WO2020144865A1 - Mixer used in liquid chromatograph, and liquid chromatograph - Google Patents

Mixer used in liquid chromatograph, and liquid chromatograph Download PDF

Info

Publication number
WO2020144865A1
WO2020144865A1 PCT/JP2019/000768 JP2019000768W WO2020144865A1 WO 2020144865 A1 WO2020144865 A1 WO 2020144865A1 JP 2019000768 W JP2019000768 W JP 2019000768W WO 2020144865 A1 WO2020144865 A1 WO 2020144865A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixer
filter
liquid chromatograph
binder
eluents
Prior art date
Application number
PCT/JP2019/000768
Other languages
French (fr)
Japanese (ja)
Inventor
悠佑 長井
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2019/000768 priority Critical patent/WO2020144865A1/en
Priority to JP2020565560A priority patent/JP7259870B2/en
Priority to JP2020565569A priority patent/JP7207435B2/en
Priority to PCT/JP2019/018823 priority patent/WO2020144878A1/en
Publication of WO2020144865A1 publication Critical patent/WO2020144865A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column

Definitions

  • the present invention relates to a mixer and a liquid chromatograph used for a liquid chromatograph.
  • two or more different eluents may be used in the liquid chromatograph.
  • the two kinds of eluents supplied via the pump are mixed in the mixer.
  • a ball mixer for example, is used as the mixer.
  • the ball mixer is filled with ceramic particles, and the two kinds of eluents are mixed while passing between the ceramic particles.
  • Patent Document 1 discloses a mixer used in a liquid chromatograph.
  • a filter is used to prevent the outflow of ceramic particles or to remove contaminants in the eluent.
  • a sintered body of a metal material having excellent corrosion resistance and heat resistance is used.
  • a sintering aid called a binder is used in order to improve adhesion between metal materials.
  • Patent Document 2 below discloses a filter of a metal sintered body obtained by sintering a mixture of metal powder and an organic binder.
  • the binder for example, an organic material such as polyethylene or polypropylene is used. Alternatively, an inorganic material is used as the binder. JP, 10-185893, A JP, 2011-179077, A
  • the binder is removed during the manufacturing process of the sintered metal filter. However, it is difficult to completely remove the binder, and the unremoved binder remains in the filter of the metal sintered body. Therefore, when a metal sintered body filter is used in the mixer of the liquid chromatograph, the binder remaining in the filter is gradually eluted from the mixer. Then, the binder eluted from the filter may reach the detector at the subsequent stage.
  • an absorbance detector having a quartz flow cell is used as a liquid chromatograph detector.
  • the inflowing binder contaminates the quartz flow cell. Contamination of quartz flow cells causes baseline drift in the chromatogram. Alternatively, contamination of the quartz flow cell causes ghosts in the chromatogram.
  • the object of the present invention is to prevent the binder from flowing into the detector in the mixer used for the liquid chromatograph.
  • a mixer used in a liquid chromatograph includes an inflow port into which a plurality of types of eluents flow, a mixing unit that mixes a plurality of eluents that flow in from the inflow port, and a mixing unit.
  • a mixer, and the mixer filter is composed of a sintered body of a metal material that does not use a binder.
  • the mixer used in this liquid chromatograph has a mixer filter formed by sintering a metal material without using a binder. Since the binder does not elute from the mixer, it is possible to prevent the binder from flowing into the detector. This can prevent the occurrence of baseline drift or ghost in the chromatogram.
  • the metal material may include spherical particles of metal.
  • the metal material can be packed in a close-packed structure or a structure close to the close-packed structure, and the spherical particles are closely arranged.
  • the degree of adhesion of the sintered body of the metal material can be increased.
  • voids are secured between the spherical particles in the mixer filter. As a result, the pressure loss in the mixer can be reduced.
  • the metal material may include metal fibers. By using the metal fiber, the manufacturing cost of the mixer filter can be reduced.
  • the particle size of the spherical particles may be smaller than 20 ⁇ m.
  • the particle size of the spherical particles may be smaller than 10 ⁇ m.
  • the accuracy of the filter can be further improved.
  • the mixer further includes a flow path pipe through which a plurality of types of eluents or mixed eluents flow, and a flow path pipe filter provided in the flow path pipe.
  • the flow path pipe filter uses a binder. It may be composed of a sintered body of a non-metallic material. It is possible to more effectively prevent the binder from being eluted from the mixer.
  • a liquid chromatograph comprising the mixer according to any one of (1) to (6), further comprising a plurality of eluent tanks containing a plurality of eluents and a plurality of eluents.
  • a plurality of pumps for feeding the sample to the mixer, and an autosampler for injecting a sample into the mixed eluent flowing out of the mixer, and a plurality of flow paths from the plurality of eluent tanks to the plurality of pumps, a plurality of pumps and
  • the filter included in any of the autosamplers may be composed of a sintered body of a metal material that does not use a binder.
  • FIG. 1 is an overall view of a liquid chromatograph according to this embodiment.
  • FIG. 2 is a diagram comparing the chromatogram obtained by using the mixer of the present embodiment and the chromatogram obtained by using the mixer of the comparative example.
  • FIG. 1 is an overall configuration diagram of a liquid chromatograph 10 according to the present embodiment.
  • the liquid chromatograph 10 includes an eluent tank 1A, an eluent tank 1B, a pump 2A, a pump 2B, a mixer 3, an autosampler 4, a separation column 5 and a detector 6.
  • Eluent 11A is stored in the eluent tank 1A.
  • the eluent 11B is stored in the eluent tank 1B.
  • the liquid chromatograph 10 of the present embodiment is capable of performing gradient elution, in which two kinds of eluents 11A and 11B are supplied to the separation column 5 while adjusting the mixing ratio thereof.
  • One end of a flow path pipe 71A is connected to the eluent tank 1A.
  • the other end of the flow path pipe 71A is connected to the pump 2A.
  • the pump 2A By driving the pump 2A, the eluent 11A in the eluent tank 1A is sent to the flow passage pipe 72A downstream of the pump 2A via the flow passage pipe 71A.
  • One end of a flow path pipe 71B is connected to the eluent tank 1B.
  • the other end of the flow path pipe 71B is connected to the pump 2B.
  • the eluent 11B in the eluent tank 1B is sent to the flow path pipe 72B downstream of the pump 2B via the flow path pipe 71B.
  • the liquid chromatograph 10 of the present embodiment can perform gradient elution.
  • the liquid feed patterns of the pumps 2A and 2B (for example, pump pressure or liquid feed flow rate) are adjusted to adjust the liquid feed amounts of the eluents 11A and 11B.
  • the mixed eluent can be supplied to the separation column 5 while changing the mixing ratio of the eluent 11A and the eluent 11B flowing into the mixer 3 with time.
  • the eluent 11A and the eluent 11B are eluents containing water, acetonitrile, methanol and the like.
  • the eluent 11A and the eluent 11B have different mixing ratios of water, acetonitrile, and methanol. Therefore, the mixing ratio of the eluent 11A and the eluent 11B is changed by adjusting the liquid sending pattern (for example, the pump pressure or the liquid sending flow rate) of the pump 2A and the pump 2B, so that the eluent is contained in the mixed eluent.
  • the proportion of each component can be changed over time.
  • the mixer 3 has an inflow port 32.
  • Flow path pipes 72A and 72B are connected to the inflow port 32.
  • the eluents 11A and 11B sent through the flow path pipes 72A and 72B flow into the mixer 3 from the inflow port 32.
  • the eluents 11A and 11B flowing into the mixer 3 from the inflow port 32 pass through the mixing section 31 in the mixer 3 via the inflow port filter 32F.
  • mixing section 31 is formed of an aggregate of ceramic particles.
  • the eluents 11A and 11B that have passed through the mixing section 31 flow out of the mixer 3 from the outlet 33 through the outlet filter 33F.
  • the mixed liquid of the eluent 11A and the eluent 11B flowing out from the mixer 3 (hereinafter referred to as the mixed eluent) is supplied to the autosampler 4 via the flow path pipe 73.
  • the injector 41 drops the sample into the mixed eluent.
  • the mixed eluent on which the sample is dropped in the autosampler 4 is sent to the separation column 5 via the flow path pipe 74.
  • the separation column 5 is supplied with the mixed eluent in which the sample is injected.
  • the sample is separated while the mixed eluent passes through the stationary phase in the separation column 5.
  • the mixed eluent in which the sample flowing out from the separation column 5 is dissolved is sent to the detector 6 via the flow path pipe 75.
  • the detector 6 is supplied with the mixed eluent obtained by separating the sample in the separation column 5.
  • an absorbance detector is used as the detector 6.
  • the detector 6 includes a quartz flow cell, and when the mixed eluent containing the sample passes through the flow cell having quartz in the liquid contact portion, the quartz flow cell is irradiated with light having a predetermined wavelength. Then, the sample is detected by measuring the intensity change of light before and after the quartz flow cell.
  • the mixer 3 includes the mixing unit 31.
  • the mixing section 31 is composed of an aggregate of ceramic particles in the present embodiment.
