwise. Each component or feature may be implemented in a form that is not combined with other components or features. It is also possible to constitute an embodiment of the invention by combining some components and/or features. The order of the operations described in the embodiments of the present invention can be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments. It is obvious that the claims may be combined with claims that do not have an explicit citation relationship in the claims, or may be included as new claims by amendment after filing.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), gNode B(gNB), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. In this document, a specific operation described as being performed by a base station may be performed by an upper node in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station can be performed by a base station or other network nodes other than the base station. The base station may be replaced by terms such as a fixed station, gNode B (gNB), Node B, eNode B (eNB), access point, and the like.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the characteristics of the present invention. Accordingly, the above detailed description should not be construed as limiting in all respects, but should be considered illustrative. The scope of the invention should be determined by rational interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
상술한 바와 같은 비면허 대역에서 무선 링크 모니터링을 위한 참조 신호를 송수신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.A method for transmitting and receiving a reference signal for wireless link monitoring in the unlicensed band as described above and an apparatus therefor have been mainly described as an example applied to the 5th generation NewRAT system, but it is applicable to various wireless communication systems in addition to the 5th generation NewRAT system. It is possible.

Claims (15)

  1. 비면허 대역에서 단말이 무선 링크를 측정하는 방법에 있어서,In the method for measuring the radio link by the terminal in the unlicensed band,
    DRS (Discovery Reference Signal)를 위한 수신 윈도우에 관련된 정보를 수신하고,Receive information related to the reception window for DRS (Discovery Reference Signal),
    상기 수신 윈도우 내에서 적어도 하나의 DRS를 수신하고,Receiving at least one DRS within the reception window,
    상기 수신 윈도우 밖에서 적어도 하나의 SSB (Synchronization Signal Block)을 수신하고,Receiving at least one Synchronization Signal Block (SSB) outside the reception window,
    상기 적어도 하나의 DRS 및 적어도 하나의 SSB를 각각에 대한 무선 링크 품질들을 측정하는 것을 포함하고,Measuring radio link qualities for each of the at least one DRS and the at least one SSB,
    상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 중, 하나 이상의 무선 링크 품질이 임계값 보다 큰 것을 기반으로, 상기 무선 링크가 In-Sync로 결정되고,Among the radio link qualities for the at least one DRS and the at least one SSB, the radio link is determined to be In-Sync based on one or more radio link quality is greater than a threshold,
    상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 모두가 임계값 이하인 것을 기반으로, 상기 무선 링크가 Out-of-Sync로 결정되거나 상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB가 모두 DTX (Discontinuous Transmission)인 것으로 결정되는,Based on that both the radio link qualities for the at least one DRS and the at least one SSB are below a threshold, the radio link is determined to be out-of-sync or the at least one DRS and the at least one SSB are both Determined to be DTX (Discontinuous Transmission),
    무선 링크 측정 방법. How to measure wireless links.
