WO2020144858A1 - Optical communication device and optical communication method - Google Patents

Optical communication device and optical communication method Download PDF

Info

Publication number
WO2020144858A1
WO2020144858A1 PCT/JP2019/000728 JP2019000728W WO2020144858A1 WO 2020144858 A1 WO2020144858 A1 WO 2020144858A1 JP 2019000728 W JP2019000728 W JP 2019000728W WO 2020144858 A1 WO2020144858 A1 WO 2020144858A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
communication device
unit
signal
Prior art date
Application number
PCT/JP2019/000728
Other languages
French (fr)
Japanese (ja)
Inventor
勝治 今城
祐一 西野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/000728 priority Critical patent/WO2020144858A1/en
Priority to JP2020564502A priority patent/JP6983339B2/en
Publication of WO2020144858A1 publication Critical patent/WO2020144858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • the present invention relates to an optical communication device and an optical communication method for controlling the characteristics of transmitted light that affect the increase/decrease in signal-to-noise ratio.
  • Patent Document 1 an optical wireless transmission in which an optical reception band control unit transmits a band change request of an optical wireless section to an optical wireless transmission device of a communication partner in accordance with a signal level of a light reception signal detected by a signal level detection unit. A device is disclosed. Further, when the optical wireless transmission device disclosed in Patent Document 1 receives the band change request transmitted from the optical wireless transmission device of the communication partner, the optical wireless transmission device outputs the modulated clock generated by the clock generation unit according to the received band change request. Have control.
  • the optical wireless transmission device disclosed in Patent Document 1 has a poor environment in the optical wireless section, and therefore, when communication cannot be established with the optical wireless transmission device of the communication partner, It is not possible to transmit/receive a band change request in the optical wireless section to/from the wireless transmission device.
  • the optical wireless transmission device disclosed in Patent Document 1 cannot change the band according to the signal level of the light reception signal when the band change request cannot be transmitted and received. Therefore, the optical wireless transmission device disclosed in Patent Document 1 has a problem that a desired SNR may not be obtained as a signal-to-noise ratio (SNR: Signal-to-Noise Ratio) of a received light signal. It was
  • the present invention has been made to solve the above problems. Even when communication with the optical communication device of the communication partner has not been established, the light emitted into the water from the optical communication device of the communication partner.
  • An object is to obtain an optical communication device and an optical communication method capable of controlling the SNR of received light when a signal is received as received light.
  • the optical communication device includes an optical transmitter that emits transmitted light into water, a transmitted light monitor that receives transmitted light emitted from the optical transmitter into the water as monitor light, and an optical transmitter from the optical transmitter into the water.
  • the optical communication device of the communication partner based on the attenuation rate calculation unit that calculates the attenuation rate of the light intensity of the monitor light received by the transmission light monitor unit with respect to the light intensity of the emitted transmission light and the attenuation rate calculated by the attenuation rate calculation unit.
  • the characteristic control unit based on the attenuation rate calculated by the attenuation rate calculation unit, the signal pair of the received light when the optical signal emitted into the water from the optical communication device of the communication partner is received as the received light.
  • the optical communication device is configured to estimate the noise ratio and control the characteristics of the transmitted light that influences the increase or decrease of the signal to noise ratio based on the signal to noise ratio. Therefore, the optical communication device according to the present invention receives the optical signal emitted into the water from the optical communication device of the communication partner as the received light even when the communication with the optical communication device of the communication partner is not established. In this case, the signal-to-noise ratio of the received light can be controlled.
  • FIG. 1 is a configuration diagram showing an optical communication device according to a first embodiment.
  • 3 is a hardware configuration diagram showing hardware of an attenuation rate calculation unit 11, a demodulation unit 17, a table unit 19, a characteristic control processing unit 20, and a mobile unit control unit 21 in the optical communication device according to the first embodiment.
  • FIG. It is a hardware block diagram of a computer when a part of optical communication apparatus is implement
  • FIG. 7 is a flowchart showing a processing procedure of the mobile control unit 21.
  • 7 is a configuration diagram showing an optical communication device according to a second embodiment.
  • FIG. 7 is a hardware configuration diagram showing hardware of an attenuation rate calculation unit 11, a demodulation unit 17, a characteristic control unit 18, a mobile unit control unit 21, and a distance calculation unit 59 in the optical communication device according to the second embodiment.
  • FIG. 6 is a configuration diagram showing an optical communication device according to a third embodiment.
  • FIG. 9 is a configuration diagram showing an optical communication device according to a fourth embodiment.
  • FIG. 1 is a configuration diagram showing an optical communication device according to the first embodiment.
  • FIG. 2 is a hardware configuration diagram showing hardware of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, and the mobile unit control unit 21 in the optical communication device according to the first embodiment.
  • the optical transmitter 1 includes a reference light source 2, a modulation signal generator 3, a modulator 4 and an optical antenna 5.
  • the optical transmitter 1 emits the transmitted light into the water to transmit the transmitted light to the transmitted light monitor 6 and the optical communication device of the communication partner.
  • the reference light source 2 outputs continuous wave (CW:Continuous Wave) light to the modulator 4 via an optical fiber.
  • CW Continuous Wave
  • the modulation signal generation unit 3 generates a modulation signal including communication data to be communicated and an error correction code, and outputs the generated modulation signal to the modulator 4.
  • the modulated signal generation unit 3 changes the error correction code included in the modulated signal according to the control signal output from the characteristic control processing unit 20.
  • the modulator 4 is connected to the reference light source 2 via an optical fiber.
  • the modulator 4 generates modulated light by modulating the phase of the CW light output from the reference light source 2 according to the modulation signal output from the modulation signal generation unit 3, and outputs the generated modulated light via an optical fiber. And outputs it to the optical antenna 5.
  • the modulator 4 changes the modulation speed of the modulated light according to the control signal output from the characteristic control processing unit 20.
  • the modulator 4 may be a device that modulates the intensity of the CW light output from the reference light source 2, or a configuration in which the output of the reference light source 2 is directly modulated by an electric signal. May be
  • the optical antenna 5 is realized by, for example, an optical telescope having a lens.
  • the optical antenna 5 is connected to the modulator 4 via an optical fiber.
  • the optical antenna 5 emits the modulated light output from the modulator 4 into water as transmission light.
  • the optical antenna 5 adjusts the beam divergence angle of the transmission light according to the control signal output from the characteristic control processing unit 20 when the transmission light is emitted into the water.
  • the transmission light monitor unit 6 includes an optical antenna 7, a photodetector 8, a current-voltage converter (hereinafter referred to as “IV converter”) 9, and an analog-digital converter (hereinafter referred to as “ADC”) 10. There is.
  • the transmission light monitor unit 6 receives the transmission light emitted into the water from the optical transmission unit 1 as monitor light.
  • the optical antenna 7 is realized by, for example, an optical telescope including a lens.
  • the optical antenna 7 receives the transmitted light emitted into the water from the optical transmitter 1 as monitor light, and outputs the received monitor light to the photodetector 8 via the optical fiber.
  • the photodetector 8 is connected to the optical antenna 7 via an optical fiber.
  • the photodetector 8 converts the monitor light output from the optical antenna 7 into a current signal, and outputs the current signal to the IV converter 9.
  • the IV converter 9 converts the current signal output from the photodetector 8 into a voltage signal, and outputs the voltage signal to the ADC 10.
  • the ADC 10 converts the voltage signal output from the IV converter 9 from an analog signal into a digital signal, and outputs the digital signal to the attenuation rate calculation unit 11.
  • the attenuation rate calculation unit 11 is realized by, for example, the attenuation rate calculation circuit 31.
  • the attenuation rate calculation unit 11 calculates the attenuation rate of the light amount of the monitor light received by the transmission light monitor unit 6 with respect to the light amount of the transmission light emitted from the optical transmission unit 1 into the water.
  • the attenuation rate calculation unit 11 outputs the calculated attenuation rate to each of the characteristic control processing unit 20 and the moving body control unit 21.
  • the amount of monitor light received by the transmitted light monitor unit 6 is directly proportional to the digital signal output from the ADC 10.
  • the light amount of the transmitted light emitted from the optical transmitter 1 into the water is stored in the internal memory of the attenuation rate calculator 11 as an existing value.
  • the measured value of the light amount of the transmission light emitted from the optical antenna 5 may be given to the attenuation rate calculation unit 11 from the outside.
  • the optical signal receiver 12 includes an optical antenna 13, a photodetector 14, an IV converter 15, and an ADC 16.
  • the optical signal receiving unit 12 receives the optical signal emitted into water as received light.
  • the optical antenna 13 is realized by, for example, an optical telescope including a lens. The optical antenna 13 receives an optical signal emitted into the water from the optical communication device of the communication partner as received light, and outputs the received received light to the photodetector 14 via the optical fiber.
  • the photodetector 14 is connected to the optical antenna 13 via an optical fiber.
  • the photodetector 14 converts the received light output from the optical antenna 13 into a current signal, and outputs the current signal to the IV converter 15.
  • the IV converter 15 converts the current signal output from the photodetector 14 into a voltage signal, and outputs the voltage signal to the ADC 16.
  • the ADC 16 converts the voltage signal output from the IV converter 15 from an analog signal into a digital signal, and outputs the digital signal to the demodulation unit 17.
  • the demodulation unit 17 is realized by, for example, the demodulation circuit 32.
  • the demodulation unit 17 demodulates the communication data included in the optical signal received by the optical signal reception unit 12.
  • the characteristic control unit 18 includes a table unit 19 and a characteristic control processing unit 20.
  • the characteristic control unit 18 receives the received light when the optical signal receiving unit 12 receives the optical signal emitted into the water from the optical communication device of the communication partner as the received light based on the attenuation rate calculated by the attenuation rate calculating unit 11.
  • the signal-to-noise ratio (SNR: Signal-to-Noise Ratio) is estimated.
  • the characteristic control unit 18 controls, based on the SNR, the characteristic of the transmission light that affects the increase/decrease of the SNR.
  • the table unit 19 is realized by the storage circuit 33, for example.
  • the table unit 19 stores the correspondence relationship among the band of the transmitted light, the attenuation rate, the communication distance, and the SNR of the received light received by the optical signal receiving unit 12.
  • the characteristic control processing unit 20 is realized by, for example, the characteristic control processing circuit 34.
  • the characteristic control processing unit 20 refers to the correspondence relationship stored in the table unit 19 and determines the SNR of the reception light from the attenuation rate calculated by the attenuation rate calculation unit 11, the band of the transmission light, and the required value of the communication distance. To estimate.
  • the required value of the communication distance is the communication distance requested by the user, and the communication distance is the communication distance between the own optical communication device and the optical communication device of the communication partner.
  • the required value of the communication distance may be externally provided to the characteristic control processing unit 20 or may be stored in the internal memory of the characteristic control processing unit 20.
  • the characteristic control processing unit 20 compares the estimated SNR of the received light with the SNR threshold value.
  • the SNR threshold value may be given to the characteristic control processing unit 20 from the outside, or may be stored in the internal memory of the characteristic control processing unit 20. If the estimated SNR of the received light is smaller than the threshold value, the characteristic control processing unit 20 outputs a control signal to the modulator 4 to decrease the modulation speed so that the SNR of the received light becomes large. Alternatively, if the estimated SNR of the received light is smaller than the threshold, the characteristic control processing unit 20 sends a control signal indicating that the beam divergence angle of the transmitted light is narrowed so that the SNR of the received light becomes large. Output to. Alternatively, if the estimated SNR of the received light is smaller than the threshold value, the characteristic control processing unit 20 outputs to the modulation signal generation unit 3 a control signal indicating that the ratio of error correction codes in the modulation signal should be increased.
  • the moving body control unit 21 is realized by, for example, the moving body control circuit 35.
  • the moving body control unit 21 obtains a communicable distance between its own optical communication device and the optical communication device of the communication partner based on the attenuation rate calculated by the attenuation rate calculation unit 11. If the communicable distance is shorter than the required value of the communication distance, the mobile body control unit 21 controls the mobile body (not shown) equipped with its own optical communication device to operate its own optical communication device. Bring it closer to the optical communication device of the other party.
  • the required value of the communication distance may be given to the characteristic control processing unit 20 from the outside, or may be stored in the internal memory of the mobile unit control unit 21.
  • the moving body may be any one that can move in water with the optical communication device mounted, and corresponds to a submarine or an underwater drone.
  • each of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, and the moving body control unit 21, which are some of the constituent elements of the optical communication device, are as shown in FIG. It is supposed to be realized by dedicated hardware. That is, it is assumed that a part of the optical communication device is realized by the attenuation rate calculation circuit 31, the demodulation circuit 32, the storage circuit 33, the characteristic control processing circuit 34, and the moving body control circuit 35.
  • the memory circuit 33 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), or an EEPROM (Electrically Reversible Memory). It corresponds to a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • each of the attenuation rate calculation circuit 31, the demodulation circuit 32, the characteristic control processing circuit 34, and the moving body control circuit 35 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application).
  • a specific integrated circuit (FPC), a field-programmable gate array (FPGA), or a combination thereof is applicable.
  • At least one of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, and the mobile unit control unit 21 is realized by software, firmware, or a combination of software and firmware. It may be one.
  • Software or firmware is stored in the memory of the computer as a program.
  • the computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). To do.
  • FIG. 3 is a hardware configuration diagram of a computer when a part of the optical communication device is realized by software or firmware.
  • the table unit 19 is configured on the memory 41 of the computer.
  • a program for causing a computer to execute the processing procedures of the attenuation rate calculation unit 11, the demodulation unit 17, the characteristic control processing unit 20, and the moving body control unit 21 is stored in the memory 41.
  • the processor 42 of the computer executes the program stored in the memory 41.
  • FIG. 4 is a flowchart showing an optical communication method which is a processing procedure of the optical communication device.
  • FIG. 2 shows an example in which some of the constituent elements of the optical communication device are realized by dedicated hardware
  • FIG. 3 an example in which a part of the optical communication device is realized by software or firmware. Is shown. However, this is merely an example, and some of the constituent elements of the optical communication device may be realized by dedicated hardware and the remaining constituent elements may be realized by software or firmware.
  • the items relating to the characteristics of the transmitted light that affect the increase/decrease in the SNR of the received light received by the optical signal receiving unit 12 include the modulation speed V of the modulated light generated by the modulator 4 and the transmitted light output from the optical antenna 5.
  • the beam divergence angle ⁇ and the error correction code included in the modulation signal generated by the modulation signal generation unit 3 are considered.
  • the characteristic control unit 18 controls at least one of the modulation speed V of the modulated light, the beam divergence angle ⁇ of the transmitted light, and the error correction code as the characteristics of the transmitted light.
  • the communicable distance L p is equal to or larger than the required value of the communication distance L.
  • the communicable distance L p is the longest distance between the own optical communication device and the optical communication device of the communication partner, which has an SNR of 0 [dB] or more. Even if the communicable distance L p is equal to or larger than the required value of the communication distance L, the desired SNR is not always obtained, so the characteristic control unit 18 controls the characteristic of the transmitted light.
  • the reference light source 2 outputs the CW light to the modulator 4 via an optical fiber.
  • the modulation signal generation unit 3 generates a modulation signal including communication data to be communicated and an error correction code, and outputs the generated modulation signal to the modulator 4.
  • the modulator 4 modulates the phase of the CW light output from the reference light source 2 in accordance with the modulation signal output from the modulation signal generation unit 3 to generate modulated light.
  • the modulator 4 outputs the generated modulated light to the optical antenna 5 via the optical fiber.
  • the optical antenna 5 Upon receiving the modulated light from the modulator 4, the optical antenna 5 emits the modulated light as transmission light into the water.
  • the optical antenna 7 receives the transmitted light emitted into the water from the optical transmitter 1 as monitor light (step ST1 in FIG. 4).
  • the optical antenna 7 outputs the received monitor light to the photodetector 8 via the optical fiber.
  • the photodetector 8 converts the monitor light output from the optical antenna 7 into a current signal, and outputs the current signal to the IV converter 9.
  • the IV converter 9 converts the current signal output from the photodetector 8 into a voltage signal, and outputs the voltage signal to the ADC 10.
  • the ADC 10 converts the voltage signal output from the IV converter 9 from an analog signal into a digital signal D, and outputs the digital signal D to the attenuation rate calculation unit 11.
  • the attenuation rate calculation unit 11 calculates the attenuation rate At according to the equation (2). However, this is merely an example, and the attenuation rate calculation unit 11 calculates the attenuation rate At as the attenuation rate At, for example, as shown in the following expression (3), the attenuation amount of the light amount P r 0 per 1 [m] distance. It may be calculated.
  • L is a required value of communication distance. The required value of the communication distance L may be given to the attenuation rate calculation unit 11 from the outside, or may be stored in the internal memory of the attenuation rate calculation unit 11. In the optical communication device shown in FIG. 1, description that the required value of the communication distance L is externally given to the attenuation rate calculation unit 11 is omitted.
  • the damping rate calculation unit 11 outputs the calculated damping rate At to each of the characteristic control processing unit 20 and the moving body control unit 21. Assuming that the distance between the own optical communication device and the optical communication device of the communication partner is constant, the attenuation rate At is directly proportional to the turbidity in water as shown in FIG. Turbidity is an index showing the turbidity of water. Therefore, the attenuation rate At increases as the turbidity of water increases, and the light amount P r 0 of the monitor light increases.
  • FIG. 5 is an explanatory diagram showing the relationship between the turbidity in water and the attenuation rate At.
  • the table unit 19 stores the correspondence relationship among the band B of the transmitted light, the attenuation rate At, the communication distance L, and the SNR of the received light.
  • FIG. 6 is an explanatory diagram showing a correspondence relationship between the band B of the transmitted light, the attenuation rate At, the communication distance L, and the SNR of the received light received by the optical signal receiving unit 12.
  • the attenuation rate At the attenuation amount of the light amount P r 0 per distance of 1 [m] is described.
  • the characteristic control processing unit 20 When the characteristic control processing unit 20 receives the attenuation rate At from the attenuation rate calculating unit 11, the characteristic control processing unit 20 refers to the correspondence relationship shown in FIG. 6 stored in the table unit 19 and calculates the attenuation rate calculated by the attenuation rate calculating unit 11.
  • the SNR of the received light received by the optical signal receiving unit 12 is estimated from At, the required bandwidth B of the transmitted light, and the required value of the communication distance L (step ST3 in FIG. 4).
  • the characteristic control processing unit 20 determines, for example, that the band B of the transmitted light is 500 [MHz], the attenuation amount of the light amount P r 0 per distance of 1 [m] is 5 [dB/m], and the required value of the communication distance L is If it is 15 [m], it is estimated that the SNR of the received light is 10 [dB].
  • the characteristic control processing unit 20 determines, for example, that the attenuation B of the light amount P r 0 per distance of 1 [m] is 50 [MHz] and the required value of the communication distance L is 50 [MHz]. If it is 30 [m], it is estimated that the SNR of the received light is 44 [dB].
  • the characteristic control processing unit 20 compares the estimated SNR of the received light with the SNR threshold Th SNR (step ST4 in FIG. 4).
  • the threshold Th SNR of SNR is a value larger than 0 [dB]. If the estimated SNR of the received light is smaller than the threshold Th SNR (step ST4: YES in FIG. 4), the characteristic control processing unit 20 lowers the modulation speed V so that the SNR of the received light becomes large.
  • the control signal cnt 1 shown is output to the modulator 4 (step ST5 in FIG. 4). If the estimated SNR of the received light is equal to or greater than the threshold Th SNR (step ST4: NO in FIG. 4), the characteristic control processing unit 20 sends the control signal cnt 1 indicating that the modulation speed V is reduced to the modulator 4. Do not output.
  • the modulator 4 generates the modulated light by modulating the phase of the CW light output from the reference light source 2 according to the modulation signal output from the modulation signal generation unit 3.
  • the modulator 4 receives the control signal cnt 1 indicating that the modulation speed V should be decreased from the characteristic control processing unit 20 when generating the modulated light (step ST6 of FIG. 4: YES)
  • the modulator 4 generated the light previously.
  • Modulated light having a modulation speed V lower than that of the modulated light is generated (step ST7 in FIG. 4). If the modulator 4 does not receive the control signal cnt 1 indicating that the modulation speed V should be reduced from the characteristic control processing unit 20 (step ST6 in FIG. 4, NO), the previously generated modulated light and the modulation speed V are The same modulated light is generated (step ST8 in FIG. 4).
  • the modulator 4 outputs the generated modulated light to the optical antenna 5 via the optical fiber.
  • the optical antenna 5 Upon receiving the modulated light from the modulator 4, the optical antenna 5 emits the modulated light as transmission light into the water (step ST9 in FIG. 4).
  • the characteristic control processing unit 20 controls the modulation speed V of the modulated light as the characteristic of the transmitted light that affects the increase/decrease in SNR.
  • the characteristic control processing unit 20 may control the beam divergence angle ⁇ of the transmitted light as the characteristic of the transmitted light that affects the increase/decrease in SNR.
  • the characteristic control processing unit 20 increases the beam divergence angle of the transmitted light so that the SNR of the received light becomes large if the estimated SNR of the received light is smaller than the threshold Th SNR.
  • a control signal cnt 2 indicating that ⁇ is narrowed is output to the optical antenna 5. If the estimated SNR of the received light is equal to or more than the threshold Th SNR , the characteristic control processing unit 20 does not output the control signal cnt 2 indicating that the beam divergence angle ⁇ of the transmitted light is narrowed to the optical antenna 5.
  • the optical antenna 5 receives a control signal cnt 2 indicating that the beam divergence angle ⁇ of the transmitted light is narrowed from the characteristic control processing unit 20, the transmitted light whose beam divergence angle ⁇ is narrower than that of the previously emitted transmitted light. Is emitted into the water. If the optical antenna 5 does not receive the control signal cnt 2 indicating that the beam divergence angle ⁇ of the transmitted light is narrowed from the characteristic control processing unit 20, the transmitted light having the same beam divergent angle ⁇ as the previously emitted transmitted light is transmitted to the underwater. Emit to.
  • the optical antenna 5 includes an optical fiber that emits the transmitted light and a lens that adjusts the beam divergence angle ⁇ of the transmitted light that is emitted from the optical fiber. The beam divergence angle ⁇ of the transmitted light can be adjusted by changing the distance between them.
  • the characteristic control processing unit 20 controls the modulation speed V of the modulated light as the characteristic of the transmitted light that affects the increase/decrease in SNR.
  • the characteristic control processing unit 20 may control the error correction code included in the modulated signal as the characteristic of the transmission light that affects the increase/decrease in SNR.
  • the characteristic control processing unit 20 indicates, for example, that the ratio of the error correction code in the modulated signal is increased if the estimated SNR of the received light is smaller than the threshold Th SNR.
  • the signal cnt 3 is output to the modulation signal generation unit 3.
  • the characteristic control processing unit 20 does not output the control signal cnt 3 indicating that the ratio of the error correction code in the modulated signal is increased to the modulated signal generation unit 3.
  • the modulation signal generation unit 3 generates the modulation signal including the communication data to be communicated and the error correction code, and outputs the generated modulation signal to the modulator 4.
  • the modulation signal generation unit 3 receives the control signal cnt 3 indicating that the ratio of the error correction code in the modulation signal is increased from the characteristic control processing unit 20 when generating the modulation signal
  • the modulation signal generation unit 3 includes the previously generated modulation signal.
  • a modulated signal containing a larger number of error correction codes than the error correction code is generated.
  • the modulation signal generation unit 3 uses a parity bit as the error correction code, for example, the ratio of the error correction code in the modulation signal can be increased by increasing the number of parity bits.
  • the modulation signal generation unit 3 does not receive the control signal cnt 3 indicating that the ratio of the error correction code in the modulation signal is increased from the characteristic control processing unit 20, it is the same as the error correction code included in the modulation signal generated last time. Generate a modulated signal containing a number of error correction codes.
  • the characteristic control processing unit 20 outputs the control signal cnt 3 indicating that the ratio of the error correction code in the modulation signal is increased to the modulation signal generation unit 3. doing.
  • the characteristic control processing unit 20 outputs to the modulation signal generation unit 3 the control signal cnt 3 indicating that the error correction code having the error correction capability higher than the previous time is included in the modulation signal. May be.
  • the modulation signal generation unit 3 receives from the characteristic control processing unit 20 a control signal cnt 3 indicating that an error correction code having an error correction capability higher than that of the previous time is included in the modulation signal, the modulation signal generation unit 3 includes the previously generated modulation signal. A modulated signal including an error correction code having a higher error correction capability than that of the error correction code is generated.
  • the characteristic control processing unit 20 determines the modulation speed V of the modulated light, the beam divergence angle ⁇ of the transmitted light, or the error included in the modulated signal as the characteristics of the transmitted light that affects the increase or decrease of the SNR.
  • the correction code is controlled.
  • the characteristic control processing unit 20 controls the increase or decrease of the SNR by controlling at least one of the modulation speed V of the modulated light, the beam divergence angle ⁇ of the transmitted light, and the error correction code included in the modulated signal.
  • You can Which of the modulation speed V of the modulated light, the beam divergence angle ⁇ of the transmitted light, and the error correction code to be included in the modulated signal to be controlled may be set in the characteristic control processing unit 20, or may be externally controlled.
  • the processing unit 20 may be instructed.
  • the relationship between the SNR of the received light and the modulation speed V of the modulated light and the beam divergence angle ⁇ of the transmitted light is as follows.
  • the SNR of the received light changes. You can see that it changes.
  • c 3 and c 4 are proportional constants
  • P r E is the received power of the received light
  • P shot E is the noise power of the received light.
  • S det is the sensitivity of the photodetector 8
  • R L is the resistance value of the amplifier incorporated in the photodetector 8
  • e is the charge amount of electrons
  • Are is the surface area of the lens included in the optical antenna 7. Is.
  • the photodetector 8 has a built-in amplifier. For example, the amplifier amplifies the monitor light output from the optical antenna 7 and converts the amplified monitor light into a current signal.
  • the communicable distance L p is equal to or larger than the required value of the communication distance L.
  • the communication distance L p may be shorter than the required value of the communication distance L.