  • the ceramic particles are housed in the case 35 of the mixer 3 in a freely movable state.
  • the inflow filter 32F and the outflow filter 33F prevent the ceramic particles from flowing out of the mixer 3.
  • the eluent 11A and the eluent 11B are mixed while moving between the ceramic particles.
  • the mixer 3 includes the inflow filter 32F and the outflow filter 33F.
  • Both the inlet filter 32F and the outlet filter 33F are made of a sintered body of a metal material.
  • both the inlet filter 32F and the outlet filter 33F are made of a sintered body of metallic spherical particles.
  • the inflow filter 32F and the outflow filter 33F are filters obtained by sintering spherical metal particles without using a binder.
  • a binder is used in the process of manufacturing a sintered body of the metal material in order to improve the adhesion of the metal material. Since the inlet filter 32F and the outlet filter 33F of the present embodiment use spherical particles as the metal material, a sintered body is formed without using a binder.
  • the spherical particles are closely arranged by being filled with the metallic material of the spherical particles in a close-packed structure or a structure close to the close-packed structure. Therefore, a sintered body is formed without using a binder.
  • the closest packing structure may be a face centered cubic lattice or a hexagonal closest packing structure.
  • the inflow filter 32F and the outflow filter 33F are made of a sintered body of spherical particles of stainless steel.
  • SUS316L spherical particles are used as the metal material.
  • the metal material used for the sintered body forming the inflow filter 32F and the outflow filter 33F is not particularly limited. Besides, for example, compounds such as iron and nickel are used. Alternatively, a compound of a plurality of metal alloys is used as the metal material.
  • the mixer 3 of this embodiment includes the inflow filter 32F and the outflow filter 33F.
  • the inlet filter 32F and the outlet filter 33F are made of a metal material that is sintered without using a binder.
  • the binder does not elute from the mixer 3, so that the binder can be prevented from flowing into the detector 6. Therefore, it is possible to prevent the flow cell having quartz in the liquid contact portion, which is included in the detector 6, from being contaminated with the binder. It is possible to prevent the occurrence of baseline drift or ghost in the chromatogram obtained from the detection result of the detector 6.
  • filters are used in units other than mixers. Of the filters used in each unit, the capacity of the filter used in the mixer is generally the largest. Therefore, when a binder is used for the filter used in the mixer, the influence of the binder elution on the detector is larger than that of other units.
  • the inlet filter 32F and the outlet filter 33F that do not use the binder are used in the mixer 3 that is greatly affected by the elution of the binder. This can effectively prevent the occurrence of baseline drift or ghost in the detector 6.
  • the sintered body forming the inflow filter 32F and the outflow filter 33F is formed of spherical particles of a metal material.
  • voids are secured between the spherical particles in the inlet filter 32F and the outlet filter 33F. As a result, the pressure loss in the mixer 3 can be reduced.
  • the particle size of the spherical particles of the metal material forming the sintered body is not particularly limited, but is preferably smaller than 20 ⁇ m. By making the particle diameter of the spherical particles smaller than 20 ⁇ m, even if the ceramic particles filled in the mixer 3 are small, the outflow of the ceramic particles is prevented and the contaminants contained in the eluents 11A and 11B are prevented. It can prevent outflow.
  • the particle diameter of the spherical particles of the metal material forming the sintered body is more preferably smaller than 10 ⁇ m. By making the particle size smaller than 10 ⁇ m, the accuracy of the filter can be further improved.
  • FIG. 2 is a diagram comparing the chromatogram obtained by using the mixer 3 of the present embodiment and the chromatogram obtained by using the mixer of the comparative example.
  • FIG. 2 shows experimental results based on Example 1, Example 2 and Comparative Example.
  • the baseline BL1 in FIG. 2 shows the baseline of the chromatogram according to the first embodiment.
  • the filter including the binder-free sintered body according to the present embodiment was used.
  • the inflow filter 32F and the outflow filter 33F are made of a sintered body of spherical particles of stainless steel (SUS316L) having a particle size of 1 ⁇ m.
  • the baseline BL2 in FIG. 2 shows the baseline of the chromatogram according to the second embodiment.
  • the filter including the binder-free sintered body according to the present embodiment was used.
  • the inflow filter 32F and the outflow filter 33F are made of a sintered body of spherical particles of stainless steel (SUS316L) having a particle diameter of 2 ⁇ m.
  • the baseline BL3 in FIG. 2 shows the baseline of the chromatogram according to the comparative example.
  • a filter made of a sintered body using a binder was used.
  • the inflow filter 32F and the outflow filter 33F are composed of a sintered body of spherical particles of stainless steel (SUS316L) that are adhered to each other using a binder.
  • Example 1 it can be seen that the baseline BL1 of Example 1 having a particle size of 1 ⁇ m hardly causes the baseline drift.
  • the baseline BL2 of Example 2 having a particle size of 2 ⁇ m has a slight drift as compared with Example 1.
  • the drift amount of the baseline BL2 of the example 2 is much smaller than that of the baseline BL3 of the comparative example using the binder.
  • Example 1 and Example 2 have a significant difference in the drift amount of the baseline as compared with the comparative example.
  • the mixer 3 included in the liquid chromatograph 10 uses a filter made of a sintered body that does not use a binder.
  • the liquid chromatograph 10 also uses a plurality of filters in other units.
  • the liquid chromatograph 10 includes the following filters. As described above, the flow path pipes 71A and 71B are connected to the eluent tanks 11A and 11B. A suction filter is used for the suction ports of the flow path pipes 71A and 71B.
  • a suction filter is used at the inflow port where the eluents 11A and 11B flow into the pumps 2A and 2B.
  • a line filter is used in the flow paths through which the eluents 11A and 11B are sent in the pumps 2A and 2B.
  • a line filter is used in the flow path through which the mixed eluent is sent.
  • a filter that does not use a binder is used as the suction filter provided in the above-described flow path pipes 71A and 71B, the suction filter and line filter provided in the pumps 2A and 2B, and the line filter provided in the autosampler 4.
  • a filter that does not use a binder is used as these filters. That is, as these filters, similar to the inlet filter 32F and the outlet filter 33F used in the mixer 3 described in the first embodiment, a filter that does not use a binder is used. More specifically, as these filters, filters made of a sintered body of a metal material that does not use a binder are used. Alternatively, some of these filters are composed of a sintered body of a metal material that does not use a binder.
  • the filter provided in any of the flow path pipes 71A and 71B from the eluent tanks 1A and 1B to the pumps 2A and 2B, the pumps 2A and 2B, and the autosampler 4 is the binder. It is composed of a sintered body of a metal material that does not use. It is possible to prevent the binder from eluting from units other than the mixer 3 included in the liquid chromatograph 10. This can prevent the occurrence of baseline drift or ghost in the chromatogram.
  • the mixer 3 is provided with the filters at both the inlet 32 and the outlet 33. That is, the case where the mixer 3 includes the inflow filter 32F and the outflow filter 33F has been described as an example. As a configuration other than this, the mixer 3 may have a configuration in which the inlet 32 is not provided with a filter and the outlet 33 is provided with a filter. In this case, the filter provided at the outflow port 33 is composed of a sintered body of a metal material that does not use a binder. This can prevent the binder from being eluted from the mixer 3 and flowing into the detector 6.
  • a filter for removing foreign matters that may block the flow path such as foreign matters and dust may be used in the flow path pipe in which the eluent 11A or the eluent 11B flows in the mixer 3.
  • a filter that removes foreign matter may be used in the flow path pipe through which the eluent mixed in the mixer 3 flows.
  • the filter provided in the flow path tube in the mixer 3 is made of a sintered body of a metal material that does not use a binder. This can prevent the binder from being eluted from the mixer 3 and flowing into the detector 6.
  • the metal material is spherical particles
  • the metal material may be metal fiber.
  • the filter is made of a sintered body of metal fibers that does not use a binder. Then, a filter made of a sintered body of metal fibers is used as the inlet filter 32F and the outlet filter 33F of the mixer 3. If the mixer 3 does not include the inflow filter 32F, the outflow filter 33F is configured by a filter made of a sintered body of metal fibers. Even in this case, since the binder is not used for the sintered body of metal fibers, the binder does not elute from the mixer 3. Further, by using the metal fiber, the manufacturing cost of the filter used in the mixer 3 can be reduced.
  • the mixer 3 is a ball mixer filled with ceramic particles
  • the mixer 3 a mixer other than the ball mixer may be used.
  • a dynamic mixer that mixes an eluent by rotating a magnetic stirrer with a magnetic force may be used. That is, a magnetic stirrer may be used as the mixing unit.