  2. 제 1 항에 있어서,According to claim 1,
    상기 DRS는,The DRS,
    SSB 또는 CSI-RS(Channel State Information - Reference Signal) 인,SSB or CSI-RS (Channel State Information-Reference Signal),
    무선 링크 측정 방법.How to measure wireless links.
  3. 제 1 항에 있어서,According to claim 1,
    상기 수신 윈도우에 관련된 정보는, 상기 수신 윈도우의 주기에 관한 정보를 포함하고,The information related to the reception window includes information on the period of the reception window,
    상기 적어도 하나의 SSB는, 상기 수신 윈도우부터 상기 주기를 위한 시간 구간 동안 수신되는,The at least one SSB is received during the time period for the period from the reception window,
    무선 링크 측정 방법.How to measure wireless links.
  4. 제 1 항에 있어서,According to claim 1,
    상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB 모두가 DTX인 것으로 결정된 것을 기반으로, 이전 보고 내용이 다시 보고 되는,Based on the determination that both the at least one DRS and the at least one SSB are DTX, the previous report content is reported again,
    무선 링크 측정 방법.How to measure wireless links.
  5. 제 1 항에 있어서,According to claim 1,
    상기 적어도 하나의 DRS의 전송 전력과 상기 적어도 하나의 SSB의 전송 전력은 상이한,The transmission power of the at least one DRS and the transmission power of the at least one SSB are different,
    무선 링크 측정 방법. How to measure wireless links.
  6. 제 1 항에 있어서,According to claim 1,
    상기 무선 링크 품질을 상위 계층으로 보고하는 보고 주기는,The reporting period for reporting the radio link quality to the upper layer,
    상기 수신 윈도우의 주기와 동일한,The same as the period of the reception window,
    무선 링크 측정 방법.How to measure wireless links.
  7. 제 1 항에 있어서,According to claim 1,
    상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,The terminal can communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal,
    무선 링크 측정 방법.How to measure wireless links.
  8. 비면허 대역에서 무선 링크를 측정하기 위한 단말에 있어서,In the terminal for measuring the radio link in the unlicensed band,
    적어도 하나의 송수신기;At least one transceiver;
    적어도 하나의 프로세서; 및At least one processor; And
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
    상기 특정 동작은,The specific operation,
    상기 적어도 하나의 송수신기를 통해, DRS (Discovery Reference Signal)를 위한 수신 윈도우에 관련된 정보를 수신하고,Through the at least one transceiver, receives information related to a reception window for DRS (Discovery Reference Signal),
    상기 적어도 하나의 송수신기를 통해, 상기 수신 윈도우 내에서 적어도 하나의 DRS를 수신하고,Receiving at least one DRS in the reception window through the at least one transceiver,
    상기 적어도 하나의 송수신기를 통해, 상기 수신 윈도우 밖에서 적어도 하나의 SSB (Synchronization Signal Block)을 수신하고,Through the at least one transceiver, receive at least one Synchronization Signal Block (SSB) outside the receive window,
    상기 적어도 하나의 DRS 및 적어도 하나의 SSB를 각각에 대한 무선 링크 품질들을 측정하는 것을 포함하고,Measuring radio link qualities for each of the at least one DRS and the at least one SSB,
    상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 중, 하나 이상의 무선 링크 품질이 임계값 보다 큰 것을 기반으로, 상기 무선 링크가 In-Sync로 결정되고,Among the radio link qualities for the at least one DRS and the at least one SSB, the radio link is determined to be In-Sync based on one or more radio link quality is greater than a threshold,
    상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 모두가 임계값 이하인 것을 기반으로, 상기 무선 링크가 Out-of-Sync로 결정되거나 상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB가 모두 DTX (Discontinuous Transmission)인 것으로 결정되는,Based on that both the radio link qualities for the at least one DRS and the at least one SSB are below a threshold, the radio link is determined to be out-of-sync or the at least one DRS and the at least one SSB are both Determined to be DTX (Discontinuous Transmission),
