WO2020144797A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2020144797A1
WO2020144797A1 PCT/JP2019/000464 JP2019000464W WO2020144797A1 WO 2020144797 A1 WO2020144797 A1 WO 2020144797A1 JP 2019000464 W JP2019000464 W JP 2019000464W WO 2020144797 A1 WO2020144797 A1 WO 2020144797A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
heat exchanger
control unit
predetermined value
indoor heat
Prior art date
Application number
PCT/JP2019/000464
Other languages
French (fr)
Japanese (ja)
Inventor
良範 川島
智大 加藤
弘修 板倉
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2019520753A priority Critical patent/JP6641066B1/en
Priority to PCT/JP2019/000464 priority patent/WO2020144797A1/en
Priority to CN201980005282.5A priority patent/CN111684212B/en
Priority to TW109100744A priority patent/TWI721754B/en
Publication of WO2020144797A1 publication Critical patent/WO2020144797A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits

Definitions

  • the present invention relates to an air conditioner.
  • Patent Document 1 does not describe measures against such a problem.
  • an object of the present invention is to provide an air conditioner that cleans an indoor heat exchanger and further suppresses dew drop.
  • the control unit causes the indoor heat exchanger to function as an evaporator, performs a freezing process to freeze the indoor heat exchanger, and detects the indoor temperature sensor.
  • the control unit does not perform the freezing process, or even when the freezing process is performed, the control value is less than the case where the detected value of the indoor temperature sensor is less than the first predetermined value.
  • the predetermined value of 1 is lower than the upper limit value of the set temperature that can be changed by the remote controller during the cooling operation or the heating operation.
  • the control unit causes the indoor heat exchanger to function as an evaporator, performs a freezing process to freeze the indoor heat exchanger, and the detected value of the indoor temperature sensor is the first predetermined value.
  • the control unit performs the freezing process after performing the cooling operation or the dehumidifying operation, and the first predetermined value is higher than the upper limit value of the set temperature that can be changed by the remote controller during the cooling operation or the heating operation. Also decided to be low.
  • an air conditioner that cleans an indoor heat exchanger and further suppresses dew drop.
  • the air conditioner according to the first embodiment of the present invention it is a moist air diagram in which a first predetermined value and an upper limit value regarding the indoor temperature are described. It is explanatory drawing regarding ON/OFF switching of the compressor and the indoor fan with which the air conditioner which concerns on 1st Embodiment of this invention is equipped.
  • FIG. 1 is a configuration diagram of an air conditioner 100 according to the first embodiment.
  • the solid line arrow in FIG. 1 indicates the flow of the refrigerant during the heating operation.
  • the broken line arrow in FIG. 1 indicates the flow of the refrigerant during the cooling operation.
  • the air conditioner 100 is a device that performs air conditioning such as cooling operation and heating operation. As shown in FIG. 1, the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, and an expansion valve 14. Further, the air conditioner 100 includes an indoor heat exchanger 15, an indoor fan 16, and a four-way valve 17, in addition to the above-described configuration.
  • the compressor 11 is a device that compresses a low-temperature low-pressure gas refrigerant and discharges it as a high-temperature high-pressure gas refrigerant. As shown in FIG. 1, the compressor 11 includes a compressor motor 11a that is a drive source.
  • the outdoor heat exchanger 12 is a heat exchanger that performs heat exchange between the refrigerant flowing through the heat transfer pipe (not shown) and the outside air sent from the outdoor fan 13.
  • the outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12.
  • the outdoor fan 13 includes an outdoor fan motor 13a that is a drive source, and is installed near the outdoor heat exchanger 12.
  • the expansion valve 14 is a valve that decompresses the refrigerant condensed in the "condenser” (one of the outdoor heat exchanger 12 and the indoor heat exchanger 15). The refrigerant decompressed by the expansion valve 14 is guided to the "evaporator" (the other of the outdoor heat exchanger 12 and the indoor heat exchanger 15).
  • the indoor heat exchanger 15 performs heat exchange between the refrigerant flowing through the heat transfer tube g (see FIG. 2) and the indoor air (air in the air-conditioned space) sent from the indoor fan 16. It is a vessel.
  • the indoor fan 16 is a fan that sends indoor air to the indoor heat exchanger 15.
  • the indoor fan 16 has an indoor fan motor 16c (see FIG. 3), which is a drive source, and is installed near the indoor heat exchanger 15.
  • the four-way valve 17 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100. For example, during the cooling operation (see the dashed arrow in FIG. 1), in the refrigerant circuit Q, the compressor 11, the outdoor heat exchanger 12 (condenser), the expansion valve 14, and the indoor heat exchanger 15 (evaporator). Refrigerant circulates in the refrigeration cycle through the.
  • one of the above-mentioned “condenser” and “evaporator” is the outdoor heat. It is the exchanger 12 and the other is the indoor heat exchanger 15.
  • the compressor 11, the outdoor heat exchanger 12, the outdoor fan 13, the expansion valve 14, and the four-way valve 17 are installed in the outdoor unit Uo.
  • the indoor heat exchanger 15 and the indoor fan 16 are installed in the indoor unit Ui.
  • FIG. 2 is a vertical cross-sectional view of the indoor unit Ui.
  • the indoor unit Ui includes a drain pan 18, a housing base 19, and filters 20a and 20b in addition to the indoor heat exchanger 15 and the indoor fan 16 described above. Further, the indoor unit Ui includes a front panel 21, a left/right airflow direction plate 22, and a vertical airflow direction plate 23.
  • the indoor heat exchanger 15 includes a plurality of fins f and a plurality of heat transfer tubes g that penetrate the fins f.
  • the indoor heat exchanger 15 includes a front indoor heat exchanger 15a arranged on the front side of the indoor fan 16 and a rear indoor heat exchanger 15b arranged on the rear side of the indoor fan 16. Equipped with.
  • the upper end of the front indoor heat exchanger 15a and the upper end of the rear indoor heat exchanger 15b are connected in an inverted V shape.
  • the indoor fan 16 is, for example, a cylindrical cross-flow fan, and is installed near the indoor heat exchanger 15.
  • the indoor fan 16 includes a plurality of fan blades 16a, an annular partition plate 16b installed on the fan blades 16a, and an indoor fan motor 16c (see FIG. 3) that is a drive source.
  • the drain pan 18 receives the condensed water of the indoor heat exchanger 15, and is installed below the indoor heat exchanger 15.
  • the housing base 19 is a housing in which devices such as the indoor heat exchanger 15 and the indoor fan 16 are installed.
  • the filters 20a and 20b are for collecting dust from the air directed to the indoor heat exchanger 15 as the indoor fan 16 is driven.
  • One filter 20a is arranged on the front side of the indoor heat exchanger 15, and the other filter 20b is arranged on the upper side of the indoor heat exchanger 15.
  • the front panel 21 is a panel installed so as to cover the filter 20a on the front side, and is rotatable frontward about its lower end. The front panel 21 may not rotate.
  • the left-right airflow direction plate 22 is a plate-shaped member that adjusts the left-right airflow direction of the air blown into the room.
  • the left/right airflow direction plate 22 is arranged in the blowout air passage h3, and is rotated in the left/right direction by the left/right airflow direction plate motor 24 (see FIG. 3).
  • the vertical wind direction plate 23 is a plate-shaped member that adjusts the vertical wind direction of the air blown into the room.
  • the vertical wind direction plate 23 is arranged near the air outlet h4, and is rotated in the vertical direction by the vertical wind direction plate motor 25 (see FIG. 3).
  • the indoor heat exchanger 15 is frozen and frosted, and then the indoor heat exchanger 15 is thawed and washed.
  • freezing cleaning a series of processes including freezing of the indoor heat exchanger 15 will be referred to as “freezing cleaning” of the indoor heat exchanger 15.
  • FIG. 3 is a functional block diagram of the air conditioner 100.
  • the indoor unit Ui shown in FIG. 3 includes a remote control transmission/reception unit 26, an environment detection unit 27, and an indoor control circuit 31 in addition to the above-described components.
  • the remote controller transceiver 26 exchanges predetermined information with the remote controller 40 by infrared communication or the like.
  • the environment detection unit 27 includes an indoor temperature sensor 27a and an indoor heat exchanger temperature sensor 27b.
  • the indoor temperature sensor 27a is a sensor that detects the temperature of the room (air-conditioned space), and is installed, for example, on the air intake side of the filters 20a and 20b (see FIG. 2).
  • the indoor heat exchanger temperature sensor 27b is a sensor that detects the temperature of the indoor heat exchanger 15 (see FIG. 2), and is installed in the indoor heat exchanger 15. The detection values of the indoor temperature sensor 27a and the indoor heat exchanger temperature sensor 27b are output to the indoor control circuit 31.
  • the air conditioner 100 does not include a humidity sensor (not shown) that detects indoor humidity (for example, relative humidity), but the present invention is not limited to this. Absent.
  • the indoor control circuit 31 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read and expanded in the RAM, and the CPU executes various processes.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the indoor control circuit 31 includes a storage unit 31a and an indoor control unit 31b.
  • the storage unit 31a in addition to a predetermined program, data received via the remote controller transmission/reception unit 26, detection values of each sensor, and the like are stored.
  • the indoor control unit 31b controls the indoor fan motor 16c, the left/right wind direction plate motor 24, the up/down air direction plate motor 25, and the like based on the data stored in the storage unit 31a.
  • the outdoor unit Uo includes an outdoor temperature sensor 28 and an outdoor control circuit 32 in addition to the above-described configuration.
  • the outdoor temperature sensor 28 is a sensor that detects an outdoor temperature, and is installed at a predetermined location of the outdoor unit Uo.
  • the outdoor unit Uo also includes a sensor that detects the discharge temperature of the compressor 11 (see FIG. 1). The detection value of each of these sensors is output to the outdoor control circuit 32.
  • the outdoor control circuit 32 is configured to include electronic circuits such as a CPU, ROM, RAM, and various interfaces, and is connected to the indoor control circuit 31 via a communication line. As shown in FIG. 3, the outdoor control circuit 32 includes a storage unit 32a and an outdoor control unit 32b.
  • the storage unit 32a stores a predetermined program and data received from the indoor control circuit 31.
  • the outdoor control unit 32b controls the compressor motor 11a, the outdoor fan motor 13a, the expansion valve 14 and the like based on the data stored in the storage unit 32a.
  • the “control unit 30” that controls at least the compressor 11 (see FIG. 1) and the expansion valve 14 is configured to include an indoor control circuit 31 and an outdoor control circuit 32.
  • FIG. 4 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the first embodiment (see FIG. 3 as needed).
  • the control unit 30 causes the control unit 30 to perform the step S101.
  • the process of may be started.
  • the control unit 30 may start the process of step S101.
  • step S101 the control unit 30 determines whether the indoor temperature T, which is the detection value of the indoor temperature sensor 27a, is equal to or higher than the first predetermined value T1.
  • the first predetermined value T1 is a threshold value that serves as a criterion for determining whether or not to freeze the indoor heat exchanger 15 (S102), and is set in advance.
  • control unit 30 drives the indoor fan 16 when the indoor temperature (the temperature of the air-conditioned space) is detected using the indoor temperature sensor 27a (see FIG. 3). As a result, the air in the room is agitated, so that the error when the room temperature sensor 27a detects the room temperature can be reduced.
  • step S101 When the indoor temperature T is equal to or higher than the first predetermined value T1 in step S101 (S101: Yes), the control unit 30 ends the series of processes without performing the freezing process (S102) of the indoor heat exchanger 15 ( END). Even when the room temperature T is equal to or higher than the first predetermined value T1, the freezing process may be performed, but an example thereof will be described later (second and third embodiments). On the other hand, when the indoor temperature T is lower than the first predetermined value T1 in step S101 (S101: No), the control unit 30 freezes the indoor heat exchanger 15 in step S102 (freezing process).
  • the upper limit value and the lower limit value of the set temperature (temperature set value of the air conditioning target space) that can be changed by the user operating the remote controller 40 are preset and stored in the storage unit 31a.
  • the user can change the set temperature within the range of 10° C. (lower limit value T min ) or more and 32° C. (upper limit value T MAX ) or less by operating the remote controller 40. It is like this.
  • the first predetermined value T1 used in the determination process of step S101 is higher than the upper limit value T MAX (for example, 32° C.) of the set temperature that can be changed by the remote controller 40 during the cooling operation or the heating operation. It is preset as a low value. In the present embodiment, as an example, the first predetermined value T1 will be described as being set at 30°C.
  • FIG. 5 is a moist air diagram in which the first predetermined value T1 and the upper limit value T MAX related to the indoor temperature are described (see FIG. 3 as appropriate).
  • the horizontal axis of FIG. 5 represents the dry-bulb temperature of air (that is, the room temperature).
  • the vertical axis of FIG. 5 is the absolute humidity of air.
  • the upward-sloping curve (solid line and broken line) in FIG. 5 is a group of points where the relative humidity of air (for example, 80%) is equal.
  • the upper limit value T MAX of the set temperature that can be changed by the remote controller 40 during the cooling operation or the heating operation is 32° C.
  • the first predetermined value T1 is set to 30° C.
  • the absolute humidity mass of water vapor for 1 kg of dry air
  • the air around the indoor unit Ui is cooled accordingly.
  • dew condensation may occur on the inner and outer surfaces of the housing base 19 (see FIG. 2), and depending on the case, dew drop may occur.
  • the higher the indoor temperature T the larger the amount of water vapor that can be contained in the indoor air (absolute humidity when the relative humidity is 100%), and dew drops easily during freezing of the indoor heat exchanger 15. Become.
  • the control unit 30 does not perform the freezing process (S102) of the indoor heat exchanger 15. I am trying. That is, when the indoor temperature T is equal to or higher than the first predetermined value T1, the control unit 30 takes into account the possibility that the absolute humidity of the indoor air is high (that is, the dew drop in the indoor unit Ui), and as a precaution. I do not freeze it. This can prevent dew drop of the indoor unit Ui.
  • the control unit 30 When the room temperature T is equal to or higher than the first predetermined value T1, the control unit 30 shortens the duration of the freezing process or reduces the rotation speed of the compressor motor 11a (see FIG. 3) during the freezing process. However, this will be described in the second and third embodiments.
  • the absolute humidity is about 0.015 [kg/kg (DA)], which is not so high. That is, when the dry-bulb temperature is 20° C., regardless of whether the relative humidity is high or low, there is almost no possibility that dew drops will occur in the indoor unit Ui during freezing of the indoor heat exchanger 15.
  • the first predetermined value T1 is preset so that the indoor unit Ui does not have dew drop regardless of whether the relative humidity is high or low.
  • step S101 the control unit 30 freezes the indoor heat exchanger 15 in step S102. That is, the control unit 30 causes the indoor heat exchanger 15 to function as an evaporator, causes moisture in the air to frost on the indoor heat exchanger 15, and freezes the indoor heat exchanger 15.
  • the control unit 30 drives the compressor 11 (see FIG. 1) by making the opening of the expansion valve 14 (see FIG. 1) smaller than that during the cooling operation.
  • a low-pressure refrigerant having a low evaporation temperature flows into the indoor heat exchanger 15, so that moisture in the air frosts on the indoor heat exchanger 15, and frost and ice on the surface of the indoor heat exchanger 15 Grows.
  • the opening degree of the expansion valve 14 in the freezing process may be substantially the same as the opening degree during the cooling operation.
  • FIG. 6 is an explanatory diagram regarding ON/OFF switching of the compressor 11 and the indoor fan 16 (see FIG. 1 as appropriate).
  • the horizontal axis of FIG. 6 is time. Further, the vertical axis of FIG. 6 shows ON/OFF of the compressor 11 and ON/OFF of the indoor fan 16.
  • the compressor 11 and the indoor fan 16 are driven (that is, in the ON state) after the predetermined air conditioning operation is performed until time t1. After that, the compressor 11 and the indoor fan 16 are stopped at times t1 to t2, and then the indoor heat exchanger 15 is frozen at times t2 to t3 (step S102 in FIG. 4).
  • the indoor fan 16 is stopped while the indoor heat exchanger 15 is frozen.
  • cold air is not blown into the room, so that the indoor heat exchanger 15 can be frozen without impairing the comfort of the user.
  • the processing after time t3 will be described later.
  • the control unit 30 may drive the indoor fan 16 without stopping the indoor fan 16.
  • step S103 of FIG. 4 the control unit 30 defrosts the indoor heat exchanger 15.
  • the control unit 30 puts the devices such as the indoor fan 16 and the compressor 11 in a stopped state.
  • the frost and ice in the indoor heat exchanger 15 are naturally thawed at room temperature, and a large amount of water flows down to the drain pan 18 along the fins f (see FIG. 2).
  • the dust attached to the indoor heat exchanger 15 is washed away.
  • step S104 of FIG. 4 the control unit 30 dries the indoor heat exchanger 15.
  • the heating operation and the blowing operation are sequentially performed as the “drying” operation from time t4 to time t6.
  • the control unit 30 ends a series of processes regarding freeze washing (END).
  • the indoor temperature T (the detection value of the indoor temperature sensor 27a) is a second predetermined value T2 (for example, 10° C.) lower than the first predetermined value T1 (for example, 30° C.).
  • the control unit 30 it is preferable that the control unit 30 not perform the freezing process (S102). This is because if the room temperature T is too low, the amount of water that can be contained in the room air per unit volume is too small, and frost formation on the indoor heat exchanger 15 is difficult to proceed during the freezing process (S102). ..
  • the second predetermined value T2 is preset as a value lower than the first predetermined value T1 based on the time required for the freezing process of the indoor heat exchanger 15 and the power consumption. Further, the second predetermined value T2 may be equal to or higher than the lower limit value T min (for example, 10° C.) of the set temperature that can be changed by the remote controller 40 during the cooling operation or the heating operation. Thereby, even if the room temperature T is within the range of the set temperature that can be changed by the remote controller 40, if the numerical value is too low, the freezing process can be appropriately stopped.
  • the size of the second predetermined value T2 is not limited to the lower limit value T min or more, and may be less than the lower limit value T min .
  • the control unit 30 when the indoor temperature T (the detection value of the indoor temperature sensor 27a) is equal to or higher than the first predetermined value T1, the control unit 30 preferably performs the cooling operation or the air blowing operation when the freezing process (S102) is not performed. ..
  • the control unit 30 replaces the freeze washing and performs the cooling operation. Or, perform blow operation.
  • the indoor heat exchanger 15 is washed away by the condensed water generated in the indoor heat exchanger 15. Further, in the blowing operation, the inside of the indoor unit Ui is dried, so that the indoor unit Ui is in a clean state. In this way, the indoor unit Ui can be cleaned by a method different from the freezing process. Further, compared to the case where the operating sound of the air conditioner 100 does not occur even if the remote controller 40 is operated, the user's discomfort can be reduced.
  • the control unit 30 when the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes in FIG. 4), the control unit 30 does not perform the freezing process on the indoor heat exchanger 15 (END). As a result, it is possible to prevent freezing and washing from being performed in a state where the indoor air contains a large amount of water. Therefore, it is possible to suppress the dew drop in the indoor unit Ui during the freezing of the indoor heat exchanger 15. As described above, according to the first embodiment, it is possible to provide the air conditioner 100 in which the indoor heat exchanger 15 is in a clean state and the dew drop is suppressed.
  • the first predetermined value T1 used for determining whether or not the indoor heat exchanger 15 is frozen (S101 in FIG. 4) is lower than the upper limit value of the set temperature that can be changed by the remote controller 40. Therefore, for example, the first predetermined value T1 is appropriately set on the basis of the absolute humidity of the air whose absolute dew point is the first predetermined value T1 (absolute humidity when the relative humidity is 100%). Of the indoor unit Ui can be suppressed.
  • the detected value of the indoor temperature is used to determine whether or not the freezing process of the indoor heat exchanger 15 is performed.
  • the indoor heat exchanger 15 can be frozen and washed even with an inexpensive air conditioner in which the indoor unit Ui is not provided with a humidity sensor.
  • the second embodiment is different from the first embodiment in that when the room temperature T is equal to or higher than the first predetermined value T1, the control unit 30 makes the duration of the freezing process shorter than usual. That is, in the first embodiment, when the indoor temperature T is equal to or higher than the first predetermined value T1, the control unit 30 does not perform the freezing process, but in the second embodiment, the indoor temperature T is the first predetermined value T1. Even if the above is the case, the control unit 30 performs the freezing process.
  • Others configuration of the air conditioner 100, etc.: see FIGS. 1 to 3 are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
  • FIG. 7 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the second embodiment (see FIG. 3 as needed). Note that steps S101 to S104 in FIG. 7 are the same as those in the first embodiment (see FIG. 4), and therefore description thereof will be omitted.
  • step S101 when the indoor temperature T that is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S201.
  • step S201 the control unit 30 sets the freezing time of the indoor heat exchanger 15 to be short. That is, the control unit 30 shortens the duration of the freezing process (S202) of the indoor heat exchanger 15 as compared with the case where the indoor temperature T (the detection value of the indoor temperature sensor 27a) is less than the first predetermined value T1.
  • step S202 the control unit 30 freezes the indoor heat exchanger 15. That is, the control unit 30 performs the freezing process of step S202 for a shorter period of time than normal (S102). As a result, even in a situation where the amount of water contained in the indoor air per unit volume is large, the indoor heat exchanger 15 can be frozen while suppressing dew drop in the indoor unit Ui.
  • the control unit 30 After freezing the indoor heat exchanger 15 (S202), the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends the series of processes (END).
  • the control unit 30 freezes the indoor heat exchanger 15 even when performing the freezing process.
  • the time is set to be short (S201). Accordingly, even when the indoor temperature is relatively high, the indoor heat exchanger 15 can be frozen and washed while suppressing the drooling in the indoor unit Ui.
  • the control unit 30 performs the freezing process even when the room temperature T is equal to or higher than the first predetermined value T1, but in the third embodiment, the compression during the freezing process is performed.
  • the difference from the second embodiment is that the rotation speed of the machine motor 11a is made lower than usual.
  • the other components such as the configuration of the air conditioner 100: see FIGS. 1 to 3 are the same as in the second embodiment. Therefore, only the parts different from the second embodiment will be described, and the description of the overlapping parts will be omitted.
  • FIG. 8 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the third embodiment (see FIG. 3 as needed). Note that steps S101 to S104 in FIG. 8 are the same as those in the first embodiment (see FIG. 4), and therefore description thereof will be omitted.
  • step S101 when the indoor temperature T which is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S301.
  • step S301 the control unit 30 sets the rotation speed of the compressor motor 11a to be low. That is, the control unit 30 reduces the rotation speed of the compressor motor 11a during the freezing process (S302) more than when the indoor temperature T (the detection value of the indoor temperature sensor 27a) is less than the first predetermined value T1.
  • step S302 the control unit 30 freezes the indoor heat exchanger 15. That is, the control unit 30 drives the compressor motor 11a at a lower rotation speed than in the normal freezing process to freeze the indoor heat exchanger 15.
  • the control unit 30 may rotate the compressor motor 11a at a constant speed, or may perform feedback control.
  • driving the compressor motor 11a at a "smaller rotation speed" than in the normal freezing process means the following. That is, of the plurality of sensors (indoor temperature sensor 27a, outdoor temperature sensor 28, discharge temperature sensor (not shown), etc.) used for feedback control of the compressor motor 11a during the freezing process, each of the sensors other than the indoor temperature sensor 27a.
  • the detected value is a predetermined value and the detected value of the indoor temperature sensor 27a is less than the first predetermined value T1
  • the control unit 30 drives the compressor motor 11a at a predetermined rotation speed.
  • the control unit 30 turns on the compressor motor 11a. It is driven at a rotation speed lower than the above-mentioned predetermined rotation speed.
  • the flow rate of the refrigerant circulating in the refrigerant circuit Q (see FIG. 1) is reduced during freezing of the indoor heat exchanger 15, so that the heat exchange amount between the refrigerant and the air is smaller than that during normal freezing (S102). Also becomes smaller. Therefore, even in a situation where the amount of water contained in the indoor air per unit volume is large, the indoor heat exchanger 15 can be frozen while suppressing the dew drop in the indoor unit Ui.
  • control unit 30 After freezing the indoor heat exchanger 15 in this way (S302), the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends a series of processes ( END).
  • the control unit 30 freezes the indoor heat exchanger 15 even when performing the freezing process.
  • the point that the control unit 30 freezes the indoor heat exchanger 15 when the cooling operation or the dehumidifying operation has already been performed even if the indoor temperature T is the first predetermined value T1 or more is the first point. It differs from the embodiment. Others (configuration of the air conditioner 100, etc.: see FIGS. 1 to 3) are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
  • FIG. 9 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the fourth embodiment (see FIG. 3 as appropriate). Note that steps S101 to S104 in FIG. 9 are the same as those in the first embodiment (see FIG. 4), and therefore description thereof will be omitted.
  • step S101 when the indoor temperature T that is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S401.
  • step S401 the control unit 30 determines whether the cooling operation or the dehumidifying operation has been performed prior to freezing the indoor heat exchanger 15. Specifically, the control unit 30 determines whether or not the operation mode of the air conditioning operation performed most recently in step S401 is the cooling operation or the dehumidifying operation. For example, when the cooling operation is performed, the water contained in the air is condensed in the indoor heat exchanger 15, and the condensed water is sequentially passed through the drain pan 18 (see FIG. 2) and the drain hose (not shown). , Discharged to the outside. Therefore, the amount of water contained in the indoor air per unit volume is often reduced after the cooling operation. The same applies when a dehumidifying operation (so-called cooling dehumidification or reheat dehumidification) is performed.
  • a dehumidifying operation so-called cooling dehumidification or reheat dehumidification
  • step S401 in addition to the condition that the operation mode of the most recent air conditioning operation is the cooling operation or the dehumidifying operation, a condition that the duration of the cooling operation or the like is a predetermined time or more may be added. Good. Further, when the operation mode of the most recent air conditioning operation is the cooling operation or the dehumidifying operation, a condition that the elapsed time from the end of the cooling operation or the like is within a predetermined time may be added.
  • control unit 30 may perform the following processing. For example, when the cooling operation or the dehumidifying operation is performed for a predetermined time or more, the control unit 30 sets a permission flag (not shown) indicating that the freeze cleaning may be performed thereafter. The control unit 30 may freeze the indoor heat exchanger 15 when the permission flag is raised in step S401.
  • step S401 when the cooling operation or the dehumidifying operation is performed before freezing the indoor heat exchanger 15 (S401: Yes), the process of the control unit 30 proceeds to step S102.
  • step S102 the control unit 30 freezes the indoor heat exchanger 15. That is, with respect to the freezing time of the indoor heat exchanger 15 and the rotation speed of the compressor motor 11a, the control unit 30 executes the freezing process (S102) as in the case where the indoor temperature T is less than the first predetermined value T1.
  • control unit 30 After freezing the indoor heat exchanger 15 in step S102, the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends a series of processes (END).
  • step S401 when the cooling operation is not performed prior to the freezing of the indoor heat exchanger 15 and the dehumidifying operation is not performed (S401: No), the control unit 30 causes the indoor heat exchanger 15 to operate.
  • the series of processes is ended (END) without performing the freezing process (S102). This is because, if the indoor heat exchanger 15 is frozen in a state where the indoor air per unit volume contains a large amount of water, there is a possibility that the indoor unit Ui may be exposed to dew.
  • the control unit 30 freezes the indoor heat exchanger 15 (S102).
  • the indoor heat exchanger 15 can be frozen and washed while the amount of water contained in the indoor air per unit volume is not so large.
  • FIG. 10 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the fifth embodiment (see FIG. 3 as appropriate). Note that steps S101 to S104 and S401 in FIG. 10 are the same as those in the fourth embodiment (see FIG. 9), so description thereof will be omitted.
  • step S101 when the indoor temperature T that is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S401.
  • step S401 the control unit 30 determines whether the cooling operation or the dehumidifying operation has been performed prior to freezing the indoor heat exchanger 15.
  • the process of the control unit 30 proceeds to step S501.
  • the above-mentioned third predetermined value ⁇ T3 is a threshold value that serves as a criterion for determining whether or not to freeze the indoor heat exchanger 15 (S102), and is set in advance.
  • the temperature T evp of the indoor heat exchanger 15 is detected by the indoor heat exchanger temperature sensor 27b (see FIG. 3).
  • the temperatures T and T evp in step S501 may be detected values when the cooling operation or the like is performed (for example, after a predetermined time has elapsed from the start of the cooling operation or the like), or the time average thereof. May be Further, each of the temperatures T and T evp may be a detected value at a predetermined timing from the end of the cooling operation or the like to the start of the process of step S401, or may be the time average thereof.
  • step S501 when the temperature difference ⁇ T between the indoor temperature T and the temperature T evp of the indoor heat exchanger 15 is larger than the third predetermined value ⁇ T3 (S501: No), the process of the control unit 30 proceeds to step S102. ..
  • the cooling operation is performed in a situation where the amount of water contained in the indoor air per unit volume is not so large, the ratio of latent heat in the amount of heat exchange between the refrigerant and the air is relatively small. That is, since the amount of heat absorbed by the refrigerant from the water contained in the indoor air is relatively small, the indoor heat exchanger 15 is easily cooled. As a result, the temperature difference ⁇ T has a relatively large value.
  • control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15, and ends the series of processes (END). ..
  • FIG. 11 is a map showing the relationship between the rotation speed of the compressor motor 11a and the third predetermined value ⁇ T3.
  • the horizontal axis of FIG. 11 represents the rotation speed of the compressor motor 11a during the cooling operation or the dehumidifying operation performed prior to the freezing process.
  • the vertical axis of FIG. 11 is the above-mentioned third predetermined value ⁇ T3 (S501 of FIG. 10).
  • the third predetermined value ⁇ T3 is set corresponding to the rotation speed n of the compressor motor 11a in the cooling operation or the dehumidifying operation performed prior to the freezing process.
  • the control unit 30 sets the third predetermined value ⁇ T3 p corresponding to the rotation speed n p .
  • the third predetermined value ⁇ T3 is larger as the rotation speed of the compressor motor 11a in the cooling operation or the dehumidifying operation is higher. This is because as the rotation speed of the compressor motor 11a increases, the flow rate of the refrigerant circulating in the refrigerant circuit Q (see FIG. 1) increases, and the indoor heat exchanger 15 (evaporator) becomes easier to cool.
  • ⁇ Effect> even when the cooling operation or the dehumidifying operation is performed before the freezing process of the indoor heat exchanger 15 (S401: Yes in FIG. 10), the indoor temperature T and the temperature T of the indoor heat exchanger 15 are increased.
  • the control unit 30 does not freeze the indoor heat exchanger 15. Accordingly, when the indoor air per unit volume contains a relatively large amount of water, the indoor heat exchanger 15 is not frozen, so that it is possible to prevent dew drop in the indoor unit Ui.
  • the sixth embodiment is different from the first embodiment in that when the indoor temperature T is equal to or higher than the first predetermined value T1, the controller 30 freezes the indoor heat exchanger 15 after performing the cooling operation. There is. Others (configuration of the air conditioner 100, etc.: see FIGS. 1 to 3) are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
  • FIG. 12 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the sixth embodiment (see FIG. 3 as needed). Note that steps S101 to S104 in FIG. 12 are the same as those in the first embodiment (see FIG. 4), so description thereof will be omitted.
  • step S101 when the indoor temperature T that is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S601.
  • step S601 the control unit 30 executes a cooling operation.
  • the indoor heat exchanger 15 functions as an evaporator, and the water contained in the air taken into the indoor unit Ui is condensed in the indoor heat exchanger 15.
  • the condensed water of the indoor heat exchanger 15 is discharged to the outside through the drain pan 18 (see FIG. 2) and the drain hose (not shown) in order.
  • the amount of water contained in the indoor air per unit volume is reduced, so that it is possible to suppress the dew drop in the indoor unit Ui during the subsequent freezing process (S102).
  • step S102 the control unit 30 freezes the indoor heat exchanger 15.
  • the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends the series of processes (END).
  • the control unit 30 may perform the dehumidifying operation instead of the cooling operation in step S601. Even in such a dehumidifying operation, the amount of water contained in the indoor air can be reduced, as in the cooling operation.
  • the control unit 30 when the indoor temperature T (the detection value of the indoor temperature sensor 27a) is the first predetermined value T1 or more (S101: Yes), the control unit 30 performs the cooling operation or the dehumidifying operation (S601). After that, the indoor heat exchanger 15 is frozen (S102). Thereby, the control unit 30 can perform the freezing process (S102) of the indoor heat exchanger 15 in a state where the amount of water contained in the indoor air per unit volume is reduced. As a result, it is possible to appropriately suppress dew drop in the indoor unit Ui during the freezing process.
  • the seventh embodiment is different from the first embodiment in that the control unit 30 determines whether to freeze the indoor heat exchanger 15 based on the outdoor humidity based on the weather information.
  • the other points are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
  • FIG. 13 is a functional block diagram of an air conditioner 100A according to the seventh embodiment.
  • the indoor unit UAi of the air conditioner 100A includes a weather information acquisition unit 29 in addition to the configuration described in the first embodiment (see FIG. 3).
  • the weather information acquisition unit 29 may be provided in the outdoor unit Uo instead of the indoor unit UAi.
  • the weather information acquisition unit 29 has a function of acquiring weather information including outdoor humidity near the air conditioner 100 from the server 50 via a network (not shown).
  • the position information (region name of the installation place, etc.) of the air conditioner 100A is input by the user operating the remote controller 40, and this position information is stored in the storage unit 31a.
  • the weather information acquisition unit 30 When acquiring the weather information from the server 50, the weather information acquisition unit 30 reads the position information of the air conditioner 100A from the storage unit 31a and transmits this position information to the server 50 via a network (not shown).
  • the server 50 that has received the position information from the control unit 30 transmits the weather information near the air conditioner 100A to the control unit 30 via a network (not shown).
  • This weather information includes outdoor temperature and outdoor humidity.
  • the control unit 30 which receives the weather information from the server 50 stores the weather information in the storage unit 31a.
  • FIG. 14 is a flowchart of processing executed by the control unit 30 of the air conditioner according to the seventh embodiment (see FIG. 13 as needed). Note that steps S101 to S104 in FIG. 14 are the same as those in the first embodiment (see FIG. 4), and therefore description thereof will be omitted.
  • the control unit 30 causes the weather information acquisition unit 29 to acquire weather information including outdoor humidity from the server 50. Then, the control unit 30 stores this weather information in the storage unit 31a.
  • the control unit 30 may perform the process of step S701 periodically, or may perform the process when using the weather information for air conditioning control.
  • step S101 the control unit 30 determines whether or not the indoor temperature T, which is the detection value of the indoor temperature sensor 27a, is equal to or higher than a first predetermined value T1.
  • the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes)
  • the process of the control unit 30 proceeds to step S702.
  • step S702 the control unit 30 determines whether the outdoor humidity U (relative humidity or absolute humidity of outdoor air) included in the weather information is equal to or less than a fourth predetermined value U4.
  • the fourth predetermined value U4 is a threshold serving as a criterion for determining whether to freeze the indoor heat exchanger 15, and is set in advance. Further, the lower the outdoor humidity U, the lower the indoor humidity tends to be.
  • step S702 the process of the control unit 30 proceeds to step S102.
  • the control unit 30 freezes the indoor heat exchanger 15. That is, with respect to the freezing time of the indoor heat exchanger 15 and the rotation speed of the compressor motor 11a, the control unit 30 executes the freezing process (S102) as in the case where the indoor temperature T is less than the first predetermined value T1.
  • the outdoor humidity U is the fourth predetermined value or less
  • the indoor humidity is also likely to be low. That is, since the amount of water contained in the indoor air per unit volume is relatively small, there is almost no possibility that the indoor unit UAi will be exposed to dew during freezing of the indoor heat exchanger 15.
  • the control unit 30 After freezing the indoor heat exchanger 15 in step S102, the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends the series of processes (END).
  • step S702 when the outdoor humidity U is higher than the fourth predetermined value U4 in step S702 (S702: No), the control unit 30 ends the series of processes without performing the freezing process (S102) of the indoor heat exchanger 15. END.
  • the outdoor humidity U is higher than the fourth predetermined value U4, the indoor humidity may also be high.
  • the control unit 30 even when the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes), when the outdoor humidity U is equal to or lower than the fourth predetermined value U4 (S702: Yes), the control unit 30. Freezes the indoor heat exchanger 15 (S102). As a result, the indoor heat exchanger 15 can be frozen and washed while suppressing the dew drop in the indoor unit UAi. Further, according to the seventh embodiment, since it is not necessary to provide the outdoor unit Uo with a humidity sensor (not shown) for detecting the humidity of the outside air, cost reduction can be achieved.
  • the control unit 30 may cause the indoor heat exchanger 15 to function as an evaporator and cause the indoor heat exchanger 15 to condense.
  • the control unit 30 controls the temperature of the indoor heat exchanger 15 to be equal to or lower than the dew point of the indoor air and higher than a predetermined freezing temperature (the temperature at which the indoor heat exchanger 15 starts freezing).
  • the opening degree of the expansion valve 14 is adjusted. Thereby, the indoor heat exchanger 15 is condensed, and the indoor heat exchanger 15 is washed away by the condensed water.
  • step S101 a case has been described in which it is determined whether or not the indoor temperature T during the process of step S101 (see FIG. 4) is equal to or higher than the first predetermined value T1, but the present invention is not limited to this.
  • the determination process of step S101 may be performed based on the indoor temperature T (average value or the like) for a predetermined time period prior to the determination process of step S101.
  • the indoor temperature T (the detection value of the indoor temperature sensor 27a) is equal to or higher than the first predetermined value T1
  • the control unit 30 may execute the freezing process when the decrease width or the decrease speed is equal to or greater than the fifth predetermined value.
  • the control unit 30 executes the freezing process as in the case where the indoor temperature T is less than the first predetermined value T1.
  • the "decrease width" of the room temperature T mentioned above is a decrease width of the room temperature T in a predetermined time within a period in which the cooling operation or the dehumidifying operation is continued.
  • the decrease width or decrease speed of the indoor temperature T often becomes equal to or higher than the fifth predetermined value. In such a case, there is a high possibility that the indoor air is not so humid, and therefore even if freeze cleaning is performed, there is almost no possibility that dew drops will occur in the indoor unit Ui.
  • the control unit 30 when the room temperature T is equal to or higher than the first predetermined value T1 (S101: Yes in FIG. 12), the control unit 30 performs the cooling operation or the dehumidifying operation (S601) and then the freezing process (S601).
  • the present invention is not limited to this. That is, regardless of the height of the indoor temperature T, the control unit 30 may perform the cooling operation or the dehumidifying operation prior to the freezing process (S102). As a result, the process of the control unit 30 can be simplified and the dew drop in the indoor unit Ui during the freezing process can be suppressed.
  • the control unit 30 executes the determination process of step S101 (see FIG. 4 and the like) based on the upper limit value of the set temperature during the cooling operation or the upper limit value of the set temperature during the heating operation.
  • the air conditioning operation of the air conditioner 100 may be performed based on the operation of a mobile terminal (not shown) such as a mobile phone, a smartphone, or a tablet.
  • the respective embodiments can be appropriately combined.
  • the second embodiment and the third embodiment may be combined. That is, when the indoor temperature T is equal to or higher than the first predetermined value T1, the control unit 30 shortens the freezing time of the indoor heat exchanger 15 (second embodiment), and further during freezing of the indoor heat exchanger 15.
  • the rotation speed of the compressor motor 11a may be set low (third embodiment).
  • each embodiment the configuration in which one indoor unit Ui (see FIG. 1) and one outdoor unit Uo (see FIG. 1) are provided has been described, but the configuration is not limited to this. That is, a plurality of indoor units connected in parallel may be provided, or a plurality of outdoor units connected in parallel may be provided.
  • the air conditioner 100 described in each embodiment is applicable to various types of air conditioners in addition to the wall-mounted air conditioner.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one including all the configurations described. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the respective embodiments.
  • the above-mentioned mechanisms and configurations are shown to be necessary for explanation, and not all the mechanisms and configurations are shown in the product.
  • Air conditioner 100,100A Air conditioner 11 Compressor 11a Compressor motor (compressor motor) 12 Outdoor heat exchanger (condenser/evaporator) 13 outdoor fan 14 expansion valve 15 indoor heat exchanger (evaporator/condenser) 16 Indoor Fan 27a Indoor Temperature Sensor 27b Indoor Heat Exchanger Temperature Sensor 28 Outdoor Temperature Sensor 29 Meteorological Information Acquisition Section 30 Control Section 40 Remote Control 50 Server Q Refrigerant Circuit