Abstract

This mixer, which is used in a liquid chromatograph, comprises: an inflow opening through which a plurality of types of eluting solutions flow in; a mixing part that mixes the plurality of types of eluting solutions flowing in from the inflow opening; an outflow opening through which the plurality of types of eluting solutions that were mixed by the mixing part flow out, the outflow opening being connected to a flow path that extends to a separation column; and a mixer filter that is provided to both the inflow opening and the outflow opening, or to only the outflow opening. The mixer filter is configured from a sintered compact of a metal material in which no binder is used.

Description

液体クロマトグラフに使用されるミキサおよび液体クロマトグラフMixers and liquid chromatographs used in liquid chromatographs
 本発明は、液体クロマトグラフに使用されるミキサおよび液体クロマトグラフに関する。 The present invention relates to a mixer and a liquid chromatograph used for a liquid chromatograph.
 分離カラムにおける溶出効率を向上させるため等の理由により、液体クロマトグラフにおいては、2種類以上の異なる溶離液が用いられる場合がある。例えば、2種類の溶離液が用いられる場合、ポンプを介して供給される2種類の溶離液がミキサにおいて混合される。ミキサとして、例えばボールミキサが用いられる。ボールミキサには、セラミックの粒子が充填されており、2種類の溶離液がセラミックの粒子間を通過する間に混合される。下記特許文献1には、液体クロマトグラフで用いられるミキサが開示されている。 -For reasons such as improving the elution efficiency in the separation column, two or more different eluents may be used in the liquid chromatograph. For example, when two kinds of eluents are used, the two kinds of eluents supplied via the pump are mixed in the mixer. A ball mixer, for example, is used as the mixer. The ball mixer is filled with ceramic particles, and the two kinds of eluents are mixed while passing between the ceramic particles. The following Patent Document 1 discloses a mixer used in a liquid chromatograph.
 ボールミキサにおいて、セラミック粒子の流出を防ぐ用途として、あるいは、溶離液中の狭雑物を除去する用途として、フィルタが用いられる。フィルタとしては、耐食性および耐熱性等に優れた金属材料の焼結体が用いられる。金属焼結体のフィルタの製造工程においては、金属材料同士の密着性を良くするために、バインダと呼ばれる焼結助剤が用いられる。下記特許文献2には、金属粉末と有機バインダとの混合物を焼結することによって得られる金属焼結体のフィルタが開示されている。バインダとしては、例えば、ポリエチレン、ポリプロピレン等の有機材料が用いられる。あるいは、バインダとして、無機材料が用いられる。
特開平10-185893号公報 特開2011-179077号公報
In a ball mixer, a filter is used to prevent the outflow of ceramic particles or to remove contaminants in the eluent. As the filter, a sintered body of a metal material having excellent corrosion resistance and heat resistance is used. In the process of manufacturing a filter of a metal sintered body, a sintering aid called a binder is used in order to improve adhesion between metal materials. Patent Document 2 below discloses a filter of a metal sintered body obtained by sintering a mixture of metal powder and an organic binder. As the binder, for example, an organic material such as polyethylene or polypropylene is used. Alternatively, an inorganic material is used as the binder.
JP, 10-185893, A JP, 2011-179077, A
 バインダは、金属焼結体のフィルタの製造過程において除去される。しかし、バインダを完全に除去することは難しく、金属焼結体のフィルタには、除去されなかったバインダが残存する。このため、液体クロマトグラフのミキサに金属焼結体のフィルタが用いられた場合、フィルタに残存するバインダが少しずつミキサから溶出する。そして、フィルタから溶出したバインダが、後段の検出器まで到達する場合がある。 The binder is removed during the manufacturing process of the sintered metal filter. However, it is difficult to completely remove the binder, and the unremoved binder remains in the filter of the metal sintered body. Therefore, when a metal sintered body filter is used in the mixer of the liquid chromatograph, the binder remaining in the filter is gradually eluted from the mixer. Then, the binder eluted from the filter may reach the detector at the subsequent stage.
 液体クロマトグラフの検出器として、例えば石英製フローセルを有する吸光度検出器が用いられる。検出器に石英製フローセルが使用されている場合、流入したバインダが石英製フローセルを汚染する。石英製フローセルの汚染は、クロマトグラムにおけるベースラインドリフトの原因となる。あるいは、石英製フローセルの汚染は、クロマトグラムにゴーストを発生させる原因となる。 As a liquid chromatograph detector, for example, an absorbance detector having a quartz flow cell is used. When a quartz flow cell is used for the detector, the inflowing binder contaminates the quartz flow cell. Contamination of quartz flow cells causes baseline drift in the chromatogram. Alternatively, contamination of the quartz flow cell causes ghosts in the chromatogram.
 本発明の目的は、液体クロマトグラフに使用されるミキサにおいて、検出器にバインダが流入することを防止することである。 The object of the present invention is to prevent the binder from flowing into the detector in the mixer used for the liquid chromatograph.
 (1)本発明の一局面に従う液体クロマトグラフで使用されるミキサは、複数種類の溶離液が流入する流入口と、流入口から流入した複数種類の溶離液を混合する混合部と、混合部において混合された前記複数種類の溶離液が流出する流出口であって、分離カラムに至る流路に接続される流出口と、流入口および流出口の両方、あるいは、流出口に設けられたミキサフィルタとを備え、ミキサフィルタは、バインダを用いない金属材料の焼結体で構成される。 (1) A mixer used in a liquid chromatograph according to one aspect of the present invention includes an inflow port into which a plurality of types of eluents flow, a mixing unit that mixes a plurality of eluents that flow in from the inflow port, and a mixing unit. A plurality of kinds of eluents mixed out in the outlet, the outlet being connected to the flow path leading to the separation column, both the inlet and the outlet, or the mixer provided at the outlet. And a mixer, and the mixer filter is composed of a sintered body of a metal material that does not use a binder.
 この液体クロマトグラフで使用されるミキサは、バインダを用いずに金属材料を焼結させることにより形成されたミキサフィルタを備える。ミキサからバインダが溶出しないため、検出器にバインダが流入することを防止できる。これにより、クロマトグラムにおいてベースラインドリフトまたはゴーストが発生することを防止できる。 The mixer used in this liquid chromatograph has a mixer filter formed by sintering a metal material without using a binder. Since the binder does not elute from the mixer, it is possible to prevent the binder from flowing into the detector. This can prevent the occurrence of baseline drift or ghost in the chromatogram.
 (2)金属材料は金属の球状粒子を含んでもよい。球状粒子を利用することにより、金属材料を最密充填構造あるいは最密充填構造に近い構造で充填することができ、球状粒子同士の配置が密となる。これにより、バインダを用いない場合であっても、金属材料の焼結体の密着度を高くすることができる。また、球状粒子を利用することにより、ミキサフィルタには球状粒子間に空隙が確保される。これにより、ミキサにおける圧力損失を低減させることができる。 (2) The metal material may include spherical particles of metal. By using the spherical particles, the metal material can be packed in a close-packed structure or a structure close to the close-packed structure, and the spherical particles are closely arranged. As a result, even if the binder is not used, the degree of adhesion of the sintered body of the metal material can be increased. Moreover, by using spherical particles, voids are secured between the spherical particles in the mixer filter. As a result, the pressure loss in the mixer can be reduced.
 (3)金属材料は金属繊維を含んでもよい。金属繊維を利用することにより、ミキサフィルタの製造コストを低減させることができる。 (3) The metal material may include metal fibers. By using the metal fiber, the manufacturing cost of the mixer filter can be reduced.
 (4)金属材料が金属の球状粒子である場合、球状粒子の粒径が20μmより小さくてもよい。球状粒子の粒径を20μmより小さくすることにより、混合部を構成する材料が小さい場合であっても、混合部を構成する材料の流出を防ぐとともに、溶離液に含まれる狭雑物の流出を防ぐことができる。 (4) When the metal material is spherical particles of metal, the particle size of the spherical particles may be smaller than 20 μm. By making the particle diameter of the spherical particles smaller than 20 μm, even when the material forming the mixing portion is small, the material forming the mixing portion is prevented from flowing out, and the contaminants contained in the eluent are prevented from flowing out. Can be prevented.
 (5)球状粒子の粒径は、10μmより小さくてもよい。フィルタの精度をさらに向上させることができる。 (5) The particle size of the spherical particles may be smaller than 10 μm. The accuracy of the filter can be further improved.
 (6)ミキサは、さらに、複数種類の溶離液あるいは混合された溶離液が流れる流路管と、流路管に設けられた流路管フィルタとを備え、流路管フィルタは、バインダを用いない金属材料の焼結体で構成されてもよい。ミキサからバインダが溶出することをさらに効果的に防止することができる。 (6) The mixer further includes a flow path pipe through which a plurality of types of eluents or mixed eluents flow, and a flow path pipe filter provided in the flow path pipe. The flow path pipe filter uses a binder. It may be composed of a sintered body of a non-metallic material. It is possible to more effectively prevent the binder from being eluted from the mixer.
 (7)上記(1)~(6)のいずれかに記載のミキサを備える液体クロマトグラフであって、さらに、複数種類の溶離液が収容される複数の溶離液槽と、複数種類の溶離液を前記ミキサに送液する複数のポンプと、ミキサから流出した混合溶離液に試料を注入するオートサンプラとを備え、複数の溶離液槽から複数のポンプへ至る複数の流路、複数のポンプおよびオートサンプラのいずれかが備えるフィルタは、バインダを用いない金属材料の焼結体で構成されてもよい。 (7) A liquid chromatograph comprising the mixer according to any one of (1) to (6), further comprising a plurality of eluent tanks containing a plurality of eluents and a plurality of eluents. A plurality of pumps for feeding the sample to the mixer, and an autosampler for injecting a sample into the mixed eluent flowing out of the mixer, and a plurality of flow paths from the plurality of eluent tanks to the plurality of pumps, a plurality of pumps and The filter included in any of the autosamplers may be composed of a sintered body of a metal material that does not use a binder.
