WO2020145167A1 - Contactless power supply system - Google Patents

Contactless power supply system Download PDF

Info

Publication number
WO2020145167A1
WO2020145167A1 PCT/JP2019/051012 JP2019051012W WO2020145167A1 WO 2020145167 A1 WO2020145167 A1 WO 2020145167A1 JP 2019051012 W JP2019051012 W JP 2019051012W WO 2020145167 A1 WO2020145167 A1 WO 2020145167A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
power receiving
side resonance
filter circuit
Prior art date
Application number
PCT/JP2019/051012
Other languages
French (fr)
Japanese (ja)
Inventor
統公 木村
宜久 山口
正樹 金▲崎▼
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020145167A1 publication Critical patent/WO2020145167A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to a contactless power supply system that wirelessly transmits power from a power transmitting device to a power receiving device.
  • a contactless power supply system that supplies power in a non-contact manner as a system that supplies power to a secondary battery installed in an electric vehicle or the like.
  • an inverter circuit is provided on the power transmission device side, and AC power is supplied from the inverter circuit to the power transmission unit (primary coil). Then, the power is transmitted from the power transmitting unit to the power receiving unit (secondary coil) on the vehicle side in a non-contact manner, and the power receiving unit supplies power to the secondary battery.
  • the contactless power supply system of Patent Document 1 includes a DC-DC converter as an impedance conversion unit that sets impedance in correspondence with the output power value of AC power. As a result, it is possible to follow changes in the impedance of the load within a range where an excessive load is not applied to the DC-DC converter.
  • the present disclosure has been made in view of the above circumstances, and its main purpose is to provide a contactless power feeding system that can appropriately feed power while a vehicle is traveling.
  • Means for solving the above-mentioned problem is a non-contact power supply system that performs non-contact power feeding between a power transmission device provided on a road side and a power receiving device provided on a vehicle side to charge a storage battery provided in the vehicle.
  • the power transmitting device includes an inverter that converts a direct current input from a direct current power source into an alternating current, a power transmitting side filter circuit that is connected to the inverter and removes an alternating current in a predetermined frequency range, and a power transmitting side resonance coil.
  • a power transmission side resonance circuit having a power transmission side resonance capacitor connected to the power transmission side resonance coil, wherein the power reception device has a power reception side resonance coil and a power reception side resonance capacitor connected to the power reception side resonance coil.
  • Power-reception-side resonance circuit connected to the power-reception-side resonance circuit, and connected to the power-reception-side filter circuit that removes the alternating current in a predetermined frequency range, and the power-reception-side filter circuit, and convert the alternating current into a direct current.
  • a rectifier that rectifies, and a diode that is connected in series to the rectifier and that allows a current to flow from the rectifier to the output terminal of the power receiving device, the power transmission side filter circuit, the power transmission side resonance circuit,
  • Each of the power receiving side resonance circuit and the power receiving side filter circuit is configured such that an input voltage to the power transmitting side filter circuit and an output current from the power receiving side filter circuit are proportional to each other.
  • the power transmission device supplies a predetermined amount of power regardless of the state of the vehicle, that is, the state of the storage battery. In this case, in consideration of shortening the charging time, it is preferable that the supplied power be as large as possible.
  • the output power (DC current) from the rectifier is adjusted by a booster circuit such as a DC-DC converter according to the required power of the storage battery.
  • the output power from the rectifier is a constant voltage, the current may be interrupted, so it is necessary to provide a booster circuit.
  • each circuit of the power transmission side filter circuit, the power transmission side resonance circuit, the power reception side resonance circuit, and the power reception side filter circuit is configured so that the input voltage to the power transmission side filter circuit and the output current from the power reception side filter circuit are proportional to each other. ..
  • the output voltage from the inverter is proportional to the output current of the rectifier. Therefore, if the output voltage from the inverter is constant, the output current of the rectifier can be made constant. Then, if the current is a constant current, the current is not interrupted, and it is not necessary to provide an inductor between the rectifier and the diode. Therefore, the inductor can be omitted or downsized, and the power receiving device can be downsized. In addition, it is possible to appropriately supply power while the vehicle is traveling.
  • FIG. 1 is a circuit diagram showing an electrical configuration of a contactless power supply system
  • FIG. 2 is a flowchart showing power reception control processing
  • FIG. 3 is a circuit diagram showing a comparative example of the contactless power feeding system
  • FIG. 4 is a time chart showing the current waveform
  • FIG. 5 is a circuit diagram showing an electrical configuration of a non-contact power feeding system in another example
  • FIG. 6 is a circuit diagram showing an electrical configuration of a non-contact power feeding system in another example
  • FIG. 7 is a circuit diagram which shows the electric constitution of the non-contact electric power feeding system in another example.
  • the contactless power supply system 10 includes a power transmission device 20 that transmits power supplied from a commercial power supply 11 in a contactless manner, and a power reception device 30 that receives power from the power transmission device 20 in a contactless manner.
  • the power transmission device 20 is embedded on the road side (highway or the like) on which the vehicle travels.
  • the power receiving device 30 is mounted on a vehicle such as an electric vehicle or a hybrid vehicle, and outputs electric power to the vehicle-mounted battery 12 as a storage battery to charge the vehicle-mounted battery 12.
  • FIG. 1 shows an electrical configuration of the contactless power feeding system 10 in this embodiment.
  • a commercial power supply 11 is connected to the power transmission device 20 of the contactless power supply system 10, and is configured to input the AC power supplied from the commercial power supply 11 to the power transmission device 20.
  • the in-vehicle battery 12 is connected to the power receiving device 30 of the contactless power supply system 10, and the power receiving device 30 outputs power to the in-vehicle battery 12 to perform charging.
  • the power transmitting device 20 and the power receiving device 30 each have coils of three phases (U phase, V phase, W phase) so that three-phase power feeding can be performed.
  • the power transmission device 20 includes an AC-DC converter 21 connected to the commercial power supply 11, an inverter circuit 22 as an inverter connected to the AC-DC converter 21, a power transmission-side filter circuit 23 connected to the inverter circuit 22, The power transmission side resonance circuit 24 connected to the power transmission side filter circuit 23.
  • the AC-DC converter 21 converts AC power supplied from the commercial power supply 11 into DC power. Then, the AC-DC converter 21 outputs the converted DC power to the inverter circuit 22. Therefore, when viewed from the inverter circuit 22, the AC-DC converter 21 corresponds to a DC power supply.
  • the inverter circuit 22 as an inverter converts the DC power supplied from the AC-DC converter 21 into AC power of a predetermined frequency.
  • This inverter circuit 22 a three-phase inverter that converts three-phase AC power of U phase, V phase, and W phase is used.
  • the inverter circuit 22 is connected to the AC-DC converter 21. Specifically, the high potential side terminal of the inverter circuit 22 is connected to the positive terminal of the AC-DC converter 21. On the other hand, the low potential side terminal of the inverter circuit 22 is connected to the negative terminal of the AC-DC converter 21.
  • the inverter circuit 22 is composed of a full bridge circuit having the same number of upper and lower arms as the number of three phases. The current in each phase is adjusted by turning on/off the switching element provided in each arm.
  • the inverter circuit 22 includes a series connection body of an upper arm switch Sp and a lower arm switch Sn as switching elements in each of the three phases including the U phase, the V phase, and the W phase.
  • a voltage-controlled semiconductor switching element is used as the upper arm switch Sp and the lower arm switch Sn in each phase, and specifically, an IGBT is used.
  • a MOSFET may be used. Free wheel diodes (reflux diodes) Dp and Dn are connected in antiparallel to the upper arm switch Sp and the lower arm switch Sn in each phase, respectively.
  • the high-potential side terminal (collector) of the upper arm switch Sp of each phase is connected to the positive terminal of the AC-DC converter 21. Further, the low potential side terminal (emitter) of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the AC-DC converter 21. Intermediate connection points between the upper arm switch Sp and the lower arm switch Sn of each phase are connected to the power transmission side filter circuit 23, respectively.
  • the intermediate connection point between the upper arm switch Sp and the lower arm switch Sn in the U phase is connected to the U phase power transmission side resonance coil 24Lu of the power transmission side resonance circuit 24 via the power transmission side filter circuit 23 and the like.
  • an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn in the V phase is connected to the V phase power transmission side resonance coil 24Lv of the power transmission side resonance circuit 24 via the power transmission side filter circuit 23 and the like. It is connected.
  • the power transmission side resonance circuit 24Lw is connected to the W phase power transmission side resonance coil 24Lw of the power transmission side resonance circuit 24 via the power transmission side filter circuit 23 and the like. It is connected.
  • the power transmission side filter circuit 23 is a circuit that removes AC power (AC current) in a predetermined frequency range from AC power input from the inverter circuit 22.
  • a low pass filter is used as the power transmission side filter circuit 23.
  • the power transmission side filter circuit 23 is an immittance converter (impedance admittance converter) in which the input voltage is proportional to the output current and the input current is proportional to the output voltage.
  • the power transmission side filter circuit 23 includes a series connection body in which two reactors 23a and 23b are connected in series for each phase. Further, the power transmission side filter circuit 23 includes a capacitor 23c, one end of which is connected to the intermediate connection point of each series connection body, for each series connection body. The other end of each capacitor 23c is connected at a connection point (neutral point) N1. That is, the other ends of the capacitors 23c are connected to each other.
  • the power transmission side resonance circuit 24 is a circuit that outputs the AC power input from the power transmission side filter circuit 23 to the power receiving device 30.
  • the power transmission side resonance circuit 24 is provided with an LC resonance circuit in which the power transmission side resonance capacitors 24Cu, 24Cv, 24Cw and the power transmission side resonance coils 24Lu, 24Lv, 24Lw are connected in series for each phase.
  • One end of the LC resonance circuit is connected to the power transmission side filter circuit 23, and the other end is connected to the neutral point N2.
  • the power receiving device 30 serves as a power receiving side resonance circuit 31 supplied with power from the power transmitting side resonance circuit 24, a power receiving side filter circuit 32 connected to the power receiving side resonance circuit 31, and a rectifier connected to the power receiving side filter circuit 32.
  • the power receiving side resonance circuit 31 is a circuit that inputs power from the power transmitting side resonance circuit 24 in a non-contact manner and outputs the power to the power receiving side filter circuit 32.
  • the power receiving side resonance circuit 31 has the same configuration as the power transmission side resonance circuit 24, and is configured to be capable of magnetic field resonance with the power transmission side resonance circuit 24.
  • the power receiving side resonance circuit 31 is provided with an LC resonance circuit in which the power receiving side resonance capacitors 31Cu, 31Cv, 31Cw and the power receiving side resonance coils 31Lu, 31Lv, 31Lw are connected in series for each phase.
  • One end of the LC resonance circuit is connected to the neutral point N3, and the other end is connected to the power receiving side filter circuit 32.
  • the resonance frequencies of the power receiving side resonance circuit 31 and the power transmission side resonance circuit 24 are set to be the same.
  • the power receiving side filter circuit 32 removes AC power in a predetermined frequency range included in the AC power input from the power receiving side resonance circuit 31.
  • a low pass filter is used as the power receiving side filter circuit 32.
  • the power receiving side filter circuit 32 is an immittance converter (impedance admittance converter) in which the input voltage is proportional to the output current and the input current is proportional to the output voltage.
  • the power receiving side filter circuit 32 includes a series connection body in which two reactors 32a and 32b are connected in series for each phase. Further, the power receiving side filter circuit 32 includes a capacitor 32c, one end of which is connected to the intermediate connection point of each series connection body, for each series connection body. The other end of each capacitor 32c is connected at a connection point (neutral point) N4. That is, the other ends of the capacitors 32c are connected to each other.
  • the rectifier circuit 33 is a circuit for full-wave rectifying AC power.
  • the full-wave rectifier circuit including the diode bridge is adopted as the rectifier circuit 33, but a synchronous rectifier circuit including six switching elements (for example, MOSFETs) may be used.
  • the diode 34 is connected in series to (the output terminal of) the rectifying circuit 33, and permits the current flowing from the rectifying circuit 33 to the output terminal 30a of the power receiving device 30. Note that no reactance or the like is connected between the diode 34 and the rectifier circuit 33, and the diode 34 is directly connected to the rectifier circuit 33.