Abstract

Provided is an air conditioner that cleans an indoor heat exchanger and prevents condensation from dripping. A control unit (30) for an air conditioner (100) performs a freezing process for causing an indoor heat exchanger (15) to function as an evaporator and to freeze. If the detected value of an indoor temperature sensor is equal to or greater than a first prescribed value, the control unit (30) either does not perform the freezing process, or shortens the freezing process duration time or decreases the rotational speed of a compressor motor (11a) during the freezing process even when performing the freezing process. The first prescribed value is lower than the upper limit for the set temperature that can be changed by a remote control during cooling operation or heating operation.

Description

空気調和機Air conditioner
 本発明は、空気調和機に関する。 The present invention relates to an air conditioner.
 空気調和機の室内熱交換器を清潔な状態にする技術として、例えば、特許文献1には、室内熱交換器の着霜・除霜を順次に行って、室内熱交換器の汚れを除去することが記載されている。 As a technique for cleaning the indoor heat exchanger of the air conditioner, for example, in Patent Document 1, frosting and defrosting of the indoor heat exchanger are sequentially performed to remove dirt from the indoor heat exchanger. Is described.
特開2010-14288号公報JP, 2010-14288, A
 ところで、室内熱交換器に着霜させると、室内機付近の空気の温度が露点を下回り、室内機の筐体や諸部品が結露する可能性がある。例えば、室内機の筐体の外表面が結露すると、場合によっては、その結露水が自重で落下(露垂れ)する可能性がある。このような問題の対策について、特許文献1には記載されていない。 By the way, if frost is formed on the indoor heat exchanger, the temperature of the air near the indoor unit may fall below the dew point, and the housing and various parts of the indoor unit may condense. For example, when dew condensation occurs on the outer surface of the housing of the indoor unit, the dew condensation water may drop (drip) under its own weight in some cases. Patent Document 1 does not describe measures against such a problem.
 そこで、本発明は、室内熱交換器を清潔な状態にし、さらに、露垂れを抑制する空気調和機を提供することを課題とする。 Therefore, an object of the present invention is to provide an air conditioner that cleans an indoor heat exchanger and further suppresses dew drop.
 前記課題を解決するために、本発明に係る空気調和機は、制御部が、室内熱交換器を蒸発器として機能させ、前記室内熱交換器を凍結させる凍結処理を行い、室内温度センサの検出値が第1所定値以上である場合、前記制御部は、前記凍結処理を行わないか、前記凍結処理を行うときでも、前記室内温度センサの検出値が前記第1所定値未満である場合よりも前記凍結処理の継続時間を短くし、又は、前記室内温度センサの検出値が前記第1所定値未満である場合よりも前記凍結処理中の圧縮機のモータの回転速度を小さくし、前記第1所定値は、冷房運転時又は暖房運転時にリモコンで変更可能な設定温度の上限値よりも低いこととした。 In order to solve the above problems, in the air conditioner according to the present invention, the control unit causes the indoor heat exchanger to function as an evaporator, performs a freezing process to freeze the indoor heat exchanger, and detects the indoor temperature sensor. When the value is equal to or more than the first predetermined value, the control unit does not perform the freezing process, or even when the freezing process is performed, the control value is less than the case where the detected value of the indoor temperature sensor is less than the first predetermined value. Also shortens the duration of the freezing process, or reduces the rotation speed of the motor of the compressor during the freezing process as compared to the case where the detection value of the indoor temperature sensor is less than the first predetermined value, The predetermined value of 1 is lower than the upper limit value of the set temperature that can be changed by the remote controller during the cooling operation or the heating operation.
 また、本発明に係る空気調和機は、制御部が、室内熱交換器を蒸発器として機能させ、前記室内熱交換器を凍結させる凍結処理を行い、室内温度センサの検出値が第1所定値以上である場合、前記制御部は、冷房運転又は除湿運転を行った後に前記凍結処理を行い、前記第1所定値は、冷房運転時又は暖房運転時にリモコンで変更可能な設定温度の上限値よりも低いこととした。 Further, in the air conditioner according to the present invention, the control unit causes the indoor heat exchanger to function as an evaporator, performs a freezing process to freeze the indoor heat exchanger, and the detected value of the indoor temperature sensor is the first predetermined value. In the above case, the control unit performs the freezing process after performing the cooling operation or the dehumidifying operation, and the first predetermined value is higher than the upper limit value of the set temperature that can be changed by the remote controller during the cooling operation or the heating operation. Also decided to be low.
 本発明によれば、室内熱交換器を清潔な状態にし、さらに、露垂れを抑制する空気調和機を提供できる。 According to the present invention, it is possible to provide an air conditioner that cleans an indoor heat exchanger and further suppresses dew drop.
本発明の第1実施形態に係る空気調和機の構成図である。It is a block diagram of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機の室内機の縦断面図である。It is a longitudinal cross-sectional view of the indoor unit of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機の機能ブロック図である。It is a functional block diagram of the air conditioner concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る空気調和機の制御部が実行する処理のフローチャートである。It is a flow chart of processing which a control part of an air harmony machine concerning a 1st embodiment of the present invention performs. 本発明の第1実施形態に係る空気調和機において、室内温度に関する第1所定値や上限値が記載された湿り空気線図であるIn the air conditioner according to the first embodiment of the present invention, it is a moist air diagram in which a first predetermined value and an upper limit value regarding the indoor temperature are described. 本発明の第1実施形態に係る空気調和機が備える圧縮機及び室内ファンのON/OFFの切替えに関する説明図である。It is explanatory drawing regarding ON/OFF switching of the compressor and the indoor fan with which the air conditioner which concerns on 1st Embodiment of this invention is equipped. 本発明の第2実施形態に係る空気調和機の制御部が実行する処理のフローチャートである。It is a flow chart of processing which a control part of an air harmony machine concerning a 2nd embodiment of the present invention performs. 本発明の第3実施形態に係る空気調和機の制御部が実行する処理のフローチャートである。It is a flow chart of processing which a control part of an air harmony machine concerning a 3rd embodiment of the present invention performs. 本発明の第4実施形態に係る空気調和機の制御部が実行する処理のフローチャートである。It is a flow chart of processing which a control part of an air harmony machine concerning a 4th embodiment of the present invention performs. 本発明の第5実施形態に係る空気調和機の制御部が実行する処理のフローチャートである。It is a flow chart of processing which a control part of an air harmony machine concerning a 5th embodiment of the present invention performs. 本発明の第5実施形態に係る空気調和機が備える圧縮機モータの回転速度と、第3所定値と、の関係を示すマップである。It is a map which shows the rotation speed of a compressor motor with which an air conditioner concerning a 5th embodiment of the present invention is equipped, and the 3rd predetermined value. 本発明の第6実施形態に係る空気調和機の制御部が実行する処理のフローチャートである。It is a flow chart of processing which a control part of an air harmony machine concerning a 6th embodiment of the present invention performs. 本発明の第7実施形態に係る空気調和機の機能ブロック図である。It is a functional block diagram of the air conditioner concerning a 7th embodiment of the present invention. 本発明の第7実施形態に係る空気調和機の制御部が実行する処理のフローチャートである。It is a flow chart of processing which a control part of an air harmony machine concerning a 7th embodiment of the present invention performs.
≪第1実施形態≫
<空気調和機の構成>
 図1は、第1実施形態に係る空気調和機100の構成図である。
 なお、図1の実線矢印は、暖房運転時の冷媒の流れを示している。
 一方、図1の破線矢印は、冷房運転時の冷媒の流れを示している。
 空気調和機100は、冷房運転や暖房運転等の空調を行う機器である。図1に示すように、空気調和機100は、圧縮機11と、室外熱交換器12と、室外ファン13と、膨張弁14と、を備えている。また、空気調和機100は、前記した構成の他に、室内熱交換器15と、室内ファン16と、四方弁17と、を備えている。
«First embodiment»
<Structure of air conditioner>
FIG. 1 is a configuration diagram of an air conditioner 100 according to the first embodiment.
The solid line arrow in FIG. 1 indicates the flow of the refrigerant during the heating operation.
On the other hand, the broken line arrow in FIG. 1 indicates the flow of the refrigerant during the cooling operation.
The air conditioner 100 is a device that performs air conditioning such as cooling operation and heating operation. As shown in FIG. 1, the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, and an expansion valve 14. Further, the air conditioner 100 includes an indoor heat exchanger 15, an indoor fan 16, and a four-way valve 17, in addition to the above-described configuration.
 圧縮機11は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器である。図1に示すように、圧縮機11は、駆動源である圧縮機モータ11aを備えている。
 室外熱交換器12は、その伝熱管(図示せず)を通流する冷媒と、室外ファン13から送り込まれる外気と、の間で熱交換が行われる熱交換器である。
The compressor 11 is a device that compresses a low-temperature low-pressure gas refrigerant and discharges it as a high-temperature high-pressure gas refrigerant. As shown in FIG. 1, the compressor 11 includes a compressor motor 11a that is a drive source.
The outdoor heat exchanger 12 is a heat exchanger that performs heat exchange between the refrigerant flowing through the heat transfer pipe (not shown) and the outside air sent from the outdoor fan 13.
 室外ファン13は、室外熱交換器12に外気を送り込むファンである。室外ファン13は、駆動源である室外ファンモータ13aを備え、室外熱交換器12の付近に設置されている。
 膨張弁14は、「凝縮器」(室外熱交換器12及び室内熱交換器15の一方)で凝縮した冷媒を減圧する弁である。なお、膨張弁14で減圧された冷媒は、「蒸発器」(室外熱交換器12及び室内熱交換器15の他方)に導かれる。
The outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12. The outdoor fan 13 includes an outdoor fan motor 13a that is a drive source, and is installed near the outdoor heat exchanger 12.
The expansion valve 14 is a valve that decompresses the refrigerant condensed in the "condenser" (one of the outdoor heat exchanger 12 and the indoor heat exchanger 15). The refrigerant decompressed by the expansion valve 14 is guided to the "evaporator" (the other of the outdoor heat exchanger 12 and the indoor heat exchanger 15).
 室内熱交換器15は、その伝熱管g(図2参照)を通流する冷媒と、室内ファン16から送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。
 室内ファン16は、室内熱交換器15に室内空気を送り込むファンである。室内ファン16は、駆動源である室内ファンモータ16c(図3参照)を有し、室内熱交換器15の付近に設置されている。
The indoor heat exchanger 15 performs heat exchange between the refrigerant flowing through the heat transfer tube g (see FIG. 2) and the indoor air (air in the air-conditioned space) sent from the indoor fan 16. It is a vessel.
The indoor fan 16 is a fan that sends indoor air to the indoor heat exchanger 15. The indoor fan 16 has an indoor fan motor 16c (see FIG. 3), which is a drive source, and is installed near the indoor heat exchanger 15.
 四方弁17は、空気調和機100の運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(図1の破線矢印を参照)には、冷媒回路Qにおいて、圧縮機11、室外熱交換器12(凝縮器)、膨張弁14、及び室内熱交換器15(蒸発器)を順次に介して、冷凍サイクルで冷媒が循環する。 The four-way valve 17 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100. For example, during the cooling operation (see the dashed arrow in FIG. 1), in the refrigerant circuit Q, the compressor 11, the outdoor heat exchanger 12 (condenser), the expansion valve 14, and the indoor heat exchanger 15 (evaporator). Refrigerant circulates in the refrigeration cycle through the.
 一方、暖房運転時(図1の実線矢印を参照)には、冷媒回路Qにおいて、圧縮機11、室内熱交換器15(凝縮器)、膨張弁14、及び室外熱交換器12(蒸発器)を順次に介して、冷凍サイクルで冷媒が循環する。 On the other hand, during the heating operation (see the solid arrow in FIG. 1), in the refrigerant circuit Q, the compressor 11, the indoor heat exchanger 15 (condenser), the expansion valve 14, and the outdoor heat exchanger 12 (evaporator). Refrigerant circulates in the refrigeration cycle through the.
 すなわち、圧縮機11、「凝縮器」、膨張弁14、及び「蒸発器」を順次に介して冷媒が循環する冷媒回路Qにおいて、前記した「凝縮器」及び「蒸発器」の一方は室外熱交換器12であり、他方は室内熱交換器15である。 That is, in the refrigerant circuit Q in which the refrigerant circulates sequentially through the compressor 11, the “condenser”, the expansion valve 14, and the “evaporator”, one of the above-mentioned “condenser” and “evaporator” is the outdoor heat. It is the exchanger 12 and the other is the indoor heat exchanger 15.
 なお、図1の例では、圧縮機11、室外熱交換器12、室外ファン13、膨張弁14、及び四方弁17が、室外機Uoに設置されている。一方、室内熱交換器15や室内ファン16は、室内機Uiに設置されている。 In the example of FIG. 1, the compressor 11, the outdoor heat exchanger 12, the outdoor fan 13, the expansion valve 14, and the four-way valve 17 are installed in the outdoor unit Uo. On the other hand, the indoor heat exchanger 15 and the indoor fan 16 are installed in the indoor unit Ui.
 図2は、室内機Uiの縦断面図である。
 図2に示すように、室内機Uiは、前記した室内熱交換器15や室内ファン16の他に、ドレンパン18と、筐体ベース19と、フィルタ20a,20bと、を備えている。さらに、室内機Uiは、前面パネル21と、左右風向板22と、上下風向板23と、を備えている。
FIG. 2 is a vertical cross-sectional view of the indoor unit Ui.
As shown in FIG. 2, the indoor unit Ui includes a drain pan 18, a housing base 19, and filters 20a and 20b in addition to the indoor heat exchanger 15 and the indoor fan 16 described above. Further, the indoor unit Ui includes a front panel 21, a left/right airflow direction plate 22, and a vertical airflow direction plate 23.
 室内熱交換器15は、複数のフィンfと、それらのフィンfを貫通する複数の伝熱管gと、を備えている。別の観点から説明すると、室内熱交換器15は、室内ファン16の前側に配置される前側室内熱交換器15aと、室内ファン16の後側に配置される後側室内熱交換器15bと、を備えている。図2の例では、前側室内熱交換器15aの上端部と、後側室内熱交換器15bの上端部と、が逆V状に接続されている。 The indoor heat exchanger 15 includes a plurality of fins f and a plurality of heat transfer tubes g that penetrate the fins f. Explaining from another viewpoint, the indoor heat exchanger 15 includes a front indoor heat exchanger 15a arranged on the front side of the indoor fan 16 and a rear indoor heat exchanger 15b arranged on the rear side of the indoor fan 16. Equipped with. In the example of FIG. 2, the upper end of the front indoor heat exchanger 15a and the upper end of the rear indoor heat exchanger 15b are connected in an inverted V shape.
 室内ファン16は、例えば、円筒状のクロスフローファンであり、室内熱交換器15の付近に設置されている。室内ファン16は、複数のファンブレード16aと、これらのファンブレード16aに設置される環状の仕切板16bと、駆動源である室内ファンモータ16c(図3参照)と、を備えている。 The indoor fan 16 is, for example, a cylindrical cross-flow fan, and is installed near the indoor heat exchanger 15. The indoor fan 16 includes a plurality of fan blades 16a, an annular partition plate 16b installed on the fan blades 16a, and an indoor fan motor 16c (see FIG. 3) that is a drive source.
 ドレンパン18は、室内熱交換器15の凝縮水を受けるものであり、室内熱交換器15の下側に設置されている。
 筐体ベース19は、室内熱交換器15や室内ファン16等の機器が設置される筐体である。
The drain pan 18 receives the condensed water of the indoor heat exchanger 15, and is installed below the indoor heat exchanger 15.
The housing base 19 is a housing in which devices such as the indoor heat exchanger 15 and the indoor fan 16 are installed.
 フィルタ20a,20bは、室内ファン16の駆動に伴って室内熱交換器15に向かう空気から塵埃を捕集するものである。一方のフィルタ20aは室内熱交換器15の前側に配置され、他方のフィルタ20bは室内熱交換器15の上側に配置されている。 The filters 20a and 20b are for collecting dust from the air directed to the indoor heat exchanger 15 as the indoor fan 16 is driven. One filter 20a is arranged on the front side of the indoor heat exchanger 15, and the other filter 20b is arranged on the upper side of the indoor heat exchanger 15.
 前面パネル21は、前側のフィルタ20aを覆うように設置されるパネルであり、下端を軸として前側に回動可能になっている。なお、前面パネル21が回動しない構成であってもよい。
 左右風向板22は、室内に吹き出される空気の左右方向の風向きを調整する板状部材である。左右風向板22は、吹出風路h3に配置され、左右風向板用モータ24(図3参照)によって左右方向に回動するようになっている。
The front panel 21 is a panel installed so as to cover the filter 20a on the front side, and is rotatable frontward about its lower end. The front panel 21 may not rotate.
The left-right airflow direction plate 22 is a plate-shaped member that adjusts the left-right airflow direction of the air blown into the room. The left/right airflow direction plate 22 is arranged in the blowout air passage h3, and is rotated in the left/right direction by the left/right airflow direction plate motor 24 (see FIG. 3).
 上下風向板23は、室内に吹き出される空気の上下方向の風向きを調整する板状部材である。上下風向板23は、空気吹出口h4の付近に配置され、上下風向板用モータ25(図3参照)によって上下方向に回動するようになっている。 The vertical wind direction plate 23 is a plate-shaped member that adjusts the vertical wind direction of the air blown into the room. The vertical wind direction plate 23 is arranged near the air outlet h4, and is rotated in the vertical direction by the vertical wind direction plate motor 25 (see FIG. 3).
 空気吸込口h1,h2を介して吸い込まれた空気は、室内熱交換器15の伝熱管gを通流する冷媒と熱交換し、熱交換した空気が吹出風路h3に導かれる。そして、吹出風路h3を通流する空気は、左右風向板22及び上下風向板23によって所定方向に導かれ、さらに、空気吹出口h4を介して室内に吹き出される。 The air sucked through the air suction ports h1 and h2 exchanges heat with the refrigerant flowing through the heat transfer tube g of the indoor heat exchanger 15, and the heat-exchanged air is guided to the blowout air passage h3. Then, the air flowing through the blowout air passage h3 is guided in a predetermined direction by the left/right airflow direction plate 22 and the up/down airflow direction plate 23, and is further blown out into the room through the air outlet h4.
 なお、空気の流れに伴って空気吸込口h1,h2に向かう塵埃の大部分は、フィルタ20a,20bで捕集される。しかしながら、細かい塵埃がフィルタ20a,20bを通り抜けて室内熱交換器15に付着することがあるため、室内熱交換器15を定期的に洗浄することが望ましい。そこで、本実施形態では、室内熱交換器15で凍結して着霜させた後、室内熱交換器15を解凍して洗浄するようにしている。以下では、室内熱交換器15の凍結を含む一連の処理を、室内熱交換器15の「凍結洗浄」という。 Note that most of the dust that goes toward the air inlets h1 and h2 with the flow of air is collected by the filters 20a and 20b. However, since fine dust may pass through the filters 20a and 20b and adhere to the indoor heat exchanger 15, it is desirable to regularly clean the indoor heat exchanger 15. Therefore, in the present embodiment, the indoor heat exchanger 15 is frozen and frosted, and then the indoor heat exchanger 15 is thawed and washed. Hereinafter, a series of processes including freezing of the indoor heat exchanger 15 will be referred to as “freezing cleaning” of the indoor heat exchanger 15.
 図3は、空気調和機100の機能ブロック図である。
 図3に示す室内機Uiは、前記した各構成の他に、リモコン送受信部26と、環境検出部27と、室内制御回路31と、を備えている。
 リモコン送受信部26は、赤外線通信等によって、リモコン40との間で所定の情報をやり取りする。
FIG. 3 is a functional block diagram of the air conditioner 100.
