WO2020145354A1 - Porous fine cellulose fiber complex sheet - Google Patents

Porous fine cellulose fiber complex sheet Download PDF

Info

Publication number
WO2020145354A1
WO2020145354A1 PCT/JP2020/000503 JP2020000503W WO2020145354A1 WO 2020145354 A1 WO2020145354 A1 WO 2020145354A1 JP 2020000503 W JP2020000503 W JP 2020000503W WO 2020145354 A1 WO2020145354 A1 WO 2020145354A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine cellulose
cellulose fiber
porous fine
sheet
composite sheet
Prior art date
Application number
PCT/JP2020/000503
Other languages
French (fr)
Japanese (ja)
Inventor
前川 知文
一文 河原
真衣 石川
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2020565209A priority Critical patent/JPWO2020145354A1/en
Publication of WO2020145354A1 publication Critical patent/WO2020145354A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration

Definitions

  • the present invention relates to a porous fine cellulose fiber composite sheet containing fine cellulose fibers and a thermoplastic resin, which is optimal as a material for automobile parts.
  • thermoplastic resin that can do this is preferably used. Since thermoplastic resins generally have a large linear expansion coefficient, studies have been made so far to suppress the linear expansion coefficient by blending a fibrous or plate-like inorganic filler. However, when injection molding is performed using a resin containing a fibrous inorganic filler, the linear expansion coefficient in the injection flow direction can be made small, but the linear expansion coefficient in the direction perpendicular to the flow cannot be made small.
  • the fine cellulose fiber sheet is a porous body in order to impregnate the thermoplastic resin.
  • the conventional thermoplastic resin is impregnated into the porous body by hot pressing, the fine cellulose fiber sheet is used.
  • the fiber sheet has a problem that it is easily broken. When the fine cellulose fiber sheet is destroyed, it becomes difficult to exhibit desired linear expansion coefficient and mechanical properties in the composite sheet of the fine cellulose fiber sheet and the resin.
  • Patent Document 1 discloses a first fiber having a number average fiber width of 2 nm or more and less than 1000 nm and a second fiber having a number average fiber width of 1000 nm or more and 100000 nm or less and a number average fiber length of 0.1 to 20 mm.
  • a composite sheet in which a resin is contained in a nonwoven fabric containing is described.
  • Patent Document 2 describes a composite sheet containing at least fine fibers and a matrix resin, wherein the fine fibers are unevenly distributed on at least one surface of the composite sheet.
  • Patent Document 3 when a fine cellulose fiber is produced from pulp, a hydrophobizing agent is added to produce a fine cellulose fiber having a hydrophobic surface, and a papermaking/dried fine cellulose fiber sheet is impregnated with a resin. A composite sheet is described.
  • the porous fine cellulose fiber sheets obtained by the methods described in Patent Documents 1 and 2 are densified by drying shrinkage when dried in a hygroscopic state even if they are porous immediately after production.
  • a fine cellulose fiber and a thermoplastic resin are compounded by hot pressing, it is necessary to dry the fine cellulose fiber sheet before hot pressing in order to avoid irregularities on the surface of the molded product caused by evaporation of water in cellulose.
  • the porous fine cellulose fiber sheet is densified. Therefore, there is a demand for a porous fine cellulose fiber sheet in which the porous structure does not change even after the wet-drying operation, specifically, the air permeation resistance does not change.
  • Patent Documents 1 and 2 The porous fine cellulose fiber sheet described in Patent Documents 1 and 2 is not sufficiently impregnated with resin when the porous fine cellulose fiber sheet is densified when it is combined with a thermoplastic resin after drying. The problem occurs. Further, although Patent Documents 1 and 2 describe examples in which a fine cellulose fiber sheet is impregnated with a thermosetting resin, technical difficulties in complexing the fine cellulose fiber sheet with a thermoplastic resin are described. There is no description about sex.
  • Patent Document 3 describes a method in which a resin is compounded with a fine cellulose fiber sheet whose air resistance does not easily change even after a wet drying operation.
  • these sheets can be produced only as a thin sheet, and when used for automobile outer panel parts, when the prepreg containing the fine cellulose fiber sheet and the thermoplastic resin is hot pressed, the sheet in the prepreg is used. There was a problem that it was easy to tear. When the sheet is torn, the prepreg cannot exhibit the desired coefficient of linear expansion and mechanical properties. Therefore, there has been a demand for a fine cellulose fiber sheet that does not break even when it is hot pressed with a thermoplastic resin.
  • the problem to be solved by the present invention is to provide a composite sheet containing a porous fine cellulose fiber sheet and a thermoplastic resin, which has a low coefficient of linear thermal expansion and a small anisotropy.
  • the present inventors have conducted intensive studies and experiments to solve the above problems, and as a result, have found that the above problems can be solved by the configuration of the present disclosure, and have completed the present invention. .. That is, the present invention includes the following embodiments.
  • the porous fine cellulose fiber composite sheet according to Aspect 2 or 3 above which contains a porosifying agent.
  • the porous fine cellulose fiber composite sheet according to the above aspect 1 or 4 which contains the porosifying agent in an amount of 0.1% by mass or more and 100% by mass or less based on 100% by mass of the fine cellulose fibers.
  • the porous fine cellulose fiber composite sheet according to any one of the above aspects 1 to 5 wherein the porous fine cellulose fiber composite sheet has an air bubble ratio of 0.5% or less.
  • porous fine cellulose fiber composite sheet according to any one of the above aspects 1 to 7, wherein the porous fine cellulose fiber sheet does not have a broken portion having a length of 1 cm or more and a width of 1 mm or more.
  • the porous fine cellulose fiber sheet contains fine cellulose fibers having a branched structure in which a thick trunk having a fiber diameter of 1 ⁇ m to 30 ⁇ m branches fine branches having a fiber diameter of 2 to 1000 nm.
  • porous fine cellulose fiber composite sheet according to any one of the above aspects 1 to 10, wherein the porous fine cellulose fiber sheet contains acetylated cellulose having an acetylation degree of 0.1 to 1.5.
  • thermoplastic resin includes one or more selected from the group consisting of a polyolefin resin, a polyamide resin, a polyester resin, a polyacetal resin, a poly(meth)acrylate resin, and a polyphenylene ether resin.
  • a slurry preparation step of preparing a slurry containing a porosifying agent, fine cellulose fibers, and water A film forming step of forming a wet paper web by dehydrating the slurry by a papermaking method, Porous fine cellulose fiber sheet forming step of obtaining a porous fine cellulose fiber sheet by at least drying the wet paper, and porous fine cellulose fiber composite sheet by impregnating the porous fine cellulose fiber sheet with a thermoplastic resin
  • a compounding process to obtain A method for producing a porous fine cellulose fiber composite sheet, comprising:
  • a composite sheet including a porous fine cellulose fiber sheet and a thermoplastic resin, which has a low coefficient of linear thermal expansion and a small anisotropy.
  • the porous fine cellulose fiber composite sheet according to an aspect of the present invention can achieve excellent thermal linear expansion coefficient and mechanical properties with little anisotropy when used for, for example, an automobile outer panel component. Further, the porous fine cellulose fiber composite sheet according to an aspect of the present invention can exhibit a thermal linear expansion coefficient close to that of a metal and less anisotropy when used for, for example, a fender. It can contribute to weight reduction of the automobile.
  • a cross-sectional SEM image of a porous fine cellulose fiber composite sheet The photograph which observed from the upper surface the porous fine cellulose fiber composite sheet in which the porous fine cellulose fiber sheet has a fractured portion with a length of 1 cm or more and a width of 1 cm or more. The photograph which observed the porous fine cellulose fiber composite sheet which has no breakage part in the porous fine cellulose fiber sheet from the upper surface. SEM image of fine cellulose fibers with a branched structure.
  • the present embodiment for implementing the present invention
  • the present embodiment will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications can be carried out within the scope of the gist.
  • One aspect of the present invention includes the following requirements (1) to (4): (1) Containing one or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less, (2) The porous fine cellulose fiber sheet is arranged with a film thickness of 25 ⁇ m or more (preferably 25 ⁇ m or more and 2000 ⁇ m or less), (3) Including a thermoplastic resin, (4) Including a porosifying agent, There is provided a porous fine cellulose fiber composite sheet that satisfies all of the above.
  • Another aspect of the present invention provides the following requirements (1) to (4): (1) Containing one or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less, (2) The porous fine cellulose fiber sheet is arranged with a film thickness of 25 ⁇ m or more (preferably 25 ⁇ m or more and 4000 ⁇ m or less), (3) Including a thermoplastic resin, (4) The porous fine cellulose fiber sheet is impregnated with the thermoplastic resin, There is provided a porous fine cellulose fiber composite sheet that satisfies all of the above.
  • the porous fine cellulose fiber composite sheet of the present disclosure includes a porosifying agent. In one aspect, the porous fine cellulose fiber composite sheet of the present disclosure includes one or more base sheet layers. In one aspect, the porous fine cellulose fiber composite sheet of the present disclosure contains a blocked polyisocyanate or a crosslinked product thereof.
  • Another aspect of the present invention provides the following requirements (1) to (6): (1) Containing one or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less, (2) At least one base sheet layer is included, (3) The porous fine cellulose fiber sheet is arranged with a film thickness of 25 ⁇ m or more, (4) Including a thermoplastic resin, (5) Including a porosifying agent, (6) Including a blocked polyisocyanate or a crosslinked product thereof, There is provided a porous fine cellulose fiber composite sheet that satisfies all of the above.
  • the porous fine cellulose fiber sheet of this embodiment is composed of fine cellulose fibers.
  • fine cellulose fibers means cellulose fibers having a number average fiber diameter of 2 to 1000 nm.
  • the finely divided cellulose fibers have a crystalline structure of cellulose type I and/or type II.
  • Known crystal forms of cellulose include I type, II type, III type, IV type and the like.
  • Type I and type II celluloses are commonly used, while type III and type IV celluloses have been obtained on a laboratory scale but not on an industrial scale.
  • As the fine cellulose fibers cellulose I-type crystals are more preferable because they are resistant to deterioration by heating when forming a composite sheet and have a high tensile elastic modulus.
  • the crystallinity of the fine cellulose fiber of this embodiment is preferably 50% or more. When the crystallinity is within this range, the mechanical properties (in particular, strength and dimensional stability) of the fine cellulose fibers themselves are enhanced, so that the strength and dimensional stability of the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet are improved. Tends to be higher.
  • the crystallinity of the fine cellulose fiber of the present embodiment is more preferably 60% or more, further preferably 65%, and most preferably 70%. The higher the crystallinity of the fine cellulose fibers, the more preferable it is. Therefore, the upper limit is not particularly limited, but from the viewpoint of production, 99% is the preferable upper limit.
  • the crystallinity is determined by the Segal method from the diffraction pattern (2 ⁇ /deg. is 10 to 30) when the sample is measured by wide-angle X-ray diffraction. Is calculated by the following formula (1).
  • Crystallinity (%) [I (200) ⁇ I (amorphous) ]/I (200) ⁇ 100
  • the degree of polymerization (DP) of the fine cellulose fibers is preferably 100 or more and 12000 or less.
  • the degree of polymerization is the number of repeats of anhydroglucose units forming a cellulose molecular chain. Since the degree of polymerization of the fine cellulose fibers is 100 or more, the tensile breaking strength and elastic modulus of the fine cellulose fibers themselves are improved, and the high tensile breaking strength and thermal stability of the porous fine cellulose fiber composite sheet are expressed. preferable.
  • There is no particular upper limit to the degree of polymerization of the fine cellulose fibers but cellulose having a degree of polymerization of more than 12000 is practically difficult to obtain, and industrial utilization tends to be difficult.
  • the degree of polymerization of the fine cellulose fibers is preferably 150 to 8000.
  • the intrinsic viscosity JIS P 8215:1998) of a dilute solution of cellulose using a copper ethylenediamine solution is determined, and then the intrinsic viscosity of cellulose and the degree of polymerization DP have the relationship of the following formula (3). Is used to obtain the degree of polymerization DP.
  • Intrinsic viscosity [ ⁇ ] K ⁇ DPa Formula (3)
  • K and a are constants determined by the type of polymer, and in the case of cellulose, K is 5.7 ⁇ 10 ⁇ 3 and a is 1.
  • the fine cellulose fibers of this embodiment may be chemically modified.
  • hydroxyl groups present on the surface of fine cellulose fibers are esterified to ester acetate, nitrate ester, sulfate ester, phosphate ester, etc. (esterified fine cellulose fibers), alkyl ethers represented by methyl ether, and carboxymethyl.
  • etherified fine cellulose fiber silyl etherified by silane coupling agent (silylated fine cellulose fiber), TEMPO (2,2,2) 6,6-tetramethylpiperidinooxy radical) oxidation catalyst oxidizes the hydroxyl group at the 6-position to give a carboxyl group (including acid type and salt type) (carboxylated fine cellulose fiber).
  • the chemical modification increases the affinity between the resin and the fine cellulose fibers, and improves the tensile breaking strength and thermal stability of the porous fine cellulose fiber composite sheet.
  • the chemical modification is preferably esterification, more preferably acetylation, from the viewpoint of simplifying the reaction process and improving the heat resistance of the fine cellulose fibers themselves.
  • the degree of esterification (preferably the degree of acetylation) (DS) of the fine cellulose fibers is preferably 0.1 or more and 1.5 or less, more preferably 0.2 or more and 1.2 or less.
  • DS degree of esterification (preferably the degree of acetylation) (DS) of the fine cellulose fibers.
  • the calculation of DS can be performed by infrared spectroscopic measurement of fine cellulose fibers.
  • the modification ratio (IR index 1030) defined by the peak height of the absorption band based on the above/the peak height of the absorption band of the cellulose skeleton C—O is preferably 0.02 or more and 0.37 or less.
  • the chemical modification may occur on some (eg, both internal or surface) or all (eg, both internal and surface) of the fine cellulosic fibers, but the chemical modification only occurs on some of the fine cellulosic fibers.
  • the cellulose skeleton can be left in the fine cellulose fibers.
  • only the surface of the fine cellulose fiber can be chemically modified to leave the cellulose skeleton in the center.
  • the heat resistance is improved by chemical modification, the affinity between the resin and the fine cellulose fiber in the porous fine cellulose fiber composite sheet is improved, and the dimensional stability of the porous fine cellulose fiber composite sheet is improved. It is more preferable because the improvement can be realized.
  • the number average fiber diameter of the fine cellulose fibers of the present embodiment is 2 nm or more and 1000 nm or less, preferably 10 nm or more and 800 nm or less, more preferably 20 nm or more and 500 nm or less, further preferably 20 nm or more and 400 nm or less, particularly preferably 30 nm or more and 300 nm or less. This range is advantageous in maintaining the strength and dimensional stability of the sheet, and forming minute and uniform pore sizes.
  • the number average fiber diameter of the fine cellulose fibers is less than 2 nm, keratinization due to aggregation of the fine cellulose fibers is likely to occur in the drying step in the production of the porous fine cellulose fiber sheet, and the porous fine cellulose fibers having a desired porosity. I can't get a seat.
  • the number average fiber diameter of the fine cellulose fibers exceeds 1000 nm, the effect as a filler is small because the interface between the resin and the fine cellulose fibers is small, and the desired tensile breaking strength and thermal stability of the composite sheet (specifically, , Low linear thermal expansion coefficient, and elastic retention at high temperature) cannot be obtained.
  • the specific surface area equivalent diameter calculated from the specific surface area is used.
  • the specific surface area equivalent diameter is a diameter calculated from the specific surface area obtained by the BET method by nitrogen adsorption.
  • the specific surface area-equivalent diameter is measured using a BET method by nitrogen adsorption on a porous fine cellulose fiber sheet prepared by drying an aqueous dispersion of fine cellulose fibers with a solvent and then drying the solvent. It is calculated from the specific surface area thus obtained.
  • the relationship between the specific surface area and the equivalent surface area of the specific surface area is i) an ideal state in which there is no aggregation between the fine cellulose fibers, and ii) the cellulose density is d (g/cm 3 ) and the diameter is D ( nm), it is represented by the following equation (5).
  • the fine cellulose fibers of the present embodiment preferably include fibers having a structure in which a thick trunk having a fiber diameter of 1 ⁇ m to 30 ⁇ m branches fine branches having a fiber diameter of 2 nm to 1000 nm (see FIG. 4).
  • a porous fine cellulose fiber sheet is subjected to high heat and pressure by hot pressing. Therefore, the porous fine cellulose fiber sheet is required to have a certain strength or more, and the thick film is preferable.
  • the production of a sheet using fine cellulose fibers is characterized by 1) longer draining time, 2) longer drying time, 3) distortion of the sheet due to drying shrinkage, compared to general pulp.
  • the presence or absence of the fine cellulose fibers having the branched structure can be confirmed by the following method. That is, using a high-shear homogenizer (for example, trade name "Excel Auto Homogenizer ED-7" manufactured by Nippon Seiki Co., Ltd.) of fine cellulose fibers dispersed in water or a water-soluble organic solvent, processing conditions: rotation speed 15,000 rpm ⁇ A water dispersion dispersed for 5 minutes was diluted with pure water to 0.1 to 0.5% by mass, cast on a hydrophilized Si substrate, and air dried to obtain a measurement sample, which was a scanning type.
  • a high-shear homogenizer for example, trade name "Excel Auto Homogenizer ED-7" manufactured by Nippon Seiki Co., Ltd.
  • the number average fiber length of the fine cellulose fibers is not particularly limited, but is preferably 200 nm or more, more preferably 500 nm or more, further preferably 1000 nm or more.
  • the ratio (L/D) of the number average fiber length (L)/number average fiber diameter (D) of the fine cellulose fibers is preferably 30 or more, more preferably 100 or more, still more preferably 200 or more, still more preferably 300. As described above, it is most preferably 500 or more, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less.
  • the fine cellulose fibers are highly entangled with each other, and the obtained sheet has high self-sustaining property and is a porous fine cellulose fiber sheet. Can be easily obtained.
  • the porous fine cellulose fiber sheet is continuously produced, the remarkable orientation of the fine cellulose fiber in the porous fine cellulose fiber sheet does not occur, and the porous fine cellulose fiber composite sheet It has small anisotropy in tensile strength at break and coefficient of thermal expansion, and is preferable in applications such as automobile parts.
  • an aqueous dispersion of the fine cellulose fibers was used with a high shear homogenizer (eg, Nihon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”), and processing conditions: rotation speed 15, An aqueous dispersion dispersed at 000 rpm for 5 minutes was diluted with pure water to 0.1 to 0.5% by mass, cast on mica, and air-dried to obtain a measurement sample, which was used as a high-resolution scanning microscope (SEM). ) Or by measuring with an atomic force microscope (AFM).
  • SEM high-resolution scanning microscope
  • AFM atomic force microscope
  • the number average fiber length and the number average fiber diameter of 100 randomly selected fine cellulose fibers are selected in an observation visual field in which the magnification is adjusted so that at least 100 fine cellulose fibers are observed. measure.
  • the L/D of each fine cellulose fiber was calculated from this value, and the average value was L/D.
  • the porous fine cellulose fiber sheet of the present embodiment preferably has a sheet areal weight W of 20 g/m 2 or more and 1000 g/m 2 or less, or 20 g/m 2 or more and 500 g/m 2 or less, or 20 g/m 2 or more and 200 g. /M 2 , or 40 g/m 2 or more and 150 g/m 2 or less, or 60 g/m 2 or more and 120 g/m 2 or less.
  • the basis weight is 20 g/m 2 or more, the porous fine cellulose fiber sheet is less likely to break during hot pressing with a thermoplastic resin, which is preferable.
  • Basis weight W (g/m 2 ) W1/0.04 formula (7)
  • the thickness of the porous fine cellulose fiber sheet of the present embodiment is, in one aspect, 25 ⁇ m or more, preferably 25 ⁇ m or more and 4000 ⁇ m or less, more preferably 25 ⁇ m or more and 2000 ⁇ m or less, more preferably 25 ⁇ m or more and 1000 ⁇ m or less, more preferably 25 ⁇ m or more and 500 ⁇ m or less. , More preferably 50 ⁇ m or more and 300 ⁇ m or less, still more preferably 75 ⁇ m or more and 200 ⁇ m or less. When the thickness is less than 25 ⁇ m, the porous fine cellulose fiber sheet is likely to be broken during hot pressing with the thermoplastic resin.
  • a thickness of 4000 ⁇ m or less, particularly 2000 ⁇ m or less is preferable for continuous production without lengthening the resin impregnation time when producing a composite sheet with a thermoplastic resin.
  • the porous fine cellulose fiber sheet in the porous fine cellulose fiber composite sheet may be present in one layer or two or more layers. In the case of two or more layers, the total thickness of the porous fine cellulose fiber sheet portion in the porous fine cellulose fiber composite sheet may be 50 ⁇ m or more and 4000 ⁇ m or less, or 100 ⁇ m or more and 3000 ⁇ m or less, or 200 ⁇ m or more and 2000 ⁇ m or less. The thickness is measured at 23° C.
  • porous fine cellulose fiber sheet 20 cm ⁇ 20 cm
  • arbitrary 10 points are set. It is measured by a contact type film thickness meter, and the number average value is taken as the thickness ( ⁇ m).
  • the cross section of the composite sheet is cut out, and SEM observation or optical microscope observation of 10 cross sections is arbitrarily performed, and the thickness of the fine cellulose fiber sheet is measured at each place. The obtained measurement value ⁇ the number average value at the above 10 points is calculated to obtain the thickness ( ⁇ m) of the fine cellulose fiber sheet.
  • the average air permeation resistance per unit weight of 10 g/m 2 of the porous fine cellulose fiber sheet of the present embodiment is preferably 1 sec/100 ml or more and 7000 sec/100 ml or less, more preferably 1 sec/100 ml or more and 6000 sec/100 ml or less, and more preferably Is from 1 sec/100 ml to 5000 sec/100 ml, more preferably from 10 sec/100 ml to 4000 sec/100 ml, even more preferably from 100 sec/100 ml to 3000 sec/100 ml, and most preferably from 200 sec/100 ml to 2000 sec/100 ml.
  • the air resistance When the air resistance is 7,000 sec/100 ml or less, the porosity does not become too low, the resin can be easily impregnated into the sheet, and a porous fine cellulose fiber composite sheet can be easily produced, which is preferable.
  • the air permeability resistance is low due to the nature of the sheet, it is difficult to make air permeability resistance smaller than 1 sec/100 ml due to the fineness of the network, so the average air permeability resistance per unit weight of 10 g/m 2 The degree is preferably 1 sec/100 ml or more.
  • the air permeation resistance is the time required for 100 ml of air to pass through the sheet, and the larger the value, the denser the air.
  • An Oki type air resistance tester for example, Model EG01 manufactured by Asahi Seiko Co., Ltd.
  • AR average air resistance
  • the weight per unit area W of the base paper which has been measured in advance, is used to calculate the value per unit weight per 10 g/m 2 from the following formula (8).
  • Permeation resistance per unit weight of 10 g/m 2 AR/W ⁇ 10 Formula (8)
  • the porous fine cellulose fiber sheet of the present embodiment has excellent porous retention before and after the wet and dry operation.
  • the rate of change in air permeation resistance before and after the wet-drying operation is 100% or less, preferably 80% or less, and more preferably 70% or less.
  • the rate of change is 100% or less, when the porous fine cellulose fiber composite sheet is produced by impregnating the water-soluble resin into the porous fine cellulose fiber composite sheet, shrinkage of the porous fine cellulose fiber composite sheet is small, It is preferable because it is easy to produce a porous fine cellulose fiber composite sheet having a uniform film thickness.
  • there is no particular lower limit to the rate of change and the smaller the rate of change, the better.
  • the wet drying operation refers to an operation in which water is evenly applied to a stationary porous fine cellulose fiber sheet so that the sheet moisture content is 300% by mass or more and 400% by mass or less and then dried in an oven. ..
  • the air permeation resistance of the sheet is measured before and after this operation, and the change is taken as the rate of increase in air permeation resistance.
  • a porous fine cellulose fiber sheet (20 cm ⁇ 20 cm), which has been allowed to stand for 1 day in an environment of 23° C. and 50% RH, is cut into 5 cm ⁇ 5 cm, and 5 sheets are selected from there.
  • the air permeation resistance of each of the five samples is measured, and the measurement place is marked.
  • This air permeation resistance is defined as the initial air permeation resistance R1
  • the average value of five sheets is defined as AR1.
  • the sample is placed on a metal plate, water is sprayed evenly on the metal plate, and water drops adhering to the periphery of the sample are wiped off.
  • the sheet weight before and after this wetting operation is measured, and the sheet moisture content is measured according to the equation (9).
  • the dry fineness of the porous fine cellulose fiber sheet of this embodiment is preferably 1.5 kg/15 mm or more, more preferably 2.0 kg/15 mm or more, and further preferably 3.0 kg/15 mm or more.
  • the porous fine cellulose fiber sheet is less likely to be broken at the time of hot pressing when compounded with the thermoplastic resin, which is preferable.
  • the basis weight (W) of a sample (20 cm ⁇ 20 cm) stored for 24 hours in an environment controlled at room temperature of 23°C and humidity of 50% RH is measured by the above method.
  • it is cut into a width of 15 mm, and the tensile strength at 10 points is measured using a tensile tester at a chuck distance of 100 mm and a tensile speed of 10 mm/min, and the average value is defined as the Dry strength (DS).
  • the non-aqueous Wet strength per unit weight of 10 g/m 2 is preferably 0.3 kg/15 mm or more, more preferably 0.4 kg/15 mm or more, and 0.5 kg/ 15 mm or more is more preferable.
  • the porous fine cellulose fiber sheet is less likely to break during the production of the porous fine cellulose fiber composite sheet in which the impregnated resin and the solvent are hydrophobic, so that the use and production are easy.
  • non-aqueous Wet strength of the porous fine cellulose fiber sheet of the present embodiment there is no particular upper limit for the non-aqueous Wet strength of the porous fine cellulose fiber sheet of the present embodiment, but from the viewpoint of feasibility, it is, for example, 8.0 kg/15 mm or less per unit weight of 10 g/m 2 .
  • the non-aqueous liquid referred to here is methyl cellosolve.
  • non-aqueous Wet intensity measurement method the same method is used except that the solvent used in the aqueous Wet intensity measurement method is changed to methyl cellosolve.
  • the average value of the tensile strength at 10 points is defined as the non-aqueous Wet strength (NWS), and the non-aqueous Wet strength per 10 g/m 2 basis weight (kgf/15 mm) is calculated using the basis weight (W) of the base paper that was measured in advance. It is calculated from (11).
  • NWS non-aqueous Wet strength
  • W basis weight
  • the porosity of the porous fine cellulose fiber sheet of the present embodiment is preferably 20% or more and 90% or less.
  • the porosity means the volume ratio of voids in the porous fine cellulose fiber sheet.
  • the porosity can be determined by the following formula (12) from the area, thickness and weight of the porous fine cellulose fiber sheet.
  • Porosity (volume %) ⁇ (1-B/(M ⁇ A ⁇ t) ⁇ 100 Formula (12)
  • A is the area of the porous fine cellulose fiber sheet (cm 2 )
  • t is the thickness (cm)
  • B is the weight of the porous fine cellulose fiber sheet (g)
  • M is the density of cellulose (1.5 g in this embodiment). /Cm 3 ).
  • the specific surface area of the porous fine cellulose fiber sheet of the present embodiment is preferably 1 m 2 /g or more and 500 m 2 /g or less, more preferably 1 m 2 /g or more and 300 m 2 /g or less, further preferably 1 m 2 /g or more. 200 m 2 /g or less, more preferably 1 m 2 /g or more and 100 m 2 /g or less, particularly preferably 2 m 2 /g or more and 90 m 2 /g or less, most preferably 3 m 2 /g or more and 80 m 2 /g or less. ..
  • the above-mentioned specific surface area means the BET specific surface area measured by the nitrogen gas adsorption method.
  • the specific surface area of the porous fine cellulose fiber sheet is 1 m 2 /g or more, a porous fine cellulose fiber composite sheet having good porosity can be produced. On the other hand, when the specific surface area is 500 m 2 /g or less, it is easy to produce a porous fine cellulose fiber sheet.
  • the porous fine cellulose fiber composite sheet can include one or more base material sheet layers. More specifically, the porous fine cellulose fiber sheet of the present embodiment has at least one fine cellulose fiber layer that is the porous fine cellulose fiber sheet, and a base sheet layer (hereinafter, also referred to as a base sheet). ) It may be provided in the form of a porous fine cellulose fiber laminated sheet containing one or more layers.
  • a porous fine cellulose fiber laminated sheet in which a fine cellulose fiber layer is arranged on a base material sheet a porous fine cellulose fiber laminated sheet composed of three or more layers in which a fine cellulose fiber layer is sandwiched between base material sheets, a base material
  • a porous fine cellulose fiber laminated sheet composed of three or more layers in which a fine cellulose fiber layer is sandwiched between base material sheets, a base material
  • Examples include a porous fine cellulose fiber laminated sheet in which fine cellulose fiber layers are arranged on both sides of the sheet.
  • the porous fine cellulose fiber laminated sheet contains two or more base material sheets, or two or more fine cellulose fiber layers, two or more kinds of base material sheets, or two or more kinds of base material sheets. It may be composed of a fine cellulose fiber layer.
  • the form of the base material sheet of the present embodiment may be a sheet form, and examples thereof include a woven fabric, a knitted fabric, a long fiber nonwoven fabric, a short fiber nonwoven fabric, and a microporous membrane.
  • the constituent fibers of the woven fabric, knitted fabric, long-fiber non-woven fabric, or short-fiber non-woven fabric constituting the base sheet are not particularly limited, and examples thereof include natural cellulose fiber, regenerated cellulose fiber, cellulose derivative fiber, nylon fiber, polyester. Examples thereof include fibers, polyolefin fibers, carbon fibers, glass fibers, aramid fibers, and spun yarns of these fibers. Also, these fibers may be used alone or in combination.
  • the microporous membrane is not particularly limited, but regenerated cellulose, polyolefin resin such as polyethylene and polypropylene, polysulfone, polytetrafluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, polycarbonate, 6-nylon, 6,6 -Polyamide resins such as nylon, acrylic resins such as polymethylmethacrylate, polyketones, polyether ether ketones and the like.
  • the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment preferably contain a porosifying agent in the sheet from the viewpoint of satisfactorily impregnating the thermoplastic resin inside the porous fine cellulose fiber sheet. ..
  • the porosifying agent contained in each of the above sheets is preferably 0.1% by mass or more and 100% by mass or less, more preferably 0.1% by mass or more and 50% by mass or less, and 0.1% by mass or less of the weight of the fine cellulose fiber. It is more preferably 30% by mass or less.
  • a fine film is formed when a fine cellulose fiber slurry consisting of water and fine cellulose fibers is made into a sheet (for example, papermaking) and dried.
  • a sheet for example, papermaking
  • the slurry containing the porosifying agent is formed into a sheet and dried, a porous fine cellulose fiber sheet can be satisfactorily formed.
  • the porosifying agent remains in the sheet even after drying, it is possible to suppress an increase in air permeation resistance even when performing a wet drying operation.
  • the amount of the porosifying agent is 0.1% by mass or more, the amount of the porosifying agent is large and the desired air permeation resistance can be satisfactorily achieved.
  • the content is 100% by mass or less, it is possible to avoid an increase in air permeation resistance due to the pores being filled with the porosity-imparting agent, and the liquid porosity-imparting agent is preferable for continuous production because it does not exude from the sheet.
  • the porosifying agent various compounds capable of making the fine cellulose fiber sheet porous can be used. Specifically, 1) the boiling point under atmospheric pressure is 250° C. or higher, preferably 280° C. or higher, more preferably 300. A compound having a temperature of not less than 0° C. and not soluble in 2) water is preferable.
  • the temperature of the drying step of the sheet production is usually less than 250° C., and if the boiling point of the porosifying agent is 250° C. or more under atmospheric pressure, it is difficult to vaporize in the drying step, so it is not necessary to introduce an exhaust facility, The load in continuous production can be reduced.
  • there is no particular upper limit of the boiling point but from the viewpoint of feasibility, it may be 400° C. or lower.
  • not soluble in water means that an aqueous dispersion of a porosifying agent having a solid content of 1% by mass becomes cloudy at 23°C, or separates into an aqueous layer and an oil layer.
  • 99 g of ion-exchanged water and 1 g of a porosifying agent (solid content 100% by mass) were added to a 100 ml glass vial, and the mixture was stirred at a magnetic stirrer of 750 rpm for 1 hour while controlling the temperature at 50° C., and then at 23° C. Judging from the turbidity and appearance when the temperature is lowered to 0 and stirring is stopped.
  • the turbidity is measured using a turbidimeter, and when the turbidity is 1 NTU or more, it is judged as “not dissolved in water”.
  • the turbidity is preferably 1 NTU or higher, more preferably 3 NTU or higher, further preferably 5 NTU or higher, and most preferably 10 NTU or higher.
  • a turbidimeter for example, TN100 (manufactured by Eutech)
  • 10 ml is put in the measurement vial so that bubbles do not enter the measurement.
  • the amount of ion-exchanged water added is adjusted so that the final water dispersion becomes 1% by mass.
  • the porosifying agent does not dissolve in the slurry and therefore exists as oil droplets, and it is considered that the fine cellulose fibers surround the oil droplets. Then, it is considered that some or all of the oil droplets remain on the sheet and become porous when it is formed into a sheet (for example, papermaking). Therefore, it is desirable as a porosifying agent that it can exist as droplets in water, that is, it does not dissolve in water.
  • the droplets can also be used in a form in which they self-assemble in water such as phospholipids to form a vesicle structure and become cloudy.
  • the phase can be used because it can exist as droplets by vigorous stirring with a mixer or the like. Furthermore, a hydrophobic compound that does not dissolve in water is forcibly emulsified with a surfactant or the like, and even stable droplets in water can be used.
  • the porosifying agent when the porosifying agent is completely dissolved in water, most of the porosifying agent flows out as a filtrate at the time of forming into a sheet, so that the porosifying agent does not remain in the fine cellulose fibers and is excellent as a porosifying agent. It doesn't work.
  • various compounds having the above characteristics can be used, but one or more kinds out of three kinds of a hydrocarbon group, a perfluoroalkyl group or an organosiloxane structure are contained in the skeleton of the compound.
  • a compound containing a hydrocarbon group is more preferable because it has excellent affinity with a resin in producing a resin composite. Only one of the above three types may be contained in the compound, or two or more types may be contained at the same time.
  • the compound may be a low molecular weight compound or a high molecular weight compound.
  • hydrocarbon group a group having 2 to 40 carbon atoms is preferable from the viewpoint of low solubility in water and excellent affinity with resin.
  • the hydrocarbon group may be a saturated or unsaturated aliphatic group (linear, branched or alicyclic), an aromatic group, or a combination thereof.
  • the above-mentioned perfluoroalkyl group has a carbon number of 1 to 10, for example 1 to 8, particularly 1 to 6, especially 4 or 4 from the viewpoint of low solubility in water and excellent affinity with resins.
  • a group of 6 is preferable, and examples thereof include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 CF 3 , —CF(CF 3 ) 2 , —CF 2 CF 2 CF 2 CF 3 , —CF 2 CF( CF 3 ) 2 , -C(CF 3 ) 3 , -(CF 2 ) 4 CF 3 , -(CF 2 ) 2 CF(CF 3 ) 2 , -CF 2 C(CF 3 ) 3 , -CF(CF 3 ) CF 2 CF 2 CF 3 , -(CF 2 ) 5 CF 3 , -(CF 2 ) 3 CF(CF 3 ) 2 , -(CF 2 ) 4 CF(CF 3
  • the above-mentioned organosiloxane structure has an average composition represented by the general formula (1): from the viewpoint of low solubility in water and excellent affinity with a resin.
  • R 1 a SiO (4-a)/2 (1)
  • R 1 s may be the same or different in the molecule, and are a hydrogen atom, a hydroxyl group, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a substituent having 1 to 20 carbon atoms. Alternatively, it is selected from unsubstituted alkoxy groups and a is a natural number of 1.0 to 3.0.
  • the structure represented by is preferred.
  • R 1 of the general formula (1) is preferably an unsubstituted monovalent hydrocarbon group from the viewpoint of low solubility in water and excellent affinity with a resin, but as a specific example in this case Is an alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group; vinyl group A cycloalkyl group such as an allyl group, a cyclopentyl group and a cyclohexyl group; an aryl group such as a phenyl group; and an aralkyl group such as 2-phenylethyl and 2-phenylpropyl.
  • an alkyl group such as methyl group, ethyl group
  • R 1 is a substituted monovalent hydrocarbon group
  • examples of the hydrocarbon substituent include an amino group, an aminoalkyl group, a halogen atom, a nitrile group, a polyoxyalkylene group and the like.
  • examples of the alkoxy group include a methoxy group having 1 to 3 carbon atoms, an ethoxy group, and a propyl group.
  • a in the general formula (1) represents the average number of R 1 bonded to the silicon atom of the polysiloxane, and is 1.0 to 3.0.
  • the organosiloxane molecular structure whose average composition is represented by the general formula (1) may have not only a linear structure but a branched structure, but preferably has a linear structure.
  • preferred specific examples include trimethylsiloxy-terminated dimethyl silicone, hydroxy-terminated dimethylsilicone, and methylhydrogensiloxane, with trimethylsiloxy-terminated dimethylsilicone and hydroxy-terminated dimethylsilicone being preferred. ..
  • the porosifying agent of the present embodiment comprises a vinyl-based monomer, a (meth)acrylate-based monomer, a (meth)acrylamide-based monomer, and a styrene-based monomer containing the above-mentioned hydrocarbon group, perfluoroalkyl group, and/or organosiloxane structure.
  • the polymer compound may include at least one kind of monomer unit selected from the group consisting of two or more kinds of monomer units at the same time in the polymer compound skeleton.
  • the hydrocarbon group-containing monomer is not particularly limited, and examples thereof include methyl (meth)acrylate, butyl (meth)acrylate, t-butyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and lauryl.
  • the monomer containing a perfluoroalkyl group and the monomer containing an organosiloxane structure are not particularly limited, but examples thereof include the following.
  • R' is a hydrogen atom, a methyl group, a fluorine atom, or a trifluoromethyl group
  • Rf is the perfluoroalkyl group or the organosiloxane structure.
  • the porosifying agent of the present embodiment may be an amphipathic compound containing one or more of the above-mentioned hydrocarbon group, perfluoroalkyl group, and/or organosiloxane structure in the compound.
  • An amphipathic compound refers to a compound that simultaneously contains a hydrophobic block and a hydrophilic block in its molecular skeleton. Examples of the portion corresponding to the hydrophobic block include the above-mentioned hydrocarbon group, perfluoroalkyl group, organosiloxane structure and polymer structure containing them. Examples of the portion corresponding to the hydrophilic block include a structure containing a hydrophilic functional group and a hydrophilic polymer structure.
  • the amphipathic compound is a polymer
  • the polymerization form is not particularly limited, for example, a block copolymer, a gradient copolymer, a graft copolymer, a random copolymer, a tapered copolymer, Examples include periodic copolymers.
  • block copolymers and graft copolymers are preferred because they are self-emulsifying in water and are easily clouded.
  • the hydrophilic functional group is not particularly limited, but it may be a hydroxyl group, a thiol group, a carboxyl group, a sulfonic acid group, a sulfuric acid ester group, a phosphoric acid group, a sulfuric acid group or —OM, —COOM, —SO 3 M, — A group represented by OSO 3 M, —HMPO 4 or —M 2 PO 4 (M represents an alkali metal or an alkaline earth metal), a primary to tertiary amine and a quaternary ammonium salt (hydroxide as a counter anion Ion, fluoride ion, chloride ion, bromide ion, halide ion such as iodide ion, nitrate ion, formate ion, acetate ion, trifluoroacetate ion, p-toluenesulfonate ion, hexafluorophosphate
  • the hydrophilic polymer structure is not particularly limited, but includes polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyglutamic acid, polylysine, polyvinylpyridine, cellulose, dextran, polyalkylene oxide, poly(methylene ether). And the structure of polymers such as polymers of poly(methacrylic acid) and poly(acrylamide)(meth)acrylate monomers.
  • the porosifying agent of the present embodiment may include one or more of these hydrophilic polymer structures in the molecular skeleton, or may simultaneously include two or more different hydrophilic polymers.
  • the (meth)acrylate-based monomer is not particularly limited, and examples thereof include a hydroxyl group-containing (meth)acrylate such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate.
  • a hydroxyl group-containing (meth)acrylate such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate.
  • Polyalkylene glycol mono(meth)acrylates such as polyethylene glycol mono(meth)acrylate and polypropylene glycol mono(meth)acrylate; (poly)ethylene glycol monomethyl ether (meth)acrylate, (poly)ethylene glycol monoethyl ether (meth ) Acrylate, glycol ether type (meth)acrylate such as (poly)propylene glycol monomethyl ether (meth)acrylate, glycidyl (meth)acrylate, 3,4-epoxycyclohexyl (meth)acrylate, (meth)acryloyloxyethyl Glycidyl ether-containing (meth)acrylates such as glycidyl ether and (meth)acryloyloxyethoxyethyl glycidyl ether; (meth)acryloyloxyethyl isocyanate, 2-(2-isocyanatoethoxy)ethyl (meth)acrylate, and is
  • the hydrophilic group is roughly classified into two types, an ionic group (anionic, cationic and amphoteric) and a nonionic group.
  • the amphipathic compound having an anionic group and a hydrocarbon group is not particularly limited, but examples thereof include the following compounds.
  • Alkyl polyhydric alcohol ether sulfate such as linear or branched alkyl glyceryl ether sulfonate.
  • a fatty acid and a salt having a linear or branched alkyl group are preferable.
  • the amphipathic compound having a cationic group and a hydrocarbon group is not particularly limited, but examples thereof include the following compounds.
  • Di long chain alkyl di short chain alkyl type quaternary ammonium salt Di long chain alkyl di short chain alkyl type quaternary ammonium salt.
  • Mono long chain alkyl tri short chain alkyl type quaternary ammonium salt Mono long chain alkyl tri short chain alkyl type quaternary ammonium salt.
  • Tri long chain alkyl mono short chain alkyl quaternary ammonium salt Tri long chain alkyl mono short chain alkyl quaternary ammonium salt.
  • long-chain alkyl refers to an alkyl group having 5 to 26 carbon atoms, preferably 8 to 18 carbon atoms.
  • the “short chain alkyl” is intended to include a phenyl group, a benzyl group, a hydroxy group, a hydroxyalkyl group and the like in addition to an alkyl group having 1 to 4 carbon atoms. Moreover, you may have an ether bond between carbon atoms. Specifically, an alkyl group having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms; a benzyl group; a hydroxyalkyl group having 2 to 4 carbon atoms, preferably 2 to 3 carbon atoms; 2 to 4 carbon atoms, preferably 2 to 3 carbon atoms.
  • the polyoxyalkylene group of is mentioned as a suitable thing.
  • amphipathic compound having an amphoteric group and a hydrocarbon group is not particularly limited, but examples thereof include imidazoline compounds and amidobetaine compounds. Specifically, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine and lauric acid amidopropyl betaine are preferable.
  • the amphipathic compound having a nonionic group and a hydrocarbon group is not particularly limited, but examples thereof include the compounds shown below.
  • Ethers or polyoxyalkylene alkenyl ethers are preferred.
  • Examples of the aliphatic alcohol used here include primary alcohols and secondary alcohols, with primary alcohols being preferred.
  • the alkyl group or alkenyl group may be linear or branched.
  • R 1 CO(OA) q OR 2 ...(2) represents a fatty acid residue having 6 to 22 carbon atoms, preferably 8 to 18 carbon atoms; OA represents alkylene oxide having 2 to 4 carbon atoms, preferably 2 to 3 carbon atoms (eg, ethylene oxide, propylene) Oxide, etc.); q represents the average number of moles of alkylene oxide added, and is generally 3 to 30, preferably 5 to 20. R 2 represents a lower alkyl group having 1 to 4 carbon atoms, which may have a substituent group having 1 to 3 carbon atoms. ] (4) Polyoxyethylene sorbitan fatty acid ester. (5) Polyoxyethylene sorbit fatty acid ester.
  • R 3 c represents an alkyl group having 1 to 3 carbon atoms or a hydrogen atom
  • p represents the average number of moles of the alkyleneoxy group added, preferably 2 or more and 100 or less, more preferably 5 or more. 80 or less, more preferably 5 or more and 60 or less, even more preferably 10 or more and 60 or less
  • A represents —CONH—, —NH—, —CON ⁇ , or —N ⁇
  • A represents —CONH—
  • q is 1 when -NH- and q is 2 when A is -CON ⁇ or -N ⁇ .
  • HLB is a value obtained by the Griffin's method (edited by Yoshida, Shindo, Ogaki and Yamanaka, "New Surfactant Handbook", Kogyo Tosho KK, 1991, p. 234. reference).
  • amphipathic compound containing a perfluoroalkyl group is not particularly limited, and examples thereof include compounds in which the hydrophilic group is anionic or nonionic.
  • examples of the amphipathic compound containing an anionic hydrophilic group and a perfluoroalkyl group include perfluoroalkylcarboxylic acid salts, perfluoroalkylphosphoric acid esters and perfluoroalkylsulfonic acid salts.
  • amphipathic compound containing a nonionic hydrophilic group and a perfluoroalkyl group examples include perfluoroalkylethylene oxide adducts, perfluoroalkylamine oxides, perfluoroalkyl polyoxyethylene ethanol, perfluoroalkyl alkoxylates and the like. it can.
  • FC430, FC431 manufactured by Sumitomo 3M Ltd.
  • Asahi Guard AG registered trademark
  • Surflon registered trademark
  • SC-101, 102, 103, 104, 105 manufactured by Asahi Glass Co., Ltd.
  • the amphipathic compound containing an organosiloxane structure is not particularly limited, and examples thereof include those in which a hydrophilic group is introduced at the terminal or molecular chain of organosiloxane.
  • examples thereof include organosiloxanes modified with a hydrophilic group such as polyoxyethylene-modified organosiloxane, polyoxyethylene/polyoxypropylene-modified organosiloxane, polyoxyethylenesorbitan-modified organosiloxane, and polyoxyethyleneglyceryl-modified organosiloxane.
  • DBE-712, DBE-821 manufactured by Azumax
  • KF-6011, KF-6012, KF-6013, KF-6014, KF-6015, KF-6016, KF-6100 manufactured by Shin-Etsu Chemical Co., Ltd.
  • ABIL-EM97 manufactured by Gold Schmidt
  • Polyflow KL-100, Polyflow KL-401, Polyflow KL-402, Polyflow KL-700 manufactured by Kyoeisha Chemical Co., Ltd.
  • the above-mentioned bulking agent for paper having the characteristics of 1) boiling point at atmospheric pressure of 250° C. or higher and 2) insoluble in water can be used.
  • alkylene oxide adducts of higher alcohols described in International Publication No. WO98/03730
  • polyhydric alcohol-type nonionic surfactants in which polyhydric alcohols are fats, sugar alcohols, sugars, etc. JP-A-11-200283
  • alkylene oxide adducts of fatty acids described in JP-A No. 11-200284
  • cationic compounds amines, acid salts of amines (described in JP-A No. 11-269799, 2001-355197).
  • A) an amphoteric compound (described in JP-A No. 11-269799), a polyhydric alcohol fatty acid ester (described in Patent No. 2971447, JP-A No. 11-350380), (A) organosiloxane, (B) glyceryl ether. , (C) amide, (D) amine, (E) amine acid salt, (F) quaternary ammonium salt, (G) imidazole, (H) polyhydric alcohol ester of fatty acid, and (I) polyhydric alcohol An ester of a fatty acid (Japanese Patent No.
  • an amide compound obtained by reacting an aliphatic carboxylic acid with a polyamine are crosslinked with urea, and then obtained by reacting with an alkylating agent.
  • Examples thereof include compounds obtained by reacting the amide compound with an alkylating agent, and then crosslinking with urea (described in JP-A-2005-60891).
  • the porosifying agent in this embodiment may be used alone or in combination of two or more kinds. Further, it may be emulsified and dispersed by a well-known general anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, polymer surfactant, reactive surfactant and the like.
  • the melting point of the porosifying agent in the present embodiment is not particularly limited, but if it is 50° C. or lower, preferably 40° C. or lower, more preferably 30° C. or lower, further preferably 20° C. or lower, mild addition during slurry addition is performed. It is suitable for manufacturing because it can be handled as a liquid at a high temperature.
  • the melting point is a value measured by a melting point measuring method described in JIS K 0064-1992 “Measuring point and melting range of chemical products”.
  • the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet contains a porosifying agent, more specifically, a hydrocarbon group, a perfluoroalkyl group, and/or an organosiloxane structure.
  • the sheet itself is analyzed by solid-state NMR (nuclear magnetic resonance), FT-IR (Fourier transform infrared spectroscopy) or other spectroscopy, or thermal decomposition GC-MS (gas chromatograph mass spectrometry), TOF-SIMS (time-of-flight secondary ion mass). It can be confirmed by a method of direct analysis by mass spectrometry such as analysis).
  • porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet are washed with a solvent such as acetone, dimethylacetamide or dimethylformamide, and the porosifying agent eluted in the washing liquid is subjected to solution NMR, FT-IR, LC. It is also possible to analyze by -MS (liquid chromatograph mass spectrometry), GC-MS and the like.
  • a solvent such as acetone, dimethylacetamide or dimethylformamide
  • the porous fine cellulose fiber sheet and the fine cellulose fiber layer inside the porous fine cellulose fiber composite sheet of the present embodiment may contain a binder in addition to the fine cellulose fibers, and the DRY strength and WET of the porous fine cellulose fiber sheet. It is preferable from the viewpoint of improving the strength and preventing the fine cellulose fiber layer inside the porous fine cellulose fiber composite sheet from breaking during hot pressing. Polyurethane is preferable because of its excellent effect as a binder.
  • Polyurethane is a resin whose main component is a polyisocyanate compound and whose curing agent is a compound having active hydrogen (active hydrogen compound) such as a polyol compound.
  • the polyisocyanate compound is not particularly limited as long as it contains at least two isocyanate groups.
  • Examples of the basic skeleton of polyisocyanate include aromatic polyisocyanate, alicyclic polyisocyanate, aliphatic polyisocyanate, polyisocyanate derivative and the like. Among them, alicyclic polyisocyanates and aliphatic polyisocyanates are more preferable from the viewpoint of less yellowing.
  • Examples of the raw material of the aromatic polyisocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and a mixture thereof (TDI), diphenylmethane-4,4′-diisocyanate (MDI), naphthalene-1,5. -Aromatic diisocyanates such as diisocyanate, 3,3-dimethyl-4,4-biphenylene diisocyanate, crude TDI, polymethylene polyphenyl diisocyanate, crude MDI, phenylene diisocyanate and xylylene diisocyanate.
  • TDI 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and a mixture thereof
  • MDI diphenylmethane-4,4′-diisocyanate
  • -Aromatic diisocyanates such as diisocyanate, 3,3-dimethyl-4,4-
  • alicyclic polyisocyanate raw material examples include alicyclic diisocyanates such as 1,3-cyclopentane diisocyanate, 1,3-cyclopentene diisocyanate, and cyclohexane diisocyanate.
  • aliphatic polyisocyanate examples include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate, pentamethylene diisocyanate and hexamethylene diisocyanate.
  • polyisocyanate derivative for example, in addition to the above-described multimers of polyisocyanate (for example, dimer, trimer, pentamer, heptamer, etc.), polyisocyanate may be used as one type of active hydrogen-containing compound or The compound obtained by making it react with 2 or more types is mentioned.
  • the compound is an allophanate modified product (for example, an allophanate modified product produced by the reaction of polyisocyanate and alcohols), a polyol modified product (for example, a polyol modified product produced by the reaction of polyisocyanate and alcohols (alcohol addition Body)), biuret modified product (for example, biuret modified product formed by reaction of polyisocyanate with water or amines), urea modified product (for example, urea modified product formed by reaction of polyisocyanate and diamine) Etc.), oxadiazinetrione modified product (for example, oxadiazinetrione produced by reaction of polyisocyanate and carbon dioxide gas), carbodiimide modified product (carbodiimide modified product produced by decarboxylation condensation reaction of polyisocyanate, etc.), Examples include modified uretdione and modified uretonimine.
  • the active hydrogen-containing compound is not particularly limited, and examples thereof include a monovalent to hexavalent hydroxyl group-containing compound including a polyester polyol and a polyether polyol, an amino group-containing compound, a thiol group-containing compound, and a carboxyl group-containing compound. It also includes water, carbon dioxide, etc. existing in the air or in the reaction field.
  • Examples of the monovalent to hexavalent alcohols (polyols) include non-polymerized polyols and polymerized polyols.
  • the non-polymerized polyol is a polyol that does not undergo polymerization history, and the polymerized polyol is a polyol obtained by polymerizing a monomer.
  • non-polymerized polyols include monoalcohols, diols, triols and tetraols.
  • monoalcohols include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, n-pentanol, n-hexanol, n-octanol, n-nonanol, 2 -Ethylbutanol, 2,2-dimethylhexanol, 2-ethylhexanol, cyclohexanol, methylcyclohexanol, ethylcyclohexanol and the like can be mentioned.
  • diols examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1, 3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,2-propanediol, 1,5-pentanediol, 2-methyl-2,3-butanediol, 1, 6-hexanediol, 1,2-hexanediol, 2,5-hexanediol, 2-methyl-2,4-pentanediol, 2,3-dimethyl-2,3-butanediol, 2-ethyl-hexanediol, 1,2-octanediol, 1,2-decanediol, 2,2,4-trimethylp
  • triols examples include glycerin and trimethylolpropane.
  • tetraols examples include pentaerythritol, 1,3,6,8-tetrahydroxynaphthalene, 1,4,5,8-tetrahydroxyanthracene and the like.
  • the polymerized polyol is not particularly limited, but examples thereof include polyester polyol, polyether polyol, acrylic polyol, polyolefin polyol and the like.
  • polyester polyol examples include, for example, succinic acid, adipic acid, sebacic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, dicarboxylic acids such as terephthalic acid, alone or in a mixture, ethylene glycol, propylene glycol, diethylene glycol, Polyester polyols obtained by condensation reaction of polyhydric alcohols such as neopentyl glycol, trimethylolpropane and glycerin, alone or in a mixture, and polycaprolactones obtained by ring-opening polymerization of ⁇ -caprolactone using polyhydric alcohols. And the like.
  • polyether polyol for example, hydroxides of lithium, sodium, potassium, etc., alcoholates, strong basic catalysts such as alkylamines, metal porphyrins, complex metal cyanide compound complexes such as zinc hexacyanocobaltate complex, etc. are used.
  • Polyether polyols and ethylenediamines obtained by randomly or block-adding alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, cyclohexene oxide, and styrene oxide, alone or as a mixture, to a polyhydric hydroxy compound alone or as a mixture.
  • Polyether polyols obtained by reacting a polyamine compound such as alkylene oxide. So-called polymer polyols and the like obtained by polymerizing acrylamide or the like using these polyethers as a medium are also included.
  • polyhydric alcohol compound 1) For example, diglycerin, ditrimethylolpropane, pentaerythritol, dipentaerythritol, etc. 2) Sugar alcohol compounds such as erythritol, D-threitol, L-arabinitol, ribitol, xylitol, sorbitol, mannitol, galactitol and rhamnitol, 3) For example, monosaccharides such as arabinose, ribose, xylose, glucose, mannose, galactose, fructose, sorbose, rhamnose, fucose and ribodeose, 4) Disaccharides such as trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose and melibiose, 5) For example, trisaccharides such as raffinose, gentianose,
  • acrylic polyol examples include acrylic acid esters having active hydrogen such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and 2-hydroxybutyl acrylate, acrylic acid monoesters of glycerin, and methacrylic acid.
  • Monoester acrylic acid monoester or methacrylic acid monoester of trimethylolpropane, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 3-hydroxypropyl methacrylate, Methyl acrylate, ethyl acrylate, isopropyl acrylate, -n-butyl acrylate, which is used alone or as a mixture selected from the group of methacrylic acid esters having active hydrogen such as 4-hydroxybutyl methacrylate, is an essential component.
  • Acrylic acid esters such as 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, methacrylate-n-butyl methacrylate, isobutyl methacrylate, methacrylate-n-hexyl, lauryl methacrylate, etc.
  • Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, unsaturated amides such as acrylamide, N-methylol acrylamide and diacetone acrylamide, and glycidyl methacrylate, styrene, vinyltoluene, vinyl acetate, acrylonitrile, Presence of a single or a mixture selected from the group of other polymerizable monomers such as vinyl monomers having a hydrolyzable silyl group such as dibutyl fumarate, vinyltrimethoxysilane, vinylmethyldimethoxysilane and ⁇ -methacryloxypropylmethoxysilane.
  • An acrylic polyol obtained by polymerizing under or in the absence thereof may be mentioned.
  • polystyrene resin examples include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, hydrogenated polyisoprene and the like.
  • a monoalcohol compound having 50 or less carbon atoms such as isobutanol, n-butanol, and 2ethylhexanol, can be used in combination.
  • amino group-containing compound examples include monohydrocarbylamines having 1 to 20 carbon atoms [alkylamine (butylamine etc.), benzylamine and aniline etc.], aliphatic polyamines having 2 to 20 carbon atoms (ethylenediamine, hexamethylenediamine and Diethylenetriamine, etc.), alicyclic polyamines having 6 to 20 carbon atoms (diaminocyclohexane, dicyclohexylmethanediamine, isophoronediamine, etc.), aromatic polyamines having 2 to 20 carbon atoms (phenylenediamine, tolylenediamine, diphenylmethanediamine, etc.), carbon Heterocyclic polyamines having a number of 2 to 20 (such as piperazine and N-aminoethylpiperazine), alkanolamines (such as monoethanolamine, diethanolamine and triethanolamine), polyamide polyamines obtained by condensation of dicarboxylic acid and excess polyamine, Examples of
  • thiol group-containing compound examples include monovalent thiol compounds having 1 to 20 carbon atoms (alkylthiols such as ethylthiol, phenylthiol and benzylthiol) and polyvalent thiol compounds (ethylenedithiol and 1,6-hexanedithiol). Etc.) and the like.
  • carboxyl group-containing compound examples include monovalent carboxylic acid compounds (alkylcarboxylic acids such as acetic acid, aromatic carboxylic acids such as benzoic acid) and polyvalent carboxylic acid compounds (alkyldicarboxylic acids such as oxalic acid and malonic acid). And aromatic dicarboxylic acids such as terephthalic acid) and the like.
  • the polyurethane solid content weight ratio is preferably 0.5% by mass or more and 100% by mass with respect to 100% by mass of the fine cellulose fiber. % Or less, more preferably 1% by mass or more and 70% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 1% by mass or more and 30% by mass or less. Since the fine cellulose fibers have a large specific surface area, if the weight ratio is less than 0.5% by mass, it is not easy to cover the entire fiber surface with polyurethane, and the water-based Wet strength or the non-water-based Wet strength tends to be low. On the other hand, when the content is 100% by mass or less, the surroundings of the fine cellulose fibers can be prevented from being excessively coated with polyurethane, and the inherent properties of cellulose such as high heat resistance and decorating property can be favorably maintained.
  • the fine cellulose fibers in the sheet and the polyurethane are chemically bonded.
  • the chemical bond is a covalent bond, a coordinate bond, an ionic bond, a hydrogen bond or the like, and is not particularly limited, but a covalent bond is preferable.
  • a urethane bond due to reaction with a large number of hydroxyl groups present on the surface of fine cellulose fibers an amidourea bond due to a reaction with a small amount of carboxyl groups, and the like can be mentioned.
  • a covalent bond can be formed if a functional group having active hydrogen is present on the fiber surface.
  • the functional group having active hydrogen include a hydroxyl group, an amino group, a thiol group and a carboxyl group. Since the chemical bond is formed three-dimensionally with respect to the fine cellulose fibers, the Dry strength, the water-based Wet strength and the non-water-based Wet strength of the sheet are improved.
  • the formation of chemical bonds can be directly confirmed by solid-state NMR, FT-IR, X-ray photoelectron spectroscopy and other spectroscopic methods, or TOF-SIMS and other mass spectrometric methods.
  • the porous fine cellulose fiber sheet is washed with a solvent such as acetone, dimethylacetamide, or dimethylformamide, and it is indirectly considered that a chemical bond is formed because polyurethane is not eluted in the washing liquid.
  • the distribution state of the polyurethane is not particularly limited, but the polyurethane is in the porous fine cellulose fiber sheet or in the porous fine cellulose. It is preferably uniformly distributed in the fine cellulose fiber layer of the fiber laminated sheet.
  • the uniform distribution of polyurethane makes the water-based Wet strength and the non-water-based Wet strength of the sheet uniform, so that the number of sheet breakages can be reduced during continuous production of resin-impregnated composite sheets.
  • that the polyurethane is uniformly distributed means that the polyurethane is uniformly distributed in both the plane direction and the thickness direction within the sheet.
  • the uniformity of the distribution of polyurethane in the plane direction of the sheet depends on the amount of polyurethane (P1) and the cellulose at any point of the fine cellulose fiber layer of the porous fine cellulose fiber sheet and the porous fine cellulose fiber laminated sheet. It means that the ratio (P1/C1) of the amount (C1) is constant.
  • the term “constant” means that a variation of P1/C1 at arbitrary four points in a 20 cm ⁇ 20 cm sheet is a variation coefficient of 50% or less.
  • the uniformity of distribution of polyurethane in the thickness direction of the sheet is determined by dividing the amount of polyurethane in the upper, middle and lower parts of the fine cellulose fiber layer of the porous fine cellulose fiber sheet and the porous fine cellulose fiber laminated sheet into three equal parts in the thickness direction. And the amount of cellulose are the same.
  • the same means that when calculating the average of P1/C1 in the upper part, the average of P1/C1 in the middle part, and the average of P1/C1 in the lower part at any four points on a 20 cm ⁇ 20 cm sheet, these 3 It means that the variation between the two average values has a coefficient of variation of 50% or less.
  • the coefficient of variation is 50% or less. If the coefficient of variation exceeds 50%, the water-based Wet strength and the non-water-based Wet strength tend to be lower than those of a sheet that uniformly contains the same amount of polyurethane.
  • the ratio of the amount of polyurethane to the amount of cellulose can be obtained, for example, from three-dimensional composition analysis by TOF-SIMS with sputter etching described in International Publication No. WO2015/008868.
  • the polyurethane in the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment is a crosslinked product of a block polyisocyanate (that is, a product formed by a crosslinking reaction after the block group of the block polyisocyanate is eliminated).
  • the Blocked polyisocyanate means (1) a polyisocyanate compound such as polyisocyanate and a polyisocyanate derivative as a basic skeleton, (2) an isocyanate group is blocked by a blocking agent, and (3) a functional group having active hydrogen at room temperature.
  • the porous fine cellulose fiber sheet or the porous fine cellulose fiber composite sheet contains a blocked polyisocyanate or a crosslinked product of the blocked polyisocyanate.
  • the blocking agent is to block by adding to the isocyanate group of the polyisocyanate compound.
  • This blocking group is stable at room temperature, but when heated to a heat treatment temperature (usually about 100 to about 250° C.), the blocking agent can be eliminated to regenerate a free isocyanate group.
  • Examples of the blocking agent satisfying such requirements include the following. (1) Alcohols such as methanol, ethanol, 2-propanol, n-butanol, sec-butanol, 2-ethyl-1-hexanol, 2-methoxyethanol, 2-ethoxyethanol and 2-butoxyethanol, (2) Alkylphenol type: Mono- and dialkylphenols having an alkyl group having 4 or more carbon atoms as a substituent, such as n-propylphenol, isopropylphenol, n-butylphenol, sec-butylphenol, t-butylphenol, n -Monoalkylphenols such as hexylphenol, 2-ethylhexylphenol, n-octylphenol, n-nonylphenol, di-n-propylphenol, diisopropylphenol, isopropylcresol, di-n-butylphenol, di-t-butylphenol, di-sec -Dialkylphenols
  • Active methylene type dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, etc.
  • Mercaptan type butyl mercaptan, dodecyl mercaptan, etc.
  • Acid amide type acetanilide, acetic amide, ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, etc.
  • Acid imide type succinimide, maleic imide, etc.
  • Imidazole type imidazole, 2-methylimidazole, 3,5-dimethylpyrazole, 3-methylpyrazole, etc.
  • Urea type urea, thiourea, ethylene urea, etc.
  • Oxime type formaldoxime, acetaldoxime, acetoxime, methylethylketoxime, cyclohexanoneoxime, etc.
  • Amine type diphenylamine, aniline, carbazole, di-n-propylamine, diisopropylamine, isopropylethylamine, etc.
  • the block polyisocyanate of the present embodiment is used by uniformly mixing it in the fine cellulose fiber slurry, the block polyisocyanate itself is in a stable form as an aqueous dispersion, and is stable even when mixed with fine cellulose fibers or the like. Is preferred.
  • the block polyisocyanate aqueous dispersion is a compound in which a hydrophilic compound is directly bonded to a block polyisocyanate and emulsified (self-emulsifying type), but is a compound in which a surfactant or the like is forcibly emulsified (forced emulsifying type). May be. Both of the emulsions obtained by the respective methods have anionic, nonionic, or cationic hydrophilic groups exposed on the surface.
  • the self-emulsifying block polyisocyanate is a block polyisocyanate skeleton to which an active hydrogen group-containing compound having an anionic group, a nonionic group or a cationic group is bonded.
  • the active hydrogen group-containing compound having an anionic group is not particularly limited, and examples thereof include a compound having one anionic group and two or more active hydrogen groups.
  • the anionic group include a carboxyl group, a sulfonic acid group and a phosphoric acid group.
  • examples of the active hydrogen group-containing compound having a carboxyl group include dihydroxylcarboxylic acids such as 2,2-dimethylolacetic acid and 2,2-dimethylollactic acid, for example, 1-carboxy-1,5-pentyl.
  • diaminocarboxylic acids such as diamine and dihydroxybenzoic acid, and half ester compounds of polyoxypropylene triol with maleic anhydride and/or phthalic anhydride.
  • Examples of the active hydrogen group-containing compound having a sulfonic acid group include N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and 1,3-phenylenediamine-4,6-disulfonic acid. Can be mentioned.
  • Examples of the active hydrogen group-containing compound having a phosphoric acid group include 2,3-dihydroxypropylphenyl phosphate.
  • Examples of the active hydrogen group-containing compound having a betaine structure-containing group include a sulfobetaine group-containing compound obtained by reacting a tertiary amine such as N-methyldiethanolamine with 1,3-propanesultone. ..
  • active hydrogen group-containing compounds having an anionic group may be modified into alkylene oxides by adding alkylene oxides such as ethylene oxide and propylene oxide.
  • these active hydrogen group-containing compounds having an anionic group can be used alone or in combination of two or more kinds.
  • the active hydrogen group-containing compound having a nonionic group is not particularly limited, but, for example, polyalkylene ether polyol having an ordinary alkoxy group as a nonionic group or the like is used. Ordinary nonionic group-containing polyester polyols and polycarbonate polyols are also used. As the polymer polyol, those having a number average molecular weight of 500 to 10,000, particularly 500 to 5,000 are preferably used.
  • the active hydrogen group-containing compound having a cationic group is not particularly limited, but an aliphatic compound having an active hydrogen containing group such as a hydroxyl group or a primary amino group and a tertiary amino group, for example, N , N-dimethylethanolamine, N-methyldiethanolamine, N,N-dimethylethylenediamine and the like. It is also possible to use N,N,N-trimethylolamine and N,N,N-triethanolamine having a tertiary amine. Among them, a polyhydroxy compound having a tertiary amino group and containing two or more active hydrogens reactive with an isocyanate group is preferable.
  • the active hydrogen group-containing compound having a cationic group may be modified into an alkylene oxide by adding an alkylene oxide such as ethylene oxide or propylene oxide. Further, these active hydrogen group-containing compounds having a cationic group can be used alone or in combination of two or more kinds.
  • the anionic group include a carboxyl group, a sulfonic acid group, a phosphoric acid group and the like.
  • the compound having a carboxyl group for example, formic acid, acetic acid, propionic acid, butyric acid, lactic acid, etc.
  • the compound having a sulfonic group for example, ethanesulfonic acid, etc.
  • the compound having a phosphoric acid group for example, Examples thereof include acids and acidic phosphoric acid esters.
  • a compound having a carboxyl group is preferable, and acetic acid, propionic acid, and butyric acid are more preferable.
  • the equivalent ratio of cationic group:anionic group introduced into the blocked polyisocyanate is 1:0.5 to 1:3, preferably 1:1 to 1:1.5.
  • the introduced tertiary amino group can be quaternized with dimethyl sulfate, diethyl sulfate or the like.
  • the blocked polyisocyanate is reacted with the active hydrogen group-containing compound for the purpose of introducing the hydrophilic group
  • the equivalent ratio of isocyanate group/active hydrogen group is preferably 1.05 to 1000, more preferably Is in the range of 2 to 200, more preferably 4 to 100.
  • the equivalent ratio is 1.05 or more, the isocyanate group content in the hydrophilic polyisocyanate does not become too low, so that the curing speed of the blocked polyisocyanate is good and the brittleness of the cured product does not easily occur.
  • the cross-linking points with the fine cellulose fibers do not become too small, and the water-based Wet strength and the non-water-based Wet strength of the porous fine cellulose fiber sheet and the porous fine cellulose fiber laminated sheet are good.
  • the equivalent ratio is 1000 or less, the effect of lowering the interfacial tension is great and hydrophilicity is well expressed.
  • a method of reacting the polyisocyanate compound having two or more isocyanate groups in one molecule with the active hydrogen group-containing compound in the present embodiment a method of mixing both and performing a normal urethanization reaction is exemplified. it can.
  • the forced emulsification type block polyisocyanate is a well-known general anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, polymer surfactant, reactive surfactant, etc.
  • anionic surfactants, nonionic surfactants, and cationic surfactants are preferable because they are low in cost and good emulsification can be obtained.
  • anionic surfactant examples include an alkylcarboxylic acid salt-based compound, an alkyl sulfate-based compound, and an alkyl phosphate.
  • nonionic surfactant examples include ethylene oxide and/or propylene oxide adducts of alcohols having 1 to 18 carbon atoms, ethylene oxide and/or propylene oxide adducts of alkylphenols, ethylene oxide and/or propylene oxide of alkylene glycols and/or alkylenediamines. Examples include adducts.
  • cationic surfactant examples include primary to tertiary amines, pyridinium salts, alkylpyridinium salts, and quaternary ammonium salts such as alkyl halide quaternary ammonium salts.
  • the amount of these emulsifiers to be used is not particularly limited, and any amount can be used, but when the mass ratio of the blocked polyisocyanate is 1, it is 0.01 or more. When it is 0.3 or less, good dispersibility can be obtained, and physical properties such as water resistance and functional agent fixing property can be favorably maintained, so 0.01 to 0.3 is preferable, and 0.05 to 0. .2 is more preferable.
  • the above-mentioned block polyisocyanate aqueous dispersion may contain a solvent other than water, preferably up to 20% by mass, in both the self-emulsifying type and the forced emulsifying type.
  • the solvent in this case is not particularly limited, but examples thereof include ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol, diethylene glycol, and triethylene glycol. These solvents may be used alone or in combination of two or more. From the viewpoint of dispersibility in water, the solvent preferably has a solubility in water at 23° C. of 5% by mass or more, and specifically, dipropylene glycol dimethyl ether and dipropylene glycol monomethyl ether are preferable.
  • the average dispersed particle size of the above-mentioned block polyisocyanate aqueous dispersion is preferably 1 to 1000 nm, more preferably 10 to 500 nm, and further preferably 10 to 200 nm.
  • the surface of the above-mentioned block polyisocyanate aqueous dispersion may be any of anionic, nonionic and cationic, but is more preferably cationic.
  • a block polyisocyanate aqueous dispersion solid content concentration of 0.0001 to 0.5%) is added to a dilute fine cellulose fiber slurry (solid content concentration of 0.01 to 0.5% by mass). This is because it is effective to utilize electrostatic interaction to effectively adsorb (% by mass) to the fine cellulose fibers.
  • the surface of a general cellulose fiber is anionic (zeta potential of -30 to -20 mV in distilled water) (Non-patent document 1 J.
  • the surface of the blocked polyisocyanate aqueous dispersion is more preferably cationic.
  • it can be sufficiently adsorbed on the fine cellulose fibers depending on the polymer chain length of the hydrophilic group of the emulsion and the rigidity.
  • electrostatic repulsion such as anionic property, it is possible to adsorb onto the fine cellulose fibers by using a generally known cationic adsorption aid.
  • Examples of the cationic adsorption aid include polymers having a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium salt group, pyridinium, imidazolium, and a quaternized pyrrolidone.
  • Examples thereof include water-soluble cationic polymers such as cationized starch, cationic polyacrylamide, polyvinylamine, polydiallyldimethylammonium chloride, polyamidoamine epichlorohydrin, polyethyleneimine and chitosan.
  • the fine cellulose fiber layer of the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment contains polyurethane
  • the water-based Wet strength and the non-water-based Wet strength are enhanced, and the sheet in water and in an organic solvent is used. Is easier to use.
  • the porosifying agent and polyurethane are used in combination in the present embodiment, the porosity is maintained well even if the wet-drying operation is performed.
  • polyurethane alone enhances the water-based Wet strength and the non-water-based Wet strength, it tends to be difficult to maintain the porosity in the wet-drying operation. It will be easier.
  • the fine cellulose fiber layers of the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment are each one selected from the group consisting of inorganic particles, polymer particles, inorganic fibers and polymer fibers. You may include the said filler material.
  • the inorganic particles are not particularly limited, but for example, chemically stable metal particles such as gold, silver, copper, iron, zinc, tin, nickel, titanium and various alloys (for example, stainless steel), alumina, titanium oxide, zinc oxide, Iron oxide, tin oxide, copper oxide, silver oxide, metal oxide particles such as zirconium oxide, composite metal oxide particles such as barium titanate, metal nitride particles such as aluminum nitride, fumed silica, colloidal silica, zeolite, Examples thereof include silica-based particles such as mica and smectite, and carbon-based particles such as activated carbon, graphite and carbon nanotubes.
  • chemically stable metal particles such as gold, silver, copper, iron, zinc, tin, nickel, titanium and various alloys (for example, stainless steel), alumina, titanium oxide, zinc oxide, Iron oxide, tin oxide, copper oxide, silver oxide, metal oxide particles such as zirconium oxide, composite metal oxide particles such as barium titanate, metal
  • the polymer particles are not particularly limited.
  • various latexes such as styrene-butadiene (SB) latex, acrylic latex, various rubber latex, polyvinylidene chloride latex, urethane latex, and polyolefin latex.
  • SB styrene-butadiene
  • acrylic latex acrylic latex
  • various rubber latex polyvinylidene chloride latex
  • polyvinylidene chloride latex polyvinylidene chloride latex
  • urethane latex polyolefin latex
  • examples thereof include particles, polymethylmethacrylate-based particles, polyamide-based particles, polyester-based particles, wholly aromatic polyamide-based particles, polyimide-based particles, polycarbonate-based particles, cellulose-based particles such as crystalline cellulose, and polyacetal-based particles.
  • the inorganic fiber is not particularly limited, and examples thereof include fibers that are insoluble in the dispersion medium described below, and include carbon fibers such as carbon nanotubes obtained by firing and carbonizing glass fibers, metal fibers or polymer fibers. it can.
  • the polymer fiber is not particularly limited, but various synthetic fibers (polyester, nylon, polyacrylonitrile, cellulose acetate, polyurethane, polyethylene, polypropylene, polyketone, wholly aromatic polyamide, polyimide, etc.), natural fibers (cotton, silk, wool, etc.) ) Or beaten regenerated cellulose fibers or finely fibrillated by high-pressure homogenizer etc., fine fibers obtained by electrospinning method using various polymers as raw materials, meltblown method using various polymers as raw materials The obtained fine fibers and the like can be mentioned, but not limited thereto.
  • Tiara registered trademark
  • a fine fibrous aramid obtained by refining aramid fibers which are wholly aromatic polyamide by a high-pressure homogenizer has an average fiber diameter of 0.2 to 0. It has an average fiber length of 3 ⁇ m and an average fiber length of 500 to 600 ⁇ m, and can be suitably used as a fibrous filler due to the high heat resistance and high chemical stability of aramid fibers.
  • the filler material contained in the porous fine cellulose fiber sheet of the present embodiment is preferably 1% by mass or more and 50% by mass or less of the sheet weight, more preferably 1% by mass or more and 30% by mass or less, and 1% by mass or more and 10% by mass. The following are more preferable.
  • the filler material contained in the porous fine cellulose fiber composite sheet of the present embodiment is preferably 0.1% by mass or more and 50% by mass or less of the sheet weight, more preferably 0.1% by mass or more and 30% by mass or less, and More preferably, it is 1% by mass or more and 10% by mass or less.
  • the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment are a filler, a paper strength enhancer, a sizing agent, a retention improver, a drainage improver, a sulfuric acid band, a wet paper strength enhancer, and a coloring.
  • Known papermaking materials such as dyes, color pigments, fluorescent whitening agents, fluorescent decoloring agents, and pitch control agents can be appropriately used within a range that does not impair the intended effects of the present embodiment.
  • the papermaking method typically includes (1) a step of producing fine cellulose fibers by refining cellulose fibers, (2) a step of preparing a papermaking slurry containing the fine cellulose fibers, and (3) filtering the papermaking slurry (that is, dehydration). ) To form a wet paper web, and (4) a drying step of drying the wet paper web to obtain a dry sheet.
  • the coating method is typically a step of preparing a coating slurry by the same steps as the above (1) and (2), and (3) coating the coating slurry on a support to form a coating sheet.
  • a drying step of drying the coated sheet In this case, a base sheet may be used as the support.
  • a method for preparing a papermaking slurry or coating slurry containing fine cellulose fibers of the present embodiment and a method for forming a porous fine cellulose fiber sheet by a papermaking method will be described.
  • the present embodiment is a method for producing a porous fine cellulose fiber sheet of the present disclosure, in which a porosifying agent, a fine cellulose fiber, and a preparing step of preparing a slurry containing water, the slurry is dehydrated by a papermaking method.
  • a film forming step of forming a wet paper web by doing the above, and a porous fine cellulose fiber sheet forming step of obtaining a porous fine cellulose fiber sheet by at least drying the wet paper web are provided.
  • the present embodiment is also a method for producing a porous fine cellulose fiber laminated sheet, in which a preparing step of preparing a slurry containing a porosifying agent, fine cellulose fibers, and water, the slurry on a base sheet A film forming step of forming a multilayer wet paper web by dehydration by a paper making method, and a porous fine cellulose fiber laminate sheet forming step of obtaining a porous fine cellulose fiber laminate sheet by drying at least the multilayer wet paper web. Including, providing a method.
  • fine cellulose fibers constituting the porous fine cellulose fiber sheet of the present embodiment 1) fine cellulose fibers produced by bacteria, 2) fine cellulose fibers of regenerated cellulose or cellulose derivative obtained by electrospinning method, 3 ) Microfibrillated cellulose obtained by subjecting natural cellulose fibers, regenerated cellulose fibers or cellulose derivative fibers, which are bundles of cellulose microfibrils, to micronization treatment can be used. From the viewpoint of cost and quality control, microfibrillated cellulose is preferable.
  • animal-derived cellulose fibers such as ascidian cellulose
  • higher plant-derived cellulose fibers regenerated cellulose fibers
  • chemically synthesized cellulose derivative fibers can be mentioned.
  • Cellulose fibers derived from higher plants include, for example, wood pulp obtained from wood species (hardwood or conifer), non-wood pulp obtained from non-wood species (bamboo, hemp fiber, bagasse, kenaf, linter, etc.), and these Refined pulp (refined linter, etc.) can be used.
  • wood pulp obtained from wood species (hardwood or conifer)
  • non-wood pulp obtained from non-wood species (bamboo, hemp fiber, bagasse, kenaf, linter, etc.)
  • these Refined pulp refined linter, etc.
  • non-wood pulp cotton-derived pulp including cotton linter pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, straw-derived pulp and the like can be used.
  • Cotton-derived pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, and straw-derived pulp are cotton lint, cotton linter, hemp-based abaca (for example, from Ecuador or the Philippines), and Zaisal. , Bagasse, kenaf, bamboo, straw and the like.
  • These raw materials are provided as refined pulp through a refining process such as delignification by a digestion process and a bleaching process, and the residual lignin amount and hemicellulose amount in the pulp can be changed depending on the purpose.
  • regenerated cellulose fibers examples include rayon, cupra, lyocell, tencel and the like.
  • the cellulose derivative fiber examples include organic acid esters such as cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate; inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate; Mixed acid esters such as cellulose nitrate acetate; hydroxyalkyl cellulose such as hydroxyethyl cellulose and hydroxypropyl cellulose; carboxyalkyl cellulose such as carboxymethyl cellulose and carboxyethyl cellulose; alkyl cellulose such as methyl cellulose and ethyl cellulose. These fibers can be used alone or in combination of two or more.
  • the fine cellulose fiber of the present embodiment is subjected to a cellulose fiber raw material pretreatment step, a beating step, and a finer step if necessary.
  • the purpose is to keep the cellulose fiber raw material in a state in which it can be easily miniaturized by autoclave treatment under water impregnation at 100 to 150° C., chemical treatment, enzyme treatment, or the like, or a combination thereof. To do.
  • ⁇ Chemical treatment is a method of introducing anion groups or cation groups into microfibrils. Due to the presence of these functional groups, electrostatic repulsion and osmotic pressure effects are exhibited, and it is possible to obtain fine cellulose fibers with a small amount of energy without using a finer device that requires high energy such as a high pressure homogenizer.
  • anionizing agent examples include carboxylic acids having a plurality of carboxyl groups or anhydrides thereof, salts thereof, oxo acids containing phosphorus atoms or salts thereof, ozone, 2,2,6,6-tetramethylpiperidinooxy. Radicals and the like can be mentioned.
  • the cationizing agent examples include glycidyltrialkylammonium halides or halohydrin-type compounds thereof.
  • Enzyme treatment is a treatment that mainly decomposes cellulose in the amorphous part by cellulase.
  • the raw material pulp is preferably 0.5% by mass or more and 4% by mass or less, more preferably 0.8% by mass or more and 3% by mass or less, still more preferably 1.0% by mass or more and 2.5% by mass. It is dispersed in water so as to have the following solid content concentration, and fibrillation is highly promoted by a beating device such as a beater, a conical refiner, or a disc refiner (double disc refiner). Since an extremely high degree of beating (fibrillation) proceeds depending on the treatment conditions, the conditions for the micronization treatment with a high-pressure homogenizer or the like can be relaxed, which may be effective.
  • a beating device such as a beater, a conical refiner, or a disc refiner (double disc refiner). Since an extremely high degree of beating (fibrillation) proceeds depending on the treatment conditions, the conditions for the micronization treatment with a high-pressure homogenizer or the like can be relaxed, which may be effective.
  • the solid content concentration in the aqueous dispersion at this time is in accordance with the beating treatment described above, preferably 0.5% by mass or more and 4% by mass or less, more preferably 0.8% by mass or more and 3% by mass or less, and further preferably It is 1.0% by mass or more and 2.5% by mass or less.
  • the solid content concentration is within this range, clogging does not occur, and moreover, efficient micronization processing can be achieved.
  • Examples of the high-pressure homogenizer to be used include NS type high-pressure homogenizer manufactured by Niro Soavi Inc. (Italy), Lanie type (R model) pressure homogenizer manufactured by SMT Co., Ltd., and high-pressure homogenizer manufactured by Sanwa Machinery Co., Ltd. be able to.
  • Examples of the ultra-high pressure homogenizer include a high-pressure collision type miniaturization processor such as Microfluidizer manufactured by Mizuho Industry Co., Ltd., Nanomizer manufactured by Yoshida Kikai Co., Ltd., and Ultimateizer manufactured by Sugino Machine Co., Ltd.
  • Examples of the grinder type refining device include a pure fine mill manufactured by Kurita Kikai Seisakusho Co., Ltd.
  • any device other than these may be used as long as it is a device that performs miniaturization with substantially the same mechanism.
  • two or more kinds of fine cellulose fibers having different raw materials, fine cellulose fibers having different degrees of fineness, and fine cellulose fibers chemically treated on the surface may be mixed and used at an arbitrary ratio. ..
  • the fine cellulose fibers contained in the slurry are preferably 0.01% by mass or more and 2.0% by mass or less, and 0.01% by mass or more and 1.5% by mass or less of the mass of the papermaking slurry. It is more preferably 0.05 mass% or more and 1.0 mass% or less.
  • the content is 0.01% by mass or more, the drainage time does not become too long, the productivity is good, and at the same time, the uniformity of the film quality is good, which is preferable.
  • the content is 2.0% by mass or less, the viscosity of the dispersion liquid does not increase excessively, and it is easy and uniform to form a film, which is preferable.
  • the fine cellulose fibers contained in the slurry are preferably 75% by mass or more and 99.5% by mass or less of the coating slurry mass, more preferably 80% by mass or more and 99.0% by mass or less, It is more preferably 85% by mass or more and 98.0% by mass or less.
  • the viscosity of the coating slurry facilitates film formation, and thus the film quality uniformity is good, which is preferable.
  • the porosifying agent added is preferably 0.0001 mass% or more and 2.0 mass% or less, more preferably 0.0001 mass% or more and 1.5 mass% or less, and 0.0005 mass% or less of the slurry mass. More preferably, it is not less than mass% and not more than 1.0 mass %.
  • the porosifying agent can have a good solubility in general, depending on its type, so that the effect of making the porosity large.
  • the slurry viscosity does not increase excessively, the generation of bubbles due to stirring is suppressed, and uniform film formation is facilitated.
  • the amount of the porosifying agent added is preferably 0.005% by mass or more and 25.0% by mass or less of the mass of the slurry, and more preferably 0.01% by mass or more and 20.0% by mass or less. It is more preferably 0.05% by mass or more and 15.0% by mass or less, and particularly preferably 0.05% by mass or more and 10.0% by mass or less.
  • an agitator, a homomixer, a pipeline mixer, a high-speed homogenizer of a type such as a blender that rotates a blade having a cutting function at a high speed, and a high-pressure homogenizer can be given.
  • the stirring device is not particularly limited as long as the fine cellulose fibers and the porosifying agent are uniformly dispersed without generating bubbles.
  • a low shear stirring device such as an agitator may be used.
  • a strong shear mixing method such as a homomixer or a high pressure homogenizer is more preferable.
  • a water-dispersible block polyisocyanate, the known papermaking material, or a filler material can be appropriately used within a range that does not impair the intended effect of the present embodiment. It can be arbitrarily changed within the range of 0.0001% by weight to 10.0% by weight in the slurry. Further, even in the coating slurry, the amount can be arbitrarily changed within the range of 0.005% by weight or more and 25.0% by weight or less.
  • the order of adding other additives such as the porosifying agent and the blocked polyisocyanate is not particularly limited as long as the intended effect of the present embodiment is not impaired.
  • an organic solvent can be appropriately used within a range that does not impair the intended effect of the present embodiment, for the purpose of promoting the porosity of the sheet. It can be arbitrarily changed within the range of 0.0001% by weight or more and 10.0% by weight or less. Further, even in the coating slurry, the amount can be arbitrarily changed within the range of 0.005% by weight or more and 25.0% by weight or less.
  • the organic solvent is not particularly limited, but it is preferable that it is water-soluble because a uniform slurry can be obtained. Further, when the boiling point of the organic solvent is 100° C.
  • the organic solvent is more likely to remain in the porous fine cellulose fiber sheet than water during drying, so that a porous fine cellulose fiber sheet having a higher porosity can be obtained. Therefore, it is preferable.
  • a hydrophobic organic solvent can also be used in the form of an emulsion so that it can be uniformly present in the slurry.
  • a wet paper is formed by filtering a papermaking slurry on a water-permeable substrate.
  • any device may be used as long as it is an operation using a filter or filter cloth (also called a wire in the technical field of papermaking) that dehydrates water from the papermaking slurry and retains fine cellulose fibers. ..
  • a filter or filter cloth also called a wire in the technical field of papermaking
  • an apparatus such as a slanted wire type paper machine, a Fourdrinier paper machine, and a cylinder paper machine can be preferably used to obtain a porous fine cellulose fiber sheet with few defects.
  • the paper machine may be a continuous type or a batch type and may be used properly according to the purpose.
  • a spray coater In the coating step of the present embodiment, a spray coater, an air doctor coater, a blade coater, a knife coater, a rod coater, a squeeze coater, an impregnation coater, a gravure coater, a kiss roll coater, a die coater, a reverse roll coater, a transfer roll coater, etc.
  • a wet paper can be obtained by applying the prepared coating slurry to a water-soluble base material or a non-porous sheet by using.
  • the degree of dehydration of the wet paper is controlled by the same method as the suction step or pressing step in paper making described below, or a method similar thereto, and preferably the solid content concentration is 6% by mass or more and 25% by mass or more. % Or less, and more preferably, the solid content concentration is adjusted to a range of 8% by mass or more and 20% by mass or less.
  • the size of the wire or filter cloth is important because the papermaking process is a step of filtering soft aggregates such as fine cellulose fibers dispersed in the papermaking slurry using a wire or filter cloth.
  • the yield ratio of the water-insoluble component containing fine cellulose fibers etc. contained in the papermaking slurry is, for example, 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass, It is possible to use any wire or filter cloth capable of making paper at a content of 95% by mass or more, particularly preferably 99% by mass.
  • the yield ratio of fine cellulose fibers or the like is 70% by mass or more, if the drainage is not high, it takes time to make the paper, and the production efficiency is significantly deteriorated.
  • the amount of water permeation is preferably 0.005 ml/(cm 2 ⁇ sec) or more, more preferably 0.01 ml/(cm 2 ⁇ sec) or more, suitable papermaking becomes possible from the viewpoint of productivity. ..
  • the yield ratio of the water-insoluble component is 70% by mass or more, the productivity is good, the phenomenon that the water-insoluble component such as fine cellulose fibers is clogged in the wire or filter cloth used, or the porosity after film formation. It is possible to avoid deterioration of the releasability of the fine cellulose fiber sheet.
  • the water permeation amount of the wire or filter cloth under atmospheric pressure is evaluated as follows.
  • a wire or filter cloth to be evaluated is installed on a batch type paper machine (for example, an automatic square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd.), and in the case of the wire, the wire or filter cloth of 80 to 120 mesh is used as it is.
  • Place a filter cloth on a metal mesh (assuming that there is almost no resistance to drainage), inject a sufficient amount (y (ml)) of water into a paper machine with a paper making area of x (cm 2 ), and Measure the drainage time under atmospheric pressure.
  • the water permeation amount when the drainage time was z (sec) is defined as y/(x ⁇ z) (ml/(cm 2 ⁇ s)).
  • Examples of the wire or filter cloth of the present embodiment include TETEXMONODLW07-8435-SK010 (PET) manufactured by SEFAR (Switzerland), NT20 (PET/nylon mixed spinning) manufactured by Shikishima Canvas, and TT30 (PET).
  • PET TETEXMONODLW07-8435-SK010
  • SEFAR Screrland
  • NT20 PET/nylon mixed spinning
  • Shikishima Canvas Shikishima Canvas
  • TT30 PET
  • the solid content of the wet paper is controlled by controlling the suction pressure (wet suction or dry suction) of the papermaking and the pressing step, and the solid content is preferably 6% by mass or more and 25% by mass or less, more preferably the solid content.
  • the concentration is adjusted within the range of 8% by mass or more and 20% by mass or less.
  • the fine cellulose fibers do not significantly penetrate into the wire or filter cloth, and unevenness is transferred to the sheet, or the wire or filter cloth. It is possible to avoid problems such as clogging of the.
  • a multi-layer wet paper can be obtained by placing the base material sheet on a wire or a filter cloth and performing paper making during the paper making. Further, in the coating method, a multilayer wet paper can be obtained by using a base material sheet of a porous fine cellulose fiber laminated sheet as a water-permeable base material on which the coating slurry is applied.
  • the base sheet preferably has an air resistance of 100 sec/100 ml or less and a thickness of 1 ⁇ m or more and 1000 ⁇ m or less, or 100 ⁇ m or more and 750 ⁇ m or less, or 200 ⁇ m or more and 500 ⁇ m or less.
  • the base material sheet in the porous fine cellulose fiber composite sheet may have one layer or two or more layers. In the case of two or more layers, the total thickness of the base material sheet portion in the porous fine cellulose fiber composite sheet may be 2 ⁇ m or more and 2000 ⁇ m or less, or 200 ⁇ m or more and 1500 ⁇ m or less, or 400 ⁇ m or more and 1000 ⁇ m or less.
  • the method of measuring the air resistance is in accordance with the method of measuring the air resistance of the porous fine cellulose fiber sheet.
  • the thickness can be measured by using a porous fine cellulose fiber laminated sheet (20 cm x 20 cm) left standing for 1 day in an environment of 23° C. and 50% RH, and in the case of a porous fine cellulose fiber laminated sheet, a desktop offline contact type.
  • a film thickness meter for example, TOF-5R01 manufactured by Yamabun Denki Co., Ltd.
  • a length of 150 mm is measured once at a pitch of 0.1 mm, and the number average value is taken as the film thickness ( ⁇ m).
  • the cross section of the composite sheet is cut out, and SEM observation or optical microscope observation is arbitrarily performed at 10 places, and the thickness of the base material sheet is measured at each place.
  • the obtained measurement value x the number average value at the above 10 points is calculated to obtain the substrate sheet thickness ( ⁇ m).
  • the surface of the base sheet of this embodiment is preferably hydrophilic. It is preferable that the surface of the base material sheet is hydrophilic because the adhesiveness of the porous fine cellulose fiber laminated sheet is excellent and the drainage property at the time of producing the porous fine cellulose fiber laminated sheet by a papermaking method is improved.
  • the hydrophilic functional group is not particularly limited, but it may be a hydroxyl group, a thiol group, a carboxyl group, a sulfonic acid group, a sulfuric acid ester group, a phosphoric acid group, a sulfuric acid group or -OM, -COOM, -SO 3 M, -OSO 3 M. , --HMPO 4 or --M 2 PO 4 (M represents an alkali metal or an alkaline earth metal), a primary to tertiary amine and a quaternary ammonium salt.
  • a functional group having active hydrogen may be introduced on the surface of the base material sheet.
  • the functional group on the surface of the base material sheet is a functional group having active hydrogen
  • a chemical bond by polyurethane can be formed, and the base material sheet and the porous fine cellulose fiber sheet are firmly bonded via the polyurethane, which is preferable.
  • the functional group having active hydrogen as used herein means, for example, a hydroxyl group, an amino group, a thiol group, a carboxyl group or the like. In the case of a hydroxyl group, a urethane bond is formed, and in the case of a carboxyl group, an amidourea bond or the like is formed.
  • a base sheet having a hydrophilic surface or having an active hydrogen group a base sheet having its original property such as cellulose or nylon can be selected, or corona discharge treatment or plasma treatment before paper making. It is also possible to use a substrate sheet obtained by performing a treatment to hydrophilize the surface of the sheet and form a functional group having active hydrogen.
  • an organic solvent to the wet paper or immerse the wet paper and replace the contained water with the organic solvent. Substitution with an organic solvent can further promote the formation of porosity.
  • the organic solvent is not particularly limited, but it is preferable that the organic solvent is water-soluble because substitution with water occurs quickly. Further, when the boiling point of the organic solvent is 100° C. or higher, the organic solvent is more likely to remain in the porous fine cellulose fiber sheet than water during drying, so that a porous fine cellulose fiber sheet having a higher porosity can be obtained. Therefore, it is preferable.
  • a hydrophobic organic solvent can also be used once it has been replaced with a water-soluble organic solvent.
  • the porous fine cellulose fiber sheet or the porous fine cellulose fiber laminated sheet is obtained by evaporating the water by heating the wet paper obtained in the paper making step (film forming step) described above.
  • the drying method is not particularly limited, but when a constant length drying type drier capable of drying water in a fixed width such as a drum dryer or a pin tenter is used, the air permeability resistance It is preferable because a porous fine cellulose fiber sheet or a porous fine cellulose fiber laminated sheet having a low viscosity can be stably obtained.
  • the drying temperature may be appropriately selected according to the conditions, but is preferably in the range of 45°C or higher and 250°C or lower, more preferably 60°C or higher and 200°C or lower, and further preferably 80°C or higher and 200°C or lower.
  • the drying temperature is 45° C. or higher, the evaporation rate of water is relatively high in many cases, so that good productivity can be secured, which is preferable.
  • the drying temperature is 250° C. or lower, the porosifying agent is thermally denatured. This is preferable because it can avoid the case of causing the above-mentioned problem, and has good energy efficiency and low cost.
  • the slurry further contains a blocked polyisocyanate
  • the porous fine cellulose fiber sheet forming step or the porous fine cellulose fiber laminated sheet forming step is a heat curing treatment performed after drying the wet paper or the multilayer wet paper. including. That is, when the block polyisocyanate is used, the cured sheet obtained by drying the wet paper or the multilayer wet paper is subjected to heat curing treatment (heat treatment) to dissociate the block groups of the block polyisocyanate contained in the sheet, and A chemical bond is formed with the subsequent fine cellulosic fibers. Further, in the porous fine cellulose fiber laminated sheet, the block polyisocyanate simultaneously promotes crosslinking between the base sheet and the fine cellulose fibers.
  • heat cure treatment a known method using convective heat transfer, conductive heat transfer, radiant heat transfer, etc. can be adopted, and heating by hot air, infrared rays, or thermal contact can be used. From the viewpoint of uniform and short-time heat treatment, contact heating with a heating roller is preferable.
  • the amount of heat energy that ignites the sheet can be adjusted by the roll temperature, roll diameter, feed rate, and the like.
  • Block polyisocyanate is stable at room temperature, but by heat treatment above the dissociation temperature of the blocking agent, the block group dissociates and the isocyanate group is regenerated, forming a chemical bond with the functional group containing active hydrogen.
  • the heating temperature varies depending on the blocking agent used, but is, for example, 80° C. or higher and 300° C. or lower, preferably 100° C. or higher and 280° C. or lower, and more preferably 120° C. or higher and 250° C. or lower. ..
  • the temperature is lower than the dissociation temperature of the block group, the isocyanate group does not regenerate, and thus crosslinking does not occur.
  • it is preferable to heat at a temperature of 300° C. or less because thermal degradation of the fine cellulose fibers and the block polyisocyanate and the coloring due to this can be avoided.
  • the heating time has a lower limit of, for example, 1 second or more and an upper limit of, for example, 10 minutes or less, preferably 5 minutes or less, more preferably 3 minutes or less, and further preferably 1 minute or less.
  • the heating temperature is sufficiently higher than the dissociation temperature of the block group, the heating time can be shortened.
  • the heating temperature is 200° C. or higher, the water content in the sheet is extremely reduced if the sheet is heated for more than 5 minutes, so heating within 5 minutes avoids embrittlement of the sheet immediately after heating. It is preferable in that it is easy to handle.
  • the step of forming a porous fine cellulose fiber sheet includes calendering performed after drying the wet paper web or the multilayer wet paper web. That is, the dried sheet obtained by drying may be subjected to calendering (smoothing) with a calendering device. It is also possible to obtain a porous fine cellulose fiber sheet or a porous fine cellulose fiber laminated sheet, the surface of which has been smoothed by a calendering treatment to form a thin film.
  • a porous fine cellulose fiber laminated sheet can be provided.
  • a porous fine cellulose fiber sheet having a film thickness of 200 ⁇ m or less and a porous fine cellulose fiber laminated sheet under the setting of the basis weight of 100 g/m 2 or less.
  • a super calendering device having a structure in which these are installed in multiple stages may be used. The material (material hardness) and the linear pressure of each of these devices and both sides of the roll at the time of calendering may be selected according to the purpose.
  • calendering treatment in addition to performing between drying and heat curing treatment, may be performed after drying and heat curing treatment, The heat curing treatment and the calendering treatment (smoothing treatment) may be simultaneously performed by the heat calendering treatment.
  • drying of the multilayer wet paper, heat curing, and calendering are performed in this order.
  • the basis weight 10 g / m 2 per aqueous Wet strength 0.3 kg / 15 mm or more, and / or basis weight 10 g / m 2 per is particularly advantageous in the production of a porous fine cellulose fiber sheet having a non-aqueous Wet strength of 0.3 kg/15 mm or more.
  • the porous fine cellulose fiber composite sheet of this embodiment is manufactured by impregnating the above-mentioned porous fine cellulose fiber sheet with a thermoplastic resin.
  • a porous fine cellulose fiber sheet and a thermoplastic resin sheet are stacked and pressed hot press, vacuum press, vacuum pressure hot press, or the thermoplastic resin is made into an emulsion to obtain porous fine cellulose.
  • the method include, but are not limited to, a method in which a fiber sheet is impregnated, a solvent is dried, and then pressure hot pressing, vacuum pressing, and vacuum pressure hot pressing are performed.
  • the porous fine cellulose fiber composite sheet of the present embodiment also includes a plurality of porous fine cellulose fiber composite sheets impregnated with a thermoplastic resin, which are superposed and joined by a pressure hot press or the like.
  • the mixing ratio (mass basis) of the porous fine cellulose fiber sheet and the thermoplastic resin is not particularly limited, but 1:99 to 99:1 is preferable from the viewpoint of impregnating the thermoplastic resin into the porous fine cellulose fiber sheet, It is more preferably 3:97 to 90:10, particularly preferably 5:95 to 70:30.
  • the thermoplastic resin is not particularly limited, and examples thereof include styrene resin, acrylic resin, polycarbonate resin, polyester resin, polyolefin resin, polyamide resin, polyphenylene ether resin, polyimide resin, polyacetal resin, polysulfone resin, and fluorine resin.
  • a polyolefin resin, a polyamide resin, a polyester resin, a polyacetal resin, poly(meth) Acrylate resins and polyphenylene ether resins are preferably used.
  • the thermosetting resin may be used alone or two or more different resins may be used.
  • the porous fine cellulose fiber composite sheet of the present embodiment may use a thermosetting resin and/or a photocurable resin in addition to the thermoplastic resin.
  • thermosetting resin examples include epoxy resin, acrylic resin, oxetane resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicone resin, polyurethane resin, allyl ester resin and diallyl phthalate resin. Not limited.
  • photocurable resin examples include, but are not limited to, precursors such as epoxy resin, acrylic resin, and oxetane resin.
  • the total thickness of the porous fine cellulose fiber composite sheet may be 50 ⁇ m to 4000 ⁇ m, or 100 ⁇ m to 3000 ⁇ m, or 200 ⁇ m to 2000 ⁇ m.
  • the ratio of [total thickness of porous fine cellulose fiber sheet portion]/[total thickness of base material sheet] in the porous fine cellulose fiber composite sheet is 1/20 to 1/1, or 1/10. It may be ⁇ 19/20, or 1 ⁇ 5 to 9/10.
  • the linear thermal expansion coefficient (CTE) of the porous fine cellulose fiber composite sheet of the present embodiment is preferably 50 ppm or less in the temperature range of 0° C. to 60° C. from the viewpoint of use as an automobile outer panel component, and It is preferably 40 ppm/K or less, more preferably 30 ppm/K or less, and further preferably 20 ppm/K or less.
  • the CTE of the porous fine cellulose fiber composite sheet was measured by cutting the porous fine cellulose fiber composite sheet into a length of 4 mm and a width of 4 mm with a precision cutting saw, measuring at a temperature range of -10 to 80°C, and measuring at 0°C. Calculate the expansion coefficient between ⁇ 60°C.
  • the CTE aspect ratio (anisotropy) of the porous fine cellulose fiber composite sheet of the present embodiment is preferably 0.5 or more and 2.0 or less, more preferably 0.6 or more and 1.5 or less, and further preferably 0. 0.7 or more and 1.3 or less, more preferably 0.8 or more and 1.2 or less, particularly preferably 0.9 or more and 1.1 or less, and most preferably 0.95 or more and 1.05 or less.
  • the aspect ratio of CTE is preferably 0.5 or more and 2.0 or less from the viewpoint that strain does not easily occur when a resin molded body is manufactured and joined to a component made of another material.
  • the vertical direction can be arbitrarily determined
  • the horizontal direction is a direction perpendicular to the vertical direction
  • the numerical range of the aspect ratio of the CTE described above is defined as any direction of the CTE measurement sample. Also in this case, it is intended that the value of the aspect ratio is within the above range.
  • the porous fine cellulose fiber sheet of the present embodiment has a length (that is, a breaking length of the sheet) of 1 cm or more, and a width (that is, a break occurs).
  • the maximum width of the inter-sheet gap) is more preferably not more than 1 mm, more preferably not more than 0.5 cm in length and not more than 1 mm in width, and most preferably no break. The presence or absence of the above-mentioned fractured portion can be confirmed by visual observation of the porous fine cellulose fiber composite sheet.
  • the pores of the porous fine cellulose fiber sheet to be contained are impregnated with resin. Whether or not the resin is impregnated inside the pores of the porous fine cellulose fiber sheet is confirmed by observing with a cross-section SEM (scanning electron microscope) or optical microscope of the porous fine cellulose fiber composite sheet. be able to.
  • FIG. 1 is a view showing a cross-sectional SEM image of a porous fine cellulose fiber composite sheet.
  • FIG. 1 shows that the pores of the porous fine cellulose fiber sheet A are impregnated with the thermoplastic resin B.
  • the bubble ratio in all three locations is preferably 0.5% or less, more preferably 0.1% or less, further preferably 0.01% or less, Is most preferable.
  • the bubble ratio is 0.5% or less, it is easy to improve the mechanical properties and the coefficient of linear thermal expansion of the porous fine cellulose fiber composite sheet.
  • the bubble ratio is a value obtained as an area ratio in a SEM (scanning electron microscope) cross-section observation image of a porous fine cellulose fiber composite sheet.
  • the method for extracting the fine cellulose fibers from the porous fine cellulose fiber composite sheet is not particularly limited, but a method for extracting the fine cellulose fibers using a resin dissolving agent that selectively dissolves only the thermoplastic resin is preferably used. ..
  • a resin dissolving agent such as formic acid
  • the resin solubilizer can be extracted by substituting the desired solvent to be stored.
  • the porous fine cellulose fiber composite sheet of the present embodiment is a fender, a front bumper, a rear bumper, a door module, a roof, a hood, a back door module, an underbody panel, a chassis, etc., an automobile outer panel component, an automobile structural component, etc. Can be suitably used.
  • the outer panel part for automobiles is more preferable because the linear expansion coefficient of the porous fine cellulose fiber composite sheet of the present embodiment and the linear expansion coefficient of the adjacent metal parts are close to each other, so that interference between the parts is reduced. .. Therefore, one aspect of the present invention is an automobile outer panel component including a cellulose nanofiber reinforced resin molded article (a thermoformed article in one aspect) that includes the porous fine cellulose fiber composite sheet of the present disclosure.
  • the number average fiber diameter of fine cellulose fibers was determined by measuring the specific surface area of a porous sample obtained by tert-butanol substitution. First, a concentrate was obtained by centrifuging the fine cellulose fiber slurries A-1 to A-3 (solid content 5% by mass or more). Subsequently, the concentrate containing 0.5 g of fine cellulose fibers was dispersed in tert-butanol so that the concentration became 0.2% by mass, and further, ultrasonication or the like was performed to eliminate aggregates. Distributed processing was performed.
  • Presence or absence of fine cellulose fibers having a branched structure The presence or absence of the fine cellulose fibers having a branched structure is determined by using a high shear homogenizer prepared by dispersing a fine cellulose fiber slurry (solid content: 0.5% by mass) dispersed in tert-butanol. (For example, manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”), and treatment conditions: an aqueous dispersion dispersed at a rotation speed of 15,000 rpm ⁇ 5 minutes is tert up to 0.1% by mass.
  • the acetylation degree (DS) of the fine cellulose fiber was calculated by infrared spectroscopy.
  • the infrared spectroscopic spectrum of the porous sample by the ATR-IR method was measured with a Fourier transform infrared spectrophotometer (FT/IR-6200 manufactured by JASCO).
  • the infrared spectroscopic spectrum was measured under the following conditions. Total number of times: 64 times Wave number resolution: 4 cm -1 , Measuring wave number range: 4000-600 cm -1 , ATR crystal: diamond, Incident angle: 45°
  • H1730 and H1030 are absorbances at 1730 cm ⁇ 1 and 1030 cm ⁇ 1 (absorption band of cellulose skeleton chain CO stretching vibration).
  • the line connecting 1900 cm ⁇ 1 and 1500 cm ⁇ 1 and the line connecting 800 cm ⁇ 1 and 1500 cm ⁇ 1 are taken as the baseline, and the absorbance when the baseline is set to 0 is meant.
  • CTE Two sample pieces of 4 mm x 4 mm were cut out from a porous fine cellulose fiber composite sheet stored for 24 hours in an environment controlled at room temperature of 23°C and humidity of 50% RH, and were perforated by a thermomechanical analyzer Q400 manufactured by TA Instruments.
  • the fine and fine cellulose fiber sheet was measured in the longitudinal and transverse directions in a temperature range of -10 to 80°C, and the CTE of 0 to 60°C was calculated.
  • the vertical direction was arbitrarily determined from the sample pieces, and the horizontal direction was the direction perpendicular to the vertical direction.
  • Sheet thickness 10 pieces of sample pieces were arbitrarily cut from the porous fine cellulose fiber composite sheet stored for 24 hours in an environment controlled at room temperature of 23° C. and humidity of 50% RH, and each piece was made porous by an optical microscope. The total thickness of the fine cellulose fiber composite sheet was measured. The average value of the thickness at 10 places was defined as the sheet thickness ( ⁇ m).
  • Bubble ratio 10 pieces of sample pieces were arbitrarily cut out from the porous fine cellulose fiber composite sheet stored for 24 hours in an environment controlled at room temperature of 23°C and humidity of 50% RH, and cross-sectional SEM observation was performed at 1000 times each. I went.
  • the bubble ratio in the cross-sectional visual field including the front surface to the back surface of the composite sheet can be expressed by the following formula.
  • Bubble ratio (%) bubble area/composite sheet cross-sectional area x 100 (average value of 10 fields of view; SEM)
  • a DMF solution CDCl 3 solution containing 1000 mass ppm of DMF
  • the re-concentrated slurry was put into 100 parts by mass of DMSO in an explosion-proof disperser tank, stirred for 30 minutes, and then 3 parts by mass of vinyl acetate and 1 part by mass of baking soda were put in the tank.
  • the temperature was set to 40° C. and stirring was performed for 60 minutes.
  • the obtained slurry was dispersed in 100 parts by mass of pure water, stirred, and then concentrated with a dehydrator.
  • the obtained wet cake was again dispersed in 100 parts by mass of pure water, and the washing operation of stirring and concentrating was repeated 3 times in total to remove the unreacted reagent solvent and the like.
  • the washing operation was repeated 3 times, and finally pure water was added to obtain acetylated fine cellulose fiber slurry A-2 (solid content: 1.5% by mass).
  • the degree of acetylation (DS) was 0.5.
  • the weight of the solid content of the added porosifying agent and the weight of the solid content of the blocked polyisocyanate were both adjusted to 6% with respect to the weight of the fine cellulose fibers.
  • C Emulgen 103 (also referred to as E103), polyoxyethylene lauryl ether, HLB8.1, manufactured by Kao Corporation (number average molecular weight: 324)
  • D Meikanate CX (also called CX), manufactured by Meisei Chemical Industry Co., Ltd.
  • the papermaking slurry was added thereto, and then the papermaking (dehydration) was carried out at a reduced pressure degree with respect to atmospheric pressure of 4 KPa to obtain a wet paper.
  • the obtained wet paper was covered with the same PET/nylon mixed-spun plain fabric as a cloth, and then the whole filter cloth was peeled off from the paper machine. Then, after sandwiching it in a cardboard and pressing it at a pressure of 1 kg/cm 2 for 1 minute, cover it with a drum dryer whose surface temperature is set to 130° C. and let it dry for about 120 seconds so that the cloth surface contacts the drum surface.
  • the pressure was increased by 1 MPa until the resin impregnation was poor or the sheet breakage was poor, and the resin impregnation was good and The maximum pressure at which the sheet did not break was calculated. Further, conversely, the pressure was lowered from 3 MPa by 1 MPa to a pressure at which resin impregnation was poor or sheet breakage was poor, and the minimum pressure at which the sheet did not break and the resin impregnation was good was determined.
  • Example 6 Ten porous fine cellulose fiber composite sheets obtained in Example 5 were superposed and heated and pressed under a surface pressure of 5 MPa to obtain a porous fine cellulose composite sheet having a sheet thickness of 2250 ⁇ m.
  • the obtained porous fine cellulose fiber composite sheet was dissolved in hexafluoroisopropanol, and the fine cellulose fibers were extracted to evaluate the average fiber diameter of cellulose, the presence or absence of a branched structure, and the degree of acetylation.
  • the value was the same as the value (described in Table 1) of the porous fine cellulose fiber sheet used for.
  • Tables 1 and 2 show the composition and conditions for papermaking and resin compounding.
  • the porous fine cellulose fiber composite sheet of this embodiment can be suitably applied as an outer panel component and a structural component for automobiles.
  • the porous fine cellulose fiber composite sheet of the present embodiment is characterized in that it is manufactured by impregnating a material recyclable thermoplastic resin, for example, as a substitute for a steel plate, carbon fiber reinforced plastic, and glass fiber reinforced plastic. Can also be preferably used.
  • the porous fine cellulose fiber composite sheet of the present embodiment is specifically used as a vehicle member such as a fender, a front bumper, a rear bumper, a door module, a roof, a hood, a back door module, an underbody panel, a chassis and the like. It can be preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a complex sheet which comprises a porous fine cellulose fiber sheet and a thermoplastic resin, and which has low linear thermal expansion coefficient and reduced anisotropy. One embodiment of the present invention provides a porous fine cellulose fiber complex sheet which satisfies all of the requirements (1)-(4) described below. (1) One or more porous fine cellulose fiber sheets, each having an average fiber diameter of from 2 nm to 1,000 nm (inclusive), are contained. (2) Each porous fine cellulose fiber sheet is arranged so as to have a film thickness of from 25 μm to 2,000 μm (inclusive). (3) A thermoplastic resin is contained. (4) A porosity imparting agent is contained.