 液体クロマトグラフが備えるミキサ以外のユニットからもバインダが溶出することを防止することができる。これにより、クロマトグラムにおけるベースラインドリフトまたはゴーストの発生をさらに効果的に防止することができる。 It is possible to prevent the binder from eluting from units other than the mixer that the liquid chromatograph has. This makes it possible to more effectively prevent the occurrence of baseline drift or ghost in the chromatogram.
 本発明によれば、液体クロマトグラフに使用されるミキサにおいて、検出器にバインダが流入することを防止することができる。 According to the present invention, it is possible to prevent the binder from flowing into the detector in the mixer used for the liquid chromatograph.
図1は、本実施の形態に係る液体クロマトグラフの全体図である。FIG. 1 is an overall view of a liquid chromatograph according to this embodiment. 図2は、本実施の形態のミキサを用いることによって得られたクロマトグラムおよび比較例のミキサを用いることによって得られたクロマトグラムを比較した図である。FIG. 2 is a diagram comparing the chromatogram obtained by using the mixer of the present embodiment and the chromatogram obtained by using the mixer of the comparative example.
 [1]第1の実施の形態
 次に、添付の図面を参照しながら本発明の実施の形態に係る液体クロマトグラフの構成について説明する。
[1] First Embodiment Next, the configuration of a liquid chromatograph according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 (1)液体クロマトグラフの全体構成
 図1は、本実施の形態の液体クロマトグラフ10の全体構成図である。液体クロマトグラフ10は、溶離液槽1A、溶離液槽1B、ポンプ2A、ポンプ2B、ミキサ3、オートサンプラ4、分離カラム5および検出器6を備える。
(1) Overall Configuration of Liquid Chromatograph FIG. 1 is an overall configuration diagram of a liquid chromatograph 10 according to the present embodiment. The liquid chromatograph 10 includes an eluent tank 1A, an eluent tank 1B, a pump 2A, a pump 2B, a mixer 3, an autosampler 4, a separation column 5 and a detector 6.
 溶離液槽1Aには、溶離液11Aが収容されている。溶離液槽1Bには、溶離液11Bが収容されている。本実施の形態の液体クロマトグラフ10は、2種類の溶離液11A,11Bを、その混合割合を調整しながら分離カラム5へ供給するグラジエント溶離を実行可能である。 Eluent 11A is stored in the eluent tank 1A. The eluent 11B is stored in the eluent tank 1B. The liquid chromatograph 10 of the present embodiment is capable of performing gradient elution, in which two kinds of eluents 11A and 11B are supplied to the separation column 5 while adjusting the mixing ratio thereof.
 溶離液槽1Aには、流路管71Aの一端が接続されている。流路管71Aの他端はポンプ2Aに接続されている。ポンプ2Aを駆動することにより、溶離液槽1A内の溶離液11Aは、流路管71Aを介してポンプ2Aの下流の流路管72Aに送られる。溶離液槽1Bには、流路管71Bの一端が接続されている。流路管71Bの他端はポンプ2Bに接続されている。ポンプ2Bを駆動することにより、溶離液槽1B内の溶離液11Bは、流路管71Bを介してポンプ2Bの下流の流路管72Bに送られる。 One end of a flow path pipe 71A is connected to the eluent tank 1A. The other end of the flow path pipe 71A is connected to the pump 2A. By driving the pump 2A, the eluent 11A in the eluent tank 1A is sent to the flow passage pipe 72A downstream of the pump 2A via the flow passage pipe 71A. One end of a flow path pipe 71B is connected to the eluent tank 1B. The other end of the flow path pipe 71B is connected to the pump 2B. By driving the pump 2B, the eluent 11B in the eluent tank 1B is sent to the flow path pipe 72B downstream of the pump 2B via the flow path pipe 71B.
 上述したように、本実施の形態の液体クロマトグラフ10はグラジエント溶離を実行することが可能である。グラジエント溶離を行う場合には、ポンプ2Aおよびポンプ2Bの送液パターン(例えばポンプ圧力または送液流量)を調整することにより、溶離液11Aおよび溶離液11Bの送液量を調整する。これにより、ミキサ3に流入する溶離液11Aおよび溶離液11Bの混合割合を時間とともに変化させながら分離カラム5に混合溶離液を供給することができる。 As described above, the liquid chromatograph 10 of the present embodiment can perform gradient elution. When performing gradient elution, the liquid feed patterns of the pumps 2A and 2B (for example, pump pressure or liquid feed flow rate) are adjusted to adjust the liquid feed amounts of the eluents 11A and 11B. As a result, the mixed eluent can be supplied to the separation column 5 while changing the mixing ratio of the eluent 11A and the eluent 11B flowing into the mixer 3 with time.
 例えば、溶離液11Aおよび溶離液11Bは、水、アセトニトリル、メタノール等を含む溶離液である。ただし、溶離液11Aと溶離液11Bとは、水、アセトニトリル、およびメタノールの混合割合が異なる。したがって、ポンプ2Aおよびポンプ2Bの送液パターン(例えばポンプ圧力または送液流量)を調整することにより、溶離液11Aおよび溶離液11Bの混合割合を変化させることで、混合された溶離液に含まれる各成分の割合を時間とともに変化させることができる。 For example, the eluent 11A and the eluent 11B are eluents containing water, acetonitrile, methanol and the like. However, the eluent 11A and the eluent 11B have different mixing ratios of water, acetonitrile, and methanol. Therefore, the mixing ratio of the eluent 11A and the eluent 11B is changed by adjusting the liquid sending pattern (for example, the pump pressure or the liquid sending flow rate) of the pump 2A and the pump 2B, so that the eluent is contained in the mixed eluent. The proportion of each component can be changed over time.
 ミキサ3は、流入口32を有する。流入口32には、流路管72A,72Bが接続されている。ポンプ2A,2Bの駆動により、流路管72A,72Bを介して送られる溶離液11A,11Bは、流入口32からミキサ3に流入する。流入口32からミキサ3に流入した溶離液11A,11Bは、流入口フィルタ32Fを介して、ミキサ3内の混合部31を通過する。本実施の形態においては、混合部31は、セラミックの粒子の集合体で構成されている。混合部31を通過した溶離液11A,11Bは、流出口フィルタ33Fを介して流出口33からミキサ3の外部へ流出する。 The mixer 3 has an inflow port 32. Flow path pipes 72A and 72B are connected to the inflow port 32. By driving the pumps 2A and 2B, the eluents 11A and 11B sent through the flow path pipes 72A and 72B flow into the mixer 3 from the inflow port 32. The eluents 11A and 11B flowing into the mixer 3 from the inflow port 32 pass through the mixing section 31 in the mixer 3 via the inflow port filter 32F. In the present embodiment, mixing section 31 is formed of an aggregate of ceramic particles. The eluents 11A and 11B that have passed through the mixing section 31 flow out of the mixer 3 from the outlet 33 through the outlet filter 33F.
 ミキサ3から流出した溶離液11Aおよび溶離液11Bの混合液(以下、混合溶離液と呼ぶ。)は、流路管73を介してオートサンプラ4に供給される。オートサンプラ4において、インジェクタ41により試料が混合溶離液に滴下される。オートサンプラ4において試料が滴下された混合溶離液は、流路管74を介して分離カラム5に送られる。 The mixed liquid of the eluent 11A and the eluent 11B flowing out from the mixer 3 (hereinafter referred to as the mixed eluent) is supplied to the autosampler 4 via the flow path pipe 73. In the auto sampler 4, the injector 41 drops the sample into the mixed eluent. The mixed eluent on which the sample is dropped in the autosampler 4 is sent to the separation column 5 via the flow path pipe 74.
 分離カラム5には、試料が注入された混合溶離液が供給される。分離カラム5において、混合溶離液が分離カラム5内の固定相を通過する間に、試料の分離が行われる。分離カラム5から流出した試料が溶解した混合溶離液は、流路管75を介して検出器6に送られる。 The separation column 5 is supplied with the mixed eluent in which the sample is injected. In the separation column 5, the sample is separated while the mixed eluent passes through the stationary phase in the separation column 5. The mixed eluent in which the sample flowing out from the separation column 5 is dissolved is sent to the detector 6 via the flow path pipe 75.
 検出器6には、分離カラム5において試料が分離された混合溶離液が供給される。本実施の形態においては、検出器6として吸光度検出器が用いられる。検出器6は、石英製フローセルを備えており、試料を含む混合溶離液が、接液部に石英を有するフローセルを通過するときに、所定の波長の光が石英製フローセルに照射される。そして、石英製フローセルの前後の光の強度変化を測定することにより、試料の検出が行われる。 The detector 6 is supplied with the mixed eluent obtained by separating the sample in the separation column 5. In this embodiment, an absorbance detector is used as the detector 6. The detector 6 includes a quartz flow cell, and when the mixed eluent containing the sample passes through the flow cell having quartz in the liquid contact portion, the quartz flow cell is irradiated with light having a predetermined wavelength. Then, the sample is detected by measuring the intensity change of light before and after the quartz flow cell.
 (2)ミキサの構成
 上述したように、ミキサ3は、混合部31を備える。上述したように、混合部31は、本実施の形態においては、セラミックの粒子の集合体で構成である。セラミック粒子は自由に移動可能な状態でミキサ3のケース35内に収容されている。流入口フィルタ32Fおよび流出口フィルタ33Fにより、セラミック粒子がミキサ3の外部に流出することが防止される。溶離液11Aおよび溶離液11Bは、セラミック粒子間を移動する間に混合される。
(2) Configuration of Mixer As described above, the mixer 3 includes the mixing unit 31. As described above, the mixing section 31 is composed of an aggregate of ceramic particles in the present embodiment. The ceramic particles are housed in the case 35 of the mixer 3 in a freely movable state. The inflow filter 32F and the outflow filter 33F prevent the ceramic particles from flowing out of the mixer 3. The eluent 11A and the eluent 11B are mixed while moving between the ceramic particles.