The indoor unit Ui shown in FIG. 3 includes a remote control transmission/reception unit 26, an environment detection unit 27, and an indoor control circuit 31 in addition to the above-described components.
The remote controller transceiver 26 exchanges predetermined information with the remote controller 40 by infrared communication or the like.
 環境検出部27は、室内温度センサ27aと、室内熱交換器温度センサ27bと、を備えている。
 室内温度センサ27aは、室内(空調対象空間)の温度を検出するセンサであり、例えば、フィルタ20a,20b(図2参照)の空気吸込側に設置されている。
The environment detection unit 27 includes an indoor temperature sensor 27a and an indoor heat exchanger temperature sensor 27b.
The indoor temperature sensor 27a is a sensor that detects the temperature of the room (air-conditioned space), and is installed, for example, on the air intake side of the filters 20a and 20b (see FIG. 2).
 室内熱交換器温度センサ27bは、室内熱交換器15(図2参照)の温度を検出するセンサであり、室内熱交換器15に設置されている。
 室内温度センサ27a及び室内熱交換器温度センサ27bの検出値は、室内制御回路31に出力される。
The indoor heat exchanger temperature sensor 27b is a sensor that detects the temperature of the indoor heat exchanger 15 (see FIG. 2), and is installed in the indoor heat exchanger 15.
The detection values of the indoor temperature sensor 27a and the indoor heat exchanger temperature sensor 27b are output to the indoor control circuit 31.
 なお、図3の例では、空気調和機100が、室内の湿度(例えば、相対湿度)を検出する湿度センサ(図示せず)を備えない構成になっているが、これに限定されるものではない。 In the example of FIG. 3, the air conditioner 100 does not include a humidity sensor (not shown) that detects indoor humidity (for example, relative humidity), but the present invention is not limited to this. Absent.
 室内制御回路31は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。 Although not shown, the indoor control circuit 31 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read and expanded in the RAM, and the CPU executes various processes.
 図3に示すように、室内制御回路31は、記憶部31aと、室内制御部31bと、を備えている。
 記憶部31aには、所定のプログラムの他、リモコン送受信部26を介して受信したデータや、各センサの検出値等が記憶される。
 室内制御部31bは、記憶部31aに記憶されたデータに基づいて、室内ファンモータ16c、左右風向板用モータ24、上下風向板用モータ25等を制御する。
As shown in FIG. 3, the indoor control circuit 31 includes a storage unit 31a and an indoor control unit 31b.
In the storage unit 31a, in addition to a predetermined program, data received via the remote controller transmission/reception unit 26, detection values of each sensor, and the like are stored.
The indoor control unit 31b controls the indoor fan motor 16c, the left/right wind direction plate motor 24, the up/down air direction plate motor 25, and the like based on the data stored in the storage unit 31a.
 室外機Uoは、前記した構成の他に、室外温度センサ28と、室外制御回路32と、を備えている。
 室外温度センサ28は、室外の温度を検出するセンサであり、室外機Uoの所定箇所に設置されている。なお、図3では省略しているが、室外機Uoは、圧縮機11(図1参照)の吐出温度を検出するセンサも備えている。これらの各センサの検出値は、室外制御回路32に出力される。
The outdoor unit Uo includes an outdoor temperature sensor 28 and an outdoor control circuit 32 in addition to the above-described configuration.
The outdoor temperature sensor 28 is a sensor that detects an outdoor temperature, and is installed at a predetermined location of the outdoor unit Uo. Although not shown in FIG. 3, the outdoor unit Uo also includes a sensor that detects the discharge temperature of the compressor 11 (see FIG. 1). The detection value of each of these sensors is output to the outdoor control circuit 32.
 室外制御回路32は、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成され、通信線を介して室内制御回路31に接続されている。図3に示すように、室外制御回路32は、記憶部32aと、室外制御部32bと、を備えている。 Although not shown, the outdoor control circuit 32 is configured to include electronic circuits such as a CPU, ROM, RAM, and various interfaces, and is connected to the indoor control circuit 31 via a communication line. As shown in FIG. 3, the outdoor control circuit 32 includes a storage unit 32a and an outdoor control unit 32b.
 記憶部32aには、所定のプログラムの他、室内制御回路31から受信したデータ等が記憶される。室外制御部32bは、記憶部32aに記憶されたデータに基づいて、圧縮機モータ11a、室外ファンモータ13a、膨張弁14等を制御する。なお、少なくとも圧縮機11(図1参照)及び膨張弁14を制御する「制御部30」は、室内制御回路31と、室外制御回路32と、を含んで構成される。
 次に、室内熱交換器15の凍結洗浄に関する制御部30の処理について、図4を用いて説明する。
The storage unit 32a stores a predetermined program and data received from the indoor control circuit 31. The outdoor control unit 32b controls the compressor motor 11a, the outdoor fan motor 13a, the expansion valve 14 and the like based on the data stored in the storage unit 32a. The “control unit 30” that controls at least the compressor 11 (see FIG. 1) and the expansion valve 14 is configured to include an indoor control circuit 31 and an outdoor control circuit 32.
Next, the processing of the control unit 30 regarding the freeze cleaning of the indoor heat exchanger 15 will be described with reference to FIG.
<制御部の処理>
 図4は、第1実施形態に係る空気調和機100の制御部30が実行する処理のフローチャートである(適宜、図3を参照)。
 なお、図4では省略しているが、例えば、前回の凍結洗浄(S101~S104)の終了時から積算した空調運転の実行時間の和が所定時間に達した場合、制御部30が、ステップS101の処理を開始するようにしてもよい。また、ユーザによってリモコン40の凍結洗浄のボタン(図示せず)が押された場合、制御部30が、ステップS101の処理を開始するようにしてもよい。
<Processing of control unit>
FIG. 4 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the first embodiment (see FIG. 3 as needed).
Although omitted in FIG. 4, for example, when the sum of the execution times of the air conditioning operation accumulated from the end of the previous freeze washing (S101 to S104) reaches a predetermined time, the control unit 30 causes the control unit 30 to perform the step S101. The process of may be started. Further, when the user presses the freeze washing button (not shown) of the remote controller 40, the control unit 30 may start the process of step S101.
 ステップS101において制御部30は、室内温度センサ27aの検出値である室内温度Tが第1所定値T1以上であるか否かを判定する。ここで、第1所定値T1とは、室内熱交換器15の凍結処理(S102)を行うか否かの判定基準となる閾値であり、予め設定されている。 In step S101, the control unit 30 determines whether the indoor temperature T, which is the detection value of the indoor temperature sensor 27a, is equal to or higher than the first predetermined value T1. Here, the first predetermined value T1 is a threshold value that serves as a criterion for determining whether or not to freeze the indoor heat exchanger 15 (S102), and is set in advance.
 また、室内温度センサ27a(図3参照)を用いた室内温度(空調対象空間の温度)の検出時に、制御部30が室内ファン16を駆動させることが好ましい。これによって、室内の空気が攪拌されるため、室内温度センサ27aが室内温度を検出する際の誤差を低減できる。 Further, it is preferable that the control unit 30 drives the indoor fan 16 when the indoor temperature (the temperature of the air-conditioned space) is detected using the indoor temperature sensor 27a (see FIG. 3). As a result, the air in the room is agitated, so that the error when the room temperature sensor 27a detects the room temperature can be reduced.
 ステップS101において室内温度Tが第1所定値T1以上である場合(S101:Yes)、制御部30は、室内熱交換器15の凍結処理(S102)を行うことなく、一連の処理を終了する(END)。なお、室内温度Tが第1所定値T1以上である場合でも、凍結処理を行うことがあるが、その例については後記する(第2、第3実施形態)。
 一方、ステップS101において室内温度Tが第1所定値T1未満である場合(S101:No)、ステップS102において制御部30は、室内熱交換器15を凍結させる(凍結処理)。
When the indoor temperature T is equal to or higher than the first predetermined value T1 in step S101 (S101: Yes), the control unit 30 ends the series of processes without performing the freezing process (S102) of the indoor heat exchanger 15 ( END). Even when the room temperature T is equal to or higher than the first predetermined value T1, the freezing process may be performed, but an example thereof will be described later (second and third embodiments).
On the other hand, when the indoor temperature T is lower than the first predetermined value T1 in step S101 (S101: No), the control unit 30 freezes the indoor heat exchanger 15 in step S102 (freezing process).
 ところで、空気調和機100では、ユーザによるリモコン40の操作で変更可能な設定温度(空調対象空間の温度設定値)の上限値・下限値が予め設定され、記憶部31aに格納されている。その一例を挙げると、冷房運転時や暖房運転時、ユーザがリモコン40の操作によって、10℃(下限値Tmin)以上かつ32℃(上限値TMAX)以下の範囲内で設定温度を変更できるようになっている。 By the way, in the air conditioner 100, the upper limit value and the lower limit value of the set temperature (temperature set value of the air conditioning target space) that can be changed by the user operating the remote controller 40 are preset and stored in the storage unit 31a. For example, during cooling operation or heating operation, the user can change the set temperature within the range of 10° C. (lower limit value T min ) or more and 32° C. (upper limit value T MAX ) or less by operating the remote controller 40. It is like this.
 そして、本実施形態では、ステップS101の判定処理で用いられる第1所定値T1が、冷房運転時又は暖房運転時にリモコン40で変更可能な設定温度の上限値TMAX(例えば、32℃)よりも低い値として、予め設定されている。本実施形態では、一例として、第1所定値T1が30℃で設定されているものとして説明する。 In the present embodiment, the first predetermined value T1 used in the determination process of step S101 is higher than the upper limit value T MAX (for example, 32° C.) of the set temperature that can be changed by the remote controller 40 during the cooling operation or the heating operation. It is preset as a low value. In the present embodiment, as an example, the first predetermined value T1 will be described as being set at 30°C.
 図5は、室内温度に関する前記の第1所定値T1や前記の上限値TMAXが記載された湿り空気線図である(適宜、図3を参照)。
 なお、図5の横軸は、空気の乾球温度(つまり、室内温度)である。図5の縦軸は、空気の絶対湿度である。また、図5の右上がりの曲線(実線及び破線)は、空気の相対湿度(例えば、80%)が等しい点の集まりである。図5の例では、冷房運転時又は暖房運転時にリモコン40で変更可能な設定温度の上限値TMAXが32℃であり、第1所定値T1が30℃に設定されている。
FIG. 5 is a moist air diagram in which the first predetermined value T1 and the upper limit value T MAX related to the indoor temperature are described (see FIG. 3 as appropriate).
The horizontal axis of FIG. 5 represents the dry-bulb temperature of air (that is, the room temperature). The vertical axis of FIG. 5 is the absolute humidity of air. The upward-sloping curve (solid line and broken line) in FIG. 5 is a group of points where the relative humidity of air (for example, 80%) is equal. In the example of FIG. 5, the upper limit value T MAX of the set temperature that can be changed by the remote controller 40 during the cooling operation or the heating operation is 32° C., and the first predetermined value T1 is set to 30° C.
 例えば、室内空気の乾球温度が第1所定値T1よりも高い35℃であり、相対湿度80%の状態Hでは、その絶対湿度(乾き空気1kgに対する水蒸気の質量)が、約0.029[kg/kg(DA)]になっている。
 仮に、絶対湿度が比較的高い状態Hの空気中で室内熱交換器15が凍結されると、それに伴って、室内機Ui付近の空気が冷やされる。その結果、筐体ベース19(図2参照)の内表面・外表面が結露し、場合によっては、露垂れが生ずる可能性がある。なお、室内温度Tが高いほど、室内空気が含むことが可能な水蒸気の量(相対湿度が100%のときの絶対湿度)が多くなり、室内熱交換器15の凍結中に露垂れが生じやすくなる。
For example, in a state H in which the dry-bulb temperature of the room air is higher than the first predetermined value T1 and the relative humidity is 80%, the absolute humidity (mass of water vapor for 1 kg of dry air) is about 0.029 [. kg/kg (DA)].
If the indoor heat exchanger 15 is frozen in the air in the state H where the absolute humidity is relatively high, the air around the indoor unit Ui is cooled accordingly. As a result, dew condensation may occur on the inner and outer surfaces of the housing base 19 (see FIG. 2), and depending on the case, dew drop may occur. Note that the higher the indoor temperature T, the larger the amount of water vapor that can be contained in the indoor air (absolute humidity when the relative humidity is 100%), and dew drops easily during freezing of the indoor heat exchanger 15. Become.
 例えば、室内空気の乾球温度が30℃(第1所定値T1)であり、相対湿度が100%である場合の絶対湿度を超えるような条件において、露垂れが発生する可能性がある。
 そこで、本実施形態では、室内温度Tが第1所定値T1以上である場合には(図4のS101:Yes)、制御部30が、室内熱交換器15の凍結処理(S102)を行わないようにしている。つまり、室内温度Tが第1所定値T1以上である場合には、室内空気の絶対湿度が高い可能性(つまり、室内機Uiでの露垂れ)を考慮し、念のために制御部30が凍結処理を行わないようにしている。これによって、室内機Uiの露垂れを未然に防止できる。
For example, under the condition that the dry-bulb temperature of the room air is 30° C. (first predetermined value T1) and the relative humidity exceeds 100%, the dew drop may occur.
Therefore, in the present embodiment, when the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes in FIG. 4), the control unit 30 does not perform the freezing process (S102) of the indoor heat exchanger 15. I am trying. That is, when the indoor temperature T is equal to or higher than the first predetermined value T1, the control unit 30 takes into account the possibility that the absolute humidity of the indoor air is high (that is, the dew drop in the indoor unit Ui), and as a precaution. I do not freeze it. This can prevent dew drop of the indoor unit Ui.
 なお、室内温度Tが第1所定値T1以上である場合、制御部30が、凍結処理の継続時間を短くしたり、凍結処理中の圧縮機モータ11a(図3参照)の回転速度を小さくしたりしてもよいが、これについては第2、第3実施形態で説明する。 When the room temperature T is equal to or higher than the first predetermined value T1, the control unit 30 shortens the duration of the freezing process or reduces the rotation speed of the compressor motor 11a (see FIG. 3) during the freezing process. However, this will be described in the second and third embodiments.
 一方、図5において、室内空気の乾球温度が第1所定値T1よりも低い20℃であって相対湿度80%の状態Jである場合、その絶対湿度は約0.012[kg/kg(DA)]である。このように絶対湿度が比較的低い空気中では、室内熱交換器15が凍結されても、室内機Uiで露垂れが生じる可能性はほとんどない。 On the other hand, in FIG. 5, when the dry-bulb temperature of the indoor air is 20° C. lower than the first predetermined value T1 and the relative humidity is 80% in the state J, the absolute humidity is about 0.012 [kg/kg( DA)]. Thus, in the air having a relatively low absolute humidity, even if the indoor heat exchanger 15 is frozen, there is almost no possibility that dew drops will occur in the indoor unit Ui.
 ちなみに、乾球温度が20℃、相対湿度100%の状態Kであっても、その絶対湿度は約0.015[kg/kg(DA)]であり、それほど高くはない。つまり、乾球温度が20℃の状態では、相対湿度の高・低に関わらず、室内熱交換器15の凍結中に室内機Uiで露垂れが生じる可能性はほとんどない。このように、相対湿度の高・低に関わらず室内機Uiで露垂れが生じないように、第1所定値T1が予め設定されている。 By the way, even when the dry-bulb temperature is 20°C and the relative humidity is 100% in state K, the absolute humidity is about 0.015 [kg/kg (DA)], which is not so high. That is, when the dry-bulb temperature is 20° C., regardless of whether the relative humidity is high or low, there is almost no possibility that dew drops will occur in the indoor unit Ui during freezing of the indoor heat exchanger 15. As described above, the first predetermined value T1 is preset so that the indoor unit Ui does not have dew drop regardless of whether the relative humidity is high or low.
 再び、図4に戻って説明を続ける。
 ステップS101において室内温度Tが第1所定値T1未満である場合(S101:No)、ステップS102において制御部30は、室内熱交換器15を凍結させる。すなわち、制御部30は、室内熱交換器15を蒸発器として機能させ、空気中の水分を室内熱交換器15に着霜させて、室内熱交換器15を凍結させる。
Returning to FIG. 4 again, the description will be continued.
When the indoor temperature T is lower than the first predetermined value T1 in step S101 (S101: No), the control unit 30 freezes the indoor heat exchanger 15 in step S102. That is, the control unit 30 causes the indoor heat exchanger 15 to function as an evaporator, causes moisture in the air to frost on the indoor heat exchanger 15, and freezes the indoor heat exchanger 15.
 このステップS102についてさらに詳しく説明すると、制御部30は、例えば、膨張弁14(図1参照)の開度を冷房運転時よりも小さくして、圧縮機11(図1参照)を駆動する。これによって、低圧で蒸発温度の低い冷媒が室内熱交換器15に流入するため、空気中の水分が室内熱交換器15に着霜し、さらに、が室内熱交換器15の表面の霜や氷が成長する。なお、凍結処理における膨張弁14の開度は、冷房運転時の開度と略同一であってもよい。 Describing this step S102 in further detail, for example, the control unit 30 drives the compressor 11 (see FIG. 1) by making the opening of the expansion valve 14 (see FIG. 1) smaller than that during the cooling operation. As a result, a low-pressure refrigerant having a low evaporation temperature flows into the indoor heat exchanger 15, so that moisture in the air frosts on the indoor heat exchanger 15, and frost and ice on the surface of the indoor heat exchanger 15 Grows. The opening degree of the expansion valve 14 in the freezing process may be substantially the same as the opening degree during the cooling operation.
 図6は、圧縮機11及び室内ファン16のON/OFFの切替えに関する説明図である(適宜、図1を参照)。
 なお、図6の横軸は時刻である。また、図6の縦軸は、圧縮機11のON/OFF、及び室内ファン16のON/OFFを示している。図6の例では、所定の空調運転が時刻t1まで行われた後、圧縮機11及び室内ファン16が駆動している(つまり、ON状態である)。その後、時刻t1~t2において圧縮機11及び室内ファン16が停止した後、時刻t2~t3において室内熱交換器15の凍結が行われている(図4のステップS102)。
FIG. 6 is an explanatory diagram regarding ON/OFF switching of the compressor 11 and the indoor fan 16 (see FIG. 1 as appropriate).
The horizontal axis of FIG. 6 is time. Further, the vertical axis of FIG. 6 shows ON/OFF of the compressor 11 and ON/OFF of the indoor fan 16. In the example of FIG. 6, the compressor 11 and the indoor fan 16 are driven (that is, in the ON state) after the predetermined air conditioning operation is performed until time t1. After that, the compressor 11 and the indoor fan 16 are stopped at times t1 to t2, and then the indoor heat exchanger 15 is frozen at times t2 to t3 (step S102 in FIG. 4).
 図6の例では、室内熱交換器15の凍結中、室内ファン16が停止されている。これによって、室内に冷風が吹き出されないため、ユーザの快適性を損なうことなく室内熱交換器15を凍結させることができる。なお、時刻t3以後の処理については後記する。
 ちなみに、室内熱交換器15の凍結中、制御部30が室内ファン16を停止させずに、この室内ファン16を駆動させるようにしてもよい。
In the example of FIG. 6, the indoor fan 16 is stopped while the indoor heat exchanger 15 is frozen. As a result, cold air is not blown into the room, so that the indoor heat exchanger 15 can be frozen without impairing the comfort of the user. The processing after time t3 will be described later.
Incidentally, during freezing of the indoor heat exchanger 15, the control unit 30 may drive the indoor fan 16 without stopping the indoor fan 16.
 次に、図4のステップS103において制御部30は、室内熱交換器15を解凍する。例えば、制御部30は、室内ファン16や圧縮機11等の機器を停止状態にする。これによって、室内熱交換器15の霜や氷が室温で自然解凍され、多量の水がフィンf(図2参照)を伝ってドレンパン18に流れ落ちる。これによって、室内熱交換器15に付着していた塵埃が洗い流される。 Next, in step S103 of FIG. 4, the control unit 30 defrosts the indoor heat exchanger 15. For example, the control unit 30 puts the devices such as the indoor fan 16 and the compressor 11 in a stopped state. As a result, the frost and ice in the indoor heat exchanger 15 are naturally thawed at room temperature, and a large amount of water flows down to the drain pan 18 along the fins f (see FIG. 2). As a result, the dust attached to the indoor heat exchanger 15 is washed away.