Description

多孔質微細セルロース繊維複合化シートPorous fine cellulose fiber composite sheet
 本発明は、自動車部品用材料等として最適な、微細セルロース繊維と熱可塑性樹脂とを含む多孔質微細セルロース繊維複合化シートに関する。 The present invention relates to a porous fine cellulose fiber composite sheet containing fine cellulose fibers and a thermoplastic resin, which is optimal as a material for automobile parts.
 近年、自動車部品は、燃費向上及びCO2排出量削減の観点から軽量化が求められており、外板部材、構造部材に対して、樹脂材料を適合させる検討がなされている。しかしながら、一般的に樹脂は高い線膨張係数を有しているため、従来使用されていた金属部品に樹脂をそのまま適合すると、高温時に熱膨張により隣接する金属部品との境界面で干渉が生じる問題があった。また逆に高温時の寸法に合わせて設計した樹脂部品を装着すると、室温時には隣接する金属部品との境界に大きな隙間が生じてしまう。また、金属部品と樹脂を面接着させた場合には、高温時に金属と樹脂との線膨張差で大きな応力が発生し、接合面が剥がれてしまう問題も発生していた。 In recent years, automobile parts have been required to be lightweight from the viewpoint of improving fuel efficiency and reducing CO 2 emission, and studies have been made to adapt a resin material to an outer plate member and a structural member. However, since resin generally has a high coefficient of linear expansion, if the resin is used as it is for a conventionally used metal component, interference will occur at the interface with the adjacent metal component due to thermal expansion at high temperatures. was there. On the contrary, when a resin component designed according to the dimensions at high temperature is mounted, a large gap is generated at the boundary with the adjacent metal component at room temperature. Further, when the metal component and the resin are surface-bonded to each other, a large stress is generated due to a difference in linear expansion between the metal and the resin at a high temperature, causing a problem that the joint surface is peeled off.
 一方、自動車部品においては、CO2排出量削減を目的として、使用する樹脂にはリサイクル性が要求される。すなわち、マテリアルリサイクルが困難な熱硬化性樹脂ではなく、これが可能な熱可塑性樹脂が好んで用いられる。一般的に熱可塑性樹脂は、線膨張係数が大きいため、繊維状又は板状の無機フィラーを配合して線膨張係数を抑制する検討がこれまでなされてきた。しかしながら、繊維状の無機フィラーを配合した樹脂を用いて射出成形した場合、射出流動方向の線膨張係数は小さくできるものの、流動と直角の方向の線膨張係数は小さくできない。一方板状の無機フィラーを配合した樹脂を用いた場合でも、流動方向及び流動と直角の方向共に線膨張係数を金属並みに低減させることは難しい。つまり無機フィラーで強化した熱可塑性樹脂では、全方位で熱線膨張を金属並みに低減することは困難であった。 On the other hand, in automobile parts, the resin used is required to have recyclability in order to reduce CO 2 emission. That is, rather than a thermosetting resin that is difficult to recycle materials, a thermoplastic resin that can do this is preferably used. Since thermoplastic resins generally have a large linear expansion coefficient, studies have been made so far to suppress the linear expansion coefficient by blending a fibrous or plate-like inorganic filler. However, when injection molding is performed using a resin containing a fibrous inorganic filler, the linear expansion coefficient in the injection flow direction can be made small, but the linear expansion coefficient in the direction perpendicular to the flow cannot be made small. On the other hand, even when a resin containing a plate-like inorganic filler is used, it is difficult to reduce the linear expansion coefficient to the same level as a metal in both the flow direction and the direction perpendicular to the flow. That is, it has been difficult to reduce the linear thermal expansion to the same level as that of a metal in all directions with a thermoplastic resin reinforced with an inorganic filler.
 近年、セルロース系繊維を高レベルで叩解及び粉砕して、繊維径1μm以下まで微細化(フィブリル化)させた微細セルロース繊維が注目されている。繊維径がナノオーダーになることで比表面積が増大するため、例えば微細セルロース繊維シートに樹脂を含浸させた複合シートを作製した際、樹脂単独フィルムと比較し熱膨張係数が低下し、弾性率は増大する。特に異方性の小さな微細セルロース繊維シートが作製できると、これを樹脂と複合化させたシートが有する熱線膨張係数においても異方性が小さくなる。微細セルロース繊維シートはその目的において樹脂材料の優れた芯材となるポテンシャルを有しており、実用化が期待されているが、技術的な課題も多い。 In recent years, attention has been paid to fine cellulose fibers obtained by refining and pulverizing cellulosic fibers at a high level to make them finer (fibrillated) to a fiber diameter of 1 μm or less. Since the specific surface area increases as the fiber diameter becomes nano-order, for example, when a composite sheet in which a fine cellulose fiber sheet is impregnated with a resin is produced, the coefficient of thermal expansion decreases as compared with a resin-only film, and the elastic modulus is Increase. In particular, if a fine cellulose fiber sheet having a small anisotropy can be produced, the anisotropy also becomes small in the coefficient of linear thermal expansion of a sheet obtained by compounding this with a resin. The fine cellulose fiber sheet has the potential of becoming an excellent core material of a resin material for that purpose and is expected to be put into practical use, but there are many technical problems.
 自動車部品用途を考えた場合、熱可塑性樹脂を含浸させるために微細セルロース繊維シートは多孔質体であることが好ましいが、従来熱可塑性樹脂を多孔質体に熱プレスで含浸させる際に、微細セルロース繊維シートは破壊され易い問題があった。微細セルロース繊維シートが破壊されると、微細セルロース繊維シートと樹脂との複合シートにおいて所望の線膨張係数及び機械物性を発現するのが困難となる。 When considering the use of automobile parts, it is preferable that the fine cellulose fiber sheet is a porous body in order to impregnate the thermoplastic resin. However, when the conventional thermoplastic resin is impregnated into the porous body by hot pressing, the fine cellulose fiber sheet is used. The fiber sheet has a problem that it is easily broken. When the fine cellulose fiber sheet is destroyed, it becomes difficult to exhibit desired linear expansion coefficient and mechanical properties in the composite sheet of the fine cellulose fiber sheet and the resin.
 特許文献1には、数平均繊維幅2nm以上1000nm未満の第1の繊維と、数平均繊維幅1000nm以上100000nm以下であり、かつ数平均繊維長が0.1~20mmである第2の繊維とを含有する不織布に樹脂を含有させた複合シートが記載されている。 Patent Document 1 discloses a first fiber having a number average fiber width of 2 nm or more and less than 1000 nm and a second fiber having a number average fiber width of 1000 nm or more and 100000 nm or less and a number average fiber length of 0.1 to 20 mm. A composite sheet in which a resin is contained in a nonwoven fabric containing is described.
 特許文献2には、少なくとも微細繊維とマトリックス樹脂を含有する複合シートにおいて、前記微細繊維が複合シートの少なくとも一方の表面に偏在することを特徴とする微細繊維含有複合シートが記載されている。 Patent Document 2 describes a composite sheet containing at least fine fibers and a matrix resin, wherein the fine fibers are unevenly distributed on at least one surface of the composite sheet.
 特許文献3には、パルプから微細セルロース繊維を製造する際に疎水化剤を添加して繊維表面が疎水化された微細セルロース繊維を製造し、抄紙・乾燥した微細セルロース繊維シートに樹脂を含浸させた複合シートが記載されている。 In Patent Document 3, when a fine cellulose fiber is produced from pulp, a hydrophobizing agent is added to produce a fine cellulose fiber having a hydrophobic surface, and a papermaking/dried fine cellulose fiber sheet is impregnated with a resin. A composite sheet is described.
特開2015-25003号公報JP-A-2015-25003 特開2015-17184号公報JP, 2005-17184, A 国際公開第2016/047764号International Publication No. 2016/047764
 特許文献1及び2に記載されている、多孔質微細セルロース繊維シートの製造方法として、高い多孔質性を発現させるために水を含む状態の微細セルロース繊維シートを作製した後、表面張力の低い有機溶剤で一部置換し乾燥する方法が示されている。しかしながら、前述の製造方法で作製したシートは、適切な多孔質状態である使用初期には所望の樹脂含浸性能を発揮できるが、長期間大気中に保管すると湿度変動又は結露-乾燥によって徐々に緻密化し、樹脂含浸性能が低下するという問題がある。すなわち、特許文献1及び2に記載される手法で得られた多孔質微細セルロース繊維シートは、製造直後は多孔質であっても吸湿状態のまま乾燥すると乾燥収縮が発生し、緻密化する。一般的に微細セルロース繊維と熱可塑性樹脂を熱プレスで複合化させる場合、セルロース中の水の蒸発により発生する成形品表面の凹凸を避けるため、熱プレス前に微細セルロース繊維シートは乾燥させる必要があるが、その際多孔質微細セルロース繊維シートは緻密化してしまう。したがって、湿潤乾燥操作を経ても多孔質構造が変化しない、具体的には透気抵抗度が変化しない多孔質微細セルロース繊維シートが求められる。特許文献1及び2に記載されている多孔質微細セルロース繊維シートは、乾燥後に熱可塑性樹脂と複合化させると、微細セルロース繊維シートの多孔質部分が緻密化しているため、樹脂が十分に含浸しない問題が発生する。また、更に特許文献1及び2には、微細セルロース繊維シートに熱硬化樹脂を含浸させた実施例は記載されているものの、微細セルロース繊維シートに熱可塑性樹脂と複合化させる際の技術的な困難性に関する記載はない。 As a method for producing a porous fine cellulose fiber sheet described in Patent Documents 1 and 2, after producing a fine cellulose fiber sheet containing water to express high porosity, an organic material having a low surface tension is prepared. A method of partially substituting with a solvent and drying is shown. However, the sheet produced by the above-mentioned production method can exhibit a desired resin impregnation performance at the initial stage of use in a proper porous state, but when it is stored in the atmosphere for a long period of time, it gradually becomes dense due to humidity fluctuation or condensation-drying. However, there is a problem that the resin impregnation performance is deteriorated. That is, the porous fine cellulose fiber sheets obtained by the methods described in Patent Documents 1 and 2 are densified by drying shrinkage when dried in a hygroscopic state even if they are porous immediately after production. Generally, when a fine cellulose fiber and a thermoplastic resin are compounded by hot pressing, it is necessary to dry the fine cellulose fiber sheet before hot pressing in order to avoid irregularities on the surface of the molded product caused by evaporation of water in cellulose. However, at that time, the porous fine cellulose fiber sheet is densified. Therefore, there is a demand for a porous fine cellulose fiber sheet in which the porous structure does not change even after the wet-drying operation, specifically, the air permeation resistance does not change. The porous fine cellulose fiber sheet described in Patent Documents 1 and 2 is not sufficiently impregnated with resin when the porous fine cellulose fiber sheet is densified when it is combined with a thermoplastic resin after drying. The problem occurs. Further, although Patent Documents 1 and 2 describe examples in which a fine cellulose fiber sheet is impregnated with a thermosetting resin, technical difficulties in complexing the fine cellulose fiber sheet with a thermoplastic resin are described. There is no description about sex.
 一方、特許文献3には、湿潤乾燥操作を経ても透気抵抗度は変化しにくい微細セルロース繊維シートに樹脂を複合化させる方法が記載されている。しかし、これらのシートは、膜厚の薄いシートとしてしか作製できず、自動車外板部品に使用する場合、微細セルロース繊維シートと熱可塑性樹脂とを含むプリプレグを熱プレスする際に、プリプレグ中のシートが破れ易いという問題があった。シートが破れると、プリプレグは、所望の線膨張係数及び機械物性を発現することができなくなる。したがって、熱可塑性樹脂と熱プレスしても破れることがない微細セルロース繊維シートが求められてきた。 On the other hand, Patent Document 3 describes a method in which a resin is compounded with a fine cellulose fiber sheet whose air resistance does not easily change even after a wet drying operation. However, these sheets can be produced only as a thin sheet, and when used for automobile outer panel parts, when the prepreg containing the fine cellulose fiber sheet and the thermoplastic resin is hot pressed, the sheet in the prepreg is used. There was a problem that it was easy to tear. When the sheet is torn, the prepreg cannot exhibit the desired coefficient of linear expansion and mechanical properties. Therefore, there has been a demand for a fine cellulose fiber sheet that does not break even when it is hot pressed with a thermoplastic resin.
 本発明が解決しようとする課題は、熱線膨張係数が低く、且つ異方性が少ない、多孔質微細セルロース繊維シートと熱可塑性樹脂とを含む複合化シートを提供することである。 The problem to be solved by the present invention is to provide a composite sheet containing a porous fine cellulose fiber sheet and a thermoplastic resin, which has a low coefficient of linear thermal expansion and a small anisotropy.
 本発明者らは、上記課題を解決すべく、鋭意検討し実験を重ねた結果、本開示の構成によれば上記課題が解決されうることを見出し、本発明を完成するに至ったものである。すなわち、本発明は、以下の実施形態を含む。 The present inventors have conducted intensive studies and experiments to solve the above problems, and as a result, have found that the above problems can be solved by the configuration of the present disclosure, and have completed the present invention. .. That is, the present invention includes the following embodiments.
[1] 以下の(1)~(4)の要件:
(1)平均繊維径が2nm以上1000nm以下の多孔質微細セルロース繊維シートを1層以上含むこと、
(2)多孔質微細セルロース繊維シートが膜厚25μm以上(好ましくは25μm以上2000μm以下)で配置されていること、
(3)熱可塑性樹脂を含むこと、
(4)多孔質化剤を含むこと、
を全て満たす、多孔質微細セルロース繊維複合化シート。
[2] 以下の(1)~(4)の要件:
(1)平均繊維径が2nm以上1000nm以下の多孔質微細セルロース繊維シートを1層以上含むこと
(2)多孔質微細セルロース繊維シートが膜厚25μm以上(好ましくは25μm以上4000μm以下)で配置されていること、
(3)熱可塑性樹脂を含むこと、
(4)前記熱可塑性樹脂が前記多孔質微細セルロース繊維シートに含浸されていること、
を全て満たす、多孔質微細セルロース繊維複合化シート。
[3] 前記多孔質微細セルロース繊維複合化シートのシート厚が50μm以上、4000μm以下である、上記態様2に記載の多孔質微細セルロース繊維複合化シート。
[4] 多孔質化剤を含む、上記態様2又は3に記載の多孔質微細セルロース繊維複合化シート。
[5] 前記多孔質化剤を微細セルロース繊維100質量%に対して0.1質量%以上100質量%以下の量で含む、上記態様1又は4に記載の多孔質微細セルロース繊維複合化シート。
[6] 多孔質微細セルロース繊維複合化シートの内部の気泡率が、0.5%以下である、上記態様1~5のいずれかに記載の多孔質微細セルロース繊維複合化シート。
[7] ブロックポリイソシアネート又はその架橋物を更に含む、上記態様1~6のいずれかに記載の多孔質微細セルロース繊維複合化シート。
[8] 多孔質微細セルロース繊維シートに長さ1cm以上、幅1mm以上の破断部が無い、上記態様1~7のいずれかに記載の多孔質微細セルロース繊維複合化シート。
[9] 多孔質微細セルロース繊維シートが、繊維径1μm~30μmの太い幹から繊維径2~1000nmの細い枝が分岐している枝分かれ構造を有する微細セルロース繊維を含む、上記態様1~8のいずれかに記載の多孔質微細セルロース繊維複合化シート。
[10] 多孔質微細セルロース繊維シートがセルロースI型結晶を含む、上記態様1~9のいずれかに記載の多孔質微細セルロース繊維複合化シート。
[11] 多孔質微細セルロース繊維シートがアセチル化度0.1~1.5のアセチル化セルロースを含む、上記態様1~10のいずれかに記載の多孔質微細セルロース繊維複合化シート。
[12] 基材シート層を1層以上含む、上記態様1~11のいずれかに記載の多孔質微細セルロース繊維複合化シート。
[13] 熱可塑性樹脂が、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリ(メタ)アクリレート樹脂、及びポリフェニレンエーテル樹脂からなる群から選ばれる1種以上を含む、上記態様1~12のいずれかに記載の多孔質微細セルロース繊維複合化シート。
[14] 上記態様1~13のいずれかに記載の多孔質微細セルロース繊維複合化シートを含む成形体であって、成形体中の互いに垂直である任意の2方向での0℃~60℃の熱線膨張係数が、共に50ppm/K以下である、セルロースナノファイバー強化樹脂成形体。
[15] 上記態様14に記載のセルロースナノファイバー強化樹脂成形体を含む、自動車用外板部品。
[16] 多孔質化剤と、微細セルロース繊維と、水とを含むスラリーを調製するスラリー調製工程、
 該スラリーを抄紙法により脱水することによって湿紙を形成する製膜工程、
 該湿紙を少なくとも乾燥させることによって多孔質微細セルロース繊維シートを得る多孔質微細セルロース繊維シート形成工程、及び
 該多孔質微細セルロース繊維シートに熱可塑性樹脂を含浸させて多孔質微細セルロース繊維複合化シートを得る複合化工程、
を含む、多孔質微細セルロース繊維複合化シートの製造方法。
[1] Requirements for (1) to (4) below:
(1) Containing one or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less,
(2) The porous fine cellulose fiber sheet is arranged with a film thickness of 25 μm or more (preferably 25 μm or more and 2000 μm or less),
(3) Including a thermoplastic resin,
(4) Including a porosifying agent,
A porous fine cellulose fiber composite sheet that satisfies all of the above.
[2] The following requirements (1) to (4):
(1) Containing one or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less (2) Porous fine cellulose fiber sheet having a thickness of 25 μm or more (preferably 25 μm or more and 4000 μm or less) To be
(3) Including a thermoplastic resin,
(4) The porous fine cellulose fiber sheet is impregnated with the thermoplastic resin,
A porous fine cellulose fiber composite sheet that satisfies all of the above.
[3] The porous fine cellulose fiber composite sheet according to the above aspect 2, wherein the sheet thickness of the porous fine cellulose fiber composite sheet is 50 μm or more and 4000 μm or less.
[4] The porous fine cellulose fiber composite sheet according to Aspect 2 or 3 above, which contains a porosifying agent.
[5] The porous fine cellulose fiber composite sheet according to the above aspect 1 or 4, which contains the porosifying agent in an amount of 0.1% by mass or more and 100% by mass or less based on 100% by mass of the fine cellulose fibers.
[6] The porous fine cellulose fiber composite sheet according to any one of the above aspects 1 to 5, wherein the porous fine cellulose fiber composite sheet has an air bubble ratio of 0.5% or less.
[7] The porous fine cellulose fiber composite sheet according to any one of the above aspects 1 to 6, which further comprises a blocked polyisocyanate or a crosslinked product thereof.
[8] The porous fine cellulose fiber composite sheet according to any one of the above aspects 1 to 7, wherein the porous fine cellulose fiber sheet does not have a broken portion having a length of 1 cm or more and a width of 1 mm or more.
[9] Any of Embodiments 1 to 8 above, wherein the porous fine cellulose fiber sheet contains fine cellulose fibers having a branched structure in which a thick trunk having a fiber diameter of 1 μm to 30 μm branches fine branches having a fiber diameter of 2 to 1000 nm. A porous fine cellulose fiber-composite sheet according to Crab.
[10] The porous fine cellulose fiber composite sheet according to any one of the above aspects 1 to 9, wherein the porous fine cellulose fiber sheet contains cellulose type I crystals.
[11] The porous fine cellulose fiber composite sheet according to any one of the above aspects 1 to 10, wherein the porous fine cellulose fiber sheet contains acetylated cellulose having an acetylation degree of 0.1 to 1.5.
[12] The porous fine cellulose fiber composite sheet according to any one of the above aspects 1 to 11, which comprises at least one base sheet layer.
[13] Any of Aspects 1 to 12 above, wherein the thermoplastic resin includes one or more selected from the group consisting of a polyolefin resin, a polyamide resin, a polyester resin, a polyacetal resin, a poly(meth)acrylate resin, and a polyphenylene ether resin. A porous fine cellulose fiber-composite sheet according to Crab.
[14] A molded article containing the porous fine cellulose fiber composite sheet according to any one of the above-mentioned Embodiments 1 to 13, wherein the molded article has a temperature of 0° C. to 60° C. in any two directions perpendicular to each other. A cellulose nanofiber-reinforced resin molded product having a coefficient of linear thermal expansion of 50 ppm/K or less.
[15] An outer panel part for an automobile, which includes the cellulose nanofiber-reinforced resin molded product according to the above-mentioned aspect 14.
[16] A slurry preparation step of preparing a slurry containing a porosifying agent, fine cellulose fibers, and water,
A film forming step of forming a wet paper web by dehydrating the slurry by a papermaking method,
Porous fine cellulose fiber sheet forming step of obtaining a porous fine cellulose fiber sheet by at least drying the wet paper, and porous fine cellulose fiber composite sheet by impregnating the porous fine cellulose fiber sheet with a thermoplastic resin A compounding process to obtain
A method for producing a porous fine cellulose fiber composite sheet, comprising:
 本発明によれば、熱線膨張係数が低く、且つ異方性が少ない、多孔質微細セルロース繊維シートと熱可塑性樹脂とを含む複合化シートが提供され得る。本発明の一態様に係る多孔質微細セルロース繊維複合化シートは、例えば自動車外板部品に用いた場合、異方性の少ない優れた熱線膨張係数と機械物性とを実現し得る。また本発明の一態様に係る多孔質微細セルロース繊維複合化シートは、例えばフェンダーに用いた場合、金属に近くかつ異方性の少ない熱線膨張係数を示すことができるため、金属部品からの代替による自動車の軽量化に寄与し得る。 According to the present invention, it is possible to provide a composite sheet including a porous fine cellulose fiber sheet and a thermoplastic resin, which has a low coefficient of linear thermal expansion and a small anisotropy. The porous fine cellulose fiber composite sheet according to an aspect of the present invention can achieve excellent thermal linear expansion coefficient and mechanical properties with little anisotropy when used for, for example, an automobile outer panel component. Further, the porous fine cellulose fiber composite sheet according to an aspect of the present invention can exhibit a thermal linear expansion coefficient close to that of a metal and less anisotropy when used for, for example, a fender. It can contribute to weight reduction of the automobile.
多孔質微細セルロース繊維複合化シートの断面SEM画像。A cross-sectional SEM image of a porous fine cellulose fiber composite sheet. 多孔質微細セルロース繊維シートに長さ1cm以上、幅1cm以上の破断部がある多孔質微細セルロース繊維複合化シートを上面から観察した写真。The photograph which observed from the upper surface the porous fine cellulose fiber composite sheet in which the porous fine cellulose fiber sheet has a fractured portion with a length of 1 cm or more and a width of 1 cm or more. 多孔質微細セルロース繊維シートに破断部のない多孔質微細セルロース繊維複合化シートを上面から観察した写真。The photograph which observed the porous fine cellulose fiber composite sheet which has no breakage part in the porous fine cellulose fiber sheet from the upper surface. 枝分かれ構造のある微細セルロース繊維のSEM画像。SEM image of fine cellulose fibers with a branched structure.
 以下、本発明を実施するための例示の実施形態(以下「本実施形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, an exemplary embodiment for implementing the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be carried out within the scope of the gist.
 本発明の一態様は、以下の(1)~(4)の要件:
(1)平均繊維径が2nm以上1000nm以下の多孔質微細セルロース繊維シートを1層以上含むこと、
(2)多孔質微細セルロース繊維シートが膜厚25μm以上(好ましくは25μm以上2000μm以下)で配置されていること、
(3)熱可塑性樹脂を含むこと、
(4)多孔質化剤を含むこと、
を全て満たす、多孔質微細セルロース繊維複合化シートを提供する。
One aspect of the present invention includes the following requirements (1) to (4):
(1) Containing one or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less,
(2) The porous fine cellulose fiber sheet is arranged with a film thickness of 25 μm or more (preferably 25 μm or more and 2000 μm or less),
(3) Including a thermoplastic resin,
(4) Including a porosifying agent,
There is provided a porous fine cellulose fiber composite sheet that satisfies all of the above.
 本発明の別の一態様は、以下の(1)~(4)の要件:
(1)平均繊維径が2nm以上1000nm以下の多孔質微細セルロース繊維シートを1層以上含むこと、
(2)多孔質微細セルロース繊維シートが膜厚25μm以上(好ましくは25μm以上4000μm以下)で配置されていること、
(3)熱可塑性樹脂を含むこと、
(4)前記熱可塑性樹脂が前記多孔質微細セルロース繊維シートに含浸されていること、
を全て満たす、多孔質微細セルロース繊維複合化シートを提供する。
Another aspect of the present invention provides the following requirements (1) to (4):
(1) Containing one or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less,
(2) The porous fine cellulose fiber sheet is arranged with a film thickness of 25 μm or more (preferably 25 μm or more and 4000 μm or less),
(3) Including a thermoplastic resin,
(4) The porous fine cellulose fiber sheet is impregnated with the thermoplastic resin,
There is provided a porous fine cellulose fiber composite sheet that satisfies all of the above.
 一態様において、本開示の多孔質微細セルロース繊維複合化シートは多孔質化剤を含む。
 一態様において、本開示の多孔質微細セルロース繊維複合化シートは基材シート層を1層以上含む。
 一態様において、本開示の多孔質微細セルロース繊維複合化シートは、ブロックポリイソシアネート又はその架橋物を含む。
In one aspect, the porous fine cellulose fiber composite sheet of the present disclosure includes a porosifying agent.
In one aspect, the porous fine cellulose fiber composite sheet of the present disclosure includes one or more base sheet layers.
In one aspect, the porous fine cellulose fiber composite sheet of the present disclosure contains a blocked polyisocyanate or a crosslinked product thereof.
 本発明の別の一態様は、以下の(1)~(6)の要件:
(1)平均繊維径が2nm以上1000nm以下の多孔質微細セルロース繊維シートを1層以上含むこと、
(2)基材シート層を1層以上含むこと、
(3)多孔質微細セルロース繊維シートが膜厚25μm以上で配置されていること、
(4)熱可塑性樹脂を含むこと、
(5)多孔質化剤を含むこと、
(6)ブロックポリイソシアネート又はその架橋物を含むこと、
を全て満たす、多孔質微細セルロース繊維複合化シートを提供する。
Another aspect of the present invention provides the following requirements (1) to (6):
(1) Containing one or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less,
(2) At least one base sheet layer is included,
(3) The porous fine cellulose fiber sheet is arranged with a film thickness of 25 μm or more,
(4) Including a thermoplastic resin,
(5) Including a porosifying agent,
(6) Including a blocked polyisocyanate or a crosslinked product thereof,
There is provided a porous fine cellulose fiber composite sheet that satisfies all of the above.
 本実施形態の多孔質微細セルロース繊維シートは微細セルロース繊維で構成される。本開示で、「微細セルロース繊維」とは、数平均繊維径が2~1000nmであるセルロース繊維を意味する。典型的な態様において、微細セルロース繊維は、結晶構造がセルロースI型及び/又はII型を有する。セルロースの結晶形としては、I型、II型、III型、IV型等が知られている。I型及びII型のセルロースは汎用されている一方、III型及びIV型のセルロースは実験室スケールでは得られているものの工業スケールでは汎用されていない。微細セルロース繊維として、複合シート化をする際の加熱での劣化のしにくさ、高い引張弾性率を有していることから、セルロースI型結晶がより好ましい。 The porous fine cellulose fiber sheet of this embodiment is composed of fine cellulose fibers. In the present disclosure, “fine cellulose fibers” means cellulose fibers having a number average fiber diameter of 2 to 1000 nm. In an exemplary embodiment, the finely divided cellulose fibers have a crystalline structure of cellulose type I and/or type II. Known crystal forms of cellulose include I type, II type, III type, IV type and the like. Type I and type II celluloses are commonly used, while type III and type IV celluloses have been obtained on a laboratory scale but not on an industrial scale. As the fine cellulose fibers, cellulose I-type crystals are more preferable because they are resistant to deterioration by heating when forming a composite sheet and have a high tensile elastic modulus.
 結晶構造はグラファイトで単色化したCuKα(λ=0.15418nm)を用いた広角X線回折より得られる回折プロファイルより同定することが可能である。セルロースI型は2θ=14~17°付近と2θ=22~23°付近の2箇所の位置にピークを有する。セルロースII型は2θ=10°~19°に1つのピークと、2θ=19°~25°に2つのピークとを有する。セルロースI型及びセルロースII型が混合した場合、2θ=10°~25°の範囲で最大6本のピークが観測される。 The crystal structure can be identified from the diffraction profile obtained from wide-angle X-ray diffraction using CuKα (λ=0.15418 nm) monochromated with graphite. Cellulose type I has peaks at two positions near 2θ=14 to 17° and 2θ=22 to 23°. Cellulose type II has one peak at 2θ=10° to 19° and two peaks at 2θ=19° to 25°. When cellulose type I and cellulose type II are mixed, a maximum of 6 peaks are observed in the range of 2θ=10° to 25°.
 本実施形態の微細セルロース繊維の結晶化度は、好ましくは50%以上である。結晶化度がこの範囲にあると、微細セルロース繊維自体の力学物性(特に強度及び寸法安定性)が高まるため、多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートの強度及び寸法安定性が高くなる傾向にある。本実施形態の微細セルロース繊維の結晶化度は、より好ましくは60%以上であり、さらに好ましくは65%であり、最も好ましくは70%である。微細セルロース繊維の結晶化度は高いほど好ましい傾向にあるので、上限は特に限定されないが、生産上の観点から99%が好ましい上限である。 The crystallinity of the fine cellulose fiber of this embodiment is preferably 50% or more. When the crystallinity is within this range, the mechanical properties (in particular, strength and dimensional stability) of the fine cellulose fibers themselves are enhanced, so that the strength and dimensional stability of the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet are improved. Tends to be higher. The crystallinity of the fine cellulose fiber of the present embodiment is more preferably 60% or more, further preferably 65%, and most preferably 70%. The higher the crystallinity of the fine cellulose fibers, the more preferable it is. Therefore, the upper limit is not particularly limited, but from the viewpoint of production, 99% is the preferable upper limit.
 結晶化度は、微細セルロース繊維がセルロースI型結晶(天然セルロース由来)である場合には、サンプルを広角X線回折により測定した際の回折パターン(2θ/deg.が10~30)からSegal法により、下記式(1)で求められる。 When the fine cellulose fibers are cellulose type I crystals (derived from natural cellulose), the crystallinity is determined by the Segal method from the diffraction pattern (2θ/deg. is 10 to 30) when the sample is measured by wide-angle X-ray diffraction. Is calculated by the following formula (1).
結晶化度(%)=[I(200)-I(amorphous)]/I(200)×100 式(1)
(200):セルロースI型結晶における200面(2θ=22.5°)による回折ピーク強度
(amorphous):セルロースI型結晶におけるアモルファスによるハローピーク強度であって、200面の回折角度より4.5°低角度側(2θ=18.0°)のピーク強度
Crystallinity (%)=[I (200) −I (amorphous) ]/I (200) ×100 Formula (1)
I (200) : Diffraction peak intensity due to 200 plane (2θ=22.5°) in cellulose I type crystal I (amorphous) : Halo peak intensity due to amorphous state in cellulose I type crystal, which is 4 from the diffraction angle of 200 plane. Peak intensity at 0.5° low angle side (2θ=18.0°)
 また結晶化度は、微細セルロース繊維がセルロースII型結晶(再生セルロース由来)である場合には、広角X線回折において、セルロースII型結晶の(110)面ピークに帰属される2θ=12.6°における絶対ピーク強度h0 とこの面間隔におけるベースラインからのピーク強度h1 とから、下記式(2)によって求められる。
結晶化度(%) =h1 /h0 ×100 式(2)
Further, the crystallinity is 2θ=12.6 which is attributed to the (110) plane peak of the cellulose II type crystal in wide-angle X-ray diffraction when the fine cellulose fiber is a cellulose II type crystal (derived from regenerated cellulose). From the absolute peak intensity h0 at ° and the peak intensity h1 from the baseline at this plane interval, it is determined by the following equation (2).
Crystallinity (%)=h1/h0×100 Formula (2)
 微細セルロース繊維の重合度(DP)は、100以上12000以下であることが好ましい。重合度はセルロース分子鎖を形成する無水グルコース単位の繰返し数である。微細セルロース繊維の重合度が100以上であることで、微細セルロース繊維自体の引張破断強度及び弾性率が向上し、多孔質微細セルロース繊維複合化シートの高い引張破断強度及び熱安定性が発現するため好ましい。微細セルロース繊維の重合度に特に上限はないが、12000を超える重合度のセルロースは実質的に入手が困難であり、工業的な利用が難しい傾向がある。取扱性及び工業的実施の観点から、微細セルロース繊維の重合度は、150~8000が好ましい。重合度は、まず、銅エチレンジアミン溶液を用いたセルロース希薄溶液の極限粘度(JIS P 8215:1998)を求めた後、セルロースの極限粘度と重合度DPとが下記式(3)の関係であることを利用して、重合度DPより求められる。
 極限粘度[η]=K×DPa 式(3)
 ここでK及びaは高分子の種類によって決まる定数であり、セルロースの場合、Kは5.7×10-3、aは1である。
The degree of polymerization (DP) of the fine cellulose fibers is preferably 100 or more and 12000 or less. The degree of polymerization is the number of repeats of anhydroglucose units forming a cellulose molecular chain. Since the degree of polymerization of the fine cellulose fibers is 100 or more, the tensile breaking strength and elastic modulus of the fine cellulose fibers themselves are improved, and the high tensile breaking strength and thermal stability of the porous fine cellulose fiber composite sheet are expressed. preferable. There is no particular upper limit to the degree of polymerization of the fine cellulose fibers, but cellulose having a degree of polymerization of more than 12000 is practically difficult to obtain, and industrial utilization tends to be difficult. From the viewpoint of handleability and industrial implementation, the degree of polymerization of the fine cellulose fibers is preferably 150 to 8000. Regarding the degree of polymerization, first, the intrinsic viscosity (JIS P 8215:1998) of a dilute solution of cellulose using a copper ethylenediamine solution is determined, and then the intrinsic viscosity of cellulose and the degree of polymerization DP have the relationship of the following formula (3). Is used to obtain the degree of polymerization DP.
Intrinsic viscosity [η]=K×DPa Formula (3)
Here, K and a are constants determined by the type of polymer, and in the case of cellulose, K is 5.7×10 −3 and a is 1.
 本実施形態の微細セルロース繊維は化学修飾されていてもよい。例えば、微細セルロース繊維の表面に存在する水酸基が酢酸エステル、硝酸エステル、硫酸エステル、リン酸エステル等にエステル化されたもの(エステル化微細セルロース繊維)、メチルエーテルを代表とするアルキルエーテル、カルボキシメチルエーテルを代表とするカルボキシエーテル、シアノエチルエーテル等にエーテル化されたもの(エーテル化微細セルロース繊維)、シランカップリング剤でシリルエーテル化されたもの(シリル化微細セルロース繊維)、TEMPO(2,2,6,6-テトラメチルピペリジノオキシラジカル)酸化触媒によって6位の水酸基が酸化され、カルボキシル基(酸型、塩型を含む)となったもの(カルボキシル化微細セルロース繊維)が挙げられる。化学修飾されることにより、樹脂と微細セルロース繊維との親和性が増し、多孔質微細セルロース繊維複合化シートの引張破断強度、熱安定性が向上する。かかる化学修飾は、反応プロセスの簡略化の観点、及び、微細セルロース繊維自体の耐熱性向上の観点から、好ましくはエステル化、より好ましくはアセチル化である。 The fine cellulose fibers of this embodiment may be chemically modified. For example, hydroxyl groups present on the surface of fine cellulose fibers are esterified to ester acetate, nitrate ester, sulfate ester, phosphate ester, etc. (esterified fine cellulose fibers), alkyl ethers represented by methyl ether, and carboxymethyl. Carboxy ether represented by ether, etherified to cyanoethyl ether, etc. (etherified fine cellulose fiber), silyl etherified by silane coupling agent (silylated fine cellulose fiber), TEMPO (2,2,2) 6,6-tetramethylpiperidinooxy radical) oxidation catalyst oxidizes the hydroxyl group at the 6-position to give a carboxyl group (including acid type and salt type) (carboxylated fine cellulose fiber). The chemical modification increases the affinity between the resin and the fine cellulose fibers, and improves the tensile breaking strength and thermal stability of the porous fine cellulose fiber composite sheet. The chemical modification is preferably esterification, more preferably acetylation, from the viewpoint of simplifying the reaction process and improving the heat resistance of the fine cellulose fibers themselves.
 微細セルロース繊維のエステル化度(好ましくはアセチル化度)(DS)は、好ましくは0.1以上1.5以下、より好ましくは0.2以上1.2以下である。DSが0.1以上1.5以下の範囲にあると耐熱性が高く、樹脂との親和性が高くなるため、多孔質微細セルロース繊維複合化シートのCTE等の物性が向上するため、好ましい。DSの算出は、微細セルロース繊維の赤外分光測定により可能である。
 セルロース骨格鎖C-Oの吸収バンドのピーク強度(高さ)に対する化学修飾基に基づく吸収バンドのピーク強度(エステル基に基づくC=Oの吸収バンドのピーク高さ)の比率(化学修飾基に基づく吸収バンドのピーク高さ/セルロース骨格鎖C-Oの吸収バンドのピーク高さ)で定義される修飾化率(IRインデックス1030)は0.02以上0.37以下であることが好ましい。
 IRインデックスは、下記式(4)により平均置換度(DS)に換算することができる。
 DS=4.13×IRインデックス 式(4)
The degree of esterification (preferably the degree of acetylation) (DS) of the fine cellulose fibers is preferably 0.1 or more and 1.5 or less, more preferably 0.2 or more and 1.2 or less. When the DS is in the range of 0.1 or more and 1.5 or less, the heat resistance is high, the affinity with the resin is high, and the physical properties such as CTE of the porous fine cellulose fiber composite sheet are improved, which is preferable. The calculation of DS can be performed by infrared spectroscopic measurement of fine cellulose fibers.
Ratio of peak intensity of absorption band based on chemical modifying group (peak height of absorption band of C═O based on ester group) to peak intensity (height) of absorption band of C—O of cellulose skeleton The modification ratio (IR index 1030) defined by the peak height of the absorption band based on the above/the peak height of the absorption band of the cellulose skeleton C—O is preferably 0.02 or more and 0.37 or less.
The IR index can be converted into an average substitution degree (DS) by the following formula (4).
DS=4.13×IR index formula (4)
 化学修飾は微細セルロース繊維の一部(例えば、内部、表面のいずれか)、又は全部(例えば、内部及び表面の両方)で生じてよいが、化学修飾を微細セルロース繊維の一部のみで生じさせることで、微細セルロース繊維にセルロース骨格を残存させることができる。例えば、微細セルロース繊維の表面のみを化学修飾し、中心部にセルロース骨格を残存させることができる。微細セルロース繊維の一部が化学修飾されており、かつ該微細セルロース繊維が結晶構造(典型的にはI型及び/又はII型、好ましくはI型)を有する場合、セルロース由来の高い引張破断強度及び寸法安定性が保持されつつ、化学修飾による耐熱性の向上及び多孔質微細セルロース繊維複合化シートにおける樹脂と微細セルロース繊維の親和性の向上、多孔質微細セルロース繊維複合化シートの寸法安定性の向上を実現でき、より好ましい。 The chemical modification may occur on some (eg, both internal or surface) or all (eg, both internal and surface) of the fine cellulosic fibers, but the chemical modification only occurs on some of the fine cellulosic fibers. As a result, the cellulose skeleton can be left in the fine cellulose fibers. For example, only the surface of the fine cellulose fiber can be chemically modified to leave the cellulose skeleton in the center. High tensile breaking strength derived from cellulose when a part of the fine cellulose fiber is chemically modified and the fine cellulose fiber has a crystal structure (typically type I and/or type II, preferably type I) And, while maintaining the dimensional stability, the heat resistance is improved by chemical modification, the affinity between the resin and the fine cellulose fiber in the porous fine cellulose fiber composite sheet is improved, and the dimensional stability of the porous fine cellulose fiber composite sheet is improved. It is more preferable because the improvement can be realized.
 本実施形態の微細セルロース繊維は数平均繊維径が2nm以上1000nm以下、好ましくは10nm以上800nm以下、より好ましくは20nm以上500nm以下、さらに好ましくは20nm以上400nm以下、特に好ましく30nm以上300nm以下である。この範囲は、シートの強度及び寸法安定性の保持、微小かつ均一な孔径形成において有利である。微細セルロース繊維の数平均繊維径が2nm未満である場合、多孔質微細セルロース繊維シート製造における乾燥工程において、微細セルロース繊維同士の凝集による角化が起きやすく、所望の多孔度の多孔質微細セルロース繊維シートが得られない。一方、微細セルロース繊維の数平均繊維径が1000nm超の場合、樹脂と微細セルロース繊維の界面が少ないためフィラーとしての効果が小さく、複合シートの所望の引張破断強度及び熱安定性(具体的には、低い線熱膨張率、及び高温時の弾性保持)が得られない。 The number average fiber diameter of the fine cellulose fibers of the present embodiment is 2 nm or more and 1000 nm or less, preferably 10 nm or more and 800 nm or less, more preferably 20 nm or more and 500 nm or less, further preferably 20 nm or more and 400 nm or less, particularly preferably 30 nm or more and 300 nm or less. This range is advantageous in maintaining the strength and dimensional stability of the sheet, and forming minute and uniform pore sizes. When the number average fiber diameter of the fine cellulose fibers is less than 2 nm, keratinization due to aggregation of the fine cellulose fibers is likely to occur in the drying step in the production of the porous fine cellulose fiber sheet, and the porous fine cellulose fibers having a desired porosity. I can't get a seat. On the other hand, when the number average fiber diameter of the fine cellulose fibers exceeds 1000 nm, the effect as a filler is small because the interface between the resin and the fine cellulose fibers is small, and the desired tensile breaking strength and thermal stability of the composite sheet (specifically, , Low linear thermal expansion coefficient, and elastic retention at high temperature) cannot be obtained.
 本実施形態の微細セルロース繊維の繊維径は、比表面積から算出される比表面積相当径を使用する。本開示で、比表面積相当径とは、窒素吸着によるBET法で得られる比表面積から算出される径である。 As the fiber diameter of the fine cellulose fiber of the present embodiment, the specific surface area equivalent diameter calculated from the specific surface area is used. In the present disclosure, the specific surface area equivalent diameter is a diameter calculated from the specific surface area obtained by the BET method by nitrogen adsorption.
 比表面積相当径は、微細セルロース繊維の水分散体をtBuOHで溶媒置換した後乾燥させて多孔質微細セルロース繊維シートを作製し、当該多孔質微細セルロース繊維シートを窒素吸着によるBET法を用いて測定して得られる比表面積から算出される。比表面積と比表面積相当経の関係は、微細セルロース繊維をi)微細セルロース繊維間の凝集が全く起こっていない理想状態であり、ii)セルロース密度がd(g/cm3)、径がD(nm)である円柱と仮定したとき、下記式(5)で表される。
   比表面積(m2/g)=4000/(dD) 式(5)
そして、セルロース密度を1.50g/cm3とすると、比表面積相当径は下記式(6)で表される。
   D(nm)=2667/比表面積(m2/g) 式(6)
The specific surface area-equivalent diameter is measured using a BET method by nitrogen adsorption on a porous fine cellulose fiber sheet prepared by drying an aqueous dispersion of fine cellulose fibers with a solvent and then drying the solvent. It is calculated from the specific surface area thus obtained. The relationship between the specific surface area and the equivalent surface area of the specific surface area is i) an ideal state in which there is no aggregation between the fine cellulose fibers, and ii) the cellulose density is d (g/cm 3 ) and the diameter is D ( nm), it is represented by the following equation (5).
Specific surface area (m 2 /g)=4000/(dD) Formula (5)
Then, when the cellulose density is 1.50 g/cm 3 , the specific surface area equivalent diameter is represented by the following formula (6).
D (nm)=2667/specific surface area (m 2 /g) Formula (6)
 本実施形態の微細セルロース繊維は、繊維径1μm~30μmの太い幹から繊維径2nm~1000nmの細い枝が分岐している構造を有する繊維を含むことが好ましい(図4参照)。樹脂フィルムの含浸による複合シートの製造において、多孔質微細セルロース繊維シートは熱プレスによって高い熱と圧力がかかる。したがって、多孔質微細セルロース繊維シートには一定以上の強度が求められ、厚膜の方が好ましい。
しかし、元来、微細セルロース繊維でのシート製造は一般的なパルプと比べ、1)濾水時間が長い、2)乾燥時間が長い、3)乾燥収縮によるシートの歪みが起きやすい等の特徴があり、この傾向は高目付、厚膜なシートになる程顕著となり、生産性が低下する。このような課題に対し、ある一定の生産性を確保するためには微細セルロース繊維の数平均繊維径を大きくすることが求められる。
 一方で、多孔質微細セルロース繊維シートが高比表面積であることは微細セルロース繊維複合化シートの引張破断強度や熱安定性を向上させる上で重要である。
 したがって、前記の枝分かれ構造を有する微細セルロース繊維が含まれると、これらの課題を解決することができる。
The fine cellulose fibers of the present embodiment preferably include fibers having a structure in which a thick trunk having a fiber diameter of 1 μm to 30 μm branches fine branches having a fiber diameter of 2 nm to 1000 nm (see FIG. 4). In the production of a composite sheet by impregnation with a resin film, a porous fine cellulose fiber sheet is subjected to high heat and pressure by hot pressing. Therefore, the porous fine cellulose fiber sheet is required to have a certain strength or more, and the thick film is preferable.
However, originally, the production of a sheet using fine cellulose fibers is characterized by 1) longer draining time, 2) longer drying time, 3) distortion of the sheet due to drying shrinkage, compared to general pulp. However, this tendency becomes more remarkable as the sheet weight increases and the film thickness increases, and the productivity decreases. In order to solve such problems, it is required to increase the number average fiber diameter of the fine cellulose fibers in order to secure a certain productivity.
On the other hand, the fact that the porous fine cellulose fiber sheet has a high specific surface area is important for improving the tensile rupture strength and thermal stability of the fine cellulose fiber composite sheet.
Therefore, when the fine cellulose fibers having the branched structure are included, these problems can be solved.
 前記枝分かれ構造を有する微細セルロース繊維の有無は以下の方法で確認できる。すなわち、水又は水溶性有機溶媒に分散させた微細セルロース繊維を高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で分散させた水分散体を、0.1~0.5質量%まで純水で希釈し、親水化処理をしたSi基板上にキャストし、風乾したものを測定サンプルとし、走査型電子顕微鏡(SEM)で2000倍の倍率(視野サイズは60μm×60μmとなる)で10視野観察する。10視野のうち、前記枝分かれ構造を有する微細セルロース繊維が1視野以上確認されることが好ましく、より好ましくは2視野以上、さらに好ましくは3視野以上である。 The presence or absence of the fine cellulose fibers having the branched structure can be confirmed by the following method. That is, using a high-shear homogenizer (for example, trade name "Excel Auto Homogenizer ED-7" manufactured by Nippon Seiki Co., Ltd.) of fine cellulose fibers dispersed in water or a water-soluble organic solvent, processing conditions: rotation speed 15,000 rpm × A water dispersion dispersed for 5 minutes was diluted with pure water to 0.1 to 0.5% by mass, cast on a hydrophilized Si substrate, and air dried to obtain a measurement sample, which was a scanning type. Observe 10 visual fields with an electron microscope (SEM) at a magnification of 2000 times (the visual field size is 60 μm×60 μm). Of 10 fields of view, it is preferable that at least one field of fine cellulose fibers having the branched structure is confirmed, more preferably at least 2 fields of view, further preferably at least 3 fields of view.
 微細セルロース繊維の数平均繊維長は特に限定されるものではないが、好ましくは200nm以上、より好ましくは500nm以上、さらに好ましくは1000nm以上である。微細セルロース繊維の数平均繊維長(L)/数平均繊維径(D)の比(L/D)は、好ましくは30以上、より好ましくは100以上、さらに好ましくは200以上、さらにより好ましくは300以上、最も好ましくは500以上であり、また好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下である。数平均繊維長(L)/数平均繊維径(D)の比L/Dが30以上であると、微細セルロース繊維が高度に絡み合い、得られるシートの自立性が高く、多孔質微細セルロース繊維シートを容易に得ることができる。一方、5000以下であると、多孔質微細セルロース繊維シートを連続的に製造したときに微細セルロース繊維の多孔質微細セルロース繊維シート内での著しい配向が生じず、多孔質微細セルロース繊維複合化シートの引張破断強度及び熱膨張係数の異方性が小さく、自動車部品等の用途において好ましい。 The number average fiber length of the fine cellulose fibers is not particularly limited, but is preferably 200 nm or more, more preferably 500 nm or more, further preferably 1000 nm or more. The ratio (L/D) of the number average fiber length (L)/number average fiber diameter (D) of the fine cellulose fibers is preferably 30 or more, more preferably 100 or more, still more preferably 200 or more, still more preferably 300. As described above, it is most preferably 500 or more, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less. When the ratio L/D of the number average fiber length (L)/the number average fiber diameter (D) is 30 or more, the fine cellulose fibers are highly entangled with each other, and the obtained sheet has high self-sustaining property and is a porous fine cellulose fiber sheet. Can be easily obtained. On the other hand, when it is 5000 or less, when the porous fine cellulose fiber sheet is continuously produced, the remarkable orientation of the fine cellulose fiber in the porous fine cellulose fiber sheet does not occur, and the porous fine cellulose fiber composite sheet It has small anisotropy in tensile strength at break and coefficient of thermal expansion, and is preferable in applications such as automobile parts.
 微細セルロース繊維のL/Dは、微細セルロース繊維の水分散液を高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で分散させた水分散体を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとし、高分解能走査型顕微鏡(SEM)又は原子間力顕微鏡(AFM)で計測して求める。具体的には、少なくとも100本の微細セルロース繊維が観測されるように倍率が調整された観察視野にて、無作為に選んだ100本の微細セルロース繊維の数平均繊維長及び数平均繊維径を計測する。この値から個々の微細セルロース繊維のL/Dを算出し、その平均値がL/Dとなる。 For the L/D of the fine cellulose fibers, an aqueous dispersion of the fine cellulose fibers was used with a high shear homogenizer (eg, Nihon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”), and processing conditions: rotation speed 15, An aqueous dispersion dispersed at 000 rpm for 5 minutes was diluted with pure water to 0.1 to 0.5% by mass, cast on mica, and air-dried to obtain a measurement sample, which was used as a high-resolution scanning microscope (SEM). ) Or by measuring with an atomic force microscope (AFM). Specifically, the number average fiber length and the number average fiber diameter of 100 randomly selected fine cellulose fibers are selected in an observation visual field in which the magnification is adjusted so that at least 100 fine cellulose fibers are observed. measure. The L/D of each fine cellulose fiber was calculated from this value, and the average value was L/D.
 本実施形態の多孔質微細セルロース繊維シートは、シート目付Wが、好ましくは、20g/m2以上1000g/m2以下、又は20g/m2以上500g/m2以下、又は20g/m2以上200g/m2、又は40g/m2以上150g/m2以下、又は60g/m2以上120g/m2以下である。目付が20g/m2以上であると、熱可塑性樹脂との熱プレス時に多孔質微細セルロース繊維シートが破断し難く、好ましい。また、目付が1000g/m2以下であると、熱可塑性樹脂との熱プレス時に樹脂が多孔質微細セルロース繊維シート内部まで含浸し易く、好ましい。目付の評価は室温23℃、湿度50%RHに制御された環境下に24時間保管したサンプルを20cm×20cmに裁断し(面積0.04m2)、重量W1(g)を計測し、下記式(7)より算出する。
目付W(g/m2)=W1/0.04 式(7)
The porous fine cellulose fiber sheet of the present embodiment preferably has a sheet areal weight W of 20 g/m 2 or more and 1000 g/m 2 or less, or 20 g/m 2 or more and 500 g/m 2 or less, or 20 g/m 2 or more and 200 g. /M 2 , or 40 g/m 2 or more and 150 g/m 2 or less, or 60 g/m 2 or more and 120 g/m 2 or less. When the basis weight is 20 g/m 2 or more, the porous fine cellulose fiber sheet is less likely to break during hot pressing with a thermoplastic resin, which is preferable. When the basis weight is 1000 g/m 2 or less, the resin easily impregnates the inside of the porous fine cellulose fiber sheet during hot pressing with the thermoplastic resin, which is preferable. The weight is evaluated by cutting a sample stored in an environment controlled at room temperature of 23° C. and a humidity of 50% RH for 24 hours into 20 cm×20 cm (area 0.04 m 2 ) and measuring the weight W1 (g). Calculated from (7).
Basis weight W (g/m 2 )=W1/0.04 formula (7)
 本実施形態の多孔質微細セルロース繊維シートの厚みは、一態様において25μm以上、好ましくは25μm以上4000μm以下、より好ましくは25μm以上2000μm以下、より好ましくは25μm以上1000μm以下、より好ましくは25μm以上500μm以下、さらに好ましくは50μm以上300μm以下、さらにより好ましくは75μm以上200μm以下である。厚みが25μmよりも薄いと、熱可塑性樹脂との熱プレス時に多孔質微細セルロース繊維シートが破断し易くなる。厚みが4000μm以下、特に2000μm以下であると、熱可塑性樹脂との複合シート作製時に樹脂含浸の時間が長大とならず連続生産する上で好ましい。多孔質微細セルロース繊維複合化シート中の多孔質微細セルロース繊維シートは、1層又は2層以上存在してよい。2層以上の場合、多孔質微細セルロース繊維複合化シート中の多孔質微細セルロース繊維シート部位の合計厚みは、50μm以上4000μm以下、又は100μm以上3000μm以下、又は200μm以上2000μm以下であってよい。厚みの測定方法は23℃、50%RHの環境で1日静置した多孔質微細セルロース繊維シート(20cm×20cm)、に対して、多孔質微細セルロース繊維シートの場合は、任意の10点を接触式膜厚計で測定し、その数平均値を厚み(μm)とする。また、多孔質微細セルロース複合化シートの場合は、複合化シート断面を切り出し、任意に10か所断面SEM観察或いは光学顕微鏡観察を行い、各箇所で微細セルロース繊維シートの厚みをすべて計測する。得られた計測値×上記10か所での数平均値を算出し、微細セルロース繊維シート厚み(μm)とする。 The thickness of the porous fine cellulose fiber sheet of the present embodiment is, in one aspect, 25 μm or more, preferably 25 μm or more and 4000 μm or less, more preferably 25 μm or more and 2000 μm or less, more preferably 25 μm or more and 1000 μm or less, more preferably 25 μm or more and 500 μm or less. , More preferably 50 μm or more and 300 μm or less, still more preferably 75 μm or more and 200 μm or less. When the thickness is less than 25 μm, the porous fine cellulose fiber sheet is likely to be broken during hot pressing with the thermoplastic resin. A thickness of 4000 μm or less, particularly 2000 μm or less is preferable for continuous production without lengthening the resin impregnation time when producing a composite sheet with a thermoplastic resin. The porous fine cellulose fiber sheet in the porous fine cellulose fiber composite sheet may be present in one layer or two or more layers. In the case of two or more layers, the total thickness of the porous fine cellulose fiber sheet portion in the porous fine cellulose fiber composite sheet may be 50 μm or more and 4000 μm or less, or 100 μm or more and 3000 μm or less, or 200 μm or more and 2000 μm or less. The thickness is measured at 23° C. and 50% RH in an environment of porous fine cellulose fiber sheet (20 cm×20 cm) left standing for 1 day, whereas in the case of porous fine cellulose fiber sheet, arbitrary 10 points are set. It is measured by a contact type film thickness meter, and the number average value is taken as the thickness (μm). In the case of a porous fine cellulose composite sheet, the cross section of the composite sheet is cut out, and SEM observation or optical microscope observation of 10 cross sections is arbitrarily performed, and the thickness of the fine cellulose fiber sheet is measured at each place. The obtained measurement value×the number average value at the above 10 points is calculated to obtain the thickness (μm) of the fine cellulose fiber sheet.