  • the optical communication device of its own and the optical communication device of the communication partner cannot perform optical signal communication.
  • the mobile unit control unit 21 is equipped with its own optical communication device in order to enable optical signal communication when the communicable distance L p is shorter than the required value of the communication distance L.
  • a mobile unit (not shown) is controlled to bring its own optical communication device closer to the communication partner optical communication device.
  • FIG. 7 is a flowchart showing a processing procedure of the mobile unit control unit 21.
  • the mobile unit control section 21 Upon receiving the attenuation rate At from the attenuation rate calculation section 11, the mobile unit control section 21 communicates the distance L p between its own optical communication apparatus and the optical communication apparatus of the communication partner based on the attenuation rate At. Is calculated (step ST21 in FIG. 7).
  • the mobile control unit 21 can obtain the distance L p at which the optical communication device of its own and the optical communication device of the communication partner can communicate by referring to the correspondence relationship shown in FIG. 6, for example.
  • the mobile control unit 21 has, for example, a band B of transmission light of 500 [MHz] and an attenuation amount of the light amount P r 0 per distance of 1 [m] of 5 [dB/m]. If so, the communication-enabled distance L p is specified to be 16 [m]. If the band B of the transmitted light is 500 [MHz] and the attenuation amount of the light amount P r 0 per distance of 1 [m] is 2 [dB/m], the moving body control unit 21 performs communication. The possible distance L p is specified to be 40 [m].
  • the mobile control unit 21 compares the communication distance L p with the communication distance L (step ST22 in FIG. 7). If the communicable distance L p is shorter than the communication distance L (step ST22: YES in FIG. 7), the mobile unit control unit 21 mounts its own optical communication device on a mobile unit (not shown). Is controlled to bring its own optical communication device closer to the optical communication device of the communication partner (step ST23 in FIG. 7). In the optical communication device shown in FIG. 1, the azimuth ⁇ from the optical communication device of itself to the optical communication device of the communication partner in the mobile unit control unit 21 is an existing value.
  • the optical communication device of its own approaches the optical communication device of the communication partner and the communicable distance L p becomes equal to or more than the communication distance L
  • the optical communication device of its own and the optical communication device of the communication partner are optically connected.
  • Signal communication may be implemented. If the communicable distance L p is equal to or longer than the communication distance L (step ST22: NO in FIG. 7), the mobile body control unit 21 mounts its own optical communication device on a mobile body (not shown). Do not control.
  • the mobile unit control unit 21 brings its own optical communication device close to the optical communication device of the communication partner so that the communicable distance L p is set to the communication distance L or more and optical signal communication can be performed. I have to. However, this is merely an example, and the mobile unit control unit 21 can perform communication of an optical signal by changing the band B of the transmitted light so that the communicable distance L p becomes equal to or longer than the communication distance L. You may do it.
  • the moving body control unit 21 determines that the transmitted light is When the band B of is changed to 50 [MHz], the communicable distance L p is extended from 16 [m] to 17 [m].
  • the moving body control unit 21 determines that the transmitted light is When the band B of is changed to 50 [MHz], the communicable distance L p is extended from 40 [m] to 43 [m]. If communication is possible distance L p Nobile, communication coverage distance L p may become more communication distance L.
  • the transmission light monitor unit 6, the attenuation rate calculation unit 11, the characteristic control unit 18, and the optical transmission unit 1 repeat the processing shown in steps ST1 to ST9 of FIG. carry out.
  • the optical antenna 13 receives the optical signal emitted from the optical communication device of the communication partner when the optical communication device of the communication partner emits the optical signal into the water when the communicable distance L p is the communication distance L or more. Receive as light.
  • the optical antenna 13 outputs the received light received to the photodetector 14 via an optical fiber.
  • the photodetector 14 converts the received light into a current signal and outputs the current signal to the IV converter 15.
  • the IV converter 15 converts the current signal into a voltage signal and outputs the voltage signal to the ADC 16.
  • the characteristic control processing unit 20 sends the band parameter indicating the band of the optical signal to the IV converter 15. Output.
  • the band of the optical signal emitted from the optical communication device of the communication partner changes, the SNR of the received light received by the optical antenna 13 changes. If the IV converter 15 receives the band parameter from the characteristic control processing unit 20, the IV converter 15 is based on the band of the optical signal indicated by the band parameter so that the change of the SNR becomes small even if the band of the received light changes. , Adjust the magnitude of the voltage signal.
  • the ADC 16 Upon receiving the voltage signal from the IV converter 15, the ADC 16 converts the voltage signal from an analog signal into a digital signal and outputs the digital signal to the demodulation unit 17.
  • the demodulating unit 17 Upon receiving the digital signal from the optical signal receiving unit 12, the demodulating unit 17 demodulates the communication data included in the optical signal received by the optical antenna 13 from the digital signal.
  • reception when the characteristic control unit 18 receives the optical signal emitted into the water from the optical communication device of the communication partner as the received light based on the attenuation rate calculated by the attenuation rate calculation unit 11 The optical communication device shown in FIG. 1 is configured so as to estimate the SNR of light and control the characteristics of the transmitted light that affects the increase or decrease of the SNR based on the SNR. Therefore, the optical communication device shown in FIG. 1 receives the optical signal emitted into the water from the optical communication device of the communication partner as the received light even when the communication with the optical communication device of the communication partner is not established. The SNR of the received light at that time can be controlled.
  • the characteristic control processing unit 20 prevents the modulator 4 from outputting the control signal cnt 1 indicating that the modulation speed V is reduced. ing.
  • the characteristic control processing unit 20 does not output the control signal cnt 2 indicating that the beam divergence angle ⁇ of the transmitted light is narrowed to the optical antenna 5. ..
  • the characteristic control processing unit 20 does not output the control signal cnt 3 indicating that the ratio of the error correction code in the modulated signal is increased to the modulated signal generation unit 3. ing.
  • the threshold value Th threshold for large SNR limit than SNR Th SNR-up is greater than (SNR> Th SNR- up )
  • the characteristic control processing unit 20 may output the control signal cnt 1 indicating that the modulation speed V is increased to the modulator 4.
  • the modulator 4 When the modulator 4 receives the control signal cnt 1 indicating that the modulation speed V is increased from the characteristic control processing unit 20, the modulator 4 generates a modulated light having a higher modulation speed V than the previously generated modulated light. If the SNR of the received light is equal to or higher than the threshold Th SNR and the SNR of the received light is equal to or lower than the upper threshold Th SNR-up (Th SNR ⁇ SNR ⁇ Th SNR-up ), the characteristic control processing unit 20 The control signal cnt 1 is not output to the modulator 4. Note that the threshold Th SNR-up for the upper limit of the SNR may be externally provided to the characteristic control processing unit 20 or may be stored in the internal memory of the mobile unit control unit 21. Good.
  • the characteristic control processing unit 20 indicates that the beam divergence angle ⁇ of the transmitted light is widened.
  • the control signal cnt 2 shown may be output to the optical antenna 5. If the optical antenna 5 receives a control signal cnt 2 indicating that the beam divergence angle ⁇ of the transmission light is to be widened from the characteristic control processing unit 20, the transmission light having a wider beam divergence angle ⁇ than the previously emitted transmission light. Is emitted into the water.
  • the characteristic control processing unit 20 If the SNR of the received light is equal to or higher than the threshold Th SNR and the SNR of the received light is equal to or lower than the upper threshold Th SNR-up (Th SNR ⁇ SNR ⁇ Th SNR-up ), the characteristic control processing unit 20 The control signal cnt 2 is not output to the optical antenna 5.
  • the characteristic control processing unit 20 indicates that the ratio of the error correction code in the modulated signal is reduced.
  • the control signal cnt 3 shown is output to the modulation signal generation unit 3. If the modulation signal generation unit 3 receives the control signal cnt 3 indicating that the ratio of the error correction code in the modulation signal is reduced from the characteristic control processing unit 20, the modulation signal generation unit 3 outputs the control signal cnt 3 more than the error correction code included in the previously generated modulation signal. , Generates a modulated signal containing a small number of error correction codes.
  • the characteristic control processing unit 20 If the SNR of the received light is equal to or higher than the threshold Th SNR and the SNR of the received light is equal to or lower than the upper threshold Th SNR-up (Th SNR ⁇ SNR ⁇ Th SNR-up ), the characteristic control processing unit 20 The control signal cnt 3 is not output to the modulation signal generation unit 3.
  • the characteristic control processing unit 20 fixes a threshold Th SNR to be compared with the SNR of received light.
  • the characteristic control processing unit 20 may change the threshold Th SNR according to the band B of the transmitted light, for example.
  • Characteristic control processing unit 20 for example, than the threshold Th SNR during lower bandwidth B of the transmitted light, to lower the threshold value Th SNR when high bandwidth B of the transmitted light.
  • the mobile body control unit 21 does not control the mobile body equipped with its own optical communication device. ing.
  • the distance L p at which communication is possible is larger than the upper limit threshold Th L-up (L ⁇ Th L-up ) that is larger than the communication distance L, then (L p >Th L). -Up ), the mobile unit control unit 21 may control the mobile unit to move its own optical communication device away from the optical communication device of the communication partner.
  • the body control unit 21 does not control the moving body.
  • Embodiment 2 In the optical communication device shown in FIG. 1, the moving body control unit 21 is given a request value for the communication distance L from the outside.
  • an optical communication device including a distance calculation unit 59 that calculates a distance L from its own optical communication device to an optical communication device of a communication partner and outputs the calculated distance L to the mobile unit control unit 21 will be described. To do.
  • FIG. 8 is a configuration diagram showing an optical communication device according to the second embodiment.
  • FIG. 9 is a hardware configuration diagram showing the hardware of the attenuation rate calculation unit 11, the demodulation unit 17, the characteristic control unit 18, the moving body control unit 21, and the distance calculation unit 59 in the optical communication device according to the second embodiment.
  • the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding portions, and thus the description thereof will be omitted.
  • the acoustic communication unit 50 includes a position coordinate acquisition unit 51, a modulation signal generation unit 52, a sound source 53, a modulator 54, a sound emitting unit 55, and a sound signal receiving unit 56.
  • the position coordinate acquisition unit 51 is realized by, for example, a GPS receiver that receives a GPS signal transmitted from a GPS (Global Positioning System) satellite.
  • the position coordinate acquisition unit 51 acquires the position coordinates of the moving body equipped with its own optical communication device, and outputs the position information indicating the position coordinates to the modulation signal generation unit 52 and the distance calculation unit 59.
  • the modulation signal generation unit 52 generates a modulation signal including the position information output from the position coordinate acquisition unit 51, and outputs the generated modulation signal to the modulator 54.
  • the sound source 53 is a device that generates sound, and outputs the generated sound to the modulator 54.
  • the modulator 54 generates a modulated sound by modulating the phase of the sound output from the sound source 53 according to the modulated signal output from the modulated signal generation unit 52, and outputs the generated modulated sound to the sound emitting unit 55. ..
  • the sound emitting unit 55 is realized by, for example, a speaker.
  • the sound emitting unit 55 transmits the sound signal to the optical communication device of the communication partner by emitting the modulated sound output from the modulator 54 into the water as a sound signal.
  • the sound signal reception unit 56 includes a sound pickup unit 57 and a demodulation unit 58.
  • the sound signal receiving unit 56 receives a sound signal transmitted from the optical communication device of the communication partner.
  • the sound signal transmitted from the optical communication device of the communication partner includes position information indicating the position coordinates of the optical communication device of the communication partner.
  • the sound pickup unit 57 is realized by, for example, a microphone.
  • the sound pickup unit 57 receives the sound signal transmitted from the optical communication device of the communication partner, and outputs the received sound signal to the demodulation unit 58.
  • the demodulation unit 58 demodulates the position information included in the sound signal output from the sound pickup unit 57, and outputs the demodulated position information to the distance calculation unit 59.
  • the distance calculation unit 59 is realized by the distance calculation circuit 36 shown in FIG. 9, for example.
  • the distance calculation unit 59 uses the position coordinates indicated by the position information output from the position coordinate acquisition unit 51 and the position coordinates indicated by the position information output from the demodulation unit 58, from its own optical communication device to the optical communication of the communication partner.
  • the distance L to the device is calculated.
  • the distance calculation unit 59 uses the position coordinates indicated by the position information output from the position coordinate acquisition unit 51 and the position coordinates indicated by the position information output from the demodulation unit 58, from its own optical communication device to the communication partner.
  • the direction ⁇ to the optical communication device is calculated.
  • the distance calculation unit 59 outputs the calculated distance L to each of the characteristic control processing unit 20 and the moving body control unit 21, and outputs the calculated azimuth ⁇ to the moving body control unit 21.
  • each of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, the moving body control unit 21, and the distance calculation unit 59 which are some of the constituent elements of the optical communication device, are illustrated. It is assumed that it is realized by dedicated hardware as shown in FIG. That is, it is assumed that a part of the optical communication device is realized by the attenuation rate calculation circuit 31, the demodulation circuit 32, the storage circuit 33, the characteristic control processing circuit 34, the moving body control circuit 35, and the distance calculation circuit 36. ..
  • Each of the attenuation rate calculation circuit 31, the demodulation circuit 32, the characteristic control processing circuit 34, the moving body control circuit 35, and the distance calculation circuit 36 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, An ASIC, an FPGA, or a combination thereof is applicable.
  • any one or more of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, the moving body control unit 21, or the distance calculation unit 59 may be software, firmware, or software and firmware. It may be realized by a combination of.
  • the table unit 19 is configured on the memory 41 of the computer shown in FIG.
  • a program for causing a computer to execute the processing procedures of the attenuation rate calculation unit 11, the demodulation unit 17, the characteristic control processing unit 20, the moving body control unit 21, and the distance calculation unit 59 is stored in the memory 41 shown in FIG. Then, the processor 42 of the computer executes the program stored in the memory 41.
  • the operation of the optical communication device shown in FIG. 8 will be described.
  • the components other than the acoustic communication unit 50, the distance calculation unit 59, and the mobile body control unit 21 are the same as those of the optical communication device shown in FIG. 1, here, the acoustic communication unit 50, the distance calculation unit 59, and the mobile body control unit. Only the operation 21 will be described.
  • the position coordinate acquisition unit 51 acquires the position coordinates (x 1 , y 1 , z 1 ) of the moving body equipped with its own optical communication device.
  • the modulation signal generation unit 52 outputs position information indicating the acquired position coordinates (x 1 , y 1 , z 1 ).
  • the distance calculation unit 59 Upon receiving the position information from the position coordinate acquisition unit 51, the modulation signal generation unit 52 generates a modulation signal including the position information and outputs the generated modulation signal to the modulator 54.
  • the sound source 53 generates a sound and outputs the generated sound to the modulator 54.
  • the modulator 54 generates a modulated sound by modulating the phase of the sound output from the sound source 53 according to the modulated signal output from the modulated signal generation unit 52, and outputs the generated modulated sound to the sound emitting unit 55. ..
  • the sound emitting unit 55 transmits the sound signal to the optical communication device of the communication partner by emitting the modulated sound output from the modulator 54 into the water as a sound signal.
  • the optical communication device of the communication partner emits a sound signal including position information indicating position coordinates (x 2 , y 2 , z 2 ) into the water, and includes, for example, a large amount of data or confidentiality data.
  • the existing optical signal is emitted into the water.
  • the optical signal is suitable for transmitting a large amount of data, etc., but when the turbidity of water is large, the attenuation is large.
  • the sound signal is not suitable for transmitting a large amount of data or the like as compared with the optical signal.
  • sound signals can be transmitted and received even when the turbidity of water is large and the attenuation is small, even if the distance between own optical communication device and the optical communication device of the communication partner is long.
  • the sound pickup unit 57 receives the sound signal transmitted from the optical communication device of the communication partner, and outputs the received sound signal to the demodulation unit 58.
  • the demodulation unit 58 demodulates the position information included in the sound signal, and outputs the demodulated position information to the distance calculation unit 59.
  • the distance calculation unit 59 calculates the position coordinates (x 1 , y 1 , z 1 ) indicated by the position information output from the position coordinate acquisition unit 51 and the position coordinates (x 2 , indicated by the position information output from the demodulation unit 58. From y 2 ,z 2 ), the communication distance L, which is the distance from the own optical communication device to the communication partner optical communication device, is calculated as shown in the following equation (9). In addition, the distance calculation unit 59 uses the position coordinates (x 1 , y 1 , z 1 ) and the position coordinates (x 2 , y 2 , z 2 ) to transmit from its own optical communication device to the communication partner optical communication device. The azimuth ⁇ is calculated.
  • the calculation process of the azimuth ⁇ is a known technique, and thus detailed description thereof is omitted.
  • the distance calculation unit 59 outputs the calculated distance L to each of the characteristic control processing unit 20 and the moving body control unit 21, and outputs the calculated azimuth ⁇ to the moving body control unit 21.
  • the distance calculation unit 59 needs to output the azimuth ⁇ to the moving body control unit 21. There is no.
  • the mobile unit control section 21 Upon receiving the attenuation rate At from the attenuation rate calculation section 11, the mobile unit control section 21 determines whether the optical communication apparatus of its own and the optical communication apparatus of the communication partner are based on the attenuation rate At, as in the first embodiment. Then, a distance L p at which communication is possible is obtained. Upon receiving the communication distance L from the distance calculation unit 59, the mobile body control unit 21 compares the communication distance L p with the communication distance L. If the distance L p at which communication is possible is shorter than the communication distance L, the mobile unit control unit 21 controls the mobile unit equipped with its own optical communication device, as in the first embodiment. The optical communication device of 1 is brought closer to the optical communication device of the communication partner.
  • the moving body control unit 21 since the moving body control unit 21 receives the azimuth ⁇ from the distance calculation unit 59, it controls the moving body so that the moving body moves in the direction ⁇ . If the communicable distance L p is equal to or longer than the communication distance L, the moving body control unit 21 does not control the moving body as in the first embodiment.
  • the mobile body control unit 21 does not control the mobile body equipped with its own optical communication device. ing. However, this is only an example, and if the communicable distance L p is larger than the upper limit threshold Th L-up larger than the communication distance L (L p >Th L-up ), the mobile unit control unit.
  • the control unit 21 may control the mobile unit to move its own optical communication device away from the communication partner optical communication device.
  • the body control unit 21 does not control the moving body.
  • the sound signal receiving unit 56 that receives a sound signal including position information indicating the position of the communication partner optical communication device from the communication partner optical communication device, and the sound signal receiving unit 56 receive the sound signal.
  • the mobile body control unit 21 can communicate with the distance calculation unit 59 that calculates the distance L from the own optical communication device to the communication partner optical communication device from the position information included in the sound signal. If the distance L p is shorter than the distance L calculated by the distance calculation unit 59, the mobile body equipped with its own optical communication device is controlled so that its own optical communication device becomes the communication partner optical communication device.
  • the optical communication device shown in FIG. Therefore, the optical communication device shown in FIG. 8 can control the SNR of the received light even if the distance L from the own optical communication device to the communication partner optical communication device changes, as in the first embodiment. it can.
  • Embodiment 3 In the optical communication device shown in FIG. 8, the sound signal receiving unit 56 receives a sound signal including position information indicating the position of the communication partner optical communication device.
  • an optical communication device including a sound signal transmitting/receiving unit 61 that emits a sound signal into water and receives a reflected signal of the sound signal reflected by the optical communication device of the communication partner will be described.
  • FIG. 10 is a configuration diagram showing an optical communication device according to the third embodiment.
  • the sound signal transmitting/receiving unit 61 includes a sound source 53, a modulator 54, a sound emitting unit 55, and a sound collecting unit 57.
  • the sound signal transmitting/receiving unit 61 emits the sound signal into the water and receives the reflection signal of the sound signal reflected by the optical communication device of the communication partner.
  • the sound signal transmitting/receiving unit 61 needs only to be able to transmit/receive a sound signal.
  • the sound signal transmitting/receiving unit 61 does not include the modulator 54, and the sound source 53 directly emits sound. You may make it output to the sound part 55.
  • the modulation signal generating unit 52 may be included in the sound signal transmitting/receiving unit 61.
  • the distance calculation unit 62 is realized by the distance calculation circuit 36 shown in FIG. 9, for example.
  • the distance calculation unit 62 measures the time T from the output of the modulated sound from the modulator 54 to the sound emitting unit 55 until the sound pickup unit 57 receives the reflected signal of the sound signal.
  • the distance calculation unit 62 calculates the distance L from the optical communication device of its own to the optical communication device of the communication partner from the measured time T, and the calculated distance L is calculated by the characteristic control processing unit 20 and the mobile unit control unit 21, respectively. Output to.
  • the modulator 54 generates a modulated sound by modulating the phase of the sound output from the sound source 53 according to the modulated signal output from the modulated signal generation unit 52, and the generated modulated sound is generated by the sound emitting unit 55 and the distance calculation. Output to each of the units 62.
  • the sound emitting unit 55 emits the modulated sound output from the modulator 54 into the water as a sound signal toward the optical communication device of the communication partner.
  • the sound signal emitted from the sound emitting unit 55 is reflected by the optical communication device of the communication partner, and the sound signal reflected by the optical communication device returns to its own optical communication device as a reflected signal.
  • the sound pickup unit 57 receives the sound signal reflected by the optical communication device as a reflection signal, and outputs the received reflection signal to the distance calculation unit 62.
  • the distance calculation unit 62 measures the time T from the output of the modulated sound from the modulator 54 to the sound emitting unit 55 until the sound pickup unit 57 receives the reflected signal of the sound signal.
  • the sound emitting unit 55 immediately outputs the modulated sound as a sound signal.
  • the output time of the modulated sound by the modulator 54 and the sound emitting unit 55 The output time of the sound signal by 55 is almost the same time.
  • the distance calculation unit 62 measures the time T, the distance calculation unit 62 calculates the distance L from the own optical communication device to the optical communication device of the communication partner from the measured time T, as shown in the following formula (10).
  • the distance L is output to each of the characteristic control processing unit 20 and the moving body control unit 21.
  • is the speed of sound. Since the sound speed ⁇ changes depending on the temperature in water, the distance calculation unit 62 may acquire the temperature in water and correct the sound speed ⁇ according to the acquired temperature. The distance calculation unit 62 may obtain the azimuth ⁇ from the optical communication device of its own to the optical communication device of the communication partner based on the direction in which the sound pickup unit 57 emits the sound signal. When calculating the azimuth ⁇ , the distance calculation unit 62 also outputs the azimuth ⁇ to the moving body control unit 21. In the mobile unit control unit 21, if the azimuth ⁇ from the own optical communication device to the communication partner optical communication device is an existing value, the distance calculation unit 62 needs to output the azimuth ⁇ to the mobile unit control unit 21. There is no.
  • the sound signal transmitting/receiving unit 61 that emits a sound signal into the water from the optical communication device of the communication partner and receives the reflected signal of the sound signal reflected by the optical communication device of the communication partner, From the time from the sound signal transmitting/receiving unit 61 emitting the sound signal to the reception of the reflected signal by the sound signal transmitting/receiving unit 61, the distance L from the own optical communication device to the optical communication device of the communication partner is calculated. If the distance L p at which the mobile body control unit 21 can communicate is shorter than the distance L calculated by the distance calculation unit 62, the mobile unit control unit 21 includes a distance calculation unit 62.
  • the optical communication device shown in FIG. 10 can control the SNR of the received light even if the distance L from the own optical communication device to the communication partner optical communication device changes, as in the first embodiment. it can.
  • the optical communication device shown in FIG. 1 includes an optical antenna 7 and an optical antenna 13 as an optical antenna of a receiving system.
  • an optical communication device including only an optical antenna 71 as an optical antenna of a receiving system will be described.
  • FIG. 11 is a configuration diagram showing an optical communication device according to the fourth embodiment.
  • the optical antenna 71 also serves as the optical antenna 7 included in the transmission light monitor unit 6 illustrated in FIG. 1 and the optical antenna 13 included in the optical signal receiving unit 12 illustrated in FIG.
  • the optical antenna 71 receives the transmitted light emitted into the water from the optical transmitter 1 as monitor light, and outputs the received monitor light to the wavelength demultiplexer 72 via an optical fiber. Further, the optical antenna 71 receives an optical signal emitted into the water from the optical communication device of the communication partner as received light, and outputs the received received light to the wavelength demultiplexing unit 72 via the optical fiber.
  • the wavelength separation section 72 is connected to the optical antenna 71 via an optical fiber, and is connected to the photodetector 8 via an optical fiber.
  • the wavelength separation unit 72 is also connected to the photodetector 14 via an optical fiber.
  • the wavelength demultiplexing unit 72 outputs the monitor light output from the optical antenna 71 to the photodetector 8 via the optical fiber, and the received light output from the optical antenna 71 via the optical fiber to the photodetector. It outputs to 14.
  • the wavelength of the monitor light output from the optical antenna 71 and the wavelength of the received light output from the optical antenna 71 are different from each other.
  • the optical communication device is the same as the optical communication device shown in FIG.
  • the optical antenna 71 receives the transmission light as monitor light, and outputs the received monitor light to the wavelength separation unit 72 via the optical fiber.
  • the optical antenna 71 receives an optical signal as received light when the optical signal is emitted into the water from the optical communication device of the communication partner, and receives the received light to the wavelength demultiplexing unit 72 via the optical fiber. Output.
  • the wavelength separation unit 72 wavelength-separates the monitor light output from the optical antenna 71 and the received light output from the optical antenna 71.
  • the wavelength demultiplexing unit 72 outputs the monitor light after wavelength separation to the photodetector 8 via the optical fiber, and outputs the received light after wavelength separation to the photodetector 14 via the optical fiber.
  • the optical communication device shown in FIG. 11 can reduce the number of optical antennas in the receiving system more than the optical communication device shown in FIG.
  • the invention of the present application is capable of freely combining the respective embodiments, modifying any constituent element of each embodiment, or omitting any constituent element in each embodiment. ..
  • the present invention is suitable for an optical communication device and an optical communication method for controlling the characteristics of transmitted light that affect the increase/decrease in signal-to-noise ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