  • the switch unit 35 is a switching element that switches between energization and de-energization between the rectifier circuit 33 and the ground terminal.
  • a voltage control type semiconductor switching element is used, and specifically, an IGBT is used.
  • a MOSFET may be used.
  • Free wheel diodes (free wheeling diodes) are connected to the switch portions 35 in antiparallel.
  • the switch unit 35 is connected in parallel to the rectifier circuit 33. That is, one end of the switch unit 35 is connected to the high potential side terminal of the rectifier circuit 33. More specifically, one end of the switch unit 35 is connected to a connection point N5 on the path connecting the diode 34 and the rectifier circuit 33. The other end of the switch unit 35 is connected to the low potential side terminal of the rectifier circuit 33.
  • the capacitor 36 has one end connected to a connection point N6 on the electric path between the diode 34 (cathode of the diode) and the output terminal 30a of the power receiving device 30, and the other end connected to the ground terminal.
  • the output terminal 30a on the high potential side of the power receiving device 30 is connected to the anode terminal of the vehicle-mounted battery 12, and the output terminal 30b on the low potential side is connected to the negative terminal of the vehicle-mounted battery 12.
  • the in-vehicle battery 12 charges the DC power input from the power receiving device 30.
  • the power transmission device 20 is provided with a power transmission control unit 60 that controls the power transmission device 20, and the power reception device 30 is provided with a power reception control unit 70 that controls the power reception device 30.
  • the power transmission control unit 60 controls the AC-DC converter 21 and the inverter circuit 22.
  • the power reception control unit 70 controls the switch unit 35.
  • the vehicle is provided with an ECU 50 (Electronic Control Unit), which instructs the power reception control unit 70 to perform non-contact power supply while the vehicle is traveling and charge the in-vehicle battery 12.
  • the ECU 50 acquires the state (voltage, temperature, etc.) of the vehicle-mounted battery 12 and calculates the required power. Then, the ECU 50 outputs the calculated required power as a command value to the power reception control unit 70.
  • the power reception control unit 70 controls the switch unit 35 based on the command value.
  • the relative positions of the power transmitting device 20 and the power receiving device 30 are in positions where magnetic field resonance is possible, when AC power is input to the power transmitting resonance coils 24Lu, 24Lv, 24Lw, the power transmitting resonance coil 24Lu. , 24Lv, 24Lw and the power receiving side resonance coils 31Lu, 31Lv, 31Lw resonate with each other in the magnetic field.
  • the power receiving device 30 receives a part of the energy from the power transmitting device 20. That is, AC power is received.
  • the relative positions of the power transmitting device 20 and the power receiving device 30 are at positions where magnetic field resonance is possible.
  • the non-contact power feeding system 10 is intended to enable non-contact power feeding while the vehicle is traveling. Therefore, communication between the power transmitting device 20 and the power receiving device 30 may cause communication delay, and thus communication such as transmission/reception of required power is not performed in principle.
  • the power transmission device 20 supplies a predetermined amount of power regardless of the state of the vehicle, that is, the state of the storage battery.
  • the supplied power it is preferable that the supplied power be as large as possible in consideration of shortening the charging time and the relative positions of the power transmitting device and the power receiving device deviating from the ideal state. Therefore, in the present embodiment, the power transmission device 20 is configured to supply the maximum power that can be output.
  • the power transmission control unit 60 sets the drive duty of the inverter circuit 22 to a fixed value such as full duty.
  • the power transmission side filter circuit 23, the power transmission side resonance circuit 24, the power reception side resonance circuit 31 path, and the power reception side filter circuit are arranged so that the input voltage to the power transmission side filter circuit 23 and the output current from the power reception side filter circuit 32 are proportional to each other. 32 circuits were constructed.
  • the power transmitting side filter circuit 23 and the power receiving side filter circuit 32 are configured by immittance converters in which the input voltage is proportional to the output current and the input current is proportional to the output voltage.
  • the power transmission side resonance coils 24Lu, 24Lv, 24Lw are configured such that the power transmission side resonance capacitors 24Cu, 24Cv, 24Cw are connected in series.
  • the power receiving side resonance coils 31Lu, 31Lv, 31Lw are configured such that the power receiving side resonance capacitors 31Cu, 31Cv, 31Cw are connected in series. That is, the primary side series secondary side series SS system coil is used. In the SS method, a constant current is output.
  • Equation (1) shows the impedance of the power transmission side filter circuit 23.
  • the impedance of the power transmission side filter circuit 23 is indicated by Xc1
  • the capacitance of the capacitor 23c is indicated by C11
  • the impedance of the reactor 23a is indicated by L11
  • the impedance of the reactor 23b is indicated by L12.
  • the drive frequency of the inverter circuit 22 is indicated by ⁇ .
  • the equation (2) shows the impedance of the power receiving side filter circuit 32.
  • the impedance of the power receiving side filter circuit 32 is indicated by Xc2
  • the capacitance of the capacitor 32c is indicated by C21
  • the impedance of the reactor 32a is indicated by L21
  • the impedance of the reactor 32b is indicated by L22.
  • the drive frequency (angular frequency) of the inverter circuit 22 is indicated by ⁇ .
  • Equation (3) shows the mutual inductance between the power transmitting side resonance coil 24Lu and the power receiving side resonance coil 31Lu and the impedance thereof.
  • the mutual inductance between the power receiving side resonance coil 31Lu is indicated by Lm, and its impedance is indicated by Xm.
  • the relationship between the power transmission side resonance coil 24Lu and the power transmission side resonance capacitor 24Cu in the power transmission side resonance circuit 24, and the relationship between the power reception side resonance coil 31Lu and the power reception side resonance capacitor 31Cu in the power reception side resonance circuit 31. Indicates.
  • the impedance of the power transmission resonance coil 24Lu is shown by L1
  • the capacitance of the power transmission resonance capacitor 24Cu is shown by Cs1.
  • the impedance of the power receiving resonance coil 31Lu is indicated by L2
  • the capacitance of the power receiving resonance capacitor 31Cu is indicated by Cs2.
  • the relationship between the resonance frequency and the drive frequency of the inverter circuit 22 at the time of resonance is shown in Expression (5).
  • the resonance frequency is indicated by f0
  • the drive frequency of the inverter circuit 22 at the time of resonance is indicated by ⁇ 0.
  • the power transmitting side filter circuit 23 and the power receiving side filter circuit 32 are configured by immittance converters in which the input voltage and the output current are proportional and the input current and the output voltage are proportional. Therefore, the relationships between the input voltage and the input current to the power transmitting side filter circuit 23 and the output voltage and the output current from the power receiving side filter circuit 32 are as shown in Formulas (6) to (8).
  • the input voltage to the power transmission side filter circuit 23 is V1, and the input current is I1.
  • the output voltage from the power receiving side filter circuit 32 is V2, and the output current is I2.
  • the input voltage and the input current to the power transmission side filter circuit 23 can be said to be the output voltage and the output current from the inverter circuit 22. It can be said that the output voltage and the output current from the power receiving side filter circuit 32 are the input voltage and the input current to the rectifier circuit 33.
  • the output voltage of the inverter circuit 22 is a constant voltage
  • the input current to the rectifier circuit 33 is a constant current. Since the output power from the rectifier circuit 33 is a constant current, even if the reactance between the rectifier circuit 33 and the diode 34 is deleted, the current will not be interrupted.
  • the power reception control process is executed by the power reception control unit 70 at predetermined intervals.
  • the power reception control unit 70 acquires the command value of the required power from the ECU 50 (step S101).
  • the power reception control unit 70 acquires the value of the output voltage from the voltage sensor and the value of the output current from the current sensor (step S102).
  • the value of the output voltage acquired in step S102 is the voltage value between the output terminal 30a on the high potential side and the output terminal 30b on the low potential side.
  • the value of the output current acquired in step S102 is the value of the current flowing in the electrical path between the low potential side output terminal 30b and the low potential side terminal of the rectifier circuit 33.
  • the power reception control unit 70 calculates the chargeable power based on the obtained output voltage value and output current value.
  • the power reception control unit 70 compares the chargeable power with the required power and controls the switch unit 35 (step S103). That is, the power reception control unit 70 determines the on/off duty ratio of the switch unit 35 based on the difference between the chargeable power and the required power, and controls the switch unit 35. At that time, it is desirable to perform feedback control such as PI control.
  • FIG. 3 shows a comparative example with respect to the circuit in this embodiment.
  • the inductor 10L for the step-up chopper (for energy storage) is provided between the rectifier circuit 33 and the diode 34, and the smoothing capacitor 10C is provided.
  • the smoothing capacitor 10C is provided.
  • an output current having an ideal current waveform as shown in FIG. 4A can be obtained.
  • the power receiving device 30 since the inductor 10L is provided, the power receiving device 30 may become large.
  • the power transmission device 20 supplies a predetermined electric power (maximum electric power in the present embodiment) regardless of the state of the vehicle side, that is, the state of the vehicle-mounted battery 12.
  • the booster circuit adjusts the output power (DC current) from the rectifier circuit 33 according to the required power of the vehicle-mounted battery 12.
  • DC current DC current
  • the inductor 10L of the booster circuit becomes large.
  • the power receiving device 30 becomes large even though the accommodation space is limited.
  • the power transmission side filter circuit 23, the power transmission side resonance circuit 24, the power reception side resonance circuit 31, and the power reception side resonance circuit 31 are arranged so that the input voltage to the power transmission side filter circuit 23 and the output current from the power reception side filter circuit 32 are proportional to each other.
  • Each circuit of the power receiving side filter circuit 32 was configured.
  • the power transmitting side filter circuit 23 and the power receiving side filter circuit 32 are immittance converters in which the input voltage and the output current are proportional and the input current and the output voltage are proportional. Further, in the power transmission side resonance circuit 24, the power transmission side resonance coils 24Lu, 24Lv, 24Lw are connected in series to the power transmission side resonance capacitors 24Cu, 24Cv, 24Cw. Then, in the power receiving side resonance circuit 31, the power receiving side resonance coils 31Lu, 31Lv, 31Lw were connected in series to the power receiving side resonance capacitors 31Cu, 31Cv, 31Cw. That is, the SS method was adopted.
  • the output voltage V1 from the inverter circuit 22 and the output current I2 of the rectifier circuit 33 are proportional to each other as shown in the equations (1) to (9). Therefore, if the output voltage from the inverter circuit 22 is constant, the output current of the rectifier circuit 33 can be made constant. Then, if the current is a constant current, the current is not interrupted, so that it is not necessary to provide an inductor between the rectifier circuit 33 and the diode 34. Therefore, the inductor can be omitted or downsized, and the power receiving device 30 can be downsized.
  • the power reception control unit 70 calculates chargeable power based on the output current and output voltage of the power receiving device 30, and controls the switch unit 35 based on comparison with the required power of the vehicle-mounted battery 12. As a result, the output power can be adjusted (suppressed), and the in-vehicle battery 12 can be appropriately charged.
  • the three-phase power transmission side resonance coils 24Lu, 24Lv, 24Lw and the power reception side resonance coils 31Lu, 31Lv, 31Lw are provided, but the number of phases may be arbitrarily changed.
  • the power transmission side resonance circuit 24 and the power reception side resonance circuit 31 may be single-phase.
  • the contactless power supply system 10 may be configured such that the power transmission side resonance circuit 24 has one phase and the power reception side resonance circuit 31 has two phases.
  • the power transmission side filter circuit 23, the power transmission side resonance circuit 24, the power reception side resonance circuit 31, and The configuration of each circuit of the power receiving side filter circuit 32 may be arbitrarily changed.
  • the contactless power feeding system 110 having a circuit configuration as shown in FIG. 7 may be used.
  • the power transmission side filter circuit 123 is a transformer characteristic filter circuit in which the input voltage and the output voltage are proportional.
  • the power receiving side filter circuit 132 is an immittance converter.
  • the power transmission side resonance coil 24L is connected in series to the power transmission side resonance capacitor 24C.
  • the power receiving side resonance coil 31L is connected in parallel to the power receiving side resonance capacitor 31C. In other words, it is the SP system of primary side series and secondary side parallel. Even in this case, the input voltage to the power transmitting side filter circuit 23 and the output current from the power receiving side filter circuit 32 can be made proportional.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