 次に、図4のステップS104において制御部30は、室内熱交換器15を乾燥させる。図6の例では、室内熱交換器15の解凍後、時刻t4~t6の「乾燥」運転として、暖房運転及び送風運転が順次に行われている。これによって、室内機Uiにおけるカビ等の菌の繁殖を抑制できる。ステップS104の乾燥運転を行った後、制御部30は、凍結洗浄に関する一連の処理を終了する(END)。 Next, in step S104 of FIG. 4, the control unit 30 dries the indoor heat exchanger 15. In the example of FIG. 6, after the indoor heat exchanger 15 is thawed, the heating operation and the blowing operation are sequentially performed as the “drying” operation from time t4 to time t6. As a result, the growth of fungi such as mold in the indoor unit Ui can be suppressed. After performing the drying operation in step S104, the control unit 30 ends a series of processes regarding freeze washing (END).
 なお、図4では省略しているが、室内温度T(室内温度センサ27aの検出値)が、第1所定値T1(例えば、30℃)よりも低い第2所定値T2(例えば、10℃)以下である場合、制御部30が凍結処理(S102)を行わないようにすることが好ましい。室内温度Tが低すぎると、単位体積当たりの室内空気に含むことが可能な水分の量が少なすぎて、凍結処理中(S102)、室内熱交換器15への着霜が進みにくいからである。 Although not shown in FIG. 4, the indoor temperature T (the detection value of the indoor temperature sensor 27a) is a second predetermined value T2 (for example, 10° C.) lower than the first predetermined value T1 (for example, 30° C.). In the following cases, it is preferable that the control unit 30 not perform the freezing process (S102). This is because if the room temperature T is too low, the amount of water that can be contained in the room air per unit volume is too small, and frost formation on the indoor heat exchanger 15 is difficult to proceed during the freezing process (S102). ..
 なお、第2所定値T2は、室内熱交換器15の凍結処理に要する時間や消費電力量に基づき、第1所定値T1よりも低い値として、予め設定されている。また、第2所定値T2は、冷房運転時又は暖房運転時にリモコン40で変更可能な設定温度の下限値Tmin(例えば、10℃)以上であってもよい。これによって、室内温度Tがリモコン40で変更可能な設定温度の範囲内であっても、その数値が低すぎる場合には、凍結処理を適宜に中止できる。なお、前記した第2所定値T2の大きさは、下限値Tmin以上に限定されるものではなく、下限値Tmin未満であってもよい。 The second predetermined value T2 is preset as a value lower than the first predetermined value T1 based on the time required for the freezing process of the indoor heat exchanger 15 and the power consumption. Further, the second predetermined value T2 may be equal to or higher than the lower limit value T min (for example, 10° C.) of the set temperature that can be changed by the remote controller 40 during the cooling operation or the heating operation. Thereby, even if the room temperature T is within the range of the set temperature that can be changed by the remote controller 40, if the numerical value is too low, the freezing process can be appropriately stopped. The size of the second predetermined value T2 is not limited to the lower limit value T min or more, and may be less than the lower limit value T min .
 また、室内温度T(室内温度センサ27aの検出値)が第1所定値T1以上である場合において、凍結処理(S102)を行わないとき、制御部30が冷房運転又は送風運転を行うことが好ましい。例えば、リモコン40の凍結洗浄のボタン(図示せず)をユーザが押した場合において、室内温度Tが第1所定値T1以上であったとき、制御部30は、凍結洗浄に代えて、冷房運転又は送風運転を行う。 Further, when the indoor temperature T (the detection value of the indoor temperature sensor 27a) is equal to or higher than the first predetermined value T1, the control unit 30 preferably performs the cooling operation or the air blowing operation when the freezing process (S102) is not performed. .. For example, when the user presses the freeze washing button (not shown) of the remote controller 40 and the room temperature T is equal to or higher than the first predetermined value T1, the control unit 30 replaces the freeze washing and performs the cooling operation. Or, perform blow operation.
 これによって、冷房運転では、室内熱交換器15に発生する凝縮水によって、室内熱交換器15が洗い流される。また、送風運転では、室内機Uiの内部が乾燥するため、室内機Uiが清潔な状態になる。このように、凍結処理とは異なる方法で室内機Uiを清潔にすることができる。また、リモコン40を操作しても空気調和機100の運転音が全く生じない場合に比べて、ユーザの違和感を低減できる。 Due to this, in the cooling operation, the indoor heat exchanger 15 is washed away by the condensed water generated in the indoor heat exchanger 15. Further, in the blowing operation, the inside of the indoor unit Ui is dried, so that the indoor unit Ui is in a clean state. In this way, the indoor unit Ui can be cleaned by a method different from the freezing process. Further, compared to the case where the operating sound of the air conditioner 100 does not occur even if the remote controller 40 is operated, the user's discomfort can be reduced.
<効果>
 第1実施形態によれば、制御部30は、室内温度Tが第1所定値T1以上である場合(図4のS101:Yes)、室内熱交換器15の凍結処理を行わない(END)。これによって、室内空気に多量の水分が含まれている状態で凍結洗浄が行われることを未然に防ぐことができる。したがって、室内熱交換器15の凍結中における室内機Uiでの露垂れを抑制できる。このように第1実施形態によれば、室内熱交換器15を清潔な状態にし、さらに、露垂れを抑制する空気調和機100を提供できる。
<Effect>
According to the first embodiment, when the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes in FIG. 4), the control unit 30 does not perform the freezing process on the indoor heat exchanger 15 (END). As a result, it is possible to prevent freezing and washing from being performed in a state where the indoor air contains a large amount of water. Therefore, it is possible to suppress the dew drop in the indoor unit Ui during the freezing of the indoor heat exchanger 15. As described above, according to the first embodiment, it is possible to provide the air conditioner 100 in which the indoor heat exchanger 15 is in a clean state and the dew drop is suppressed.
 また、室内熱交換器15を凍結させるか否かの判定(図4のS101)に用いられる第1所定値T1は、リモコン40で変更可能な設定温度の上限値よりも低い。したがって、例えば、その露点が第1所定値T1である空気の絶対湿度(相対湿度100%のときの絶対湿度)に基づいて、第1所定値T1が適宜に設定されることで、凍結洗浄時の室内機Uiでの露垂れを抑制できる。 Further, the first predetermined value T1 used for determining whether or not the indoor heat exchanger 15 is frozen (S101 in FIG. 4) is lower than the upper limit value of the set temperature that can be changed by the remote controller 40. Therefore, for example, the first predetermined value T1 is appropriately set on the basis of the absolute humidity of the air whose absolute dew point is the first predetermined value T1 (absolute humidity when the relative humidity is 100%). Of the indoor unit Ui can be suppressed.
 また、室内熱交換器15の凍結処理を行うか否かの判定には、前記したように、室内温度の検出値が用いられる。一方、室内湿度を検出する必要は特にないため、室内機Uiに湿度センサが設けられていない安価な空気調和機であっても、室内熱交換器15の凍結洗浄を行うことができる。 Further, as described above, the detected value of the indoor temperature is used to determine whether or not the freezing process of the indoor heat exchanger 15 is performed. On the other hand, since it is not particularly necessary to detect the indoor humidity, the indoor heat exchanger 15 can be frozen and washed even with an inexpensive air conditioner in which the indoor unit Ui is not provided with a humidity sensor.
≪第2実施形態≫
 第2実施形態は、室内温度Tが第1所定値T1以上である場合、制御部30が凍結処理の継続時間を通常よりも短くする点が、第1実施形態とは異なっている。すなわち、第1実施形態では、室内温度Tが第1所定値T1以上である場合、制御部30が凍結処理を行わなかったが、この第2実施形態では、室内温度Tが第1所定値T1以上である場合でも制御部30が凍結処理を行うようにしている。
 なお、その他(空気調和機100の構成等:図1~図3参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
«Second embodiment»
The second embodiment is different from the first embodiment in that when the room temperature T is equal to or higher than the first predetermined value T1, the control unit 30 makes the duration of the freezing process shorter than usual. That is, in the first embodiment, when the indoor temperature T is equal to or higher than the first predetermined value T1, the control unit 30 does not perform the freezing process, but in the second embodiment, the indoor temperature T is the first predetermined value T1. Even if the above is the case, the control unit 30 performs the freezing process.
Others (configuration of the air conditioner 100, etc.: see FIGS. 1 to 3) are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
 図7は、第2実施形態に係る空気調和機100の制御部30が実行する処理のフローチャートである(適宜、図3を参照)。
 なお、図7のステップS101~S104については、第1実施形態(図4参照)と同様であるから、その説明を省略する。ステップS101において、室内温度センサ27aの検出値である室内温度Tが第1所定値T1以上である場合(S101:Yes)、制御部30の処理はステップS201に進む。
FIG. 7 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the second embodiment (see FIG. 3 as needed).
Note that steps S101 to S104 in FIG. 7 are the same as those in the first embodiment (see FIG. 4), and therefore description thereof will be omitted. In step S101, when the indoor temperature T that is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S201.
 ステップS201において制御部30は、室内熱交換器15の凍結時間を短く設定する。すなわち、制御部30は、室内温度T(室内温度センサ27aの検出値)が第1所定値T1未満である場合よりも、室内熱交換器15の凍結処理(S202)の継続時間を短くする。 In step S201, the control unit 30 sets the freezing time of the indoor heat exchanger 15 to be short. That is, the control unit 30 shortens the duration of the freezing process (S202) of the indoor heat exchanger 15 as compared with the case where the indoor temperature T (the detection value of the indoor temperature sensor 27a) is less than the first predetermined value T1.
 次にステップS202において制御部30は、室内熱交換器15を凍結させる。すなわち、制御部30は、ステップS202の凍結処理を通常(S102)よりも短い時間行う。これによって、単位体積当たりの室内空気に含まれる水分の量が多い状況であっても、室内機Uiでの露垂れを抑制しつつ、室内熱交換器15を凍結させることができる。室内熱交換器15を凍結させた後(S202)、制御部30は、室内熱交換器15の解凍(S103)・乾燥(S104)を順次に行い、一連の処理を終了する(END)。 Next, in step S202, the control unit 30 freezes the indoor heat exchanger 15. That is, the control unit 30 performs the freezing process of step S202 for a shorter period of time than normal (S102). As a result, even in a situation where the amount of water contained in the indoor air per unit volume is large, the indoor heat exchanger 15 can be frozen while suppressing dew drop in the indoor unit Ui. After freezing the indoor heat exchanger 15 (S202), the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends the series of processes (END).
<効果>
 第2実施形態によれば、室内温度Tが第1所定値T1以上である場合において(図7のS101:Yes)、凍結処理を行うときでも、制御部30は、室内熱交換器15の凍結時間を短く設定する(S201)。これによって、室内温度が比較的高い状況でも、室内機Uiでの露垂れを抑制しつつ、室内熱交換器15の凍結洗浄を行うことができる。
<Effect>
According to the second embodiment, when the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes in FIG. 7), the control unit 30 freezes the indoor heat exchanger 15 even when performing the freezing process. The time is set to be short (S201). Accordingly, even when the indoor temperature is relatively high, the indoor heat exchanger 15 can be frozen and washed while suppressing the drooling in the indoor unit Ui.
≪第3実施形態≫
 第3実施形態は、第2実施形態と同様に、室内温度Tが第1所定値T1以上である場合でも制御部30が凍結処理を行うが、この第3実施形態では、凍結処理中の圧縮機モータ11aの回転速度を通常よりも小さくする点が、第2実施形態とは異なっている。なお、その他(空気調和機100の構成等:図1~図3参照)については、第2実施形態と同様である。したがって、第2実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Third Embodiment>>
In the third embodiment, like the second embodiment, the control unit 30 performs the freezing process even when the room temperature T is equal to or higher than the first predetermined value T1, but in the third embodiment, the compression during the freezing process is performed. The difference from the second embodiment is that the rotation speed of the machine motor 11a is made lower than usual. Note that the other components (such as the configuration of the air conditioner 100: see FIGS. 1 to 3) are the same as in the second embodiment. Therefore, only the parts different from the second embodiment will be described, and the description of the overlapping parts will be omitted.
 図8は、第3実施形態に係る空気調和機100の制御部30が実行する処理のフローチャートである(適宜、図3を参照)。
 なお、図8のステップS101~S104については、第1実施形態(図4参照)と同様であるから、その説明を省略する。ステップS101において、室内温度センサ27aの検出値である室内温度Tが第1所定値T1以上である場合(S101:Yes)、制御部30の処理はステップS301に進む。
FIG. 8 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the third embodiment (see FIG. 3 as needed).
Note that steps S101 to S104 in FIG. 8 are the same as those in the first embodiment (see FIG. 4), and therefore description thereof will be omitted. In step S101, when the indoor temperature T which is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S301.
 ステップS301において制御部30は、圧縮機モータ11aの回転速度を小さく設定する。すなわち、制御部30は、室内温度T(室内温度センサ27aの検出値)が第1所定値T1未満である場合よりも、凍結処理中(S302)の圧縮機モータ11aの回転速度を小さくする。 In step S301, the control unit 30 sets the rotation speed of the compressor motor 11a to be low. That is, the control unit 30 reduces the rotation speed of the compressor motor 11a during the freezing process (S302) more than when the indoor temperature T (the detection value of the indoor temperature sensor 27a) is less than the first predetermined value T1.
 次に、ステップS302において制御部30は、室内熱交換器15を凍結させる。すなわち、制御部30は、通常の凍結処理よりも小さな回転速度で圧縮機モータ11aを駆動させて、室内熱交換器15を凍結させる。 Next, in step S302, the control unit 30 freezes the indoor heat exchanger 15. That is, the control unit 30 drives the compressor motor 11a at a lower rotation speed than in the normal freezing process to freeze the indoor heat exchanger 15.
 なお、凍結処理中、制御部30が圧縮機モータ11aを定速回転させてもよいし、また、フィードバック制御を行ってもよい。制御部30が、圧縮機モータ11aのフィードバック制御を行う場合において、通常の凍結処理よりも「小さな回転速度」で圧縮機モータ11aを駆動するとは、次のことを意味している。
 すなわち、凍結処理中の圧縮機モータ11aのフィードバック制御に用いられる複数のセンサ(室内温度センサ27a、室外温度センサ28、不図示の吐出温度センサ等)のうち、室内温度センサ27a以外の各センサの検出値が所定の値であり、室内温度センサ27aの検出値が第1所定値T1未満であるとき、制御部30が、圧縮機モータ11aを所定の回転速度で駆動したとする。一方、室内温度センサ27a以外の各センサの検出値が前記した所定の値であり、室内温度センサ27aの検出値が第1所定値T1以上であるとき、制御部30は、圧縮機モータ11aを前記した所定の回転速度よりも小さな回転速度で駆動する。
During the freezing process, the control unit 30 may rotate the compressor motor 11a at a constant speed, or may perform feedback control. When the control unit 30 performs feedback control of the compressor motor 11a, driving the compressor motor 11a at a "smaller rotation speed" than in the normal freezing process means the following.
That is, of the plurality of sensors (indoor temperature sensor 27a, outdoor temperature sensor 28, discharge temperature sensor (not shown), etc.) used for feedback control of the compressor motor 11a during the freezing process, each of the sensors other than the indoor temperature sensor 27a. When the detected value is a predetermined value and the detected value of the indoor temperature sensor 27a is less than the first predetermined value T1, it is assumed that the control unit 30 drives the compressor motor 11a at a predetermined rotation speed. On the other hand, when the detection value of each sensor other than the indoor temperature sensor 27a is the above-described predetermined value and the detection value of the indoor temperature sensor 27a is the first predetermined value T1 or more, the control unit 30 turns on the compressor motor 11a. It is driven at a rotation speed lower than the above-mentioned predetermined rotation speed.
 これによって、室内熱交換器15の凍結中、冷媒回路Q(図1参照)を循環する冷媒の流量が少なくなるため、冷媒と空気との間の熱交換量が通常の凍結時(S102)よりも小さくなる。したがって、単位体積当たりの室内空気に含まれる水分の量が多い状況であっても、室内機Uiでの露垂れを抑制しつつ、室内熱交換器15を凍結させることができる。 As a result, the flow rate of the refrigerant circulating in the refrigerant circuit Q (see FIG. 1) is reduced during freezing of the indoor heat exchanger 15, so that the heat exchange amount between the refrigerant and the air is smaller than that during normal freezing (S102). Also becomes smaller. Therefore, even in a situation where the amount of water contained in the indoor air per unit volume is large, the indoor heat exchanger 15 can be frozen while suppressing the dew drop in the indoor unit Ui.
 このようにして室内熱交換器15を凍結させた後(S302)、制御部30は、室内熱交換器15の解凍(S103)・乾燥(S104)を順次に行い、一連の処理を終了する(END)。 After freezing the indoor heat exchanger 15 in this way (S302), the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends a series of processes ( END).
<効果>
 第3実施形態によれば、室内温度Tが第1所定値T1以上である場合において(図8のS101:Yes)、凍結処理を行うときでも、制御部30は、室内熱交換器15を凍結させる際の圧縮機モータ11aの回転速度を通常よりも小さくする(S301)。これによって、室内温度が比較的高い状況でも、室内機Uiでの露垂れを抑制しつつ、室内熱交換器15の凍結洗浄を行うことができる。
<Effect>
According to the third embodiment, when the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes in FIG. 8), the control unit 30 freezes the indoor heat exchanger 15 even when performing the freezing process. The rotation speed of the compressor motor 11a at the time of making it lower than usual (S301). Accordingly, even when the indoor temperature is relatively high, the indoor heat exchanger 15 can be frozen and washed while suppressing the drooling in the indoor unit Ui.
≪第4実施形態≫
 第4実施形態は、室内温度Tが第1所定値T1以上であっても、既に冷房運転又は除湿運転を行っていたときには、制御部30が室内熱交換器15を凍結させる点が、第1実施形態とは異なっている。なお、その他(空気調和機100の構成等:図1~図3参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
«Fourth Embodiment»
In the fourth embodiment, the point that the control unit 30 freezes the indoor heat exchanger 15 when the cooling operation or the dehumidifying operation has already been performed even if the indoor temperature T is the first predetermined value T1 or more is the first point. It differs from the embodiment. Others (configuration of the air conditioner 100, etc.: see FIGS. 1 to 3) are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
 図9は、第4実施形態に係る空気調和機100の制御部30が実行する処理のフローチャートである(適宜、図3を参照)。
 なお、図9のステップS101~S104については、第1実施形態(図4参照)と同様であるから、その説明を省略する。ステップS101において、室内温度センサ27aの検出値である室内温度Tが第1所定値T1以上である場合(S101:Yes)、制御部30の処理はステップS401に進む。
FIG. 9 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the fourth embodiment (see FIG. 3 as appropriate).
Note that steps S101 to S104 in FIG. 9 are the same as those in the first embodiment (see FIG. 4), and therefore description thereof will be omitted. In step S101, when the indoor temperature T that is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S401.