    단말.Terminal.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 DRS는,The DRS,
    SSB 또는 CSI-RS(Channel State Information - Reference Signal) 인,SSB or CSI-RS (Channel State Information-Reference Signal),
    단말.Terminal.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 수신 윈도우에 관련된 정보는, 상기 수신 윈도우의 주기에 관한 정보를 포함하고,The information related to the reception window includes information on the period of the reception window,
    상기 적어도 하나의 SSB는, 상기 수신 윈도우부터 상기 주기를 위한 시간 구간 동안 수신되는,The at least one SSB is received during the time period for the period from the reception window,
    단말.Terminal.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB 모두가 DTX인 것으로 결정된 것을 기반으로, 이전 보고 내용이 다시 보고 되는,Based on the determination that both the at least one DRS and the at least one SSB are DTX, the previous report content is reported again,
    단말.Terminal.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 적어도 하나의 DRS의 전송 전력과 상기 적어도 하나의 SSB의 전송 전력은 상이한,The transmission power of the at least one DRS and the transmission power of the at least one SSB are different,
    단말.Terminal.
  13. 제 8 항에 있어서,The method of claim 8,
    상기 무선 링크 품질을 상위 계층으로 보고하는 보고 주기는,The reporting period for reporting the radio link quality to the upper layer,
    상기 수신 윈도우의 주기와 동일한,The same as the period of the reception window,
    단말.Terminal.
  14. 제 8 항에 있어서,The method of claim 8,
    상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,The terminal can communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal,
    단말.Terminal.
  15. 비면허 대역에서 무선 링크를 측정하기 위한 장치에 있어서,An apparatus for measuring a radio link in an unlicensed band,
    적어도 하나의 프로세서; 및At least one processor; And
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
    상기 특정 동작은,The specific operation,
    DRS (Discovery Reference Signal)를 위한 수신 윈도우에 관련된 정보를 수신하고,Receive information related to the reception window for DRS (Discovery Reference Signal),
    상기 수신 윈도우 내에서 적어도 하나의 DRS를 수신하고,Receiving at least one DRS within the reception window,
    상기 수신 윈도우 밖에서 적어도 하나의 SSB (Synchronization Signal Block)을 수신하고,Receiving at least one Synchronization Signal Block (SSB) outside the reception window,
    상기 적어도 하나의 DRS 및 적어도 하나의 SSB를 각각에 대한 무선 링크 품질들을 측정하는 것을 포함하고,Measuring radio link qualities for each of the at least one DRS and the at least one SSB,
    상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 중, 하나 이상의 무선 링크 품질이 임계값 보다 큰 것을 기반으로, 상기 무선 링크가 In-Sync로 결정되고,Among the radio link qualities for the at least one DRS and the at least one SSB, the radio link is determined to be In-Sync based on one or more radio link quality is greater than a threshold,
    상기 적어도 하나의 DRS 및 적어도 하나의 SSB에 대한 무선 링크 품질들 모두가 임계값 이하인 것을 기반으로, 상기 무선 링크가 Out-of-Sync로 결정되거나 상기 적어도 하나의 DRS 및 상기 적어도 하나의 SSB가 DTX (Discontinuous Transmission)인 것으로 결정되는,Based on that all of the radio link qualities for the at least one DRS and the at least one SSB are below a threshold, the radio link is determined to be out-of-sync or the at least one DRS and the at least one SSB is a DTX (Discontinuous Transmission),
    장치.Device.
PCT/KR2019/015301 2019-01-09 2019-11-12 Method for measuring radio link in unlicensed band and device therefor WO2020145497A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0002551 2019-01-09
KR20190002551 2019-01-09