In a contactless power supply system (10), a transmission device (20) is provided with an inverter (22), a transmission-side filter circuit (23), and a transmission-side resonant circuit (24) having transmission-side resonant coils (24Lu, 24Lv, 24Lw), and transmission-side resonant capacitors (24Cu, 24Cv, 24Cw). A reception device (30) is provided with a reception-side resonant circuit (31) having reception-side resonant coils (31Lu, 31Lv, 31Lw) and reception-side resonant capacitors (31Cu, 31Cv, 31Cw), a reception-side filter circuit (32), a rectifier (33), and a diode (34). The transmission-side filter circuit, the transmission-side resonant circuit, the reception-side resonant circuit, and the reception-side filter circuit are configured so that voltage outputted from the reception-side filter circuit is proportional to voltage inputted to the transmission-side filter circuit.

Description

非接触給電システムContactless power supply system 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年1月10日に出願された日本出願番号2019-002950号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese application No. 2019-002950 filed on January 10, 2019, the content of which is incorporated herein by reference.
 本開示は、送電装置から受電装置へ非接触で送電する非接触給電システムに関する。 The present disclosure relates to a contactless power supply system that wirelessly transmits power from a power transmitting device to a power receiving device.
 電気自動車などに搭載される二次電池に給電を行うシステムとして、非接触で給電を行う非接触給電システムがある。非接触給電システムでは、送電装置側にインバータ回路を設け、そのインバータ回路から送電部(1次側コイル)に交流電力を供給する。そして、送電部から車両側の受電部(2次側コイル)に対して非接触で電力を送電し、受電部から二次電池に対して給電を行う。 There is a contactless power supply system that supplies power in a non-contact manner as a system that supplies power to a secondary battery installed in an electric vehicle or the like. In the contactless power supply system, an inverter circuit is provided on the power transmission device side, and AC power is supplied from the inverter circuit to the power transmission unit (primary coil). Then, the power is transmitted from the power transmitting unit to the power receiving unit (secondary coil) on the vehicle side in a non-contact manner, and the power receiving unit supplies power to the secondary battery.
 特許文献1の非接触給電システムでは、交流電力の出力電力値に対応させてインピーダンスを設定するインピーダンス変換部としてのDC-DCコンバータを備えている。これにより、DC-DCコンバータに過度な負担が付与されない範囲内で、負荷のインピーダンスの変動に追従させることが可能となっている。 The contactless power supply system of Patent Document 1 includes a DC-DC converter as an impedance conversion unit that sets impedance in correspondence with the output power value of AC power. As a result, it is possible to follow changes in the impedance of the load within a range where an excessive load is not applied to the DC-DC converter.
特開2016-63726号公報JP, 2016-63726, A
 ところで、近年では、車両の走行中に、非接触給電を実施可能にするための非接触給電システムが考案されている。このような車両の走行中に非接触給電を実施する場合、受信遅れが発生するため、上記のように交流電力の出力電力値を受信し、インピーダンスを設定することは困難であった。 By the way, in recent years, a contactless power supply system has been devised to enable contactless power supply while the vehicle is traveling. When non-contact power feeding is performed while the vehicle is running, a reception delay occurs. Therefore, it is difficult to receive the output power value of the AC power and set the impedance as described above.
 本開示は、上記事情に鑑みてなされたものであり、その主たる目的は、車両の走行中に適切な給電を行うことができる非接触給電システムを提供することにある。 The present disclosure has been made in view of the above circumstances, and its main purpose is to provide a contactless power feeding system that can appropriately feed power while a vehicle is traveling.
 上記課題を解決するための手段は、道路側に設けられる送電装置と車両側に設けられる受電装置との間で、非接触で給電を行い、車両に設けられる蓄電池を充電する非接触給電システムにおいて、前記送電装置は、直流電源から入力した直流電流を交流電流に変換するインバータと、前記インバータに接続されており、所定の周波数域の交流電流を除去する送電側フィルタ回路と、送電側共振コイル及び前記送電側共振コイルに接続される送電側共振コンデンサを有する送電側共振回路と、を備え、前記受電装置は、受電側共振コイル及び前記受電側共振コイルに接続される受電側共振コンデンサを有する受電側共振回路と、前記受電側共振回路に接続されており、所定の周波数域の交流電流を除去する受電側フィルタ回路と、前記受電側フィルタ回路に接続されており、交流電流を直流電流に整流する整流器と、前記整流器に対して直列に接続されており、前記整流器から前記受電装置の出力端子へ流れる電流を許可するダイオードと、を備え、前記送電側フィルタ回路、前記送電側共振回路、前記受電側共振回路及び前記受電側フィルタ回路は、前記送電側フィルタ回路への入力電圧と前記受電側フィルタ回路からの出力電流が比例するように各回路が構成されている。 Means for solving the above-mentioned problem is a non-contact power supply system that performs non-contact power feeding between a power transmission device provided on a road side and a power receiving device provided on a vehicle side to charge a storage battery provided in the vehicle. The power transmitting device includes an inverter that converts a direct current input from a direct current power source into an alternating current, a power transmitting side filter circuit that is connected to the inverter and removes an alternating current in a predetermined frequency range, and a power transmitting side resonance coil. And a power transmission side resonance circuit having a power transmission side resonance capacitor connected to the power transmission side resonance coil, wherein the power reception device has a power reception side resonance coil and a power reception side resonance capacitor connected to the power reception side resonance coil. Power-reception-side resonance circuit, connected to the power-reception-side resonance circuit, and connected to the power-reception-side filter circuit that removes the alternating current in a predetermined frequency range, and the power-reception-side filter circuit, and convert the alternating current into a direct current. A rectifier that rectifies, and a diode that is connected in series to the rectifier and that allows a current to flow from the rectifier to the output terminal of the power receiving device, the power transmission side filter circuit, the power transmission side resonance circuit, Each of the power receiving side resonance circuit and the power receiving side filter circuit is configured such that an input voltage to the power transmitting side filter circuit and an output current from the power receiving side filter circuit are proportional to each other.
 車両走行中に非接触給電を行う場合、送電装置と受電装置との間で通信を行うことは、通信遅れの関係上、困難である。このため、送電装置は、車両側の状況、つまり、蓄電池の状況に関わらず、所定の電力を供給することとなる。この場合、充電時間の短縮を考慮して、供給電力はできる限り大きい方が良い。 When contactless power supply is performed while the vehicle is running, it is difficult to communicate between the power transmitting device and the power receiving device due to communication delay. Therefore, the power transmission device supplies a predetermined amount of power regardless of the state of the vehicle, that is, the state of the storage battery. In this case, in consideration of shortening the charging time, it is preferable that the supplied power be as large as possible.
 一方、このように構成する場合、受電装置側において、電力の調整が必要となる。例えば、整流器からの出力電力(直流電流)を、DC-DCコンバータなどの昇圧回路で蓄電池の要求電力に応じて電力を調整することが考えられる。特に整流器からの出力電力が定電圧である場合には、電流が途切れる可能性があるため、昇圧回路を設ける必要がある。 On the other hand, when configured in this way, it is necessary to adjust the power on the power receiving device side. For example, it can be considered that the output power (DC current) from the rectifier is adjusted by a booster circuit such as a DC-DC converter according to the required power of the storage battery. In particular, when the output power from the rectifier is a constant voltage, the current may be interrupted, so it is necessary to provide a booster circuit.
 しかしながら、車両のように、大電力を給電する給電システムでは、DC-DCコンバータのインダクタが大型化することとなる。その結果、収容スペースが限られるにもかかわらず、受電装置が大型化するという問題があった。 However, in a power feeding system that feeds a large amount of electric power like a vehicle, the inductor of the DC-DC converter becomes large. As a result, there is a problem that the power receiving device becomes large even though the accommodation space is limited.
 そこで、送電側フィルタ回路への入力電圧と受電側フィルタ回路からの出力電流が比例するように、送電側フィルタ回路、送電側共振回路、受電側共振回路及び受電側フィルタ回路の各回路を構成した。 Therefore, each circuit of the power transmission side filter circuit, the power transmission side resonance circuit, the power reception side resonance circuit, and the power reception side filter circuit is configured so that the input voltage to the power transmission side filter circuit and the output current from the power reception side filter circuit are proportional to each other. ..
 これにより、インバータからの出力電圧と、整流器の出力電流とが比例することとなる。このため、インバータからの出力電圧を一定とすれば、整流器の出力電流を定電流にすることが可能となる。そして、定電流であれば、電流が途切れないため、整流器とダイオードとの間においてインダクタを設ける必要がなくなる。したがって、インダクタを省略又は小型化することができ、受電装置を小型化できる。また、車両の走行中に適切な給電を行うことができる。 With this, the output voltage from the inverter is proportional to the output current of the rectifier. Therefore, if the output voltage from the inverter is constant, the output current of the rectifier can be made constant. Then, if the current is a constant current, the current is not interrupted, and it is not necessary to provide an inductor between the rectifier and the diode. Therefore, the inductor can be omitted or downsized, and the power receiving device can be downsized. In addition, it is possible to appropriately supply power while the vehicle is traveling.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、非接触給電システムの電気的構成を示す回路図であり、 図2は、受電制御処理を示すフローチャートであり、 図3は、非接触給電システムの比較例を示す回路図であり、 図4は、電流波形を示すタイムチャートであり、 図5は、別例における非接触給電システムの電気的構成を示す回路図であり、 図6は、別例における非接触給電システムの電気的構成を示す回路図であり、 図7は、別例における非接触給電システムの電気的構成を示す回路図である。
The above and other objects, features and advantages of the present disclosure will become more apparent by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a circuit diagram showing an electrical configuration of a contactless power supply system, FIG. 2 is a flowchart showing power reception control processing, FIG. 3 is a circuit diagram showing a comparative example of the contactless power feeding system, FIG. 4 is a time chart showing the current waveform, FIG. 5 is a circuit diagram showing an electrical configuration of a non-contact power feeding system in another example, FIG. 6 is a circuit diagram showing an electrical configuration of a non-contact power feeding system in another example, FIG. 7: is a circuit diagram which shows the electric constitution of the non-contact electric power feeding system in another example.
 本実施形態における非接触給電システム10は、商用電源11から供給された電力を、非接触で送電する送電装置20、及び、送電装置20から非接触で電力を受電する受電装置30を備える。送電装置20は、車両が走行する道路側(高速道路など)に埋設されている。受電装置30は、電気自動車やハイブリッド自動車などの車両に搭載され、蓄電池としての車載バッテリ12に対して電力を出力することで、車載バッテリ12を充電するものである。 The contactless power supply system 10 according to the present embodiment includes a power transmission device 20 that transmits power supplied from a commercial power supply 11 in a contactless manner, and a power reception device 30 that receives power from the power transmission device 20 in a contactless manner. The power transmission device 20 is embedded on the road side (highway or the like) on which the vehicle travels. The power receiving device 30 is mounted on a vehicle such as an electric vehicle or a hybrid vehicle, and outputs electric power to the vehicle-mounted battery 12 as a storage battery to charge the vehicle-mounted battery 12.
 図1に本実施形態における非接触給電システム10の電気的構成を示す。非接触給電システム10の送電装置20には、商用電源11が接続されており、商用電源11から供給される交流電力を送電装置20に入力するように構成されている。一方、非接触給電システム10の受電装置30には、車載バッテリ12が接続されており、受電装置30から電力を車載バッテリ12に出力し、充電が実施されるように構成されている。送電装置20及び受電装置30は、3相給電を実施可能とすべく、それぞれ3相(U相、V相、W相)のコイルを有する。 FIG. 1 shows an electrical configuration of the contactless power feeding system 10 in this embodiment. A commercial power supply 11 is connected to the power transmission device 20 of the contactless power supply system 10, and is configured to input the AC power supplied from the commercial power supply 11 to the power transmission device 20. On the other hand, the in-vehicle battery 12 is connected to the power receiving device 30 of the contactless power supply system 10, and the power receiving device 30 outputs power to the in-vehicle battery 12 to perform charging. The power transmitting device 20 and the power receiving device 30 each have coils of three phases (U phase, V phase, W phase) so that three-phase power feeding can be performed.
