WO2020144732A1 - Separator and lead storage battery - Google Patents

Separator and lead storage battery Download PDF

Info

Publication number
WO2020144732A1
WO2020144732A1 PCT/JP2019/000100 JP2019000100W WO2020144732A1 WO 2020144732 A1 WO2020144732 A1 WO 2020144732A1 JP 2019000100 W JP2019000100 W JP 2019000100W WO 2020144732 A1 WO2020144732 A1 WO 2020144732A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
separator
less
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2019/000100
Other languages
French (fr)
Japanese (ja)
Inventor
祐 浅井
昭人 後藤
覚野 博司
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2019/000100 priority Critical patent/WO2020144732A1/en
Priority to JP2020565045A priority patent/JPWO2020144732A1/en
Publication of WO2020144732A1 publication Critical patent/WO2020144732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator that can be used in a lead storage battery, and a lead storage battery.
  • valve-regulated lead-acid batteries are used for uninterruptible power supplies and power storage applications. Further, in recent years, the valve-regulated lead-acid battery is also used for cycle applications such as for electric vehicles. For such a cycle application, higher output is required. For higher output, the number of electrodes in the battery case can be increased by reducing the electrode thickness, separator thickness, etc.
  • a sheet made of glass fiber is used as a separator for control valve type lead-acid batteries, and the separator also holds the sulfuric acid, which is the electrolytic solution, and also supplies the electrolytic solution to the positive and negative electrodes.
  • the separator since the separator holds the electrolytic solution inside, in the battery manufacturing process, in the discharging step called "Battery formation", lead sulfate easily elutes in the separator, and the thickness of the separator If the thickness is made thin, there is a problem that a short circuit (penetration short circuit) easily occurs due to charge and discharge. Therefore, a relatively thick separator (separator having a thickness of several mm) is currently used for the purpose of preventing permeation short-circuiting, and it is difficult to reduce the thickness of the separator.
  • Patent Document 1 proposes a separator that is capable of suppressing permeation short-circuit and achieving a thin film by adding an inorganic filler to the glass fiber.
  • Patent Document 2 proposes a separator, in which two glass sheets having an inorganic filler unevenly distributed on one side are stuck together with the surfaces having the inorganic filler unevenly distributed.
  • An object of the present invention is to provide a lead storage battery separator that can prevent a permeation short circuit during battery case formation even if the separator thickness is thin, and a lead storage battery using the same.
  • a separator according to one aspect of the present invention is a lead-acid battery separator having at least a first layer, a second layer, and a third layer, the first layer being disposed on one surface side of the separator.
  • the second layer is disposed on the other surface side of the separator, the third layer is disposed between the first layer and the second layer, and the first layer and the second layer.
  • the average pore diameter of the layer is smaller than the average pore diameter of the third layer, and the total thickness of the first layer and the second layer is larger than the thickness of the third layer.
  • a lead storage battery includes a positive electrode, a negative electrode, and the separator described above, and the separator is arranged between the positive electrode and the negative electrode.
  • the present invention in a lead-acid battery, even if the thickness of the separator is reduced, it is possible to prevent an infiltration short circuit during formation of the battery case.
  • the numerical range indicated by using “to” indicates the range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of a certain stage can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another stage.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • “A or B” may include either one of A and B, or may include both.
  • the materials exemplified in the present specification can be used alone or in combination of two or more kinds.
  • each component in the composition means the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • film and “layer” include not only the structure of the shape formed on the entire surface but also the structure of the part formed when observed as a plan view.
  • step is included in the term as long as the intended action of the step is achieved not only when it is an independent step but also when it cannot be clearly distinguished from other steps. Since the specific gravity changes with temperature, it is defined as the specific gravity converted at 20° C. in this specification.
  • the separator according to this embodiment is a lead-acid battery separator having at least a first layer, a second layer, and a third layer.
  • the first layer is arranged on the one surface side of the separator
  • the second layer is arranged on the other surface side of the separator
  • the third layer is arranged between the first layer and the second layer. Will be placed.
  • the average pore diameter of the first layer and the second layer is smaller than the average pore diameter of the third layer, and the total thickness of the first layer and the second layer is larger than the thickness of the third layer. ..
  • the separator according to the present embodiment has a structure obtained by stacking at least a first layer, a third layer and a second layer in this order.
  • the present embodiment in a lead storage battery, even if the thickness of the separator is thin (for example, even if the thickness is 1.5 mm or less), it is possible to prevent the permeation short circuit during the formation of the battery case. According to this embodiment, even if the thickness of the separator is reduced, it is possible to prevent the permeation short circuit during the formation of the battery case without using the inorganic filler that blocks the pores.