An optical communication device is configured to comprise: a light transmission unit (1) that emits a transmission light into water; a transmission light monitor unit (6) that receives the transmission light emitted from the light transmission unit (1) into the water as a monitor light; an attenuation ratio calculation unit (11) that calculates an attenuation ratio of the light quantity of the monitor light received by the transmission light monitor unit (6) to the light quantity of the transmission light emitted from the light transmission unit (1) into the water; and a characteristic control unit (18) that estimates, from the attenuation ratio calculated by the attenuation ratio calculation unit (11), a signal-to-noise ratio of a received light when an optical signal emitted into the water from an optical communication device on the other end of communication is received as the received light, and that, on the basis of the signal-to-noise ratio, controls that characteristic of the transmission light which influences the increase or decrease of the signal-to-noise ratio.

Description

光通信装置及び光通信方法Optical communication device and optical communication method
 この発明は、信号対雑音比の増減に影響する送信光の特性を制御する光通信装置及び光通信方法に関するものである。 The present invention relates to an optical communication device and an optical communication method for controlling the characteristics of transmitted light that affect the increase/decrease in signal-to-noise ratio.
 以下の特許文献1には、光受信帯域制御部が、信号レベル検出部により検出された受光信号の信号レベルに従って光無線区間の帯域変更要求を通信相手の光無線伝送装置に送信する光無線伝送装置が開示されている。
 また、特許文献1に開示されている光無線伝送装置は、通信相手の光無線伝送装置から送信された帯域変更要求を受信すると、受信した帯域変更要求に従ってクロック生成部により生成される変調クロックを制御している。
In Patent Document 1 below, an optical wireless transmission in which an optical reception band control unit transmits a band change request of an optical wireless section to an optical wireless transmission device of a communication partner in accordance with a signal level of a light reception signal detected by a signal level detection unit. A device is disclosed.
Further, when the optical wireless transmission device disclosed in Patent Document 1 receives the band change request transmitted from the optical wireless transmission device of the communication partner, the optical wireless transmission device outputs the modulated clock generated by the clock generation unit according to the received band change request. Have control.
特開2003-218802号公報JP, 2003-218802, A
 特許文献1に開示されている光無線伝送装置は、光無線区間の環境が劣悪であるために、通信相手の光無線伝送装置との間で通信が確立できていない状態では、通信相手の光無線伝送装置との間で光無線区間の帯域変更要求を送受信することができない。特許文献1に開示されている光無線伝送装置は、帯域変更要求を送受信することができない場合、受光信号の信号レベルに応じた帯域に変更することができない。
 したがって、特許文献1に開示されている光無線伝送装置は、受光信号の信号対雑音比(SNR:Signal-to-Noise Ratio)として、所望のSNRを得ることができないことがあるという課題があった。
The optical wireless transmission device disclosed in Patent Document 1 has a poor environment in the optical wireless section, and therefore, when communication cannot be established with the optical wireless transmission device of the communication partner, It is not possible to transmit/receive a band change request in the optical wireless section to/from the wireless transmission device. The optical wireless transmission device disclosed in Patent Document 1 cannot change the band according to the signal level of the light reception signal when the band change request cannot be transmitted and received.
Therefore, the optical wireless transmission device disclosed in Patent Document 1 has a problem that a desired SNR may not be obtained as a signal-to-noise ratio (SNR: Signal-to-Noise Ratio) of a received light signal. It was
 この発明は上記のような課題を解決するためになされたもので、通信相手の光通信装置との間で通信が確立できていない状態でも、通信相手の光通信装置から水中に出射された光信号を受信光として受信した際の受信光のSNRを制御することができる光通信装置及び光通信方法を得ることを目的とする。 The present invention has been made to solve the above problems. Even when communication with the optical communication device of the communication partner has not been established, the light emitted into the water from the optical communication device of the communication partner. An object is to obtain an optical communication device and an optical communication method capable of controlling the SNR of received light when a signal is received as received light.
 この発明に係る光通信装置は、送信光を水中に出射する光送信部と、光送信部から水中に出射された送信光をモニタ光として受信する送信光モニタ部と、光送信部から水中に出射される送信光の光量に対する送信光モニタ部により受信されたモニタ光の光量の減衰率を算出する減衰率算出部と、減衰率算出部により算出された減衰率から、通信相手の光通信装置から水中に出射された光信号を受信光として受信した際の受信光の信号対雑音比を推定し、信号対雑音比に基づいて、信号対雑音比の増減に影響する送信光の特性を制御する特性制御部とを備えるようにしたものである。 The optical communication device according to the present invention includes an optical transmitter that emits transmitted light into water, a transmitted light monitor that receives transmitted light emitted from the optical transmitter into the water as monitor light, and an optical transmitter from the optical transmitter into the water. The optical communication device of the communication partner based on the attenuation rate calculation unit that calculates the attenuation rate of the light intensity of the monitor light received by the transmission light monitor unit with respect to the light intensity of the emitted transmission light and the attenuation rate calculated by the attenuation rate calculation unit. Estimate the signal-to-noise ratio of the received light when the optical signal emitted from the water into the water is received, and control the characteristics of the transmitted light that affect the increase or decrease of the signal-to-noise ratio based on the signal-to-noise ratio And a characteristic control section for controlling the characteristics.
 この発明によれば、特性制御部が、減衰率算出部により算出された減衰率から、通信相手の光通信装置から水中に出射された光信号を受信光として受信した際の受信光の信号対雑音比を推定し、信号対雑音比に基づいて、信号対雑音比の増減に影響する送信光の特性を制御するように、光通信装置を構成した。したがって、この発明に係る光通信装置は、通信相手の光通信装置との間で通信が確立できていない状態でも、通信相手の光通信装置から水中に出射された光信号を受信光として受信した際の受信光の信号対雑音比を制御することができる。 According to the present invention, the characteristic control unit, based on the attenuation rate calculated by the attenuation rate calculation unit, the signal pair of the received light when the optical signal emitted into the water from the optical communication device of the communication partner is received as the received light. The optical communication device is configured to estimate the noise ratio and control the characteristics of the transmitted light that influences the increase or decrease of the signal to noise ratio based on the signal to noise ratio. Therefore, the optical communication device according to the present invention receives the optical signal emitted into the water from the optical communication device of the communication partner as the received light even when the communication with the optical communication device of the communication partner is not established. In this case, the signal-to-noise ratio of the received light can be controlled.
実施の形態1に係る光通信装置を示す構成図である。1 is a configuration diagram showing an optical communication device according to a first embodiment. 実施の形態1に係る光通信装置における減衰率算出部11、復調部17、テーブル部19、特性制御処理部20及び移動体制御部21のハードウェアを示すハードウェア構成図である。3 is a hardware configuration diagram showing hardware of an attenuation rate calculation unit 11, a demodulation unit 17, a table unit 19, a characteristic control processing unit 20, and a mobile unit control unit 21 in the optical communication device according to the first embodiment. FIG. 光通信装置の一部がソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。It is a hardware block diagram of a computer when a part of optical communication apparatus is implement|achieved by software or firmware. 光通信装置の処理手順である光通信方法を示すフローチャートである。It is a flowchart which shows the optical communication method which is a processing procedure of an optical communication apparatus. 水中の濁度と減衰率Atとの関係を示す説明図である。It is explanatory drawing which shows the relationship between turbidity in water and attenuation rate At. 送信光の帯域Bと、減衰率Atと、自らの光通信装置と通信相手の光通信装置との間の通信距離Lと、光信号受信部12により受信される受信光のSNRとの対応関係を示す説明図である。Correspondence between the band B of the transmitted light, the attenuation factor At, the communication distance L between the own optical communication device and the optical communication device of the communication partner, and the SNR of the received light received by the optical signal receiving unit 12. FIG. 移動体制御部21の処理手順を示すフローチャートである。7 is a flowchart showing a processing procedure of the mobile control unit 21. 実施の形態2に係る光通信装置を示す構成図である。7 is a configuration diagram showing an optical communication device according to a second embodiment. FIG. 実施の形態2に係る光通信装置における減衰率算出部11、復調部17、特性制御部18、移動体制御部21及び距離算出部59のハードウェアを示すハードウェア構成図である。FIG. 7 is a hardware configuration diagram showing hardware of an attenuation rate calculation unit 11, a demodulation unit 17, a characteristic control unit 18, a mobile unit control unit 21, and a distance calculation unit 59 in the optical communication device according to the second embodiment. 実施の形態3に係る光通信装置を示す構成図である。FIG. 6 is a configuration diagram showing an optical communication device according to a third embodiment. 実施の形態4に係る光通信装置を示す構成図である。FIG. 9 is a configuration diagram showing an optical communication device according to a fourth embodiment.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係る光通信装置を示す構成図である。
 図2は、実施の形態1に係る光通信装置における減衰率算出部11、復調部17、テーブル部19、特性制御処理部20及び移動体制御部21のハードウェアを示すハードウェア構成図である。
 図1及び図2において、光送信部1は、基準光源2、変調信号生成部3、変調器4及び光アンテナ5を備えている。
 光送信部1は、送信光を水中に出射することで、送信光を送信光モニタ部6及び通信相手の光通信装置のそれぞれに送信する。
 基準光源2は、連続発振光(CW:Continuous Wave)光を、光ファイバを介して、変調器4に出力する。
Embodiment 1.
FIG. 1 is a configuration diagram showing an optical communication device according to the first embodiment.
FIG. 2 is a hardware configuration diagram showing hardware of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, and the mobile unit control unit 21 in the optical communication device according to the first embodiment. ..
1 and 2, the optical transmitter 1 includes a reference light source 2, a modulation signal generator 3, a modulator 4 and an optical antenna 5.
The optical transmitter 1 emits the transmitted light into the water to transmit the transmitted light to the transmitted light monitor 6 and the optical communication device of the communication partner.
The reference light source 2 outputs continuous wave (CW:Continuous Wave) light to the modulator 4 via an optical fiber.
 変調信号生成部3は、通信対象の通信データと、誤り訂正符号とを含む変調信号を生成し、生成した変調信号を変調器4に出力する。なお、変調信号生成部3は、特性制御処理部20から出力された制御信号に従って、変調信号に含める誤り訂正符号を変更する。
 変調器4は、光ファイバを介して、基準光源2と接続されている。
 変調器4は、変調信号生成部3から出力された変調信号に従って、基準光源2から出力されたCW光の位相を変調することで変調光を生成し、生成した変調光を、光ファイバを介して、光アンテナ5に出力する。なお、変調器4は、変調光を生成する際、特性制御処理部20から出力された制御信号に従って変調光の変調速度を変更する。しかし、これは一例に過ぎず、変調器4は、基準光源2から出力されたCW光の強度を変調するものであってもよいし、さらに基準光源2の出力を電気信号によって直接変調する構成であってもよい。
The modulation signal generation unit 3 generates a modulation signal including communication data to be communicated and an error correction code, and outputs the generated modulation signal to the modulator 4. The modulated signal generation unit 3 changes the error correction code included in the modulated signal according to the control signal output from the characteristic control processing unit 20.
The modulator 4 is connected to the reference light source 2 via an optical fiber.
The modulator 4 generates modulated light by modulating the phase of the CW light output from the reference light source 2 according to the modulation signal output from the modulation signal generation unit 3, and outputs the generated modulated light via an optical fiber. And outputs it to the optical antenna 5. When generating the modulated light, the modulator 4 changes the modulation speed of the modulated light according to the control signal output from the characteristic control processing unit 20. However, this is merely an example, and the modulator 4 may be a device that modulates the intensity of the CW light output from the reference light source 2, or a configuration in which the output of the reference light source 2 is directly modulated by an electric signal. May be
 光アンテナ5は、例えば、レンズを備える光望遠鏡によって実現される。光アンテナ5は、光ファイバを介して、変調器4と接続されている。光アンテナ5は、変調器4から出力された変調光を送信光として水中に出射する。なお、光アンテナ5は、送信光を水中に出射する際、特性制御処理部20から出力された制御信号に従って送信光のビーム拡がり角を調整する。 The optical antenna 5 is realized by, for example, an optical telescope having a lens. The optical antenna 5 is connected to the modulator 4 via an optical fiber. The optical antenna 5 emits the modulated light output from the modulator 4 into water as transmission light. The optical antenna 5 adjusts the beam divergence angle of the transmission light according to the control signal output from the characteristic control processing unit 20 when the transmission light is emitted into the water.
 送信光モニタ部6は、光アンテナ7、光検出器8、電流電圧変換器(以下、「IV変換器」と称する)9及びアナログデジタル変換器(以下、「ADC」と称する)10を備えている。送信光モニタ部6は、光送信部1から水中に出射された送信光をモニタ光として受信する。
 光アンテナ7は、例えば、レンズを備える光望遠鏡によって実現される。光アンテナ7は、光送信部1から水中に出射された送信光をモニタ光として受信し、受信したモニタ光を、光ファイバを介して、光検出器8に出力する。
The transmission light monitor unit 6 includes an optical antenna 7, a photodetector 8, a current-voltage converter (hereinafter referred to as “IV converter”) 9, and an analog-digital converter (hereinafter referred to as “ADC”) 10. There is. The transmission light monitor unit 6 receives the transmission light emitted into the water from the optical transmission unit 1 as monitor light.
The optical antenna 7 is realized by, for example, an optical telescope including a lens. The optical antenna 7 receives the transmitted light emitted into the water from the optical transmitter 1 as monitor light, and outputs the received monitor light to the photodetector 8 via the optical fiber.
 光検出器8は、光ファイバを介して、光アンテナ7と接続されている。光検出器8は、光アンテナ7から出力されたモニタ光を電流信号に変換し、電流信号をIV変換器9に出力する。
 IV変換器9は、光検出器8から出力された電流信号を電圧信号に変換し、電圧信号をADC10に出力する。
 ADC10は、IV変換器9から出力された電圧信号をアナログ信号からディジタル信号に変換し、ディジタル信号を減衰率算出部11に出力する。
The photodetector 8 is connected to the optical antenna 7 via an optical fiber. The photodetector 8 converts the monitor light output from the optical antenna 7 into a current signal, and outputs the current signal to the IV converter 9.
The IV converter 9 converts the current signal output from the photodetector 8 into a voltage signal, and outputs the voltage signal to the ADC 10.
The ADC 10 converts the voltage signal output from the IV converter 9 from an analog signal into a digital signal, and outputs the digital signal to the attenuation rate calculation unit 11.
 減衰率算出部11は、例えば、減衰率算出回路31によって実現される。減衰率算出部11は、光送信部1から水中に出射される送信光の光量に対する送信光モニタ部6により受信されたモニタ光の光量の減衰率を算出する。減衰率算出部11は、算出した減衰率を特性制御処理部20及び移動体制御部21のそれぞれに出力する。
 送信光モニタ部6により受信されたモニタ光の光量は、ADC10から出力されたディジタル信号と正比例している。
 図1に示す光通信装置では、光送信部1から水中に出射される送信光の光量が、既値として、減衰率算出部11の内部メモリに格納されているものとする。しかし、これは一例に過ぎず、光アンテナ5から出射される送信光の光量の計測値が、外部から減衰率算出部11に与えられるものであってもよい。
The attenuation rate calculation unit 11 is realized by, for example, the attenuation rate calculation circuit 31. The attenuation rate calculation unit 11 calculates the attenuation rate of the light amount of the monitor light received by the transmission light monitor unit 6 with respect to the light amount of the transmission light emitted from the optical transmission unit 1 into the water. The attenuation rate calculation unit 11 outputs the calculated attenuation rate to each of the characteristic control processing unit 20 and the moving body control unit 21.
The amount of monitor light received by the transmitted light monitor unit 6 is directly proportional to the digital signal output from the ADC 10.
In the optical communication device shown in FIG. 1, it is assumed that the light amount of the transmitted light emitted from the optical transmitter 1 into the water is stored in the internal memory of the attenuation rate calculator 11 as an existing value. However, this is only an example, and the measured value of the light amount of the transmission light emitted from the optical antenna 5 may be given to the attenuation rate calculation unit 11 from the outside.
 光信号受信部12は、光アンテナ13、光検出器14、IV変換器15及びADC16を備えている。
 光信号受信部12は、通信相手の光通信装置から通信データを含む光信号が水中に出射されると、水中に出射された光信号を受信光として受信する。
 光アンテナ13は、例えば、レンズを備える光望遠鏡によって実現される。光アンテナ13は、通信相手の光通信装置から水中に出射された光信号を受信光として受信し、受信した受信光を、光ファイバを介して、光検出器14に出力する。
The optical signal receiver 12 includes an optical antenna 13, a photodetector 14, an IV converter 15, and an ADC 16.
When an optical signal including communication data is emitted into water from an optical communication device of a communication partner, the optical signal receiving unit 12 receives the optical signal emitted into water as received light.
The optical antenna 13 is realized by, for example, an optical telescope including a lens. The optical antenna 13 receives an optical signal emitted into the water from the optical communication device of the communication partner as received light, and outputs the received received light to the photodetector 14 via the optical fiber.
 光検出器14は、光ファイバを介して、光アンテナ13と接続されている。光検出器14は、光アンテナ13から出力された受信光を電流信号に変換し、電流信号をIV変換器15に出力する。
 IV変換器15は、光検出器14から出力された電流信号を電圧信号に変換し、電圧信号をADC16に出力する。
 ADC16は、IV変換器15から出力された電圧信号をアナログ信号からディジタル信号に変換し、ディジタル信号を復調部17に出力する。
The photodetector 14 is connected to the optical antenna 13 via an optical fiber. The photodetector 14 converts the received light output from the optical antenna 13 into a current signal, and outputs the current signal to the IV converter 15.
The IV converter 15 converts the current signal output from the photodetector 14 into a voltage signal, and outputs the voltage signal to the ADC 16.
The ADC 16 converts the voltage signal output from the IV converter 15 from an analog signal into a digital signal, and outputs the digital signal to the demodulation unit 17.
 復調部17は、例えば、復調回路32によって実現される。復調部17は、光信号受信部12により受信された光信号に含まれている通信データを復調する。 The demodulation unit 17 is realized by, for example, the demodulation circuit 32. The demodulation unit 17 demodulates the communication data included in the optical signal received by the optical signal reception unit 12.
 特性制御部18は、テーブル部19及び特性制御処理部20を備えている。
 特性制御部18は、減衰率算出部11により算出された減衰率から、光信号受信部12が、通信相手の光通信装置から水中に出射された光信号を受信光として受信した際の受信光の信号対雑音比(SNR:Signal-to-Noise Ratio)を推定する。
 特性制御部18は、SNRに基づいて、SNRの増減に影響する送信光の特性を制御する。
 テーブル部19は、例えば、記憶回路33によって実現される。テーブル部19は、送信光の帯域と、減衰率と、通信距離と、光信号受信部12により受信される受信光のSNRとの対応関係を記憶している。
The characteristic control unit 18 includes a table unit 19 and a characteristic control processing unit 20.
The characteristic control unit 18 receives the received light when the optical signal receiving unit 12 receives the optical signal emitted into the water from the optical communication device of the communication partner as the received light based on the attenuation rate calculated by the attenuation rate calculating unit 11. The signal-to-noise ratio (SNR: Signal-to-Noise Ratio) is estimated.
The characteristic control unit 18 controls, based on the SNR, the characteristic of the transmission light that affects the increase/decrease of the SNR.
The table unit 19 is realized by the storage circuit 33, for example. The table unit 19 stores the correspondence relationship among the band of the transmitted light, the attenuation rate, the communication distance, and the SNR of the received light received by the optical signal receiving unit 12.
 特性制御処理部20は、例えば、特性制御処理回路34によって実現される。特性制御処理部20は、テーブル部19により記憶されている対応関係を参照して、減衰率算出部11により算出された減衰率、送信光の帯域及び通信距離の要求値から、受信光のSNRを推定する。通信距離の要求値は、ユーザが要求している通信距離であり、当該通信距離は、自らの光通信装置と通信相手の光通信装置との間の通信距離である。通信距離の要求値は、外部から特性制御処理部20に与えられるものであってもよいし、特性制御処理部20の内部メモリに格納されているものであってもよい。
 特性制御処理部20は、推定した受信光のSNRと、SNRの閾値とを比較する。SNRの閾値は、外部から特性制御処理部20に与えられるものであってもよいし、特性制御処理部20の内部メモリに格納されているものであってもよい。
 特性制御処理部20は、推定した受信光のSNRが閾値よりも小さければ、受信光のSNRが大きくなるように、変調速度を下げる旨を示す制御信号を変調器4に出力する。
 あるいは、特性制御処理部20は、推定した受信光のSNRが閾値よりも小さければ、受信光のSNRが大きくなるように、送信光のビーム拡がり角を狭くする旨を示す制御信号を光アンテナ5に出力する。
 あるいは、特性制御処理部20は、推定した受信光のSNRが閾値よりも小さければ、変調信号における誤り訂正符号の割合を増やす旨を示す制御信号を変調信号生成部3に出力する。
The characteristic control processing unit 20 is realized by, for example, the characteristic control processing circuit 34. The characteristic control processing unit 20 refers to the correspondence relationship stored in the table unit 19 and determines the SNR of the reception light from the attenuation rate calculated by the attenuation rate calculation unit 11, the band of the transmission light, and the required value of the communication distance. To estimate. The required value of the communication distance is the communication distance requested by the user, and the communication distance is the communication distance between the own optical communication device and the optical communication device of the communication partner. The required value of the communication distance may be externally provided to the characteristic control processing unit 20 or may be stored in the internal memory of the characteristic control processing unit 20.
The characteristic control processing unit 20 compares the estimated SNR of the received light with the SNR threshold value. The SNR threshold value may be given to the characteristic control processing unit 20 from the outside, or may be stored in the internal memory of the characteristic control processing unit 20.
If the estimated SNR of the received light is smaller than the threshold value, the characteristic control processing unit 20 outputs a control signal to the modulator 4 to decrease the modulation speed so that the SNR of the received light becomes large.
Alternatively, if the estimated SNR of the received light is smaller than the threshold, the characteristic control processing unit 20 sends a control signal indicating that the beam divergence angle of the transmitted light is narrowed so that the SNR of the received light becomes large. Output to.
Alternatively, if the estimated SNR of the received light is smaller than the threshold value, the characteristic control processing unit 20 outputs to the modulation signal generation unit 3 a control signal indicating that the ratio of error correction codes in the modulation signal should be increased.
 移動体制御部21は、例えば、移動体制御回路35によって実現される。移動体制御部21は、減衰率算出部11により算出された減衰率に基づいて、自らの光通信装置と通信相手の光通信装置との間で通信が可能な距離を求める。移動体制御部21は、通信が可能な距離が、通信距離の要求値よりも短ければ、自らの光通信装置を搭載している図示せぬ移動体を制御して、自らの光通信装置を通信相手の光通信装置に近づけるようにする。通信距離の要求値は、外部から特性制御処理部20に与えられるものであってもよいし、移動体制御部21の内部メモリに格納されているものであってもよい。
 移動体は、光通信装置を搭載した状態で、水中を移動できるものであればよく、潜水艦又は水中ドローンなどが該当する。
The moving body control unit 21 is realized by, for example, the moving body control circuit 35. The moving body control unit 21 obtains a communicable distance between its own optical communication device and the optical communication device of the communication partner based on the attenuation rate calculated by the attenuation rate calculation unit 11. If the communicable distance is shorter than the required value of the communication distance, the mobile body control unit 21 controls the mobile body (not shown) equipped with its own optical communication device to operate its own optical communication device. Bring it closer to the optical communication device of the other party. The required value of the communication distance may be given to the characteristic control processing unit 20 from the outside, or may be stored in the internal memory of the mobile unit control unit 21.
The moving body may be any one that can move in water with the optical communication device mounted, and corresponds to a submarine or an underwater drone.
 図1では、光通信装置の一部の構成要素である減衰率算出部11、復調部17、テーブル部19、特性制御処理部20及び移動体制御部21のそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、光通信装置の一部が、減衰率算出回路31、復調回路32、記憶回路33、特性制御処理回路34及び移動体制御回路35によって実現されるものを想定している。 In FIG. 1, each of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, and the moving body control unit 21, which are some of the constituent elements of the optical communication device, are as shown in FIG. It is supposed to be realized by dedicated hardware. That is, it is assumed that a part of the optical communication device is realized by the attenuation rate calculation circuit 31, the demodulation circuit 32, the storage circuit 33, the characteristic control processing circuit 34, and the moving body control circuit 35.
 ここで、記憶回路33は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいは、DVD(Digital Versatile Disc)が該当する。
 また、減衰率算出回路31、復調回路32、特性制御処理回路34及び移動体制御回路35のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
Here, the memory circuit 33 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), or an EEPROM (Electrically Reversible Memory). It corresponds to a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
Further, each of the attenuation rate calculation circuit 31, the demodulation circuit 32, the characteristic control processing circuit 34, and the moving body control circuit 35 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application). A specific integrated circuit (FPC), a field-programmable gate array (FPGA), or a combination thereof is applicable.
 光通信装置の一部の構成要素は、専用のハードウェアによって実現されるものに限るものではない。例えば、減衰率算出部11、復調部17、テーブル部19、特性制御処理部20又は移動体制御部21のいずれか1つ以上が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
Some components of the optical communication device are not limited to those realized by dedicated hardware. For example, at least one of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, and the mobile unit control unit 21 is realized by software, firmware, or a combination of software and firmware. It may be one.
Software or firmware is stored in the memory of the computer as a program. The computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). To do.
 図3は、光通信装置の一部がソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 光通信装置の一部がソフトウェア又はファームウェア等によって実現される場合、テーブル部19がコンピュータのメモリ41上に構成される。減衰率算出部11、復調部17、特性制御処理部20及び移動体制御部21の処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