 まず、送電装置20について説明する。送電装置20は、商用電源11に接続されるAC-DCコンバータ21と、AC-DCコンバータ21に接続されるインバータとしてのインバータ回路22と、インバータ回路22に接続される送電側フィルタ回路23と、送電側フィルタ回路23に接続される送電側共振回路24と、を備える。 First, the power transmission device 20 will be described. The power transmission device 20 includes an AC-DC converter 21 connected to the commercial power supply 11, an inverter circuit 22 as an inverter connected to the AC-DC converter 21, a power transmission-side filter circuit 23 connected to the inverter circuit 22, The power transmission side resonance circuit 24 connected to the power transmission side filter circuit 23.
 AC-DCコンバータ21は、商用電源11から供給される交流電力を直流電力に変換するものである。そして、AC-DCコンバータ21は、変換した直流電力をインバータ回路22に出力する。このため、インバータ回路22から見た場合、AC-DCコンバータ21は、直流電源に相当する。 The AC-DC converter 21 converts AC power supplied from the commercial power supply 11 into DC power. Then, the AC-DC converter 21 outputs the converted DC power to the inverter circuit 22. Therefore, when viewed from the inverter circuit 22, the AC-DC converter 21 corresponds to a DC power supply.
 インバータとしてのインバータ回路22は、AC-DCコンバータ21から供給される直流電力を所定の周波数の交流電力に変換するものである。このインバータ回路22として、U相、V相、W相の3相の交流電力に変換する3相インバータを用いている。 The inverter circuit 22 as an inverter converts the DC power supplied from the AC-DC converter 21 into AC power of a predetermined frequency. As this inverter circuit 22, a three-phase inverter that converts three-phase AC power of U phase, V phase, and W phase is used.
 インバータ回路22は、AC-DCコンバータ21に接続されている。具体的には、AC-DCコンバータ21の正極端子にインバータ回路22の高電位側端子が接続されている。一方、AC-DCコンバータ21の負極端子にインバータ回路22の低電位側端子が接続されている。 The inverter circuit 22 is connected to the AC-DC converter 21. Specifically, the high potential side terminal of the inverter circuit 22 is connected to the positive terminal of the AC-DC converter 21. On the other hand, the low potential side terminal of the inverter circuit 22 is connected to the negative terminal of the AC-DC converter 21.
 インバータ回路22は、それぞれ3相の相数と同数の上下アームを有するフルブリッジ回路により構成されている。各アームに設けられたスイッチング素子のオンオフにより、各相における電流が調整される。 The inverter circuit 22 is composed of a full bridge circuit having the same number of upper and lower arms as the number of three phases. The current in each phase is adjusted by turning on/off the switching element provided in each arm.
 詳しく説明すると、インバータ回路22は、U相、V相及びW相からなる3相において、スイッチング素子としての上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。本実施形態では、各相における上アームスイッチSp及び下アームスイッチSnとして、電圧制御形の半導体スイッチング素子を用いており、具体的にはIGBTを用いている。なお、MOSFETを用いてもよい。各相における上アームスイッチSp及び下アームスイッチSnには、それぞれフリーホイールダイオード(還流ダイオード)Dp,Dnが逆並列に接続されている。 Describing in detail, the inverter circuit 22 includes a series connection body of an upper arm switch Sp and a lower arm switch Sn as switching elements in each of the three phases including the U phase, the V phase, and the W phase. In this embodiment, a voltage-controlled semiconductor switching element is used as the upper arm switch Sp and the lower arm switch Sn in each phase, and specifically, an IGBT is used. A MOSFET may be used. Free wheel diodes (reflux diodes) Dp and Dn are connected in antiparallel to the upper arm switch Sp and the lower arm switch Sn in each phase, respectively.
 各相の上アームスイッチSpの高電位側端子(コレクタ)は、AC-DCコンバータ21の正極端子に接続されている。また、各相の下アームスイッチSnの低電位側端子(エミッタ)は、AC-DCコンバータ21の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点は、それぞれ送電側フィルタ回路23に接続されている。 The high-potential side terminal (collector) of the upper arm switch Sp of each phase is connected to the positive terminal of the AC-DC converter 21. Further, the low potential side terminal (emitter) of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the AC-DC converter 21. Intermediate connection points between the upper arm switch Sp and the lower arm switch Sn of each phase are connected to the power transmission side filter circuit 23, respectively.
 すなわち、U相における上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、送電側フィルタ回路23等を介して、送電側共振回路24のU相の送電側共振コイル24Luに接続されている。同様に、V相における上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、送電側フィルタ回路23等を介して、送電側共振回路24のV相の送電側共振コイル24Lvに接続されている。同様に、W相における上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、送電側フィルタ回路23等を介して、送電側共振回路24のW相の送電側共振コイル24Lwに接続されている。 That is, the intermediate connection point between the upper arm switch Sp and the lower arm switch Sn in the U phase is connected to the U phase power transmission side resonance coil 24Lu of the power transmission side resonance circuit 24 via the power transmission side filter circuit 23 and the like. Has been done. Similarly, an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn in the V phase is connected to the V phase power transmission side resonance coil 24Lv of the power transmission side resonance circuit 24 via the power transmission side filter circuit 23 and the like. It is connected. Similarly, at the intermediate connection point between the upper arm switch Sp and the lower arm switch Sn in the W phase, the power transmission side resonance circuit 24Lw is connected to the W phase power transmission side resonance coil 24Lw of the power transmission side resonance circuit 24 via the power transmission side filter circuit 23 and the like. It is connected.
 送電側フィルタ回路23は、インバータ回路22から入力される交流電力から所定の周波数域の交流電力(交流電流)を除去する回路である。この送電側フィルタ回路23として、ローパスフィルタを用いている。本実施形態において、送電側フィルタ回路23は、入力電圧と出力電流が比例し、入力電流と出力電圧が比例するイミタンス変換器(インピーダンス・アドミタンス変換器)である。 The power transmission side filter circuit 23 is a circuit that removes AC power (AC current) in a predetermined frequency range from AC power input from the inverter circuit 22. A low pass filter is used as the power transmission side filter circuit 23. In the present embodiment, the power transmission side filter circuit 23 is an immittance converter (impedance admittance converter) in which the input voltage is proportional to the output current and the input current is proportional to the output voltage.
 具体的に説明すると、送電側フィルタ回路23は、各相ごとに、2つのリアクトル23a,23bが直列接続された直列接続体を備えている。また、送電側フィルタ回路23は、各直列接続体の中間接続点に対して一端が接続されるコンデンサ23cを直列接続体ごとにそれぞれ備える。各コンデンサ23cの他端は、接続点(中性点)N1で接続されている。つまり、各コンデンサ23cの他端同士が接続されている。 Specifically, the power transmission side filter circuit 23 includes a series connection body in which two reactors 23a and 23b are connected in series for each phase. Further, the power transmission side filter circuit 23 includes a capacitor 23c, one end of which is connected to the intermediate connection point of each series connection body, for each series connection body. The other end of each capacitor 23c is connected at a connection point (neutral point) N1. That is, the other ends of the capacitors 23c are connected to each other.
 送電側共振回路24は、送電側フィルタ回路23から入力した交流電力を受電装置30に対して出力する回路である。送電側共振回路24は、各相ごとに、送電側共振コンデンサ24Cu,24Cv,24Cwと、送電側共振コイル24Lu,24Lv,24Lwとが直列接続されたLC共振回路が設けられている。LC共振回路の一端は、送電側フィルタ回路23に接続されており、他端は、中性点N2に接続されている。 The power transmission side resonance circuit 24 is a circuit that outputs the AC power input from the power transmission side filter circuit 23 to the power receiving device 30. The power transmission side resonance circuit 24 is provided with an LC resonance circuit in which the power transmission side resonance capacitors 24Cu, 24Cv, 24Cw and the power transmission side resonance coils 24Lu, 24Lv, 24Lw are connected in series for each phase. One end of the LC resonance circuit is connected to the power transmission side filter circuit 23, and the other end is connected to the neutral point N2.
 受電装置30は、送電側共振回路24から電力を供給される受電側共振回路31と、受電側共振回路31に接続される受電側フィルタ回路32と、受電側フィルタ回路32に接続される整流器としての整流回路33と、整流回路33に接続されるダイオード34と、整流回路33に接続されるスイッチ部35と、ダイオード34に接続されるコンデンサ36と、を備える。 The power receiving device 30 serves as a power receiving side resonance circuit 31 supplied with power from the power transmitting side resonance circuit 24, a power receiving side filter circuit 32 connected to the power receiving side resonance circuit 31, and a rectifier connected to the power receiving side filter circuit 32. The rectifier circuit 33, the diode 34 connected to the rectifier circuit 33, the switch unit 35 connected to the rectifier circuit 33, and the capacitor 36 connected to the diode 34.
 受電側共振回路31は、非接触で送電側共振回路24から電力を入力し、受電側フィルタ回路32に出力する回路である。受電側共振回路31は、送電側共振回路24と同一の構成となっており、送電側共振回路24に対して磁場共鳴可能に構成されている。 The power receiving side resonance circuit 31 is a circuit that inputs power from the power transmitting side resonance circuit 24 in a non-contact manner and outputs the power to the power receiving side filter circuit 32. The power receiving side resonance circuit 31 has the same configuration as the power transmission side resonance circuit 24, and is configured to be capable of magnetic field resonance with the power transmission side resonance circuit 24.
 すなわち、受電側共振回路31は、各相ごとに、受電側共振コンデンサ31Cu,31Cv,31Cwと、受電側共振コイル31Lu,31Lv,31Lwとが直列接続されたLC共振回路が設けられている。LC共振回路の一端は、中性点N3に接続され、他端は、受電側フィルタ回路32に接続されている。この受電側共振回路31と送電側共振回路24との共振周波数は同一に設定されている。 That is, the power receiving side resonance circuit 31 is provided with an LC resonance circuit in which the power receiving side resonance capacitors 31Cu, 31Cv, 31Cw and the power receiving side resonance coils 31Lu, 31Lv, 31Lw are connected in series for each phase. One end of the LC resonance circuit is connected to the neutral point N3, and the other end is connected to the power receiving side filter circuit 32. The resonance frequencies of the power receiving side resonance circuit 31 and the power transmission side resonance circuit 24 are set to be the same.
 受電側フィルタ回路32は、受電側共振回路31から入力される交流電力に含まれる所定の周波数域の交流電力を除去するものである。この受電側フィルタ回路32として、ローパスフィルタを用いている。本実施形態において、受電側フィルタ回路32は、入力電圧と出力電流が比例し、入力電流と出力電圧が比例するイミタンス変換器(インピーダンス・アドミタンス変換器)である。 The power receiving side filter circuit 32 removes AC power in a predetermined frequency range included in the AC power input from the power receiving side resonance circuit 31. A low pass filter is used as the power receiving side filter circuit 32. In the present embodiment, the power receiving side filter circuit 32 is an immittance converter (impedance admittance converter) in which the input voltage is proportional to the output current and the input current is proportional to the output voltage.
 具体的に説明すると、受電側フィルタ回路32は、各相ごとに、2つのリアクトル32a,32bが直列接続された直列接続体を備えている。また、受電側フィルタ回路32は、各直列接続体の中間接続点に対して一端が接続されるコンデンサ32cを直列接続体ごとに備える。各コンデンサ32cの他端は、接続点(中性点)N4で接続されている。つまり、各コンデンサ32cの他端同士が接続されている。 Specifically, the power receiving side filter circuit 32 includes a series connection body in which two reactors 32a and 32b are connected in series for each phase. Further, the power receiving side filter circuit 32 includes a capacitor 32c, one end of which is connected to the intermediate connection point of each series connection body, for each series connection body. The other end of each capacitor 32c is connected at a connection point (neutral point) N4. That is, the other ends of the capacitors 32c are connected to each other.
 整流回路33は、交流電力を全波整流する回路である。本実施形態では、整流回路33として、ダイオードブリッジから構成される全波整流回路を採用したが、6つのスイッチング素子(例えばMOSFET)から構成される同期整流回路を用いてもよい。 The rectifier circuit 33 is a circuit for full-wave rectifying AC power. In the present embodiment, the full-wave rectifier circuit including the diode bridge is adopted as the rectifier circuit 33, but a synchronous rectifier circuit including six switching elements (for example, MOSFETs) may be used.