Publications (1)

Publication Number Publication Date
WO2020145497A1 true WO2020145497A1 (en) 2020-07-16

Family

ID=71520787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015301 WO2020145497A1 (en) 2019-01-09 2019-11-12 Method for measuring radio link in unlicensed band and device therefor

Country Status (1)

Country Link
WO (1) WO2020145497A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469060A (en) * 2020-12-08 2021-03-09 中国联合网络通信集团有限公司 Antenna parameter determination method and device
CN112514293A (en) * 2020-10-29 2021-03-16 北京小米移动软件有限公司 Information transmission method and device and communication equipment
WO2023060481A1 (en) * 2021-10-13 2023-04-20 Lenovo (Beijing) Limited Methods and apparatuses for physical downlink shared channel reception
WO2023205923A1 (en) * 2022-04-24 2023-11-02 Qualcomm Incorporated Configured grant small data transmissions in an unlicensed spectrum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180160328A1 (en) * 2016-12-01 2018-06-07 Qualcomm Incorporated Access terminal radio link monitoring (rlm) on a shared communication medium
US20180184362A1 (en) * 2016-12-23 2018-06-28 Alireza Babaei Licensed assisted access radio link failure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180160328A1 (en) * 2016-12-01 2018-06-07 Qualcomm Incorporated Access terminal radio link monitoring (rlm) on a shared communication medium
US20180184362A1 (en) * 2016-12-23 2018-06-28 Alireza Babaei Licensed assisted access radio link failure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHARTER COMMUNICATIONS: "Feature lead summary #1 of initial access and mobility", R1-1813906, 3GPP TSG RAN WG1 MEETING #95, 15 November 2018 (2018-11-15), Spokane, USA, XP051494402 *
INTEL CORPORATION: "Considerations of RLF/RLM for NR-u", R2-1816698, 3GPP TSG RAN WG2 MEETING #104, 2 November 2018 (2018-11-02), Spokane, USA, XP051480643 *
NOKIA: "On Initial Access and Mobility for NR-U", R1-1812698, 3GPP TSG RAN WG1 MEETING #95, SPOKANE, USA, 2 November 2018 (2018-11-02), XP051478942 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112514293A (en) * 2020-10-29 2021-03-16 北京小米移动软件有限公司 Information transmission method and device and communication equipment
CN112514293B (en) * 2020-10-29 2023-02-17 北京小米移动软件有限公司 Information transmission method and device and communication equipment
CN112469060A (en) * 2020-12-08 2021-03-09 中国联合网络通信集团有限公司 Antenna parameter determination method and device
CN112469060B (en) * 2020-12-08 2023-05-16 中国联合网络通信集团有限公司 Antenna parameter determining method and device
WO2023060481A1 (en) * 2021-10-13 2023-04-20 Lenovo (Beijing) Limited Methods and apparatuses for physical downlink shared channel reception
WO2023205923A1 (en) * 2022-04-24 2023-11-02 Qualcomm Incorporated Configured grant small data transmissions in an unlicensed spectrum

Similar Documents

Publication Publication Date Title
WO2020032698A1 (en) Method and apparatus for coexistence of sidelink communications related to different rats in nr v2x
WO2020032687A1 (en) Method and apparatus for performing congestion control in nr v2x
WO2020145751A1 (en) Method for transmitting or receiving synchronization signal block in unlicensed band, and apparatus therefor
WO2020067761A1 (en) Method for transmitting and receiving data signal and device therefor
WO2020085813A1 (en) Method for transmitting and receiving downlink data channel, and device for same
WO2020027637A1 (en) Method and apparatus for performing carrier (re)selection in nr v2x
WO2020085853A1 (en) Method and apparatus for determining whether to transmit synchronization information in nr v2x
WO2020167083A1 (en) Method by which terminal performs random access procedure in wireless communication system, and device therefor
WO2020145497A1 (en) Method for measuring radio link in unlicensed band and device therefor
WO2020027635A1 (en) Method and device for performing synchronization in nr v2x
WO2021033946A1 (en) Method by which terminal transmits/receives signal for performing random access channel procedure in wireless communication system, and device therefor
WO2020032679A1 (en) Communication method and device considering flexible slot format in nr v2x
WO2020060214A1 (en) Method and terminal for transmitting and receiving signal in wireless communication system
WO2020145746A1 (en) Method for acquiring time information about synchronization signal block in unlicensed band, and device for same
WO2020145487A1 (en) Method and ue for transmitting signal in wireless communication system
WO2021034083A1 (en) Method for transmitting and receiving sidelink signal in wireless communication system
WO2020226265A1 (en) Method for transmitting and receiving synchronization signal block in unlicensed band, and device therefor
WO2020067843A1 (en) Method and apparatus for selecting sidelink resource in nr v2x
WO2020159312A1 (en) Method for measuring position of terminal in wireless communication system and terminal
WO2020096275A1 (en) Method for transmitting or receiving channel state information-reference signal in unlicensed band, and device therefor
WO2020067760A1 (en) Method for performing radio link monitoring and apparatus therefor
WO2020153610A1 (en) Method for transmitting and receiving uplink in unlicensed band, and device therefor
WO2020027548A1 (en) Method and device for occupying resources in nr v2x
WO2020060089A1 (en) Method for transmitting and receiving downlink channel and device therefor
WO2020027636A1 (en) Method and device for performing power control in nr v2x

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909168

Country of ref document: EP

Kind code of ref document: A1