 図4は、光通信装置の処理手順である光通信方法を示すフローチャートである。
FIG. 3 is a hardware configuration diagram of a computer when a part of the optical communication device is realized by software or firmware.
When a part of the optical communication device is realized by software, firmware or the like, the table unit 19 is configured on the memory 41 of the computer. A program for causing a computer to execute the processing procedures of the attenuation rate calculation unit 11, the demodulation unit 17, the characteristic control processing unit 20, and the moving body control unit 21 is stored in the memory 41. Then, the processor 42 of the computer executes the program stored in the memory 41.
FIG. 4 is a flowchart showing an optical communication method which is a processing procedure of the optical communication device.
 また、図2では、光通信装置の一部の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、光通信装置の一部がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、光通信装置における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 2 shows an example in which some of the constituent elements of the optical communication device are realized by dedicated hardware, and in FIG. 3, an example in which a part of the optical communication device is realized by software or firmware. Is shown. However, this is merely an example, and some of the constituent elements of the optical communication device may be realized by dedicated hardware and the remaining constituent elements may be realized by software or firmware.
 次に、図1に示す光通信装置の動作について説明する。
 光信号受信部12により受信される受信光のSNRの増減に影響する送信光の特性に関する項目として、変調器4により生成される変調光の変調速度V、光アンテナ5から出力される送信光のビーム拡がり角θ、及び、変調信号生成部3により生成される変調信号が含む誤り訂正符号などが考えられる。
 図1に示す光通信装置では、特性制御部18が、送信光の特性として、変調光の変調速度V、送信光のビーム拡がり角θ及び誤り訂正符号のうち、少なくとも1つ以上を制御する。
 ここでは、説明の便宜上、通信が可能な距離Lが、通信距離Lの要求値以上であるものとする。通信が可能な距離Lは、SNRが0[dB]以上となる、自らの光通信装置と通信相手の光通信装置との間の距離の中で、最長の距離である。通信が可能な距離Lが、通信距離Lの要求値以上であっても、所望のSNRが得られるとは限らないため、特性制御部18が、送信光の特性を制御する。
Next, the operation of the optical communication device shown in FIG. 1 will be described.
The items relating to the characteristics of the transmitted light that affect the increase/decrease in the SNR of the received light received by the optical signal receiving unit 12 include the modulation speed V of the modulated light generated by the modulator 4 and the transmitted light output from the optical antenna 5. The beam divergence angle θ and the error correction code included in the modulation signal generated by the modulation signal generation unit 3 are considered.
In the optical communication device shown in FIG. 1, the characteristic control unit 18 controls at least one of the modulation speed V of the modulated light, the beam divergence angle θ of the transmitted light, and the error correction code as the characteristics of the transmitted light.
Here, for convenience of description, it is assumed that the communicable distance L p is equal to or larger than the required value of the communication distance L. The communicable distance L p is the longest distance between the own optical communication device and the optical communication device of the communication partner, which has an SNR of 0 [dB] or more. Even if the communicable distance L p is equal to or larger than the required value of the communication distance L, the desired SNR is not always obtained, so the characteristic control unit 18 controls the characteristic of the transmitted light.
 基準光源2は、CW光を、光ファイバを介して、変調器4に出力する。
 変調信号生成部3は、通信対象の通信データと、誤り訂正符号とを含む変調信号を生成し、生成した変調信号を変調器4に出力する。
The reference light source 2 outputs the CW light to the modulator 4 via an optical fiber.
The modulation signal generation unit 3 generates a modulation signal including communication data to be communicated and an error correction code, and outputs the generated modulation signal to the modulator 4.
 変調器4は、変調信号生成部3から出力された変調信号に従って、基準光源2から出力されたCW光の位相を変調することで、変調光を生成する。変調器4は、生成した変調光を、光ファイバを介して、光アンテナ5に出力する。
 光アンテナ5は、変調器4から変調光を受けると、変調光を送信光として水中に出射する。
The modulator 4 modulates the phase of the CW light output from the reference light source 2 in accordance with the modulation signal output from the modulation signal generation unit 3 to generate modulated light. The modulator 4 outputs the generated modulated light to the optical antenna 5 via the optical fiber.
Upon receiving the modulated light from the modulator 4, the optical antenna 5 emits the modulated light as transmission light into the water.
 光アンテナ7は、光送信部1から水中に出射された送信光をモニタ光として受信する(図4のステップST1)。光アンテナ7は、受信したモニタ光を、光ファイバを介して、光検出器8に出力する。
 光検出器8は、光アンテナ7から出力されたモニタ光を電流信号に変換し、電流信号をIV変換器9に出力する。
 IV変換器9は、光検出器8から出力された電流信号を電圧信号に変換し、電圧信号をADC10に出力する。
 ADC10は、IV変換器9から出力された電圧信号をアナログ信号からディジタル信号Dに変換し、ディジタル信号Dを減衰率算出部11に出力する。
The optical antenna 7 receives the transmitted light emitted into the water from the optical transmitter 1 as monitor light (step ST1 in FIG. 4). The optical antenna 7 outputs the received monitor light to the photodetector 8 via the optical fiber.
The photodetector 8 converts the monitor light output from the optical antenna 7 into a current signal, and outputs the current signal to the IV converter 9.
The IV converter 9 converts the current signal output from the photodetector 8 into a voltage signal, and outputs the voltage signal to the ADC 10.
The ADC 10 converts the voltage signal output from the IV converter 9 from an analog signal into a digital signal D, and outputs the digital signal D to the attenuation rate calculation unit 11.
 減衰率算出部11は、ADC10からディジタル信号Dを受けると、以下の式(1)に示すように、ディジタル信号Dから送信光モニタ部6により受信されたモニタ光の光量P を算出する。
=c×D     (1)
 式(1)において、cは、比例定数である。
 減衰率算出部11は、モニタ光の光量P を算出すると、以下の式(2)に示すように、光アンテナ5から水中に出射される送信光の光量P に対するモニタ光の光量P の減衰率Atを算出する(図4のステップST2)。
Figure JPOXMLDOC01-appb-I000001
When the attenuation rate calculator 11 receives the digital signal D from the ADC 10, the attenuation rate calculator 11 calculates the light quantity P r 0 of the monitor light received by the transmission light monitor 6 from the digital signal D as shown in the following equation (1). ..
P r 0 =c 1 ×D (1)
In Expression (1), c 1 is a proportional constant.
Attenuation rate calculating unit 11, calculating the amount P r 0 of the monitor light, the following equation as shown in (2), the amount of light from the optical antenna 5 of the monitor light to the light quantity P t 0 of the transmitted light emitted in water The attenuation rate At of P r 0 is calculated (step ST2 in FIG. 4).
Figure JPOXMLDOC01-appb-I000001
 ここでは、減衰率算出部11が、式(2)に従って減衰率Atを算出している。しかし、これは一例に過ぎず、減衰率算出部11が、減衰率Atとして、例えば、以下の式(3)に示すように、1[m]の距離当りの光量P の減衰量を算出するようにしてもよい。
Figure JPOXMLDOC01-appb-I000002
 式(3)において、Lは、通信距離の要求値である。通信距離Lの要求値は、外部から減衰率算出部11に与えられるものであってもよいし、減衰率算出部11の内部メモリに格納されているものであってもよい。図1に示す光通信装置では、通信距離Lの要求値が、外部から減衰率算出部11に与えられる旨の記載を省略している。
Here, the attenuation rate calculation unit 11 calculates the attenuation rate At according to the equation (2). However, this is merely an example, and the attenuation rate calculation unit 11 calculates the attenuation rate At as the attenuation rate At, for example, as shown in the following expression (3), the attenuation amount of the light amount P r 0 per 1 [m] distance. It may be calculated.
Figure JPOXMLDOC01-appb-I000002
In Expression (3), L is a required value of communication distance. The required value of the communication distance L may be given to the attenuation rate calculation unit 11 from the outside, or may be stored in the internal memory of the attenuation rate calculation unit 11. In the optical communication device shown in FIG. 1, description that the required value of the communication distance L is externally given to the attenuation rate calculation unit 11 is omitted.
 減衰率算出部11は、算出した減衰率Atを特性制御処理部20及び移動体制御部21のそれぞれに出力する。
 自らの光通信装置と通信相手の光通信装置との間の距離が一定であるとすれば、減衰率Atは、図5に示すように、水中の濁度と正比例する。濁度は、水の濁りを表す指標である。したがって、減衰率Atは、水の濁りが大きい程、大きくなり、モニタ光の光量P が増大する。
 図5は、水中の濁度と減衰率Atとの関係を示す説明図である。
The damping rate calculation unit 11 outputs the calculated damping rate At to each of the characteristic control processing unit 20 and the moving body control unit 21.
Assuming that the distance between the own optical communication device and the optical communication device of the communication partner is constant, the attenuation rate At is directly proportional to the turbidity in water as shown in FIG. Turbidity is an index showing the turbidity of water. Therefore, the attenuation rate At increases as the turbidity of water increases, and the light amount P r 0 of the monitor light increases.
FIG. 5 is an explanatory diagram showing the relationship between the turbidity in water and the attenuation rate At.
 テーブル部19は、図6に示すように、送信光の帯域Bと、減衰率Atと、通信距離Lと、受信光のSNRとの対応関係を記憶している。
 図6は、送信光の帯域Bと、減衰率Atと、通信距離Lと、光信号受信部12により受信される受信光のSNRとの対応関係を示す説明図である。
 ただし、図6では、減衰率Atとして、1[m]の距離当りの光量P の減衰量が記述されている。
As shown in FIG. 6, the table unit 19 stores the correspondence relationship among the band B of the transmitted light, the attenuation rate At, the communication distance L, and the SNR of the received light.
FIG. 6 is an explanatory diagram showing a correspondence relationship between the band B of the transmitted light, the attenuation rate At, the communication distance L, and the SNR of the received light received by the optical signal receiving unit 12.
However, in FIG. 6, as the attenuation rate At, the attenuation amount of the light amount P r 0 per distance of 1 [m] is described.
 特性制御処理部20は、減衰率算出部11から減衰率Atを受けると、テーブル部19により記憶されている図6に示す対応関係を参照して、減衰率算出部11により算出された減衰率At、送信光の帯域B及び通信距離Lの要求値から、光信号受信部12により受信される受信光のSNRを推定する(図4のステップST3)。
 特性制御処理部20は、例えば、送信光の帯域Bが500[MHz]、1[m]の距離当りの光量P の減衰量が5[dB/m]及び通信距離Lの要求値が15[m]であれば、受信光のSNRが10[dB]であると推定する。
 特性制御処理部20は、例えば、送信光の帯域Bが50[MHz]、1[m]の距離当りの光量P の減衰量が2[dB/m]及び通信距離Lの要求値が30[m]であれば、受信光のSNRが44[dB]であると推定する。
When the characteristic control processing unit 20 receives the attenuation rate At from the attenuation rate calculating unit 11, the characteristic control processing unit 20 refers to the correspondence relationship shown in FIG. 6 stored in the table unit 19 and calculates the attenuation rate calculated by the attenuation rate calculating unit 11. The SNR of the received light received by the optical signal receiving unit 12 is estimated from At, the required bandwidth B of the transmitted light, and the required value of the communication distance L (step ST3 in FIG. 4).
The characteristic control processing unit 20 determines, for example, that the band B of the transmitted light is 500 [MHz], the attenuation amount of the light amount P r 0 per distance of 1 [m] is 5 [dB/m], and the required value of the communication distance L is If it is 15 [m], it is estimated that the SNR of the received light is 10 [dB].
The characteristic control processing unit 20 determines, for example, that the attenuation B of the light amount P r 0 per distance of 1 [m] is 50 [MHz] and the required value of the communication distance L is 50 [MHz]. If it is 30 [m], it is estimated that the SNR of the received light is 44 [dB].
 特性制御処理部20は、推定した受信光のSNRと、SNRの閾値ThSNRとを比較する(図4のステップST4)。SNRの閾値ThSNRは、0[dB]よりも大きな値である。
 特性制御処理部20は、推定した受信光のSNRが閾値ThSNRよりも小さければ(図4のステップST4:YESの場合)、受信光のSNRが大きくなるように、変調速度Vを下げる旨を示す制御信号cntを変調器4に出力する(図4のステップST5)。
 特性制御処理部20は、推定した受信光のSNRが閾値ThSNR以上であれば(図4のステップST4:NOの場合)、変調速度Vを下げる旨を示す制御信号cntを変調器4に出力しない。
The characteristic control processing unit 20 compares the estimated SNR of the received light with the SNR threshold Th SNR (step ST4 in FIG. 4). The threshold Th SNR of SNR is a value larger than 0 [dB].
If the estimated SNR of the received light is smaller than the threshold Th SNR (step ST4: YES in FIG. 4), the characteristic control processing unit 20 lowers the modulation speed V so that the SNR of the received light becomes large. The control signal cnt 1 shown is output to the modulator 4 (step ST5 in FIG. 4).
If the estimated SNR of the received light is equal to or greater than the threshold Th SNR (step ST4: NO in FIG. 4), the characteristic control processing unit 20 sends the control signal cnt 1 indicating that the modulation speed V is reduced to the modulator 4. Do not output.
 変調器4は、上述したように、変調信号生成部3から出力された変調信号に従って、基準光源2から出力されたCW光の位相を変調することで、変調光を生成する。
 変調器4は、変調光を生成する際、特性制御処理部20から変調速度Vを下げる旨を示す制御信号cntを受けていれば(図4のステップST6:YESの場合)、前回生成した変調光よりも、変調速度Vが低い変調光を生成する(図4のステップST7)。
 変調器4は、特性制御処理部20から変調速度Vを下げる旨を示す制御信号cntを受けていなければ(図4のステップST6:NOの場合)、前回生成した変調光と変調速度Vが同じ変調光を生成する(図4のステップST8)。
As described above, the modulator 4 generates the modulated light by modulating the phase of the CW light output from the reference light source 2 according to the modulation signal output from the modulation signal generation unit 3.
When the modulator 4 receives the control signal cnt 1 indicating that the modulation speed V should be decreased from the characteristic control processing unit 20 when generating the modulated light (step ST6 of FIG. 4: YES), the modulator 4 generated the light previously. Modulated light having a modulation speed V lower than that of the modulated light is generated (step ST7 in FIG. 4).
If the modulator 4 does not receive the control signal cnt 1 indicating that the modulation speed V should be reduced from the characteristic control processing unit 20 (step ST6 in FIG. 4, NO), the previously generated modulated light and the modulation speed V are The same modulated light is generated (step ST8 in FIG. 4).
 変調器4は、生成した変調光を、光ファイバを介して、光アンテナ5に出力する。
 光アンテナ5は、変調器4から変調光を受けると、変調光を送信光として水中に出射する(図4のステップST9)。
The modulator 4 outputs the generated modulated light to the optical antenna 5 via the optical fiber.
Upon receiving the modulated light from the modulator 4, the optical antenna 5 emits the modulated light as transmission light into the water (step ST9 in FIG. 4).
 図4に示すフローチャートでは、特性制御処理部20が、SNRの増減に影響する送信光の特性として、変調光の変調速度Vを制御している。特性制御処理部20は、SNRの増減に影響する送信光の特性として、送信光のビーム拡がり角θを制御するようにしてもよい。
 特性制御処理部20は、送信光のビーム拡がり角θを制御する場合、推定した受信光のSNRが閾値ThSNRよりも小さければ、受信光のSNRが大きくなるように、送信光のビーム拡がり角θを狭くする旨を示す制御信号cntを光アンテナ5に出力する。
 特性制御処理部20は、推定した受信光のSNRが閾値ThSNR以上であれば、送信光のビーム拡がり角θを狭くする旨を示す制御信号cntを光アンテナ5に出力しない。
In the flowchart shown in FIG. 4, the characteristic control processing unit 20 controls the modulation speed V of the modulated light as the characteristic of the transmitted light that affects the increase/decrease in SNR. The characteristic control processing unit 20 may control the beam divergence angle θ of the transmitted light as the characteristic of the transmitted light that affects the increase/decrease in SNR.
When controlling the beam divergence angle θ of the transmitted light, the characteristic control processing unit 20 increases the beam divergence angle of the transmitted light so that the SNR of the received light becomes large if the estimated SNR of the received light is smaller than the threshold Th SNR. A control signal cnt 2 indicating that θ is narrowed is output to the optical antenna 5.
If the estimated SNR of the received light is equal to or more than the threshold Th SNR , the characteristic control processing unit 20 does not output the control signal cnt 2 indicating that the beam divergence angle θ of the transmitted light is narrowed to the optical antenna 5.
 光アンテナ5は、特性制御処理部20から送信光のビーム拡がり角θを狭くする旨を示す制御信号cntを受けていれば、前回出射した送信光よりも、ビーム拡がり角θが狭い送信光を水中に出射する。
 光アンテナ5は、特性制御処理部20から送信光のビーム拡がり角θを狭くする旨を示す制御信号cntを受けていなければ、前回出射した送信光とビーム拡がり角θが同じ送信光を水中に出射する。
 なお、光アンテナ5は、送信光を出射する光ファイバと、光ファイバから出射された送信光のビーム拡がり角θを調整するためのレンズとを備えており、送信光の出力端とレンズとの間の距離を変えることで、送信光のビーム拡がり角θを調整することができる。
If the optical antenna 5 receives a control signal cnt 2 indicating that the beam divergence angle θ of the transmitted light is narrowed from the characteristic control processing unit 20, the transmitted light whose beam divergence angle θ is narrower than that of the previously emitted transmitted light. Is emitted into the water.
If the optical antenna 5 does not receive the control signal cnt 2 indicating that the beam divergence angle θ of the transmitted light is narrowed from the characteristic control processing unit 20, the transmitted light having the same beam divergent angle θ as the previously emitted transmitted light is transmitted to the underwater. Emit to.
The optical antenna 5 includes an optical fiber that emits the transmitted light and a lens that adjusts the beam divergence angle θ of the transmitted light that is emitted from the optical fiber. The beam divergence angle θ of the transmitted light can be adjusted by changing the distance between them.
 図4に示すフローチャートでは、特性制御処理部20が、SNRの増減に影響する送信光の特性として、変調光の変調速度Vを制御している。特性制御処理部20は、SNRの増減に影響する送信光の特性として、変調信号に含める誤り訂正符号を制御するようにしてもよい。
 特性制御処理部20は、変調信号に含める誤り訂正符号を制御する場合、推定した受信光のSNRが閾値ThSNRよりも小さければ、例えば、変調信号における誤り訂正符号の割合を増やす旨を示す制御信号cntを変調信号生成部3に出力する。
 特性制御処理部20は、推定した受信光のSNRが閾値ThSNR以上であれば、変調信号における誤り訂正符号の割合を増やす旨を示す制御信号cntを変調信号生成部3に出力しない。
In the flowchart shown in FIG. 4, the characteristic control processing unit 20 controls the modulation speed V of the modulated light as the characteristic of the transmitted light that affects the increase/decrease in SNR. The characteristic control processing unit 20 may control the error correction code included in the modulated signal as the characteristic of the transmission light that affects the increase/decrease in SNR.
When controlling the error correction code included in the modulated signal, the characteristic control processing unit 20 indicates, for example, that the ratio of the error correction code in the modulated signal is increased if the estimated SNR of the received light is smaller than the threshold Th SNR. The signal cnt 3 is output to the modulation signal generation unit 3.
If the estimated SNR of the received light is equal to or higher than the threshold Th SNR , the characteristic control processing unit 20 does not output the control signal cnt 3 indicating that the ratio of the error correction code in the modulated signal is increased to the modulated signal generation unit 3.
 変調信号生成部3は、上述したように、通信対象の通信データと、誤り訂正符号とを含む変調信号を生成し、生成した変調信号を変調器4に出力する。
 変調信号生成部3は、変調信号を生成する際、特性制御処理部20から変調信号における誤り訂正符号の割合を増やす旨を示す制御信号cntを受けていれば、前回生成した変調信号が含んでいる誤り訂正符号よりも、多くの誤り訂正符号を含む変調信号を生成する。変調信号生成部3が、例えば、誤り訂正符号としてパリティビットを用いる場合、パリティビットのビット数を増やすことで、変調信号における誤り訂正符号の割合を増やすことができる。
 変調信号生成部3は、特性制御処理部20から変調信号における誤り訂正符号の割合を増やす旨を示す制御信号cntを受けていなければ、前回生成した変調信号が含んでいる誤り訂正符号と同じ数の誤り訂正符号を含む変調信号を生成する。
As described above, the modulation signal generation unit 3 generates the modulation signal including the communication data to be communicated and the error correction code, and outputs the generated modulation signal to the modulator 4.
When the modulation signal generation unit 3 receives the control signal cnt 3 indicating that the ratio of the error correction code in the modulation signal is increased from the characteristic control processing unit 20 when generating the modulation signal, the modulation signal generation unit 3 includes the previously generated modulation signal. A modulated signal containing a larger number of error correction codes than the error correction code is generated. When the modulation signal generation unit 3 uses a parity bit as the error correction code, for example, the ratio of the error correction code in the modulation signal can be increased by increasing the number of parity bits.
If the modulation signal generation unit 3 does not receive the control signal cnt 3 indicating that the ratio of the error correction code in the modulation signal is increased from the characteristic control processing unit 20, it is the same as the error correction code included in the modulation signal generated last time. Generate a modulated signal containing a number of error correction codes.
 ここでは、推定した受信光のSNRが閾値ThSNRよりも小さければ、特性制御処理部20が、変調信号における誤り訂正符号の割合を増やす旨を示す制御信号cntを変調信号生成部3に出力している。しかし、これは一例に過ぎず、特性制御処理部20が、前回よりも誤り訂正能力が高い誤り訂正符号を変調信号に含める旨を示す制御信号cntを変調信号生成部3に出力するようにしてもよい。
 変調信号生成部3は、特性制御処理部20から、前回よりも誤り訂正能力が高い誤り訂正符号を変調信号に含める旨を示す制御信号cntを受けていれば、前回生成した変調信号が含んでいる誤り訂正符号よりも、誤り訂正能力が高い誤り訂正符号を含む変調信号を生成する。
Here, if the estimated SNR of the received light is smaller than the threshold Th SNR , the characteristic control processing unit 20 outputs the control signal cnt 3 indicating that the ratio of the error correction code in the modulation signal is increased to the modulation signal generation unit 3. doing. However, this is merely an example, and the characteristic control processing unit 20 outputs to the modulation signal generation unit 3 the control signal cnt 3 indicating that the error correction code having the error correction capability higher than the previous time is included in the modulation signal. May be.
If the modulation signal generation unit 3 receives from the characteristic control processing unit 20 a control signal cnt 3 indicating that an error correction code having an error correction capability higher than that of the previous time is included in the modulation signal, the modulation signal generation unit 3 includes the previously generated modulation signal. A modulated signal including an error correction code having a higher error correction capability than that of the error correction code is generated.
 図1に示す光通信装置では、特性制御処理部20が、SNRの増減に影響する送信光の特性として、変調光の変調速度V、送信光のビーム拡がり角θ、又は、変調信号に含める誤り訂正符号を制御している。
 特性制御処理部20は、変調光の変調速度V、送信光のビーム拡がり角θ及び変調信号に含める誤り訂正符号のうち、いずれか1つ以上を制御することで、SNRの増減を制御することができる。
 変調光の変調速度V、送信光のビーム拡がり角θ及び変調信号に含める誤り訂正符号のうち、いずれを制御するかは、特性制御処理部20に設定されていてもよいし、外部から特性制御処理部20に指示されるようにしてもよい。
In the optical communication device shown in FIG. 1, the characteristic control processing unit 20 determines the modulation speed V of the modulated light, the beam divergence angle θ of the transmitted light, or the error included in the modulated signal as the characteristics of the transmitted light that affects the increase or decrease of the SNR. The correction code is controlled.
The characteristic control processing unit 20 controls the increase or decrease of the SNR by controlling at least one of the modulation speed V of the modulated light, the beam divergence angle θ of the transmitted light, and the error correction code included in the modulated signal. You can
Which of the modulation speed V of the modulated light, the beam divergence angle θ of the transmitted light, and the error correction code to be included in the modulated signal to be controlled may be set in the characteristic control processing unit 20, or may be externally controlled. The processing unit 20 may be instructed.
 なお、受信光のSNRと、変調光の変調速度V及び送信光のビーム拡がり角θとの関係は、以下の通りであり、変調速度V又はビーム拡がり角θが変わると、受信光のSNRが変化することが分かる。
Figure JPOXMLDOC01-appb-I000003
 式(4)~(8)において、c,cは、比例定数、P は、受信光の受信電力、Pshot は、受信光の雑音電力である。
 また、Sdetは、光検出器8の感度、Rは、光検出器8に内蔵されているアンプの抵抗値、eは、電子の電荷量、Areは、光アンテナ7が備えるレンズの表面積である。
 なお、光検出器8は、アンプを内蔵しており、例えば、アンプが、光アンテナ7から出力されたモニタ光を増幅し、増幅後のモニタ光を電流信号に変換する。
The relationship between the SNR of the received light and the modulation speed V of the modulated light and the beam divergence angle θ of the transmitted light is as follows. When the modulation speed V or the beam divergence angle θ changes, the SNR of the received light changes. You can see that it changes.
Figure JPOXMLDOC01-appb-I000003
In equations (4) to (8), c 3 and c 4 are proportional constants, P r E is the received power of the received light, and P shot E is the noise power of the received light.
Further, S det is the sensitivity of the photodetector 8, R L is the resistance value of the amplifier incorporated in the photodetector 8, e is the charge amount of electrons, and Are is the surface area of the lens included in the optical antenna 7. Is.
The photodetector 8 has a built-in amplifier. For example, the amplifier amplifies the monitor light output from the optical antenna 7 and converts the amplified monitor light into a current signal.
 ここまでの説明では、通信が可能な距離Lが、通信距離Lの要求値以上であるものとしている。
 しかし、実際には、通信が可能な距離Lが、通信距離Lの要求値よりも短いことがある。通信が可能な距離Lが、通信距離Lの要求値よりも短い場合、自らの光通信装置と通信相手の光通信装置とが、光信号の通信を実施することができない。
 移動体制御部21は、通信が可能な距離Lが、通信距離Lの要求値よりも短い場合、光信号の通信を実施できるようにするために、自らの光通信装置を搭載している図示せぬ移動体を制御して、自らの光通信装置を通信相手の光通信装置に近づけるようにする。
In the description so far, it is assumed that the communicable distance L p is equal to or larger than the required value of the communication distance L.
However, in practice, the communication distance L p may be shorter than the required value of the communication distance L. When the communicable distance L p is shorter than the required value of the communication distance L, the optical communication device of its own and the optical communication device of the communication partner cannot perform optical signal communication.
The mobile unit control unit 21 is equipped with its own optical communication device in order to enable optical signal communication when the communicable distance L p is shorter than the required value of the communication distance L. A mobile unit (not shown) is controlled to bring its own optical communication device closer to the communication partner optical communication device.
 図7は、移動体制御部21の処理手順を示すフローチャートである。
 以下、図7を参照しながら、移動体制御部21の動作について説明する。
 移動体制御部21は、減衰率算出部11から減衰率Atを受けると、減衰率Atに基づいて、自らの光通信装置と通信相手の光通信装置との間で通信が可能な距離Lを求める(図7のステップST21)。
 移動体制御部21は、例えば、図6に示す対応関係を参照することで、自らの光通信装置と通信相手の光通信装置との間で通信が可能な距離Lを求めることができる。
FIG. 7 is a flowchart showing a processing procedure of the mobile unit control unit 21.
Hereinafter, the operation of the mobile control unit 21 will be described with reference to FIG. 7.
Upon receiving the attenuation rate At from the attenuation rate calculation section 11, the mobile unit control section 21 communicates the distance L p between its own optical communication apparatus and the optical communication apparatus of the communication partner based on the attenuation rate At. Is calculated (step ST21 in FIG. 7).