 本実施形態の多孔質微細セルロース繊維シートの目付10g/m2あたりの平均透気抵抗度は、好ましくは1sec/100ml以上7000sec/100ml以下、より好ましくは1sec/100ml以上6000sec/100ml以下、より好ましくは1sec/100ml以上5000sec/100ml以下、さらに好ましくは10sec/100ml以上4000sec/100ml、さらにより好ましくは100sec/100ml以上3000sec/100ml、最も好ましくは200sec/100ml以上2000sec/100mlである。透気抵抗度が7000sec/100ml以下である場合空孔率が低くなり過ぎず、シート中への樹脂含浸が容易であり多孔質微細セルロース繊維複合化シートを容易に作製でき好ましい。また、シートの性質上透気抵抗度は低い方が好ましいものの、ネットワークの微細性から透気抵抗度は1sec/100mlよりも小さなものは作り難いため、目付10g/m2あたりの平均透気抵抗度は1sec/100ml以上であることが好ましい。 The average air permeation resistance per unit weight of 10 g/m 2 of the porous fine cellulose fiber sheet of the present embodiment is preferably 1 sec/100 ml or more and 7000 sec/100 ml or less, more preferably 1 sec/100 ml or more and 6000 sec/100 ml or less, and more preferably Is from 1 sec/100 ml to 5000 sec/100 ml, more preferably from 10 sec/100 ml to 4000 sec/100 ml, even more preferably from 100 sec/100 ml to 3000 sec/100 ml, and most preferably from 200 sec/100 ml to 2000 sec/100 ml. When the air resistance is 7,000 sec/100 ml or less, the porosity does not become too low, the resin can be easily impregnated into the sheet, and a porous fine cellulose fiber composite sheet can be easily produced, which is preferable. In addition, although it is preferable that the air permeability resistance is low due to the nature of the sheet, it is difficult to make air permeability resistance smaller than 1 sec/100 ml due to the fineness of the network, so the average air permeability resistance per unit weight of 10 g/m 2 The degree is preferably 1 sec/100 ml or more.
 透気抵抗度とは100mlの空気がシートを通過するのに要する時間であり、数値が大きいほど緻密といえる。測定には王研式透気抵抗試験機(例えば旭精工(株)製、型式EG01)を用いる。一つのシートサンプル(20cm×20cm)に対して異なる位置で10点の測定を室温で行い、その平均値を平均透気抵抗度(AR)とする。なお、この時、予め測定していた原紙の目付Wを用いて下記式(8)より10g/m2目付あたりの値として算出する。
目付10g/m2あたり透気抵抗度=AR/W×10 式(8)
The air permeation resistance is the time required for 100 ml of air to pass through the sheet, and the larger the value, the denser the air. An Oki type air resistance tester (for example, Model EG01 manufactured by Asahi Seiko Co., Ltd.) is used for the measurement. For one sheet sample (20 cm×20 cm), 10 points are measured at different positions at room temperature, and the average value is taken as the average air resistance (AR). At this time, the weight per unit area W of the base paper, which has been measured in advance, is used to calculate the value per unit weight per 10 g/m 2 from the following formula (8).
Permeation resistance per unit weight of 10 g/m 2 =AR/W×10 Formula (8)
 本実施形態の多孔質微細セルロース繊維シートは、湿潤乾燥操作前後での多孔質保持性に優れる。具体的には湿潤乾燥操作前後での透気抵抗度の変化率が100%以下、好ましくは80%以下、より好ましくは70%以下である。変化率が100%以下であると、水溶性樹脂を多孔質微細セルロース繊維シートに含浸させて多孔質微細セルロース繊維複合化シートを製造する際、多孔質微細セルロース繊維複合化シートの収縮が少なく、均一な膜厚の多孔質微細セルロース繊維複合化シート製造が容易であるため、好ましい。一方、変化率の下限値は特になく、変化率は小さいほど好ましい。 The porous fine cellulose fiber sheet of the present embodiment has excellent porous retention before and after the wet and dry operation. Specifically, the rate of change in air permeation resistance before and after the wet-drying operation is 100% or less, preferably 80% or less, and more preferably 70% or less. When the rate of change is 100% or less, when the porous fine cellulose fiber composite sheet is produced by impregnating the water-soluble resin into the porous fine cellulose fiber composite sheet, shrinkage of the porous fine cellulose fiber composite sheet is small, It is preferable because it is easy to produce a porous fine cellulose fiber composite sheet having a uniform film thickness. On the other hand, there is no particular lower limit to the rate of change, and the smaller the rate of change, the better.
 湿潤乾燥操作とは、静置した多孔質微細セルロース繊維シートに対しシート水分率が300質量%以上400質量%以下になるように水を均一に掛けた後、オーブンで乾燥する操作のことをいう。この操作前後でシートの透気抵抗度を測定し、その変化を透気抵抗度の上昇率とする。なお、シート水分率は下記式(9)より初期シートW2及び湿潤シート重量W3を用いて算出する。
シート水分率=(W3-W2)/W2×100 式(9)
The wet drying operation refers to an operation in which water is evenly applied to a stationary porous fine cellulose fiber sheet so that the sheet moisture content is 300% by mass or more and 400% by mass or less and then dried in an oven. .. The air permeation resistance of the sheet is measured before and after this operation, and the change is taken as the rate of increase in air permeation resistance. The sheet moisture content is calculated from the following formula (9) using the initial sheet W2 and the wet sheet weight W3.
Moisture content of sheet=(W3-W2)/W2×100 Formula (9)
 具体的な測定方法は、23℃、50%RHの環境で1日静置した多孔質微細セルロース繊維シート(20cm×20cm)を5cm×5cmに裁断し、そこから5枚を選ぶ。この5枚のサンプルに対してそれぞれ1点ずつ透気抵抗度を測定し、その測定場所に印をつける。この透気抵抗度を初期透気抵抗度R1とし、5枚の平均値をAR1とする。つづいて、そのサンプルを金属プレート上に置き、霧吹きで水を万遍なくかけ、サンプル周囲に付着した水滴を拭き取る。この湿潤操作前後でのシート重量を測定し、式(9)に従いシート水分率を測定する。この時の水分率が300質量%以上400質量%以下である事を確認した後、80℃のオーブンにて1時間乾燥させ、印をつけた場所の透気抵抗度を再度測定した。この透気抵抗度を操作後透気抵抗度R2とし、5枚のサンプルの平均値をAR2とする。最終的に下記式(10)より透気抵抗度上昇率(%)を算出する。
透気抵抗度上昇率(%)=(AR2-AR1)/AR1×100 式(10)
As a specific measuring method, a porous fine cellulose fiber sheet (20 cm×20 cm), which has been allowed to stand for 1 day in an environment of 23° C. and 50% RH, is cut into 5 cm×5 cm, and 5 sheets are selected from there. The air permeation resistance of each of the five samples is measured, and the measurement place is marked. This air permeation resistance is defined as the initial air permeation resistance R1, and the average value of five sheets is defined as AR1. Subsequently, the sample is placed on a metal plate, water is sprayed evenly on the metal plate, and water drops adhering to the periphery of the sample are wiped off. The sheet weight before and after this wetting operation is measured, and the sheet moisture content is measured according to the equation (9). After confirming that the water content at this time was 300% by mass or more and 400% by mass or less, it was dried in an oven at 80° C. for 1 hour, and the air permeation resistance at the marked place was measured again. Let this air permeability resistance be the air permeability resistance R2 after the operation, and let AR2 be the average value of the five samples. Finally, the air permeation resistance increase rate (%) is calculated from the following formula (10).
Permeation resistance increase rate (%)=(AR2-AR1)/AR1×100 Formula (10)
 本実施形態の多孔質微細セルロース繊維シートは、Dry強度が1.5kg/15mm以上が好ましく、2.0kg/15mm以上がより好ましく、3.0kg/15mm以上がさらに好ましい。1.5kg/15mm以上の場合、熱可塑性樹脂と複合化させる際の熱プレス時に、多孔質微細セルロース繊維シートが破れ難くなり、好ましい。一方、本実施形態の多孔質微細セルロース繊維シートのDry強度の上限値は特にないが、実現可能性の観点からは、100kg/15mm以下である。 The dry fineness of the porous fine cellulose fiber sheet of this embodiment is preferably 1.5 kg/15 mm or more, more preferably 2.0 kg/15 mm or more, and further preferably 3.0 kg/15 mm or more. When it is 1.5 kg/15 mm or more, the porous fine cellulose fiber sheet is less likely to be broken at the time of hot pressing when compounded with the thermoplastic resin, which is preferable. On the other hand, there is no particular upper limit to the Dry strength of the porous fine cellulose fiber sheet of the present embodiment, but from the viewpoint of feasibility, it is 100 kg/15 mm or less.
 Dry強度の測定方法としては、まず室温23℃、湿度50%RHに制御された環境下に24時間保管したサンプル(20cm×20cm)の目付(W)を前記の手法で測定する。次に、15mm幅に裁断し、引張試験機を用いてチャック間距離100mm、引張速度10mm/minとして10点の引張強度を測定し、その平均値をDry強度(DS)とする。 As a method of measuring Dry strength, first, the basis weight (W) of a sample (20 cm × 20 cm) stored for 24 hours in an environment controlled at room temperature of 23°C and humidity of 50% RH is measured by the above method. Next, it is cut into a width of 15 mm, and the tensile strength at 10 points is measured using a tensile tester at a chuck distance of 100 mm and a tensile speed of 10 mm/min, and the average value is defined as the Dry strength (DS).
 本実施形態の多孔質微細セルロース繊維シートは、目付10g/m2あたりの非水系Wet強度が0.3kg/15mm以上であることが好ましく、0.4kg/15mm以上がより好ましく、0.5kg/15mm以上がさらに好ましい。0.3kg/15mm以上の場合、含浸する樹脂及び溶媒が疎水性である多孔質微細セルロース繊維複合化シート製造時に多孔質微細セルロース繊維シートが破断しにくくなるため、使用及び製造が容易である。一方、本実施形態の多孔質微細セルロース繊維シートの非水系Wet強度の上限値は特にないが、実現可能性の観点からは目付10g/m2あたり例えば8.0kg/15mm以下である。なお、ここでいう非水系液体とはメチルセロソルブのことである。 In the porous fine cellulose fiber sheet of the present embodiment, the non-aqueous Wet strength per unit weight of 10 g/m 2 is preferably 0.3 kg/15 mm or more, more preferably 0.4 kg/15 mm or more, and 0.5 kg/ 15 mm or more is more preferable. In the case of 0.3 kg/15 mm or more, the porous fine cellulose fiber sheet is less likely to break during the production of the porous fine cellulose fiber composite sheet in which the impregnated resin and the solvent are hydrophobic, so that the use and production are easy. On the other hand, there is no particular upper limit for the non-aqueous Wet strength of the porous fine cellulose fiber sheet of the present embodiment, but from the viewpoint of feasibility, it is, for example, 8.0 kg/15 mm or less per unit weight of 10 g/m 2 . The non-aqueous liquid referred to here is methyl cellosolve.
 非水系Wet強度の測定方法としては、水系Wet強度の測定方法の溶媒をメチルセロソルブに変更する以外は同じ方法を用いる。10点の引張強度の平均値を非水系Wet強度(NWS)とし、10g/m2目付あたり非水系Wet強度(kgf/15mm)は予め測定していた原紙の目付(W)を用いて下記式(11)より算出する。
10g/m2目付あたり非水系Wet強度(kgf/15mm)=NWS/W×10 式(11)
As the non-aqueous Wet intensity measurement method, the same method is used except that the solvent used in the aqueous Wet intensity measurement method is changed to methyl cellosolve. The average value of the tensile strength at 10 points is defined as the non-aqueous Wet strength (NWS), and the non-aqueous Wet strength per 10 g/m 2 basis weight (kgf/15 mm) is calculated using the basis weight (W) of the base paper that was measured in advance. It is calculated from (11).
Non-aqueous wet strength per unit weight of 10 g/m 2 (kgf/15 mm)=NWS/W×10 Formula (11)
 本実施形態の多孔質微細セルロース繊維シートの空隙率は20%以上90%以下であることが好ましい。空隙率が20%以上であれば、良好な多孔性を有する多孔質とみなすことができ、樹脂を多孔質微細セルロース繊維シート内に容易に含浸可能である。一方、空隙率が90%以下であれば、多孔質微細セルロース繊維シートに可とう性があり、多孔質微細セルロース繊維複合化シート製造が容易である。
 空隙率とは多孔質微細セルロース繊維シート中における空隙の体積率を意味する。空隙率は、多孔質微細セルロース繊維シートの面積、厚み及び重量から、下記式(12)によって求めることができる。
空隙率(体積%)={(1-B/(M×A×t)}×100 式(12)
 ここで、Aは多孔質微細セルロース繊維シート面積(cm2)、tは厚み(cm)、Bは多孔質微細セルロース繊維シート重量(g)、Mはセルロースの密度(本実施形態では1.5g/cm3)とする。
The porosity of the porous fine cellulose fiber sheet of the present embodiment is preferably 20% or more and 90% or less. When the porosity is 20% or more, it can be regarded as porous having good porosity, and the resin can be easily impregnated into the porous fine cellulose fiber sheet. On the other hand, when the porosity is 90% or less, the porous fine cellulose fiber sheet has flexibility and the porous fine cellulose fiber composite sheet can be easily manufactured.
The porosity means the volume ratio of voids in the porous fine cellulose fiber sheet. The porosity can be determined by the following formula (12) from the area, thickness and weight of the porous fine cellulose fiber sheet.
Porosity (volume %)={(1-B/(M×A×t)}×100 Formula (12)
Here, A is the area of the porous fine cellulose fiber sheet (cm 2 ), t is the thickness (cm), B is the weight of the porous fine cellulose fiber sheet (g), and M is the density of cellulose (1.5 g in this embodiment). /Cm 3 ).
 本実施形態の多孔質微細セルロース繊維シートの比表面積は、好ましくは1m2/g以上500m2/g以下、より好ましくは1m2/g以上300m2/g以下、さらに好ましくは1m2/g以上200m2/g以下、さらにより好ましくは1m2/g以上100m2/g以下、特に好ましくは2m2/g以上90m2/g以下、最も好ましくは3m2/g以上80m2/g以下である。上記比表面積は、窒素ガス吸着法で測定したBET比表面積を意味する。多孔質微細セルロース繊維シートの比表面積が1m2/g以上であれば、良好な多孔性を有する多孔質微細セルロース繊維複合化シートを製造できる。一方、比表面積が500m2/g以下であれば、多孔質微細セルロース繊維シートの製造が容易である。 The specific surface area of the porous fine cellulose fiber sheet of the present embodiment is preferably 1 m 2 /g or more and 500 m 2 /g or less, more preferably 1 m 2 /g or more and 300 m 2 /g or less, further preferably 1 m 2 /g or more. 200 m 2 /g or less, more preferably 1 m 2 /g or more and 100 m 2 /g or less, particularly preferably 2 m 2 /g or more and 90 m 2 /g or less, most preferably 3 m 2 /g or more and 80 m 2 /g or less. .. The above-mentioned specific surface area means the BET specific surface area measured by the nitrogen gas adsorption method. When the specific surface area of the porous fine cellulose fiber sheet is 1 m 2 /g or more, a porous fine cellulose fiber composite sheet having good porosity can be produced. On the other hand, when the specific surface area is 500 m 2 /g or less, it is easy to produce a porous fine cellulose fiber sheet.
 一態様において、多孔質微細セルロース繊維複合化シートは、基材シート層を1層以上含むことができる。より具体的には、本実施形態の多孔質微細セルロース繊維シートは、当該多孔質微細セルロース繊維シートである微細セルロース繊維層の1層以上と、基材シート層(以下、基材シートともいう。)1層以上とを含む多孔質微細セルロース繊維積層シートの形態で提供されてもよい。例えば、基材シート上に微細セルロース繊維層が配置された多孔質微細セルロース繊維積層シート、微細セルロース繊維層が基材シートに挟まれた3層以上からなる多孔質微細セルロース繊維積層シート、基材シートの両面に微細セルロース繊維層が配置された多孔質微細セルロース繊維積層シートが挙げられる。また、多孔質微細セルロース繊維積層シート中に2層以上の基材シート、或いは、2層以上の微細セルロース繊維層が含まれる場合には、2種類以上の基材シート、或いは、2種類以上の微細セルロース繊維層で構成されていても良い。 In one aspect, the porous fine cellulose fiber composite sheet can include one or more base material sheet layers. More specifically, the porous fine cellulose fiber sheet of the present embodiment has at least one fine cellulose fiber layer that is the porous fine cellulose fiber sheet, and a base sheet layer (hereinafter, also referred to as a base sheet). ) It may be provided in the form of a porous fine cellulose fiber laminated sheet containing one or more layers. For example, a porous fine cellulose fiber laminated sheet in which a fine cellulose fiber layer is arranged on a base material sheet, a porous fine cellulose fiber laminated sheet composed of three or more layers in which a fine cellulose fiber layer is sandwiched between base material sheets, a base material Examples include a porous fine cellulose fiber laminated sheet in which fine cellulose fiber layers are arranged on both sides of the sheet. Further, when the porous fine cellulose fiber laminated sheet contains two or more base material sheets, or two or more fine cellulose fiber layers, two or more kinds of base material sheets, or two or more kinds of base material sheets. It may be composed of a fine cellulose fiber layer.
 本実施形態の基材シートの形態はシート状であればよく、織物、編物、長繊維不織布、短繊維不織布、微多孔膜等の形態が挙げられる。 The form of the base material sheet of the present embodiment may be a sheet form, and examples thereof include a woven fabric, a knitted fabric, a long fiber nonwoven fabric, a short fiber nonwoven fabric, and a microporous membrane.
 基材シートを構成する織物、編物、長繊維不織布、又は短繊維不織布の構成繊維としては特に限定されるものではないが、例えば、天然セルロース繊維、再生セルロース繊維、セルロース誘導体繊維、ナイロン繊維、ポリエステル繊維、ポリオレフィン繊維、炭素繊維、ガラス繊維、アラミド繊維、これらの繊維の混紡糸等が挙げられる。また、これらの繊維は単独又は複数用いられても良い。 The constituent fibers of the woven fabric, knitted fabric, long-fiber non-woven fabric, or short-fiber non-woven fabric constituting the base sheet are not particularly limited, and examples thereof include natural cellulose fiber, regenerated cellulose fiber, cellulose derivative fiber, nylon fiber, polyester. Examples thereof include fibers, polyolefin fibers, carbon fibers, glass fibers, aramid fibers, and spun yarns of these fibers. Also, these fibers may be used alone or in combination.
 微多孔膜としては特に限定されるものではないが、再生セルロース、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスルホン、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリカーボネート、6-ナイロン、6,6-ナイロン等のポリアミド系樹脂、ポリメチルメタクリレートのようなアクリル系樹脂、ポリケトン、ポリエーテルエーテルケトン等が挙げられる。 The microporous membrane is not particularly limited, but regenerated cellulose, polyolefin resin such as polyethylene and polypropylene, polysulfone, polytetrafluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, polycarbonate, 6-nylon, 6,6 -Polyamide resins such as nylon, acrylic resins such as polymethylmethacrylate, polyketones, polyether ether ketones and the like.
 以下、本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートの製造方法の例について説明するが、特にこの方法に限定されるものではない。 Hereinafter, an example of a method for producing the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment will be described, but the method is not particularly limited to this method.
 本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートはシート中に多孔質化剤を含むことが熱可塑性樹脂を多孔質微細セルロース繊維シート内部に良好に含浸させる観点で好ましい。上記各々のシート中に含まれる多孔質化剤は微細セルロース繊維重量の0.1質量%以上100質量%以下が好ましく、0.1質量%以上50質量%以下がより好ましく、0.1質量%以上30質量%以下がさらに好ましい。 The porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment preferably contain a porosifying agent in the sheet from the viewpoint of satisfactorily impregnating the thermoplastic resin inside the porous fine cellulose fiber sheet. .. The porosifying agent contained in each of the above sheets is preferably 0.1% by mass or more and 100% by mass or less, more preferably 0.1% by mass or more and 50% by mass or less, and 0.1% by mass or less of the weight of the fine cellulose fiber. It is more preferably 30% by mass or less.
 通常、水と微細セルロース繊維のみからなる微細セルロース繊維スラリーをシート化(例えば抄紙)、乾燥させると緻密膜が形成する。これに対し、多孔質化剤を含むスラリーをシート化、乾燥させると多孔質微細セルロース繊維シートを良好に形成できる。また、乾燥後も多孔質化剤がシート中に残存するため、湿潤乾燥操作を行っても透気抵抗度の上昇を抑えることができる。多孔質化剤の量が0.1質量%以上の場合、多孔質化剤量が多く所望の透気抵抗度を良好に達成できる。100質量%以下の場合、細孔が多孔質化剤で埋まることによる透気抵抗度の上昇を回避でき、また、液体状の多孔質化剤がシートから染み出さず連続生産において好ましい。 Usually, a fine film is formed when a fine cellulose fiber slurry consisting of water and fine cellulose fibers is made into a sheet (for example, papermaking) and dried. On the other hand, when the slurry containing the porosifying agent is formed into a sheet and dried, a porous fine cellulose fiber sheet can be satisfactorily formed. Further, since the porosifying agent remains in the sheet even after drying, it is possible to suppress an increase in air permeation resistance even when performing a wet drying operation. When the amount of the porosifying agent is 0.1% by mass or more, the amount of the porosifying agent is large and the desired air permeation resistance can be satisfactorily achieved. When the content is 100% by mass or less, it is possible to avoid an increase in air permeation resistance due to the pores being filled with the porosity-imparting agent, and the liquid porosity-imparting agent is preferable for continuous production because it does not exude from the sheet.
 多孔質化剤としては、微細セルロース繊維シートを多孔質化できる種々の化合物を使用でき、具体的には1)大気圧下での沸点が250℃以上、好ましくは280℃以上、より好ましくは300℃以上であって、2)水に溶解しない化合物が好ましい。シート製造の乾燥工程の温度は通常250℃未満であり、多孔質化剤の沸点が大気圧下で250℃以上であれば、乾燥工程で気化しにくいため、排気設備等の導入が不要となり、連続生産における負荷を軽減できる。一方、沸点の上限は特にないが、実現可能性の観点からは例えば400℃以下であってよい。 As the porosifying agent, various compounds capable of making the fine cellulose fiber sheet porous can be used. Specifically, 1) the boiling point under atmospheric pressure is 250° C. or higher, preferably 280° C. or higher, more preferably 300. A compound having a temperature of not less than 0° C. and not soluble in 2) water is preferable. The temperature of the drying step of the sheet production is usually less than 250° C., and if the boiling point of the porosifying agent is 250° C. or more under atmospheric pressure, it is difficult to vaporize in the drying step, so it is not necessary to introduce an exhaust facility, The load in continuous production can be reduced. On the other hand, there is no particular upper limit of the boiling point, but from the viewpoint of feasibility, it may be 400° C. or lower.
 ここでいう「水に溶解しない」とは、固形分1質量%にした多孔質化剤の水分散体が23℃において白濁している、又は、水層と油層に分離することを意味する。具体的には100mlガラスバイアルにイオン交換水99g、多孔質化剤(固形分100質量%)1gを添加した後、50℃に温調しながらマグネチックスターラー750rpmで1時間撹拌した後、23℃まで降温して撹拌を止めた状態での濁度及び外観から判断する。まず、目視において2層に分離しているかを確認し、2層に分離していれば「水に溶解しない」と判断する。また、2層に分離していない場合は濁度計を用いて濁度を測定し、濁度が1NTU以上の場合を「水に溶解しない」と判断する。濁度は1NTU以上が好ましく、3NTU以上がより好ましく、5NTU以上がさらに好ましく、10NTU以上が極めて好ましい。濁度の測定方法としては、濁度計(例えばTN100(Eutech製))を用い、測定バイアルに泡が入らないように10ml入れて測定する。なお、多孔質化剤の固形分が100質量%未満の場合は、最終の水分散体が1質量%となるようにイオン交換水の添加量を調整する。 The phrase "not soluble in water" as used herein means that an aqueous dispersion of a porosifying agent having a solid content of 1% by mass becomes cloudy at 23°C, or separates into an aqueous layer and an oil layer. Specifically, 99 g of ion-exchanged water and 1 g of a porosifying agent (solid content 100% by mass) were added to a 100 ml glass vial, and the mixture was stirred at a magnetic stirrer of 750 rpm for 1 hour while controlling the temperature at 50° C., and then at 23° C. Judging from the turbidity and appearance when the temperature is lowered to 0 and stirring is stopped. First, it is visually confirmed whether or not the layer is separated into two layers, and if the layer is separated into two layers, it is determined that "it is not dissolved in water". In addition, when the turbidity is not separated into two layers, the turbidity is measured using a turbidimeter, and when the turbidity is 1 NTU or more, it is judged as “not dissolved in water”. The turbidity is preferably 1 NTU or higher, more preferably 3 NTU or higher, further preferably 5 NTU or higher, and most preferably 10 NTU or higher. As a method for measuring turbidity, a turbidimeter (for example, TN100 (manufactured by Eutech)) is used, and 10 ml is put in the measurement vial so that bubbles do not enter the measurement. When the solid content of the porosifying agent is less than 100% by mass, the amount of ion-exchanged water added is adjusted so that the final water dispersion becomes 1% by mass.
 微細セルロース繊維スラリー中においては、多孔質化剤はスラリー中で溶解しないため油滴として存在し、その油滴の周りを微細セルロース繊維が覆っていると思われる。そして、シート化(例えば抄紙)時に一部又は全ての油滴がシート上に残存し多孔質化すると考えられる。したがって、水中で液滴として存在しうること、すなわち水に溶解しないことが多孔質化剤として望まれる。この液滴としてはリン脂質のような水中で自己集合してベシクル構造を形成し、白濁するような形態でも使用することができる。また、静置すると完全に相分離するような場合であっても、ミキサー等で強撹拌することで液滴として存在できるため使用できる。さらに、水に溶解しない疎水的な化合物を界面活性剤等で強制乳化させ、水中でも安定した液滴であっても使用できる。一方、多孔質化剤が水に完全に溶解した場合、シート化時にほとんどの多孔質化剤はろ液として流出するため、多孔質化剤が微細セルロース繊維に留まらず、多孔質化剤として良好に機能しない。  In the fine cellulose fiber slurry, the porosifying agent does not dissolve in the slurry and therefore exists as oil droplets, and it is considered that the fine cellulose fibers surround the oil droplets. Then, it is considered that some or all of the oil droplets remain on the sheet and become porous when it is formed into a sheet (for example, papermaking). Therefore, it is desirable as a porosifying agent that it can exist as droplets in water, that is, it does not dissolve in water. The droplets can also be used in a form in which they self-assemble in water such as phospholipids to form a vesicle structure and become cloudy. Further, even when the phase is completely separated when left standing, it can be used because it can exist as droplets by vigorous stirring with a mixer or the like. Furthermore, a hydrophobic compound that does not dissolve in water is forcibly emulsified with a surfactant or the like, and even stable droplets in water can be used. On the other hand, when the porosifying agent is completely dissolved in water, most of the porosifying agent flows out as a filtrate at the time of forming into a sheet, so that the porosifying agent does not remain in the fine cellulose fibers and is excellent as a porosifying agent. It doesn't work.
 多孔質化剤としては、前記の特徴を備えている種々の化合物を使用できるが、炭化水素基又はパーフルオロアルキル基又はオルガノシロキサン構造の3種類のうち1種類以上を化合物の骨格中に含んでいると好ましく、中でも炭化水素基を含む化合物は樹脂複合体を製造する上で樹脂との親和性に優れるためより好ましい。化合物中に上記3種類のうち1種類だけが含まれていてもよく、2種類以上が同時に含まれていても良い。また、化合物は低分子化合物でも高分子化合物でも良い。 As the porosifying agent, various compounds having the above characteristics can be used, but one or more kinds out of three kinds of a hydrocarbon group, a perfluoroalkyl group or an organosiloxane structure are contained in the skeleton of the compound. In particular, a compound containing a hydrocarbon group is more preferable because it has excellent affinity with a resin in producing a resin composite. Only one of the above three types may be contained in the compound, or two or more types may be contained at the same time. The compound may be a low molecular weight compound or a high molecular weight compound.
 上記の炭化水素基としては、水に対する溶解性が低くかつ樹脂との親和性に優れるという観点で、炭素数が2~40の基が好ましい。炭化水素基は、飽和又は不飽和の脂肪族基(直鎖状、分岐状若しくは脂環式)、芳香族基、又はこれらの組合せであってよい。 As the above hydrocarbon group, a group having 2 to 40 carbon atoms is preferable from the viewpoint of low solubility in water and excellent affinity with resin. The hydrocarbon group may be a saturated or unsaturated aliphatic group (linear, branched or alicyclic), an aromatic group, or a combination thereof.
 上記のパーフルオロアルキル基としては、水に対する溶解性が低くかつ樹脂との親和性に優れるという観点で、炭素数が、1~10、例えば1~8、特に1~6、特別には4又は6である基が好ましく、例えば、-CF3、-CF2CF3、-CF2CF2CF3、-CF(CF32、-CF2CF2CF2CF3、-CF2CF(CF32、-C(CF33、-(CF24CF3、-(CF22CF(CF32、-CF2C(CF33、-CF(CF3)CF2CF2CF3、-(CF25CF3、-(CF23CF(CF32、-(CF24CF(CF32、-(CF27CF3、-(CF25CF(CF32、-(CF26CF(CF32、-(CF29CF3等が挙げられる。 The above-mentioned perfluoroalkyl group has a carbon number of 1 to 10, for example 1 to 8, particularly 1 to 6, especially 4 or 4 from the viewpoint of low solubility in water and excellent affinity with resins. A group of 6 is preferable, and examples thereof include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 CF 3 , —CF(CF 3 ) 2 , —CF 2 CF 2 CF 2 CF 3 , —CF 2 CF( CF 3 ) 2 , -C(CF 3 ) 3 , -(CF 2 ) 4 CF 3 , -(CF 2 ) 2 CF(CF 3 ) 2 , -CF 2 C(CF 3 ) 3 , -CF(CF 3 ) CF 2 CF 2 CF 3 , -(CF 2 ) 5 CF 3 , -(CF 2 ) 3 CF(CF 3 ) 2 , -(CF 2 ) 4 CF(CF 3 ) 2 , -(CF 2 ) 7 CF 3, - (CF 2) 5 CF (CF 3) 2, - (CF 2) 6 CF (CF 3) 2, - (CF 2) 9 CF 3 , and the like.
 上記のオルガノシロキサン構造としては、水に対する溶解性が低くかつ樹脂との親和性に優れるという観点で、平均組成が一般式(1):
1 aSiO(4-a)/2   (1)
[式中、R1は、分子中で同一でも異なっていてもよく、水素原子、水酸基、炭素数1~20の置換又は非置換の1価の炭化水素基、及び炭素数1~20の置換又は非置換のアルコキシ基から選択され、aは、1.0~3.0の自然数である。]
で表される構造が好ましい。
The above-mentioned organosiloxane structure has an average composition represented by the general formula (1): from the viewpoint of low solubility in water and excellent affinity with a resin.
R 1 a SiO (4-a)/2 (1)
[In the formula, R 1 s may be the same or different in the molecule, and are a hydrogen atom, a hydroxyl group, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a substituent having 1 to 20 carbon atoms. Alternatively, it is selected from unsubstituted alkoxy groups and a is a natural number of 1.0 to 3.0. ]
The structure represented by is preferred.
 一般式(1)のR1は、水に対する溶解性が低くかつ樹脂との親和性に優れるという観点で、非置換の1価の炭化水素基であることが好ましいが、この場合の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基;ビニル基、アリル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基等のアリール基;2-フェニルエチル、2-フェニルプロピル等のアラルキル基をあげることができる。 R 1 of the general formula (1) is preferably an unsubstituted monovalent hydrocarbon group from the viewpoint of low solubility in water and excellent affinity with a resin, but as a specific example in this case Is an alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group; vinyl group A cycloalkyl group such as an allyl group, a cyclopentyl group and a cyclohexyl group; an aryl group such as a phenyl group; and an aralkyl group such as 2-phenylethyl and 2-phenylpropyl.
 R1が、置換の1価の炭化水素基である場合の炭化水素の置換基の例としては、アミノ基、アミノアルキル基、ハロゲン原子、ニトリル基、ポリオキシアルキレン基等をあげることができる。アルコキシ基としては、炭素数1~3のメトキシ基、エトキシ基、プロピル基を挙げることができる。 When R 1 is a substituted monovalent hydrocarbon group, examples of the hydrocarbon substituent include an amino group, an aminoalkyl group, a halogen atom, a nitrile group, a polyoxyalkylene group and the like. Examples of the alkoxy group include a methoxy group having 1 to 3 carbon atoms, an ethoxy group, and a propyl group.
 一般式(1)のaは、ポリシロキサンのケイ素原子に結合するR1の平均数を示すもので、1.0~3.0である。平均組成が一般式(1)で表されるオルガノシロキサン分子構造は直鎖のみならず、分岐する構造を有していても良いが、好ましくは、直鎖型の構造を有するものである。多孔質化剤がオルガノシロキサンである場合の好ましい具体例として、トリメチルシロキシ末端ジメチルシリコーン、ヒドロキシ末端ジメチルシリコーン、メチルハイドロジェンシロキサンを挙げることができ、トリメチルシロキシ末端ジメチルシリコーン、及びヒドロキシ末端ジメチルシリコーンが好ましい。 A in the general formula (1) represents the average number of R 1 bonded to the silicon atom of the polysiloxane, and is 1.0 to 3.0. The organosiloxane molecular structure whose average composition is represented by the general formula (1) may have not only a linear structure but a branched structure, but preferably has a linear structure. When the porosifying agent is an organosiloxane, preferred specific examples include trimethylsiloxy-terminated dimethyl silicone, hydroxy-terminated dimethylsilicone, and methylhydrogensiloxane, with trimethylsiloxy-terminated dimethylsilicone and hydroxy-terminated dimethylsilicone being preferred. ..
 本実施形態の多孔質化剤は前記炭化水素基、パーフルオロアルキル基、及び/又はオルガノシロキサン構造を含む、ビニル系モノマー、(メタ)アクリレート系モノマー、(メタ)アクリルアミド系モノマー及びスチレン系モノマーよりなる群から選ばれる少なくとも一種のモノマー単位を含む高分子化合物であっても良く、高分子化合物骨格中に2種類以上のモノマー単位が同時に含まれていても良い。 The porosifying agent of the present embodiment comprises a vinyl-based monomer, a (meth)acrylate-based monomer, a (meth)acrylamide-based monomer, and a styrene-based monomer containing the above-mentioned hydrocarbon group, perfluoroalkyl group, and/or organosiloxane structure. The polymer compound may include at least one kind of monomer unit selected from the group consisting of two or more kinds of monomer units at the same time in the polymer compound skeleton.
 炭化水素基を含むモノマーとして、特に限定されないが、例えば、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、トリメチルシクロヘキシル(メタ)アクリレート、シクロデシル(メタ)アクリレート、シクロデシルメチル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、ベンジル(メタ)アクリレート、アリル(メタ)アクリレート等のアルキル、アルケニル、シクロアルキル、芳香環を有する(メタ)アクリレートが挙げられる。 The hydrocarbon group-containing monomer is not particularly limited, and examples thereof include methyl (meth)acrylate, butyl (meth)acrylate, t-butyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and lauryl. (Meth)acrylate, tetradecyl (meth)acrylate, octadecyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, trimethylcyclohexyl (meth)acrylate, cyclodecyl (meth)acrylate, cyclodecylmethyl (meth)acrylate, Examples thereof include alkyl, alkenyl, cycloalkyl, such as tricyclodecyl (meth)acrylate, benzyl (meth)acrylate, and allyl (meth)acrylate, and (meth)acrylate having an aromatic ring.
 パーフルオロアルキル基を含むモノマー及びオルガノシロキサン構造を含むモノマーとして、特に限定されないが、例えば、以下のものを例示できる。
CH2=CR’COOCH2CH2Rf、
CH2=CR’COOCH2CH2N(CH2CH2CH3)CORf、
CH2=CR’COOCH(CH3)CH2Rf、
CH2=CR’COOCH2CH2N(CH3)SO2Rf、
CH2=CR’COOCH2CH2N(CH3)CORf、
CH2=CR’COOCH2CH2N(CH2CH3)SO2Rf、
CH2=CR’COOCH2CH2N(CH2CH3)CORf、
CH2=CR’COOCH2CH2N(CH2CH2CH3)SO2Rf、
CH2=CR’COOCH(CH2Cl)CH2OCH2CH2N(CH3)SO2Rf。
[上記式中、R’は、水素原子、メチル基、フッ素原子、又はトリフルオロメチル基であり、Rfは、前記パーフルオロアルキル基又は前記オルガノシロキサン構造である。]
The monomer containing a perfluoroalkyl group and the monomer containing an organosiloxane structure are not particularly limited, but examples thereof include the following.
CH 2 =CR'COOCH 2 CH 2 Rf,
CH 2 = CR'COOCH 2 CH 2 N (CH 2 CH 2 CH 3) CORf,
CH 2 = CR'COOCH (CH 3) CH 2 Rf,
CH 2 = CR'COOCH 2 CH 2 N (CH 3) SO 2 Rf,
CH 2 = CR'COOCH 2 CH 2 N (CH 3) CORf,
CH 2 = CR'COOCH 2 CH 2 N (CH 2 CH 3) SO 2 Rf,
CH 2 =CR'COOCH 2 CH 2 N(CH 2 CH 3 )CORf,
CH 2 = CR'COOCH 2 CH 2 N (CH 2 CH 2 CH 3) SO 2 Rf,
CH 2 = CR'COOCH (CH 2 Cl ) CH 2 OCH 2 CH 2 N (CH 3) SO 2 Rf.
[In the above formula, R'is a hydrogen atom, a methyl group, a fluorine atom, or a trifluoromethyl group, and Rf is the perfluoroalkyl group or the organosiloxane structure. ]
 本実施形態の多孔質化剤は前述の炭化水素基、パーフルオロアルキル基、及び/又はオルガノシロキサン構造を化合物中に1つ以上含む両親媒性化合物であっても良い。両親媒性化合物とは分子骨格中に疎水ブロックと親水ブロックを同時に含む化合物のことを言う。疎水ブロックに相当する部分としては前記の炭化水素基、パーフルオロアルキル基、オルガノシロキサン構造及びこれらを含む高分子構造が挙げられる。親水ブロックに相当する部分としては親水性官能基を含む構造や親水性高分子構造が挙げられる。 The porosifying agent of the present embodiment may be an amphipathic compound containing one or more of the above-mentioned hydrocarbon group, perfluoroalkyl group, and/or organosiloxane structure in the compound. An amphipathic compound refers to a compound that simultaneously contains a hydrophobic block and a hydrophilic block in its molecular skeleton. Examples of the portion corresponding to the hydrophobic block include the above-mentioned hydrocarbon group, perfluoroalkyl group, organosiloxane structure and polymer structure containing them. Examples of the portion corresponding to the hydrophilic block include a structure containing a hydrophilic functional group and a hydrophilic polymer structure.
 なお、両親媒性化合物が高分子の場合、重合形態は特に限定されるものではないが、例えばブロック共重合体、グラジエント共重合体、グラフト共重合体、ランダム共重合体、テーパード共重合体、周期共重合体が挙げられる。中でもブロック共重合体及びグラフト共重合体は水中で自己乳化し、白濁しやすいため好ましい。 Incidentally, when the amphipathic compound is a polymer, the polymerization form is not particularly limited, for example, a block copolymer, a gradient copolymer, a graft copolymer, a random copolymer, a tapered copolymer, Examples include periodic copolymers. Of these, block copolymers and graft copolymers are preferred because they are self-emulsifying in water and are easily clouded.
 上記の親水性官能基としては、特に限定されないが、水酸基、チオール基、カルボキシル基、スルホン酸基、硫酸エステル基、リン酸基、硫酸基或いは、-OM、-COOM、-SO3M、-OSO3M、-HMPO4、又は-M2PO4で表される基(Mはアルカリ金属又はアルカリ土類金属を表す)、1~3級アミン及び4級アンモニウム塩(カウンターアニオンとして水酸化物イオン、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物イオン、硝酸イオン、ギ酸イオン、酢酸イオン、トリフルオロ酢酸イオン、p-トルエンスルホン酸イオン、ヘキサフルオロフォスフェート、テトラフルオロボレート等)等が挙げられる。本実施形態の多孔質化剤は分子骨格中にこれらの親水基を1つ以上含んでいて良く、また、2種類以上の異なる親水基を同時に含んでいても良い。 The hydrophilic functional group is not particularly limited, but it may be a hydroxyl group, a thiol group, a carboxyl group, a sulfonic acid group, a sulfuric acid ester group, a phosphoric acid group, a sulfuric acid group or —OM, —COOM, —SO 3 M, — A group represented by OSO 3 M, —HMPO 4 or —M 2 PO 4 (M represents an alkali metal or an alkaline earth metal), a primary to tertiary amine and a quaternary ammonium salt (hydroxide as a counter anion Ion, fluoride ion, chloride ion, bromide ion, halide ion such as iodide ion, nitrate ion, formate ion, acetate ion, trifluoroacetate ion, p-toluenesulfonate ion, hexafluorophosphate, tetrafluoro Borate etc.) and the like. The porosifying agent of the present embodiment may include one or more of these hydrophilic groups in the molecular skeleton, and may include two or more different hydrophilic groups at the same time.
 上記の親水性高分子構造として、特に限定されないが、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリグルタミン酸、ポリリジン、ポリビニルピリジン、セルロース、デキストラン、ポリアルキレンオキシド、ポリ(メチレンエーテル)、ポリ(メタクリル酸)、ポリ(アクリルアミド)(メタ)アクリレート系モノマーの重合体等の重合体の構造が挙げられる。本実施形態の多孔質化剤は分子骨格中にこれらの親水性高分子構造を1つ以上含んでいて良く、また、2種類以上の異なる親水性高分子を同時に含んでいても良い。 The hydrophilic polymer structure is not particularly limited, but includes polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyglutamic acid, polylysine, polyvinylpyridine, cellulose, dextran, polyalkylene oxide, poly(methylene ether). And the structure of polymers such as polymers of poly(methacrylic acid) and poly(acrylamide)(meth)acrylate monomers. The porosifying agent of the present embodiment may include one or more of these hydrophilic polymer structures in the molecular skeleton, or may simultaneously include two or more different hydrophilic polymers.
 (メタ)アクリレート系モノマーとして、特に限定されないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールのモノ(メタ)アクリレート;(ポリ)エチレングリコールモノメチルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノエチルエーテル(メタ)アクリレート、(ポリ)プロピレングリコ-ルモノメチルエーテル(メタ)アクリレート等のグリコールエーテル系(メタ)アクリレート、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、(メタ)アクリロイロキシエチルグリシジルエーテル、(メタ)アクリロイロキシエトキシエチルグリシジルエーテル等のグリシジル基含有(メタ)アクリレート;(メタ)アクリロイロキシエチルイソシアネート、2-(2-イソシアナトエトキシ)エチル(メタ)アクリレート、及びそれらイソシアネートのε-カプロラクトンやメチルエチルケトオキシム、ピラゾール等でイソシアネートをブロックしてあるモノマー等のイソシアネート基含有(メタ)アクリレート;オキセタニルメチル(メタ)アクリレート等の酸素原子含有環状(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリレート及びその4級アンモニウム型等が挙げられる。なお、上記における「ポリ」及び「(ポリ)」は、いずれもn=2以上を意味する。 The (meth)acrylate-based monomer is not particularly limited, and examples thereof include a hydroxyl group-containing (meth)acrylate such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate. Polyalkylene glycol mono(meth)acrylates such as polyethylene glycol mono(meth)acrylate and polypropylene glycol mono(meth)acrylate; (poly)ethylene glycol monomethyl ether (meth)acrylate, (poly)ethylene glycol monoethyl ether (meth ) Acrylate, glycol ether type (meth)acrylate such as (poly)propylene glycol monomethyl ether (meth)acrylate, glycidyl (meth)acrylate, 3,4-epoxycyclohexyl (meth)acrylate, (meth)acryloyloxyethyl Glycidyl ether-containing (meth)acrylates such as glycidyl ether and (meth)acryloyloxyethoxyethyl glycidyl ether; (meth)acryloyloxyethyl isocyanate, 2-(2-isocyanatoethoxy)ethyl (meth)acrylate, and isocyanates thereof Isocyanate group-containing (meth)acrylates such as monomers whose isocyanates are blocked with ε-caprolactone, methylethylketoxime, and pyrazole; oxygen atom-containing cyclic (meth)acrylates such as oxetanylmethyl (meth)acrylate; dimethylaminoethyl (meth) ) Acrylate, diethylaminoethyl (meth)acrylate, t-butylaminoethyl (meth)acrylate, and other amino group-containing (meth)acrylates and quaternary ammonium type thereof. In addition, both "poly" and "(poly)" in the above mean n=2 or more.
 本実施形態における炭化水素基を含む両親媒性化合物において、親水基としては大きく分けてイオン性基(アニオン性、カチオン性、両性)とノニオン性基の2種類が挙げられる。 In the amphipathic compound containing a hydrocarbon group in the present embodiment, the hydrophilic group is roughly classified into two types, an ionic group (anionic, cationic and amphoteric) and a nonionic group.
 アニオン性基及び炭化水素基を有する両親媒性化合物として、特に限定されないが、例えば以下の化合物が挙げられる。
 (1)直鎖状又は分岐鎖状のアルキルベンゼンスルホン酸塩。
 (2)直鎖状又は分岐鎖状のアルカンスルホン酸塩。
 (3)α-オレフィンスルホン酸塩。
 (4)直鎖状又は分岐鎖状のアルキル硫酸塩又はアルケニル硫酸塩。
 (5)アルキレンオキシドが平均0.5~10モル付加された、直鎖状若しくは分岐鎖状のアルキル基を有するアルキルエーテル硫酸塩又は直鎖状若しくは分岐鎖状のアルケニル基を有するアルケニルエーテル硫酸塩;ただし、前記アルキレンオキシドとしては、好ましくは、炭素数2~4のアルキレンオキシドのいずれか、又はエチレンオキシド(EO)とプロピレンオキシド(PO)とが混在したもの(モル比でEO/PO=0.1/9.9~9.9/0.1)が挙げられる。
 (6)アルキレンオキシドが平均3~30モル付加された、直鎖状若しくは分岐鎖状のアルキル基を有するアルキルフェニルエーテル硫酸塩又は直鎖状若しくは分岐鎖状のアルケニル基を有するアルケニルフェニルエーテル硫酸塩;ただし、前記アルキレンオキシドとしては、好ましくは、炭素数2~4のアルキレンオキシドのいずれか、又はEOとPOとが混在したもの(モル比でEO/PO=0.1/9.9~9.9/0.1)が挙げられる。
 (7)アルキレンオキシドが平均0.5~10モル付加された、直鎖状若しくは分岐鎖状のアルキル基を有するアルキルエーテルカルボン酸塩又は直鎖状若しくは分岐鎖状のアルケニル基を有するアルケニルエーテルカルボン酸塩;ただし、前記アルキレンオキシドとしては、好ましくは、炭素数2~4のアルキレンオキシドのいずれか、又はEOとPOとが混在したもの(モル比でEO/PO=0.1/9.9~9.9/0.1)が挙げられる。
The amphipathic compound having an anionic group and a hydrocarbon group is not particularly limited, but examples thereof include the following compounds.
(1) A linear or branched alkylbenzene sulfonate.
(2) A linear or branched alkane sulfonate.
(3) α-olefin sulfonate.
(4) A linear or branched alkyl sulfate or alkenyl sulfate.
(5) Alkyl ether sulfate having a linear or branched alkyl group or alkenyl ether sulfate having a linear or branched alkenyl group to which an average of 0.5 to 10 mol of alkylene oxide is added However, the alkylene oxide is preferably any of alkylene oxides having 2 to 4 carbon atoms, or a mixture of ethylene oxide (EO) and propylene oxide (PO) (EO/PO=0. 1/9.9 to 9.9/0.1).
(6) Alkyl phenyl ether sulfate having a linear or branched alkyl group or alkenyl phenyl ether sulfate having a linear or branched alkenyl group to which an average of 3 to 30 mol of alkylene oxide is added However, the alkylene oxide is preferably any of alkylene oxides having 2 to 4 carbon atoms, or a mixture of EO and PO (EO/PO=0.1/9.9 to 9 in molar ratio). .9/0.1).
(7) Alkyl ether carboxylate having a linear or branched alkyl group or alkenyl ether carboxyl having a linear or branched alkenyl group to which an average of 0.5 to 10 mol of alkylene oxide is added However, the alkylene oxide is preferably any one of alkylene oxides having 2 to 4 carbon atoms or a mixture of EO and PO (EO/PO=0.1/9.9 in molar ratio). Up to 9.9/0.1).
 (8)直鎖状又は分岐鎖状のアルキルグリセリルエーテルスルホン酸塩等のアルキル多価アルコールエーテル硫酸塩。
 (9)飽和若しくは不飽和のα-スルホ脂肪酸塩又はそのメチル、エチル若しくはプロピルエステル塩。
 (10)長鎖モノアルキルリン酸塩、長鎖ジアルキルリン酸塩又は長鎖セスキアルキルリン酸塩。
 (11)ポリオキシエチレンモノアルキルリン酸塩、ポリオキシエチレンジアルキルリン酸塩又はポリオキシエチレンセスキアルキルリン酸塩。
 (12)長鎖モノアルキルスルホン酸塩、長鎖ジアルキルスルホン塩又は長鎖セスキアルキルスルホン塩。
 (13)直鎖状若しくは分岐鎖状のアルキル基を有する脂肪酸及び塩。
 (14)直鎖状若しくは分岐鎖状のアルキル基を有する多価カルボン酸及び塩。
なお、カウンターカチオンとしてはナトリウム塩、カリウム塩等のアルカリ金属塩;アミン塩、アンモニウム塩等として用いることができる。なかでも、ナトリウム塩、カリウム塩等のアルカリ金属塩が好ましい。
(8) Alkyl polyhydric alcohol ether sulfate such as linear or branched alkyl glyceryl ether sulfonate.
(9) Saturated or unsaturated α-sulfo fatty acid salt or its methyl, ethyl or propyl ester salt.
(10) Long chain monoalkyl phosphate, long chain dialkyl phosphate or long chain sesquialkyl phosphate.
(11) Polyoxyethylene monoalkyl phosphate, polyoxyethylene dialkyl phosphate or polyoxyethylene sesquialkyl phosphate.
(12) Long-chain monoalkyl sulfonate, long-chain dialkyl sulfonate or long-chain sesquialkyl sulfonate.
(13) A fatty acid and a salt having a linear or branched alkyl group.
(14) Polyvalent carboxylic acids and salts having a linear or branched alkyl group.
The counter cation can be used as an alkali metal salt such as sodium salt or potassium salt; an amine salt or an ammonium salt. Of these, alkali metal salts such as sodium salt and potassium salt are preferable.
 カチオン性基及び炭化水素基を有する両親媒性化合物として、特に限定されないが、例えば以下の化合物が挙げられる。
 (1)ジ長鎖アルキルジ短鎖アルキル型4級アンモニウム塩。
 (2)モノ長鎖アルキルトリ短鎖アルキル型4級アンモニウム塩。
 (3)トリ長鎖アルキルモノ短鎖アルキル型4級アンモニウム塩。
 ただし、上記の「長鎖アルキル」は炭素数5~26、好ましくは8~18のアルキル基を示す。
 「短鎖アルキル」は、炭素数1~4のアルキル基に加えて、フェニル基、ベンジル基、ヒドロキシ基、ヒドロキシアルキル基等を包含するものとする。また、炭素原子間にエーテル結合を有していてもよい。具体的には、炭素数1~4、好ましくは1~2のアルキル基;ベンジル基;炭素数2~4、好ましくは2~3のヒドロキシアルキル基;炭素数2~4、好ましくは2~3のポリオキシアルキレン基が好適なものとして挙げられる。
The amphipathic compound having a cationic group and a hydrocarbon group is not particularly limited, but examples thereof include the following compounds.
(1) Di long chain alkyl di short chain alkyl type quaternary ammonium salt.
(2) Mono long chain alkyl tri short chain alkyl type quaternary ammonium salt.
(3) Tri long chain alkyl mono short chain alkyl quaternary ammonium salt.
However, the above-mentioned “long-chain alkyl” refers to an alkyl group having 5 to 26 carbon atoms, preferably 8 to 18 carbon atoms.
The “short chain alkyl” is intended to include a phenyl group, a benzyl group, a hydroxy group, a hydroxyalkyl group and the like in addition to an alkyl group having 1 to 4 carbon atoms. Moreover, you may have an ether bond between carbon atoms. Specifically, an alkyl group having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms; a benzyl group; a hydroxyalkyl group having 2 to 4 carbon atoms, preferably 2 to 3 carbon atoms; 2 to 4 carbon atoms, preferably 2 to 3 carbon atoms The polyoxyalkylene group of is mentioned as a suitable thing.
 両性基及び炭化水素基を有する両親媒性化合物として、特に限定されないが、例えば、イミダゾリン系、アミドベタイン系の化合物が挙げられる。具体的には、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、及びラウリン酸アミドプロピルベタインが好適なものとして挙げられる。 The amphipathic compound having an amphoteric group and a hydrocarbon group is not particularly limited, but examples thereof include imidazoline compounds and amidobetaine compounds. Specifically, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine and lauric acid amidopropyl betaine are preferable.
 ノニオン性基及び炭化水素基を有する両親媒性化合物として、特に限定されないが、例えば、以下に示すものが挙げられる。
 (1)炭素数6~22、好ましくは炭素数8~18の脂肪族アルコールに炭素数2~4のアルキレンオキシドが平均1~30モル、好ましくは5~20モル付加された、ポリオキシアルキレンアルキルエーテル又はポリオキシアルキレンアルケニルエーテル。この中でも、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルケニルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルケニルエーテルが好適なものとして挙げられる。
 ここで使用される脂肪族アルコールとしては、第1級アルコール、及び第2級アルコールが挙げられ、第1級アルコールが好ましい。また、アルキル基又はアルケニル基は、直鎖状であってもよく、分岐鎖状であってもよい。
 (2)ポリオキシエチレンアルキルフェニルエーテル又はポリオキシエチレンアルケニルフェニルエーテル。
 (3)長鎖脂肪酸アルキルエステルのエステル結合間にアルキレンオキシドが付加された、例えば下記一般式(2)で表される脂肪酸アルキルエステルアルコキシレート。
1CO(OA)qOR2 ・・・(2)
[式中、R1COは、炭素数6~22、好ましくは8~18の脂肪酸残基を示し;OAは、炭素数2~4、好ましくは2~3のアルキレンオキシド(例えば、エチレンオキシド、プロピレンオキシド等)の付加単位を示し;qはアルキレンオキシドの平均付加モル数を示し、一般に3~30、好ましくは5~20の数である。R2は、炭素数1~3の置換基を有していてもよい、炭素数1~4の低級アルキル基を示す。]
 (4)ポリオキシエチレンソルビタン脂肪酸エステル。
 (5)ポリオキシエチレンソルビット脂肪酸エステル。
 (6)ポリオキシエチレン脂肪酸エステル。
 (7)ポリオキシエチレン硬化ヒマシ油。
 (8)グリセリン脂肪酸エステル。
 (9)下記一般式(3)で表されるポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミド
3a-A-〔(R3bO)p-R3c〕q   (3)
[式中、R3aは、炭素数6以上18以下、好ましくは炭素数8以上16以下のアルキル基又はアルケニル基を示し、R3bは、炭素数2又は3のアルキレン基、好ましくはエチレン基を示し、R3cは、炭素数1以上3以下のアルキル基又は水素原子を示し、pはアルキレンオキシ基の平均付加モル数であって、好ましくは2以上100以下、より好ましくは5以上80以下、更に好ましくは5以上60以下、より更に好ましくは10以上60以下の数を示し、Aは-CONH-、-NH-、-CON<、又は-N<を示し、Aが-CONH-又は-NH-の場合qは1であり、Aが-CON<又は-N<の場合qは2である。]
 (10)1つ以上の水酸基を有する1価アルコール又は多価アルコール
The amphipathic compound having a nonionic group and a hydrocarbon group is not particularly limited, but examples thereof include the compounds shown below.
(1) Polyoxyalkylene alkyl in which an alkylene oxide having 2 to 4 carbon atoms is added to an aliphatic alcohol having 6 to 22 carbon atoms, preferably 8 to 18 carbon atoms, on average 1 to 30 mol, preferably 5 to 20 mol. Ethers or polyoxyalkylene alkenyl ethers. Among these, polyoxyethylene alkyl ether, polyoxyethylene alkenyl ether, polyoxyethylene polyoxypropylene alkyl ether, and polyoxyethylene polyoxypropylene alkenyl ether are preferred.
Examples of the aliphatic alcohol used here include primary alcohols and secondary alcohols, with primary alcohols being preferred. The alkyl group or alkenyl group may be linear or branched.
(2) Polyoxyethylene alkyl phenyl ether or polyoxyethylene alkenyl phenyl ether.
(3) A fatty acid alkyl ester alkoxylate represented by the following general formula (2), for example, in which an alkylene oxide is added between ester bonds of a long-chain fatty acid alkyl ester.
R 1 CO(OA) q OR 2 ...(2)
[Wherein R 1 CO represents a fatty acid residue having 6 to 22 carbon atoms, preferably 8 to 18 carbon atoms; OA represents alkylene oxide having 2 to 4 carbon atoms, preferably 2 to 3 carbon atoms (eg, ethylene oxide, propylene) Oxide, etc.); q represents the average number of moles of alkylene oxide added, and is generally 3 to 30, preferably 5 to 20. R 2 represents a lower alkyl group having 1 to 4 carbon atoms, which may have a substituent group having 1 to 3 carbon atoms. ]
(4) Polyoxyethylene sorbitan fatty acid ester.
(5) Polyoxyethylene sorbit fatty acid ester.
(6) Polyoxyethylene fatty acid ester.
(7) Polyoxyethylene hydrogenated castor oil.
(8) Glycerin fatty acid ester.
(9) Polyoxyethylene alkylamine represented by the following general formula (3), polyoxyethylene alkylamide R 3 a-A-[(R 3 bO) p -R 3 c] q (3)
[In the formula, R 3 a represents an alkyl group or an alkenyl group having 6 to 18 carbon atoms, preferably 8 to 16 carbon atoms, and R 3 b represents an alkylene group having 2 or 3 carbon atoms, preferably ethylene. R 3 c represents an alkyl group having 1 to 3 carbon atoms or a hydrogen atom, and p represents the average number of moles of the alkyleneoxy group added, preferably 2 or more and 100 or less, more preferably 5 or more. 80 or less, more preferably 5 or more and 60 or less, even more preferably 10 or more and 60 or less, A represents —CONH—, —NH—, —CON<, or —N<, and A represents —CONH— Alternatively, q is 1 when -NH- and q is 2 when A is -CON< or -N<. ]