 上述したように、ミキサ3は、流入口フィルタ32Fおよび流出口フィルタ33Fを備える。流入口フィルタ32Fおよび流出口フィルタ33Fは、いずれも金属材料の焼結体で構成されている。本実施の形態においては、流入口フィルタ32Fおよび流出口フィルタ33Fは、いずれも金属の球状粒子の焼結体で形成されている。 As described above, the mixer 3 includes the inflow filter 32F and the outflow filter 33F. Both the inlet filter 32F and the outlet filter 33F are made of a sintered body of a metal material. In the present embodiment, both the inlet filter 32F and the outlet filter 33F are made of a sintered body of metallic spherical particles.
 流入口フィルタ32Fおよび流出口フィルタ33Fは、バインダを使用せずに金属の球状粒子を焼結させたフィルタである。金属材料が球状粒子ではなく、異形である場合には、金属材料の密着性を良くするために、金属材料の焼結体を製造する過程においてバインダが用いられる。本実施の形態の流入口フィルタ32Fおよび流出口フィルタ33Fは、金属材料として球状粒子を利用しているため、バインダを用いることなく、焼結体が形成される。 The inflow filter 32F and the outflow filter 33F are filters obtained by sintering spherical metal particles without using a binder. When the metal material is not spherical particles but has an irregular shape, a binder is used in the process of manufacturing a sintered body of the metal material in order to improve the adhesion of the metal material. Since the inlet filter 32F and the outlet filter 33F of the present embodiment use spherical particles as the metal material, a sintered body is formed without using a binder.
 具体的には、流入口フィルタ32Fおよび流出口フィルタ33Fは、球状粒子の金属材料が最密充填構造あるいは最密充填構造に近い構造で充填されることによって、球状粒子同士の配置が密となるため、バインダを使用することなく焼結体が形成される。最密充填構造は、面心立方格子であってもよいし、六方最密重点構造であってもよい。 Specifically, in the inlet filter 32F and the outlet filter 33F, the spherical particles are closely arranged by being filled with the metallic material of the spherical particles in a close-packed structure or a structure close to the close-packed structure. Therefore, a sintered body is formed without using a binder. The closest packing structure may be a face centered cubic lattice or a hexagonal closest packing structure.
 本実施の形態において、流入口フィルタ32Fおよび流出口フィルタ33Fは、ステンレス鋼の球状粒子の焼結体で構成される。具体的には、金属材料としてSUS316Lの球状粒子が用いられる。流入口フィルタ32Fおよび流出口フィルタ33Fを構成する焼結体に用いられる金属材料は特に限定されるものではない。他にも例えば、鉄、ニッケル等の化合物が用いられる。あるいは、金属材料として複数の金属合金の化合物が用いられる。 In the present embodiment, the inflow filter 32F and the outflow filter 33F are made of a sintered body of spherical particles of stainless steel. Specifically, SUS316L spherical particles are used as the metal material. The metal material used for the sintered body forming the inflow filter 32F and the outflow filter 33F is not particularly limited. Besides, for example, compounds such as iron and nickel are used. Alternatively, a compound of a plurality of metal alloys is used as the metal material.
 以上説明したように、本実施の形態のミキサ3は、流入口フィルタ32Fおよび流出口フィルタ33Fを備える。流入口フィルタ32Fおよび流出口フィルタ33Fは、バインダを用いずに焼結された金属材料により構成される。これにより、ミキサ3からバインダが溶出しないため、検出器6にバインダが流入することを防止できる。したがって、検出器6が備える、接液部に石英を有するフローセルが、バインダによって汚染されることが防止される。検出器6の検出結果から得られるクロマトグラムにおいて、ベースラインドリフトまたはゴーストが発生することを防止できる。 As described above, the mixer 3 of this embodiment includes the inflow filter 32F and the outflow filter 33F. The inlet filter 32F and the outlet filter 33F are made of a metal material that is sintered without using a binder. As a result, the binder does not elute from the mixer 3, so that the binder can be prevented from flowing into the detector 6. Therefore, it is possible to prevent the flow cell having quartz in the liquid contact portion, which is included in the detector 6, from being contaminated with the binder. It is possible to prevent the occurrence of baseline drift or ghost in the chromatogram obtained from the detection result of the detector 6.
 液体クロマトグラフにおいては、ミキサ以外のユニットにおいてもフィルタが用いられる。各ユニットで使用されるフィルタの中で、一般的には、ミキサで使用されるフィルタの容量が最も大きい。したがって、ミキサで使用されるフィルタにバインダが使用されている場合、バインダの溶出により検出器へ与える影響が、他のユニットと比べて大きい。本実施の形態の液体クロマトグラフ10においては、バインダの溶出による影響の大きいミキサ3において、バインダを使用しない流入口フィルタ32Fおよび流出口フィルタ33Fが使用される。これにより、検出器6におけるベースラインドリフトまたはゴーストの発生を効果的に防止することができる。 In liquid chromatographs, filters are used in units other than mixers. Of the filters used in each unit, the capacity of the filter used in the mixer is generally the largest. Therefore, when a binder is used for the filter used in the mixer, the influence of the binder elution on the detector is larger than that of other units. In the liquid chromatograph 10 of the present embodiment, in the mixer 3 that is greatly affected by the elution of the binder, the inlet filter 32F and the outlet filter 33F that do not use the binder are used. This can effectively prevent the occurrence of baseline drift or ghost in the detector 6.
 また、本実施の形態において、流入口フィルタ32Fおよび流出口フィルタ33Fを構成する焼結体は、金属材料の球状粒子で形成されている。球状粒子を利用することにより、流入口フィルタ32Fおよび流出口フィルタ33Fには球状粒子間に空隙が確保される。これにより、ミキサ3における圧力損失を低減させることができる。 Further, in the present embodiment, the sintered body forming the inflow filter 32F and the outflow filter 33F is formed of spherical particles of a metal material. By using the spherical particles, voids are secured between the spherical particles in the inlet filter 32F and the outlet filter 33F. As a result, the pressure loss in the mixer 3 can be reduced.
 焼結体を形成する金属材料の球状粒子の粒径は、特に限定されるものではないが、20μmより小さいことが好ましい。球状粒子の粒径を20μmより小さくすることにより、ミキサ3に充填されるセラミックの粒子が小さい場合であっても、セラミック粒子の流出を防ぐとともに、溶離液11A,11Bに含まれる狭雑物の流出を防ぐことができる。焼結体を形成する金属材料の球状粒子の粒径は、10μmより小さいことがさらに好ましい。粒径を10μmより小さくすることにより、さらにフィルタの精度を向上させることができる。 The particle size of the spherical particles of the metal material forming the sintered body is not particularly limited, but is preferably smaller than 20 μm. By making the particle diameter of the spherical particles smaller than 20 μm, even if the ceramic particles filled in the mixer 3 are small, the outflow of the ceramic particles is prevented and the contaminants contained in the eluents 11A and 11B are prevented. It can prevent outflow. The particle diameter of the spherical particles of the metal material forming the sintered body is more preferably smaller than 10 μm. By making the particle size smaller than 10 μm, the accuracy of the filter can be further improved.
 (3)実験結果
 図2は、本実施の形態のミキサ3を用いることによって得られたクロマトグラムおよび比較例のミキサを用いることによって得られたクロマトグラムを比較した図である。図2は、実施例1、実施例2および比較例に基づく実験結果を示す。
(3) Experimental Results FIG. 2 is a diagram comparing the chromatogram obtained by using the mixer 3 of the present embodiment and the chromatogram obtained by using the mixer of the comparative example. FIG. 2 shows experimental results based on Example 1, Example 2 and Comparative Example.
 図2のベースラインBL1は、実施例1に係るクロマトグラムのベースラインを示す。実施例1においては、本実施の形態に係るバインダを用いない焼結体により構成されるフィルタを用いた。実施例1においては、流入口フィルタ32Fおよび流出口フィルタ33Fは、粒径が1μmのステンレス鋼(SUS316L)の球状粒子の焼結体によって構成される。 The baseline BL1 in FIG. 2 shows the baseline of the chromatogram according to the first embodiment. In Example 1, the filter including the binder-free sintered body according to the present embodiment was used. In the first embodiment, the inflow filter 32F and the outflow filter 33F are made of a sintered body of spherical particles of stainless steel (SUS316L) having a particle size of 1 μm.
 図2のベースラインBL2は、実施例2に係るクロマトグラムのベースラインを示す。実施例2においては、本実施の形態に係るバインダを用いない焼結体により構成されるフィルタを用いた。実施例2においては、流入口フィルタ32Fおよび流出口フィルタ33Fは、粒径が2μmのステンレス鋼(SUS316L)の球状粒子の焼結体によって構成される。 The baseline BL2 in FIG. 2 shows the baseline of the chromatogram according to the second embodiment. In Example 2, the filter including the binder-free sintered body according to the present embodiment was used. In the second embodiment, the inflow filter 32F and the outflow filter 33F are made of a sintered body of spherical particles of stainless steel (SUS316L) having a particle diameter of 2 μm.
 図2のベースラインBL3は、比較例に係るクロマトグラムのベースラインを示す。比較例においては、バインダを用いた焼結体により構成されるフィルタを用いた。比較例においては、流入口フィルタ32Fおよび流出口フィルタ33Fは、バインダを用いて密着させたステンレス鋼(SUS316L)の球状粒子の焼結体によって構成される。 The baseline BL3 in FIG. 2 shows the baseline of the chromatogram according to the comparative example. In the comparative example, a filter made of a sintered body using a binder was used. In the comparative example, the inflow filter 32F and the outflow filter 33F are composed of a sintered body of spherical particles of stainless steel (SUS316L) that are adhered to each other using a binder.