The mobile control unit 21 can obtain the distance L p at which the optical communication device of its own and the optical communication device of the communication partner can communicate by referring to the correspondence relationship shown in FIG. 6, for example.
 具体的には、移動体制御部21は、例えば、送信光の帯域Bが500[MHz]であり、1[m]の距離当りの光量P の減衰量が5[dB/m]であれば、通信が可能な距離Lが16[m]であると特定する。
 移動体制御部21は、例えば、送信光の帯域Bが500[MHz]であり、1[m]の距離当りの光量P の減衰量が2[dB/m]であれば、通信が可能な距離Lが40[m]であると特定する。
Specifically, the mobile control unit 21 has, for example, a band B of transmission light of 500 [MHz] and an attenuation amount of the light amount P r 0 per distance of 1 [m] of 5 [dB/m]. If so, the communication-enabled distance L p is specified to be 16 [m].
If the band B of the transmitted light is 500 [MHz] and the attenuation amount of the light amount P r 0 per distance of 1 [m] is 2 [dB/m], the moving body control unit 21 performs communication. The possible distance L p is specified to be 40 [m].
 移動体制御部21は、通信が可能な距離Lと、通信距離Lとを比較する(図7のステップST22)。
 移動体制御部21は、通信が可能な距離Lが、通信距離Lよりも短ければ(図7のステップST22:YESの場合)、自らの光通信装置を搭載している図示せぬ移動体を制御して、自らの光通信装置を通信相手の光通信装置に近づけるようにする(図7のステップST23)。図1に示す光通信装置では、移動体制御部21において、自らの光通信装置から通信相手の光通信装置への方位αは、既値である。
 自らの光通信装置が通信相手の光通信装置に近づくことで、通信が可能な距離Lが、通信距離L以上になれば、自らの光通信装置と通信相手の光通信装置とが、光信号の通信を実施することができる。
 移動体制御部21は、通信が可能な距離Lが、通信距離L以上であれば(図7のステップST22:NOの場合)、自らの光通信装置を搭載している図示せぬ移動体を制御しない。
The mobile control unit 21 compares the communication distance L p with the communication distance L (step ST22 in FIG. 7).
If the communicable distance L p is shorter than the communication distance L (step ST22: YES in FIG. 7), the mobile unit control unit 21 mounts its own optical communication device on a mobile unit (not shown). Is controlled to bring its own optical communication device closer to the optical communication device of the communication partner (step ST23 in FIG. 7). In the optical communication device shown in FIG. 1, the azimuth α from the optical communication device of itself to the optical communication device of the communication partner in the mobile unit control unit 21 is an existing value.
When the optical communication device of its own approaches the optical communication device of the communication partner and the communicable distance L p becomes equal to or more than the communication distance L, the optical communication device of its own and the optical communication device of the communication partner are optically connected. Signal communication may be implemented.
If the communicable distance L p is equal to or longer than the communication distance L (step ST22: NO in FIG. 7), the mobile body control unit 21 mounts its own optical communication device on a mobile body (not shown). Do not control.
 ここでは、移動体制御部21が、自らの光通信装置を通信相手の光通信装置に近づけることで、通信が可能な距離Lを通信距離L以上にして、光信号の通信を実施できるようにしている。しかし、これは一例に過ぎず、移動体制御部21が、例えば、送信光の帯域Bを変えることで、通信が可能な距離Lを通信距離L以上にして、光信号の通信を実施できるようにしてもよい。
 例えば、送信光の帯域Bが500[MHz]であり、1[m]の距離当りの光量P の減衰量が5[dB/m]であるとき、移動体制御部21が、送信光の帯域Bを50[MHz]に変更すると、通信が可能な距離Lが16[m]から17[m]に延びる。
 例えば、送信光の帯域Bが500[MHz]であり、1[m]の距離当りの光量P の減衰量が2[dB/m]であるとき、移動体制御部21が、送信光の帯域Bを50[MHz]に変更すると、通信が可能な距離Lが40[m]から43[m]に延びる。
 通信が可能な距離Lが延びれば、通信が可能な距離Lが通信距離L以上になることがある。
Here, the mobile unit control unit 21 brings its own optical communication device close to the optical communication device of the communication partner so that the communicable distance L p is set to the communication distance L or more and optical signal communication can be performed. I have to. However, this is merely an example, and the mobile unit control unit 21 can perform communication of an optical signal by changing the band B of the transmitted light so that the communicable distance L p becomes equal to or longer than the communication distance L. You may do it.
For example, when the band B of the transmitted light is 500 [MHz] and the attenuation amount of the light amount P r 0 per distance of 1 [m] is 5 [dB/m], the moving body control unit 21 determines that the transmitted light is When the band B of is changed to 50 [MHz], the communicable distance L p is extended from 16 [m] to 17 [m].
For example, when the band B of the transmitted light is 500 [MHz] and the attenuation amount of the light amount P r 0 per distance of 1 [m] is 2 [dB/m], the moving body control unit 21 determines that the transmitted light is When the band B of is changed to 50 [MHz], the communicable distance L p is extended from 40 [m] to 43 [m].
If communication is possible distance L p Nobile, communication coverage distance L p may become more communication distance L.
 通信が可能な距離Lが通信距離L以上になると、送信光モニタ部6、減衰率算出部11、特性制御部18及び光送信部1が、図4のステップST1~ST9に示す処理を繰り返し実施する。 When the communicable distance L p becomes equal to or longer than the communication distance L, the transmission light monitor unit 6, the attenuation rate calculation unit 11, the characteristic control unit 18, and the optical transmission unit 1 repeat the processing shown in steps ST1 to ST9 of FIG. carry out.
 光アンテナ13は、通信が可能な距離Lが通信距離L以上であるとき、通信相手の光通信装置が光信号を水中に出射すると、通信相手の光通信装置から出射された光信号を受信光として受信する。光アンテナ13は、受信した受信光を、光ファイバを介して、光検出器14に出力する。
 光検出器14は、光アンテナ13から受信光を受けると、受信光を電流信号に変換し、電流信号をIV変換器15に出力する。
 IV変換器15は、光検出器14から電流信号を受けると、電流信号を電圧信号に変換し、電圧信号をADC16に出力する。
 特性制御処理部20は、通信相手の光通信装置から放射される光信号の帯域を、通信相手の光通信装置から知らされている場合、光信号の帯域を示す帯域パラメータをIV変換器15に出力する。
 通信相手の光通信装置から放射される光信号の帯域が変化すると、光アンテナ13で受信される受信光のSNRが変化する。IV変換器15は、特性制御処理部20から帯域パラメータを受けていれば、受信光の帯域が変化しても、SNRの変化が小さくなるように、帯域パラメータが示す光信号の帯域に基づいて、電圧信号の大きさを調整する。
The optical antenna 13 receives the optical signal emitted from the optical communication device of the communication partner when the optical communication device of the communication partner emits the optical signal into the water when the communicable distance L p is the communication distance L or more. Receive as light. The optical antenna 13 outputs the received light received to the photodetector 14 via an optical fiber.
Upon receiving the received light from the optical antenna 13, the photodetector 14 converts the received light into a current signal and outputs the current signal to the IV converter 15.
Upon receiving the current signal from the photodetector 14, the IV converter 15 converts the current signal into a voltage signal and outputs the voltage signal to the ADC 16.
When the band of the optical signal radiated from the optical communication device of the communication partner is notified from the optical communication device of the communication partner, the characteristic control processing unit 20 sends the band parameter indicating the band of the optical signal to the IV converter 15. Output.
When the band of the optical signal emitted from the optical communication device of the communication partner changes, the SNR of the received light received by the optical antenna 13 changes. If the IV converter 15 receives the band parameter from the characteristic control processing unit 20, the IV converter 15 is based on the band of the optical signal indicated by the band parameter so that the change of the SNR becomes small even if the band of the received light changes. , Adjust the magnitude of the voltage signal.
 ADC16は、IV変換器15から電圧信号を受けると、電圧信号をアナログ信号からディジタル信号に変換し、ディジタル信号を復調部17に出力する。
 復調部17は、光信号受信部12からディジタル信号を受けると、ディジタル信号から、光アンテナ13により受信された光信号に含まれている通信データを復調する。
Upon receiving the voltage signal from the IV converter 15, the ADC 16 converts the voltage signal from an analog signal into a digital signal and outputs the digital signal to the demodulation unit 17.
Upon receiving the digital signal from the optical signal receiving unit 12, the demodulating unit 17 demodulates the communication data included in the optical signal received by the optical antenna 13 from the digital signal.
 以上の実施の形態1は、特性制御部18が、減衰率算出部11により算出された減衰率から、通信相手の光通信装置から水中に出射された光信号を受信光として受信した際の受信光のSNRを推定し、SNRに基づいて、SNRの増減に影響する送信光の特性を制御するように、図1に示す光通信装置を構成した。したがって、図1に示す光通信装置は、通信相手の光通信装置との間で通信が確立できていない状態でも、通信相手の光通信装置から水中に出射された光信号を受信光として受信した際の受信光のSNRを制御することができる。 In the first embodiment described above, reception when the characteristic control unit 18 receives the optical signal emitted into the water from the optical communication device of the communication partner as the received light based on the attenuation rate calculated by the attenuation rate calculation unit 11 The optical communication device shown in FIG. 1 is configured so as to estimate the SNR of light and control the characteristics of the transmitted light that affects the increase or decrease of the SNR based on the SNR. Therefore, the optical communication device shown in FIG. 1 receives the optical signal emitted into the water from the optical communication device of the communication partner as the received light even when the communication with the optical communication device of the communication partner is not established. The SNR of the received light at that time can be controlled.
 図1に示す光通信装置では、受信光のSNRが閾値ThSNR以上であれば、特性制御処理部20が、変調速度Vを下げる旨を示す制御信号cntを変調器4に出力しないようにしている。あるいは、受信光のSNRが閾値ThSNR以上であれば、特性制御処理部20が、送信光のビーム拡がり角θを狭くする旨を示す制御信号cntを光アンテナ5に出力しないようにしている。あるいは、受信光のSNRが閾値ThSNR以上であれば、特性制御処理部20が、変調信号における誤り訂正符号の割合を増やす旨を示す制御信号cntを変調信号生成部3に出力しないようにしている。
 しかし、これは一例に過ぎず、受信光のSNRが、閾値ThSNRよりも大きいSNRの上限用の閾値ThSNR-up(ThSNR<ThSNR-up)よりも大きければ(SNR>ThSNR-up)、特性制御処理部20が、変調速度Vを上げる旨を示す制御信号cntを変調器4に出力するようにしてもよい。
 変調器4は、特性制御処理部20から変調速度Vを上げる旨を示す制御信号cntを受けていれば、前回生成した変調光よりも、変調速度Vが高い変調光を生成する。
 受信光のSNRが閾値ThSNR以上であり、かつ、受信光のSNRが上限用の閾値ThSNR-up以下であれば(ThSNR≦SNR≦ThSNR-up)、特性制御処理部20は、制御信号cntを変調器4に出力しない。
 なお、SNRの上限用の閾値ThSNR-upは、外部から特性制御処理部20に与えられるものであってもよいし、移動体制御部21の内部メモリに格納されているものであってもよい。
In the optical communication device shown in FIG. 1, when the SNR of the received light is equal to or higher than the threshold Th SNR , the characteristic control processing unit 20 prevents the modulator 4 from outputting the control signal cnt 1 indicating that the modulation speed V is reduced. ing. Alternatively, if the SNR of the received light is equal to or higher than the threshold Th SNR , the characteristic control processing unit 20 does not output the control signal cnt 2 indicating that the beam divergence angle θ of the transmitted light is narrowed to the optical antenna 5. .. Alternatively, when the SNR of the received light is equal to or higher than the threshold Th SNR , the characteristic control processing unit 20 does not output the control signal cnt 3 indicating that the ratio of the error correction code in the modulated signal is increased to the modulated signal generation unit 3. ing.
However, this is only an example, SNR of the received light, the threshold value Th threshold for large SNR limit than SNR Th SNR-up (Th SNR <Th SNR-up) is greater than (SNR> Th SNR- up ), the characteristic control processing unit 20 may output the control signal cnt 1 indicating that the modulation speed V is increased to the modulator 4.
When the modulator 4 receives the control signal cnt 1 indicating that the modulation speed V is increased from the characteristic control processing unit 20, the modulator 4 generates a modulated light having a higher modulation speed V than the previously generated modulated light.
If the SNR of the received light is equal to or higher than the threshold Th SNR and the SNR of the received light is equal to or lower than the upper threshold Th SNR-up (Th SNR ≤ SNR ≤ Th SNR-up ), the characteristic control processing unit 20 The control signal cnt 1 is not output to the modulator 4.
Note that the threshold Th SNR-up for the upper limit of the SNR may be externally provided to the characteristic control processing unit 20 or may be stored in the internal memory of the mobile unit control unit 21. Good.
 また、受信光のSNRが、SNRの上限用の閾値ThSNR-upよりも大きければ(SNR>ThSNR-up)、特性制御処理部20が、送信光のビーム拡がり角θを広くする旨を示す制御信号cntを光アンテナ5に出力するようにしてもよい。
 光アンテナ5は、特性制御処理部20から送信光のビーム拡がり角θを広くする旨を示す制御信号cntを受けていれば、前回出射した送信光よりも、ビーム拡がり角θが広い送信光を水中に出射する。
 受信光のSNRが閾値ThSNR以上であり、かつ、受信光のSNRが上限用の閾値ThSNR-up以下であれば(ThSNR≦SNR≦ThSNR-up)、特性制御処理部20は、制御信号cntを光アンテナ5に出力しない。
If the SNR of the received light is larger than the threshold S Th- NR-up for the upper limit of the SNR (SNR>Th SNR-up ), the characteristic control processing unit 20 indicates that the beam divergence angle θ of the transmitted light is widened. The control signal cnt 2 shown may be output to the optical antenna 5.
If the optical antenna 5 receives a control signal cnt 2 indicating that the beam divergence angle θ of the transmission light is to be widened from the characteristic control processing unit 20, the transmission light having a wider beam divergence angle θ than the previously emitted transmission light. Is emitted into the water.
If the SNR of the received light is equal to or higher than the threshold Th SNR and the SNR of the received light is equal to or lower than the upper threshold Th SNR-up (Th SNR ≤ SNR ≤ Th SNR-up ), the characteristic control processing unit 20 The control signal cnt 2 is not output to the optical antenna 5.
 また、受信光のSNRが、SNRの上限用の閾値ThSNR-upよりも大きければ(SNR>ThSNR-up)、特性制御処理部20が、変調信号における誤り訂正符号の割合を減らす旨を示す制御信号cntを変調信号生成部3に出力する。
 変調信号生成部3は、特性制御処理部20から変調信号における誤り訂正符号の割合を減らす旨を示す制御信号cntを受けていれば、前回生成した変調信号が含んでいる誤り訂正符号よりも、少ない誤り訂正符号を含む変調信号を生成する。
 受信光のSNRが閾値ThSNR以上であり、かつ、受信光のSNRが上限用の閾値ThSNR-up以下であれば(ThSNR≦SNR≦ThSNR-up)、特性制御処理部20は、制御信号cntを変調信号生成部3に出力しない。
Further, if the SNR of the received light is larger than the upper threshold Th SNR-up of the SNR (SNR>Th SNR-up ), the characteristic control processing unit 20 indicates that the ratio of the error correction code in the modulated signal is reduced. The control signal cnt 3 shown is output to the modulation signal generation unit 3.
If the modulation signal generation unit 3 receives the control signal cnt 3 indicating that the ratio of the error correction code in the modulation signal is reduced from the characteristic control processing unit 20, the modulation signal generation unit 3 outputs the control signal cnt 3 more than the error correction code included in the previously generated modulation signal. , Generates a modulated signal containing a small number of error correction codes.
If the SNR of the received light is equal to or higher than the threshold Th SNR and the SNR of the received light is equal to or lower than the upper threshold Th SNR-up (Th SNR ≤ SNR ≤ Th SNR-up ), the characteristic control processing unit 20 The control signal cnt 3 is not output to the modulation signal generation unit 3.
 図1に示す光通信装置では、特性制御処理部20が、受信光のSNRと比較する閾値ThSNRを固定している。
 しかし、これは一例に過ぎず、例えば、送信光の帯域Bに応じて、特性制御処理部20が、閾値ThSNRを変更するようにしてもよい。特性制御処理部20は、例えば、送信光の帯域Bが低いときの閾値ThSNRよりも、送信光の帯域Bが高いときの閾値ThSNRを低くする。
In the optical communication device shown in FIG. 1, the characteristic control processing unit 20 fixes a threshold Th SNR to be compared with the SNR of received light.
However, this is merely an example, and the characteristic control processing unit 20 may change the threshold Th SNR according to the band B of the transmitted light, for example. Characteristic control processing unit 20, for example, than the threshold Th SNR during lower bandwidth B of the transmitted light, to lower the threshold value Th SNR when high bandwidth B of the transmitted light.
 図1に示す光通信装置では、通信が可能な距離Lが、通信距離L以上であれば、移動体制御部21が、自らの光通信装置を搭載している移動体を制御しないようにしている。
 しかし、これは一例に過ぎず、通信が可能な距離Lが、通信距離Lよりも大きい上限用の閾値ThL-up(L<ThL-up)よりも大きければ(L>ThL-up)、移動体制御部21が、移動体を制御して、自らの光通信装置を通信相手の光通信装置から遠ざけるようにしてもよい。
 通信が可能な距離Lが通信距離L以上であり、かつ、通信が可能な距離Lが上限用の閾値ThL-up以下であれば(L≦L≦ThL-up)、移動体制御部21は、移動体を制御しない。
In the optical communication device shown in FIG. 1, if the communicable distance L p is greater than or equal to the communication distance L, the mobile body control unit 21 does not control the mobile body equipped with its own optical communication device. ing.
However, this is merely an example, and if the distance L p at which communication is possible is larger than the upper limit threshold Th L-up (L<Th L-up ) that is larger than the communication distance L, then (L p >Th L). -Up ), the mobile unit control unit 21 may control the mobile unit to move its own optical communication device away from the optical communication device of the communication partner.
If the communicable distance L p is greater than or equal to the communication distance L and the communicable distance L p is less than or equal to the upper limit threshold Th L-up (L≦L p ≦Th L-up ), move The body control unit 21 does not control the moving body.
実施の形態2.
 図1に示す光通信装置では、移動体制御部21が、外部から通信距離Lの要求値が与えられている。
 実施の形態2では、自らの光通信装置から通信相手の光通信装置までの距離Lを算出し、算出した距離Lを移動体制御部21に出力する距離算出部59を備える光通信装置について説明する。
Embodiment 2.
In the optical communication device shown in FIG. 1, the moving body control unit 21 is given a request value for the communication distance L from the outside.
In the second embodiment, an optical communication device including a distance calculation unit 59 that calculates a distance L from its own optical communication device to an optical communication device of a communication partner and outputs the calculated distance L to the mobile unit control unit 21 will be described. To do.
 図8は、実施の形態2に係る光通信装置を示す構成図である。
 図9は、実施の形態2に係る光通信装置における減衰率算出部11、復調部17、特性制御部18、移動体制御部21及び距離算出部59のハードウェアを示すハードウェア構成図である。
 図8及び図9において、図1及び図2と同一符号は同一又は相当部分を示すので説明を省略する。
FIG. 8 is a configuration diagram showing an optical communication device according to the second embodiment.
FIG. 9 is a hardware configuration diagram showing the hardware of the attenuation rate calculation unit 11, the demodulation unit 17, the characteristic control unit 18, the moving body control unit 21, and the distance calculation unit 59 in the optical communication device according to the second embodiment. ..
8 and 9, the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding portions, and thus the description thereof will be omitted.
 音響通信部50は、位置座標取得部51、変調信号生成部52、音源53、変調器54、放音部55及び音信号受信部56を備えている。
 位置座標取得部51は、例えばGPS(Global Positioning System)衛星から送信されたGPS信号を受信するGPS受信機によって実現される。位置座標取得部51は、自らの光通信装置を搭載している移動体の位置座標を取得し、位置座標を示す位置情報を変調信号生成部52及び距離算出部59のそれぞれに出力する。
The acoustic communication unit 50 includes a position coordinate acquisition unit 51, a modulation signal generation unit 52, a sound source 53, a modulator 54, a sound emitting unit 55, and a sound signal receiving unit 56.
The position coordinate acquisition unit 51 is realized by, for example, a GPS receiver that receives a GPS signal transmitted from a GPS (Global Positioning System) satellite. The position coordinate acquisition unit 51 acquires the position coordinates of the moving body equipped with its own optical communication device, and outputs the position information indicating the position coordinates to the modulation signal generation unit 52 and the distance calculation unit 59.
 変調信号生成部52は、位置座標取得部51から出力された位置情報を含む変調信号を生成し、生成した変調信号を変調器54に出力する。
 音源53は、音を発生する装置であり、発生した音を変調器54に出力する。
 変調器54は、変調信号生成部52から出力された変調信号に従って、音源53から出力された音の位相を変調することで変調音を生成し、生成した変調音を放音部55に出力する。
 放音部55は、例えば、スピーカによって実現される。放音部55は、変調器54から出力された変調音を音信号として水中に出射することで、音信号を通信相手の光通信装置に送信する。
The modulation signal generation unit 52 generates a modulation signal including the position information output from the position coordinate acquisition unit 51, and outputs the generated modulation signal to the modulator 54.
The sound source 53 is a device that generates sound, and outputs the generated sound to the modulator 54.
The modulator 54 generates a modulated sound by modulating the phase of the sound output from the sound source 53 according to the modulated signal output from the modulated signal generation unit 52, and outputs the generated modulated sound to the sound emitting unit 55. ..
The sound emitting unit 55 is realized by, for example, a speaker. The sound emitting unit 55 transmits the sound signal to the optical communication device of the communication partner by emitting the modulated sound output from the modulator 54 into the water as a sound signal.
 音信号受信部56は、取音部57及び復調部58を備えている。音信号受信部56は、通信相手の光通信装置から送信された音信号を受信する。通信相手の光通信装置から送信された音信号には、通信相手の光通信装置の位置座標を示す位置情報を含んでいる。
 取音部57は、例えば、マイクによって実現される。取音部57は、通信相手の光通信装置から送信された音信号を受信し、受信した音信号を復調部58に出力する。
 復調部58は、取音部57から出力された音信号に含まれている位置情報を復調し、復調した位置情報を距離算出部59に出力する。
The sound signal reception unit 56 includes a sound pickup unit 57 and a demodulation unit 58. The sound signal receiving unit 56 receives a sound signal transmitted from the optical communication device of the communication partner. The sound signal transmitted from the optical communication device of the communication partner includes position information indicating the position coordinates of the optical communication device of the communication partner.
The sound pickup unit 57 is realized by, for example, a microphone. The sound pickup unit 57 receives the sound signal transmitted from the optical communication device of the communication partner, and outputs the received sound signal to the demodulation unit 58.
The demodulation unit 58 demodulates the position information included in the sound signal output from the sound pickup unit 57, and outputs the demodulated position information to the distance calculation unit 59.
 距離算出部59は、例えば、図9に示す距離算出回路36によって実現される。距離算出部59は、位置座標取得部51から出力された位置情報が示す位置座標と、復調部58から出力された位置情報が示す位置座標とから、自らの光通信装置から通信相手の光通信装置までの距離Lを算出する。また、距離算出部59は、位置座標取得部51から出力された位置情報が示す位置座標と、復調部58から出力された位置情報が示す位置座標とから、自らの光通信装置から通信相手の光通信装置への方位αを算出する。距離算出部59は、算出した距離Lを特性制御処理部20及び移動体制御部21のそれぞれに出力し、算出した方位αを移動体制御部21に出力する。 The distance calculation unit 59 is realized by the distance calculation circuit 36 shown in FIG. 9, for example. The distance calculation unit 59 uses the position coordinates indicated by the position information output from the position coordinate acquisition unit 51 and the position coordinates indicated by the position information output from the demodulation unit 58, from its own optical communication device to the optical communication of the communication partner. The distance L to the device is calculated. In addition, the distance calculation unit 59 uses the position coordinates indicated by the position information output from the position coordinate acquisition unit 51 and the position coordinates indicated by the position information output from the demodulation unit 58, from its own optical communication device to the communication partner. The direction α to the optical communication device is calculated. The distance calculation unit 59 outputs the calculated distance L to each of the characteristic control processing unit 20 and the moving body control unit 21, and outputs the calculated azimuth α to the moving body control unit 21.
 図8では、光通信装置の一部の構成要素である減衰率算出部11、復調部17、テーブル部19、特性制御処理部20、移動体制御部21及び距離算出部59のそれぞれが、図9に示すような専用のハードウェアによって実現されるものを想定している。即ち、光通信装置の一部が、減衰率算出回路31、復調回路32、記憶回路33、特性制御処理回路34、移動体制御回路35及び距離算出回路36によって実現されるものを想定している。 In FIG. 8, each of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, the moving body control unit 21, and the distance calculation unit 59, which are some of the constituent elements of the optical communication device, are illustrated. It is assumed that it is realized by dedicated hardware as shown in FIG. That is, it is assumed that a part of the optical communication device is realized by the attenuation rate calculation circuit 31, the demodulation circuit 32, the storage circuit 33, the characteristic control processing circuit 34, the moving body control circuit 35, and the distance calculation circuit 36. ..
 減衰率算出回路31、復調回路32、特性制御処理回路34、移動体制御回路35及び距離算出回路36のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。 Each of the attenuation rate calculation circuit 31, the demodulation circuit 32, the characteristic control processing circuit 34, the moving body control circuit 35, and the distance calculation circuit 36 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, An ASIC, an FPGA, or a combination thereof is applicable.
 光通信装置の一部の構成要素は、専用のハードウェアによって実現されるものに限るものではない。例えば、減衰率算出部11、復調部17、テーブル部19、特性制御処理部20、移動体制御部21又は距離算出部59のいずれか1つ以上が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 光通信装置の一部がソフトウェア又はファームウェア等によって実現される場合、テーブル部19が図3に示すコンピュータのメモリ41上に構成される。減衰率算出部11、復調部17、特性制御処理部20、移動体制御部21及び距離算出部59の処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
Some components of the optical communication device are not limited to those realized by dedicated hardware. For example, any one or more of the attenuation rate calculation unit 11, the demodulation unit 17, the table unit 19, the characteristic control processing unit 20, the moving body control unit 21, or the distance calculation unit 59 may be software, firmware, or software and firmware. It may be realized by a combination of.
When a part of the optical communication device is realized by software or firmware, the table unit 19 is configured on the memory 41 of the computer shown in FIG. A program for causing a computer to execute the processing procedures of the attenuation rate calculation unit 11, the demodulation unit 17, the characteristic control processing unit 20, the moving body control unit 21, and the distance calculation unit 59 is stored in the memory 41 shown in FIG. Then, the processor 42 of the computer executes the program stored in the memory 41.
 次に、図8に示す光通信装置の動作について説明する。
 ただし、音響通信部50、距離算出部59及び移動体制御部21以外は、図1に示す光通信装置と同様であるため、ここでは、音響通信部50、距離算出部59及び移動体制御部21の動作のみを説明する。
Next, the operation of the optical communication device shown in FIG. 8 will be described.
However, since the components other than the acoustic communication unit 50, the distance calculation unit 59, and the mobile body control unit 21 are the same as those of the optical communication device shown in FIG. 1, here, the acoustic communication unit 50, the distance calculation unit 59, and the mobile body control unit. Only the operation 21 will be described.