(10) Monohydric alcohol or polyhydric alcohol having one or more hydroxyl groups
 ノニオン性基及び炭化水素基を有する両親媒性化合物については、HLBが12未満であると水への溶解性が下がり、多孔質化剤として好適である。なお、上記の「HLB」とは、Griffinの方法により求められた値である(吉田、進藤、大垣、山中共編、「新版界面活性剤ハンドブック」,工業図書株式会社,1991年,第234頁参照)。 With respect to the amphipathic compound having a nonionic group and a hydrocarbon group, when the HLB is less than 12, the solubility in water is lowered and it is suitable as a porosifying agent. The above "HLB" is a value obtained by the Griffin's method (edited by Yoshida, Shindo, Ogaki and Yamanaka, "New Surfactant Handbook", Kogyo Tosho KK, 1991, p. 234. reference).
 パーフルオロアルキル基を含む両親媒性化合物としては、特に限定されないが、例えば、親水基がアニオン性又はノニオン性の化合物が挙げられる。
 アニオン性親水性基及びパーフルオロアルキル基を含む両親媒性化合物としては、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルリン酸エステル、パーフルオロアルキルスルホン酸塩等が挙げられる。
The amphipathic compound containing a perfluoroalkyl group is not particularly limited, and examples thereof include compounds in which the hydrophilic group is anionic or nonionic.
Examples of the amphipathic compound containing an anionic hydrophilic group and a perfluoroalkyl group include perfluoroalkylcarboxylic acid salts, perfluoroalkylphosphoric acid esters and perfluoroalkylsulfonic acid salts.
 ノニオン性親水性基及びパーフルオロアルキル基を含む両親媒性化合物としては、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキルアミンオキシド、パーフルオロアルキルポリオキシエチレンエタノール、パーフルオロアルキルアルコキシレート等を挙げることができる。 Examples of the amphipathic compound containing a nonionic hydrophilic group and a perfluoroalkyl group include perfluoroalkylethylene oxide adducts, perfluoroalkylamine oxides, perfluoroalkyl polyoxyethylene ethanol, perfluoroalkyl alkoxylates and the like. it can.
 具体例として、LE-604、LE-605、LINC-151-EPA(共栄社化学社製)、メガファック(登録商標)F171、172、173、F444、F477(DIC社製)、フロラード(登録商標)FC430、FC431(住友スリーエム社製)、アサヒガードAG(登録商標)710、サーフロン(登録商標)S-382、SC-101、102、103、104、105(旭硝子社製)等を挙げることができる。 Specific examples include LE-604, LE-605, LINC-151-EPA (manufactured by Kyoeisha Chemical Co., Ltd.), Megafac (registered trademark) F171, 172, 173, F444, F477 (manufactured by DIC Corporation), Florard (registered trademark). Examples thereof include FC430, FC431 (manufactured by Sumitomo 3M Ltd.), Asahi Guard AG (registered trademark) 710, Surflon (registered trademark) S-382, SC-101, 102, 103, 104, 105 (manufactured by Asahi Glass Co., Ltd.). ..
 オルガノシロキサン構造を含む両親媒性化合物としては、特に限定されないが、オルガノシロキサンの末端或いは分子鎖中に親水基を導入したものが挙げられる。例えば、ポリオキシエチレン変性オルガノシロキサン、ポリオキシエチレン・ポリオキシプロピレン変性オルガノシロキサン、ポリオキシエチレンソルビタン変性オルガノシロキサン、ポリオキシエチレングリセリル変性オルガノシロキサン等の親水基で変性されたオルガノシロキサン等が挙げられる。 The amphipathic compound containing an organosiloxane structure is not particularly limited, and examples thereof include those in which a hydrophilic group is introduced at the terminal or molecular chain of organosiloxane. Examples thereof include organosiloxanes modified with a hydrophilic group such as polyoxyethylene-modified organosiloxane, polyoxyethylene/polyoxypropylene-modified organosiloxane, polyoxyethylenesorbitan-modified organosiloxane, and polyoxyethyleneglyceryl-modified organosiloxane.
 具体例として、DBE-712、DBE-821(アヅマックス社製)、KF-6011、KF-6012、KF-6013、KF-6014、KF-6015、KF-6016、KF-6100(信越化学工業社製)、ABIL-EM97(ゴールドシュミット社製)、ポリフローKL-100、ポリフローKL-401、ポリフローKL-402、ポリフローKL-700(共栄社化学製)等を挙げることができる。 As specific examples, DBE-712, DBE-821 (manufactured by Azumax), KF-6011, KF-6012, KF-6013, KF-6014, KF-6015, KF-6016, KF-6100 (manufactured by Shin-Etsu Chemical Co., Ltd.). ), ABIL-EM97 (manufactured by Gold Schmidt), Polyflow KL-100, Polyflow KL-401, Polyflow KL-402, Polyflow KL-700 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
 本実施形態における多孔質化剤としては、前述の、1)大気圧下での沸点が250℃以上であって、2)水に溶解しないという特性を有する紙用嵩高剤も用いることができる。例えば高級アルコールのアルキレンオキシド付加物(国際公開第WO98/03730号に記載)、多価アルコールが油脂、糖アルコール、糖等である多価アルコール型非イオン性界面活性剤(特開平11-200283号公報に記載)、脂肪酸のアルキレンオキシド付加物(特開平11-200284号公報に記載)、カチオン性化合物、アミン、アミンの酸塩(特開平11-269799号公報、特開2001-355197号公報に記載)、両性化合物(特開平11-269799号公報に記載)、多価アルコール脂肪酸エステル(特許第2971447号、特開平11-350380号公報に記載)、(A)オルガノシロキサン、(B)グリセリルエーテル、(C)アミド、(D)アミン、(E)アミン酸塩、(F)4級アンモニウム塩、(G)イミダゾール、(H)多価アルコールと脂肪酸のエステル、及び(I)多価アルコールと脂肪酸のエステル(特許第3283248号、特開2003-105685号公報等)、脂肪族カルボン酸とポリアミンとを反応させて得られるアミド化合物を尿素で架橋し、その後、アルキル化剤を反応させて得られる化合物、若しくは前記アミド化合物にアルキル化剤を反応させ、その後、尿素で架橋して得られる化合物(特開2005-60891号公報に記載)等が挙げられる。 As the porosifying agent in the present embodiment, the above-mentioned bulking agent for paper having the characteristics of 1) boiling point at atmospheric pressure of 250° C. or higher and 2) insoluble in water can be used. For example, alkylene oxide adducts of higher alcohols (described in International Publication No. WO98/03730), polyhydric alcohol-type nonionic surfactants in which polyhydric alcohols are fats, sugar alcohols, sugars, etc. (JP-A-11-200283). ), alkylene oxide adducts of fatty acids (described in JP-A No. 11-200284), cationic compounds, amines, acid salts of amines (described in JP-A No. 11-269799, 2001-355197). A), an amphoteric compound (described in JP-A No. 11-269799), a polyhydric alcohol fatty acid ester (described in Patent No. 2971447, JP-A No. 11-350380), (A) organosiloxane, (B) glyceryl ether. , (C) amide, (D) amine, (E) amine acid salt, (F) quaternary ammonium salt, (G) imidazole, (H) polyhydric alcohol ester of fatty acid, and (I) polyhydric alcohol An ester of a fatty acid (Japanese Patent No. 3283248, JP-A-2003-105685, etc.), an amide compound obtained by reacting an aliphatic carboxylic acid with a polyamine are crosslinked with urea, and then obtained by reacting with an alkylating agent. Examples thereof include compounds obtained by reacting the amide compound with an alkylating agent, and then crosslinking with urea (described in JP-A-2005-60891).
 本実施形態における多孔質化剤は単独でも、或いは、2種類以上を混合して使用しても良い。さらに、周知一般のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、高分子系界面活性剤、反応性界面活性剤等により乳化分散されても良い。 The porosifying agent in this embodiment may be used alone or in combination of two or more kinds. Further, it may be emulsified and dispersed by a well-known general anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, polymer surfactant, reactive surfactant and the like.
 本実施形態における多孔質化剤の融点は特に限定はされないが、50℃以下、好ましくは40℃以下、より好ましくは30℃以下、さらに好ましくは20℃以下であると、スラリー添加時に温和な加温で液体として扱えるため、製造上好適である。融点とは、JIS K 0064-1992「化学製品の融点及び溶融範囲測定方法」に記載されている融点測定法によって測定された値である。 The melting point of the porosifying agent in the present embodiment is not particularly limited, but if it is 50° C. or lower, preferably 40° C. or lower, more preferably 30° C. or lower, further preferably 20° C. or lower, mild addition during slurry addition is performed. It is suitable for manufacturing because it can be handled as a liquid at a high temperature. The melting point is a value measured by a melting point measuring method described in JIS K 0064-1992 “Measuring point and melting range of chemical products”.
 多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シート中に多孔質化剤、より具体的には炭化水素基、パーフルオロアルキル基、及び/又はオルガノシロキサン構造が含まれていることは、シートそのものを固体NMR(核磁気共鳴)、FT-IR(フーリエ変換赤外分光)等の分光法、又は熱分解GC-MS(ガスクロマトグラフ質量分析)、TOF-SIMS(飛行時間型二次イオン質量分析)等の質量分析法により直接的分析する方法で確認できる。また、アセトンやジメチルアセトアミド、ジメチルホルムアミド等の溶剤で多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートを洗浄し、洗浄液中に溶出した多孔質化剤を溶液NMR、FT-IR、LC-MS(液体クロマトグラフ質量分析)、GC-MS等で分析することもできる。 The porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet contains a porosifying agent, more specifically, a hydrocarbon group, a perfluoroalkyl group, and/or an organosiloxane structure. The sheet itself is analyzed by solid-state NMR (nuclear magnetic resonance), FT-IR (Fourier transform infrared spectroscopy) or other spectroscopy, or thermal decomposition GC-MS (gas chromatograph mass spectrometry), TOF-SIMS (time-of-flight secondary ion mass). It can be confirmed by a method of direct analysis by mass spectrometry such as analysis). Further, the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet are washed with a solvent such as acetone, dimethylacetamide or dimethylformamide, and the porosifying agent eluted in the washing liquid is subjected to solution NMR, FT-IR, LC. It is also possible to analyze by -MS (liquid chromatograph mass spectrometry), GC-MS and the like.
 本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シート内部の微細セルロース繊維層は、微細セルロース繊維に加えてバインダーを含むことが、多孔質微細セルロース繊維シートのDRY強度とWET強度を向上させる観点、且つ多孔質微細セルロース繊維複合化シート内部の微細セルロール繊維層を熱プレス時に破断させない観点で好ましい。バインダーとしての効果に優れる点でポリウレタンが好適である。 The porous fine cellulose fiber sheet and the fine cellulose fiber layer inside the porous fine cellulose fiber composite sheet of the present embodiment may contain a binder in addition to the fine cellulose fibers, and the DRY strength and WET of the porous fine cellulose fiber sheet. It is preferable from the viewpoint of improving the strength and preventing the fine cellulose fiber layer inside the porous fine cellulose fiber composite sheet from breaking during hot pressing. Polyurethane is preferable because of its excellent effect as a binder.
 ポリウレタンはポリイソシアネート化合物を主剤とし、ポリオール化合物等の活性水素を有する化合物(活性水素化合物)を硬化剤とした樹脂である。 Polyurethane is a resin whose main component is a polyisocyanate compound and whose curing agent is a compound having active hydrogen (active hydrogen compound) such as a polyol compound.
 ポリイソシアネート化合物は少なくとも2個以上のイソシアネート基を含有するものであれば特に制限されない。ポリイソシアネートの基本骨格としては、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート、ポリイソシアネート誘導体等が挙げられる。中でも、黄変性が少ないという観点から脂環族ポリイソシアネート、脂肪族ポリイソシアネートがより好ましい。 The polyisocyanate compound is not particularly limited as long as it contains at least two isocyanate groups. Examples of the basic skeleton of polyisocyanate include aromatic polyisocyanate, alicyclic polyisocyanate, aliphatic polyisocyanate, polyisocyanate derivative and the like. Among them, alicyclic polyisocyanates and aliphatic polyisocyanates are more preferable from the viewpoint of less yellowing.
 芳香族ポリイソシアネートの原料としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート及びその混合物(TDI)、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、ナフタレン-1,5-ジイソシアネート、3,3-ジメチル-4,4-ビフェニレンジイソシアネート、粗製TDI、ポリメチレンポリフェニルジイソシアネート、粗製MDI、フェニレンジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネートが挙げられる。 Examples of the raw material of the aromatic polyisocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and a mixture thereof (TDI), diphenylmethane-4,4′-diisocyanate (MDI), naphthalene-1,5. -Aromatic diisocyanates such as diisocyanate, 3,3-dimethyl-4,4-biphenylene diisocyanate, crude TDI, polymethylene polyphenyl diisocyanate, crude MDI, phenylene diisocyanate and xylylene diisocyanate.
 脂環族ポリイソシアネートの原料としては、例えば、1,3-シクロペンタンジイソシアネート、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート等の脂環族ジイソシアネートが挙げられる。 Examples of the alicyclic polyisocyanate raw material include alicyclic diisocyanates such as 1,3-cyclopentane diisocyanate, 1,3-cyclopentene diisocyanate, and cyclohexane diisocyanate.
 脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート等が挙げられる。 Examples of the aliphatic polyisocyanate include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate, pentamethylene diisocyanate and hexamethylene diisocyanate.
 ポリイソシアネート誘導体としては、例えば、上記のポリイソシアネートの多量体(例えば、2量体、3量体、5量体、7量体等)の他に、ポリイソシアネートを活性水素含有化合物の1種類又は2種類以上と反応させて得られた化合物が挙げられる。その化合物はアロファネート変性体(例えば、ポリイソシアネートと、アルコール類との反応より生成するアロファネート変性体等)、ポリオール変性体(例えば、ポリイソシアネートとアルコール類との反応より生成するポリオール変性体(アルコール付加体)等)、ビウレット変性体(例えば、ポリイソシアネートと、水やアミン類との反応により生成するビウレット変性体等)、ウレア変性体(例えば、ポリイソシアネートとジアミンとの反応により生成するウレア変性体等)、オキサジアジントリオン変性体(例えば、ポリイソシアネートと炭酸ガスとの反応により生成するオキサジアジントリオン等)、カルボジイミド変性体(ポリイソシアネートの脱炭酸縮合反応により生成するカルボジイミド変性体等)、ウレトジオン変性体、ウレトンイミン変性体等が挙げられる。 As the polyisocyanate derivative, for example, in addition to the above-described multimers of polyisocyanate (for example, dimer, trimer, pentamer, heptamer, etc.), polyisocyanate may be used as one type of active hydrogen-containing compound or The compound obtained by making it react with 2 or more types is mentioned. The compound is an allophanate modified product (for example, an allophanate modified product produced by the reaction of polyisocyanate and alcohols), a polyol modified product (for example, a polyol modified product produced by the reaction of polyisocyanate and alcohols (alcohol addition Body)), biuret modified product (for example, biuret modified product formed by reaction of polyisocyanate with water or amines), urea modified product (for example, urea modified product formed by reaction of polyisocyanate and diamine) Etc.), oxadiazinetrione modified product (for example, oxadiazinetrione produced by reaction of polyisocyanate and carbon dioxide gas), carbodiimide modified product (carbodiimide modified product produced by decarboxylation condensation reaction of polyisocyanate, etc.), Examples include modified uretdione and modified uretonimine.
 活性水素含有化合物として、特に限定されないが、例えば、ポリエステルポリオール、ポリエーテルポリオールを含む1~6価の水酸基含有化合物、アミノ基含有化合物、チオール基含有化合物、カルボキシル基含有化合物等が挙げられる。また、空気中或いは反応場に存在する水や二酸化炭素等も含まれる。
 1~6価のアルコール(ポリオール)としては、例えば、非重合ポリオールと重合ポリオールがある。非重合ポリオールとは重合を履歴しないポリオールであり、重合ポリオールはモノマーを重合して得られるポリオールである。
The active hydrogen-containing compound is not particularly limited, and examples thereof include a monovalent to hexavalent hydroxyl group-containing compound including a polyester polyol and a polyether polyol, an amino group-containing compound, a thiol group-containing compound, and a carboxyl group-containing compound. It also includes water, carbon dioxide, etc. existing in the air or in the reaction field.
Examples of the monovalent to hexavalent alcohols (polyols) include non-polymerized polyols and polymerized polyols. The non-polymerized polyol is a polyol that does not undergo polymerization history, and the polymerized polyol is a polyol obtained by polymerizing a monomer.
 非重合ポリオールとしてはモノアルコール類、ジオール類、トリオール類、テトラオール類等が挙げられる。モノアルコール類としては、例えば、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i―ブタノール、s-ブタノール、n-ペンタノール、n-ヘキサノール、n-オクタノール、n-ノナノール、2-エチルブタノール、2,2-ジメチルヘキサノール、2-エチルヘキサノール、シクロヘキサノール、メチルシクロヘキサノール、エチルシクロヘキサノール等が挙げられる。ジオール類としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,2-プロパンジオール、1,5-ペンタンジオール、2-メチル-2,3-ブタンジオール、1,6-ヘキサンジオール、1,2-ヘキサンジオール、2,5-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、2,3-ジメチル-2,3-ブタンジオール、2-エチル-ヘキサンジオール、1,2-オクタンジオール、1,2-デカンジオール、2,2,4-トリメチルペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、フロログルシン、ピロガロール、カテコール、ヒドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS等が挙げられる。トリオール類としては、例えば、グリセリン、トリメチロールプロパン等が挙げられる。また、テトラオール類としては、例えば、ペンタエリトリトール、1,3,6,8-テトラヒドロキシナフタレン、1,4,5,8-テトラヒドロキシアントラセン等が挙げられる。 Examples of non-polymerized polyols include monoalcohols, diols, triols and tetraols. Examples of monoalcohols include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, n-pentanol, n-hexanol, n-octanol, n-nonanol, 2 -Ethylbutanol, 2,2-dimethylhexanol, 2-ethylhexanol, cyclohexanol, methylcyclohexanol, ethylcyclohexanol and the like can be mentioned. Examples of the diols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1, 3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,2-propanediol, 1,5-pentanediol, 2-methyl-2,3-butanediol, 1, 6-hexanediol, 1,2-hexanediol, 2,5-hexanediol, 2-methyl-2,4-pentanediol, 2,3-dimethyl-2,3-butanediol, 2-ethyl-hexanediol, 1,2-octanediol, 1,2-decanediol, 2,2,4-trimethylpentanediol, 2-butyl-2-ethyl-1,3-propanediol, 2,2-diethyl-1,3-propane Examples thereof include diol, phloroglucin, pyrogallol, catechol, hydroquinone, bisphenol A, bisphenol F, bisphenol S and the like. Examples of triols include glycerin and trimethylolpropane. Further, examples of the tetraols include pentaerythritol, 1,3,6,8-tetrahydroxynaphthalene, 1,4,5,8-tetrahydroxyanthracene and the like.
 重合ポリオールとしては、特に限定されないが、例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、ポリオレフィンポリオール等が挙げられる。 The polymerized polyol is not particularly limited, but examples thereof include polyester polyol, polyether polyol, acrylic polyol, polyolefin polyol and the like.
 ポリエステルポリオールとしては、例えば、コハク酸、アジピン酸、セバシン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸等のジカルボン酸の単独又は混合物と、エチレングリコール、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、グリセリン等の多価アルコールの単独又は混合物との縮合反応によって得られるポリエステルポリオールや、多価アルコールを用いてε-カプロラクトンを開環重合して得られるようなポリカプロラクトン類等が挙げられる。 Examples of the polyester polyol include, for example, succinic acid, adipic acid, sebacic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, dicarboxylic acids such as terephthalic acid, alone or in a mixture, ethylene glycol, propylene glycol, diethylene glycol, Polyester polyols obtained by condensation reaction of polyhydric alcohols such as neopentyl glycol, trimethylolpropane and glycerin, alone or in a mixture, and polycaprolactones obtained by ring-opening polymerization of ε-caprolactone using polyhydric alcohols. And the like.
 ポリエーテルポリオールとしては、例えば、リチウム、ナトリウム、カリウム等の水酸化物、アルコラート、アルキルアミン等の強塩基性触媒、金属ポルフィリン、ヘキサシアノコバルト酸亜鉛錯体等の複合金属シアン化合物錯体等を使用して、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、シクロヘキセンオキシド、スチレンオキシド等のアルキレンオキシドの単独又は混合物を、多価ヒドロキシ化合物の単独又は混合物に、ランダム或いはブロック付加して得られるポリエーテルポリオール類や、エチレンジアミン類等のポリアミン化合物にアルキレンオキシドを反応させて得られるポリエーテルポリオール類が挙げられる。これらポリエーテル類を媒体としてアクリルアミド等を重合して得られる、いわゆるポリマーポリオール類等も挙げられる。 As the polyether polyol, for example, hydroxides of lithium, sodium, potassium, etc., alcoholates, strong basic catalysts such as alkylamines, metal porphyrins, complex metal cyanide compound complexes such as zinc hexacyanocobaltate complex, etc. are used. Polyether polyols and ethylenediamines obtained by randomly or block-adding alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, cyclohexene oxide, and styrene oxide, alone or as a mixture, to a polyhydric hydroxy compound alone or as a mixture. Polyether polyols obtained by reacting a polyamine compound such as alkylene oxide. So-called polymer polyols and the like obtained by polymerizing acrylamide or the like using these polyethers as a medium are also included.
 前記多価アルコール化合物としては、
1)例えばジグリセリン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等、
2)例えばエリトリトール、D-トレイトール、L-アラビニトール、リビトール、キシリトール、ソルビトール、マンニトール、ガラクチトール、ラムニトール等の糖アルコール系化合物、
3)例えばアラビノース、リボース、キシロース、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、ラムノース、フコース、リボデソース等の単糖類、
4)例えばトレハロース、ショ糖、マルトース、セロビオース、ゲンチオビオース、ラクトース、メリビオース等の二糖類、
5)例えばラフィノース、ゲンチアノース、メレチトース等の三糖類、
6)例えばスタキオース等の四糖類、
等がある。
As the polyhydric alcohol compound,
1) For example, diglycerin, ditrimethylolpropane, pentaerythritol, dipentaerythritol, etc.
2) Sugar alcohol compounds such as erythritol, D-threitol, L-arabinitol, ribitol, xylitol, sorbitol, mannitol, galactitol and rhamnitol,
3) For example, monosaccharides such as arabinose, ribose, xylose, glucose, mannose, galactose, fructose, sorbose, rhamnose, fucose and ribodeose,
4) Disaccharides such as trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose and melibiose,
5) For example, trisaccharides such as raffinose, gentianose and melezitose,
6) Tetrasaccharides such as stachyose,
Etc.
 アクリルポリオールとしては、例えば、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸-2-ヒドロキシブチル等の活性水素を持つアクリル酸エステル等、グリセリンのアクリル酸モノエステル若しくはメタクリル酸モノエステル、トリメチロールプロパンのアクリル酸モノエステル若しくはメタクリル酸モノエステル等、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシブチル、メタクリル酸-3-ヒドロキシプロピル、メタクリル酸-4-ヒドロキシブチル等の活性水素を持つメタクリル酸エステル等の群から選ばれた単独又は混合物を必須成分とし、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸-2-エチルヘキシル等のアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-n-ヘキシル、メタクリル酸ラウリル等のメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド等の不飽和アミド、及びメタクリル酸グリシジル、スチレン、ビニルトルエン、酢酸ビニル、アクリロニトリル、フマル酸ジブチル、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メタクリロキシプロピルメトキシシラン等の加水分解性シリル基を有するビニルモノマー等のその他の重合性モノマーの群から選ばれた単独又は混合物の存在下、又は非存在下において重合させて得られるアクリルポリオールが挙げられる。 Examples of the acrylic polyol include acrylic acid esters having active hydrogen such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and 2-hydroxybutyl acrylate, acrylic acid monoesters of glycerin, and methacrylic acid. Monoester, acrylic acid monoester or methacrylic acid monoester of trimethylolpropane, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 3-hydroxypropyl methacrylate, Methyl acrylate, ethyl acrylate, isopropyl acrylate, -n-butyl acrylate, which is used alone or as a mixture selected from the group of methacrylic acid esters having active hydrogen such as 4-hydroxybutyl methacrylate, is an essential component. Acrylic acid esters such as 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, methacrylate-n-butyl methacrylate, isobutyl methacrylate, methacrylate-n-hexyl, lauryl methacrylate, etc. Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, unsaturated amides such as acrylamide, N-methylol acrylamide and diacetone acrylamide, and glycidyl methacrylate, styrene, vinyltoluene, vinyl acetate, acrylonitrile, Presence of a single or a mixture selected from the group of other polymerizable monomers such as vinyl monomers having a hydrolyzable silyl group such as dibutyl fumarate, vinyltrimethoxysilane, vinylmethyldimethoxysilane and γ-methacryloxypropylmethoxysilane. An acrylic polyol obtained by polymerizing under or in the absence thereof may be mentioned.
 ポリオレフィンポリオールとしては、例えば、水酸基を2個以上有するポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、水素添加ポリイソプレン等が挙げられる。更に、炭素数50以下のモノアルコール化合物である、イソブタノール、n-ブタノール、2エチルヘキサノール等を併用することができる。 Examples of the polyolefin polyol include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, hydrogenated polyisoprene and the like. Furthermore, a monoalcohol compound having 50 or less carbon atoms, such as isobutanol, n-butanol, and 2ethylhexanol, can be used in combination.
 アミノ基含有化合物としては、例えば、炭素数1~20のモノハイドロカルビルアミン[アルキルアミン(ブチルアミン等)、ベンジルアミン及びアニリン等]、炭素数2~20の脂肪族ポリアミン(エチレンジアミン、ヘキサメチレンジアミン及びジエチレントリアミン等)、炭素数6~20の脂環式ポリアミン(ジアミノシクロヘキサン、ジシクロヘキシルメタンジアミン及びイソホロンジアミン等)、炭素数2~20の芳香族ポリアミン(フェニレンジアミン、トリレンジアミン及びジフェニルメタンジアミン等)、炭素数2~20の複素環式ポリアミン(ピペラジン及びN-アミノエチルピペラジン等)、アルカノールアミン(モノエタノールアミン、ジエタノールアミン及びトリエタノールアミン等)、ジカルボン酸と過剰のポリアミンとの縮合により得られるポリアミドポリアミン、ポリエーテルポリアミン、ヒドラジン(ヒドラジン及びモノアルキルヒドラジン等)、ジヒドラジッド(コハク酸ジヒドラジッド及びテレフタル酸ジヒドラジッド等)、グアニジン(ブチルグアニジン及び1-シアノグアニジン等)及びジシアンジアミド等が挙げられる。 Examples of the amino group-containing compound include monohydrocarbylamines having 1 to 20 carbon atoms [alkylamine (butylamine etc.), benzylamine and aniline etc.], aliphatic polyamines having 2 to 20 carbon atoms (ethylenediamine, hexamethylenediamine and Diethylenetriamine, etc.), alicyclic polyamines having 6 to 20 carbon atoms (diaminocyclohexane, dicyclohexylmethanediamine, isophoronediamine, etc.), aromatic polyamines having 2 to 20 carbon atoms (phenylenediamine, tolylenediamine, diphenylmethanediamine, etc.), carbon Heterocyclic polyamines having a number of 2 to 20 (such as piperazine and N-aminoethylpiperazine), alkanolamines (such as monoethanolamine, diethanolamine and triethanolamine), polyamide polyamines obtained by condensation of dicarboxylic acid and excess polyamine, Examples thereof include polyether polyamine, hydrazine (hydrazine and monoalkylhydrazine, etc.), dihydrazide (succinic acid dihydrazide, terephthalic acid dihydrazide, etc.), guanidine (butylguanidine, 1-cyanoguanidine, etc.), and dicyandiamide.
 チオール基含有化合物としては、例えば、炭素数1~20の1価のチオール化合物(エチルチオール等のアルキルチオール、フェニルチオール及びベンジルチオール)及び多価のチオール化合物(エチレンジチオール及び1,6-ヘキサンジチオール等)等が挙げられる。 Examples of the thiol group-containing compound include monovalent thiol compounds having 1 to 20 carbon atoms (alkylthiols such as ethylthiol, phenylthiol and benzylthiol) and polyvalent thiol compounds (ethylenedithiol and 1,6-hexanedithiol). Etc.) and the like.
 カルボキシル基含有化合物としては、例えば、1価のカルボン酸化合物(酢酸等のアルキルカルボン酸、安息香酸等の芳香族カルボン酸)及び多価のカルボン酸化合物(シュウ酸やマロン酸等のアルキルジカルボン酸及びテレフタル酸等の芳香族ジカルボン酸等)等が挙げられる。 Examples of the carboxyl group-containing compound include monovalent carboxylic acid compounds (alkylcarboxylic acids such as acetic acid, aromatic carboxylic acids such as benzoic acid) and polyvalent carboxylic acid compounds (alkyldicarboxylic acids such as oxalic acid and malonic acid). And aromatic dicarboxylic acids such as terephthalic acid) and the like.
 本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートは、それぞれ、ポリウレタン固形分重量比率が微細セルロース繊維重量100質量%に対して、好ましくは0.5質量%以上100質量%以下、より好ましくは1質量%以上70質量%以下、より好ましくは1質量%以上50質量%以下、さらに好ましくは1質量%以上30質量%以下である。微細セルロース繊維は比表面積が大きい為、上記重量比率が0.5質量%未満では繊維表面を全面ポリウレタンで被覆することが容易ではなく、水系Wet強度又は非水系Wet強度が低くなる傾向がある。一方、100質量%以下であれば、微細セルロース繊維の周りが過剰にポリウレタンで被覆されることを防止し、高い耐熱性や加飾性等のセルロースが本来持つ性質を良好に維持できる。 In the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment, the polyurethane solid content weight ratio is preferably 0.5% by mass or more and 100% by mass with respect to 100% by mass of the fine cellulose fiber. % Or less, more preferably 1% by mass or more and 70% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 1% by mass or more and 30% by mass or less. Since the fine cellulose fibers have a large specific surface area, if the weight ratio is less than 0.5% by mass, it is not easy to cover the entire fiber surface with polyurethane, and the water-based Wet strength or the non-water-based Wet strength tends to be low. On the other hand, when the content is 100% by mass or less, the surroundings of the fine cellulose fibers can be prevented from being excessively coated with polyurethane, and the inherent properties of cellulose such as high heat resistance and decorating property can be favorably maintained.
 本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートにおいては、シート中の微細セルロース繊維とポリウレタンとが化学的に結合されていることが好ましい。化学的な結合とは共有結合、配位結合、イオン結合、水素結合等であって、特に限定されるものではないが、共有結合が好ましい。例えば、微細セルロース繊維表面に多数存在する水酸基との反応によるウレタン結合や微量に存在するカルボキシル基との反応によるアミド尿素結合等が挙げられる。さらに、前記の化学修飾セルロース繊維についても活性水素を有する官能基が繊維表面に存在すれば共有結合を形成可能である。活性水素を有する官能基としては、例えば水酸基、アミノ基、チオール基、カルボキシル基等が挙げられる。化学的な結合が微細セルロース繊維に対し3次元で形成されることでシートのDry強度、水系Wet強度及び非水系Wet強度が向上する。 In the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment, it is preferable that the fine cellulose fibers in the sheet and the polyurethane are chemically bonded. The chemical bond is a covalent bond, a coordinate bond, an ionic bond, a hydrogen bond or the like, and is not particularly limited, but a covalent bond is preferable. For example, a urethane bond due to reaction with a large number of hydroxyl groups present on the surface of fine cellulose fibers, an amidourea bond due to a reaction with a small amount of carboxyl groups, and the like can be mentioned. Furthermore, regarding the above-mentioned chemically modified cellulose fiber, a covalent bond can be formed if a functional group having active hydrogen is present on the fiber surface. Examples of the functional group having active hydrogen include a hydroxyl group, an amino group, a thiol group and a carboxyl group. Since the chemical bond is formed three-dimensionally with respect to the fine cellulose fibers, the Dry strength, the water-based Wet strength and the non-water-based Wet strength of the sheet are improved.
 化学的な結合が形成されていることは、固体NMR、FT-IR、X線光電子分光法等の分光法、又はTOF-SIMS等の質量分析法により直接的に確認できる。また、アセトンやジメチルアセトアミド、ジメチルホルムアミド等の溶剤で多孔質微細セルロース繊維シートを洗浄し、洗浄液中にポリウレタンが溶出していないことで化学的な結合が形成されていると間接的に見做すこともできる。ポリウレタンの溶出による分析方法には、燃焼イオンクロマトグラフ法、又は、溶液NMR、ICP(誘導結合プラズマ)、液体クロマトグラフィ、ガスクロマトグラフィ、質量分析、FT-IR、CHN分析等を選択すればよい。 The formation of chemical bonds can be directly confirmed by solid-state NMR, FT-IR, X-ray photoelectron spectroscopy and other spectroscopic methods, or TOF-SIMS and other mass spectrometric methods. In addition, the porous fine cellulose fiber sheet is washed with a solvent such as acetone, dimethylacetamide, or dimethylformamide, and it is indirectly considered that a chemical bond is formed because polyurethane is not eluted in the washing liquid. You can also As the analysis method by elution of polyurethane, combustion ion chromatography, solution NMR, ICP (inductively coupled plasma), liquid chromatography, gas chromatography, mass spectrometry, FT-IR, CHN analysis, or the like may be selected.
 本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートがポリウレタンを含む場合、当該ポリウレタンの分布状態は特に限定されないが、ポリウレタンが多孔質微細セルロース繊維シート中又は多孔質微細セルロース繊維積層シートの微細セルロース繊維層中に均一に分布していることが好ましい。ポリウレタンが均一に分布することでシートの水系Wet強度及び非水系Wet強度が均一になるため、樹脂含浸による複合シートを連続製造する際に、シート破断の回数を減らすことができる。なお、多孔質微細セルロース繊維シート及び微細セルロース繊維層において、ポリウレタンが均一に分布しているとは、ポリウレタンがシート内で平面方向及び厚み方向の両者で均一に分布していることを意味する。 When the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment contain polyurethane, the distribution state of the polyurethane is not particularly limited, but the polyurethane is in the porous fine cellulose fiber sheet or in the porous fine cellulose. It is preferably uniformly distributed in the fine cellulose fiber layer of the fiber laminated sheet. The uniform distribution of polyurethane makes the water-based Wet strength and the non-water-based Wet strength of the sheet uniform, so that the number of sheet breakages can be reduced during continuous production of resin-impregnated composite sheets. In addition, in the porous fine cellulose fiber sheet and the fine cellulose fiber layer, that the polyurethane is uniformly distributed means that the polyurethane is uniformly distributed in both the plane direction and the thickness direction within the sheet.
 具体的には、シート平面方向でのポリウレタンの分布の均一性は、多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維積層シートの微細セルロース繊維層の任意の点でのポリウレタン量(P1)とセルロース量(C1)の比(P1/C1)が一定であることをいう。ここで、一定とは、20cm×20cmのシートで任意の4か所におけるP1/C1のバラツキが50%以下の変動係数であることをいう。 Specifically, the uniformity of the distribution of polyurethane in the plane direction of the sheet depends on the amount of polyurethane (P1) and the cellulose at any point of the fine cellulose fiber layer of the porous fine cellulose fiber sheet and the porous fine cellulose fiber laminated sheet. It means that the ratio (P1/C1) of the amount (C1) is constant. Here, the term “constant” means that a variation of P1/C1 at arbitrary four points in a 20 cm×20 cm sheet is a variation coefficient of 50% or less.
 シート厚み方向でのポリウレタンの分布の均一性は、多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維積層シートの微細セルロース繊維層を厚み方向に3等分したときの上部、中部及び下部のポリウレタン量とセルロース量との比が同じであることをいう。ここで、同じとは、20cm×20cmのシートで任意の4か所における上部のP1/C1の平均、中部のP1/C1の平均、下部のP1/C1の平均を算出したときに、これら3つの平均値の間でのバラツキが50%以下の変動係数であることをいう。 The uniformity of distribution of polyurethane in the thickness direction of the sheet is determined by dividing the amount of polyurethane in the upper, middle and lower parts of the fine cellulose fiber layer of the porous fine cellulose fiber sheet and the porous fine cellulose fiber laminated sheet into three equal parts in the thickness direction. And the amount of cellulose are the same. Here, the same means that when calculating the average of P1/C1 in the upper part, the average of P1/C1 in the middle part, and the average of P1/C1 in the lower part at any four points on a 20 cm×20 cm sheet, these 3 It means that the variation between the two average values has a coefficient of variation of 50% or less.
 シート平面方向及びシート厚み方向でのポリウレタンの分布において、上記変動係数はそれぞれ50%以下であることが好ましい。変動係数が50%超の場合、同量のポリウレタンを均一に含むシートと比べ、水系Wet強度、及び非水系Wet強度が低い傾向がある。なお、変動係数とは相対的なばらつきを表す値であり、下記式(13)より算出できる。
変動係数(CV)=(標準偏差/相加平均)×100 (13)
In the distribution of polyurethane in the sheet plane direction and the sheet thickness direction, it is preferable that the coefficient of variation is 50% or less. If the coefficient of variation exceeds 50%, the water-based Wet strength and the non-water-based Wet strength tend to be lower than those of a sheet that uniformly contains the same amount of polyurethane. The coefficient of variation is a value representing relative variation and can be calculated by the following equation (13).
Coefficient of variation (CV)=(standard deviation/arithmetic mean)×100 (13)
 ポリウレタン量とセルロース量の比は、例えば国際公開第WO2015/008868号に記載のスパッタエッチングを伴うTOF-SIMSによる3次元組成分析から求められる。 The ratio of the amount of polyurethane to the amount of cellulose can be obtained, for example, from three-dimensional composition analysis by TOF-SIMS with sputter etching described in International Publication No. WO2015/008868.
 本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シート中のポリウレタンは、ブロックポリイソシアネートの架橋物(すなわち、ブロックポリイソシアネートのブロック基が脱離した後架橋反応を経て生じる生成物)であることが、更に好ましい。ブロックポリイソシアネートとは、(1)ポリイソシアネート及びポリイソシアネート誘導体等のポリイソシアネート化合物を基本骨格とする、(2)ブロック剤によってイソシアネート基がブロックされている、(3)常温では活性水素を有する官能基とは反応しない、(4)解離温度以上の熱処理により、ブロック基が脱離し活性なイソシアネート基が再生され、活性水素を有する官能基と反応し結合を形成する。一態様において、多孔質微細セルロース繊維シート又は多孔質微細セルロース繊維複合化シートは、ブロックポリイソシアネートを含み、又はブロックポリイソシアネートの架橋物を含む。 The polyurethane in the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment is a crosslinked product of a block polyisocyanate (that is, a product formed by a crosslinking reaction after the block group of the block polyisocyanate is eliminated). It is more preferable that the Blocked polyisocyanate means (1) a polyisocyanate compound such as polyisocyanate and a polyisocyanate derivative as a basic skeleton, (2) an isocyanate group is blocked by a blocking agent, and (3) a functional group having active hydrogen at room temperature. By the heat treatment at (4) the dissociation temperature or higher, which does not react with the group, the blocking group is eliminated and the active isocyanate group is regenerated, which reacts with the functional group having active hydrogen to form a bond. In one embodiment, the porous fine cellulose fiber sheet or the porous fine cellulose fiber composite sheet contains a blocked polyisocyanate or a crosslinked product of the blocked polyisocyanate.
 ブロック基を有さない通常のイソシアネート化合物は、水と容易に反応するためスラリー(例えば抄紙スラリー)中に添加することはできない。しかしながら、ブロックポリイソシアネートは、スラリー中で水と反応しないためスラリーに添加することが可能である。さらに、ブロック剤の解離温度未満で湿紙を乾燥することで、イソシアネート化合物の湿紙中の水との反応を防ぐことができる。そして、最終的に乾燥したシートをブロック剤の解離温度以上で熱処理することで、ブロックポリイソシアネートは自身の硬化と共に、微細セルロース繊維や多孔質微細セルロース繊維積層シートの基材シート表面に存在する活性水素を有する官能基(水酸基、アミノ基、カルボキシル基、チオール基等)と効果的に共有結合を形成する。 Ordinary isocyanate compounds that do not have a blocking group cannot be added to the slurry (eg papermaking slurry) because they react easily with water. However, the blocked polyisocyanate can be added to the slurry because it does not react with water in the slurry. Further, by drying the wet paper below the dissociation temperature of the blocking agent, the reaction of the isocyanate compound with water in the wet paper can be prevented. Then, by finally heat-treating the dried sheet at a dissociation temperature of the blocking agent or higher, the block polyisocyanate is hardened by itself and the activity present on the surface of the base sheet of the fine cellulose fiber or the porous fine cellulose fiber laminated sheet. Effectively forms a covalent bond with a functional group having hydrogen (hydroxyl group, amino group, carboxyl group, thiol group, etc.).
 ブロック剤は、ポリイソシアネート化合物のイソシアネート基に付加してブロックするものである。このブロック基は常温において安定であるが、熱処理温度(通常約100~約250℃)に加熱した際、ブロック剤が脱離し遊離イソシアネート基を再生しうるものである。 The blocking agent is to block by adding to the isocyanate group of the polyisocyanate compound. This blocking group is stable at room temperature, but when heated to a heat treatment temperature (usually about 100 to about 250° C.), the blocking agent can be eliminated to regenerate a free isocyanate group.
 このような要件を満たすブロック剤としては、以下のものを例示できる。
(1)メタノール、エタノール、2-プロパノール、n-ブタノール、sec-ブタノール、2-エチル-1-ヘキサノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール等のアルコール類、
(2)アルキルフェノール系:炭素原子数4以上のアルキル基を置換基として有するモノ及びジアルキルフェノール類であって、例えばn-プロピルフェノール、イソプロピルフェノール、n-ブチルフェノール、sec-ブチルフェノール、t-ブチルフェノール、n-ヘキシルフェノール、2-エチルヘキシルフェノール、n-オクチルフェノール、n-ノニルフェノール等のモノアルキルフェノール類、ジ-n-プロピルフェノール、ジイソプロピルフェノール、イソプロピルクレゾール、ジ-n-ブチルフェノール、ジ-t-ブチルフェノール、ジ-sec-ブチルフェノール、ジ-n-オクチルフェノール、ジ-2-エチルヘキシルフェノール、ジ-n-ノニルフェノール等のジアルキルフェノール類、
(3)フェノール系:フェノール、クレゾール、エチルフェノール、スチレン化フェノール、ヒドロキシ安息香酸エステル等、
(4)活性メチレン系:マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等、
(5)メルカプタン系:ブチルメルカプタン、ドデシルメルカプタン等、
(6)酸アミド系:アセトアニリド、酢酸アミド、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等、
(7)酸イミド系:コハク酸イミド、マレイン酸イミド等、
(8)イミダゾール系:イミダゾール、2-メチルイミダゾール、3,5-ジメチルピラゾール、3-メチルピラゾール等、
(9)尿素系:尿素、チオ尿素、エチレン尿素等、
(10)オキシム系:ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等、
(11)アミン系:ジフェニルアミン、アニリン、カルバゾール、ジ-n-プロピルアミン、ジイソプロピルアミン、イソプロピルエチルアミン等、
これらのブロック剤はそれぞれ単独で又は2種以上組み合わせて使用することができる。
Examples of the blocking agent satisfying such requirements include the following.
(1) Alcohols such as methanol, ethanol, 2-propanol, n-butanol, sec-butanol, 2-ethyl-1-hexanol, 2-methoxyethanol, 2-ethoxyethanol and 2-butoxyethanol,
(2) Alkylphenol type: Mono- and dialkylphenols having an alkyl group having 4 or more carbon atoms as a substituent, such as n-propylphenol, isopropylphenol, n-butylphenol, sec-butylphenol, t-butylphenol, n -Monoalkylphenols such as hexylphenol, 2-ethylhexylphenol, n-octylphenol, n-nonylphenol, di-n-propylphenol, diisopropylphenol, isopropylcresol, di-n-butylphenol, di-t-butylphenol, di-sec -Dialkylphenols such as butylphenol, di-n-octylphenol, di-2-ethylhexylphenol, di-n-nonylphenol,
(3) Phenolic type: phenol, cresol, ethylphenol, styrenated phenol, hydroxybenzoic acid ester, etc.
(4) Active methylene type: dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, etc.
(5) Mercaptan type: butyl mercaptan, dodecyl mercaptan, etc.
(6) Acid amide type: acetanilide, acetic amide, ε-caprolactam, δ-valerolactam, γ-butyrolactam, etc.
(7) Acid imide type: succinimide, maleic imide, etc.,
(8) Imidazole type: imidazole, 2-methylimidazole, 3,5-dimethylpyrazole, 3-methylpyrazole, etc.
(9) Urea type: urea, thiourea, ethylene urea, etc.
(10) Oxime type: formaldoxime, acetaldoxime, acetoxime, methylethylketoxime, cyclohexanoneoxime, etc.
(11) Amine type: diphenylamine, aniline, carbazole, di-n-propylamine, diisopropylamine, isopropylethylamine, etc.
These blocking agents can be used alone or in combination of two or more.
 本実施形態のブロックポリイソシアネートは微細セルロース繊維スラリー中に均一に混合して使用するため、それ自身が水分散体として安定した形態であり、かつ、微細セルロース繊維等との混合時も安定していることが好ましい。ブロックポリイソシアネート水分散体は、ブロックポリイソシアネートに親水性化合物を直接結合させ乳化させた化合物(自己乳化型)であっても、界面活性剤等で強制乳化させた化合物(強制乳化型)であってもよい。それぞれの方法で得られたエマルジョンは、どちらも表面にアニオン性、ノニオン性、カチオン性のいずれかの親水基が露出している。 Since the block polyisocyanate of the present embodiment is used by uniformly mixing it in the fine cellulose fiber slurry, the block polyisocyanate itself is in a stable form as an aqueous dispersion, and is stable even when mixed with fine cellulose fibers or the like. Is preferred. The block polyisocyanate aqueous dispersion is a compound in which a hydrophilic compound is directly bonded to a block polyisocyanate and emulsified (self-emulsifying type), but is a compound in which a surfactant or the like is forcibly emulsified (forced emulsifying type). May be. Both of the emulsions obtained by the respective methods have anionic, nonionic, or cationic hydrophilic groups exposed on the surface.
 自己乳化型ブロックポリイソシアネートはブロックポリイソシアネート骨格にアニオン性基又はノニオン性基又はカチオン性基を有する活性水素基含有化合物を結合させたものである。 The self-emulsifying block polyisocyanate is a block polyisocyanate skeleton to which an active hydrogen group-containing compound having an anionic group, a nonionic group or a cationic group is bonded.
 アニオン性基を有する活性水素基含有化合物としては、特に制限されるものではないが、例えば、1つのアニオン性基を有し、かつ、2つ以上の活性水素基を有する化合物が挙げられる。アニオン性基としては、カルボキシル基、スルホン酸基、リン酸基等が挙げられる。より具体的には、カルボキシル基を有する活性水素基含有化合物として、例えば、2,2-ジメチロール酢酸、2,2-ジメチロール乳酸等のジヒドロキシルカルボン酸、例えば、1-カルボキシ-1,5-ペンチレンジアミン、ジヒドロキシ安息香酸等のジアミノカルボン酸、ポリオキシプロピレントリオールと無水マレイン酸及び/又は無水フタル酸とのハーフエステル化合物等を挙げることができる。 The active hydrogen group-containing compound having an anionic group is not particularly limited, and examples thereof include a compound having one anionic group and two or more active hydrogen groups. Examples of the anionic group include a carboxyl group, a sulfonic acid group and a phosphoric acid group. More specifically, examples of the active hydrogen group-containing compound having a carboxyl group include dihydroxylcarboxylic acids such as 2,2-dimethylolacetic acid and 2,2-dimethylollactic acid, for example, 1-carboxy-1,5-pentyl. Examples thereof include diaminocarboxylic acids such as diamine and dihydroxybenzoic acid, and half ester compounds of polyoxypropylene triol with maleic anhydride and/or phthalic anhydride.
 また、スルホン酸基を有する活性水素基含有化合物として、例えば、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸、1,3-フェニレンジアミン-4,6-ジスルホン酸等が挙げられる。
 また、リン酸基を有する活性水素基含有化合物として、例えば、2,3-ジヒドロキシプロピルフェニルホスフェート等を挙げることができる。
 また、ベタイン構造含有基を有する活性水素基含有化合物として、例えば、N-メチルジエタノールアミン等の3級アミンと1,3-プロパンスルトンとの反応によって得られるスルホベタイン基含有化合物等を挙げることができる。
 また、これらアニオン性基を有する活性水素基含有化合物は、エチレンオキシド、プロピレンオキシド等のアルキレンオキシドを付加させることによってアルキレンオキシド変性体としてもよい。
 また、これらアニオン性基を有する活性水素基含有化合物は、単独で又は2種以上を組合せて使用することができる。
Examples of the active hydrogen group-containing compound having a sulfonic acid group include N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and 1,3-phenylenediamine-4,6-disulfonic acid. Can be mentioned.
Examples of the active hydrogen group-containing compound having a phosphoric acid group include 2,3-dihydroxypropylphenyl phosphate.
Examples of the active hydrogen group-containing compound having a betaine structure-containing group include a sulfobetaine group-containing compound obtained by reacting a tertiary amine such as N-methyldiethanolamine with 1,3-propanesultone. ..
Further, these active hydrogen group-containing compounds having an anionic group may be modified into alkylene oxides by adding alkylene oxides such as ethylene oxide and propylene oxide.
In addition, these active hydrogen group-containing compounds having an anionic group can be used alone or in combination of two or more kinds.
 ノニオン性基を有する活性水素基含有化合物としては、特に制限されるものではないが、例えば、ノニオン性基として通常のアルコキシ基を含有しているポリアルキレンエーテルポリオール等が使用される。通常のノニオン性基含有ポリエステルポリオール及びポリカーボネートポリオール等も使用される。
 高分子ポリオールとしては、数平均分子量500~10,000、特に500~5,000のものが好ましく使用される。
The active hydrogen group-containing compound having a nonionic group is not particularly limited, but, for example, polyalkylene ether polyol having an ordinary alkoxy group as a nonionic group or the like is used. Ordinary nonionic group-containing polyester polyols and polycarbonate polyols are also used.
As the polymer polyol, those having a number average molecular weight of 500 to 10,000, particularly 500 to 5,000 are preferably used.
 カチオン性基を有する活性水素基含有化合物としては、特に制限されるものではないが、ヒドロキシル基又は1級アミノ基のような活性水素含有基と3級アミノ基を有する脂肪族化合物、例えば、N,N-ジメチルエタノールアミン、N-メチルジエタノールアミン、N,N-ジメチルエチレンジアミン等が挙げられる。また、3級アミンを有するN,N,N-トリメチロールアミン、N,N,N-トリエタノールアミンを使用することもできる。なかでも、3級アミノ基を有し、かつイソシアネート基と反応性のある活性水素を2個以上含有するポリヒドロキシ化合物が好ましい。
 また、これらカチオン性基を有する活性水素基含有化合物は、エチレンオキシド、プロピレンオキシド等のアルキレンオキシドを付加させることによってアルキレンオキシド変性体としてもよい。また、これらカチオン性基を有する活性水素基含有化合物は、単独で又は2種以上を組合せて使用することができる。
The active hydrogen group-containing compound having a cationic group is not particularly limited, but an aliphatic compound having an active hydrogen containing group such as a hydroxyl group or a primary amino group and a tertiary amino group, for example, N , N-dimethylethanolamine, N-methyldiethanolamine, N,N-dimethylethylenediamine and the like. It is also possible to use N,N,N-trimethylolamine and N,N,N-triethanolamine having a tertiary amine. Among them, a polyhydroxy compound having a tertiary amino group and containing two or more active hydrogens reactive with an isocyanate group is preferable.
The active hydrogen group-containing compound having a cationic group may be modified into an alkylene oxide by adding an alkylene oxide such as ethylene oxide or propylene oxide. Further, these active hydrogen group-containing compounds having a cationic group can be used alone or in combination of two or more kinds.
 カチオン性基はアニオン性基を有する化合物で中和することで、塩の形で水中に分散せやすくすることもできる。アニオン性基とは、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。カルボキシル基を有する化合物としては、例えば、蟻酸、酢酸、プロピオン酸、酪酸、乳酸等が、スルホン基を有する化合物としては、例えば、エタンスルホン酸等が、隣酸基を有する化合物としては、例えば隣酸、酸性隣酸エステル等が挙げられる。カルボキシル基を有する化合物が好ましく、更に好ましくは、酢酸、プロピオン酸、酪酸である。中和する場合のブロックポリイソシアネートに導入されたカチオン性基:アニオン性基の当量比率は1:0.5~1:3であり、好ましくは1:1~1:1.5である。また、導入された三級アミノ基は、硫酸ジメチル、硫酸ジエチル等で四級化することもできる。 By neutralizing the cationic group with a compound having an anionic group, it can be easily dispersed in water in the form of a salt. Examples of the anionic group include a carboxyl group, a sulfonic acid group, a phosphoric acid group and the like. As the compound having a carboxyl group, for example, formic acid, acetic acid, propionic acid, butyric acid, lactic acid, etc., as the compound having a sulfonic group, for example, ethanesulfonic acid, etc., as the compound having a phosphoric acid group, for example, Examples thereof include acids and acidic phosphoric acid esters. A compound having a carboxyl group is preferable, and acetic acid, propionic acid, and butyric acid are more preferable. When neutralized, the equivalent ratio of cationic group:anionic group introduced into the blocked polyisocyanate is 1:0.5 to 1:3, preferably 1:1 to 1:1.5. Further, the introduced tertiary amino group can be quaternized with dimethyl sulfate, diethyl sulfate or the like.
 本実施形態でブロックポリイソシアネートと上記親水基導入を目的とした活性水素基含有化合物とを反応させる際の比率は、イソシアネート基/活性水素基の当量比が好ましくは1.05~1000、より好ましくは2~200、さらに好ましくは4~100の範囲である。当量比が1.05以上である場合、親水性ポリイソシアネート中のイソシアネート基含有率が低くなり過ぎないため、ブロックポリイソシアネートの硬化速度が良好であるとともに硬化物の脆弱化が起きにくく、加えて微細セルロース繊維との架橋点が少なくなり過ぎず、多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維積層シートの水系Wet強度及び非水系Wet強度が良好である。当量比が1000以下である場合、界面張力を下げる効果が大きく、親水性が良好に発現される。なお、本実施形態で1分子中にイソシアネート基を2つ以上有するポリイソシアネート化合物と活性水素基含有化合物とを反応させる方法としては、両者を混合させて、通常のウレタン化反応を行う方法を例示できる。 In the present embodiment, the blocked polyisocyanate is reacted with the active hydrogen group-containing compound for the purpose of introducing the hydrophilic group, the equivalent ratio of isocyanate group/active hydrogen group is preferably 1.05 to 1000, more preferably Is in the range of 2 to 200, more preferably 4 to 100. When the equivalent ratio is 1.05 or more, the isocyanate group content in the hydrophilic polyisocyanate does not become too low, so that the curing speed of the blocked polyisocyanate is good and the brittleness of the cured product does not easily occur. The cross-linking points with the fine cellulose fibers do not become too small, and the water-based Wet strength and the non-water-based Wet strength of the porous fine cellulose fiber sheet and the porous fine cellulose fiber laminated sheet are good. When the equivalent ratio is 1000 or less, the effect of lowering the interfacial tension is great and hydrophilicity is well expressed. In addition, as a method of reacting the polyisocyanate compound having two or more isocyanate groups in one molecule with the active hydrogen group-containing compound in the present embodiment, a method of mixing both and performing a normal urethanization reaction is exemplified. it can.