 ダイオード34は、整流回路33(の出力端子)に対して直列に接続されており、整流回路33から受電装置30の出力端子30aへ流れる電流を許可する。なお、ダイオード34と整流回路33との間には、リアクタンス等が接続されておらず、ダイオード34は、整流回路33に直接接続されている。 The diode 34 is connected in series to (the output terminal of) the rectifying circuit 33, and permits the current flowing from the rectifying circuit 33 to the output terminal 30a of the power receiving device 30. Note that no reactance or the like is connected between the diode 34 and the rectifier circuit 33, and the diode 34 is directly connected to the rectifier circuit 33.
 スイッチ部35は、整流回路33とグランド端子と間における通電及び通電遮断を切り替えるスイッチング素子である。スイッチ部35として、電圧制御形の半導体スイッチング素子を用いており、具体的にはIGBTを用いている。なお、MOSFETを用いてもよい。スイッチ部35には、それぞれフリーホイールダイオード(還流ダイオード)が逆並列に接続されている。スイッチ部35は、整流回路33に対して並列に接続されている。つまり、スイッチ部35は、その一端が整流回路33の高電位側端子に接続されている。より詳しくは、スイッチ部35の一端は、ダイオード34と、整流回路33とを繋ぐ経路上の接続点N5に対して接続されている。また、スイッチ部35の他端は、整流回路33の低電位側端子に接続されている。 The switch unit 35 is a switching element that switches between energization and de-energization between the rectifier circuit 33 and the ground terminal. As the switch unit 35, a voltage control type semiconductor switching element is used, and specifically, an IGBT is used. A MOSFET may be used. Free wheel diodes (free wheeling diodes) are connected to the switch portions 35 in antiparallel. The switch unit 35 is connected in parallel to the rectifier circuit 33. That is, one end of the switch unit 35 is connected to the high potential side terminal of the rectifier circuit 33. More specifically, one end of the switch unit 35 is connected to a connection point N5 on the path connecting the diode 34 and the rectifier circuit 33. The other end of the switch unit 35 is connected to the low potential side terminal of the rectifier circuit 33.
 コンデンサ36は、ダイオード34(のカソード)と受電装置30の出力端子30aとの間における電気経路上の接続点N6に一端が接続され、他端がグランド端子に接続されている。 The capacitor 36 has one end connected to a connection point N6 on the electric path between the diode 34 (cathode of the diode) and the output terminal 30a of the power receiving device 30, and the other end connected to the ground terminal.
 そして、受電装置30の高電位側の出力端子30aが、車載バッテリ12の陽極端子に接続され、低電位側の出力端子30bが車載バッテリ12の負極端子に接続されている。車載バッテリ12は、受電装置30から入力された直流電力を充電する。 The output terminal 30a on the high potential side of the power receiving device 30 is connected to the anode terminal of the vehicle-mounted battery 12, and the output terminal 30b on the low potential side is connected to the negative terminal of the vehicle-mounted battery 12. The in-vehicle battery 12 charges the DC power input from the power receiving device 30.
 また、送電装置20には、送電装置20の制御を行う送電制御部60が設けられており、受電装置30には、受電装置30の制御を行う受電制御部70が設けられている。送電制御部60は、AC-DCコンバータ21やインバータ回路22の制御を行う。受電制御部70は、スイッチ部35の制御を行う。 Further, the power transmission device 20 is provided with a power transmission control unit 60 that controls the power transmission device 20, and the power reception device 30 is provided with a power reception control unit 70 that controls the power reception device 30. The power transmission control unit 60 controls the AC-DC converter 21 and the inverter circuit 22. The power reception control unit 70 controls the switch unit 35.
 また、車両には、ECU50(Electronic Control Unit)が設けられており、受電制御部70に対して指示を行い、車両の走行中に非接触給電を実施させ、車載バッテリ12を充電させる。具体的には、ECU50は、車載バッテリ12の状態(電圧や温度等)を取得し、要求電力を算出する。そして、ECU50は、算出した要求電力を指令値として受電制御部70に出力する。受電制御部70は、指令値に基づいてスイッチ部35を制御する。 Further, the vehicle is provided with an ECU 50 (Electronic Control Unit), which instructs the power reception control unit 70 to perform non-contact power supply while the vehicle is traveling and charge the in-vehicle battery 12. Specifically, the ECU 50 acquires the state (voltage, temperature, etc.) of the vehicle-mounted battery 12 and calculates the required power. Then, the ECU 50 outputs the calculated required power as a command value to the power reception control unit 70. The power reception control unit 70 controls the switch unit 35 based on the command value.
 上記構成によれば、送電装置20及び受電装置30の相対位置が磁場共鳴可能な位置にある状況において、交流電力が送電側共振コイル24Lu,24Lv,24Lwに入力された場合、送電側共振コイル24Lu,24Lv,24Lwと、受電側共振コイル31Lu,31Lv,31Lwとが、磁場共鳴する。これにより、受電装置30は、送電装置20からエネルギーの一部を受け取る。すなわち、交流電力を受電する。なお、本実施形態では、説明の都合上、送電装置20及び受電装置30の相対位置が磁場共鳴可能な位置にあることを前提とする。 According to the above configuration, in a situation where the relative positions of the power transmitting device 20 and the power receiving device 30 are in positions where magnetic field resonance is possible, when AC power is input to the power transmitting resonance coils 24Lu, 24Lv, 24Lw, the power transmitting resonance coil 24Lu. , 24Lv, 24Lw and the power receiving side resonance coils 31Lu, 31Lv, 31Lw resonate with each other in the magnetic field. As a result, the power receiving device 30 receives a part of the energy from the power transmitting device 20. That is, AC power is received. In the present embodiment, for convenience of description, it is assumed that the relative positions of the power transmitting device 20 and the power receiving device 30 are at positions where magnetic field resonance is possible.
 ところで、上記非接触給電システム10は、車両の走行中に非接触で給電を実施可能とすることを目的としている。このため、送電装置20と、受電装置30との間における通信は、通信遅れが生じる可能性があるため、要求電力の送受信などの通信は、原則として実施しないこととしている。 By the way, the non-contact power feeding system 10 is intended to enable non-contact power feeding while the vehicle is traveling. Therefore, communication between the power transmitting device 20 and the power receiving device 30 may cause communication delay, and thus communication such as transmission/reception of required power is not performed in principle.
 このため、送電装置は、車両側の状況、つまり、蓄電池の状況に関わらず、所定の電力を供給することとなる。この場合、充電時間の短縮や送電装置及び受電装置の相対位置が理想的な状態からずれることなどを考慮して、供給電力はできる限り大きい方が良い。そこで、本実施形態において、送電装置20は、出力可能な最大電力を供給するようにしている。具体的には、送電制御部60は、インバータ回路22の駆動デューティをフルデューティなどの固定値に設定する。 For this reason, the power transmission device supplies a predetermined amount of power regardless of the state of the vehicle, that is, the state of the storage battery. In this case, it is preferable that the supplied power be as large as possible in consideration of shortening the charging time and the relative positions of the power transmitting device and the power receiving device deviating from the ideal state. Therefore, in the present embodiment, the power transmission device 20 is configured to supply the maximum power that can be output. Specifically, the power transmission control unit 60 sets the drive duty of the inverter circuit 22 to a fixed value such as full duty.
 しかしながら、最大電力が供給された場合、受電装置30の側において、車載バッテリ12の要求電圧によっては必要がない場合がある。つまり、要求電力に対して過大な電力が供給される可能性がある。過大な電力で充電されると、車載バッテリ12が過充電状態となる場合や、劣化が促進される。また、送電装置20及び受電装置30の位置ずれやコイル間距離の変動によるコイル間結合係数が変動し、出力電力は変動するといった問題もある。したがって、受電装置30の側において、車載バッテリ12への出力電力の調整が必要とされている。 However, when the maximum power is supplied, it may not be necessary depending on the required voltage of the vehicle-mounted battery 12 on the power receiving device 30 side. That is, there is a possibility that excessive power is supplied with respect to the required power. When the vehicle-mounted battery 12 is overcharged or is deteriorated when it is charged with excessive electric power. In addition, there is a problem that the inter-coil coupling coefficient fluctuates due to the positional deviation of the power transmission device 20 and the power reception device 30 and the fluctuation of the inter-coil distance, and thus the output power fluctuates. Therefore, it is necessary to adjust the output power to the vehicle-mounted battery 12 on the power receiving device 30 side.
 そこで、従来においては、整流回路33と車載バッテリ12との間にDC-DCコンバータなどの昇圧回路を設けることが考えられていた。そして、整流回路33からの出力電力(直流電流)を、車載バッテリ12の要求電力に応じて昇圧していた。これにより、要求電力に応じて、安定した電力が車載バッテリ12に供給されていた。 Therefore, conventionally, it has been considered to provide a booster circuit such as a DC-DC converter between the rectifier circuit 33 and the vehicle-mounted battery 12. Then, the output power (DC current) from the rectifier circuit 33 is boosted according to the required power of the vehicle-mounted battery 12. As a result, stable power is supplied to the vehicle-mounted battery 12 according to the required power.
 しかしながら、車両のように、大電力を給電する非接触給電システムでは、DC-DCコンバータのリアクタンスが大型化することとなる。その結果、収容スペースが限られるにもかかわらず、受電装置が大型化するという問題があった。その一方で、リアクタンスを削除する構成とすると、整流回路33からの出力電力が定電流でない場合、電流が途切れてしまい、安定した出力電力を供給することができないという問題あった。 However, in a non-contact power feeding system that feeds a large amount of electric power like a vehicle, the reactance of the DC-DC converter becomes large. As a result, there is a problem that the power receiving device becomes large even though the accommodation space is limited. On the other hand, if the reactance is eliminated, there is a problem that if the output power from the rectifier circuit 33 is not a constant current, the current is interrupted and stable output power cannot be supplied.
 そこで、送電側フィルタ回路23への入力電圧と受電側フィルタ回路32からの出力電流が比例するように、送電側フィルタ回路23、送電側共振回路24、受電側共振回路31路及び受電側フィルタ回路32の各回路を構成した。 Therefore, the power transmission side filter circuit 23, the power transmission side resonance circuit 24, the power reception side resonance circuit 31 path, and the power reception side filter circuit are arranged so that the input voltage to the power transmission side filter circuit 23 and the output current from the power reception side filter circuit 32 are proportional to each other. 32 circuits were constructed.
 具体的には、送電側フィルタ回路23及び受電側フィルタ回路32を、入力電圧と出力電流が比例し、入力電流と出力電圧が比例するイミタンス変換器により構成した。また、送電側共振回路24において、送電側共振コイル24Lu,24Lv,24Lwは、送電側共振コンデンサ24Cu,24Cv,24Cwが直列接続されているようにした。そして、受電側共振回路31において、受電側共振コイル31Lu,31Lv,31Lwは、受電側共振コンデンサ31Cu,31Cv,31Cwが直列接続されているようにした。すなわち、一次側直列二次側直列のSS方式のコイルとしている。SS方式では、定電流で出力されることとなる。 Specifically, the power transmitting side filter circuit 23 and the power receiving side filter circuit 32 are configured by immittance converters in which the input voltage is proportional to the output current and the input current is proportional to the output voltage. In the power transmission side resonance circuit 24, the power transmission side resonance coils 24Lu, 24Lv, 24Lw are configured such that the power transmission side resonance capacitors 24Cu, 24Cv, 24Cw are connected in series. In the power receiving side resonance circuit 31, the power receiving side resonance coils 31Lu, 31Lv, 31Lw are configured such that the power receiving side resonance capacitors 31Cu, 31Cv, 31Cw are connected in series. That is, the primary side series secondary side series SS system coil is used. In the SS method, a constant current is output.
 上記構成により、送電側フィルタ回路23への入力電圧と受電側フィルタ回路32からの出力電流が比例することを以下の数式を用いて示す。なお、本実施形態では、U相のみについて示すが、V相、W相も同様である。数式(1)に送電側フィルタ回路23のインピーダンスを示す。送電側フィルタ回路23のインピーダンスを、Xc1で示し、コンデンサ23cの容量を、C11で示し、リアクトル23aのインピーダンスをL11で示し、リアクトル23bのインピーダンスをL12で示す。インバータ回路22の駆動周波数を、ωで示す。 The following formula is used to show that the input voltage to the power transmitting side filter circuit 23 and the output current from the power receiving side filter circuit 32 are proportional to each other with the above configuration. Although only the U phase is shown in the present embodiment, the same applies to the V phase and the W phase. Equation (1) shows the impedance of the power transmission side filter circuit 23. The impedance of the power transmission side filter circuit 23 is indicated by Xc1, the capacitance of the capacitor 23c is indicated by C11, the impedance of the reactor 23a is indicated by L11, and the impedance of the reactor 23b is indicated by L12. The drive frequency of the inverter circuit 22 is indicated by ω.
Figure JPOXMLDOC01-appb-M000001
 