 ステップS401において制御部30は、室内熱交換器15の凍結に先立って冷房運転又は除湿運転を行ったか否かを判定する。具体的に説明すると、制御部30は、ステップS401の直近に行った空調運転の運転モードが冷房運転又は除湿運転であるか否かを判定する。例えば、冷房運転が行われると、空気に含まれていた水分が室内熱交換器15で結露し、その結露水がドレンパン18(図2参照)及びドレンホース(図示せず)を順次に介して、外部に排出される。したがって、冷房運転後には、単位体積当たりの室内空気に含まれる水分の量が減っていることが多い。また、除湿運転(いわゆる冷房除湿や再熱除湿)が行われた場合も同様である。 In step S401, the control unit 30 determines whether the cooling operation or the dehumidifying operation has been performed prior to freezing the indoor heat exchanger 15. Specifically, the control unit 30 determines whether or not the operation mode of the air conditioning operation performed most recently in step S401 is the cooling operation or the dehumidifying operation. For example, when the cooling operation is performed, the water contained in the air is condensed in the indoor heat exchanger 15, and the condensed water is sequentially passed through the drain pan 18 (see FIG. 2) and the drain hose (not shown). , Discharged to the outside. Therefore, the amount of water contained in the indoor air per unit volume is often reduced after the cooling operation. The same applies when a dehumidifying operation (so-called cooling dehumidification or reheat dehumidification) is performed.
 なお、ステップS401において、直近に行った空調運転の運転モードが冷房運転又は除湿運転であるという条件の他に、前記した冷房運転等の継続時間が所定時間以上であるという条件が付加されてもよい。
 また、直近に行われた空調運転の運転モードが冷房運転又は除湿運転である場合において、冷房運転等の終了時からの経過時間が所定時間以内であるという条件が付加されてもよい。
Note that in step S401, in addition to the condition that the operation mode of the most recent air conditioning operation is the cooling operation or the dehumidifying operation, a condition that the duration of the cooling operation or the like is a predetermined time or more may be added. Good.
Further, when the operation mode of the most recent air conditioning operation is the cooling operation or the dehumidifying operation, a condition that the elapsed time from the end of the cooling operation or the like is within a predetermined time may be added.
 また、ステップS401において、制御部30が、次の処理を行うようにしてもよい。例えば、冷房運転又は除湿運転を所定時間以上行ったとき、制御部30は、その後に凍結洗浄を行ってもよい旨の許可フラグ(図示せず)を立てる。そして、ステップS401において前記した許可フラグが立っているとき、制御部30が室内熱交換器15を凍結させるようにしてもよい。 Further, in step S401, the control unit 30 may perform the following processing. For example, when the cooling operation or the dehumidifying operation is performed for a predetermined time or more, the control unit 30 sets a permission flag (not shown) indicating that the freeze cleaning may be performed thereafter. The control unit 30 may freeze the indoor heat exchanger 15 when the permission flag is raised in step S401.
 ステップS401において、室内熱交換器15の凍結に先立って冷房運転又は除湿運転を行った場合(S401:Yes)、制御部30の処理はステップS102に進む。ステップS102において制御部30は、室内熱交換器15を凍結させる。つまり、制御部30は、室内熱交換器15の凍結時間や圧縮機モータ11aの回転速度に関して、室内温度Tが第1所定値T1未満の場合と同様に凍結処理(S102)を実行する。 In step S401, when the cooling operation or the dehumidifying operation is performed before freezing the indoor heat exchanger 15 (S401: Yes), the process of the control unit 30 proceeds to step S102. In step S102, the control unit 30 freezes the indoor heat exchanger 15. That is, with respect to the freezing time of the indoor heat exchanger 15 and the rotation speed of the compressor motor 11a, the control unit 30 executes the freezing process (S102) as in the case where the indoor temperature T is less than the first predetermined value T1.
 前記したように、冷房運転又は除湿運転が既に行われているため(S401:Yes)、室内温度Tが第1所定値T1以上であっても(S101:Yes)、単位体積当たりの室内空気に含まれる水分の量はそれほど多くない。したがって、室内熱交換器15の凍結処理中(S102)、室内機Uiで露垂れが生じるおそれはほとんどない。 As described above, since the cooling operation or the dehumidifying operation has already been performed (S401: Yes), even if the room temperature T is equal to or higher than the first predetermined value T1 (S101: Yes), the indoor air per unit volume becomes It does not contain much water. Therefore, during the freezing process of the indoor heat exchanger 15 (S102), there is almost no possibility of dew drop in the indoor unit Ui.
 ステップS102において室内熱交換器15を凍結させた後、制御部30は、室内熱交換器15の解凍(S103)・乾燥(S104)を順次に行い、一連の処理を終了する(END)。 After freezing the indoor heat exchanger 15 in step S102, the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends a series of processes (END).
 一方、ステップS401において、室内熱交換器15の凍結に先立って冷房運転を行っておらず、さらに、除湿運転も行っていなかった場合(S401:No)、制御部30は、室内熱交換器15の凍結処理(S102)を行うことなく、一連の処理を終了する(END)。仮に、単位体積当たりの室内空気に多量の水分が含まれている状態で室内熱交換器15が凍結されると、室内機Uiで露垂れが生じる可能性があるからである。 On the other hand, in step S401, when the cooling operation is not performed prior to the freezing of the indoor heat exchanger 15 and the dehumidifying operation is not performed (S401: No), the control unit 30 causes the indoor heat exchanger 15 to operate. The series of processes is ended (END) without performing the freezing process (S102). This is because, if the indoor heat exchanger 15 is frozen in a state where the indoor air per unit volume contains a large amount of water, there is a possibility that the indoor unit Ui may be exposed to dew.
<効果>
 第4実施形態によれば、室内温度Tが第1所定値T1以上である場合でも(S101:Yes)、室内熱交換器15の凍結に先立って冷房運転又は除湿運転が行われていたとき(S401:Yes)、制御部30は室内熱交換器15を凍結させる(S102)。これによって、単位体積当たりの室内空気に含まれる水分の量がそれほど多くない状態で、室内熱交換器15の凍結洗浄を行うことができる。
<Effect>
According to the fourth embodiment, even when the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes), when the cooling operation or the dehumidifying operation is performed prior to the freezing of the indoor heat exchanger 15 ( (S401: Yes), the control unit 30 freezes the indoor heat exchanger 15 (S102). Thus, the indoor heat exchanger 15 can be frozen and washed while the amount of water contained in the indoor air per unit volume is not so large.
≪第5実施形態≫
 第5実施形態は、室内熱交換器15の凍結に先立って行われた冷房運転又は除湿運転において、室内温度と室内熱交換器15の温度との温度差が第3所定値以下である場合、制御部30が室内熱交換器15を凍結させない点が、第4実施形態とは異なっている。なお、その他については第4実施形態と同様である。したがって、第4実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Fifth Embodiment>>
In the fifth embodiment, when the temperature difference between the indoor temperature and the temperature of the indoor heat exchanger 15 is equal to or less than a third predetermined value in the cooling operation or the dehumidifying operation performed prior to the freezing of the indoor heat exchanger 15, The difference from the fourth embodiment is that the control unit 30 does not freeze the indoor heat exchanger 15. The other points are the same as those in the fourth embodiment. Therefore, only the parts different from the fourth embodiment will be described, and the description of the overlapping parts will be omitted.
 図10は、第5実施形態に係る空気調和機100の制御部30が実行する処理のフローチャートである(適宜、図3を参照)。
 なお、図10のステップS101~S104,S401については、第4実施形態(図9参照)と同様であるから、その説明を省略する。ステップS101において、室内温度センサ27aの検出値である室内温度Tが第1所定値T1以上である場合(S101:Yes)、制御部30の処理はステップS401に進む。
FIG. 10 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the fifth embodiment (see FIG. 3 as appropriate).
Note that steps S101 to S104 and S401 in FIG. 10 are the same as those in the fourth embodiment (see FIG. 9), so description thereof will be omitted. In step S101, when the indoor temperature T that is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S401.
 ステップS401において制御部30は、室内熱交換器15の凍結に先立って冷房運転又は除湿運転を行ったか否かを判定する。室内熱交換器15の凍結に先立って冷房運転又は除湿運転を行った場合(S401:Yes)、制御部30の処理はステップS501に進む。 In step S401, the control unit 30 determines whether the cooling operation or the dehumidifying operation has been performed prior to freezing the indoor heat exchanger 15. When the cooling operation or the dehumidifying operation is performed before freezing the indoor heat exchanger 15 (S401: Yes), the process of the control unit 30 proceeds to step S501.
 ステップS501において制御部30は、室内温度Tと室内熱交換器15の温度Tevpとの温度差ΔT(=T-Tevp)が第3所定値ΔT3以下であるか否かを判定する。すなわち、制御部30は、凍結処理(S102)に先立って冷房運転又は除湿運転を行ったときの室内熱交換器15の温度Tevpに対する室内温度Tの差ΔTが第3所定値ΔT3以下であるか否かを判定する。
 前記した第3所定値ΔT3は、室内熱交換器15の凍結処理(S102)を行うか否かの判定基準となる閾値であり、予め設定されている。また、室内熱交換器15の温度Tevpは、室内熱交換器温度センサ27b(図3参照)によって検出される。
In step S501, the control unit 30 determines whether or not the temperature difference ΔT (=T−T evp ) between the indoor temperature T and the temperature T evp of the indoor heat exchanger 15 is the third predetermined value ΔT3 or less. That is, the control unit 30 sets the difference ΔT of the indoor temperature T to the temperature T evp of the indoor heat exchanger 15 when the cooling operation or the dehumidifying operation is performed prior to the freezing process (S102) to be the third predetermined value ΔT3 or less. Or not.
The above-mentioned third predetermined value ΔT3 is a threshold value that serves as a criterion for determining whether or not to freeze the indoor heat exchanger 15 (S102), and is set in advance. The temperature T evp of the indoor heat exchanger 15 is detected by the indoor heat exchanger temperature sensor 27b (see FIG. 3).
 なお、ステップS501の各温度T,Tevpは、冷房運転等が行われていたとき(例えば、冷房運転等の開始時から所定時間経過後)の検出値であってもよいし、その時間平均であってもよい。また、各温度T,Tevpは、冷房運転等の終了時からステップS401の処理の開始時までの所定タイミングにおける検出値であってもよいし、その時間平均であってもよい。 The temperatures T and T evp in step S501 may be detected values when the cooling operation or the like is performed (for example, after a predetermined time has elapsed from the start of the cooling operation or the like), or the time average thereof. May be Further, each of the temperatures T and T evp may be a detected value at a predetermined timing from the end of the cooling operation or the like to the start of the process of step S401, or may be the time average thereof.
 ステップS501において、室内温度Tと室内熱交換器15の温度Tevpとの温度差ΔTが第3所定値ΔT3以下である場合(S501:Yes)、制御部30は、室内熱交換器15の凍結処理(S102)を行うことなく、一連の処理を終了する(END)。
 なお、単位体積当たりの室内空気に含まれる水分の量が多いほど、室内空気と冷媒との間の熱交換量に占める潜熱の割合が大きくなる。つまり、室内空気に含まれる水分の凝縮に要する熱を冷媒が吸熱するため、室内熱交換器15が冷えにくくなる。その結果、室内温度Tと室内熱交換器15の温度Tevpとの温度差ΔT(=T-Tevp)が小さくなる傾向がある。
In step S501, when the temperature difference ΔT between the indoor temperature T and the temperature T evp of the indoor heat exchanger 15 is the third predetermined value ΔT3 or less (S501: Yes), the control unit 30 freezes the indoor heat exchanger 15. A series of processing is ended without performing the processing (S102) (END).
Note that the greater the amount of water contained in the room air per unit volume, the greater the proportion of latent heat in the amount of heat exchange between the room air and the refrigerant. That is, since the refrigerant absorbs the heat required to condense the moisture contained in the indoor air, it becomes difficult for the indoor heat exchanger 15 to cool. As a result, the temperature difference ΔT (=T−T evp ) between the indoor temperature T and the temperature T evp of the indoor heat exchanger 15 tends to be small.
 一方、ステップS501において、室内温度Tと室内熱交換器15の温度Tevpとの温度差ΔTが第3所定値ΔT3よりも大きい場合(S501:No)、制御部30の処理はステップS102に進む。例えば、単位体積当たりの室内空気に含まれる水分の量がそれほど多くない状況で冷房運転が行われた場合、冷媒と空気との間の熱交換量に占める潜熱の割合は比較的小さい。つまり、室内空気に含まれる水分から冷媒が吸熱する熱量が比較的少ないため、室内熱交換器15が冷えやすくなる。その結果、前記した温度差ΔTが比較的大きな値になる。 On the other hand, in step S501, when the temperature difference ΔT between the indoor temperature T and the temperature T evp of the indoor heat exchanger 15 is larger than the third predetermined value ΔT3 (S501: No), the process of the control unit 30 proceeds to step S102. .. For example, when the cooling operation is performed in a situation where the amount of water contained in the indoor air per unit volume is not so large, the ratio of latent heat in the amount of heat exchange between the refrigerant and the air is relatively small. That is, since the amount of heat absorbed by the refrigerant from the water contained in the indoor air is relatively small, the indoor heat exchanger 15 is easily cooled. As a result, the temperature difference ΔT has a relatively large value.
 そして、ステップS102において室内熱交換器15を凍結させた後、制御部30は、室内熱交換器15の解凍(S103)・乾燥(S104)を順次に行い、一連の処理を終了する(END)。 Then, after freezing the indoor heat exchanger 15 in step S102, the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15, and ends the series of processes (END). ..
 図11は、圧縮機モータ11aの回転速度と、第3所定値ΔT3と、の関係を示すマップである。
 なお、図11の横軸は、凍結処理に先立って行われた冷房運転中又は除湿運転中における圧縮機モータ11aの回転速度である。図11の縦軸は、前記した第3所定値ΔT3(図10のS501)である。
FIG. 11 is a map showing the relationship between the rotation speed of the compressor motor 11a and the third predetermined value ΔT3.
The horizontal axis of FIG. 11 represents the rotation speed of the compressor motor 11a during the cooling operation or the dehumidifying operation performed prior to the freezing process. The vertical axis of FIG. 11 is the above-mentioned third predetermined value ΔT3 (S501 of FIG. 10).
 図11に示すように、凍結処理に先立って行った冷房運転又は除湿運転における圧縮機モータ11aの回転速度nに対応して、第3所定値ΔT3を設定する。例えば、冷房運転中に圧縮機モータ11aを回転速度nで駆動させていた場合、制御部30は、この回転速度nに対応する第3所定値ΔT3を設定する。 As shown in FIG. 11, the third predetermined value ΔT3 is set corresponding to the rotation speed n of the compressor motor 11a in the cooling operation or the dehumidifying operation performed prior to the freezing process. For example, when the compressor motor 11a is driven at the rotation speed n p during the cooling operation, the control unit 30 sets the third predetermined value ΔT3 p corresponding to the rotation speed n p .
 また、冷房運転又は除湿運転における圧縮機モータ11aの回転速度が大きいほど、第3所定値ΔT3が大きいことが好ましい。圧縮機モータ11aの回転速度が大きいほど、冷媒回路Q(図1参照)を循環する冷媒の流量が多くなり、室内熱交換器15(蒸発器)が冷えやすくなるからである。 Further, it is preferable that the third predetermined value ΔT3 is larger as the rotation speed of the compressor motor 11a in the cooling operation or the dehumidifying operation is higher. This is because as the rotation speed of the compressor motor 11a increases, the flow rate of the refrigerant circulating in the refrigerant circuit Q (see FIG. 1) increases, and the indoor heat exchanger 15 (evaporator) becomes easier to cool.
 なお、前記した圧縮機モータ11aの回転速度として、冷房運転等が行われていたときの圧縮機モータ11aの回転速度平均値が用いられてもよい。また、図11の直線mに相当するデータは、数式又はデータテーブルとして、記憶部31a(図3参照)に予め格納されている。 Note that, as the rotation speed of the compressor motor 11a, an average rotation speed value of the compressor motor 11a when the cooling operation or the like is performed may be used. Data corresponding to the straight line m in FIG. 11 is stored in advance in the storage unit 31a (see FIG. 3) as a mathematical expression or a data table.
<効果>
 第5実施形態によれば、室内熱交換器15の凍結処理前に冷房運転又は除湿運転を行っていた場合でも(図10のS401:Yes)、室内温度Tと室内熱交換器15の温度Tevpとの温度差ΔTが第3所定値ΔT3以下であるとき(S501:Yes)、制御部30は、室内熱交換器15の凍結処理を行わない。これによって、単位体積当たりの室内空気に含まれる水分が比較的多いときには、室内熱交換器15の凍結処理が行われないため、室内機Uiでの露垂れを防止できる。
<Effect>
According to the fifth embodiment, even when the cooling operation or the dehumidifying operation is performed before the freezing process of the indoor heat exchanger 15 (S401: Yes in FIG. 10), the indoor temperature T and the temperature T of the indoor heat exchanger 15 are increased. When the temperature difference ΔT from evp is equal to or smaller than the third predetermined value ΔT3 (S501: Yes), the control unit 30 does not freeze the indoor heat exchanger 15. Accordingly, when the indoor air per unit volume contains a relatively large amount of water, the indoor heat exchanger 15 is not frozen, so that it is possible to prevent dew drop in the indoor unit Ui.
≪第6実施形態≫
 第6実施形態は、室内温度Tが第1所定値T1以上である場合、制御部30が冷房運転を行った後、室内熱交換器15を凍結させる点が、第1実施形態とは異なっている。なお、その他(空気調和機100の構成等:図1~図3参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
«Sixth Embodiment»
The sixth embodiment is different from the first embodiment in that when the indoor temperature T is equal to or higher than the first predetermined value T1, the controller 30 freezes the indoor heat exchanger 15 after performing the cooling operation. There is. Others (configuration of the air conditioner 100, etc.: see FIGS. 1 to 3) are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
 図12は、第6実施形態に係る空気調和機100の制御部30が実行する処理のフローチャートである(適宜、図3を参照)。
 なお、図12のステップS101~S104については、第1実施形態(図4参照)と同様であるから、その説明を省略する。ステップS101において、室内温度センサ27aの検出値である室内温度Tが第1所定値T1以上である場合(S101:Yes)、制御部30の処理はステップS601に進む。
FIG. 12 is a flowchart of processing executed by the control unit 30 of the air conditioner 100 according to the sixth embodiment (see FIG. 3 as needed).
Note that steps S101 to S104 in FIG. 12 are the same as those in the first embodiment (see FIG. 4), so description thereof will be omitted. In step S101, when the indoor temperature T that is the detection value of the indoor temperature sensor 27a is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S601.
 ステップS601において制御部30は、冷房運転を実行する。これによって、室内熱交換器15が蒸発器として機能し、室内機Uiに取り込まれた空気に含まれる水分が室内熱交換器15で結露する。そして、室内熱交換器15の結露水は、ドレンパン18(図2参照)及びドレンホース(図示せず)を順次に介して、外部に排出される。その結果、単位体積当たりの室内空気に含まれる水分の量が減るため、その後に行われる凍結処理中(S102)、室内機Uiでの露垂れを抑制できる。 In step S601, the control unit 30 executes a cooling operation. Thereby, the indoor heat exchanger 15 functions as an evaporator, and the water contained in the air taken into the indoor unit Ui is condensed in the indoor heat exchanger 15. Then, the condensed water of the indoor heat exchanger 15 is discharged to the outside through the drain pan 18 (see FIG. 2) and the drain hose (not shown) in order. As a result, the amount of water contained in the indoor air per unit volume is reduced, so that it is possible to suppress the dew drop in the indoor unit Ui during the subsequent freezing process (S102).
 次にステップS102において制御部30は、室内熱交換器15を凍結させる。前記したように、室内熱交換器15の凍結に先立って冷房運転が行われたため(S601)、室内熱交換器15の凍結中に室内機Uiで露垂れが生じるおそれはほとんどない。ステップS102において室内熱交換器15を凍結させた後、制御部30は、室内熱交換器15の解凍(S103)・乾燥(S104)を順次に行い、一連の処理を終了する(END)。 Next, in step S102, the control unit 30 freezes the indoor heat exchanger 15. As described above, since the cooling operation is performed before freezing the indoor heat exchanger 15 (S601), there is almost no possibility that the indoor unit Ui will have dew drop while the indoor heat exchanger 15 is freezing. After freezing the indoor heat exchanger 15 in step S102, the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends the series of processes (END).
 なお、制御部30が、ステップS601の冷房運転に代えて、除湿運転を行うようにしてもよい。このような除湿運転でも、冷房運転と同様に、室内空気に含まれる水分の量を減らすことができる。 The control unit 30 may perform the dehumidifying operation instead of the cooling operation in step S601. Even in such a dehumidifying operation, the amount of water contained in the indoor air can be reduced, as in the cooling operation.