 強制乳化型ブロックポリイソシアネートは、周知一般のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、高分子系界面活性剤、反応性界面活性剤等によりブロックポリイソシアネートが乳化分散された化合物である。中でもアニオン性界面活性剤、ノニオン性界面活性剤及びカチオン性界面活性剤はコストも低く、良好な乳化が得られるので好ましい。 The forced emulsification type block polyisocyanate is a well-known general anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, polymer surfactant, reactive surfactant, etc. A compound in which an isocyanate is emulsified and dispersed. Of these, anionic surfactants, nonionic surfactants, and cationic surfactants are preferable because they are low in cost and good emulsification can be obtained.
 アニオン性界面活性剤としては、例えば、アルキルカルボン酸塩系化合物、アルキルサルフェート系化合物、アルキルリン酸塩等が挙げられる。
 ノニオン性界面活性剤としては、炭素数1~18のアルコールのエチレンオキシド及び/又はプロピレンオキシド付加物、アルキルフェノールのエチレンオキシド及び/又はプロピレンオキシド付加物、アルキレングリコール及び/又はアルキレンジアミンのエチレンオキシド及び/又はプロピレンオキシド付加物等が挙げられる。
Examples of the anionic surfactant include an alkylcarboxylic acid salt-based compound, an alkyl sulfate-based compound, and an alkyl phosphate.
Examples of the nonionic surfactant include ethylene oxide and/or propylene oxide adducts of alcohols having 1 to 18 carbon atoms, ethylene oxide and/or propylene oxide adducts of alkylphenols, ethylene oxide and/or propylene oxide of alkylene glycols and/or alkylenediamines. Examples include adducts.
 カチオン性界面活性剤としては、1級~3級アミン、ピリジニウム塩、アルキルピリジニウム塩、ハロゲン化アルキル4級アンモニウム塩等の4級アンモニウム塩等が挙げられる。 Examples of the cationic surfactant include primary to tertiary amines, pyridinium salts, alkylpyridinium salts, and quaternary ammonium salts such as alkyl halide quaternary ammonium salts.
 これらの乳化剤を使用する場合の使用量は、特に制限を受けず任意の量を使用することができるが、ブロックポリイソシアネートの質量を1としたときの質量比で、0.01以上である場合、良好な分散性が得られ、0.3以下である場合、耐水性、機能化剤固定性等の物性を良好に維持できるため、0.01~0.3が好ましく、0.05~0.2がより好ましい。 The amount of these emulsifiers to be used is not particularly limited, and any amount can be used, but when the mass ratio of the blocked polyisocyanate is 1, it is 0.01 or more. When it is 0.3 or less, good dispersibility can be obtained, and physical properties such as water resistance and functional agent fixing property can be favorably maintained, so 0.01 to 0.3 is preferable, and 0.05 to 0. .2 is more preferable.
 なお、上記ブロックポリイソシアネート水分散体は、自己乳化型及び強制乳化型ともに水以外の溶剤を好ましくは20質量%まで含むことができる。この場合の溶剤としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコール、ジエチレングリコール、トリエチレングリコール等を挙げることができる。これら溶剤は、1種を単独で用いても2種以上を併用してもよい。水への分散性の観点から、溶剤としては、23℃での水への溶解度が5質量%以上のものが好ましく、具体的には、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテルが好ましい。 The above-mentioned block polyisocyanate aqueous dispersion may contain a solvent other than water, preferably up to 20% by mass, in both the self-emulsifying type and the forced emulsifying type. The solvent in this case is not particularly limited, but examples thereof include ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol, diethylene glycol, and triethylene glycol. These solvents may be used alone or in combination of two or more. From the viewpoint of dispersibility in water, the solvent preferably has a solubility in water at 23° C. of 5% by mass or more, and specifically, dipropylene glycol dimethyl ether and dipropylene glycol monomethyl ether are preferable.
 上記、ブロックポリイソシアネート水分散体の平均分散粒子径は1~1000nmであることが好ましく、より好ましくは10~500nm、さらに好ましくは10~200nmである。 The average dispersed particle size of the above-mentioned block polyisocyanate aqueous dispersion is preferably 1 to 1000 nm, more preferably 10 to 500 nm, and further preferably 10 to 200 nm.
 上記ブロックポリイソシアネート水分散体の表面はアニオン性、ノニオン性、カチオン性のいずれであってもよいが、より好ましくはカチオン性である。その理由は、スラリーを製造する段階で、希薄な微細セルロース繊維スラリー(固形分濃度0.01~0.5質量%)中でブロックポリイソシアネート水分散体(固形分濃度0.0001~0.5質量%)を効果的に微細セルロース繊維に吸着させるうえで、静電相互作用を利用することが有効であるからである。一般的なセルロース繊維表面はアニオン性(蒸留水中ゼータ電位-30~-20mV)であることが知られている(非特許文献1 J.Brandrup(editor) and E.H.Immergut(editor)“Polymer Handbook 3rd edition”V-153~V-155参照)。したがって、ブロックポリイソシアネート水分散体表面はカチオン性であることがより好ましい。ただし、ノニオン性であってもエマルジョンの親水基のポリマー鎖長や剛直性等によっては十分に微細セルロース繊維に吸着させることは可能である。さらに、アニオン性のような静電反発により吸着がより困難な場合であっても、一般的に周知なカチオン性吸着助剤を用いることで、微細セルロース繊維上に吸着させることができる。カチオン性吸着助剤として、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩基、ピリジニウム、イミダゾリウム、及び四級化ピロリドンを有するポリマーが挙げられ、具体的にはカチオン化澱粉、カチオン性ポリアクリルアミド、ポリビニルアミン、ポリジアリルジメチルアンモニウムクロリド、ポリアミドアミンエピクロロヒドリン、ポリエチレンイミン、キトサン等の水溶性のカチオン性ポリマー等が挙げられる。 The surface of the above-mentioned block polyisocyanate aqueous dispersion may be any of anionic, nonionic and cationic, but is more preferably cationic. The reason is that at the stage of producing the slurry, a block polyisocyanate aqueous dispersion (solid content concentration of 0.0001 to 0.5%) is added to a dilute fine cellulose fiber slurry (solid content concentration of 0.01 to 0.5% by mass). This is because it is effective to utilize electrostatic interaction to effectively adsorb (% by mass) to the fine cellulose fibers. It is known that the surface of a general cellulose fiber is anionic (zeta potential of -30 to -20 mV in distilled water) (Non-patent document 1 J. Brandrup (editor) and E.H. Imager (editor) "Polymer". See Handbook 3rd edition “V-153 to V-155). Therefore, the surface of the blocked polyisocyanate aqueous dispersion is more preferably cationic. However, even if it is nonionic, it can be sufficiently adsorbed on the fine cellulose fibers depending on the polymer chain length of the hydrophilic group of the emulsion and the rigidity. Further, even when adsorption is more difficult due to electrostatic repulsion such as anionic property, it is possible to adsorb onto the fine cellulose fibers by using a generally known cationic adsorption aid. Examples of the cationic adsorption aid include polymers having a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium salt group, pyridinium, imidazolium, and a quaternized pyrrolidone. Examples thereof include water-soluble cationic polymers such as cationized starch, cationic polyacrylamide, polyvinylamine, polydiallyldimethylammonium chloride, polyamidoamine epichlorohydrin, polyethyleneimine and chitosan.
 本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートの微細セルロース繊維層がポリウレタンを含む場合、水系Wet強度及び非水系Wet強度が強化され、水中及び有機溶剤中でのシートの使用がより容易になる。さらに、本実施形態において多孔質化剤とポリウレタンとを併用する場合、湿潤乾燥操作を行っても多孔質が良好に保持される。ポリウレタン単独使用では、水系Wet強度及び非水系Wet強度は強化されるが、湿潤乾燥操作での多孔質の保持が困難である傾向があるが、多孔質化剤をさらに用いることでこれらの両立が容易になる。 When the fine cellulose fiber layer of the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment contains polyurethane, the water-based Wet strength and the non-water-based Wet strength are enhanced, and the sheet in water and in an organic solvent is used. Is easier to use. Further, when the porosifying agent and polyurethane are used in combination in the present embodiment, the porosity is maintained well even if the wet-drying operation is performed. Although the use of polyurethane alone enhances the water-based Wet strength and the non-water-based Wet strength, it tends to be difficult to maintain the porosity in the wet-drying operation. It will be easier.
 本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートの微細セルロース繊維層は、それぞれ、無機粒子、高分子粒子、無機繊維及び高分子繊維からなる群から選択される1種以上のフィラー材を含んでも良い。 The fine cellulose fiber layers of the porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment are each one selected from the group consisting of inorganic particles, polymer particles, inorganic fibers and polymer fibers. You may include the said filler material.
 無機粒子としては特に限定されないが、例えば金、銀、銅、鉄、亜鉛、錫、ニッケル、チタンや各種合金(例えばステンレス)等の化学的に安定な金属粒子、アルミナ、酸化チタン、酸化亜鉛、酸化鉄、酸化錫、酸化銅、酸化銀、酸化ジルコニウム等の金属酸化物粒子、チタン酸バリウム等の複合金属酸化物粒子、窒化アルミニウム等の金属窒化物粒子、フュームドシリカ、コロイダルシリカ、ゼオライト、マイカ、スメクタイト等のシリカ系粒子、活性炭やグラファイト、カーボンナノチューブ等の炭素系粒子を挙げることができる。 The inorganic particles are not particularly limited, but for example, chemically stable metal particles such as gold, silver, copper, iron, zinc, tin, nickel, titanium and various alloys (for example, stainless steel), alumina, titanium oxide, zinc oxide, Iron oxide, tin oxide, copper oxide, silver oxide, metal oxide particles such as zirconium oxide, composite metal oxide particles such as barium titanate, metal nitride particles such as aluminum nitride, fumed silica, colloidal silica, zeolite, Examples thereof include silica-based particles such as mica and smectite, and carbon-based particles such as activated carbon, graphite and carbon nanotubes.
 高分子粒子としては特に限定されないが、例えばスチレン-ブタジエン系(SB)ラテックス、アクリル系ラテックス、各種ゴム系ラテックス、ポリ塩化ビニリデン系ラテックス、ウレタン系ラテックスをはじめとする各種ラテックスの他に、ポリオレフィン系粒子、ポリメチルメタクリレート系粒子、ポリアミド系粒子、ポリエステル系粒子、全芳香族ポリアミド系粒子、ポリイミド系粒子、ポリカーボネート系粒子、結晶セルロースのようなセルロース系粒子、ポリアセタール系粒子等を挙げることができる。 The polymer particles are not particularly limited. For example, in addition to various latexes such as styrene-butadiene (SB) latex, acrylic latex, various rubber latex, polyvinylidene chloride latex, urethane latex, and polyolefin latex. Examples thereof include particles, polymethylmethacrylate-based particles, polyamide-based particles, polyester-based particles, wholly aromatic polyamide-based particles, polyimide-based particles, polycarbonate-based particles, cellulose-based particles such as crystalline cellulose, and polyacetal-based particles.
 無機繊維としては特に限定されないが、例えば後述する分散媒体に溶解しない繊維であって、ガラス繊維、金属繊維や高分子繊維を焼成、炭化させて得られるカーボンナノチューブなどの炭素系繊維を挙げることができる。 The inorganic fiber is not particularly limited, and examples thereof include fibers that are insoluble in the dispersion medium described below, and include carbon fibers such as carbon nanotubes obtained by firing and carbonizing glass fibers, metal fibers or polymer fibers. it can.
 高分子繊維としては特に限定されないが、例えば各種合繊(ポリエステル、ナイロン、ポリアクリロニトリル、セルロースアセテート、ポリウレタン、ポリエチレン、ポリプロピレン、ポリケトン、全芳香族ポリアミド、ポリイミド等)、天然繊維(綿、絹、羊毛等)、或いは再生セルロース繊維を叩解、或いは高圧ホモジナイザー等による微細化処理により高度にフィブリル化させた微細繊維、各種ポリマーを原料としてエレクトロスピニング法によって得られる微細繊維、各種ポリマーを原料としてメルトブロウン法によって得られる微細繊維等を挙げることができるが、これらに限定されない。これらの中でも、特に全芳香族ポリアミドであるアラミド繊維を高圧ホモジナイザーにより微細化した微小繊維状アラミド、ティアラ(登録商標)(ダイセル化学工業(株)製)は、平均繊維径0.2~0.3μm、平均繊維長500~600μmとされ、アラミド繊維の高耐熱性、高い化学的安定性により繊維状フィラーとして好適に使用することができる。 The polymer fiber is not particularly limited, but various synthetic fibers (polyester, nylon, polyacrylonitrile, cellulose acetate, polyurethane, polyethylene, polypropylene, polyketone, wholly aromatic polyamide, polyimide, etc.), natural fibers (cotton, silk, wool, etc.) ) Or beaten regenerated cellulose fibers or finely fibrillated by high-pressure homogenizer etc., fine fibers obtained by electrospinning method using various polymers as raw materials, meltblown method using various polymers as raw materials The obtained fine fibers and the like can be mentioned, but not limited thereto. Among these, Tiara (registered trademark) (manufactured by Daicel Chemical Industries, Ltd.), a fine fibrous aramid obtained by refining aramid fibers which are wholly aromatic polyamide by a high-pressure homogenizer, has an average fiber diameter of 0.2 to 0. It has an average fiber length of 3 μm and an average fiber length of 500 to 600 μm, and can be suitably used as a fibrous filler due to the high heat resistance and high chemical stability of aramid fibers.
 本実施形態の多孔質微細セルロース繊維シート中に含まれるフィラー材はシート重量の1質量%以上50質量%以下が好ましく、1質量%以上30質量%以下がより好ましく、1質量%以上10質量%以下がさらに好ましい。 The filler material contained in the porous fine cellulose fiber sheet of the present embodiment is preferably 1% by mass or more and 50% by mass or less of the sheet weight, more preferably 1% by mass or more and 30% by mass or less, and 1% by mass or more and 10% by mass. The following are more preferable.
 本実施形態の多孔質微細セルロース繊維複合化シート中に含まれるフィラー材はシート重量の0.1質量%以上50質量%以下が好ましく、0.1質量%以上30質量%以下がより好ましく、0.1質量%以上10質量%以下がさらに好ましい。 The filler material contained in the porous fine cellulose fiber composite sheet of the present embodiment is preferably 0.1% by mass or more and 50% by mass or less of the sheet weight, more preferably 0.1% by mass or more and 30% by mass or less, and More preferably, it is 1% by mass or more and 10% by mass or less.
 本実施形態の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維複合化シートは、填料、紙力増強剤、サイズ剤、歩留り向上剤、濾水性向上剤、硫酸バンド、湿潤紙力増強剤、着色染料、着色顔料、蛍光増白剤、蛍光消色剤、ピッチコントロール剤など公知の抄紙用材料を、本実施形態の目的とする効果を損なわない範囲で適宜使用することが可能である。 The porous fine cellulose fiber sheet and the porous fine cellulose fiber composite sheet of the present embodiment are a filler, a paper strength enhancer, a sizing agent, a retention improver, a drainage improver, a sulfuric acid band, a wet paper strength enhancer, and a coloring. Known papermaking materials such as dyes, color pigments, fluorescent whitening agents, fluorescent decoloring agents, and pitch control agents can be appropriately used within a range that does not impair the intended effects of the present embodiment.
 本実施形態の多孔質微細セルロース繊維シートの製造方法としては、抄紙法及び塗工法が好ましい。抄紙法は、典型的には、(1)セルロース繊維の微細化による微細セルロース繊維製造工程、(2)該微細セルロース繊維を含む抄紙スラリーの調製工程、(3)該抄紙スラリーをろ過(すなわち脱水)して湿紙を形成する抄紙工程、及び(4)該湿紙を乾燥し乾燥シートを得る乾燥工程を含む。また、塗工法は、典型的には、上記(1)及び(2)と同様の工程により塗工スラリーを調製する工程、(3)該塗工スラリーを支持体に塗工して塗工シートを形成する塗工工程、及び(4)該塗工シートを乾燥させる乾燥工程を含む。この場合、基材シートを上記支持体として用いてよい。以下に本実施形態の微細セルロース繊維を含む抄紙スラリー又は塗工スラリーの調製方法、及び抄紙法による多孔質微細セルロース繊維シートの形成方法について説明する。 As a method for producing the porous fine cellulose fiber sheet of this embodiment, a papermaking method and a coating method are preferable. The papermaking method typically includes (1) a step of producing fine cellulose fibers by refining cellulose fibers, (2) a step of preparing a papermaking slurry containing the fine cellulose fibers, and (3) filtering the papermaking slurry (that is, dehydration). ) To form a wet paper web, and (4) a drying step of drying the wet paper web to obtain a dry sheet. In addition, the coating method is typically a step of preparing a coating slurry by the same steps as the above (1) and (2), and (3) coating the coating slurry on a support to form a coating sheet. And (4) a drying step of drying the coated sheet. In this case, a base sheet may be used as the support. Hereinafter, a method for preparing a papermaking slurry or coating slurry containing fine cellulose fibers of the present embodiment and a method for forming a porous fine cellulose fiber sheet by a papermaking method will be described.
 本実施形態は、本開示の多孔質微細セルロース繊維シートの製造方法であって、多孔質化剤と、微細セルロース繊維と、水とを含むスラリーを調製する調製工程、該スラリーを抄紙法により脱水することによって湿紙を形成する製膜工程、及び、該湿紙を少なくとも乾燥させることによって多孔質微細セルロース繊維シートを得る多孔質微細セルロース繊維シート形成工程、を含む、方法を提供する。
 本実施形態はまた、多孔質微細セルロース繊維積層シートの製造方法であって、多孔質化剤と、微細セルロース繊維と、水とを含むスラリーを調製する調製工程、該スラリーを、基材シート上で抄紙法により脱水することによって多層湿紙を形成する製膜工程、及び、該多層湿紙を少なくとも乾燥させることによって多孔質微細セルロース繊維積層シートを得る多孔質微細セルロース繊維積層シート形成工程、を含む、方法を提供する。
The present embodiment is a method for producing a porous fine cellulose fiber sheet of the present disclosure, in which a porosifying agent, a fine cellulose fiber, and a preparing step of preparing a slurry containing water, the slurry is dehydrated by a papermaking method. A film forming step of forming a wet paper web by doing the above, and a porous fine cellulose fiber sheet forming step of obtaining a porous fine cellulose fiber sheet by at least drying the wet paper web are provided.
The present embodiment is also a method for producing a porous fine cellulose fiber laminated sheet, in which a preparing step of preparing a slurry containing a porosifying agent, fine cellulose fibers, and water, the slurry on a base sheet A film forming step of forming a multilayer wet paper web by dehydration by a paper making method, and a porous fine cellulose fiber laminate sheet forming step of obtaining a porous fine cellulose fiber laminate sheet by drying at least the multilayer wet paper web. Including, providing a method.
 本実施形態の多孔質微細セルロース繊維シートを構成する微細セルロース繊維としては、1)バクテリア類の産生する微細セルロース繊維、2)エレクトロスピニング法により得られた再生セルロース又はセルロース誘導体の微細セルロース繊維、3)セルロースミクロフィブリルの集束体である天然セルロース繊維又は再生セルロース繊維又はセルロース誘導体繊維を微細化処理することで得られるミクロフィブリル化セルロース、等を使用できる。コストや品質管理の面からミクロフィブリル化セルロースが好ましい。 As the fine cellulose fibers constituting the porous fine cellulose fiber sheet of the present embodiment, 1) fine cellulose fibers produced by bacteria, 2) fine cellulose fibers of regenerated cellulose or cellulose derivative obtained by electrospinning method, 3 ) Microfibrillated cellulose obtained by subjecting natural cellulose fibers, regenerated cellulose fibers or cellulose derivative fibers, which are bundles of cellulose microfibrils, to micronization treatment can be used. From the viewpoint of cost and quality control, microfibrillated cellulose is preferable.
 ミクロフィブリル化セルロースの原料として、動物由来のセルロース繊維(ホヤセルロース等)、高等植物由来のセルロース繊維、再生セルロース繊維、化学的に合成されたセルロース誘導体繊維が挙げられる。 As raw materials for microfibrillated cellulose, animal-derived cellulose fibers (such as ascidian cellulose), higher plant-derived cellulose fibers, regenerated cellulose fibers, and chemically synthesized cellulose derivative fibers can be mentioned.
 高等植物由来のセルロース繊維として、例えば、木材種(広葉樹又は針葉樹)から得られる木材パルプ、非木材種(竹、麻系繊維、バガス、ケナフ、リンター等)から得られる非木材パルプ、及びこれらの精製パルプ(精製リンター等)等が使用できる。非木材パルプとしては、コットンリンターパルプを含むコットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、ワラ由来パルプ等を使用できる。コットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、及びワラ由来パルプは各々、コットンリント、コットンリンター、麻系のアバカ(例えば、エクアドル産又はフィリピン産のもの)、ザイサル、バガス、ケナフ、竹、ワラ等が挙げられる。これらの原料は蒸解処理による脱リグニン等の精製工程や漂白工程を経て、精製パルプとして提供されるが、目的に応じてパルプ中の残存リグニン量及びヘミセルロース量は変えることができる。 Cellulose fibers derived from higher plants include, for example, wood pulp obtained from wood species (hardwood or conifer), non-wood pulp obtained from non-wood species (bamboo, hemp fiber, bagasse, kenaf, linter, etc.), and these Refined pulp (refined linter, etc.) can be used. As non-wood pulp, cotton-derived pulp including cotton linter pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, straw-derived pulp and the like can be used. Cotton-derived pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, and straw-derived pulp are cotton lint, cotton linter, hemp-based abaca (for example, from Ecuador or the Philippines), and Zaisal. , Bagasse, kenaf, bamboo, straw and the like. These raw materials are provided as refined pulp through a refining process such as delignification by a digestion process and a bleaching process, and the residual lignin amount and hemicellulose amount in the pulp can be changed depending on the purpose.
 再生セルロース繊維として、例えば、レーヨン、キュプラ、リヨセル、テンセル等が挙げられる。 Examples of regenerated cellulose fibers include rayon, cupra, lyocell, tencel and the like.
 セルロース誘導体繊維として、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等の有機酸エステル;硝酸セルロース、硫酸セルロース、リン酸セルロース等の無機酸エステル;硝酸酢酸セルロース等の混酸エステル;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のヒドロキシアルキルセルロース;カルボキシメチルセルロース、カルボキシエチルセルロース等のカルボキシアルキルセルロース;メチルセルロース、エチルセルロース等のアルキルセルロースが挙げられる。
 これらの繊維は単独で又は2種以上組み合わせて使用できる。
Examples of the cellulose derivative fiber include organic acid esters such as cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate; inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate; Mixed acid esters such as cellulose nitrate acetate; hydroxyalkyl cellulose such as hydroxyethyl cellulose and hydroxypropyl cellulose; carboxyalkyl cellulose such as carboxymethyl cellulose and carboxyethyl cellulose; alkyl cellulose such as methyl cellulose and ethyl cellulose.
These fibers can be used alone or in combination of two or more.
 本実施形態の微細セルロース繊維は、セルロース繊維原料前処理工程、叩解処理工程、必要に応じて微細化工程を経ることが好ましい。前処理工程においては、100~150℃の温度での水中含浸下でのオートクレーブ処理、化学処理、酵素処理等、又はこれらの組み合わせによって、セルロース繊維原料を微細化し易い状態にしておくことを目的とする。 It is preferable that the fine cellulose fiber of the present embodiment is subjected to a cellulose fiber raw material pretreatment step, a beating step, and a finer step if necessary. In the pretreatment step, the purpose is to keep the cellulose fiber raw material in a state in which it can be easily miniaturized by autoclave treatment under water impregnation at 100 to 150° C., chemical treatment, enzyme treatment, or the like, or a combination thereof. To do.
 化学処理はアニオン基又はカチオン基をミクロフィブリルに導入する手法である。これらの官能基の存在により、静電反発及び浸透圧効果が発現し、高圧ホモジナイザーのような高エネルギーを要する微細化装置を使用することなく、少ないエネルギーで微細セルロース繊維を得ることができる。 ㆍChemical treatment is a method of introducing anion groups or cation groups into microfibrils. Due to the presence of these functional groups, electrostatic repulsion and osmotic pressure effects are exhibited, and it is possible to obtain fine cellulose fibers with a small amount of energy without using a finer device that requires high energy such as a high pressure homogenizer.
 アニオン化剤としては、複数のカルボキシル基を有するカルボン酸又はその無水物、或いはそれらの塩、リン原子を含むオキソ酸又はその塩、オゾン、2,2,6,6-テトラメチルピペリジノオキシラジカル等が挙げられる。
 カチオン化剤としては、グリシジルトリアルキルアンモニウムハライド又はそのハロヒドリン型の化合物が挙げられる。
Examples of the anionizing agent include carboxylic acids having a plurality of carboxyl groups or anhydrides thereof, salts thereof, oxo acids containing phosphorus atoms or salts thereof, ozone, 2,2,6,6-tetramethylpiperidinooxy. Radicals and the like can be mentioned.
Examples of the cationizing agent include glycidyltrialkylammonium halides or halohydrin-type compounds thereof.
 酵素処理は、セルラーゼ等によって主にアモルファス部のセルロースを分解する処理である。  Enzyme treatment is a treatment that mainly decomposes cellulose in the amorphous part by cellulase.
 これらの前処理は、微細化処理の負荷を軽減するだけでなく、セルロース繊維を構成するミクロフィブリルの表面や間隙に存在するリグニンやヘミセルロース等の不純物成分を水相へ排出し、その結果、微細セルロース繊維のα-セルロース純度を高める効果もあるため、多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維積層シートの耐熱性の向上に有効である。 These pretreatments not only reduce the load of the micronization treatment, but also discharge the impurities such as lignin and hemicellulose existing on the surface and interstices of the microfibrils constituting the cellulose fiber into the aqueous phase, and as a result, Since it also has the effect of increasing the α-cellulose purity of the cellulose fibers, it is effective in improving the heat resistance of the porous fine cellulose fiber sheet and the porous fine cellulose fiber laminated sheet.
 叩解処理工程においては、原料パルプを好ましくは0.5質量%以上4質量%以下、より好ましくは0.8質量%以上3質量%以下、さらに好ましくは1.0質量%以上2.5質量%以下の固形分濃度となるように水に分散させ、ビーターやコニカルリファイナー、ディスクリファイナー(ダブルディスクリファイナー)のような叩解装置でフィブリル化を高度に促進させる。処理条件によっては極めて高度な叩解(フィブリル化)が進行するので、高圧ホモジナイザー等による微細化処理の条件を緩和でき、有効な場合がある。 In the beating step, the raw material pulp is preferably 0.5% by mass or more and 4% by mass or less, more preferably 0.8% by mass or more and 3% by mass or less, still more preferably 1.0% by mass or more and 2.5% by mass. It is dispersed in water so as to have the following solid content concentration, and fibrillation is highly promoted by a beating device such as a beater, a conical refiner, or a disc refiner (double disc refiner). Since an extremely high degree of beating (fibrillation) proceeds depending on the treatment conditions, the conditions for the micronization treatment with a high-pressure homogenizer or the like can be relaxed, which may be effective.
 微細セルロース繊維の製造には、所望の数平均繊維径に応じて、上述した叩解工程に引き続き、高圧ホモジナイザー、超高圧ホモジナイザー、グラインダー等による微細化処理を施すことが好ましい。この際の水分散体中の固形分濃度は、上述した叩解処理に準じ、好ましくは0.5質量%以上4質量%以下、より好ましくは0.8質量%以上3質量%以下、さらに好ましくは1.0質量%以上2.5質量%以下である。この範囲の固形分濃度の場合、詰まりが発生せず、しかも効率的な微細化処理が達成できる。 For the production of fine cellulose fibers, it is preferable to carry out a refining treatment with a high pressure homogenizer, an ultrahigh pressure homogenizer, a grinder or the like, following the beating step described above, depending on the desired number average fiber diameter. The solid content concentration in the aqueous dispersion at this time is in accordance with the beating treatment described above, preferably 0.5% by mass or more and 4% by mass or less, more preferably 0.8% by mass or more and 3% by mass or less, and further preferably It is 1.0% by mass or more and 2.5% by mass or less. When the solid content concentration is within this range, clogging does not occur, and moreover, efficient micronization processing can be achieved.
 使用する高圧ホモジナイザーとしては、例えば、ニロ・ソアビ社(伊)のNS型高圧ホモジナイザー、(株)エスエムテーのラニエタイプ(Rモデル)圧力式ホモジナイザー、三和機械(株)の高圧式ホモジナイザー等を挙げることができる。超高圧ホモジナイザーとしては、みづほ工業(株)のマイクロフルイダイザー、吉田機械興業(株)ナノマイザー、(株)スギノマシンのアルティマイザー等の高圧衝突型の微細化処理機を挙げることができる。グラインダー型微細化装置としては、(株)栗田機械製作所のピュアファインミル、増幸産業(株)のスーパーマスコロイダーに代表される石臼式摩砕型を挙げることができる。なお、これらの以外の装置であっても、ほぼ同様の機構で微細化を実施する装置であれば使用しても構わない。 Examples of the high-pressure homogenizer to be used include NS type high-pressure homogenizer manufactured by Niro Soavi Inc. (Italy), Lanie type (R model) pressure homogenizer manufactured by SMT Co., Ltd., and high-pressure homogenizer manufactured by Sanwa Machinery Co., Ltd. be able to. Examples of the ultra-high pressure homogenizer include a high-pressure collision type miniaturization processor such as Microfluidizer manufactured by Mizuho Industry Co., Ltd., Nanomizer manufactured by Yoshida Kikai Co., Ltd., and Ultimateizer manufactured by Sugino Machine Co., Ltd. Examples of the grinder type refining device include a pure fine mill manufactured by Kurita Kikai Seisakusho Co., Ltd. and a stone mill type typified by a supermass colloider manufactured by Masuyuki Sangyo Co., Ltd. It should be noted that any device other than these may be used as long as it is a device that performs miniaturization with substantially the same mechanism.
 なお、本実施形態では、上記の原料の異なる微細セルロース繊維や微細化度の異なる微細セルロース繊維、表面を化学処理された微細セルロース繊維を2種類以上、任意の割合で混合して用いても良い。 In the present embodiment, two or more kinds of fine cellulose fibers having different raw materials, fine cellulose fibers having different degrees of fineness, and fine cellulose fibers chemically treated on the surface may be mixed and used at an arbitrary ratio. ..
 本実施形態の抄紙スラリー調製工程において、スラリーに含まれる微細セルロース繊維は抄紙スラリー質量の0.01質量%以上2.0質量%以下が好ましく、0.01質量%以上1.5質量%以下がより好ましく、0.05質量%以上1.0質量%以下がさらに好ましい。0.01質量%以上である場合、濾水時間が長くなりすぎず、生産性が良好であると同時に、膜質均一性が良好であり、好ましい。また、2.0質量%以下である場合、分散液の粘度が上がり過ぎないため、均一に製膜することが容易であり好ましい。 In the papermaking slurry preparation step of the present embodiment, the fine cellulose fibers contained in the slurry are preferably 0.01% by mass or more and 2.0% by mass or less, and 0.01% by mass or more and 1.5% by mass or less of the mass of the papermaking slurry. It is more preferably 0.05 mass% or more and 1.0 mass% or less. When the content is 0.01% by mass or more, the drainage time does not become too long, the productivity is good, and at the same time, the uniformity of the film quality is good, which is preferable. Further, when the content is 2.0% by mass or less, the viscosity of the dispersion liquid does not increase excessively, and it is easy and uniform to form a film, which is preferable.
 また、塗工スラリー調製工程においては、スラリーに含まれる微細セルロース繊維は塗工スラリー質量の75質量%以上99.5質量%以下が好ましく、80質量%以上99.0質量%以下がより好ましく、85質量%以上98.0質量%以下がさらに好ましい。75質量%以上99.5質量%以下である場合、塗工スラリーの成膜がしやすい粘度であるため、膜質均一性が良好であり、好ましい。 Further, in the coating slurry preparation step, the fine cellulose fibers contained in the slurry are preferably 75% by mass or more and 99.5% by mass or less of the coating slurry mass, more preferably 80% by mass or more and 99.0% by mass or less, It is more preferably 85% by mass or more and 98.0% by mass or less. When the content is 75% by mass or more and 99.5% by mass or less, the viscosity of the coating slurry facilitates film formation, and thus the film quality uniformity is good, which is preferable.
 抄紙スラリー調製工程において、添加する多孔質化剤はスラリー質量の0.0001質量%以上2.0質量%以下が好ましく、0.0001質量%以上1.5質量%以下がより好ましく、0.0005質量%以上1.0質量%以下がさらに好ましい。0.0001質量%以上の場合、多孔質化剤がその種類にもよるが概ね良好な溶解度を有することができるため、多孔質化の効果が大きい。2.0質量%以下の場合はスラリー粘度が上昇しすぎず、撹拌による泡の生成が抑えられ、均質な製膜が容易になる。 In the papermaking slurry preparation step, the porosifying agent added is preferably 0.0001 mass% or more and 2.0 mass% or less, more preferably 0.0001 mass% or more and 1.5 mass% or less, and 0.0005 mass% or less of the slurry mass. More preferably, it is not less than mass% and not more than 1.0 mass %. When the content is 0.0001% by mass or more, the porosifying agent can have a good solubility in general, depending on its type, so that the effect of making the porosity large. When the content is 2.0% by mass or less, the slurry viscosity does not increase excessively, the generation of bubbles due to stirring is suppressed, and uniform film formation is facilitated.
 また、塗工スラリー調製工程においては、添加する多孔質化剤量はスラリー質量の0.005質量%以上25.0質量%以下が好ましく、0.01質量%以上20.0質量%以下がより好ましく、0.05質量%以上15.0質量%以下がさらに好ましく、0.05質量%以上10.0質量%以下が特に好ましい。 In addition, in the coating slurry preparation step, the amount of the porosifying agent added is preferably 0.005% by mass or more and 25.0% by mass or less of the mass of the slurry, and more preferably 0.01% by mass or more and 20.0% by mass or less. It is more preferably 0.05% by mass or more and 15.0% by mass or less, and particularly preferably 0.05% by mass or more and 10.0% by mass or less.
 多孔質化剤をスラリー中に均一に分散するための混合装置として、アジテーター、ホモミキサー、パイプラインミキサー、ブレンダーのようなカッティング機能をもつ羽根を高速回転させるタイプの分散機や高圧ホモジナイザー等が挙げられる。泡が生成せずに、微細セルロース繊維と多孔質化剤が均一に分散する限りにおいて撹拌装置は特に限定されない。特に、多孔質化剤が水中で自己乳化する場合、或いは既に乳化されている場合はアジテーターのような低せん断な撹拌装置でも構わない。一方、多孔質化剤が水中で相分離し、乳化しない場合はホモミキサーや高圧ホモジナイザーのような強せん断な混合手法がより好ましい。 As a mixing device for uniformly dispersing the porosifying agent in the slurry, an agitator, a homomixer, a pipeline mixer, a high-speed homogenizer of a type such as a blender that rotates a blade having a cutting function at a high speed, and a high-pressure homogenizer can be given. To be The stirring device is not particularly limited as long as the fine cellulose fibers and the porosifying agent are uniformly dispersed without generating bubbles. In particular, when the porosifying agent self-emulsifies in water, or when it has already been emulsified, a low shear stirring device such as an agitator may be used. On the other hand, when the porosifying agent is phase-separated in water and does not emulsify, a strong shear mixing method such as a homomixer or a high pressure homogenizer is more preferable.
 抄紙スラリー又は塗工スラリーには、水分散性ブロックポリイソシアネートや前記公知の抄紙用材料、フィラー材を、本実施形態の目的とする効果を損なわない範囲で適宜使用することが可能であり、抄紙スラリー中の0.0001重量%以上10.0重量%以下の範囲で任意に変えることができる。また、塗工スラリー中においても0.005重量%以上25.0重量%以下の範囲で任意に変えることができる。
 なお、多孔質化剤及びブロックポリイソシアネート等の他の添加物の添加の順序は本実施形態の目的とする効果を損なわない限りにおいて、特に限定されるものではない。
In the papermaking slurry or coating slurry, a water-dispersible block polyisocyanate, the known papermaking material, or a filler material can be appropriately used within a range that does not impair the intended effect of the present embodiment. It can be arbitrarily changed within the range of 0.0001% by weight to 10.0% by weight in the slurry. Further, even in the coating slurry, the amount can be arbitrarily changed within the range of 0.005% by weight or more and 25.0% by weight or less.
The order of adding other additives such as the porosifying agent and the blocked polyisocyanate is not particularly limited as long as the intended effect of the present embodiment is not impaired.
 抄紙スラリー又は塗工スラリーには、シートの多孔質化を促進させる目的で、有機溶剤を本実施形態の目的とする効果を損なわない範囲で適宜使用することが可能であり、抄紙スラリー中の0.0001重量%以上10.0重量%以下の範囲で任意に変えることができる。また、塗工スラリー中においても0.005重量%以上25.0重量%以下の範囲で任意に変えることができる。
 有機溶媒としては特に制限はないが、水溶性であると均一なスラリーが得られるため、好ましい。また、有機溶媒の沸点が100℃以上であると、乾燥時に有機溶媒が水よりも多孔質微細セルロース繊維シート内に残存しやすいため、より空孔率の高い多孔質微細セルロース繊維シートが得られるため、好ましい。疎水性の有機溶媒についても、エマルジョンのような形態でスラリー中に均一に存在できる形態とすることで、使用することができる。
In the papermaking slurry or the coating slurry, an organic solvent can be appropriately used within a range that does not impair the intended effect of the present embodiment, for the purpose of promoting the porosity of the sheet. It can be arbitrarily changed within the range of 0.0001% by weight or more and 10.0% by weight or less. Further, even in the coating slurry, the amount can be arbitrarily changed within the range of 0.005% by weight or more and 25.0% by weight or less.
The organic solvent is not particularly limited, but it is preferable that it is water-soluble because a uniform slurry can be obtained. Further, when the boiling point of the organic solvent is 100° C. or higher, the organic solvent is more likely to remain in the porous fine cellulose fiber sheet than water during drying, so that a porous fine cellulose fiber sheet having a higher porosity can be obtained. Therefore, it is preferable. A hydrophobic organic solvent can also be used in the form of an emulsion so that it can be uniformly present in the slurry.
 本実施形態の抄紙工程においては、抄紙スラリーを通水性の基材上でろ過することにより湿紙を形成する。
 この抄紙工程では、抄紙スラリーから水を脱水し、微細セルロース繊維が留まるようなフィルターや濾布(製紙の技術領域ではワイヤーとも呼ばれる)を使用する操作であればどのような装置を用いてもよい。
 抄紙機としては、傾斜ワイヤー式抄紙機、長網式抄紙機、円網式抄紙機のような装置を用いると好適に欠陥の少ない多孔質微細セルロース繊維シートを得ることができる。抄紙機は連続式であってもバッチ式であっても目的に応じて使い分ければよい。
In the papermaking process of this embodiment, a wet paper is formed by filtering a papermaking slurry on a water-permeable substrate.
In this papermaking process, any device may be used as long as it is an operation using a filter or filter cloth (also called a wire in the technical field of papermaking) that dehydrates water from the papermaking slurry and retains fine cellulose fibers. ..
As the paper machine, an apparatus such as a slanted wire type paper machine, a Fourdrinier paper machine, and a cylinder paper machine can be preferably used to obtain a porous fine cellulose fiber sheet with few defects. The paper machine may be a continuous type or a batch type and may be used properly according to the purpose.
 本実施形態の塗工工程においては、スプレーコーター、エアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター等を用い、調製した塗工スラリーを通水性の基材上或いは無孔質シート上に塗工することで湿紙を得ることができる。通水性基材を用いた場合は後述する抄紙におけるサクション工程やプレス工程と同じ、又は、それに類する手法により、湿紙の脱水の程度を制御し、好ましくは固形分濃度が6質量%以上25質量%以下、より好ましくは固形分濃度が8質量%以上20質量%以下の範囲に調整する。 In the coating step of the present embodiment, a spray coater, an air doctor coater, a blade coater, a knife coater, a rod coater, a squeeze coater, an impregnation coater, a gravure coater, a kiss roll coater, a die coater, a reverse roll coater, a transfer roll coater, etc. A wet paper can be obtained by applying the prepared coating slurry to a water-soluble base material or a non-porous sheet by using. When a water-permeable substrate is used, the degree of dehydration of the wet paper is controlled by the same method as the suction step or pressing step in paper making described below, or a method similar thereto, and preferably the solid content concentration is 6% by mass or more and 25% by mass or more. % Or less, and more preferably, the solid content concentration is adjusted to a range of 8% by mass or more and 20% by mass or less.
 抄紙工程はワイヤー又は濾布を用いて抄紙スラリー中に分散している微細セルロース繊維等の軟凝集体を濾過する工程であるため、ワイヤー又は濾布の目のサイズが重要である。本実施形態においては、本質的には、抄紙スラリー中に含まれる微細セルロース繊維等を含む水不溶性成分の歩留まり割合が例えば70質量%以上、好ましくは80質量%以上、より好ましくは90質量%、さらに好ましくは95質量%以上、特に好ましくは99質量%で抄紙することのできるような任意のワイヤー又は濾布を使用できる。 The size of the wire or filter cloth is important because the papermaking process is a step of filtering soft aggregates such as fine cellulose fibers dispersed in the papermaking slurry using a wire or filter cloth. In the present embodiment, essentially, the yield ratio of the water-insoluble component containing fine cellulose fibers etc. contained in the papermaking slurry is, for example, 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass, It is possible to use any wire or filter cloth capable of making paper at a content of 95% by mass or more, particularly preferably 99% by mass.
 但し、微細セルロース繊維等の歩留まり割合が70質量%以上であっても濾水性が高くないと抄紙に時間がかかり、著しく生産効率が悪くなるため、大気圧下25℃でのワイヤー又は濾布の水透過量が、好ましくは0.005ml/(cm2・sec)以上、より好ましくは0.01ml/(cm2・sec)以上であると、生産性の観点からも好適な抄紙が可能となる。上記水不溶成分の歩留まり割合が70質量%以上である場合、生産性が良好であり、用いるワイヤーや濾布内に微細セルロース繊維等の水不溶性成分が目詰まりする現象や、製膜後の多孔質微細セルロース繊維シートの剥離性の悪化を回避できる。 However, even if the yield ratio of fine cellulose fibers or the like is 70% by mass or more, if the drainage is not high, it takes time to make the paper, and the production efficiency is significantly deteriorated. When the amount of water permeation is preferably 0.005 ml/(cm 2 ·sec) or more, more preferably 0.01 ml/(cm 2 ·sec) or more, suitable papermaking becomes possible from the viewpoint of productivity. .. When the yield ratio of the water-insoluble component is 70% by mass or more, the productivity is good, the phenomenon that the water-insoluble component such as fine cellulose fibers is clogged in the wire or filter cloth used, or the porosity after film formation. It is possible to avoid deterioration of the releasability of the fine cellulose fiber sheet.
 大気圧下でのワイヤー又は濾布の水透過量は次のように評価する。バッチ式抄紙機(例えば、熊谷理機工業社製の自動角型シートマシーン)に評価対象となるワイヤー又は濾布を設置し、ワイヤーの場合はそのまま、濾布の場合は、80~120メッシュの金属メッシュ(濾水抵抗がほとんど無いものとして)上に濾布を設置し、抄紙面積がx(cm2)の抄紙機内に十分な量(y(ml)とする)の水を注入し、大気圧下で濾水時間を測定する。濾水時間がz(sec)であった場合の水透過量を、y/(x・z)(ml/(cm2・s))と定義する。 The water permeation amount of the wire or filter cloth under atmospheric pressure is evaluated as follows. A wire or filter cloth to be evaluated is installed on a batch type paper machine (for example, an automatic square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd.), and in the case of the wire, the wire or filter cloth of 80 to 120 mesh is used as it is. Place a filter cloth on a metal mesh (assuming that there is almost no resistance to drainage), inject a sufficient amount (y (ml)) of water into a paper machine with a paper making area of x (cm 2 ), and Measure the drainage time under atmospheric pressure. The water permeation amount when the drainage time was z (sec) is defined as y/(x·z) (ml/(cm 2 ·s)).
 本実施形態のワイヤー又は濾布の例として、SEFAR社(スイス)製のTETEXMONODLW07-8435-SK010(PET製)、敷島カンバス社製NT20(PET/ナイロン混紡)、TT30(PET製)等を挙げることができるが、これらに限定されるものではない。 Examples of the wire or filter cloth of the present embodiment include TETEXMONODLW07-8435-SK010 (PET) manufactured by SEFAR (Switzerland), NT20 (PET/nylon mixed spinning) manufactured by Shikishima Canvas, and TT30 (PET). However, the present invention is not limited to these.
 本実施形態の抄紙工程による脱水では高固形分化が進行し、抄紙スラリーの微細セルロース繊維濃度よりも高い濃縮組成物の湿紙を得る。湿紙の固形分率は、抄紙のサクション圧(ウェットサクションやドライサクション)やプレス工程によって脱水の程度を制御し、好ましくは固形分濃度が6質量%以上25質量%以下、より好ましくは固形分濃度が8質量%以上20質量%以下の範囲に調整する。湿紙の固形分率が6質量%以上の場合、湿紙としての自立性が良好で、工程上問題が生じ難い。また、湿紙の固形分率が25質量%以下となる濃度まで脱水する場合、微細セルロース繊維のワイヤー又は濾布への顕著な貫入が生じず、シートに凹凸が転写されたり、ワイヤー又は濾布の目詰まりが発生したりする問題を回避できる。 In the dehydration by the papermaking process of the present embodiment, high solidification progresses, and a wet paper having a concentrated composition higher than the concentration of fine cellulose fibers in the papermaking slurry is obtained. The solid content of the wet paper is controlled by controlling the suction pressure (wet suction or dry suction) of the papermaking and the pressing step, and the solid content is preferably 6% by mass or more and 25% by mass or less, more preferably the solid content. The concentration is adjusted within the range of 8% by mass or more and 20% by mass or less. When the solid content of the wet paper is 6% by mass or more, the wet paper has good self-supporting property, and problems in the process hardly occur. When the wet paper web is dehydrated to a concentration of 25% by mass or less, the fine cellulose fibers do not significantly penetrate into the wire or filter cloth, and unevenness is transferred to the sheet, or the wire or filter cloth. It is possible to avoid problems such as clogging of the.
 本実施形態の多孔質微細セルロース繊維積層シートの製造においては、この抄紙の際に基材シートをワイヤー又は濾布上に置いて抄紙を行うことで多層湿紙を得ることができる。又、塗工法においては塗工スラリーを塗工する通水性の基材として、多孔質微細セルロース繊維積層シートの基材シートを用いることで多層湿紙を得ることができる。 In the production of the porous fine cellulose fiber laminated sheet of the present embodiment, a multi-layer wet paper can be obtained by placing the base material sheet on a wire or a filter cloth and performing paper making during the paper making. Further, in the coating method, a multilayer wet paper can be obtained by using a base material sheet of a porous fine cellulose fiber laminated sheet as a water-permeable base material on which the coating slurry is applied.
 基材シートは透気抵抗度が100sec/100ml以下、かつ、厚みが1μm以上1000μm以下、又は100μm以上750μm以下、又は200μm以上500μm以下であることが好ましい。多孔質微細セルロース繊維複合化シート中の基材シートは、1層又は2層以上存在してよい。2層以上の場合、多孔質微細セルロース繊維複合化シート中の基材シート部位の合計厚みは、2μm以上2000μm以下、又は200μm以上1500μm以下、又は400μm以上1000μm以下であってよい。透気抵抗度の測定方法は前記多孔質微細セルロース繊維シートでの透気抵抗度の測定方法に準じる。厚みの測定方法は23℃、50%RHの環境で1日静置した多孔質微細セルロース繊維積層シート(20cm×20cm)に対して、多孔質微細セルロース繊維積層シートの場合は、卓上オフライン接触式膜厚計(例えば山文電気製のTOF―5R01)を用い、150mmの長さを0.1mmピッチで1回ずつ測定し、その数平均値を膜厚(μm)とする。また、多孔質微細セルロース複合化シートの場合は、複合化シート断面を切り出し、任意に10か所断面SEM観察或いは光学顕微鏡観察を行い、各箇所で基材シートの厚みをすべて計測する。得られた計測値×上記10か所での数平均値を算出し、基材シート厚み(μm)とする。 The base sheet preferably has an air resistance of 100 sec/100 ml or less and a thickness of 1 μm or more and 1000 μm or less, or 100 μm or more and 750 μm or less, or 200 μm or more and 500 μm or less. The base material sheet in the porous fine cellulose fiber composite sheet may have one layer or two or more layers. In the case of two or more layers, the total thickness of the base material sheet portion in the porous fine cellulose fiber composite sheet may be 2 μm or more and 2000 μm or less, or 200 μm or more and 1500 μm or less, or 400 μm or more and 1000 μm or less. The method of measuring the air resistance is in accordance with the method of measuring the air resistance of the porous fine cellulose fiber sheet. The thickness can be measured by using a porous fine cellulose fiber laminated sheet (20 cm x 20 cm) left standing for 1 day in an environment of 23° C. and 50% RH, and in the case of a porous fine cellulose fiber laminated sheet, a desktop offline contact type. Using a film thickness meter (for example, TOF-5R01 manufactured by Yamabun Denki Co., Ltd.), a length of 150 mm is measured once at a pitch of 0.1 mm, and the number average value is taken as the film thickness (μm). Further, in the case of a porous fine cellulose composite sheet, the cross section of the composite sheet is cut out, and SEM observation or optical microscope observation is arbitrarily performed at 10 places, and the thickness of the base material sheet is measured at each place. The obtained measurement value x the number average value at the above 10 points is calculated to obtain the substrate sheet thickness (μm).
 本実施形態の基材シート表面は親水的であると好ましい。基材シート表面が親水的であると、多孔質微細セルロース繊維積層シートの接着性に優れ、また抄紙法で多孔質微細セルロース繊維積層シートを製造する際の濾水性が向上するため好ましい。親水性官能基としては特に限定されないが、水酸基、チオール基、カルボキシル基、スルホン酸基、硫酸エステル基、リン酸基、硫酸基或いは、-OM、-COOM、-SO3M、-OSO3M、-HMPO4、又は-M2PO4で表される基(Mはアルカリ金属又はアルカリ土類金属を表す)、1~3級アミン及び4級アンモニウム塩が挙げられる。 The surface of the base sheet of this embodiment is preferably hydrophilic. It is preferable that the surface of the base material sheet is hydrophilic because the adhesiveness of the porous fine cellulose fiber laminated sheet is excellent and the drainage property at the time of producing the porous fine cellulose fiber laminated sheet by a papermaking method is improved. The hydrophilic functional group is not particularly limited, but it may be a hydroxyl group, a thiol group, a carboxyl group, a sulfonic acid group, a sulfuric acid ester group, a phosphoric acid group, a sulfuric acid group or -OM, -COOM, -SO 3 M, -OSO 3 M. , --HMPO 4 or --M 2 PO 4 (M represents an alkali metal or an alkaline earth metal), a primary to tertiary amine and a quaternary ammonium salt.
 また、基材シート表面には活性水素を有する官能基の導入がなされていても良い。基材シート表面の官能基が活性水素を有する官能基であると、ポリウレタンによる化学的な結合を形成でき、ポリウレタンを介して基材シートと多孔質微細セルロース繊維シートが強固に接着されるため好ましい。ここでいう活性水素を有する官能基とは、例えば水酸基、アミノ基、チオール基、カルボキシル基等のことを言い、水酸基の場合はウレタン結合、カルボキシル基の場合はアミド尿素結合等が形成される。 Also, a functional group having active hydrogen may be introduced on the surface of the base material sheet. When the functional group on the surface of the base material sheet is a functional group having active hydrogen, a chemical bond by polyurethane can be formed, and the base material sheet and the porous fine cellulose fiber sheet are firmly bonded via the polyurethane, which is preferable. .. The functional group having active hydrogen as used herein means, for example, a hydroxyl group, an amino group, a thiol group, a carboxyl group or the like. In the case of a hydroxyl group, a urethane bond is formed, and in the case of a carboxyl group, an amidourea bond or the like is formed.
 親水的表面を有した、或いは、活性水素基を有した基材シートとしては、セルロースやナイロンのように元々その性質を有した基材シートを選択でき、又は、抄紙前にコロナ放電処理やプラズマ処理を実施し、シート表面の親水化や活性水素を有する官能基の形成を行って得た基材シートを使用することもできる。 As the base sheet having a hydrophilic surface or having an active hydrogen group, a base sheet having its original property such as cellulose or nylon can be selected, or corona discharge treatment or plasma treatment before paper making. It is also possible to use a substrate sheet obtained by performing a treatment to hydrophilize the surface of the sheet and form a functional group having active hydrogen.
 前記湿紙に対し有機溶媒を塗布又は湿紙を浸漬させ、含まれる水を有機溶媒に置換しても良い。有機溶媒に置換することで多孔質化をより促進することができる。有機溶媒としては特に制限はないが、水溶性であると水との置換が速やかに起きるため、好ましい。また、有機溶媒の沸点が100℃以上であると、乾燥時に有機溶媒が水よりも多孔質微細セルロース繊維シート内に残存しやすいため、より空孔率の高い多孔質微細セルロース繊維シートが得られるため、好ましい。疎水性の有機溶媒についても、水溶性の有機溶媒で一度置換した後であれば、使用することができる。 It is also possible to apply an organic solvent to the wet paper or immerse the wet paper and replace the contained water with the organic solvent. Substitution with an organic solvent can further promote the formation of porosity. The organic solvent is not particularly limited, but it is preferable that the organic solvent is water-soluble because substitution with water occurs quickly. Further, when the boiling point of the organic solvent is 100° C. or higher, the organic solvent is more likely to remain in the porous fine cellulose fiber sheet than water during drying, so that a porous fine cellulose fiber sheet having a higher porosity can be obtained. Therefore, it is preferable. A hydrophobic organic solvent can also be used once it has been replaced with a water-soluble organic solvent.
 本実施形態の乾燥工程においては、上述した抄紙工程(製膜工程)で得た湿紙を加熱することによって水を蒸発させることにより、多孔質微細セルロース繊維シート又は多孔質微細セルロース繊維積層シートを得ることができる。乾燥方法は特に限定されるものではないが、ドラムドライヤーやピンテンターのような幅を定長とした状態で、水を乾燥させ得るタイプの定長乾燥型の乾燥機を使用すると、透気抵抗度の低い多孔質微細セルロース繊維シート又は多孔質微細セルロース繊維積層シートを安定に得ることができるため好ましい。乾燥温度は条件に応じて適宜選択すればよいが、好ましくは45℃以上250℃以下、より好ましくは60℃以上200℃以下、さらに好ましくは80℃以上200℃以下の範囲である。乾燥温度が45℃以上の場合には、多くの場合で水の蒸発速度が比較的速いため、生産性を良好に確保でき好ましく、250℃以下の乾燥温度とすると、多孔質化剤が熱変性を起こしてしまうケースを回避でき、また、エネルギー効率が良好で低コストとなるため好ましい。 In the drying step of the present embodiment, the porous fine cellulose fiber sheet or the porous fine cellulose fiber laminated sheet is obtained by evaporating the water by heating the wet paper obtained in the paper making step (film forming step) described above. Obtainable. The drying method is not particularly limited, but when a constant length drying type drier capable of drying water in a fixed width such as a drum dryer or a pin tenter is used, the air permeability resistance It is preferable because a porous fine cellulose fiber sheet or a porous fine cellulose fiber laminated sheet having a low viscosity can be stably obtained. The drying temperature may be appropriately selected according to the conditions, but is preferably in the range of 45°C or higher and 250°C or lower, more preferably 60°C or higher and 200°C or lower, and further preferably 80°C or higher and 200°C or lower. When the drying temperature is 45° C. or higher, the evaporation rate of water is relatively high in many cases, so that good productivity can be secured, which is preferable. When the drying temperature is 250° C. or lower, the porosifying agent is thermally denatured. This is preferable because it can avoid the case of causing the above-mentioned problem, and has good energy efficiency and low cost.