 位置座標取得部51は、自らの光通信装置を搭載している移動体の位置座標(x,y,z)を取得する。
 位置座標取得部51は、移動体の位置座標(x,y,z)を取得すると、取得した位置座標(x,y,z)を示す位置情報を変調信号生成部52及び距離算出部59のそれぞれに出力する。
 変調信号生成部52は、位置座標取得部51から位置情報を受けると、位置情報を含む変調信号を生成し、生成した変調信号を変調器54に出力する。
The position coordinate acquisition unit 51 acquires the position coordinates (x 1 , y 1 , z 1 ) of the moving body equipped with its own optical communication device.
When the position coordinate acquisition unit 51 acquires the position coordinates (x 1 , y 1 , z 1 ) of the moving body, the modulation signal generation unit 52 outputs position information indicating the acquired position coordinates (x 1 , y 1 , z 1 ). And the distance calculation unit 59.
Upon receiving the position information from the position coordinate acquisition unit 51, the modulation signal generation unit 52 generates a modulation signal including the position information and outputs the generated modulation signal to the modulator 54.
 音源53は、音を発生し、発生した音を変調器54に出力する。
 変調器54は、変調信号生成部52から出力された変調信号に従って、音源53から出力された音の位相を変調することで変調音を生成し、生成した変調音を放音部55に出力する。
 放音部55は、変調器54から出力された変調音を音信号として水中に出射することで、音信号を通信相手の光通信装置に送信する。
The sound source 53 generates a sound and outputs the generated sound to the modulator 54.
The modulator 54 generates a modulated sound by modulating the phase of the sound output from the sound source 53 according to the modulated signal output from the modulated signal generation unit 52, and outputs the generated modulated sound to the sound emitting unit 55. ..
The sound emitting unit 55 transmits the sound signal to the optical communication device of the communication partner by emitting the modulated sound output from the modulator 54 into the water as a sound signal.
 通信相手の光通信装置は、位置座標(x,y,z)を示す位置情報を含んでいる音信号を水中に出射し、例えば、大容量のデータ又は秘匿性のデータを含んでいる光信号を水中に出射する。
 光信号は、大容量のデータ等の送信に適しているが、水の濁りが大きい場合、減衰が大きくなる。
 音信号は、光信号と比べて、大容量のデータ等の送信には適していない。しかし、音信号は、光信号と比べて、水の濁りが大きい場合でも、減衰が小さいため、自らの光通信装置と通信相手の光通信装置との間の距離が長くても、送受信することができる。
 取音部57は、通信相手の光通信装置から送信された音信号を受信し、受信した音信号を復調部58に出力する。
 復調部58は、取音部57から音信号を受けると、音信号に含まれている位置情報を復調し、復調した位置情報を距離算出部59に出力する。
The optical communication device of the communication partner emits a sound signal including position information indicating position coordinates (x 2 , y 2 , z 2 ) into the water, and includes, for example, a large amount of data or confidentiality data. The existing optical signal is emitted into the water.
The optical signal is suitable for transmitting a large amount of data, etc., but when the turbidity of water is large, the attenuation is large.
The sound signal is not suitable for transmitting a large amount of data or the like as compared with the optical signal. However, compared to optical signals, sound signals can be transmitted and received even when the turbidity of water is large and the attenuation is small, even if the distance between own optical communication device and the optical communication device of the communication partner is long. You can
The sound pickup unit 57 receives the sound signal transmitted from the optical communication device of the communication partner, and outputs the received sound signal to the demodulation unit 58.
Upon receiving the sound signal from the sound pickup unit 57, the demodulation unit 58 demodulates the position information included in the sound signal, and outputs the demodulated position information to the distance calculation unit 59.
 距離算出部59は、位置座標取得部51から出力された位置情報が示す位置座標(x,y,z)と、復調部58から出力された位置情報が示す位置座標(x,y,z)とから、以下の式(9)に示すように、自らの光通信装置から通信相手の光通信装置までの距離である通信距離Lを算出する。
Figure JPOXMLDOC01-appb-I000004
 また、距離算出部59は、位置座標(x,y,z)と位置座標(x,y,z)とから、自らの光通信装置から通信相手の光通信装置への方位αを算出する。方位αの算出処理自体は、公知の技術であるため詳細な説明を省略する。
 距離算出部59は、算出した距離Lを特性制御処理部20及び移動体制御部21のそれぞれに出力し、算出した方位αを移動体制御部21に出力する。
 なお、移動体制御部21において、自らの光通信装置から通信相手の光通信装置への方位αが既値であれば、距離算出部59は、方位αを移動体制御部21に出力する必要がない。
The distance calculation unit 59 calculates the position coordinates (x 1 , y 1 , z 1 ) indicated by the position information output from the position coordinate acquisition unit 51 and the position coordinates (x 2 , indicated by the position information output from the demodulation unit 58. From y 2 ,z 2 ), the communication distance L, which is the distance from the own optical communication device to the communication partner optical communication device, is calculated as shown in the following equation (9).
Figure JPOXMLDOC01-appb-I000004
In addition, the distance calculation unit 59 uses the position coordinates (x 1 , y 1 , z 1 ) and the position coordinates (x 2 , y 2 , z 2 ) to transmit from its own optical communication device to the communication partner optical communication device. The azimuth α is calculated. The calculation process of the azimuth α is a known technique, and thus detailed description thereof is omitted.
The distance calculation unit 59 outputs the calculated distance L to each of the characteristic control processing unit 20 and the moving body control unit 21, and outputs the calculated azimuth α to the moving body control unit 21.
In the moving body control unit 21, if the azimuth α from the own optical communication device to the communication partner optical communication device is an existing value, the distance calculation unit 59 needs to output the azimuth α to the moving body control unit 21. There is no.
 移動体制御部21は、減衰率算出部11から減衰率Atを受けると、実施の形態1と同様に、減衰率Atに基づいて、自らの光通信装置と通信相手の光通信装置との間で通信が可能な距離Lを求める。
 移動体制御部21は、距離算出部59から通信距離Lを受けると、通信が可能な距離Lと通信距離Lとを比較する。
 移動体制御部21は、通信が可能な距離Lが、通信距離Lよりも短ければ、実施の形態1と同様に、自らの光通信装置を搭載している移動体を制御して、自らの光通信装置を通信相手の光通信装置に近づけるようにする。
 ただし、移動体制御部21は、距離算出部59から方位αを受けているので、移動体が方位αの方向に移動するように、移動体を制御する。
 移動体制御部21は、通信が可能な距離Lが、通信距離L以上であれば、実施の形態1と同様に、移動体を制御しない。
Upon receiving the attenuation rate At from the attenuation rate calculation section 11, the mobile unit control section 21 determines whether the optical communication apparatus of its own and the optical communication apparatus of the communication partner are based on the attenuation rate At, as in the first embodiment. Then, a distance L p at which communication is possible is obtained.
Upon receiving the communication distance L from the distance calculation unit 59, the mobile body control unit 21 compares the communication distance L p with the communication distance L.
If the distance L p at which communication is possible is shorter than the communication distance L, the mobile unit control unit 21 controls the mobile unit equipped with its own optical communication device, as in the first embodiment. The optical communication device of 1 is brought closer to the optical communication device of the communication partner.
However, since the moving body control unit 21 receives the azimuth α from the distance calculation unit 59, it controls the moving body so that the moving body moves in the direction α.
If the communicable distance L p is equal to or longer than the communication distance L, the moving body control unit 21 does not control the moving body as in the first embodiment.
 図8に示す光通信装置では、通信が可能な距離Lが、通信距離L以上であれば、移動体制御部21が、自らの光通信装置を搭載している移動体を制御しないようにしている。
 しかし、これは一例に過ぎず、通信が可能な距離Lが、通信距離Lよりも大きい上限用の閾値ThL-upよりも大きければ(L>ThL-up)、移動体制御部21が、移動体を制御して、自らの光通信装置を通信相手の光通信装置から遠ざけるようにしてもよい。
 通信が可能な距離Lが通信距離L以上であり、かつ、通信が可能な距離Lが上限用の閾値ThL-up以下であれば(L≦L≦ThL-up)、移動体制御部21は、移動体を制御しない。
In the optical communication device shown in FIG. 8, if the communicable distance L p is greater than or equal to the communication distance L, the mobile body control unit 21 does not control the mobile body equipped with its own optical communication device. ing.
However, this is only an example, and if the communicable distance L p is larger than the upper limit threshold Th L-up larger than the communication distance L (L p >Th L-up ), the mobile unit control unit. The control unit 21 may control the mobile unit to move its own optical communication device away from the communication partner optical communication device.
If the communicable distance L p is greater than or equal to the communication distance L and the communicable distance L p is less than or equal to the upper limit threshold Th L-up (L≦L p ≦Th L-up ), move The body control unit 21 does not control the moving body.
 以上の実施の形態2は、通信相手の光通信装置から、通信相手の光通信装置の位置を示す位置情報を含む音信号を受信する音信号受信部56と、音信号受信部56により受信された音信号に含まれている位置情報から、自らの光通信装置から通信相手の光通信装置までの距離Lを算出する距離算出部59とを備え、移動体制御部21が、通信が可能な距離Lが、距離算出部59により算出された距離Lよりも短ければ、自らの光通信装置を搭載している移動体を制御して、自らの光通信装置を通信相手の光通信装置に近づけるように、図8に示す光通信装置を構成した。したがって、図8に示す光通信装置は、自らの光通信装置から通信相手の光通信装置までの距離Lが変化しても、実施の形態1と同様に、受信光のSNRを制御することができる。 In the above-described second embodiment, the sound signal receiving unit 56 that receives a sound signal including position information indicating the position of the communication partner optical communication device from the communication partner optical communication device, and the sound signal receiving unit 56 receive the sound signal. The mobile body control unit 21 can communicate with the distance calculation unit 59 that calculates the distance L from the own optical communication device to the communication partner optical communication device from the position information included in the sound signal. If the distance L p is shorter than the distance L calculated by the distance calculation unit 59, the mobile body equipped with its own optical communication device is controlled so that its own optical communication device becomes the communication partner optical communication device. The optical communication device shown in FIG. Therefore, the optical communication device shown in FIG. 8 can control the SNR of the received light even if the distance L from the own optical communication device to the communication partner optical communication device changes, as in the first embodiment. it can.
実施の形態3.
 図8に示す光通信装置では、音信号受信部56が、通信相手の光通信装置の位置を示す位置情報を含む音信号を受信している。
 実施の形態3では、音信号を水中に出射して、通信相手の光通信装置に反射された音信号の反射信号を受信する音信号送受信部61を備える光通信装置について説明する。
Embodiment 3.
In the optical communication device shown in FIG. 8, the sound signal receiving unit 56 receives a sound signal including position information indicating the position of the communication partner optical communication device.
In the third embodiment, an optical communication device including a sound signal transmitting/receiving unit 61 that emits a sound signal into water and receives a reflected signal of the sound signal reflected by the optical communication device of the communication partner will be described.
 図10は、実施の形態3に係る光通信装置を示す構成図である。
 図10において、図1及び図8と同一符号は同一又は相当部分を示すので説明を省略する。
 音信号送受信部61は、音源53、変調器54、放音部55及び取音部57を備えている。音信号送受信部61は、音信号を水中に出射して、通信相手の光通信装置に反射された音信号の反射信号を受信する。
 図10に示す光通信装置では、音信号送受信部61が、音信号を送受信することができればよく、音信号送受信部61が、変調器54を備えずに、音源53が、直接、音を放音部55に出力するようにしてもよい。
 一方、音信号送受信部61が変調器54を備える場合には、変調信号生成部52が音信号送受信部61に含まれていてもよい。
FIG. 10 is a configuration diagram showing an optical communication device according to the third embodiment.
In FIG. 10, the same reference numerals as those in FIGS. 1 and 8 indicate the same or corresponding portions, and thus the description thereof will be omitted.
The sound signal transmitting/receiving unit 61 includes a sound source 53, a modulator 54, a sound emitting unit 55, and a sound collecting unit 57. The sound signal transmitting/receiving unit 61 emits the sound signal into the water and receives the reflection signal of the sound signal reflected by the optical communication device of the communication partner.
In the optical communication device shown in FIG. 10, the sound signal transmitting/receiving unit 61 needs only to be able to transmit/receive a sound signal. The sound signal transmitting/receiving unit 61 does not include the modulator 54, and the sound source 53 directly emits sound. You may make it output to the sound part 55.
On the other hand, when the sound signal transmitting/receiving unit 61 includes the modulator 54, the modulation signal generating unit 52 may be included in the sound signal transmitting/receiving unit 61.
 距離算出部62は、例えば、図9に示す距離算出回路36によって実現される。距離算出部62は、変調器54から放音部55に変調音が出力されてから、取音部57が音信号の反射信号を受信するまでの時間Tを計測する。距離算出部62は、計測した時間Tから、自らの光通信装置から通信相手の光通信装置までの距離Lを算出し、算出した距離Lを特性制御処理部20及び移動体制御部21のそれぞれに出力する。 The distance calculation unit 62 is realized by the distance calculation circuit 36 shown in FIG. 9, for example. The distance calculation unit 62 measures the time T from the output of the modulated sound from the modulator 54 to the sound emitting unit 55 until the sound pickup unit 57 receives the reflected signal of the sound signal. The distance calculation unit 62 calculates the distance L from the optical communication device of its own to the optical communication device of the communication partner from the measured time T, and the calculated distance L is calculated by the characteristic control processing unit 20 and the mobile unit control unit 21, respectively. Output to.
 次に、図10に示す光通信装置の動作について説明する。
 ただし、音信号送受信部61及び距離算出部62以外は、図1及び図8に示す光通信装置と同様であるため、ここでは、音信号送受信部61及び距離算出部62の動作のみを説明する。
 変調器54は、変調信号生成部52から出力された変調信号に従って、音源53から出力された音の位相を変調することで変調音を生成し、生成した変調音を放音部55及び距離算出部62のそれぞれに出力する。
 放音部55は、変調器54から出力された変調音を音信号として通信相手の光通信装置に向けて水中に出射する。
Next, the operation of the optical communication device shown in FIG. 10 will be described.
However, except for the sound signal transmitting/receiving unit 61 and the distance calculating unit 62, the operation is the same as that of the optical communication device shown in FIGS. 1 and 8, and therefore, only the operations of the sound signal transmitting/receiving unit 61 and the distance calculating unit 62 will be described here. ..
The modulator 54 generates a modulated sound by modulating the phase of the sound output from the sound source 53 according to the modulated signal output from the modulated signal generation unit 52, and the generated modulated sound is generated by the sound emitting unit 55 and the distance calculation. Output to each of the units 62.
The sound emitting unit 55 emits the modulated sound output from the modulator 54 into the water as a sound signal toward the optical communication device of the communication partner.
 放音部55から出射された音信号は、通信相手の光通信装置に反射し、光通信装置に反射された音信号は、反射信号として、自らの光通信装置に戻ってくる。
 取音部57は、光通信装置に反射された音信号を反射信号として受信し、受信した反射信号を距離算出部62に出力する。
The sound signal emitted from the sound emitting unit 55 is reflected by the optical communication device of the communication partner, and the sound signal reflected by the optical communication device returns to its own optical communication device as a reflected signal.
The sound pickup unit 57 receives the sound signal reflected by the optical communication device as a reflection signal, and outputs the received reflection signal to the distance calculation unit 62.
 距離算出部62は、変調器54から放音部55に変調音が出力されてから、取音部57が音信号の反射信号を受信するまでの時間Tを計測する。変調器54から変調音が放音部55に出力されると、直ちに、放音部55が変調音を音信号として出射するものであり、変調器54による変調音の出力時刻と、放音部55による音信号の出力時刻とは、概ね同時刻である。
 距離算出部62は、時間Tを計測すると、以下の式(10)に示すように、計測した時間Tから、自らの光通信装置から通信相手の光通信装置までの距離Lを算出し、算出した距離Lを特性制御処理部20及び移動体制御部21のそれぞれに出力する。
Figure JPOXMLDOC01-appb-I000005
 式(10)において、εは、音速である。
 音速εは、水中の温度によって変化するため、距離算出部62が、水中の温度を取得し、取得した温度に従って音速εを補正するようにしてもよい。
 距離算出部62は、取音部57が音信号を出射する方向に基づいて、自らの光通信装置から通信相手の光通信装置への方位αを求めるようにしてもよい。距離算出部62は、方位αを求めた場合、方位αも移動体制御部21に出力する。
 なお、移動体制御部21において、自らの光通信装置から通信相手の光通信装置への方位αが既値であれば、距離算出部62は、方位αを移動体制御部21に出力する必要がない。
The distance calculation unit 62 measures the time T from the output of the modulated sound from the modulator 54 to the sound emitting unit 55 until the sound pickup unit 57 receives the reflected signal of the sound signal. When the modulated sound is output from the modulator 54 to the sound emitting unit 55, the sound emitting unit 55 immediately outputs the modulated sound as a sound signal. The output time of the modulated sound by the modulator 54 and the sound emitting unit 55 The output time of the sound signal by 55 is almost the same time.
When the distance calculation unit 62 measures the time T, the distance calculation unit 62 calculates the distance L from the own optical communication device to the optical communication device of the communication partner from the measured time T, as shown in the following formula (10). The distance L is output to each of the characteristic control processing unit 20 and the moving body control unit 21.
Figure JPOXMLDOC01-appb-I000005
In Expression (10), ε is the speed of sound.
Since the sound speed ε changes depending on the temperature in water, the distance calculation unit 62 may acquire the temperature in water and correct the sound speed ε according to the acquired temperature.
The distance calculation unit 62 may obtain the azimuth α from the optical communication device of its own to the optical communication device of the communication partner based on the direction in which the sound pickup unit 57 emits the sound signal. When calculating the azimuth α, the distance calculation unit 62 also outputs the azimuth α to the moving body control unit 21.
In the mobile unit control unit 21, if the azimuth α from the own optical communication device to the communication partner optical communication device is an existing value, the distance calculation unit 62 needs to output the azimuth α to the mobile unit control unit 21. There is no.
 以上の実施の形態3は、通信相手の光通信装置から、音信号を水中に出射して、通信相手の光通信装置に反射された音信号の反射信号を受信する音信号送受信部61と、音信号送受信部61から音信号が出射されてから、音信号送受信部61により反射信号が受信されるまでの時間から、自らの光通信装置から通信相手の光通信装置までの距離Lを算出する距離算出部62とを備え、移動体制御部21が、通信が可能な距離Lが、距離算出部62により算出された距離Lよりも短ければ、自らの光通信装置を搭載している移動体を制御して、自らの光通信装置を通信相手の光通信装置に近づけるように、図10に示す光通信装置を構成した。したがって、図10に示す光通信装置は、自らの光通信装置から通信相手の光通信装置までの距離Lが変化しても、実施の形態1と同様に、受信光のSNRを制御することができる。 In the third embodiment described above, the sound signal transmitting/receiving unit 61 that emits a sound signal into the water from the optical communication device of the communication partner and receives the reflected signal of the sound signal reflected by the optical communication device of the communication partner, From the time from the sound signal transmitting/receiving unit 61 emitting the sound signal to the reception of the reflected signal by the sound signal transmitting/receiving unit 61, the distance L from the own optical communication device to the optical communication device of the communication partner is calculated. If the distance L p at which the mobile body control unit 21 can communicate is shorter than the distance L calculated by the distance calculation unit 62, the mobile unit control unit 21 includes a distance calculation unit 62. The optical communication device shown in FIG. 10 is configured so that the user's body is controlled to bring its own optical communication device closer to the communication partner optical communication device. Therefore, the optical communication device shown in FIG. 10 can control the SNR of the received light even if the distance L from the own optical communication device to the communication partner optical communication device changes, as in the first embodiment. it can.
実施の形態4.
 図1に示す光通信装置は、受信系の光アンテナとして、光アンテナ7及び光アンテナ13を備えている。
 実施の形態4では、受信系の光アンテナとして、光アンテナ71のみを備える光通信装置について説明する。
Fourth Embodiment
The optical communication device shown in FIG. 1 includes an optical antenna 7 and an optical antenna 13 as an optical antenna of a receiving system.
In the fourth embodiment, an optical communication device including only an optical antenna 71 as an optical antenna of a receiving system will be described.
 図11は、実施の形態4に係る光通信装置を示す構成図である。図11において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 光アンテナ71は、図1に示す送信光モニタ部6が備える光アンテナ7と、図1に示す光信号受信部12が備える光アンテナ13とを兼ねている。光アンテナ71は、光送信部1から水中に出射された送信光をモニタ光として受信し、受信したモニタ光を、光ファイバを介して、波長分離部72に出力する。また、光アンテナ71は、通信相手の光通信装置から水中に出射された光信号を受信光として受信し、受信した受信光を、光ファイバを介して、波長分離部72に出力する。
FIG. 11 is a configuration diagram showing an optical communication device according to the fourth embodiment. In FIG. 11, the same reference numerals as those in FIG.
The optical antenna 71 also serves as the optical antenna 7 included in the transmission light monitor unit 6 illustrated in FIG. 1 and the optical antenna 13 included in the optical signal receiving unit 12 illustrated in FIG. The optical antenna 71 receives the transmitted light emitted into the water from the optical transmitter 1 as monitor light, and outputs the received monitor light to the wavelength demultiplexer 72 via an optical fiber. Further, the optical antenna 71 receives an optical signal emitted into the water from the optical communication device of the communication partner as received light, and outputs the received received light to the wavelength demultiplexing unit 72 via the optical fiber.
 波長分離部72は、光ファイバを介して、光アンテナ71と接続され、光ファイバを介して、光検出器8と接続されている。また、波長分離部72は、光ファイバを介して、光検出器14と接続されている。波長分離部72は、光アンテナ71から出力されたモニタ光を、光ファイバを介して、光検出器8に出力し、光アンテナ71から出力され受信光を、光ファイバを介して、光検出器14に出力する。
 図11に示す光通信装置では、光アンテナ71から出力されたモニタ光の波長と、光アンテナ71から出力され受信光の波長とは、互いに異なっている。
The wavelength separation section 72 is connected to the optical antenna 71 via an optical fiber, and is connected to the photodetector 8 via an optical fiber. The wavelength separation unit 72 is also connected to the photodetector 14 via an optical fiber. The wavelength demultiplexing unit 72 outputs the monitor light output from the optical antenna 71 to the photodetector 8 via the optical fiber, and the received light output from the optical antenna 71 via the optical fiber to the photodetector. It outputs to 14.
In the optical communication device shown in FIG. 11, the wavelength of the monitor light output from the optical antenna 71 and the wavelength of the received light output from the optical antenna 71 are different from each other.
 次に、図11に示す光通信装置の動作について説明する。
 ただし、光アンテナ71及び波長分離部72以外は、図1に示す光通信装置と同様であるため、ここでは、光アンテナ71及び波長分離部72の動作のみを説明する。
 光アンテナ71は、光送信部1から送信光が水中に出射されると、送信光をモニタ光として受信し、受信したモニタ光を、光ファイバを介して、波長分離部72に出力する。
 また、光アンテナ71は、通信相手の光通信装置から光信号が水中に出射されると、光信号を受信光として受信し、受信した受信光を、光ファイバを介して、波長分離部72に出力する。
Next, the operation of the optical communication device shown in FIG. 11 will be described.
However, except for the optical antenna 71 and the wavelength demultiplexing unit 72, the optical communication device is the same as the optical communication device shown in FIG.
When the transmission light is emitted into the water from the optical transmission unit 1, the optical antenna 71 receives the transmission light as monitor light, and outputs the received monitor light to the wavelength separation unit 72 via the optical fiber.
Further, the optical antenna 71 receives an optical signal as received light when the optical signal is emitted into the water from the optical communication device of the communication partner, and receives the received light to the wavelength demultiplexing unit 72 via the optical fiber. Output.
 波長分離部72は、光アンテナ71から出力されたモニタ光と、光アンテナ71から出力され受信光とを波長分離する。
 波長分離部72は、波長分離した後のモニタ光を、光ファイバを介して、光検出器8に出力し、波長分離した後の受信光を、光ファイバを介して、光検出器14に出力する。
 図11に示す光通信装置では、図1に示す光通信装置よりも、受信系の光アンテナの個数を減らすことができる。
The wavelength separation unit 72 wavelength-separates the monitor light output from the optical antenna 71 and the received light output from the optical antenna 71.
The wavelength demultiplexing unit 72 outputs the monitor light after wavelength separation to the photodetector 8 via the optical fiber, and outputs the received light after wavelength separation to the photodetector 14 via the optical fiber. To do.
The optical communication device shown in FIG. 11 can reduce the number of optical antennas in the receiving system more than the optical communication device shown in FIG.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that, within the scope of the invention, the invention of the present application is capable of freely combining the respective embodiments, modifying any constituent element of each embodiment, or omitting any constituent element in each embodiment. ..
 この発明は、信号対雑音比の増減に影響する送信光の特性を制御する光通信装置及び光通信方法に適している。 The present invention is suitable for an optical communication device and an optical communication method for controlling the characteristics of transmitted light that affect the increase/decrease in signal-to-noise ratio.
 1 光送信部、2 基準光源、3 変調信号生成部、4 変調器、5 光アンテナ、6 送信光モニタ部、7 光アンテナ、8 光検出器、9 IV変換器、10 ADC、11 減衰率算出部、12 光信号受信部、13 光アンテナ、14 光検出器、15 IV変換器、16 ADC、17 復調部、18 特性制御部、19 テーブル部、20 特性制御処理部、21 移動体制御部、31 減衰率算出回路、32 復調回路、33 記憶回路、34 特性制御処理回路、35 移動体制御回路、36 距離算出回路、41 メモリ、42 プロセッサ、50 音響通信部、51 位置座標取得部、52 変調信号生成部、53 音源、54 変調器、55 放音部、56 音信号受信部、57 取音部、58 復調部、59 距離算出部、61 音信号送受信部、62 距離算出部、71 光アンテナ、72 波長分離部。 1 optical transmitter, 2 reference light source, 3 modulated signal generator, 4 modulator, 5 optical antenna, 6 transmitted light monitor, 7 optical antenna, 8 optical detector, 9 IV converter, 10 ADC, 11 attenuation rate calculation Section, 12 optical signal receiving section, 13 optical antenna, 14 photodetector, 15 IV converter, 16 ADC, 17 demodulation section, 18 characteristic control section, 19 table section, 20 characteristic control processing section, 21 moving body control section, 31 attenuation rate calculation circuit, 32 demodulation circuit, 33 storage circuit, 34 characteristic control processing circuit, 35 moving body control circuit, 36 distance calculation circuit, 41 memory, 42 processor, 50 acoustic communication unit, 51 position coordinate acquisition unit, 52 modulation Signal generation unit, 53 sound source, 54 modulator, 55 sound emission unit, 56 sound signal reception unit, 57 sound pickup unit, 58 demodulation unit, 59 distance calculation unit, 61 sound signal transmission/reception unit, 62 distance calculation unit, 71 optical antenna , 72 Wavelength separation unit.