<効果>
 第6実施形態によれば、室内温度T(室内温度センサ27aの検出値)が第1所定値T1以上である場合(S101:Yes)、制御部30は、冷房運転又は除湿運転(S601)を行った後に室内熱交換器15の凍結処理(S102)を行う。これによって、単位体積当たりの室内空気に含まれる水分の量が減らされた状態で、制御部30が、室内熱交換器15の凍結処理(S102)を行うことができる。その結果、凍結処理中の室内機Uiでの露垂れを適切に抑制できる。
<Effect>
According to the sixth embodiment, when the indoor temperature T (the detection value of the indoor temperature sensor 27a) is the first predetermined value T1 or more (S101: Yes), the control unit 30 performs the cooling operation or the dehumidifying operation (S601). After that, the indoor heat exchanger 15 is frozen (S102). Thereby, the control unit 30 can perform the freezing process (S102) of the indoor heat exchanger 15 in a state where the amount of water contained in the indoor air per unit volume is reduced. As a result, it is possible to appropriately suppress dew drop in the indoor unit Ui during the freezing process.
≪第7実施形態≫
 第7実施形態は、気象情報に基づく室外湿度等に基づいて、制御部30が室内熱交換器15を凍結させるか否かを判定する点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Seventh Embodiment>>
The seventh embodiment is different from the first embodiment in that the control unit 30 determines whether to freeze the indoor heat exchanger 15 based on the outdoor humidity based on the weather information. The other points are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
 図13は、第7実施形態に係る空気調和機100Aの機能ブロック図である。
 図13に示すように、空気調和機100Aの室内機UAiは、第1実施形態(図3参照)で説明した構成に加えて、気象情報取得部29を備えている。なお、室内機UAiに代えて、室外機Uoに気象情報取得部29が設けられてもよい。
 気象情報取得部29は、空気調和機100の付近の室外湿度を含む気象情報を、ネットワーク(図示せず)を介してサーバ50から取得する機能を有している。
FIG. 13 is a functional block diagram of an air conditioner 100A according to the seventh embodiment.
As shown in FIG. 13, the indoor unit UAi of the air conditioner 100A includes a weather information acquisition unit 29 in addition to the configuration described in the first embodiment (see FIG. 3). The weather information acquisition unit 29 may be provided in the outdoor unit Uo instead of the indoor unit UAi.
The weather information acquisition unit 29 has a function of acquiring weather information including outdoor humidity near the air conditioner 100 from the server 50 via a network (not shown).
 例えば、空気調和機100Aの初期設定時に、ユーザによるリモコン40の操作によって、空気調和機100Aの位置情報(設置場所の地域名等)が入力され、この位置情報が記憶部31aに格納される。 For example, at the time of initial setting of the air conditioner 100A, the position information (region name of the installation place, etc.) of the air conditioner 100A is input by the user operating the remote controller 40, and this position information is stored in the storage unit 31a.
 気象情報取得部30は、サーバ50から気象情報を取得する際、空気調和機100Aの位置情報を記憶部31aから読み出し、この位置情報をネットワーク(図示せず)を介してサーバ50に送信する。制御部30から位置情報を受信したサーバ50は、空気調和機100Aの付近の気象情報をネットワーク(図示せず)を介して制御部30に送信する。この気象情報には、室外温度や室外湿度が含まれている。サーバ50から気象情報を受信した制御部30は、この気象情報を記憶部31aに格納する。 When acquiring the weather information from the server 50, the weather information acquisition unit 30 reads the position information of the air conditioner 100A from the storage unit 31a and transmits this position information to the server 50 via a network (not shown). The server 50 that has received the position information from the control unit 30 transmits the weather information near the air conditioner 100A to the control unit 30 via a network (not shown). This weather information includes outdoor temperature and outdoor humidity. The control unit 30 which receives the weather information from the server 50 stores the weather information in the storage unit 31a.
 図14は、第7実施形態に係る空気調和機の制御部30が実行する処理のフローチャートである(適宜、図13を参照)。
 なお、図14のステップS101~S104については、第1実施形態(図4参照)と同様であるから、その説明を省略する。
 ステップS701において制御部30は、気象情報取得部29によって、室外湿度を含む気象情報をサーバ50から取得する。そして、制御部30は、この気象情報を記憶部31aに格納する。なお、制御部30が、ステップS701の処理を定期的に行ってもよいし、また、気象情報を空調制御に用いる際に行ってもよい。
FIG. 14 is a flowchart of processing executed by the control unit 30 of the air conditioner according to the seventh embodiment (see FIG. 13 as needed).
Note that steps S101 to S104 in FIG. 14 are the same as those in the first embodiment (see FIG. 4), and therefore description thereof will be omitted.
In step S701, the control unit 30 causes the weather information acquisition unit 29 to acquire weather information including outdoor humidity from the server 50. Then, the control unit 30 stores this weather information in the storage unit 31a. The control unit 30 may perform the process of step S701 periodically, or may perform the process when using the weather information for air conditioning control.
 次にステップS101において制御部30は、室内温度センサ27aの検出値である室内温度Tが第1所定値T1以上であるか否かを判定する。室内温度Tが第1所定値T1以上である場合(S101:Yes)、制御部30の処理はステップS702に進む。 Next, in step S101, the control unit 30 determines whether or not the indoor temperature T, which is the detection value of the indoor temperature sensor 27a, is equal to or higher than a first predetermined value T1. When the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes), the process of the control unit 30 proceeds to step S702.
 ステップS702において制御部30は、気象情報に含まれる室外湿度U(室外空気の相対湿度又は絶対湿度)が第4所定値U4以下であるか否かを判定する。この第4所定値U4は、室内熱交換器15を凍結させるか否かの判定基準となる閾値であり、予め設定されている。また、室外湿度Uが低いほど、室内湿度も低い傾向がある。 In step S702, the control unit 30 determines whether the outdoor humidity U (relative humidity or absolute humidity of outdoor air) included in the weather information is equal to or less than a fourth predetermined value U4. The fourth predetermined value U4 is a threshold serving as a criterion for determining whether to freeze the indoor heat exchanger 15, and is set in advance. Further, the lower the outdoor humidity U, the lower the indoor humidity tends to be.
 ステップS702において室外湿度Uが第4所定値U4以下である場合(S702:Yes)、制御部30の処理はステップS102に進む。
 ステップS102において制御部30は、室内熱交換器15を凍結させる。つまり、制御部30は、室内熱交換器15の凍結時間や圧縮機モータ11aの回転速度に関して、室内温度Tが第1所定値T1未満の場合と同様に凍結処理(S102)を実行する。
When the outdoor humidity U is equal to or less than the fourth predetermined value U4 in step S702 (S702: Yes), the process of the control unit 30 proceeds to step S102.
In step S102, the control unit 30 freezes the indoor heat exchanger 15. That is, with respect to the freezing time of the indoor heat exchanger 15 and the rotation speed of the compressor motor 11a, the control unit 30 executes the freezing process (S102) as in the case where the indoor temperature T is less than the first predetermined value T1.
 前記したように、室外湿度Uは第4所定値以下であるため、室内湿度も低い可能性が高い。つまり、単位体積当たりの室内空気に含まれる水分の量が比較的少ないため、室内熱交換器15の凍結中に室内機UAiで露垂れが生じるおそれはほとんどない。
 ステップS102において室内熱交換器15を凍結させた後、制御部30は、室内熱交換器15の解凍(S103)・乾燥(S104)を順次に行い、一連の処理を終了する(END)。
As described above, since the outdoor humidity U is the fourth predetermined value or less, the indoor humidity is also likely to be low. That is, since the amount of water contained in the indoor air per unit volume is relatively small, there is almost no possibility that the indoor unit UAi will be exposed to dew during freezing of the indoor heat exchanger 15.
After freezing the indoor heat exchanger 15 in step S102, the control unit 30 sequentially performs thawing (S103) and drying (S104) of the indoor heat exchanger 15 and ends the series of processes (END).
 一方、ステップS702において室外湿度Uが第4所定値U4よりも高い場合(S702:No)、制御部30は、室内熱交換器15の凍結処理(S102)を行うことなく、一連の処理を終了する(END)。室外湿度Uが第4所定値U4よりも高い場合には、室内湿度も高い可能性があるからである。 On the other hand, when the outdoor humidity U is higher than the fourth predetermined value U4 in step S702 (S702: No), the control unit 30 ends the series of processes without performing the freezing process (S102) of the indoor heat exchanger 15. END. This is because when the outdoor humidity U is higher than the fourth predetermined value U4, the indoor humidity may also be high.
<効果>
 第7実施形態によれば、室内温度Tが第1所定値T1以上である場合でも(S101:Yes)、室外湿度Uが第4所定値U4以下であるときには(S702:Yes)、制御部30は、室内熱交換器15を凍結させる(S102)。これによって、室内機UAiでの露垂れを抑制しつつ、室内熱交換器15の凍結洗浄を行うことができる。
 また、第7実施形態によれば、室外機Uoに外気の湿度を検出するための湿度センサ(図示せず)を設ける必要がないため、低コスト化を図ることができる。
<Effect>
According to the seventh embodiment, even when the indoor temperature T is equal to or higher than the first predetermined value T1 (S101: Yes), when the outdoor humidity U is equal to or lower than the fourth predetermined value U4 (S702: Yes), the control unit 30. Freezes the indoor heat exchanger 15 (S102). As a result, the indoor heat exchanger 15 can be frozen and washed while suppressing the dew drop in the indoor unit UAi.
Further, according to the seventh embodiment, since it is not necessary to provide the outdoor unit Uo with a humidity sensor (not shown) for detecting the humidity of the outside air, cost reduction can be achieved.
≪変形例≫
 以上、本発明に係る空気調和機100等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、室内熱交換器15の凍結・解凍に代えて、制御部30が、室内熱交換器15を蒸発器として機能させ、室内熱交換器15を結露させてもよい。例えば、制御部30は、室内熱交換器15の温度が、室内空気の露点以下であり、かつ、所定の凍結温度(室内熱交換器15が凍結し始めるときの温度)よりも高くなるように、膨張弁14の開度を調整する。これによって、室内熱交換器15が結露し、その結露水で室内熱交換器15が洗い流される。
≪Modification≫
As above, the air conditioner 100 and the like according to the present invention have been described in each embodiment, but the present invention is not limited to these descriptions, and various modifications can be made.
For example, instead of freezing and thawing the indoor heat exchanger 15, the control unit 30 may cause the indoor heat exchanger 15 to function as an evaporator and cause the indoor heat exchanger 15 to condense. For example, the control unit 30 controls the temperature of the indoor heat exchanger 15 to be equal to or lower than the dew point of the indoor air and higher than a predetermined freezing temperature (the temperature at which the indoor heat exchanger 15 starts freezing). The opening degree of the expansion valve 14 is adjusted. Thereby, the indoor heat exchanger 15 is condensed, and the indoor heat exchanger 15 is washed away by the condensed water.
 また、第1実施形態では、ステップS101(図4参照)の処理時における室内温度Tが第1所定値T1以上であるか否かが判定される場合について説明したが、これに限らない。例えば、ステップS101の判定処理に先立つ所定時間の室内温度T(平均値等)に基づいて、ステップS101の判定処理が行われてもよい。 Further, in the first embodiment, a case has been described in which it is determined whether or not the indoor temperature T during the process of step S101 (see FIG. 4) is equal to or higher than the first predetermined value T1, but the present invention is not limited to this. For example, the determination process of step S101 may be performed based on the indoor temperature T (average value or the like) for a predetermined time period prior to the determination process of step S101.
 また、室内温度T(室内温度センサ27aの検出値)が第1所定値T1以上である場合でも、室内熱交換器15の凍結処理に先立って行った冷房運転又は除湿運転において、室内温度Tの低下幅又は低下速度が第5所定値以上であるときには、制御部30が凍結処理を実行するようにしてもよい。この場合において制御部30は、室内熱交換器15の凍結時間や圧縮機モータ11aの回転速度に関して、室内温度Tが第1所定値T1未満の場合と同様に凍結処理を実行する。
 なお、前記した室内温度Tの「低下幅」とは、冷房運転又は除湿運転が継続されている期間内での所定時間における室内温度Tの低下幅である。また、室内温度Tの「低下速度」についても同様である。
 例えば、室内温度Tと露点との間の温度差が比較的大きいときには、冷媒と空気との間の熱交換量に占める潜熱の割合が小さいため、室内空気は冷えやすい。その結果、室内温度Tの低下幅又は低下速度が第5所定値以上になることが多い。このような場合には、室内空気がそれほど湿っていない可能性が高いため、凍結洗浄が行われても、室内機Uiで露垂れが生じるおそれはほとんどない。
Even when the indoor temperature T (the detection value of the indoor temperature sensor 27a) is equal to or higher than the first predetermined value T1, in the cooling operation or the dehumidifying operation performed prior to the freezing process of the indoor heat exchanger 15, the indoor temperature T The control unit 30 may execute the freezing process when the decrease width or the decrease speed is equal to or greater than the fifth predetermined value. In this case, with respect to the freezing time of the indoor heat exchanger 15 and the rotation speed of the compressor motor 11a, the control unit 30 executes the freezing process as in the case where the indoor temperature T is less than the first predetermined value T1.
The "decrease width" of the room temperature T mentioned above is a decrease width of the room temperature T in a predetermined time within a period in which the cooling operation or the dehumidifying operation is continued. The same applies to the "falling rate" of the room temperature T.
For example, when the temperature difference between the room temperature T and the dew point is relatively large, the rate of latent heat in the amount of heat exchange between the refrigerant and air is small, so that the room air is easily cooled. As a result, the decrease width or decrease speed of the indoor temperature T often becomes equal to or higher than the fifth predetermined value. In such a case, there is a high possibility that the indoor air is not so humid, and therefore even if freeze cleaning is performed, there is almost no possibility that dew drops will occur in the indoor unit Ui.
 また、第6実施形態では、室内温度Tが第1所定値T1以上であるとき(図12のS101:Yes)、制御部30が、冷房運転又は除湿運転(S601)を行った後に凍結処理(S102)を行う場合について説明したが、これに限らない。すなわち、室内温度Tの高さに関わらず、凍結処理(S102)に先立って、制御部30が冷房運転又は除湿運転を行うようにしてもよい。これによって、制御部30の処理の簡素化を図るとともに、凍結処理中の室内機Uiでの露垂れを抑制できる。 In the sixth embodiment, when the room temperature T is equal to or higher than the first predetermined value T1 (S101: Yes in FIG. 12), the control unit 30 performs the cooling operation or the dehumidifying operation (S601) and then the freezing process (S601). Although the case of performing S102) has been described, the present invention is not limited to this. That is, regardless of the height of the indoor temperature T, the control unit 30 may perform the cooling operation or the dehumidifying operation prior to the freezing process (S102). As a result, the process of the control unit 30 can be simplified and the dew drop in the indoor unit Ui during the freezing process can be suppressed.
 また、各実施形態では、リモコン40による変更可能な設定温度が、冷房運転・暖房運転のいずれにおいても10℃以上かつ32℃以下である場合について説明したが、これに限らない。例えば、冷房運転時に変更可能な設定温度の範囲と、暖房運転時に変更可能な設定温度の範囲と、が異なっていてもよい。この場合において制御部30は、冷房運転時の設定温度の上限値、又は、暖房運転時の設定温度の上限値に基づいて、ステップS101(図4等を参照)の判定処理を実行する。
 なお、前記したリモコン40の他に、携帯電話、スマートフォン、タブレット等の携帯端末(図示せず)の操作に基づき、空気調和機100の空調運転等が行われるようにしてもよい。
Further, in each embodiment, the case where the set temperature that can be changed by the remote controller 40 is 10° C. or higher and 32° C. or lower in both the cooling operation and the heating operation has been described, but the present invention is not limited thereto. For example, the range of set temperature that can be changed during the cooling operation and the range of set temperature that can be changed during the heating operation may be different. In this case, the control unit 30 executes the determination process of step S101 (see FIG. 4 and the like) based on the upper limit value of the set temperature during the cooling operation or the upper limit value of the set temperature during the heating operation.
In addition to the remote controller 40 described above, the air conditioning operation of the air conditioner 100 may be performed based on the operation of a mobile terminal (not shown) such as a mobile phone, a smartphone, or a tablet.
 また、各実施形態は、適宜に組み合わせることができる。例えば、第2実施形態と第3実施形態とを組み合わせてもよい。すなわち、室内温度Tが第1所定値T1以上である場合、制御部30が、室内熱交換器15の凍結時間を短くし(第2実施形態)、さらに、室内熱交換器15の凍結中における圧縮機モータ11aの回転速度を小さく設定してもよい(第3実施形態)。 Also, the respective embodiments can be appropriately combined. For example, the second embodiment and the third embodiment may be combined. That is, when the indoor temperature T is equal to or higher than the first predetermined value T1, the control unit 30 shortens the freezing time of the indoor heat exchanger 15 (second embodiment), and further during freezing of the indoor heat exchanger 15. The rotation speed of the compressor motor 11a may be set low (third embodiment).
 また、各実施形態では、室内機Ui(図1参照)及び室外機Uo(図1参照)が一台ずつ設けられる構成について説明したが、これに限らない。すなわち、並列接続された複数台の室内機を設けてもよいし、また、並列接続された複数台の室外機を設けてもよい。
 また、各実施形態で説明した空気調和機100は、壁掛型の空気調和機の他、さまざまな種類の空気調和機に適用可能である。
Further, in each embodiment, the configuration in which one indoor unit Ui (see FIG. 1) and one outdoor unit Uo (see FIG. 1) are provided has been described, but the configuration is not limited to this. That is, a plurality of indoor units connected in parallel may be provided, or a plurality of outdoor units connected in parallel may be provided.
In addition, the air conditioner 100 described in each embodiment is applicable to various types of air conditioners in addition to the wall-mounted air conditioner.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
In addition, each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one including all the configurations described. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the respective embodiments.
In addition, the above-mentioned mechanisms and configurations are shown to be necessary for explanation, and not all the mechanisms and configurations are shown in the product.
 100,100A 空気調和機
 11  圧縮機
 11a 圧縮機モータ(圧縮機のモータ)
 12  室外熱交換器(凝縮器/蒸発器)
 13  室外ファン
 14  膨張弁
 15  室内熱交換器(蒸発器/凝縮器)
 16  室内ファン
 27a 室内温度センサ
 27b 室内熱交換器温度センサ
 28  室外温度センサ
 29  気象情報取得部
 30  制御部
 40  リモコン
 50  サーバ
 Q   冷媒回路
100,100A Air conditioner 11 Compressor 11a Compressor motor (compressor motor)
12 Outdoor heat exchanger (condenser/evaporator)
13 outdoor fan 14 expansion valve 15 indoor heat exchanger (evaporator/condenser)
16 Indoor Fan 27a Indoor Temperature Sensor 27b Indoor Heat Exchanger Temperature Sensor 28 Outdoor Temperature Sensor 29 Meteorological Information Acquisition Section 30 Control Section 40 Remote Control 50 Server Q Refrigerant Circuit