 また、数式(2)に受電側フィルタ回路32のインピーダンスを示す。受電側フィルタ回路32のインピーダンスを、Xc2で示し、コンデンサ32cの容量を、C21で示し、リアクトル32aのインピーダンスをL21で示し、リアクトル32bのインピーダンスをL22で示す。インバータ回路22の駆動周波数(角周波数)を、ωで示す。
Figure JPOXMLDOC01-appb-M000001

Further, the equation (2) shows the impedance of the power receiving side filter circuit 32. The impedance of the power receiving side filter circuit 32 is indicated by Xc2, the capacitance of the capacitor 32c is indicated by C21, the impedance of the reactor 32a is indicated by L21, and the impedance of the reactor 32b is indicated by L22. The drive frequency (angular frequency) of the inverter circuit 22 is indicated by ω.
Figure JPOXMLDOC01-appb-M000002
 
 そして、数式(3)に送電側共振コイル24Luと、受電側共振コイル31Luとの間における相互インダクタンスと、そのインピーダンスを示す。受電側共振コイル31Luとの間における相互インダクタンスを、Lmで示し、そのインピーダンスを、Xmで示す。
Figure JPOXMLDOC01-appb-M000002

Then, Equation (3) shows the mutual inductance between the power transmitting side resonance coil 24Lu and the power receiving side resonance coil 31Lu and the impedance thereof. The mutual inductance between the power receiving side resonance coil 31Lu is indicated by Lm, and its impedance is indicated by Xm.
Figure JPOXMLDOC01-appb-M000003
 
 また、数式(4)に、送電側共振回路24における送電側共振コイル24Luと送電側共振コンデンサ24Cuとの関係、及び受電側共振回路31における受電側共振コイル31Luと受電側共振コンデンサ31Cuとの関係を示す。送電側共振コイル24Luのインピーダンスを、L1で示し、送電側共振コンデンサ24Cuの容量を、Cs1で示す。受電側共振コイル31Luのインピーダンスを、L2で示し、受電側共振コンデンサ31Cuの容量を、Cs2で示す。また、数式(5)に共振周波数と、共振時におけるインバータ回路22の駆動周波数との関係を示す。共振周波数を、f0で示し、共振時におけるインバータ回路22の駆動周波数を、ω0で示す。
Figure JPOXMLDOC01-appb-M000003

Further, in the equation (4), the relationship between the power transmission side resonance coil 24Lu and the power transmission side resonance capacitor 24Cu in the power transmission side resonance circuit 24, and the relationship between the power reception side resonance coil 31Lu and the power reception side resonance capacitor 31Cu in the power reception side resonance circuit 31. Indicates. The impedance of the power transmission resonance coil 24Lu is shown by L1, and the capacitance of the power transmission resonance capacitor 24Cu is shown by Cs1. The impedance of the power receiving resonance coil 31Lu is indicated by L2, and the capacitance of the power receiving resonance capacitor 31Cu is indicated by Cs2. In addition, the relationship between the resonance frequency and the drive frequency of the inverter circuit 22 at the time of resonance is shown in Expression (5). The resonance frequency is indicated by f0, and the drive frequency of the inverter circuit 22 at the time of resonance is indicated by ω0.
Figure JPOXMLDOC01-appb-M000004
 
 そして、前述したように、送電側フィルタ回路23及び受電側フィルタ回路32を、入力電圧と出力電流が比例し、入力電流と出力電圧が比例するイミタンス変換器により構成している。このため、送電側フィルタ回路23への入力電圧及び入力電流と、受電側フィルタ回路32からの出力電圧と出力電流の関係は、数式(6)~(8)に示すようになる。送電側フィルタ回路23への入力電圧を、V1とし、入力電流を、I1としている。また、受電側フィルタ回路32からの出力電圧を、V2とし、出力電流を、I2としている。なお、送電側フィルタ回路23への入力電圧及び入力電流は、インバータ回路22からの出力電圧及び出力電流ともいえる。受電側フィルタ回路32からの出力電圧と出力電流は、整流回路33への入力電圧及び入力電流ともいえる。
Figure JPOXMLDOC01-appb-M000004

Then, as described above, the power transmitting side filter circuit 23 and the power receiving side filter circuit 32 are configured by immittance converters in which the input voltage and the output current are proportional and the input current and the output voltage are proportional. Therefore, the relationships between the input voltage and the input current to the power transmitting side filter circuit 23 and the output voltage and the output current from the power receiving side filter circuit 32 are as shown in Formulas (6) to (8). The input voltage to the power transmission side filter circuit 23 is V1, and the input current is I1. The output voltage from the power receiving side filter circuit 32 is V2, and the output current is I2. The input voltage and the input current to the power transmission side filter circuit 23 can be said to be the output voltage and the output current from the inverter circuit 22. It can be said that the output voltage and the output current from the power receiving side filter circuit 32 are the input voltage and the input current to the rectifier circuit 33.
Figure JPOXMLDOC01-appb-M000005
 
 よって、インバータ回路22の出力電圧と、整流回路33への入力電流の関係は、数式(9)に示すようになる。つまり、インバータ回路22の出力電圧と、整流回路33への入力電流とは、比例関係となる。
Figure JPOXMLDOC01-appb-M000005

Therefore, the relationship between the output voltage of the inverter circuit 22 and the input current to the rectifier circuit 33 is as shown in Expression (9). That is, the output voltage of the inverter circuit 22 and the input current to the rectifier circuit 33 have a proportional relationship.
Figure JPOXMLDOC01-appb-M000006
 