Claims (13)

  1.  送信光を水中に出射する光送信部と、
     前記光送信部から水中に出射された送信光をモニタ光として受信する送信光モニタ部と、
     前記光送信部から水中に出射される送信光の光量に対する前記送信光モニタ部により受信されたモニタ光の光量の減衰率を算出する減衰率算出部と、
     前記減衰率算出部により算出された減衰率から、通信相手の光通信装置から水中に出射された光信号を受信光として受信した際の前記受信光の信号対雑音比を推定し、前記信号対雑音比に基づいて、前記信号対雑音比の増減に影響する前記送信光の特性を制御する特性制御部と
     を備えた光通信装置。
    An optical transmitter that emits transmitted light into the water,
    A transmission light monitor unit that receives the transmission light emitted into the water from the light transmission unit as monitor light,
    An attenuation rate calculation unit that calculates an attenuation rate of the light amount of the monitor light received by the transmission light monitor unit with respect to the light amount of the transmission light emitted into the water from the light transmission unit,
    From the attenuation rate calculated by the attenuation rate calculation unit, the signal-to-noise ratio of the received light when the optical signal emitted into the water from the optical communication device of the communication partner is received as the received light is estimated, and the signal pair An optical communication device, comprising: a characteristic control unit that controls a characteristic of the transmitted light that affects an increase or decrease in the signal-to-noise ratio based on a noise ratio.
  2.  前記特性制御部は、前記信号対雑音比が閾値以上になるように、前記送信光の特性を制御することを特徴とする請求項1記載の光通信装置。 The optical communication device according to claim 1, wherein the characteristic control unit controls the characteristic of the transmitted light so that the signal-to-noise ratio becomes equal to or higher than a threshold value.
  3.  前記光送信部は、変調信号に従って変調光を生成し、前記変調光を送信光として水中に出射し、
     前記特性制御部は、前記信号対雑音比に基づいて、前記送信光の特性として、前記変調光の変調速度を制御することを特徴とする請求項1記載の光通信装置。
    The optical transmitter generates modulated light according to a modulation signal, and emits the modulated light as transmission light into water,
    The optical communication device according to claim 1, wherein the characteristic control unit controls a modulation speed of the modulated light as a characteristic of the transmission light based on the signal-to-noise ratio.
  4.  前記特性制御部は、前記信号対雑音比に基づいて、前記送信光の特性として、前記光送信部から出射される送信光のビーム拡がり角を制御することを特徴とする請求項1記載の光通信装置。 The light according to claim 1, wherein the characteristic control unit controls a beam divergence angle of the transmission light emitted from the optical transmission unit as a characteristic of the transmission light based on the signal-to-noise ratio. Communication device.
  5.  前記光送信部は、変調信号に従って変調光を生成し、前記変調光を送信光として水中に出射し、
     前記特性制御部は、前記信号対雑音比に基づいて、前記送信光の特性として、前記変調信号に含める誤り訂正符号を制御することを特徴とする請求項1記載の光通信装置。
    The optical transmitter generates modulated light according to a modulation signal, and emits the modulated light as transmission light into water,
    The optical communication device according to claim 1, wherein the characteristic control unit controls an error correction code included in the modulated signal as a characteristic of the transmission light based on the signal-to-noise ratio.
  6.  前記減衰率算出部により算出された減衰率に基づいて、自らの光通信装置と前記通信相手の光通信装置との間で通信が可能な距離を求め、前記通信が可能な距離が、前記自らの光通信装置から前記通信相手の光通信装置までの距離よりも短ければ、前記自らの光通信装置を搭載している移動体を制御して、前記自らの光通信装置を前記通信相手の光通信装置に近づける移動体制御部を備えたことを特徴とする請求項1記載の光通信装置。 Based on the attenuation rate calculated by the attenuation rate calculation unit, the distance at which communication is possible between the own optical communication apparatus and the optical communication apparatus of the communication partner is obtained, and the communication possible distance is the If it is shorter than the distance from the optical communication device of the communication partner to the optical communication device of the communication partner, the mobile body equipped with the optical communication device of its own is controlled, and the optical communication device of the own is set to the optical communication device of the communication partner. The optical communication device according to claim 1, further comprising a mobile unit control unit that is close to the communication device.
  7.  前記通信相手の光通信装置から、前記通信相手の光通信装置の位置を示す位置情報を含む音信号を受信する音信号受信部と、
     前記音信号受信部により受信された音信号に含まれている位置情報から、自らの光通信装置から前記通信相手の光通信装置までの距離を算出する距離算出部と、
     前記減衰率算出部により算出された減衰率に基づいて、前記自らの光通信装置と前記通信相手の光通信装置との間で通信が可能な距離を求め、前記通信が可能な距離が、前記距離算出部により算出された距離よりも短ければ、前記自らの光通信装置を搭載している移動体を制御して、前記自らの光通信装置を前記通信相手の光通信装置に近づける移動体制御部とを備えたことを特徴とする請求項1記載の光通信装置。
    From the optical communication device of the communication partner, a sound signal receiving unit that receives a sound signal including position information indicating the position of the optical communication device of the communication partner,
    From the position information included in the sound signal received by the sound signal receiving unit, a distance calculating unit that calculates the distance from the optical communication device of its own to the optical communication device of the communication partner,
    Based on the attenuation rate calculated by the attenuation rate calculation unit, the distance at which communication is possible between the own optical communication apparatus and the optical communication apparatus of the communication partner is obtained, and the distance at which the communication is possible is the If the distance is shorter than the distance calculated by the distance calculation unit, the moving body control that controls the moving body equipped with the own optical communication device to bring the own optical communication device closer to the optical communication device of the communication partner. The optical communication device according to claim 1, further comprising:
  8.  音信号を水中に出射して、前記通信相手の光通信装置に反射された前記音信号の反射信号を受信する音信号送受信部と、
     前記音信号送受信部から音信号が出射されてから、前記音信号送受信部により反射信号が受信されるまでの時間から、自らの光通信装置から前記通信相手の光通信装置までの距離を算出する距離算出部と、
     前記減衰率算出部により算出された減衰率に基づいて、前記自らの光通信装置と前記通信相手の光通信装置との間で通信が可能な距離を求め、前記通信が可能な距離が、前記距離算出部により算出された距離よりも短ければ、前記自らの光通信装置を搭載している移動体を制御して、前記自らの光通信装置を前記通信相手の光通信装置に近づける移動体制御部とを備えたことを特徴とする請求項1記載の光通信装置。
    A sound signal transmitting/receiving unit that emits a sound signal into water and receives a reflection signal of the sound signal reflected by the optical communication device of the communication partner,
    From the time from the sound signal transmitting/receiving unit emitting the sound signal to the reception of the reflected signal by the sound signal transmitting/receiving unit, the distance from the own optical communication device to the optical communication device of the communication partner is calculated. A distance calculation unit,
    Based on the attenuation rate calculated by the attenuation rate calculation unit, the distance at which communication is possible between the own optical communication apparatus and the optical communication apparatus of the communication partner is obtained, and the distance at which the communication is possible is the If the distance is shorter than the distance calculated by the distance calculation unit, the moving body control that controls the moving body equipped with the own optical communication device to bring the own optical communication device closer to the optical communication device of the communication partner. The optical communication device according to claim 1, further comprising:
  9.  前記光送信部は、変調信号に従って連続発振光の位相を変調することで変調光を生成し、前記変調光を送信光として水中に出射することを特徴とする請求項1記載の光通信装置。 The optical communication device according to claim 1, wherein the optical transmitter generates modulated light by modulating the phase of continuous wave light according to a modulation signal, and emits the modulated light into water as transmission light.
  10.  前記光送信部は、変調信号に従って連続発振光の強度を変調することで変調光を生成し、前記変調光を送信光として水中に出射することを特徴とする請求項1記載の光通信装置。 The optical communication device according to claim 1, wherein the optical transmission unit generates modulated light by modulating the intensity of continuous wave light according to a modulation signal and emits the modulated light as transmission light into water.
  11.  前記通信相手の光通信装置から通信データを含む光信号が水中に出射されると、水中に出射された光信号を受信する光信号受信部と、
     前記光信号受信部により受信された光信号に含まれている通信データを復調する復調部とを備えたことを特徴とする請求項1記載の光通信装置。
    When an optical signal including communication data is emitted into the water from the optical communication device of the communication partner, an optical signal receiving unit that receives the optical signal emitted into the water,
    The optical communication device according to claim 1, further comprising a demodulation unit that demodulates communication data included in the optical signal received by the optical signal receiving unit.
  12.  1つの光アンテナが、前記送信光モニタ部が備える光アンテナと、前記光信号受信部が備える光アンテナとを兼ねており、
     前記1つの光アンテナが、前記送信光及び前記光信号のそれぞれを受信することを特徴とする請求項11記載の光通信装置。
    One optical antenna serves both as an optical antenna included in the transmitted light monitor section and an optical antenna included in the optical signal receiving section,
    The optical communication device according to claim 11, wherein the one optical antenna receives each of the transmitted light and the optical signal.
  13.  光送信部が、送信光を水中に出射し、
     送信光モニタ部が、前記光送信部から水中に出射された送信光をモニタ光として受信し、
     減衰率算出部が、前記光送信部から水中に出射される送信光の光量に対する前記送信光モニタ部により受信されたモニタ光の光量の減衰率を算出し、
     特性制御部が、前記減衰率算出部により算出された減衰率から、通信相手の光通信装置から水中に出射された光信号を受信光として受信した際の前記受信光の信号対雑音比を推定し、前記信号対雑音比に基づいて、前記信号対雑音比の増減に影響する前記送信光の特性を制御する
     光通信方法。
    The optical transmitter emits the transmitted light into the water,
    The transmitted light monitor unit receives the transmitted light emitted into the water from the optical transmitter as monitor light,
    The attenuation rate calculation unit calculates the attenuation rate of the light amount of the monitor light received by the transmission light monitor unit with respect to the light amount of the transmission light emitted into the water from the optical transmission unit,
    The characteristic control section estimates the signal-to-noise ratio of the received light when the optical signal emitted into the water from the optical communication device of the communication partner is received as the received light from the attenuation rate calculated by the attenuation rate calculation section. And an optical communication method for controlling the characteristics of the transmitted light that influences the increase or decrease of the signal-to-noise ratio based on the signal-to-noise ratio.
PCT/JP2019/000728 2019-01-11 2019-01-11 Optical communication device and optical communication method WO2020144858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/000728 WO2020144858A1 (en) 2019-01-11 2019-01-11 Optical communication device and optical communication method
JP2020564502A JP6983339B2 (en) 2019-01-11 2019-01-11 Optical communication device and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000728 WO2020144858A1 (en) 2019-01-11 2019-01-11 Optical communication device and optical communication method