Claims (10)

  1.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して冷媒が循環する冷媒回路と、
     少なくとも前記圧縮機及び前記膨張弁を制御する制御部と、
     空調対象空間の温度を検出する室内温度センサと、を備え、
     前記凝縮器及び前記蒸発器の一方は室外熱交換器であり、他方は室内熱交換器であり、
     前記制御部は、前記室内熱交換器を前記蒸発器として機能させ、前記室内熱交換器を凍結させる凍結処理を行い、
     前記室内温度センサの検出値が第1所定値以上である場合、前記制御部は、前記凍結処理を行わないか、前記凍結処理を行うときでも、前記室内温度センサの検出値が前記第1所定値未満である場合よりも前記凍結処理の継続時間を短くし、又は、前記室内温度センサの検出値が前記第1所定値未満である場合よりも前記凍結処理中の前記圧縮機のモータの回転速度を小さくし、
     前記第1所定値は、冷房運転時又は暖房運転時にリモコンで変更可能な設定温度の上限値よりも低い空気調和機。
    A refrigerant circuit in which a refrigerant circulates sequentially through a compressor, a condenser, an expansion valve, and an evaporator,
    A control unit for controlling at least the compressor and the expansion valve;
    An indoor temperature sensor that detects the temperature of the air-conditioned space,
    One of the condenser and the evaporator is an outdoor heat exchanger, the other is an indoor heat exchanger,
    The control unit causes the indoor heat exchanger to function as the evaporator, and performs a freezing process of freezing the indoor heat exchanger,
    When the detected value of the indoor temperature sensor is equal to or higher than the first predetermined value, the control unit does not perform the freezing process, or even when the freezing process is performed, the detected value of the indoor temperature sensor is the first predetermined value. The duration of the freezing process is shortened as compared with the case where it is less than a value, or the rotation of the motor of the compressor during the freezing process is more than that when the detected value of the indoor temperature sensor is less than the first predetermined value. Reduce the speed,
    An air conditioner in which the first predetermined value is lower than an upper limit value of a set temperature that can be changed by a remote controller during a cooling operation or a heating operation.
  2.  前記制御部は、前記室内温度センサの検出値が、前記第1所定値よりも低い第2所定値以下である場合、前記凍結処理を行わない
     ことを特徴とする請求項1に記載の空気調和機。
    The air conditioner according to claim 1, wherein the control unit does not perform the freezing process when a detected value of the indoor temperature sensor is equal to or lower than a second predetermined value lower than the first predetermined value. Machine.
  3.  前記制御部は、前記室内温度センサの検出値が前記第1所定値以上である場合でも、前記凍結処理に先立って冷房運転又は除湿運転を行っていたときには、前記室内温度センサの検出値が前記第1所定値未満の場合と同様に前記凍結処理を実行する
     ことを特徴とする請求項1に記載の空気調和機。
    Even when the detected value of the indoor temperature sensor is equal to or higher than the first predetermined value, the control unit detects the detected value of the indoor temperature sensor when performing the cooling operation or the dehumidifying operation prior to the freezing process. The air conditioner according to claim 1, wherein the freezing process is performed in the same manner as when the value is less than the first predetermined value.
  4.  前記室内熱交換器の温度を検出する室内熱交換器温度センサを備え、
     前記制御部は、前記室内温度センサの検出値が前記第1所定値以上である場合において、前記凍結処理に先立って冷房運転又は除湿運転を行ったときの前記室内熱交換器温度センサの検出値に対する前記室内温度センサの検出値の差が第3所定値以下であるときには、前記凍結処理を行わない
     ことを特徴とする請求項3に記載の空気調和機。
    An indoor heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger,
    When the detected value of the indoor temperature sensor is equal to or higher than the first predetermined value, the control unit detects the detected value of the indoor heat exchanger temperature sensor when the cooling operation or the dehumidifying operation is performed prior to the freezing process. The air conditioner according to claim 3, wherein the freezing process is not performed when the difference in the detected value of the indoor temperature sensor with respect to is less than or equal to a third predetermined value.
  5.  前記制御部は、前記凍結処理に先立って行った冷房運転又は除湿運転における前記圧縮機の前記モータの回転速度に対応して、前記第3所定値を設定し、
     前記圧縮機の前記モータの回転速度が大きいほど、前記第3所定値が大きい
     ことを特徴とする請求項4に記載の空気調和機。
    The control unit sets the third predetermined value in response to the rotation speed of the motor of the compressor in the cooling operation or the dehumidifying operation performed prior to the freezing process,
    The air conditioner according to claim 4, wherein the third predetermined value increases as the rotation speed of the motor of the compressor increases.
  6.  前記制御部は、前記室内温度センサの検出値が前記第1所定値以上である場合において、前記凍結処理を行わないとき、冷房運転又は送風運転を行う
     ことを特徴とする請求項1に記載の空気調和機。
    The control unit performs a cooling operation or a blowing operation when the freezing process is not performed when the detected value of the indoor temperature sensor is equal to or higher than the first predetermined value. Air conditioner.
  7.  前記室内熱交換器の付近に設置される室内ファンを備え、
     前記制御部は、前記室内温度センサを用いた前記空調対象空間の温度の検出時に前記室内ファンを駆動させる
     ことを特徴とする請求項1に記載の空気調和機。
    An indoor fan installed near the indoor heat exchanger,
    The air conditioner according to claim 1, wherein the control unit drives the indoor fan when the temperature of the air-conditioned space is detected using the indoor temperature sensor.
  8.  前記空気調和機の付近の室外湿度を含む気象情報をサーバから取得する気象情報取得部を備え、
     前記制御部は、前記室内温度センサの検出値が前記第1所定値以上である場合でも、前記気象情報取得部によって取得された前記気象情報に含まれる室外湿度が第4所定値以下であるときには、前記室内温度センサの検出値が前記第1所定値未満の場合と同様に前記凍結処理を実行する
     ことを特徴とする請求項1に記載の空気調和機。
    A weather information acquisition unit for acquiring weather information including outdoor humidity near the air conditioner from a server,
    Even if the detected value of the indoor temperature sensor is equal to or higher than the first predetermined value, the control unit controls the outdoor humidity included in the weather information acquired by the weather information acquisition unit to be equal to or lower than a fourth predetermined value. The air conditioner according to claim 1, wherein the freezing process is executed in the same manner as when the detected value of the indoor temperature sensor is less than the first predetermined value.
  9.  前記制御部は、前記室内温度センサの検出値が前記第1所定値以上である場合でも、前記凍結処理に先立って行った冷房運転又は除湿運転において、前記室内温度センサの検出値の低下幅又は低下速度が第5所定値以上であるときには、前記室内温度センサの検出値が前記第1所定値未満の場合と同様に前記凍結処理を実行する
     ことを特徴とする請求項3に記載の空気調和機。
    Even if the detected value of the indoor temperature sensor is equal to or higher than the first predetermined value, the control unit may decrease the detected value of the indoor temperature sensor in the cooling operation or the dehumidifying operation performed prior to the freezing process, or The air conditioning according to claim 3, wherein when the rate of decrease is equal to or higher than a fifth predetermined value, the freezing process is executed in the same manner as when the detected value of the indoor temperature sensor is lower than the first predetermined value. Machine.
  10.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して冷媒が循環する冷媒回路と、
     少なくとも前記圧縮機及び前記膨張弁を制御する制御部と、
     空調対象空間の温度を検出する室内温度センサと、を備え、
     前記凝縮器及び前記蒸発器の一方は室外熱交換器であり、他方は室内熱交換器であり、
     前記制御部は、前記室内熱交換器を前記蒸発器として機能させ、前記室内熱交換器を凍結させる凍結処理を行い、
     前記室内温度センサの検出値が第1所定値以上である場合、前記制御部は、冷房運転又は除湿運転を行った後に前記凍結処理を行い、
     前記第1所定値は、冷房運転時又は暖房運転時にリモコンで変更可能な設定温度の上限値よりも低い空気調和機。
    A refrigerant circuit in which a refrigerant circulates sequentially through a compressor, a condenser, an expansion valve, and an evaporator,
    A control unit for controlling at least the compressor and the expansion valve;
    An indoor temperature sensor that detects the temperature of the air-conditioned space,
    One of the condenser and the evaporator is an outdoor heat exchanger, the other is an indoor heat exchanger,
    The control unit causes the indoor heat exchanger to function as the evaporator, and performs a freezing process of freezing the indoor heat exchanger,
    When the detected value of the indoor temperature sensor is equal to or higher than a first predetermined value, the control unit performs the freezing process after performing a cooling operation or a dehumidifying operation,
    An air conditioner in which the first predetermined value is lower than an upper limit value of a set temperature that can be changed by a remote controller during a cooling operation or a heating operation.
PCT/JP2019/000464 2019-01-10 2019-01-10 Air conditioner WO2020144797A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019520753A JP6641066B1 (en) 2019-01-10 2019-01-10 Air conditioner
PCT/JP2019/000464 WO2020144797A1 (en) 2019-01-10 2019-01-10 Air conditioner
CN201980005282.5A CN111684212B (en) 2019-01-10 2019-01-10 Air conditioner
TW109100744A TWI721754B (en) 2019-01-10 2020-01-09 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000464 WO2020144797A1 (en) 2019-01-10 2019-01-10 Air conditioner