 好ましい態様においては、スラリーがブロックポリイソシアネートをさらに含み、多孔質微細セルロース繊維シート形成工程又は多孔質微細セルロース繊維積層シート形成工程が、湿紙又は多層湿紙を乾燥させた後に行われる熱キュア処理を含む。すなわち、ブロックポリイソシアネートを用いた場合、湿紙又は多層湿紙の乾燥によって得た乾燥シートを熱キュア処理(加熱処理)することにより、シート内に含まれるブロックポリイソシアネートのブロック基の解離、それに続く微細セルロース繊維との化学的な結合が形成される。また、多孔質微細セルロース繊維積層シートにおいては、該ブロックポリイソシアネートにより基材シートと微細セルロース繊維との架橋も同時に進行する。 In a preferred embodiment, the slurry further contains a blocked polyisocyanate, and the porous fine cellulose fiber sheet forming step or the porous fine cellulose fiber laminated sheet forming step is a heat curing treatment performed after drying the wet paper or the multilayer wet paper. including. That is, when the block polyisocyanate is used, the cured sheet obtained by drying the wet paper or the multilayer wet paper is subjected to heat curing treatment (heat treatment) to dissociate the block groups of the block polyisocyanate contained in the sheet, and A chemical bond is formed with the subsequent fine cellulosic fibers. Further, in the porous fine cellulose fiber laminated sheet, the block polyisocyanate simultaneously promotes crosslinking between the base sheet and the fine cellulose fibers.
 熱キュア処理には、対流伝熱、伝導伝熱、放射伝熱等を利用した既知の方法を採用することができ、熱風や赤外線、熱接触による加熱を用いることができる。均一かつ短時間での加熱処理の観点から、加熱ローラーへの接触加熱が好ましい。シートへ引火する熱エネルギー量はロール温度、ロール径、送り速度等によって調整できる。 For the heat cure treatment, a known method using convective heat transfer, conductive heat transfer, radiant heat transfer, etc. can be adopted, and heating by hot air, infrared rays, or thermal contact can be used. From the viewpoint of uniform and short-time heat treatment, contact heating with a heating roller is preferable. The amount of heat energy that ignites the sheet can be adjusted by the roll temperature, roll diameter, feed rate, and the like.
 ブロックポリイソシアネートは常温において安定であるが、ブロック剤の解離温度以上に熱処理することでブロック基が解離してイソシアネート基が再生し、活性水素を有する官能基との化学的な結合が形成できる。加熱温度は用いられるブロック剤により異なるが、例えば80℃以上300℃以下、好ましくは100℃以上280℃以下、より好ましくは120℃以上250℃以下の範囲で、ブロック基の解離温度以上に加熱する。ブロック基の解離温度未満の場合は、イソシアネート基が再生しないため架橋化が起きない。また、300℃以下の温度で加熱すると微細セルロース繊維やブロックポリイソシアネートの熱劣化、及びこれによる着色を回避でき好ましい。 Block polyisocyanate is stable at room temperature, but by heat treatment above the dissociation temperature of the blocking agent, the block group dissociates and the isocyanate group is regenerated, forming a chemical bond with the functional group containing active hydrogen. The heating temperature varies depending on the blocking agent used, but is, for example, 80° C. or higher and 300° C. or lower, preferably 100° C. or higher and 280° C. or lower, and more preferably 120° C. or higher and 250° C. or lower. .. When the temperature is lower than the dissociation temperature of the block group, the isocyanate group does not regenerate, and thus crosslinking does not occur. Moreover, it is preferable to heat at a temperature of 300° C. or less, because thermal degradation of the fine cellulose fibers and the block polyisocyanate and the coloring due to this can be avoided.
 加熱時間は、下限を例えば1秒以上とし、上限は例えば10分以下、好ましくは5分以下、より好ましくは3分以下、さらに好ましくは1分以下である。加熱温度がブロック基の解離温度より十分に高い場合は、加熱時間をより短くすることができる。また、加熱温度が200℃以上の場合、5分超の加熱を行うとシート内の水分が極端に減少するため、5分以内の加熱とすることが、加熱直後のシートの脆化を回避し、取扱い性を容易にする点で好ましい。 The heating time has a lower limit of, for example, 1 second or more and an upper limit of, for example, 10 minutes or less, preferably 5 minutes or less, more preferably 3 minutes or less, and further preferably 1 minute or less. When the heating temperature is sufficiently higher than the dissociation temperature of the block group, the heating time can be shortened. In addition, when the heating temperature is 200° C. or higher, the water content in the sheet is extremely reduced if the sheet is heated for more than 5 minutes, so heating within 5 minutes avoids embrittlement of the sheet immediately after heating. It is preferable in that it is easy to handle.
 好ましい態様においては、多孔質微細セルロース繊維シート形成工程が、湿紙又は多層湿紙を乾燥させた後に行われるカレンダー処理を含む。すなわち、乾燥によって得た乾燥シートに、カレンダー装置によってカレンダー処理(平滑化処理)を施してもよい。カレンダー処理を経ることにより表面が平滑化され、薄膜化された多孔質微細セルロース繊維シート又は多孔質微細セルロース繊維積層シートを得ることもできる。すなわち、乾燥シートに対し、さらにカレンダー装置による平滑化処理を施すことにより、薄膜化が可能となり、広範囲の膜厚/透気抵抗度/強度の組み合わせの本実施形態の多孔質微細セルロース繊維シート又は多孔質微細セルロース繊維積層シートを提供することができる。例えば、100g/m2以下の目付の設定下で200μm以下の膜厚の多孔質微細セルロース繊維シート及び多孔質微細セルロース繊維積層シートを容易に製造することが可能である。カレンダー装置としては単一プレスロールによる通常のカレンダー装置の他に、これらが多段式に設置された構造をもつスーパーカレンダー装置を用いてもよい。これらの装置、及びカレンダー処理時におけるロール両側それぞれの材質(材質硬度)や線圧を目的に応じて選定すればよい。 In a preferred embodiment, the step of forming a porous fine cellulose fiber sheet includes calendering performed after drying the wet paper web or the multilayer wet paper web. That is, the dried sheet obtained by drying may be subjected to calendering (smoothing) with a calendering device. It is also possible to obtain a porous fine cellulose fiber sheet or a porous fine cellulose fiber laminated sheet, the surface of which has been smoothed by a calendering treatment to form a thin film. That is, by further subjecting the dried sheet to a smoothing treatment with a calendering device, it becomes possible to form a thin film, and a wide range of film thickness/permeation resistance/strength combinations of the porous fine cellulose fiber sheet of the present embodiment or A porous fine cellulose fiber laminated sheet can be provided. For example, it is possible to easily produce a porous fine cellulose fiber sheet having a film thickness of 200 μm or less and a porous fine cellulose fiber laminated sheet under the setting of the basis weight of 100 g/m 2 or less. As the calendering device, in addition to a normal calendering device using a single press roll, a super calendering device having a structure in which these are installed in multiple stages may be used. The material (material hardness) and the linear pressure of each of these devices and both sides of the roll at the time of calendering may be selected according to the purpose.
 ブロックポリイソシアネートを含む多孔質微細セルロース繊維シートの製造において熱キュア処理を行う場合、カレンダー処理は、乾燥と熱キュア処理との間に行う他に、乾燥及び熱キュア処理の後に行っても良く、熱カレンダー処理によって熱キュア処理とカレンダー処理(平滑化処理)とを同時に行っても良い。好ましい態様においては、多孔質微細セルロース繊維積層シート形成工程において、多層湿紙を乾燥させること、熱キュア、及びカレンダー処理をこの順で行う。熱キュア処理及びカレンダー処理の組合せを含む方法によって多孔質微細セルロース繊維シートを製造することは、目付10g/m2あたりの水系Wet強度0.3kg/15mm以上、及び/又は目付10g/m2あたりの非水系Wet強度0.3kg/15mm以上を有する多孔質微細セルロース繊維シートの製造において特に有利である。 When performing heat curing treatment in the production of a porous fine cellulose fiber sheet containing a block polyisocyanate, calendering treatment, in addition to performing between drying and heat curing treatment, may be performed after drying and heat curing treatment, The heat curing treatment and the calendering treatment (smoothing treatment) may be simultaneously performed by the heat calendering treatment. In a preferred embodiment, in the step of forming a porous fine cellulose fiber laminated sheet, drying of the multilayer wet paper, heat curing, and calendering are performed in this order. To produce the porous fine cellulose fiber sheet by a method comprising a combination of thermal curing process, and calendering, the basis weight 10 g / m 2 per aqueous Wet strength 0.3 kg / 15 mm or more, and / or basis weight 10 g / m 2 per Is particularly advantageous in the production of a porous fine cellulose fiber sheet having a non-aqueous Wet strength of 0.3 kg/15 mm or more.
 本実施形態の多孔質微細セルロース繊維複合化シートの製造方法について説明する。
本実施形態の多孔質微細セルロース繊維複合化シートは、上記した多孔質微細セルロース繊維シートに熱可塑性樹脂を含浸させることによって製造する。含浸方法としては、多孔質微細セルロース繊維シートと熱可塑性樹脂シートを重ねて、加圧熱プレス、真空プレス、真空加圧熱プレスする方法や、熱可塑性樹脂をエマルジョン状にして、多孔質微細セルロース繊維シートに含浸させ、溶媒を乾燥させた後、加圧熱プレス、真空プレス、真空加圧熱プレスする方法等が挙げられるが、これらに制限されない。また、本実施形態の多孔質微細セルロース繊維複合化シートは、熱可塑性樹脂が含浸した多孔質微細セルロース繊維複合化シートを複数枚重ね合わせて加圧熱プレス等で接合したものも含まれる。
A method for manufacturing the porous fine cellulose fiber composite sheet of this embodiment will be described.
The porous fine cellulose fiber composite sheet of the present embodiment is manufactured by impregnating the above-mentioned porous fine cellulose fiber sheet with a thermoplastic resin. As the impregnation method, a porous fine cellulose fiber sheet and a thermoplastic resin sheet are stacked and pressed hot press, vacuum press, vacuum pressure hot press, or the thermoplastic resin is made into an emulsion to obtain porous fine cellulose. Examples of the method include, but are not limited to, a method in which a fiber sheet is impregnated, a solvent is dried, and then pressure hot pressing, vacuum pressing, and vacuum pressure hot pressing are performed. Further, the porous fine cellulose fiber composite sheet of the present embodiment also includes a plurality of porous fine cellulose fiber composite sheets impregnated with a thermoplastic resin, which are superposed and joined by a pressure hot press or the like.
 多孔質微細セルロース繊維シートと熱可塑性樹脂の混合比(質量基準)は、特に制限されないが、1:99~99:1が熱可塑性樹脂を多孔質微細セルロース繊維シート内に含浸させる観点で好ましく、3:97~90:10がさらに好ましく、5:95~70:30が特に好ましい。 The mixing ratio (mass basis) of the porous fine cellulose fiber sheet and the thermoplastic resin is not particularly limited, but 1:99 to 99:1 is preferable from the viewpoint of impregnating the thermoplastic resin into the porous fine cellulose fiber sheet, It is more preferably 3:97 to 90:10, particularly preferably 5:95 to 70:30.
 熱可塑性樹脂としては、特に限定されないが、スチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリアセタール樹脂、ポリスルホン樹脂、フッ素系樹脂等が挙げられるが、多孔質微細セルロース繊維シートが熱劣化しない観点、及び多孔質微細セルロース繊維複合化シートを自動車用外板部品として好ましく用いる観点で、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリ(メタ)アクリレート樹脂、及びポリフェニレンエーテル樹脂が好ましく用いられる。なお、熱硬化性樹脂は、単独で用いても良く、2種類以上の異なる樹脂を用いても良い。 The thermoplastic resin is not particularly limited, and examples thereof include styrene resin, acrylic resin, polycarbonate resin, polyester resin, polyolefin resin, polyamide resin, polyphenylene ether resin, polyimide resin, polyacetal resin, polysulfone resin, and fluorine resin. , From the viewpoint that the porous fine cellulose fiber sheet is not deteriorated by heat, and from the viewpoint that the porous fine cellulose fiber composite sheet is preferably used as an outer panel part for automobiles, a polyolefin resin, a polyamide resin, a polyester resin, a polyacetal resin, poly(meth) Acrylate resins and polyphenylene ether resins are preferably used. The thermosetting resin may be used alone or two or more different resins may be used.
 本実施形態の多孔質微細セルロース繊維複合化シートは、熱可塑性樹脂に加えて、熱硬化性樹脂、及び/又は光硬化性樹脂を併用しても構わない。 The porous fine cellulose fiber composite sheet of the present embodiment may use a thermosetting resin and/or a photocurable resin in addition to the thermoplastic resin.
 熱硬化性樹脂としては、エポキシ樹脂、アクリル樹脂、オキセタン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ポリウレタン樹脂、アリルエステル樹脂、ジアリルフタレート樹脂等が挙げられるがこれらに制限されない。 Examples of the thermosetting resin include epoxy resin, acrylic resin, oxetane resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicone resin, polyurethane resin, allyl ester resin and diallyl phthalate resin. Not limited.
 光硬化性樹脂としては、エポキシ樹脂、アクリル樹脂、オキセタン樹脂等の前駆体が挙げられるがこれらに制限されない。 Examples of the photocurable resin include, but are not limited to, precursors such as epoxy resin, acrylic resin, and oxetane resin.
 一態様において、多孔質微細セルロース繊維複合化シートの総厚は、50μm~4000μm、又は100μm~3000μm、又は200μm~2000μmであってよい。一態様において、多孔質微細セルロース繊維複合化シートにおける、[多孔質微細セルロース繊維シート部位の合計厚み]/[基材シートの合計厚み]比は、1/20~1/1、又は1/10~19/20、又は1/5~9/10であってよい。 In one aspect, the total thickness of the porous fine cellulose fiber composite sheet may be 50 μm to 4000 μm, or 100 μm to 3000 μm, or 200 μm to 2000 μm. In one embodiment, the ratio of [total thickness of porous fine cellulose fiber sheet portion]/[total thickness of base material sheet] in the porous fine cellulose fiber composite sheet is 1/20 to 1/1, or 1/10. It may be ˜19/20, or ⅕ to 9/10.
 本実施形態の多孔質微細セルロース繊維複合化シートの線熱膨張係数(CTE)は、自動車外板部品として使用する観点で、温度範囲0℃~60℃におけるCTEは好ましくは50ppm以下であり、より好ましくは40ppm/K以下であり、より好ましくは30ppm/K以下であり、更に好ましくは20ppm/K以下である。CTEは、低いほど好ましいが、多孔質微細セルロース繊維複合化シートの製造容易性の観点から、例えば10ppm/k以上、又は15ppm/k以上であってよい。
 多孔質微細セルロース繊維複合化シートのCTEは、多孔質微細セルロース繊維複合化シートを精密カットソーにて縦4mm、横4mmでサンプル片を切り出し、測定温度範囲-10~80℃で測定し、0℃~60℃の間での膨張係数を算出する。
The linear thermal expansion coefficient (CTE) of the porous fine cellulose fiber composite sheet of the present embodiment is preferably 50 ppm or less in the temperature range of 0° C. to 60° C. from the viewpoint of use as an automobile outer panel component, and It is preferably 40 ppm/K or less, more preferably 30 ppm/K or less, and further preferably 20 ppm/K or less. The lower the CTE, the more preferable, but it may be, for example, 10 ppm/k or more, or 15 ppm/k or more from the viewpoint of the ease of manufacturing the porous fine cellulose fiber composite sheet.
The CTE of the porous fine cellulose fiber composite sheet was measured by cutting the porous fine cellulose fiber composite sheet into a length of 4 mm and a width of 4 mm with a precision cutting saw, measuring at a temperature range of -10 to 80°C, and measuring at 0°C. Calculate the expansion coefficient between ~60°C.
 本実施形態の多孔質微細セルロース繊維複合化シートのCTEの縦横比(異方性)は好ましくは0.5以上2.0以下、より好ましくは0.6以上1.5以下、さらに好ましくは0.7以上1.3以下、さらにより好ましくは0.8以上1.2以下、特に好ましくは0.9以上1.1以下、最も好ましくは0.95以上1.05以下である。樹脂成形体を製造し他素材の部品と接合した際の歪が起きにくいという観点から、CTEの縦横比が0.5以上2.0以下であることが望ましい。なおCTE測定サンプルにおいて、縦方向は任意に決めることができ、横方向は縦方向と直角の方向であり、上記CTEの縦横比の数値範囲は、CTE測定サンプルのいずれの方向を縦方向とした場合にも当該縦横比の値が上記範囲内であることが意図される。 The CTE aspect ratio (anisotropy) of the porous fine cellulose fiber composite sheet of the present embodiment is preferably 0.5 or more and 2.0 or less, more preferably 0.6 or more and 1.5 or less, and further preferably 0. 0.7 or more and 1.3 or less, more preferably 0.8 or more and 1.2 or less, particularly preferably 0.9 or more and 1.1 or less, and most preferably 0.95 or more and 1.05 or less. The aspect ratio of CTE is preferably 0.5 or more and 2.0 or less from the viewpoint that strain does not easily occur when a resin molded body is manufactured and joined to a component made of another material. In the CTE measurement sample, the vertical direction can be arbitrarily determined, the horizontal direction is a direction perpendicular to the vertical direction, and the numerical range of the aspect ratio of the CTE described above is defined as any direction of the CTE measurement sample. Also in this case, it is intended that the value of the aspect ratio is within the above range.
 本実施形態の多孔質微細セルロース繊維複合化シートにおいては、熱線膨張係数を低減する観点で、多孔質微細セルロース繊維シートに長さ(すなわちシートの破断長さ)1cm以上、幅(すなわち破断で生じたシート間間隙の最大幅)1mm以上の破断部が無いことがより好ましく、長さ0.5cm以上、幅1mm以上の破断部が無いことがより好ましく、破断部が全くないことが最も好ましい。なお、上記の破断部の有無は、多孔質微細セルロース繊維複合化シートの目視観察により確認できる。 In the porous fine cellulose fiber composite sheet of the present embodiment, from the viewpoint of reducing the coefficient of linear thermal expansion, the porous fine cellulose fiber sheet has a length (that is, a breaking length of the sheet) of 1 cm or more, and a width (that is, a break occurs). The maximum width of the inter-sheet gap) is more preferably not more than 1 mm, more preferably not more than 0.5 cm in length and not more than 1 mm in width, and most preferably no break. The presence or absence of the above-mentioned fractured portion can be confirmed by visual observation of the porous fine cellulose fiber composite sheet.
 本実施形態の多孔質微細セルロース繊維複合化シートは、機械物性、低熱線膨張の観点から、内包する多孔質微細セルロース繊維シートの空孔内部に樹脂が含浸していることが好ましい。多孔質微細セルロース繊維シートの空孔内部に樹脂が含浸しているか否かは、該多孔質微細セルロース繊維複合化シートの断面SEM(走査型電子顕微鏡)、或いは光学顕微鏡で観察することにより確認することができる。図1は、多孔質微細セルロース繊維複合化シートの断面SEM画像を示す図である。図1は、多孔質微細セルロース繊維シートAの空孔内部に熱可塑性樹脂Bが含浸していることを示している。多孔質微細セルロース繊維シートの空孔内部に樹脂が含浸していない場合は、複合化シート内部に気泡が観察される。当該複合化シート中に気泡が観察される部位としては、内包する多孔質微細セルロース繊維シートの空孔内部、多孔質微細セルロース繊維シートと樹脂層との層間、及び樹脂層内部の3か所があるが、その気泡率は、3か所すべて合わせて0.5%以下であることが好ましく、0.1%以下であることがより好ましく、0.01%以下であることが更に好ましく、気泡が無いことが最も好ましい。気泡率が0.5%以下であれば、多孔質微細セルロース繊維複合化シートの機械物性及び熱線膨張係数を良好にすることが容易である。本開示で、気泡率は、多孔質微細セルロース繊維複合化シートのSEM(走査型電子顕微鏡)断面観察像における面積比率として得られる値である。 In the porous fine cellulose fiber composite sheet of the present embodiment, from the viewpoint of mechanical properties and low thermal linear expansion, it is preferable that the pores of the porous fine cellulose fiber sheet to be contained are impregnated with resin. Whether or not the resin is impregnated inside the pores of the porous fine cellulose fiber sheet is confirmed by observing with a cross-section SEM (scanning electron microscope) or optical microscope of the porous fine cellulose fiber composite sheet. be able to. FIG. 1 is a view showing a cross-sectional SEM image of a porous fine cellulose fiber composite sheet. FIG. 1 shows that the pores of the porous fine cellulose fiber sheet A are impregnated with the thermoplastic resin B. When the resin is not impregnated inside the pores of the porous fine cellulose fiber sheet, bubbles are observed inside the composite sheet. As sites where bubbles are observed in the composite sheet, there are three locations inside the pores of the porous fine cellulose fiber sheet to be included, between the porous fine cellulose fiber sheet and the resin layer, and inside the resin layer. However, the bubble ratio in all three locations is preferably 0.5% or less, more preferably 0.1% or less, further preferably 0.01% or less, Is most preferable. When the bubble ratio is 0.5% or less, it is easy to improve the mechanical properties and the coefficient of linear thermal expansion of the porous fine cellulose fiber composite sheet. In the present disclosure, the bubble ratio is a value obtained as an area ratio in a SEM (scanning electron microscope) cross-section observation image of a porous fine cellulose fiber composite sheet.
 多孔質微細セルロース繊維複合化シートから微細セルロース繊維を取り出す方法としては、特に限定されないが、熱可塑性樹脂のみを選択的に溶解させる樹脂溶解剤を用いて微細セルロース繊維を抽出する方法が好ましく用いられる。例えば、ポリアミド樹脂を用いた多孔質微細セルロース繊維複合化シートの場合、ヘキサフルオロイソプロパノール、ギ酸等の樹脂溶解剤で溶解して微細セルロース繊維を分離し、上記樹脂溶解剤で充分に洗浄した後、樹脂溶解剤を、保存したい所望の溶媒に置換することで抽出することができる。 The method for extracting the fine cellulose fibers from the porous fine cellulose fiber composite sheet is not particularly limited, but a method for extracting the fine cellulose fibers using a resin dissolving agent that selectively dissolves only the thermoplastic resin is preferably used. .. For example, in the case of a porous fine cellulose fiber composite sheet using a polyamide resin, hexafluoroisopropanol, the fine cellulose fibers are separated by dissolving with a resin dissolving agent such as formic acid, after sufficiently washed with the resin dissolving agent, The resin solubilizer can be extracted by substituting the desired solvent to be stored.
 本実施形態の多孔質微細セルロース繊維複合化シートは、フェンダー、フロントバンパー、リアバンパー、ドアモジュール、ルーフ、フード、バックドアモジュール、アンダーボディ―パネル、シャーシ等、自動車用外板部品、自動車構造部品等に好適に用いることができる。特に、自動車用外板部品は、本実施形態の多孔質微細セルロース繊維複合化シートの線膨張係数と、隣接する金属部品の線膨張係数とが近いため、部品同士の干渉が小さくなり、より好ましい。したがって、本発明の一態様は、本開示の多孔質微細セルロース繊維複合化シートを含むセルロースナノファイバー強化樹脂成形体(一態様において、熱成形品)を含む自動車用外板部品である。 The porous fine cellulose fiber composite sheet of the present embodiment is a fender, a front bumper, a rear bumper, a door module, a roof, a hood, a back door module, an underbody panel, a chassis, etc., an automobile outer panel component, an automobile structural component, etc. Can be suitably used. In particular, the outer panel part for automobiles is more preferable because the linear expansion coefficient of the porous fine cellulose fiber composite sheet of the present embodiment and the linear expansion coefficient of the adjacent metal parts are close to each other, so that interference between the parts is reduced. .. Therefore, one aspect of the present invention is an automobile outer panel component including a cellulose nanofiber reinforced resin molded article (a thermoformed article in one aspect) that includes the porous fine cellulose fiber composite sheet of the present disclosure.
 以下、実施例を挙げて本実施形態を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、物性の主な測定値は以下の方法で測定した。 Hereinafter, the present embodiment will be specifically described with reference to examples, but the present invention is not limited to these examples. The main measured values of physical properties were measured by the following methods.
(1)微細セルロース繊維の数平均繊維径
 微細セルロース繊維の数平均繊維径はtert-ブタノール置換により得られた多孔質サンプルを比表面積測定することで求めた。まず、微細セルロース繊維スラリーA-1~A-3の遠心分離により濃縮物を得た(固形分率5質量%以上)。続いて、微細セルロース繊維0.5gを含む該濃縮物を濃度が0.2質量%となるように、該濃縮物をtert-ブタノール中に分散させ、さらに超音波分散等で凝集物が無い状態まで分散処理を行った。得られたtert-ブタノール分散液100gをろ紙(5C, アドバンテック, 直径90mm)上で濾過を行い、フィルター上に形成された湿紙を150℃にて乾燥させ、多孔質サンプルを得た。このシートの透気抵抗度がシート目付10g/m2あたり100sec/100ml以下のものを多孔質サンプルとし、測定した。
23℃、50%RHの環境で1日静置した多孔質サンプルの目付W(g/m2)を測定した後、王研式透気抵抗試験機(旭精工(株)製、型式EG01)を用いて透気抵抗度R(sec/100ml)を測定した。この時、下記式(14)に従い、10g/m2目付あたりの値を算出した。
目付10g/m2あたり透気抵抗度(sec/100ml)=R/W×10 式(14)
 つづいて、比表面積・細孔分布測定装置(Nova-4200e, カンタクローム・インスツルメンツ社製)にて、多孔質サンプル約0.2gを真空下で120℃、2時間乾燥を行った後、液体窒素の沸点における窒素ガスの吸着量を相対蒸気圧(P/P0)が0.05以上0.2以下の範囲にて5点測定した後(多点法)、同装置プログラムによりBET比表面積(m2/g)を算出した。得られたBET比表面積を下記式(15)に代入し、微細セルロース繊維の数平均繊維径を算出した。
   D(nm)=2667/BET比表面積(m2/g)式(15)
(1) Number average fiber diameter of fine cellulose fibers The number average fiber diameter of fine cellulose fibers was determined by measuring the specific surface area of a porous sample obtained by tert-butanol substitution. First, a concentrate was obtained by centrifuging the fine cellulose fiber slurries A-1 to A-3 (solid content 5% by mass or more). Subsequently, the concentrate containing 0.5 g of fine cellulose fibers was dispersed in tert-butanol so that the concentration became 0.2% by mass, and further, ultrasonication or the like was performed to eliminate aggregates. Distributed processing was performed. 100 g of the obtained tert-butanol dispersion liquid was filtered on a filter paper (5C, Advantech, diameter 90 mm), and the wet paper web formed on the filter was dried at 150° C. to obtain a porous sample. The air permeation resistance of this sheet was 100 sec/100 ml or less per 10 g/m 2 of sheet weight, which was measured as a porous sample.
After measuring the basis weight W (g/m 2 ) of the porous sample that was left standing for 1 day in an environment of 23° C. and 50% RH, Oken type air resistance tester (manufactured by Asahi Seiko Co., Ltd., model EG01) Was used to measure the air resistance R (sec/100 ml). At this time, the value per 10 g/m 2 basis weight was calculated according to the following formula (14).
Air permeability resistance per unit weight of 10 g/m 2 (sec/100 ml)=R/W×10 Formula (14)
Subsequently, with a specific surface area/pore distribution measuring device (Nova-4200e, manufactured by Kantachrome Instruments, Inc.), about 0.2 g of a porous sample was dried under vacuum at 120° C. for 2 hours, and then liquid nitrogen was used. After measuring the adsorption amount of nitrogen gas at the boiling point of 5 points at a relative vapor pressure (P/P 0 ) in the range of 0.05 to 0.2 (multipoint method), the BET specific surface area ( m 2 / g) was calculated. The obtained BET specific surface area was substituted into the following formula (15), and the number average fiber diameter of the fine cellulose fibers was calculated.
D (nm)=2667/BET specific surface area (m 2 /g) Formula (15)
(2)枝分かれ構造を有する微細セルロース繊維の有無
 前記枝分かれ構造を有する微細セルロース繊維の有無は、tert-ブタノールに分散させた微細セルロース繊維スラリー(固形分率:0.5質量%)を高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で分散させた水分散体を、0.1質量%までtert-ブタノールで希釈し、親水化処理をしたSi基板上にキャストし、風乾したものを測定サンプルとし、走査型顕微鏡(SEM)で2000倍の倍率(視野サイズは60μm×60μmとなる)で10視野観察した。10視野のうち、前記繊維径1μm~30μmの太い幹から繊維径2~1000nmの細い枝が分岐している枝分かれ構造を有する微細セルロース繊維が1視野以上確認された時を「あり」、全く確認されなかった時を「なし」とした。
(2) Presence or absence of fine cellulose fibers having a branched structure The presence or absence of the fine cellulose fibers having a branched structure is determined by using a high shear homogenizer prepared by dispersing a fine cellulose fiber slurry (solid content: 0.5% by mass) dispersed in tert-butanol. (For example, manufactured by Nippon Seiki Co., Ltd., trade name “Excel Auto Homogenizer ED-7”), and treatment conditions: an aqueous dispersion dispersed at a rotation speed of 15,000 rpm×5 minutes is tert up to 0.1% by mass. -10 fields of view with a scanning microscope (SEM) at a magnification of 2000 times (field size is 60 μm×60 μm), which was diluted with butanol, cast on a hydrophilized Si substrate, and air-dried. I observed. Of the 10 fields of view, the presence of one or more fields of fine cellulose fibers having a branched structure in which a thin trunk having a fiber diameter of 2 to 1000 nm branches from the thick trunk having a fiber diameter of 1 μm to 30 μm was confirmed as “yes”, and absolutely confirmed. When it was not done, it was set as "none".
(3)目付
 室温23℃、湿度50%RHに制御された環境下に24時間保管した多孔質微細セルロース繊維シートを20cm×20cmに裁断し(面積0.04m2)、質量W1(g)を計測し、下記式(16)より算出した。
目付W(g/m2)=W1/0.04 式(16)
(3) Unit weight A porous fine cellulose fiber sheet stored for 24 hours in an environment controlled at room temperature of 23° C. and humidity of 50% RH is cut into 20 cm×20 cm (area 0.04 m 2 ) and mass W1 (g) is obtained. It was measured and calculated from the following formula (16).
Basis weight W (g/m 2 )=W1/0.04 formula (16)
(4)アセチル化度(DS)
 微細セルロース繊維のアセチル化度(DS)は赤外分光測定より算出した。多孔質サンプルのATR-IR法による赤外分光スペクトルを、フーリエ変換赤外分光光度計(JASCO社製 FT/IR-6200)で測定した。赤外分光スペクトル測定は以下の条件で行った。
 積算回数:64回、
 波数分解能:4cm-1
 測定波数範囲:4000~600cm-1
 ATR結晶:ダイヤモンド、
 入射角度:45°
得られたIRスペクトルよりIRインデックスを、下記式(17):
 IRインデックス= H1730/H1030 式(17)
に従って算出した。式中、H1730及びH1030は1730cm-1、1030cm-1(セルロース骨格鎖C-O伸縮振動の吸収バンド)における吸光度である。ただし、それぞれ1900cm-1と1500cm-1を結ぶ線と800cm-1と1500cm-1を結ぶ線をベースラインとして、このベースラインを吸光度0とした時の吸光度を意味する。
 そして、微細セルロース繊維の平均置換度(DS)をIRインデックスより下記式(18)に従って算出した。
 DS=4.13×IRインデックス 式(18)
(4) Degree of acetylation (DS)
The acetylation degree (DS) of the fine cellulose fiber was calculated by infrared spectroscopy. The infrared spectroscopic spectrum of the porous sample by the ATR-IR method was measured with a Fourier transform infrared spectrophotometer (FT/IR-6200 manufactured by JASCO). The infrared spectroscopic spectrum was measured under the following conditions.
Total number of times: 64 times
Wave number resolution: 4 cm -1 ,
Measuring wave number range: 4000-600 cm -1 ,
ATR crystal: diamond,
Incident angle: 45°
The IR index is calculated from the obtained IR spectrum by the following formula (17):
IR index=H1730/H1030 Formula (17)
Was calculated according to. In the formula, H1730 and H1030 are absorbances at 1730 cm −1 and 1030 cm −1 (absorption band of cellulose skeleton chain CO stretching vibration). However, the line connecting 1900 cm −1 and 1500 cm −1 and the line connecting 800 cm −1 and 1500 cm −1 are taken as the baseline, and the absorbance when the baseline is set to 0 is meant.
Then, the average substitution degree (DS) of the fine cellulose fibers was calculated from the IR index according to the following formula (18).
DS=4.13×IR index formula (18)
(5)CTE
 室温23℃、湿度50%RHに制御された環境下に24時間保管した多孔質微細セルロース繊維複合化シートからサンプル片を4mm×4mmで2枚切り出し、TA Instruments製の熱機械分析装置Q400で多孔質微細セルロース繊維シートの縦及び横それぞれの方向について温度範囲-10~80℃で測定し、0℃~60℃のCTEを算出した。なおCTE測定サンプルにおいて、縦方向は、サンプル片から任意に決め、横方向は縦方向と直角の方向とした。
(5) CTE
Two sample pieces of 4 mm x 4 mm were cut out from a porous fine cellulose fiber composite sheet stored for 24 hours in an environment controlled at room temperature of 23°C and humidity of 50% RH, and were perforated by a thermomechanical analyzer Q400 manufactured by TA Instruments. The fine and fine cellulose fiber sheet was measured in the longitudinal and transverse directions in a temperature range of -10 to 80°C, and the CTE of 0 to 60°C was calculated. In the CTE measurement sample, the vertical direction was arbitrarily determined from the sample pieces, and the horizontal direction was the direction perpendicular to the vertical direction.
(6)多孔質微細セルロース繊維シートの膜厚
 室温23℃、湿度50%RHに制御された環境下に24時間保管した多孔質微細セルロース繊維複合化シートからサンプル片を任意に10か所切り出し、各々断面SEMで多孔質微細セルロース繊維シート部の厚みをすべて計測した。得られた計測値×上記10か所での数平均値を、多孔質微細セルロース繊維シートの膜厚(μm)とした。
(6) Film Thickness of Porous Fine Cellulose Fiber Sheet A sample piece is arbitrarily cut out from 10 locations from the porous fine cellulose fiber composite sheet stored for 24 hours in an environment controlled at room temperature of 23° C. and humidity of 50% RH, All the thickness of the porous fine cellulose fiber sheet portion was measured by the cross-section SEM. The obtained measured value×the number average value at the above 10 points was taken as the film thickness (μm) of the porous fine cellulose fiber sheet.
(7)シート厚
 室温23℃、湿度50%RHに制御された環境下に24時間保管した多孔質微細セルロース繊維複合化シートからサンプル片を任意に10か所切り出し、各々光学顕微鏡で、多孔質微細セルロース繊維複合化シート総厚みを計測した。10か所の厚みの平均値をシート厚(μm)とした。
(7) Sheet thickness 10 pieces of sample pieces were arbitrarily cut from the porous fine cellulose fiber composite sheet stored for 24 hours in an environment controlled at room temperature of 23° C. and humidity of 50% RH, and each piece was made porous by an optical microscope. The total thickness of the fine cellulose fiber composite sheet was measured. The average value of the thickness at 10 places was defined as the sheet thickness (μm).
(8)気泡率
 室温23℃、湿度50%RHに制御された環境下に24時間保管した多孔質微細セルロース繊維複合化シートからサンプル片を任意に10か所切り出し、各々1000倍で断面SEM観察を行った。複合化シートの表面から裏面までを含む断面視野内の気泡率は、下記式で表すことができる。
気泡率(%)=気泡面積/複合化シート断面積×100(10視野の平均値;SEM)
(8) Bubble ratio 10 pieces of sample pieces were arbitrarily cut out from the porous fine cellulose fiber composite sheet stored for 24 hours in an environment controlled at room temperature of 23°C and humidity of 50% RH, and cross-sectional SEM observation was performed at 1000 times each. I went. The bubble ratio in the cross-sectional visual field including the front surface to the back surface of the composite sheet can be expressed by the following formula.
Bubble ratio (%) = bubble area/composite sheet cross-sectional area x 100 (average value of 10 fields of view; SEM)
(9)シート破断部の有無
 室温23℃、湿度50%RHに制御された環境下に24時間保管した多孔質微細セルロース繊維複合化シートを上方から目視で観察した際に、長さ1cm以上、幅1mm以上の破断部がある場合をシート破断あり、破断部が無い場合をシート破断なしとした。シート長さ1cm以上、幅1mm以上の破断部のある多孔質微細セルロース複合化シートの例を図2に示した(図2中の破断部Cを参照のこと。)。また破断部が無い多孔質微細セルロース複合化シートの例を図3に示した。
(9) Presence or absence of sheet breakage When visually observing from above the porous fine cellulose fiber composite sheet stored for 24 hours in an environment controlled at room temperature of 23° C. and humidity of 50% RH, a length of 1 cm or more, The sheet was broken when there was a break with a width of 1 mm or more, and the sheet was not broken when there was no break. An example of a porous fine cellulose composite sheet having a rupture portion having a sheet length of 1 cm or more and a width of 1 mm or more is shown in FIG. 2 (see the rupture portion C in FIG. 2). An example of a porous fine cellulose composite sheet having no breakage is shown in FIG.
(10)多孔質微細セルロース繊維シート内への熱可塑性樹脂の含浸の有無
 (8)で任意に10か所切り出したサンプルを用いて、1000倍の倍率で断面SEM観察を行い、当該複合化シートが内包する多孔質微細セルロース繊維シート内のボイドの有無を観察した。直径1μm以上のボイドが観察されなかった場合を含浸あり、直径1μm以上のボイドが観察された場合を含浸なしとした。
(10) Presence or absence of impregnation of the thermoplastic resin into the porous fine cellulose fiber sheet Using the sample arbitrarily cut at 10 locations in (8), cross-sectional SEM observation was performed at 1000 times magnification, and the composite sheet was obtained. The presence or absence of voids was observed in the porous fine cellulosic fiber sheet that was encapsulated. Impregnation was carried out when no void having a diameter of 1 μm or more was observed, and no impregnation was conducted when a void having a diameter of 1 μm or more was observed.
(11)繊維含有率
 多孔質微細セルロース繊維複合化シートをヘキサフルオロイソプロパノールに浸漬し、樹脂成分を溶解させた後、遠心分離機で微細セルロース繊維を分取し、水洗及び風乾して微細セルロース繊維の質量を測定した。多孔質微細セルロース繊維複合化シートに対する上記微細セルロース繊維の質量パーセントを繊維含有率(質量%)とした。
(11) Fiber content The porous fine cellulose fiber composite sheet is immersed in hexafluoroisopropanol to dissolve the resin component, and then the fine cellulose fiber is separated by a centrifuge, washed with water and air-dried to obtain fine cellulose fiber. Was measured. The mass percentage of the above-mentioned fine cellulose fibers to the porous fine cellulose fiber composite sheet was defined as the fiber content (mass %).
(12)多孔質微細セルロース繊維複合化シートに含まれる多孔質化剤の量
 多孔質微細セルロース繊維複合化シートを用いて、下記要領にてクロロホルムでソックスレー抽出を行い、溶液NMRで多孔質化剤の定量分析を行った。得られた結果から、多孔質微細セルロース繊維複合化シートに含まれる多孔質化剤の量(質量%)を求めた。
(12) Amount of Porosifying Agent Included in Porous Fine Cellulose Fiber Composite Sheet Using the porous fine cellulose fiber composite sheet, Soxhlet extraction was performed with chloroform in the following manner, and the porosifying agent was measured by solution NMR. Was quantitatively analyzed. From the obtained results, the amount (mass %) of the porosifying agent contained in the porous fine cellulose fiber composite sheet was determined.
<ソックスレー処理>
 多孔質微細セルロース繊維複合化シート0.5755gをクロロホルム120mlでソックスレー抽出(80℃/10時間)し、窒素ブローにて濃縮乾固した。得られた固化物をアセトンで10mlにメスアップして、この溶液から4mlを取得し、窒素ブローで濃縮乾固することで、1H-NMR測定用の試料を得た。上記試料に、溶媒CDC13 0.75mlを添加し、さらに内部標準用としてDMF溶液(DMF 1000質量ppm含有のCDCl3溶液)を100μl添加することで、1H-NMR測定用の試料とした。
<測定条件>
装置:JEOL-ECZ500
観測核:1H
パルス幅:45°
待ち時間:5秒
積算:128回
溶媒:CDCl3
温度:23℃
化学シフト基準:TMS 0.00ppm
<Soxhlet treatment>
0.5755 g of the porous fine cellulose fiber composite sheet was Soxhlet extracted (80° C./10 hours) with 120 ml of chloroform, and concentrated and dried by nitrogen blowing. The obtained solidified product was made up to 10 ml with acetone, 4 ml was obtained from this solution, and concentrated to dryness by nitrogen blowing to obtain a sample for 1 H-NMR measurement. To the above sample, 0.75 ml of the solvent CDC1 3 was added, and 100 μl of a DMF solution (CDCl 3 solution containing 1000 mass ppm of DMF) was added as an internal standard to obtain a sample for 1 H-NMR measurement.
<Measurement conditions>
Device: JEOL-ECZ500
Observation nucleus: 1H
Pulse width: 45°
Wait time: 5 seconds Integration: 128 times Solvent: CDCl 3
Temperature: 23 ℃
Chemical shift standard: TMS 0.00ppm
 微細セルロース繊維スラリー3種類を下記の方法で製造した。
[製造例1-1]
 日本紙パルプ商事(株)より入手したコットンリンターパルプを10質量%となるように水に浸漬させてオートクレーブ内で130℃、4時間の熱処理を行った。得られた膨潤パルプは水洗し、水を含む精製パルプを得た。つづいて、精製パルプを固形分1.5質量%となるように水中に分散させて、ディスクリファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmで20分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で徹底的に叩解を行い、微細セルロース繊維スラリーA-1(固形分濃度:1.5質量%)を得た。
Three types of fine cellulose fiber slurries were produced by the following method.
[Production Example 1-1]
Cotton linter pulp obtained from Nippon Pulp and Paper Co., Ltd. was immersed in water so as to be 10% by mass, and heat-treated at 130° C. for 4 hours in an autoclave. The obtained swollen pulp was washed with water to obtain a purified pulp containing water. Subsequently, the refined pulp was dispersed in water so as to have a solid content of 1.5% by mass, and a disk refiner SDR14 type lab refiner (pressurized DISK type) manufactured by Aikawa Iron Works Co., Ltd. was used, and clearance between the discs was used. Was beaten at 1 mm for 20 minutes. Subsequent to that, thorough beating under conditions where the clearance was reduced to a level close to zero to obtain a fine cellulose fiber slurry A-1 (solid content concentration: 1.5% by mass).
[製造例1-2]
 微細セルロース繊維スラリーA-1の溶媒を水からジメチルスルホキシド(DMSO)に置換するため、該CNFスラリー10質量部を脱水機により固形分が10質量%以上にまで濃縮後、防爆型ディスパーザータンクに投入したDMSO100質量部中へ該濃縮スラリーを投入、20分間撹拌後、固形分が10質量%以上にまで脱水機による濃縮を行った。この操作をさらに2回行った後、防爆型ディスパーザータンクにてDMSO100質量部中へ再濃縮スラリーを投入、30分間撹拌後、3質量部の酢酸ビニルと1質量部の重曹を投入、タンク内温度を40℃とし、60分間撹拌を行った。得られたスラリーを100質量部の純水中に分散、撹拌した後、脱水機で濃縮した。つづいて、得られたウェットケーキを再度100質量部の純水に分散、撹拌、濃縮する洗浄操作を合計3回繰り返すことで、未反応試薬溶媒等を除去した。洗浄操作を3回繰り返し、最終的に純水を加え、アセチル化微細セルロース繊維スラリーA-2(固形分率:1.5質量%)を得た。アセチル化度(DS)は0.5であった。
[Production Example 1-2]
In order to replace the solvent of the fine cellulose fiber slurry A-1 with water and dimethyl sulfoxide (DMSO), 10 parts by mass of the CNF slurry was concentrated with a dehydrator to a solid content of 10% by mass or more and then placed in an explosion-proof disperser tank. The concentrated slurry was charged into 100 parts by mass of DMSO charged, stirred for 20 minutes, and then concentrated by a dehydrator until the solid content became 10% by mass or more. After performing this operation two more times, the re-concentrated slurry was put into 100 parts by mass of DMSO in an explosion-proof disperser tank, stirred for 30 minutes, and then 3 parts by mass of vinyl acetate and 1 part by mass of baking soda were put in the tank. The temperature was set to 40° C. and stirring was performed for 60 minutes. The obtained slurry was dispersed in 100 parts by mass of pure water, stirred, and then concentrated with a dehydrator. Subsequently, the obtained wet cake was again dispersed in 100 parts by mass of pure water, and the washing operation of stirring and concentrating was repeated 3 times in total to remove the unreacted reagent solvent and the like. The washing operation was repeated 3 times, and finally pure water was added to obtain acetylated fine cellulose fiber slurry A-2 (solid content: 1.5% by mass). The degree of acetylation (DS) was 0.5.
[製造例1-3]
 製造例1-1で得られた微細セルロース繊維スラリーA-1(固形分濃度:1.5質量%)について、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NSO15H)を用いて操作圧力100MPa下で10回の微細化処理を実施し、微細セルロース繊維スラリーA-3(固形分濃度:1.5質量%)を得た。
[Production Example 1-3]
The fine cellulose fiber slurry A-1 (solid content concentration: 1.5% by mass) obtained in Production Example 1-1 was directly used for a high pressure homogenizer (NSO15H manufactured by Niro Soavi (Italy) Co., Ltd.) under an operating pressure of 100 MPa. Was subjected to 10 times of refining treatment to obtain a fine cellulose fiber slurry A-3 (solid content concentration: 1.5% by mass).
[製造例2-1~2-5]
 微細セルロース繊維スラリーA-1~A-3のいずれか一つをスリーワンモーターで撹拌させながら、下記多孔質化剤C(1.0質量%水溶液)及び/又は下記ブロックポリイソシアネートD(固形分濃度1.0質量%分散液)又はイソプロパノール(スラリー100mlに対して15mlの割合)を表1に記載の組成で滴下し、3分間撹拌することで抄紙スラリーB-1~B-5のいずれか1つを得た。なお、多孔質化剤は水に溶解しないため、添加する直前に手で激しく振とうした上で分取した。微細セルロース繊維重量に対する添加した多孔質化剤固形分重量とブロックポリイソシアネート固形分重量が共に6%になるように調整した。
C:エマルゲン103(E103とも言う)、ポリオキシエチレンラウリルエーテル、HLB8.1、花王社製(数平均分子量:324)
D:メイカネートCX(CXとも言う)、明成化学工業社製
[Production Examples 2-1 to 2-5]
While stirring any one of the fine cellulose fiber slurries A-1 to A-3 with a three-one motor, the following porosifying agent C (1.0 mass% aqueous solution) and/or the following block polyisocyanate D (solid content concentration) 1.0% by mass dispersion) or isopropanol (ratio of 15 ml to 100 ml of slurry) was added dropwise with the composition shown in Table 1, and the mixture was stirred for 3 minutes to prepare one of the papermaking slurries B-1 to B-5. Got one. Since the porosity-imparting agent is not dissolved in water, it was shaken vigorously by hand just before addition and then collected. The weight of the solid content of the added porosifying agent and the weight of the solid content of the blocked polyisocyanate were both adjusted to 6% with respect to the weight of the fine cellulose fibers.
C: Emulgen 103 (also referred to as E103), polyoxyethylene lauryl ether, HLB8.1, manufactured by Kao Corporation (number average molecular weight: 324)
D: Meikanate CX (also called CX), manufactured by Meisei Chemical Industry Co., Ltd.
[実施例1~5、比較例1~4]
 PET/ナイロン混紡製の平織物(敷島カンバス社製、NT20、大気下25℃での水透過量:0.03ml/(cm2・s)、微細セルロース繊維を大気圧下25℃における濾過で99%以上濾別する能力あり)をセットしたバッチ式抄紙機(熊谷理機工業社製、自動角型シートマシーン 25cm×25cm、80メッシュ)に目付Eg/m2の多孔質微細セルロース繊維シートを目安に、抄紙スラリーを投入し、その後大気圧に対する減圧度を4KPaとして抄紙(脱水)し、湿紙を得た。
 得られた湿紙に同じPET/ナイロン混紡製の平織物を被せ布として被せた後、濾布ごと抄紙機から剥がした。つづいて、ボール紙に挟んで1kg/cm2の圧力で1分間プレスした後、表面温度が130℃に設定されたドラムドライヤーに被せ布面がドラム面に接触するようにして約120秒間乾燥させた。得られた被せ布/シート/濾布の3層体から被せ布及び濾布を剥離させることで、微細セルロース繊維から構成される多孔質微細セルロース繊維シート(25cm×25cm)を得た。
 ブロックポリイソシアネートを含むシートについては、25cm角の金枠で挟んだ状態で170℃のオーブンで5min間、熱キュアを行った。
[Examples 1 to 5, Comparative Examples 1 to 4]
Plain woven fabric made of PET/nylon blend (NT20, manufactured by Shikishima Canvas Co., Ltd., water permeation amount at atmospheric temperature 25° C.: 0.03 ml/(cm 2 ·s), fine cellulose fiber by filtration at atmospheric pressure 25° C. 99 Percentage of Eg/m 2 porous fine cellulose fiber sheet is used as a guide in a batch type paper machine (manufactured by Kumagai Riki Kogyo Co., Ltd., automatic square sheet machine 25 cm x 25 cm, 80 mesh) set with the ability to filter more than 100%. Then, the papermaking slurry was added thereto, and then the papermaking (dehydration) was carried out at a reduced pressure degree with respect to atmospheric pressure of 4 KPa to obtain a wet paper.
The obtained wet paper was covered with the same PET/nylon mixed-spun plain fabric as a cloth, and then the whole filter cloth was peeled off from the paper machine. Then, after sandwiching it in a cardboard and pressing it at a pressure of 1 kg/cm 2 for 1 minute, cover it with a drum dryer whose surface temperature is set to 130° C. and let it dry for about 120 seconds so that the cloth surface contacts the drum surface. It was By peeling the covering cloth and the filter cloth from the obtained three-layered body of covering cloth/sheet/filter cloth, a porous fine cellulose fiber sheet (25 cm×25 cm) composed of fine cellulose fibers was obtained.
The sheet containing the blocked polyisocyanate was heat-cured in an oven at 170° C. for 5 minutes while being sandwiched between 25 cm square metal frames.
 得られた多孔質微細セルロース繊維シートに対し水を霧吹きで均一に掛けた後、オーブンで再度130℃、5時間乾燥した。乾燥後の多孔質微細セルロース繊維シートを10cm角に裁断した後、両側をナイロン6フィルム(PA6とも言う、フィルム厚み:Fμm)で挟み、250℃の温度で真空熱プレスを面圧3MPaの条件で、10分実施した。真空熱プレス装置は、井元製作所製IMC-1AE4を用いた。得られた多孔質微細セルロース繊維複合化シートの結果を表2に示す。ナイロン6フィルムについては宇部興産製1013Bを用いてTダイで製膜したものを用いた。その後、面圧3MPaの条件で樹脂含浸が良、シート破れが良のサンプルは、樹脂含浸が不良若しくはシート破れが不良になるまで圧力を上げ1MPaずつ圧力を上げていき、樹脂含浸が良で且つシートが破れない最大圧力を求めた。また、逆に3MPaから1MPaずつ下げていき、樹脂含浸が不良若しくはシート破れが不良になる圧力まで下げていき、シートが破れず且つ樹脂含浸が良になる最小圧力を求めた。一方、3MPaの条件で樹脂含浸が不良、若しくはシート破れが不良のサンプルは、1MPaずつ圧力を下げていき、同様に最小圧力と最大圧力を求めた。上記最小圧力と最大圧力の差をプレス範囲とした。
 なお、得られた多孔質微細セルロース繊維複合化シートをヘキサフルオロイソプロパノールに溶解させ、微細セルロース繊維を抽出して、セルロースの平均繊維径、枝分かれ構造の有無、アセチル化度を評価したが、複合化に用いた多孔質微細セルロース繊維シートの値(表1に記載)と同じ値であった。
 抄紙及び樹脂複合化の組成及び条件を表1、及び表2に記載する。
Water was evenly sprayed on the obtained porous fine cellulose fiber sheet and then dried again in an oven at 130° C. for 5 hours. After cutting the dried porous fine cellulose fiber sheet into 10 cm squares, both sides were sandwiched with nylon 6 film (also referred to as PA6, film thickness: F μm), and vacuum hot press was performed at a temperature of 250° C. under a surface pressure of 3 MPa. It carried out for 10 minutes. As the vacuum heat press device, IMC-1AE4 manufactured by Imoto Machinery Co., Ltd. was used. The results of the obtained porous fine cellulose fiber composite sheet are shown in Table 2. As the nylon 6 film, a film formed by T-die using 1013B manufactured by Ube Industries was used. After that, for the sample with good resin impregnation and good sheet breakage under a surface pressure of 3 MPa, the pressure was increased by 1 MPa until the resin impregnation was poor or the sheet breakage was poor, and the resin impregnation was good and The maximum pressure at which the sheet did not break was calculated. Further, conversely, the pressure was lowered from 3 MPa by 1 MPa to a pressure at which resin impregnation was poor or sheet breakage was poor, and the minimum pressure at which the sheet did not break and the resin impregnation was good was determined. On the other hand, in the case of the resin impregnation failure or the sheet breakage failure under the condition of 3 MPa, the pressure was decreased by 1 MPa, and the minimum pressure and the maximum pressure were similarly obtained. The difference between the minimum pressure and the maximum pressure was defined as the pressing range.
The obtained porous fine cellulose fiber composite sheet was dissolved in hexafluoroisopropanol, and the fine cellulose fibers were extracted to evaluate the average fiber diameter of cellulose, the presence or absence of a branched structure, and the degree of acetylation. The value was the same as the value (described in Table 1) of the porous fine cellulose fiber sheet used for.
Tables 1 and 2 show the composition and conditions for papermaking and resin compounding.
[実施例6]
 実施例5で得られた多孔質微細セルロース繊維複合化シートを10枚重ね合わせて、面圧5MPaの条件で加熱プレスを行い、シート厚み2250μmの多孔質微細セルロース複合化シートを得た。なお、得られた多孔質微細セルロース繊維複合化シートをヘキサフルオロイソプロパノールに溶解させ、微細セルロース繊維を抽出して、セルロースの平均繊維径、枝分かれ構造の有無、アセチル化度を評価したが、複合化に用いた多孔質微細セルロース繊維シートの値(表1に記載)と同じ値であった。抄紙及び樹脂複合化の組成及び条件を表1、及び表2に記載する。
[Example 6]
Ten porous fine cellulose fiber composite sheets obtained in Example 5 were superposed and heated and pressed under a surface pressure of 5 MPa to obtain a porous fine cellulose composite sheet having a sheet thickness of 2250 μm. The obtained porous fine cellulose fiber composite sheet was dissolved in hexafluoroisopropanol, and the fine cellulose fibers were extracted to evaluate the average fiber diameter of cellulose, the presence or absence of a branched structure, and the degree of acetylation. The value was the same as the value (described in Table 1) of the porous fine cellulose fiber sheet used for. Tables 1 and 2 show the composition and conditions for papermaking and resin compounding.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態の多孔質微細セルロース繊維複合化シートは、自動車用外板部品及び構造部品として好適に適用できる。本実施形態の多孔質微細セルロース繊維複合化シートは、特にマテリアルリサイクル可能な熱可塑性樹脂を含浸させて製造することを特徴としており、例えば鋼板、炭素繊維強化プラスチック、及びガラス繊維強化プラスチックの代替としても好適に使用できる。本実施形態の多孔質微細セルロース繊維複合化シートは、具体的には、自動車用部材として、フェンダー、フロントバンパー、リアバンパー、ドアモジュール、ルーフ、フード、バックドアモジュール、アンダーボディ―パネル、シャーシ等に好適に用いることができる。 The porous fine cellulose fiber composite sheet of this embodiment can be suitably applied as an outer panel component and a structural component for automobiles. The porous fine cellulose fiber composite sheet of the present embodiment is characterized in that it is manufactured by impregnating a material recyclable thermoplastic resin, for example, as a substitute for a steel plate, carbon fiber reinforced plastic, and glass fiber reinforced plastic. Can also be preferably used. The porous fine cellulose fiber composite sheet of the present embodiment is specifically used as a vehicle member such as a fender, a front bumper, a rear bumper, a door module, a roof, a hood, a back door module, an underbody panel, a chassis and the like. It can be preferably used.