Publications (1)

Publication Number Publication Date
WO2020144858A1 true WO2020144858A1 (en) 2020-07-16

Family

ID=71521090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000728 WO2020144858A1 (en) 2019-01-11 2019-01-11 Optical communication device and optical communication method

Country Status (2)

Country Link
JP (1) JP6983339B2 (en)
WO (1) WO2020144858A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180833A1 (en) * 2021-02-26 2022-09-01 日本電信電話株式会社 Communication method, transceiver, relay device, communication system, and program
WO2022180831A1 (en) * 2021-02-26 2022-09-01 日本電信電話株式会社 Communication method, transceiver, relay device, communication system, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799480A (en) * 1992-12-14 1995-04-11 Mitsubishi Electric Corp Optical space transmitter
JP2004159032A (en) * 2002-11-06 2004-06-03 Communication Research Laboratory Spatial optical communication system
JP2012156685A (en) * 2011-01-25 2012-08-16 Nec Corp Capture tracking method, capture tracking mechanism and capture tracking system in optical space communication
WO2014181871A1 (en) * 2013-05-10 2014-11-13 三菱電機株式会社 Communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799480A (en) * 1992-12-14 1995-04-11 Mitsubishi Electric Corp Optical space transmitter
JP2004159032A (en) * 2002-11-06 2004-06-03 Communication Research Laboratory Spatial optical communication system
JP2012156685A (en) * 2011-01-25 2012-08-16 Nec Corp Capture tracking method, capture tracking mechanism and capture tracking system in optical space communication
WO2014181871A1 (en) * 2013-05-10 2014-11-13 三菱電機株式会社 Communication device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180833A1 (en) * 2021-02-26 2022-09-01 日本電信電話株式会社 Communication method, transceiver, relay device, communication system, and program
WO2022180831A1 (en) * 2021-02-26 2022-09-01 日本電信電話株式会社 Communication method, transceiver, relay device, communication system, and program

Also Published As

Publication number Publication date
JP6983339B2 (en) 2021-12-17
JPWO2020144858A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
KR101175944B1 (en) Directivity optimization for Short-range wireless mobile communication systems
US8933840B2 (en) Control method of wireless communication system, wireless communication system, wireless communication apparatus, and adjustment method of array weight vector
US20130082162A1 (en) Method of Directing an Optical Receiver Toward a Light Source and an Apparatus of Practising the Method
CN102037606A (en) A system and a method for mast vibration compensation
WO2020144858A1 (en) Optical communication device and optical communication method
JP2009504110A (en) Acquisition, indication, and tracking architecture for laser communications
WO2006049710A2 (en) Method and apparatus for preventing communication link degradation due to the disengagement or movement of a self-positioning transceiver
JP2014520434A (en) Integrated commercial communication network using radio frequency and optical wireless data communication
US11082128B1 (en) Free space optical terminal with dither based alignment
CN107819187B (en) Alignment device for microwave antenna, microwave antenna and alignment method
JP5967643B2 (en) Underwater divergent light communication device
JP5503141B2 (en) Target detection device
EP1374455A1 (en) Polarized wave measuring apparatus, and antenna characteristic measuring apparatus and radio wave measuring apparatus using the same
KR101677990B1 (en) Method for controlling antenna of data link communication device for image information and apparatus thereof
US11733344B2 (en) Interference source searching method and interference source searching apparatus
US20220014681A1 (en) Method for measuring distance in order to focus at least one camera lens
JP2003149315A (en) Gps receiver
EP2424035B1 (en) Method and apparatus for reconfiguring a photonic TR beacon
CN111512569B (en) Method and apparatus for estimating tilt of an antenna and for tracking pointing of an antenna
CN109541525B (en) Direction and distance measuring method and system based on infrared signals
US20120039599A1 (en) Method and system for tracking two communications participants of an optical satellite communications system
EP3668197B1 (en) Method and radio for setting the transmission power of a radio transmission
JP2020159705A (en) Position estimation device and position estimation method
JP2007200045A (en) Autonomous mobile device
KR102574736B1 (en) Gps receiving device with improved recption performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909605

Country of ref document: EP

Kind code of ref document: A1