 図2において、粒径が1μmである実施例1のベースラインBL1は、殆どベースラインドリフトが発生していないことが分かる。図2において、粒径が2μmである実施例2のベースラインBL2は、実施例1に比べると少しドリフトが発生している。しかし、実施例2のベースラインBL2のドリフト量は、バインダを用いた比較例のベースラインBL3よりも非常に小さくなっている。このように、実施例1および実施例2は、比較例と比べてベースラインのドリフト量において有意な差があることが分かる。 In FIG. 2, it can be seen that the baseline BL1 of Example 1 having a particle size of 1 μm hardly causes the baseline drift. In FIG. 2, the baseline BL2 of Example 2 having a particle size of 2 μm has a slight drift as compared with Example 1. However, the drift amount of the baseline BL2 of the example 2 is much smaller than that of the baseline BL3 of the comparative example using the binder. As described above, it can be seen that Example 1 and Example 2 have a significant difference in the drift amount of the baseline as compared with the comparative example.
 [2]第2の実施の形態
 次に本発明の第2の実施の形態について説明する。第1の実施の形態においては、液体クロマトグラフ10が備えるミキサ3において、バインダを用いない焼結体で構成されたフィルタを用いた。液体クロマトグラフ10には、他のユニットにおいても複数のフィルタが用いられる。
[2] Second Embodiment Next, a second embodiment of the present invention will be described. In the first embodiment, the mixer 3 included in the liquid chromatograph 10 uses a filter made of a sintered body that does not use a binder. The liquid chromatograph 10 also uses a plurality of filters in other units.
 具体的には、液体クロマトグラフ10は、以下のフィルタを備える。上述したように、溶離液槽11A,11Bには、流路管71A,71Bが接続されている。流路管71A,71Bの吸入口には、サクションフィルタが用いられる。 Specifically, the liquid chromatograph 10 includes the following filters. As described above, the flow path pipes 71A and 71B are connected to the eluent tanks 11A and 11B. A suction filter is used for the suction ports of the flow path pipes 71A and 71B.
 また、ポンプ2A,2Bにおいては、ポンプ2A,2Bに溶離液11A,11Bが流入する流入口にサクションフィルタが用いられる。また、ポンプ2A,2B内において溶離液11A,11Bが送液される流路においてはラインフィルタが用いられる。 Further, in the pumps 2A and 2B, a suction filter is used at the inflow port where the eluents 11A and 11B flow into the pumps 2A and 2B. Further, a line filter is used in the flow paths through which the eluents 11A and 11B are sent in the pumps 2A and 2B.
 また、オートサンプラ4においては、混合溶離液が送液される流路においてラインフィルタが用いられる。 Also, in the auto sampler 4, a line filter is used in the flow path through which the mixed eluent is sent.
 第2の実施の形態においては、上述した流路管71A,71Bに設けられたサクションフィルタ、ポンプ2A,2Bに設けられたサクションフィルタおよびラインフィルタ、および、オートサンプラ4に設けられたラインフィルタとして、バインダを用いないフィルタが用いられる。つまり、これらのフィルタとして、第1の実施の形態で説明したミキサ3で利用される流入口フィルタ32Fおよび流出口フィルタ33Fと同様、バインダを用いないフィルタが用いられる。より具体的には、これらのフィルタとして、バインダを用いない金属材料の焼結体で構成されたフィルタが使用される。あるいは、これらフィルタのうち一部のフィルタが、バインダを用いない金属材料の焼結体で構成される。 In the second embodiment, as the suction filter provided in the above-described flow path pipes 71A and 71B, the suction filter and line filter provided in the pumps 2A and 2B, and the line filter provided in the autosampler 4. , A filter that does not use a binder is used. That is, as these filters, similar to the inlet filter 32F and the outlet filter 33F used in the mixer 3 described in the first embodiment, a filter that does not use a binder is used. More specifically, as these filters, filters made of a sintered body of a metal material that does not use a binder are used. Alternatively, some of these filters are composed of a sintered body of a metal material that does not use a binder.
 このように、第2の実施の形態においては、溶離液槽1A,1Bからポンプ2A,2Bへ至る流路管71A,71B、ポンプ2A,2Bおよびオートサンプラ4のいずれかが備えるフィルタは、バインダを用いない金属材料の焼結体で構成される。液体クロマトグラフ10が備えるミキサ3以外のユニットからもバインダが溶出することを防止することができる。これにより、クロマトグラムにおけるベースラインドリフトまたはゴーストの発生を防止することができる。 As described above, in the second embodiment, the filter provided in any of the flow path pipes 71A and 71B from the eluent tanks 1A and 1B to the pumps 2A and 2B, the pumps 2A and 2B, and the autosampler 4 is the binder. It is composed of a sintered body of a metal material that does not use. It is possible to prevent the binder from eluting from units other than the mixer 3 included in the liquid chromatograph 10. This can prevent the occurrence of baseline drift or ghost in the chromatogram.
 [3]請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。上記の実施の形態では、セラミックの粒子が混合部の例であり、流入口フィルタおよび流出口フィルタがミキサフィルタの例である。
[3] Correspondence between each constituent element of the claims and each element of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each element of the embodiment will be described, but the present invention is as follows. Not limited to. In the above embodiment, ceramic particles are an example of the mixing section, and the inlet filter and the outlet filter are examples of the mixer filter.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する種々の要素を用いることもできる。 As each constituent element of the claim, various elements having the configurations or functions described in the claim may be used.
 [4]他の実施の形態
 上記実施の形態においては、ミキサ3が、流入口32および流出口33の両方においてフィルタを備える例を説明した。つまり、ミキサ3が流入口フィルタ32Fおよび流出口フィルタ33Fを備える場合を例に説明した。これ以外の構成として、ミキサ3は、流入口32にはフィルタを備えず、流出口33にフィルタを備える構成であってもよい。この場合であれば、流出口33に設けられたフィルタが、バインダを用いない金属材料の焼結体で構成される。これにより、ミキサ3からバインダが溶出し、検出器6にバインダが流入することを防止できる。
[4] Other Embodiments In the above embodiment, the mixer 3 is provided with the filters at both the inlet 32 and the outlet 33. That is, the case where the mixer 3 includes the inflow filter 32F and the outflow filter 33F has been described as an example. As a configuration other than this, the mixer 3 may have a configuration in which the inlet 32 is not provided with a filter and the outlet 33 is provided with a filter. In this case, the filter provided at the outflow port 33 is composed of a sintered body of a metal material that does not use a binder. This can prevent the binder from being eluted from the mixer 3 and flowing into the detector 6.
 また、ミキサ3内において溶離液11Aまたは溶離液11Bが流れる流路管に、狭雑物やゴミ等の流路を閉塞させる可能性のある異物を除去するフィルタが用いられてもよい。あるいは、ミキサ3内において混合された溶離液が流れる流路管に異物を除去するフィルタが用いられてもよい。この場合であれば、ミキサ3内の流路管に設けられたフィルタが、バインダを用いない金属材料の焼結体で構成される。これにより、ミキサ3からバインダが溶出し、検出器6にバインダが流入することを防止できる。 Further, a filter for removing foreign matters that may block the flow path such as foreign matters and dust may be used in the flow path pipe in which the eluent 11A or the eluent 11B flows in the mixer 3. Alternatively, a filter that removes foreign matter may be used in the flow path pipe through which the eluent mixed in the mixer 3 flows. In this case, the filter provided in the flow path tube in the mixer 3 is made of a sintered body of a metal material that does not use a binder. This can prevent the binder from being eluted from the mixer 3 and flowing into the detector 6.
 上記の実施の形態においては、金属材料が球状粒子である場合を例に説明した。これ以外の例とし、金属材料は金属繊維であってもよい。同様に、バインダを用いない金属繊維の焼結体によりフィルタを構成する。そして、金属繊維の焼結体で構成されるフィルタをミキサ3の流入口フィルタ32Fおよび流出口フィルタ33Fとして用いる。ミキサ3が流入口フィルタ32Fを備えない場合には、流出口フィルタ33Fを金属繊維の焼結体で構成されるフィルタで構成する。この場合であっても、金属繊維の焼結体にはバインダが用いられないので、ミキサ3からバインダが溶出することはない。また、金属繊維を利用することにより、ミキサ3に用いるフィルタの製造コストを低減させることができる。 In the above embodiment, the case where the metal material is spherical particles has been described as an example. As another example, the metal material may be metal fiber. Similarly, the filter is made of a sintered body of metal fibers that does not use a binder. Then, a filter made of a sintered body of metal fibers is used as the inlet filter 32F and the outlet filter 33F of the mixer 3. If the mixer 3 does not include the inflow filter 32F, the outflow filter 33F is configured by a filter made of a sintered body of metal fibers. Even in this case, since the binder is not used for the sintered body of metal fibers, the binder does not elute from the mixer 3. Further, by using the metal fiber, the manufacturing cost of the filter used in the mixer 3 can be reduced.
 上記の実施の形態においては、ミキサ3はセラミックの粒子が充填されたボールミキサである場合を例に説明した。つまり、溶離液を混合する混合部においてセラミックの粒子が用いられる場合を例に説明したが、これは一例である。ミキサ3としては、ボールミキサ以外の他の種類のミキサを用いてもよい。例えば、磁力によりマグネットスターラを回転させることにより溶離液を混合するダイナミックミキサを用いてもよい。つまり、混合部としてマグネットスターラが用いられてもよい。 In the above embodiment, the case where the mixer 3 is a ball mixer filled with ceramic particles has been described as an example. That is, the case where the ceramic particles are used in the mixing section for mixing the eluent has been described as an example, but this is an example. As the mixer 3, a mixer other than the ball mixer may be used. For example, a dynamic mixer that mixes an eluent by rotating a magnetic stirrer with a magnetic force may be used. That is, a magnetic stirrer may be used as the mixing unit.
 なお、本発明の具体的な構成は、前述の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。 The specific configuration of the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit of the invention.