Claims (16)

  1.  以下の(1)~(4)の要件:
    (1)平均繊維径が2nm以上1000nm以下の多孔質微細セルロース繊維シートを1層以上含むこと、
    (2)多孔質微細セルロース繊維シートが膜厚25μm以上、2000μm以下で配置されていること、
    (3)熱可塑性樹脂を含むこと、
    (4)多孔質化剤を含むこと、
    を全て満たす、多孔質微細セルロース繊維複合化シート。
    The following requirements (1) to (4):
    (1) Containing one or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less,
    (2) The porous fine cellulose fiber sheet is arranged with a film thickness of 25 μm or more and 2000 μm or less,
    (3) Including a thermoplastic resin,
    (4) Including a porosifying agent,
    A porous fine cellulose fiber composite sheet that satisfies all of the above.
  2.  以下の(1)~(4)の要件:
    (1)平均繊維径が2nm以上1000nm以下の多孔質微細セルロース繊維シートを1層以上含むこと
    (2)多孔質微細セルロース繊維シートが膜厚25μm以上、4000μm以下で配置されていること、
    (3)熱可塑性樹脂を含むこと、
    (4)前記熱可塑性樹脂が前記多孔質微細セルロース繊維シートに含浸されていること、
    を全て満たす、多孔質微細セルロース繊維複合化シート。
    The following requirements (1) to (4):
    (1) One or more layers of porous fine cellulose fiber sheet having an average fiber diameter of 2 nm or more and 1000 nm or less are included (2) The porous fine cellulose fiber sheet is arranged with a film thickness of 25 μm or more and 4000 μm or less,
    (3) Including a thermoplastic resin,
    (4) The porous fine cellulose fiber sheet is impregnated with the thermoplastic resin,
    A porous fine cellulose fiber composite sheet that satisfies all of the above.
  3.  前記多孔質微細セルロース繊維複合化シートのシート厚が50μm以上、4000μm以下である、請求項2に記載の多孔質微細セルロース繊維複合化シート。 The porous fine cellulose fiber composite sheet according to claim 2, wherein the sheet thickness of the porous fine cellulose fiber composite sheet is 50 μm or more and 4000 μm or less.
  4.  多孔質化剤を含む、請求項2又は3に記載の多孔質微細セルロース繊維複合化シート。 The porous fine cellulose fiber composite sheet according to claim 2 or 3, further comprising a porosifying agent.
  5.  前記多孔質化剤を微細セルロース繊維100質量%に対して0.1質量%以上100質量%以下の量で含む、請求項1又は4に記載の多孔質微細セルロース繊維複合化シート。 The porous fine cellulose fiber composite sheet according to claim 1 or 4, wherein the porous agent is contained in an amount of 0.1% by mass or more and 100% by mass or less based on 100% by mass of the fine cellulose fiber.
  6.  多孔質微細セルロース繊維複合化シートの内部の気泡率が、0.5%以下である、請求項1~5のいずれか一項に記載の多孔質微細セルロース繊維複合化シート。 The porous fine cellulose fiber composite sheet according to any one of claims 1 to 5, wherein the porous fine cellulose fiber composite sheet has an air bubble ratio of 0.5% or less.
  7.  ブロックポリイソシアネート又はその架橋物を更に含む、請求項1~6のいずれか一項に記載の多孔質微細セルロース繊維複合化シート。 The porous fine cellulose fiber composite sheet according to any one of claims 1 to 6, further comprising a blocked polyisocyanate or a crosslinked product thereof.
  8.  多孔質微細セルロース繊維シートに長さ1cm以上、幅1mm以上の破断部が無い、請求項1~7のいずれか一項に記載の多孔質微細セルロース繊維複合化シート。 The porous fine cellulose fiber composite sheet according to any one of claims 1 to 7, wherein the porous fine cellulose fiber sheet does not have a broken portion having a length of 1 cm or more and a width of 1 mm or more.
  9.  多孔質微細セルロース繊維シートが、繊維径1μm~30μmの太い幹から繊維径2~1000nmの細い枝が分岐している枝分かれ構造を有する微細セルロース繊維を含む、請求項1~8のいずれか一項に記載の多孔質微細セルロース繊維複合化シート。 9. The porous fine cellulose fiber sheet contains fine cellulose fibers having a branched structure in which a thick trunk having a fiber diameter of 1 μm to 30 μm branches fine branches having a fiber diameter of 2 to 1000 nm. The porous fine cellulose fiber-composite sheet according to [4].
  10.  多孔質微細セルロース繊維シートがセルロースI型結晶を含む、請求項1~9のいずれか一項に記載の多孔質微細セルロース繊維複合化シート。 The porous fine cellulose fiber composite sheet according to any one of claims 1 to 9, wherein the porous fine cellulose fiber sheet contains a cellulose type I crystal.
  11.  多孔質微細セルロース繊維シートがアセチル化度0.1~1.5のアセチル化セルロースを含む、請求項1~10のいずれか一項に記載の多孔質微細セルロース繊維複合化シート。 The porous fine cellulose fiber composite sheet according to any one of claims 1 to 10, wherein the porous fine cellulose fiber sheet contains acetylated cellulose having an acetylation degree of 0.1 to 1.5.
  12.  基材シート層を1層以上含む、請求項1~11のいずれか一項に記載の多孔質微細セルロース繊維複合化シート。 The porous fine cellulose fiber composite sheet according to any one of claims 1 to 11, which comprises one or more base material sheet layers.
  13.  熱可塑性樹脂が、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリ(メタ)アクリレート樹脂、及びポリフェニレンエーテル樹脂からなる群から選ばれる1種以上を含む、請求項1~12のいずれか一項に記載の多孔質微細セルロース繊維複合化シート。 The thermoplastic resin contains at least one selected from the group consisting of a polyolefin resin, a polyamide resin, a polyester resin, a polyacetal resin, a poly(meth)acrylate resin, and a polyphenylene ether resin. The porous fine cellulose fiber-composite sheet according to [4].
  14.  請求項1~13のいずれか一項に記載の多孔質微細セルロース繊維複合化シートを含む成形体であって、成形体中の互いに垂直である任意の2方向での0℃~60℃の熱線膨張係数が、共に50ppm/K以下である、セルロースナノファイバー強化樹脂成形体。 A molded body comprising the porous fine cellulose fiber composite sheet according to any one of claims 1 to 13, wherein a heat ray of 0°C to 60°C in two mutually perpendicular directions in the molded body. A cellulose nanofiber reinforced resin molded product having an expansion coefficient of 50 ppm/K or less.
  15.  請求項14に記載のセルロースナノファイバー強化樹脂成形体を含む、自動車用外板部品。 An automobile outer panel component including the cellulose nanofiber-reinforced resin molded product according to claim 14.
  16.  多孔質化剤と、微細セルロース繊維と、水とを含むスラリーを調製するスラリー調製工程、
     前記スラリーを抄紙法により脱水することによって湿紙を形成する製膜工程、
     前記湿紙を少なくとも乾燥させることによって多孔質微細セルロース繊維シートを得る多孔質微細セルロース繊維シート形成工程、及び
     前記多孔質微細セルロース繊維シートに熱可塑性樹脂を含浸させて多孔質微細セルロース繊維複合化シートを得る複合化工程、
    を含む、多孔質微細セルロース繊維複合化シートの製造方法。
    Slurry preparing step for preparing a slurry containing a porosifying agent, fine cellulose fibers, and water,
    A film forming step of forming a wet paper web by dehydrating the slurry by a paper making method,
    A porous fine cellulose fiber sheet forming step of obtaining a porous fine cellulose fiber sheet by drying at least the wet paper, and a porous fine cellulose fiber composite sheet obtained by impregnating the porous fine cellulose fiber sheet with a thermoplastic resin. A compounding process to obtain
    A method for producing a porous fine cellulose fiber composite sheet, comprising:
PCT/JP2020/000503 2019-01-09 2020-01-09 Porous fine cellulose fiber complex sheet WO2020145354A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020565209A JPWO2020145354A1 (en) 2019-01-09 2020-01-09 Porous fine cellulose fiber composite sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019002225 2019-01-09
JP2019-002225 2019-01-09
JP2019-200290 2019-11-01
JP2019200290 2019-11-01