 したがって、インバータ回路22の出力電圧を一定電圧とすれば、整流回路33への入力電流は定電流となる。整流回路33からの出力電力が定電流となるため、整流回路33とダイオード34との間におけるリアクタンスを削除しても、電流が途切れることなくなる。
Figure JPOXMLDOC01-appb-M000006

Therefore, if the output voltage of the inverter circuit 22 is a constant voltage, the input current to the rectifier circuit 33 is a constant current. Since the output power from the rectifier circuit 33 is a constant current, even if the reactance between the rectifier circuit 33 and the diode 34 is deleted, the current will not be interrupted.
 次に、受電制御部70による受電制御処理について図2に基づいて説明する。受電制御処理は、受電制御部70により所定周期ごとに実行される。 Next, power reception control processing by the power reception control unit 70 will be described based on FIG. The power reception control process is executed by the power reception control unit 70 at predetermined intervals.
 まず、受電制御部70は、ECU50から要求電力の指令値を取得する(ステップS101)。次に、受電制御部70は、電圧センサから出力電圧の値を取得するとともに、電流センサから出力電流の値を取得する(ステップS102)。ステップS102において取得する出力電圧の値は、高電位側の出力端子30aと、低電位側の出力端子30bとの間における電圧値である。また、ステップS102において取得する出力電流の値は、低電位側の出力端子30bと整流回路33の低電位側の端子との間における電気経路において、流れる電流値である。そして、受電制御部70は、取得した出力電圧の値と、出力電流の値とに基づいて充電可能電力を算出する。 First, the power reception control unit 70 acquires the command value of the required power from the ECU 50 (step S101). Next, the power reception control unit 70 acquires the value of the output voltage from the voltage sensor and the value of the output current from the current sensor (step S102). The value of the output voltage acquired in step S102 is the voltage value between the output terminal 30a on the high potential side and the output terminal 30b on the low potential side. The value of the output current acquired in step S102 is the value of the current flowing in the electrical path between the low potential side output terminal 30b and the low potential side terminal of the rectifier circuit 33. Then, the power reception control unit 70 calculates the chargeable power based on the obtained output voltage value and output current value.
 次に、受電制御部70は、充電可能電力と要求電力とを比較し、スイッチ部35を制御する(ステップS103)。つまり、受電制御部70は、充電可能電力と要求電力と差分に基づいてスイッチ部35のオン・オフデューティ比を決定し、スイッチ部35を制御する。その際、PI制御等のフィードバック制御を行うことが望ましい。 Next, the power reception control unit 70 compares the chargeable power with the required power and controls the switch unit 35 (step S103). That is, the power reception control unit 70 determines the on/off duty ratio of the switch unit 35 based on the difference between the chargeable power and the required power, and controls the switch unit 35. At that time, it is desirable to perform feedback control such as PI control.
 上記構成を採用し、上記受電制御を実施した場合における作用について説明する。 Explain the operation when the above configuration is adopted and the above power reception control is performed.
 まず、図3に、本実施形態における回路に対する比較例を示す。比較例の回路では、整流回路33とダイオード34との間に昇圧チョッパ用(エネルギー蓄積用)のインダクタ10Lを設け、かつ、平滑コンデンサ10Cを設けている。この場合、図4(a)に示すような理想的な電流波形の出力電流を得ることができる。ただし、インダクタ10Lを設けているため、受電装置30が大型化する懸念がある。 First, FIG. 3 shows a comparative example with respect to the circuit in this embodiment. In the circuit of the comparative example, the inductor 10L for the step-up chopper (for energy storage) is provided between the rectifier circuit 33 and the diode 34, and the smoothing capacitor 10C is provided. In this case, an output current having an ideal current waveform as shown in FIG. 4A can be obtained. However, since the inductor 10L is provided, the power receiving device 30 may become large.
 一方、図1に示すように整流回路33とダイオード34との間におけるインダクタ10L及び平滑コンデンサ10Cを削除した場合、図4(b)に示すような電流波形の出力電流を得ることができる。図4に示すように、インダクタ10L及び平滑コンデンサ10Cを削除したことにより、出力電流に変動(脈動)が生じるものの、出力電流が途切れることなく、ほぼ一定の出力電流を得ることができる。つまり、インダクタ10Lを削除し、受電装置30を小型化しつつ、車載バッテリ12を充電するのに適した出力電力を供給することが可能となっている。 On the other hand, when the inductor 10L and the smoothing capacitor 10C between the rectifier circuit 33 and the diode 34 are removed as shown in FIG. 1, an output current having a current waveform as shown in FIG. 4B can be obtained. As shown in FIG. 4, by removing the inductor 10L and the smoothing capacitor 10C, although the output current fluctuates (pulsates), it is possible to obtain a substantially constant output current without interruption. That is, it is possible to remove the inductor 10L, reduce the size of the power receiving device 30, and supply the output power suitable for charging the in-vehicle battery 12.
 以下、本実施形態における効果について説明する。 The effects of this embodiment will be described below.
 車両走行中に非接触給電を行う場合、送電装置20と受電装置30との間で通信を行うことは、通信遅れの関係上、困難である。このため、送電装置20は、車両側の状況、つまり、車載バッテリ12の状況に関わらず、所定の電力(本実施形態では最大電力)を供給している。 When contactless power feeding is performed while the vehicle is traveling, it is difficult to perform communication between the power transmitting device 20 and the power receiving device 30 due to communication delay. Therefore, the power transmission device 20 supplies a predetermined electric power (maximum electric power in the present embodiment) regardless of the state of the vehicle side, that is, the state of the vehicle-mounted battery 12.
 一方、このように最大電力を供給する場合、受電装置30の側において、入力した電力の調整が必要となる。例えば、図3に示すように、整流回路33からの出力電力(直流電流)を、昇圧回路で車載バッテリ12の要求電力に応じて電力を調整することが考えられる。このようにすれば、整流回路33からの出力電流が定電流でなくても、好適に調整することが可能となる。しかしながら、車両のように、大電力を給電する非接触給電システムでは、昇圧回路のインダクタ10Lが大型化することとなる。その結果、収容スペースが限られるにもかかわらず、受電装置30が大型化するという問題があった。 On the other hand, when the maximum power is supplied in this way, the input power needs to be adjusted on the power receiving device 30 side. For example, as shown in FIG. 3, it is conceivable that the booster circuit adjusts the output power (DC current) from the rectifier circuit 33 according to the required power of the vehicle-mounted battery 12. With this configuration, even if the output current from the rectifier circuit 33 is not a constant current, it is possible to appropriately adjust the current. However, in a contactless power feeding system that feeds a large amount of power, such as a vehicle, the inductor 10L of the booster circuit becomes large. As a result, there is a problem that the power receiving device 30 becomes large even though the accommodation space is limited.
 そこで、本実施形態では、送電側フィルタ回路23への入力電圧と受電側フィルタ回路32からの出力電流が比例するように、送電側フィルタ回路23、送電側共振回路24、受電側共振回路31及び受電側フィルタ回路32の各回路を構成した。 Therefore, in the present embodiment, the power transmission side filter circuit 23, the power transmission side resonance circuit 24, the power reception side resonance circuit 31, and the power reception side resonance circuit 31 are arranged so that the input voltage to the power transmission side filter circuit 23 and the output current from the power reception side filter circuit 32 are proportional to each other. Each circuit of the power receiving side filter circuit 32 was configured.
 具体的には、送電側フィルタ回路23及び受電側フィルタ回路32を、それぞれ入力電圧と出力電流が比例し、入力電流と出力電圧が比例するイミタンス変換器とした。また、送電側共振回路24において、送電側共振コイル24Lu,24Lv,24Lwを、送電側共振コンデンサ24Cu,24Cv,24Cwに対して直列接続した。そして、受電側共振回路31において、受電側共振コイル31Lu,31Lv,31Lwを、受電側共振コンデンサ31Cu,31Cv,31Cwに対して直列接続した。つまり、SS方式にした。 Specifically, the power transmitting side filter circuit 23 and the power receiving side filter circuit 32 are immittance converters in which the input voltage and the output current are proportional and the input current and the output voltage are proportional. Further, in the power transmission side resonance circuit 24, the power transmission side resonance coils 24Lu, 24Lv, 24Lw are connected in series to the power transmission side resonance capacitors 24Cu, 24Cv, 24Cw. Then, in the power receiving side resonance circuit 31, the power receiving side resonance coils 31Lu, 31Lv, 31Lw were connected in series to the power receiving side resonance capacitors 31Cu, 31Cv, 31Cw. That is, the SS method was adopted.
 これにより、数式(1)~(9)に示したように、インバータ回路22からの出力電圧V1と、整流回路33の出力電流I2とが比例することとなる。このため、インバータ回路22からの出力電圧を一定とすれば、整流回路33の出力電流を定電流にすることが可能となる。そして、定電流であれば、電流が途切れないため、整流回路33とダイオード34との間においてインダクタを設ける必要がなくなる。したがって、インダクタを省略又は小型化することができ、受電装置30を小型化できる。 As a result, the output voltage V1 from the inverter circuit 22 and the output current I2 of the rectifier circuit 33 are proportional to each other as shown in the equations (1) to (9). Therefore, if the output voltage from the inverter circuit 22 is constant, the output current of the rectifier circuit 33 can be made constant. Then, if the current is a constant current, the current is not interrupted, so that it is not necessary to provide an inductor between the rectifier circuit 33 and the diode 34. Therefore, the inductor can be omitted or downsized, and the power receiving device 30 can be downsized.
 また、受電制御部70は、受電装置30の出力電流と出力電圧に基づいて充電可能電力を算出し、車載バッテリ12の要求電力との比較に基づいて、スイッチ部35を制御する。これにより、出力電力を調整(抑制)することが可能となり、車載バッテリ12に対して適切な充電を行うことができる。 Further, the power reception control unit 70 calculates chargeable power based on the output current and output voltage of the power receiving device 30, and controls the switch unit 35 based on comparison with the required power of the vehicle-mounted battery 12. As a result, the output power can be adjusted (suppressed), and the in-vehicle battery 12 can be appropriately charged.
 (他の実施形態)
 なお、本開示は上記実施形態に限定されるものではなく、本開示の要旨の範囲内において種々の変形実施が可能である。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
(Other embodiments)
The present disclosure is not limited to the above embodiment, and various modifications can be made within the scope of the gist of the present disclosure. In the following description, the same or equivalent parts in each embodiment are designated by the same reference numerals, and the description of the same reference portions is cited.
 ・上記実施形態において、3相の送電側共振コイル24Lu,24Lv,24Lw及び受電側共振コイル31Lu,31Lv,31Lwを設けたが、相数を任意に変更してもよい。例えば、図5に示すように、送電側共振回路24及び受電側共振回路31を単相にしてもよい。また、図6に示すように送電側共振回路24を1相とする一方、受電側共振回路31を2相にした非接触給電システム10にしてもよい。 In the above embodiment, the three-phase power transmission side resonance coils 24Lu, 24Lv, 24Lw and the power reception side resonance coils 31Lu, 31Lv, 31Lw are provided, but the number of phases may be arbitrarily changed. For example, as shown in FIG. 5, the power transmission side resonance circuit 24 and the power reception side resonance circuit 31 may be single-phase. Alternatively, as shown in FIG. 6, the contactless power supply system 10 may be configured such that the power transmission side resonance circuit 24 has one phase and the power reception side resonance circuit 31 has two phases.
 ・上記実施形態において、送電側フィルタ回路23への入力電圧と受電側フィルタ回路32からの出力電流が比例するのであれば、送電側フィルタ回路23、送電側共振回路24、受電側共振回路31及び受電側フィルタ回路32の各回路の構成を任意に変更してもよい。例えば、図7に示すような回路構成の非接触給電システム110にしてもよい。図7の送電装置120において、送電側フィルタ回路123は、入力電圧と出力電圧が比例するトランス特性フィルタ回路である。受電装置130において、受電側フィルタ回路132は、イミタンス変換器である。送電側共振回路124において、送電側共振コイル24Lは、送電側共振コンデンサ24Cに対して直列接続されている。一方、受電側共振回路131において、受電側共振コイル31Lは、受電側共振コンデンサ31Cに対して並列接続されている。つまり、一次側直列二次側並列のSP方式となっている。このようにしても、送電側フィルタ回路23への入力電圧と受電側フィルタ回路32からの出力電流とを比例させることができる。 In the above-described embodiment, if the input voltage to the power transmission side filter circuit 23 and the output current from the power reception side filter circuit 32 are proportional, the power transmission side filter circuit 23, the power transmission side resonance circuit 24, the power reception side resonance circuit 31, and The configuration of each circuit of the power receiving side filter circuit 32 may be arbitrarily changed. For example, the contactless power feeding system 110 having a circuit configuration as shown in FIG. 7 may be used. In the power transmission device 120 of FIG. 7, the power transmission side filter circuit 123 is a transformer characteristic filter circuit in which the input voltage and the output voltage are proportional. In the power receiving device 130, the power receiving side filter circuit 132 is an immittance converter. In the power transmission side resonance circuit 124, the power transmission side resonance coil 24L is connected in series to the power transmission side resonance capacitor 24C. On the other hand, in the power receiving side resonance circuit 131, the power receiving side resonance coil 31L is connected in parallel to the power receiving side resonance capacitor 31C. In other words, it is the SP system of primary side series and secondary side parallel. Even in this case, the input voltage to the power transmitting side filter circuit 23 and the output current from the power receiving side filter circuit 32 can be made proportional.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described according to the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more, or less than them are also within the scope and spirit of the present disclosure.