Claims (7)

  1.  複数種類の溶離液が流入する流入口と、
     前記流入口から流入した前記複数種類の溶離液を混合する混合部と、
     前記混合部において混合された前記複数種類の溶離液が流出する流出口であって、分離カラムに至る流路に接続される流出口と、
     前記流入口および前記流出口の両方、あるいは、前記流出口に設けられたミキサフィルタと、
    を備え、
     前記ミキサフィルタは、バインダを用いない金属材料の焼結体で構成される、液体クロマトグラフで使用されるミキサ。
    An inlet into which multiple types of eluents flow,
    A mixing section for mixing the plurality of types of eluents flowing in from the inflow port,
    An outlet through which the plurality of types of eluents mixed in the mixing section flow out, and an outlet connected to a flow path leading to a separation column,
    Both the inflow port and the outflow port, or a mixer filter provided in the outflow port,
    Equipped with
    A mixer used in a liquid chromatograph, wherein the mixer filter is composed of a sintered body of a metal material that does not use a binder.
  2.  前記金属材料は金属の球状粒子を含む、請求項1に記載の液体クロマトグラフで使用されるミキサ。 The mixer used in the liquid chromatograph according to claim 1, wherein the metallic material includes spherical metal particles.
  3.  前記金属材料は金属繊維を含む、請求項1に記載の液体クロマトグラフで使用されるミキサ。 The mixer used in the liquid chromatograph according to claim 1, wherein the metal material includes metal fibers.
  4.  前記球状粒子の粒径が20μmより小さい、請求項2に記載の液体クロマトグラフで使用されるミキサ。 The mixer used in the liquid chromatograph according to claim 2, wherein the spherical particles have a particle size smaller than 20 μm.
  5.  前記球状粒子の粒径が10μmより小さい、請求項2に記載の液体クロマトグラフで使用されるミキサ。 The mixer used in the liquid chromatograph according to claim 2, wherein the spherical particles have a particle size smaller than 10 μm.
  6.  前記ミキサは、さらに、
     前記複数種類の溶離液あるいは混合された溶離液が流れる流路管と、
     前記流路管に設けられた流路管フィルタと、
    を備え、
     前記流路管フィルタは、バインダを用いない金属材料の焼結体で構成される、請求項1~5のいずれか一項に記載の液体クロマトグラフで使用されるミキサ。
    The mixer further comprises
    A flow path tube through which the plural kinds of eluents or mixed eluents flow,
    A flow channel filter provided in the flow channel,
    Equipped with
    The mixer used in the liquid chromatograph according to any one of claims 1 to 5, wherein the flow channel filter is composed of a sintered body of a metal material that does not use a binder.
  7.  請求項1に記載のミキサを備える液体クロマトグラフであって、さらに、
     前記複数種類の溶離液が収容される複数の溶離液槽と、
     前記複数種類の溶離液を前記ミキサに送液する複数のポンプと、
     前記ミキサから流出した混合溶離液に試料を注入するオートサンプラと、
    を備え、
     前記複数の溶離液槽から前記複数のポンプへ至る複数の流路、前記複数のポンプおよび前記オートサンプラのいずれかが備えるフィルタは、バインダを用いない金属材料の焼結体で構成される、液体クロマトグラフ。
    A liquid chromatograph comprising the mixer according to claim 1, further comprising:
    A plurality of eluent tanks containing the plurality of kinds of eluents;
    A plurality of pumps for sending the plurality of types of eluents to the mixer;
    An autosampler for injecting a sample into the mixed eluent flowing out from the mixer,
    Equipped with
    A plurality of flow paths from the plurality of eluent tanks to the plurality of pumps, a filter provided in any of the plurality of pumps and the autosampler, is composed of a sintered body of a metal material without using a binder. Chromatograph.
PCT/JP2019/000768 2019-01-11 2019-01-11 Mixer used in liquid chromatograph, and liquid chromatograph WO2020144865A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/000768 WO2020144865A1 (en) 2019-01-11 2019-01-11 Mixer used in liquid chromatograph, and liquid chromatograph
JP2020565560A JP7259870B2 (en) 2019-01-11 2019-01-11 Mixers and liquid chromatographs used in liquid chromatographs
JP2020565569A JP7207435B2 (en) 2019-01-11 2019-05-10 Filters and liquid chromatographs used in liquid chromatographs
PCT/JP2019/018823 WO2020144878A1 (en) 2019-01-11 2019-05-10 Filter used in liquid chromatograph, and liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000768 WO2020144865A1 (en) 2019-01-11 2019-01-11 Mixer used in liquid chromatograph, and liquid chromatograph