Publications (1)

Publication Number Publication Date
WO2020145354A1 true WO2020145354A1 (en) 2020-07-16

Family

ID=71520972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000503 WO2020145354A1 (en) 2019-01-09 2020-01-09 Porous fine cellulose fiber complex sheet

Country Status (2)

Country Link
JP (1) JPWO2020145354A1 (en)
WO (1) WO2020145354A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177012A1 (en) * 2021-02-22 2022-08-25 旭化成株式会社 Composition containing cellulose nanofibers
WO2022244820A1 (en) * 2021-05-18 2022-11-24 中越パルプ工業株式会社 Hydrophobized cnf dispersion production method, and hydrophobized cnf oil-based component-containing body production method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073678A1 (en) * 2008-12-26 2010-07-01 王子製紙株式会社 Method for producing microfibrous cellulose sheet and composite obtained by impregnating the microfibrous cellulose sheet with resin
WO2011070923A1 (en) * 2009-12-10 2011-06-16 王子製紙株式会社 Process for producing sheet of finely fibrous cellulose, and composite obtained by impregnating the sheet of finely fibrous cellulose with resin
JP2012180602A (en) * 2011-02-28 2012-09-20 Mitsubishi Chemicals Corp Cellulose fiber dispersion liquid, method for manufacturing cellulose fiber dispersion liquid and method for manufacturing micro cellulose fiber
JP2013136859A (en) * 2011-08-08 2013-07-11 Oji Holdings Corp Method for producing fine fibrous cellulose, method for producing nonwoven fabric, fine fibrous cellulose, and slurry, nonwoven fabric and composite body containing fine fibrous cellulose
JP2017082071A (en) * 2015-10-27 2017-05-18 王子ホールディングス株式会社 Sheet and molded body
WO2017170781A1 (en) * 2016-03-30 2017-10-05 旭化成株式会社 Resin composite film including cellulose microfiber layer
JP2019011535A (en) * 2017-06-30 2019-01-24 旭化成株式会社 Porous sheet and porous laminated sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073678A1 (en) * 2008-12-26 2010-07-01 王子製紙株式会社 Method for producing microfibrous cellulose sheet and composite obtained by impregnating the microfibrous cellulose sheet with resin
WO2011070923A1 (en) * 2009-12-10 2011-06-16 王子製紙株式会社 Process for producing sheet of finely fibrous cellulose, and composite obtained by impregnating the sheet of finely fibrous cellulose with resin
JP2012180602A (en) * 2011-02-28 2012-09-20 Mitsubishi Chemicals Corp Cellulose fiber dispersion liquid, method for manufacturing cellulose fiber dispersion liquid and method for manufacturing micro cellulose fiber
JP2013136859A (en) * 2011-08-08 2013-07-11 Oji Holdings Corp Method for producing fine fibrous cellulose, method for producing nonwoven fabric, fine fibrous cellulose, and slurry, nonwoven fabric and composite body containing fine fibrous cellulose
JP2017082071A (en) * 2015-10-27 2017-05-18 王子ホールディングス株式会社 Sheet and molded body
WO2017170781A1 (en) * 2016-03-30 2017-10-05 旭化成株式会社 Resin composite film including cellulose microfiber layer
JP2019011535A (en) * 2017-06-30 2019-01-24 旭化成株式会社 Porous sheet and porous laminated sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177012A1 (en) * 2021-02-22 2022-08-25 旭化成株式会社 Composition containing cellulose nanofibers
WO2022244820A1 (en) * 2021-05-18 2022-11-24 中越パルプ工業株式会社 Hydrophobized cnf dispersion production method, and hydrophobized cnf oil-based component-containing body production method

Also Published As

Publication number Publication date
JPWO2020145354A1 (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP6097394B2 (en) Fine cellulose fiber sheet
JP2019011535A (en) Porous sheet and porous laminated sheet
JP5697379B2 (en) Water-resistant cellulose sheet
KR102050714B1 (en) Method for producing fibrous cellulose and fibrous cellulose
JP5300398B2 (en) Cellulose nonwoven fabric and method for producing the same
WO2020145354A1 (en) Porous fine cellulose fiber complex sheet
WO2013073652A1 (en) Method for producing microfibrous cellulose, method for producing non-woven fabric, microfibrous cellulose, slurry containing microfibrous cellulose, non-woven fabric, and complex
US20150079866A1 (en) Method of producing fine fiber, and fine fiber, non-woven fabric, and fine fibrous cellulose
WO2014014099A1 (en) Multilayered structure comprising fine fiber cellulose layer
JP5781321B2 (en) Protein-adsorbing cellulose nonwoven fabric
JPWO2006004012A1 (en) Cellulose nonwoven fabric
CN111373000B (en) Resin composition containing fibrous cellulose, sheet and molded body
JP2010115574A (en) Functional filter
JP5246634B2 (en) Optically controlled nonwovens and composites
JP2019162818A (en) Thin film cellulose fine fiber laminate sheet
JP7327952B2 (en) Process for producing dispersions, structures and crosslinked structures containing fine cellulose fibers
JP2019038980A (en) Fibrous cellulose-containing composition and coating
JP2019038979A (en) Fibrous cellulose-containing composition and coating
JP2020111843A (en) Porous sheet
JP2010116332A (en) Wiping-off sheet
JP2021165454A (en) Composite molded body, method of manufacturing the same, and fiber composition
JP6828759B2 (en) Sheets and laminates
JP7184687B2 (en) Pore diffusion membrane separation module using non-woven fabric
JP6620875B1 (en) Sheet and laminate
TW201943770A (en) Sheet and layered product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738908

Country of ref document: EP

Kind code of ref document: A1