Publications (1)

Publication Number Publication Date
WO2020144797A1 true WO2020144797A1 (en) 2020-07-16

Family

ID=69320949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000464 WO2020144797A1 (en) 2019-01-10 2019-01-10 Air conditioner

Country Status (4)

Country Link
JP (1) JP6641066B1 (en)
CN (1) CN111684212B (en)
TW (1) TWI721754B (en)
WO (1) WO2020144797A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576741B1 (en) * 2022-10-28 2023-09-08 케이웨더(주) Indoor enviroment integrated control system for saving energy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102481685B1 (en) * 2020-03-05 2022-12-28 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 air conditioner
KR20220008427A (en) * 2020-07-13 2022-01-21 삼성전자주식회사 air conditioner and controlling method thereof
WO2022013956A1 (en) * 2020-07-15 2022-01-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP7008758B1 (en) 2020-07-15 2022-01-25 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP6947262B1 (en) * 2020-09-01 2021-10-13 ダイキン工業株式会社 Air conditioner
CN115451532A (en) * 2022-09-01 2022-12-09 海尔(深圳)研发有限责任公司 Control method and device for preventing air conditioner from freezing, air conditioner and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217534A (en) * 2012-04-05 2013-10-24 Daikin Industries Ltd Air conditioner
CN106247846A (en) * 2016-08-23 2016-12-21 广东美的制冷设备有限公司 The vaporizer cleaning method of single cooler and device
CN106679111A (en) * 2017-01-23 2017-05-17 深圳创维空调科技有限公司 Automatic cleaning treatment method and automatic cleaning treatment system of air-conditioning heat exchanger
CN108534312A (en) * 2017-12-25 2018-09-14 珠海格力电器股份有限公司 A kind of cleaning method of air conditioner indoor unit, air-conditioning and heat exchanger for air-conditioner indoor machine
JP2018189361A (en) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air-conditioning machine
JP2018189256A (en) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air-conditioning machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378724B2 (en) * 1996-04-09 2003-02-17 三洋電機株式会社 Defrosting control method for air conditioner
CN106322658A (en) * 2016-08-23 2017-01-11 广东美的制冷设备有限公司 Cleaning control method and device for heat exchanger of air conditioner
CN107514682A (en) * 2017-07-26 2017-12-26 青岛海尔空调器有限总公司 Air conditioner room unit with self-cleaning function
CN108375160B (en) * 2017-12-29 2020-11-27 青岛海尔空调器有限总公司 Control method and device for preventing condensation of air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217534A (en) * 2012-04-05 2013-10-24 Daikin Industries Ltd Air conditioner
CN106247846A (en) * 2016-08-23 2016-12-21 广东美的制冷设备有限公司 The vaporizer cleaning method of single cooler and device
CN106679111A (en) * 2017-01-23 2017-05-17 深圳创维空调科技有限公司 Automatic cleaning treatment method and automatic cleaning treatment system of air-conditioning heat exchanger
JP2018189361A (en) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air-conditioning machine
JP2018189256A (en) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air-conditioning machine
CN108534312A (en) * 2017-12-25 2018-09-14 珠海格力电器股份有限公司 A kind of cleaning method of air conditioner indoor unit, air-conditioning and heat exchanger for air-conditioner indoor machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576741B1 (en) * 2022-10-28 2023-09-08 케이웨더(주) Indoor enviroment integrated control system for saving energy

Also Published As

Publication number Publication date
TWI721754B (en) 2021-03-11
CN111684212B (en) 2021-10-01
JPWO2020144797A1 (en) 2021-02-18
CN111684212A (en) 2020-09-18
TW202032065A (en) 2020-09-01
JP6641066B1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2020144797A1 (en) Air conditioner
JP6353998B1 (en) Air conditioner
JP6349013B1 (en) Air conditioner
EP3611446B1 (en) Air-conditioner
JP6559923B1 (en) Air conditioner
JP6360593B1 (en) Air conditioner
EP3795913A1 (en) Air conditioner
JP2018200167A (en) Air conditioner
WO2020148846A1 (en) Air conditioner
JPWO2019043765A1 (en) Air conditioner
JP6552773B1 (en) Air conditioner
JP6435443B1 (en) Air conditioner
JP6971400B2 (en) Air conditioning system, air conditioning method, and program
JP2018128177A (en) Air Conditioning System

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019520753

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908713

Country of ref document: EP

Kind code of ref document: A1