Publications (1)

Publication Number Publication Date
WO2020144865A1 true WO2020144865A1 (en) 2020-07-16

Family

ID=71520316

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/000768 WO2020144865A1 (en) 2019-01-11 2019-01-11 Mixer used in liquid chromatograph, and liquid chromatograph
PCT/JP2019/018823 WO2020144878A1 (en) 2019-01-11 2019-05-10 Filter used in liquid chromatograph, and liquid chromatograph

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018823 WO2020144878A1 (en) 2019-01-11 2019-05-10 Filter used in liquid chromatograph, and liquid chromatograph

Country Status (2)

Country Link
JP (2) JP7259870B2 (en)
WO (2) WO2020144865A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204775A (en) * 1978-08-08 1980-05-27 General Dynamics Corporation Pomona Division Mixing device for simultaneously dispensing two-part liquid compounds from packaging kit
JP2012037421A (en) * 2010-08-09 2012-02-23 Tosoh Corp Column filter for liquid chromatogram
JP2014522962A (en) * 2011-06-17 2014-09-08 ウオーターズ・テクノロジーズ・コーポレイシヨン Turbulent mixing device for use in chromatography systems
JP2016029377A (en) * 2004-07-13 2016-03-03 ウオーターズ・テクノロジーズ・コーポレイシヨン Fluid mixer assembly
JP2018004489A (en) * 2016-07-04 2018-01-11 技研パーツ株式会社 Filter for chromatography column

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3324162B2 (en) * 1991-11-27 2002-09-17 東ソー株式会社 How to use a liquid chromatograph filter
JPH078759U (en) * 1993-07-09 1995-02-07 日本分光株式会社 Flow cell for fluid sample
JP2000065722A (en) * 1998-08-19 2000-03-03 Mitsubishi Chemicals Corp Analyzing device
JP3761551B2 (en) * 2004-02-09 2006-03-29 住友チタニウム株式会社 Sintered titanium filter
JP2008196868A (en) * 2007-02-08 2008-08-28 Nippon Soda Co Ltd Contamination prevention liquid supplying tube
EP2440913B1 (en) * 2009-06-09 2016-12-21 GE Healthcare Bio-Sciences AB Automated liquid chromatography system with a fluid handling system
US8454892B1 (en) * 2010-10-15 2013-06-04 The United States Of America As Represented By The Secretary Of The Army Chemical agent detection system for fluid media
JP2018124143A (en) * 2017-01-31 2018-08-09 栗田工業株式会社 Filter unit for chromatographic column liquid feeding system
JP6973486B2 (en) * 2017-07-04 2021-12-01 株式会社島津製作所 Liquid feeder and liquid chromatograph

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204775A (en) * 1978-08-08 1980-05-27 General Dynamics Corporation Pomona Division Mixing device for simultaneously dispensing two-part liquid compounds from packaging kit
JP2016029377A (en) * 2004-07-13 2016-03-03 ウオーターズ・テクノロジーズ・コーポレイシヨン Fluid mixer assembly
JP2012037421A (en) * 2010-08-09 2012-02-23 Tosoh Corp Column filter for liquid chromatogram
JP2014522962A (en) * 2011-06-17 2014-09-08 ウオーターズ・テクノロジーズ・コーポレイシヨン Turbulent mixing device for use in chromatography systems
JP2018004489A (en) * 2016-07-04 2018-01-11 技研パーツ株式会社 Filter for chromatography column

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Sintered Filter 1", 5 July 2017 (2017-07-05), pages 1 - 4, XP055723287, Retrieved from the Internet <URL:http://www.giken-parts.com/technology/filter> [retrieved on 20190312] *
MICRO & FINE TECHNOLOGY: "NASLON Filter NPM Filter (Sintered Power)", PRODUCTS, January 2016 (2016-01-01), pages 2, XP009522337, Retrieved from the Internet <URL:https://www.n-seisen.co.jp/assets/file/products_filter_metal_npm.pdf> *

Also Published As

Publication number Publication date
JP7207435B2 (en) 2023-01-18
WO2020144878A1 (en) 2020-07-16
JP7259870B2 (en) 2023-04-18
JPWO2020144865A1 (en) 2021-11-25
JPWO2020144878A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US10335753B2 (en) Fluid mixer assembly
EP2703808B1 (en) Method and apparatus for split-flow-mixing liquid chromatography
US5468643A (en) Switching valve system for direct biological sample injection for LC analysis
US9194504B2 (en) Rotating valve
US11255465B2 (en) Microfluidic check valve and related devices and systems
US20060273012A1 (en) Column with additional fluid introduction
US20080029449A1 (en) Graded external prefilter element for continuous-flow systems
CN101169392B (en) Two-dimensional highly effective liquid phase chromatographic device and its uses
WO2020144865A1 (en) Mixer used in liquid chromatograph, and liquid chromatograph
JP3764051B2 (en) A diffusion facilitator for low flow gradient high performance liquid chromatography.
CA2366913A1 (en) Chromatography devices and flow distributor arrangements used in chromatography devices
CN108139368B (en) Systems, methods, and apparatus for reducing solubility problems in chromatography
JP2004177180A (en) Column for liquid chromatograph
JP2012047655A (en) Liquid chromatograph apparatus and analysis method
CN114746750B (en) Pump unit and chromatograph
JPH0643145A (en) High-speed liquid chromatograph with card column
CN112924604B (en) Ion pair purifying column
JP2011117821A (en) Channel selector valve
JPH02130466A (en) Liquid chromatograph
Beauchemin Flow injection
JPH08122315A (en) Impurity removal apparatus used for reversed-phase liquid chromatograph
JP2008298173A (en) Flow passage switching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909124

Country of ref document: EP

Kind code of ref document: A1