Claims (4)

  1.  道路側に設けられる送電装置(20)と車両側に設けられる受電装置(30)との間で、非接触で給電を行い、車両に設けられる蓄電池を充電する非接触給電システム(10)において、
     前記送電装置は、
     直流電源から入力した直流電流を交流電流に変換するインバータ(22)と、
     前記インバータに接続されており、所定の周波数域の交流電流を除去する送電側フィルタ回路(23)と、
     送電側共振コイル(24Lu,24Lv,24Lw)及び前記送電側共振コイルに接続される送電側共振コンデンサ(24Cu,24Cv,24Cw)を有する送電側共振回路(24)と、を備え、
     前記受電装置は、
     受電側共振コイル(31Lu,31Lv,31Lw)及び前記受電側共振コイルに接続される受電側共振コンデンサ(31Cu,31Cv,31Cw)を有する受電側共振回路(31)と、
     前記受電側共振回路に接続されており、所定の周波数域の交流電流を除去する受電側フィルタ回路(32)と、
     前記受電側フィルタ回路に接続されており、交流電流を直流電流に整流する整流器(33)と、
     前記整流器に対して直列に接続されており、前記整流器から前記受電装置の出力端子(30a)へ流れる電流を許可するダイオード(34)と、を備え、
     前記送電側フィルタ回路、前記送電側共振回路、前記受電側共振回路及び前記受電側フィルタ回路は、前記送電側フィルタ回路への入力電圧と前記受電側フィルタ回路からの出力電流が比例するように各回路が構成されている非接触給電システム。
    In a contactless power supply system (10) for supplying power in a contactless manner between a power transmission device (20) provided on a road side and a power reception device (30) provided on a vehicle side to charge a storage battery provided in the vehicle,
    The power transmission device,
    An inverter (22) for converting a direct current input from a direct current power source into an alternating current,
    A transmission-side filter circuit (23) that is connected to the inverter and removes an alternating current in a predetermined frequency range;
    A power transmission side resonance coil (24Lu, 24Lv, 24Lw) and a power transmission side resonance capacitor (24Cu, 24Cv, 24Cw) connected to the power transmission side resonance coil, and a power transmission side resonance circuit (24),
    The power receiving device,
    A power receiving side resonance circuit (31) having a power receiving side resonance coil (31Lu, 31Lv, 31Lw) and a power receiving side resonance capacitor (31Cu, 31Cv, 31Cw) connected to the power receiving side resonance coil;
    A power receiving side filter circuit (32) which is connected to the power receiving side resonance circuit and removes an alternating current in a predetermined frequency range;
    A rectifier (33) that is connected to the power receiving side filter circuit and rectifies an alternating current into a direct current;
    A diode (34) that is connected in series to the rectifier and that allows a current to flow from the rectifier to the output terminal (30a) of the power receiving device,
    The power transmitting side filter circuit, the power transmitting side resonant circuit, the power receiving side resonant circuit, and the power receiving side filter circuit are arranged such that an input voltage to the power transmitting side filter circuit and an output current from the power receiving side filter circuit are proportional to each other. A contactless power supply system in which the circuit is configured.
  2.  前記整流器とグランド端子と間における通電及び通電遮断を切り替えるスイッチ部(35)と、
     前記スイッチ部を制御する制御部(70)と、を備え、
     前記インバータからの出力電圧は、一定であり、
     前記制御部は、前記受電装置の出力電流と出力電圧に基づいて充電可能電力を算出し、前記蓄電池の要求電力との比較に基づいて、前記スイッチ部を制御する請求項1に記載の非接触給電システム。
    A switch unit (35) for switching between energization and de-energization between the rectifier and the ground terminal,
    A control unit (70) for controlling the switch unit,
    The output voltage from the inverter is constant,
    The non-contact according to claim 1, wherein the control unit calculates chargeable power based on an output current and an output voltage of the power receiving device, and controls the switch unit based on comparison with required power of the storage battery. Power supply system.
  3.  前記送電側フィルタ回路及び前記受電側フィルタ回路は、それぞれ入力電圧と出力電流が比例し、入力電流と出力電圧が比例するイミタンス変換器であり、
     前記送電側共振回路において、前記送電側共振コイルは、前記送電側共振コンデンサが直列接続されている一方、
     前記受電側共振回路において、前記受電側共振コイルは、前記受電側共振コンデンサが直列接続されている請求項1又は2に記載の非接触給電システム。
    The power transmission side filter circuit and the power reception side filter circuit are immittance converters in which the input voltage and the output current are respectively proportional, and the input current and the output voltage are proportional,
    In the power transmission side resonance circuit, the power transmission side resonance coil, while the power transmission side resonance capacitor is connected in series,
    The contactless power feeding system according to claim 1, wherein, in the power receiving side resonance circuit, the power receiving side resonance coil is connected in series with the power receiving side resonance capacitor.
  4.  前記送電側フィルタ回路は、入力電圧と出力電流が比例し、入力電流と出力電圧が比例するイミタンス変換器であり、
     前記受電側フィルタ回路は、入力電圧と出力電圧が比例するトランス特性フィルタ回路であり、
     前記送電側共振回路において、前記送電側共振コイルは、前記送電側共振コンデンサが直列接続されている一方、
     前記受電側共振回路において、前記受電側共振コイルは、前記受電側共振コンデンサが並列接続されている請求項1又は2に記載の非接触給電システム。
    The power transmission side filter circuit is an immittance converter in which the input voltage and the output current are proportional, and the input current and the output voltage are proportional,
    The power receiving side filter circuit is a transformer characteristic filter circuit in which an input voltage and an output voltage are proportional,
    In the power transmission side resonance circuit, the power transmission side resonance coil, while the power transmission side resonance capacitor is connected in series,
    The contactless power feeding system according to claim 1, wherein, in the power receiving side resonance circuit, the power receiving side resonance coil is connected in parallel with the power receiving side resonance capacitor.
PCT/JP2019/051012 2019-01-10 2019-12-25 Contactless power supply system WO2020145167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-002950 2019-01-10
JP2019002950A JP2020114092A (en) 2019-01-10 2019-01-10 Non-contact power supply system

Publications (1)

Publication Number Publication Date
WO2020145167A1 true WO2020145167A1 (en) 2020-07-16

Family

ID=71520681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051012 WO2020145167A1 (en) 2019-01-10 2019-12-25 Contactless power supply system

Country Status (2)

Country Link
JP (1) JP2020114092A (en)
WO (1) WO2020145167A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036225A (en) * 2014-08-04 2016-03-17 株式会社日本自動車部品総合研究所 Non-contact power transmission system
JP2016082707A (en) * 2014-10-16 2016-05-16 株式会社日本自動車部品総合研究所 Power receiving device and power transmitting device
JP2016195512A (en) * 2015-04-01 2016-11-17 株式会社デンソー Power transmission apparatus for non-contact power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036225A (en) * 2014-08-04 2016-03-17 株式会社日本自動車部品総合研究所 Non-contact power transmission system
JP2016082707A (en) * 2014-10-16 2016-05-16 株式会社日本自動車部品総合研究所 Power receiving device and power transmitting device
JP2016195512A (en) * 2015-04-01 2016-11-17 株式会社デンソー Power transmission apparatus for non-contact power transmission system

Also Published As

Publication number Publication date
JP2020114092A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
JP7161548B2 (en) DCDC converters, onboard chargers and electric vehicles
US9287790B2 (en) Electric power converter
RU2635381C1 (en) Non-contact electric power transmission device and electricity transmission system
US10541549B2 (en) Power supply apparatus
EP2814136B1 (en) Bidirectional contactless power supply system
JP6333475B2 (en) Charging circuit for an electrical energy accumulator, electric drive system, and method of operating a charging circuit
EP3248270B1 (en) An apparatus and a method for wireless transmission of power between dc voltage sources
EP2899847A1 (en) Power receiving device and contactless power transmission device
CN109728624A (en) Vehicle-mounted charge-discharge system
EP3623207B1 (en) Vehicle power supply device
US9887553B2 (en) Electric power transmission device, and electric power reception device and vehicle including the same
US11427095B2 (en) Wireless charging system
WO2013136753A1 (en) Power feed device of inductive charging device
WO2016160350A1 (en) Ac inductive power transfer system
EP3270487B1 (en) Non-contact power supply apparatus, program, method for controlling non-contact power supply apparatus, and non-contact power transmission system
JP2020127353A (en) Wireless power transfer system for electric vehicle
US11689112B2 (en) DC-DC converter and vehicle
WO2020145167A1 (en) Contactless power supply system
JP2019180203A (en) Device and system for wireless power transmission
EP4002643A1 (en) Wireless power receiver for electric vehicles
US20230118794A1 (en) Integrated power conversion topology for electric vehicles
US10862401B2 (en) Tandem DC/DC converter for a vehicle battery charger
JP2017216783A (en) Non-contact power supply device, non-contact power transmission system, program, and control method for non-contact power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908390

Country of ref document: EP

Kind code of ref document: A1