  • the factors that prevent the penetration short circuit are as follows. However, the factors are not limited to the following contents. That is, generally, in a lead storage battery, lead sulfate is generated during discharge during formation of a battery case and the specific gravity (sulfuric acid concentration) of the electrolytic solution is reduced. Then, when lead sulfate is eluted into the electrolytic solution and permeates into the separator, an infiltration short circuit may occur.
  • the average pore diameters of the first layer and the second layer, which are the outer layers are smaller than the average pore diameter of the third layer, which is the intermediate layer. Electrolyte diffuses slowly.
  • the electrolytic solution whose specific gravity has decreased due to discharge is difficult to diffuse, whereas in the intermediate layer having a high diffusive property, the electrolytic solution whose specific gravity has decreased due to discharge easily diffuses, and the outer layer The specific gravity of the electrolytic solution tends to be lower than that.
  • a difference in specific gravity of the electrolytic solution between the outer layer and the intermediate layer is likely to occur, and in the intermediate layer, the electrolytic solution having a small specific gravity comes into contact with (is mixed with) the electrolytic solution having a large specific gravity on the outer layer side, so that the specific gravity is It becomes large and the solubility of lead sulfate decreases, so that lead sulfate precipitates.
  • the outer layer lead sulfate is less likely to deposit.
  • the total thickness of the first layer and the second layer that are the outer layers is larger than the thickness of the third layer that is the intermediate layer. In this case, it is easy to suppress the precipitation of lead sulfate in the entire intermediate layer, and it is easy to suppress the precipitation of lead sulfate in the outer layer as well because the electrolytic solution having a low specific gravity permeates into the outer layer. Due to these, in the present embodiment, it is possible to prevent an infiltration short circuit.
  • the capacity of the lead storage battery can be increased by increasing the number of electrodes (electrode plates etc.) used. Therefore, according to the present embodiment, even if the thickness of the separator is reduced, it is possible to prevent the permeation short circuit at the time of forming the battery case and to increase the capacity of the lead storage battery.
  • the lead storage battery according to the present embodiment includes a positive electrode, a negative electrode, and a separator according to the present embodiment, and the separator is arranged between the positive electrode and the negative electrode.
  • the lead storage battery according to the present embodiment can be used as a control valve type lead storage battery.
  • the lead storage battery according to this embodiment can be used in an electric vehicle. Examples of electric vehicles include micro hybrid vehicles such as ISS (start-stop system vehicles) and power generation control vehicles.
  • the electric vehicle according to the present embodiment includes the lead storage battery according to the present embodiment.
  • the positive electrode (for example, the positive electrode plate) has a positive electrode current collector and a positive electrode active material filling portion, and the positive electrode active material is filled with the positive electrode current material to form the positive electrode active material filling portion.
  • the negative electrode (for example, the negative electrode plate) has a negative electrode current collector and a negative electrode active material filling portion, and the negative electrode active material is filled in the negative electrode current material to form the negative electrode active material filling portion. ..
  • the positive electrode after the chemical conversion and the positive electrode current collector are removed is referred to as a “positive electrode active material”
  • the negative electrode after the chemical conversion is removed from the negative electrode current collector is referred to as the “negative electrode active material”.
  • the separator according to the present embodiment is preferably composed of the first layer, the second layer, and the third layer from the viewpoint of easily preventing a permeation short circuit.
  • the separator according to the present embodiment may have a layer other than the first layer, the second layer, and the third layer between the first layer and the second layer.
  • the separator is arranged between the positive electrode and the negative electrode.
  • the separator may be bag-shaped.
  • the separator may wrap at least one selected from the group consisting of a positive electrode and a negative electrode. The separator does not have to surround the positive electrode and the negative electrode.
  • FIG. 1 is a sectional view showing an example of a separator.
  • the separator 100 according to the present embodiment includes a first layer 110a arranged on the one surface 100a side of the separator 100, a second layer 110b arranged on the other surface 100b side of the separator 100, and a first layer 110a. And a third layer 110c disposed between the second layer 110b and the second layer 110b.
  • the separator 100 is composed of a first layer 110a, a second layer 110b and a third layer 110c.
  • the separator 100 is disposed between the positive electrode and the negative electrode.
  • the first layer 110a is in contact with the positive electrode and the second layer 110b is in contact with the negative electrode.
  • One surface of the first layer 110a is in contact with the positive electrode, and the other surface of the first layer 110a is in contact with the third layer 110c.
  • one surface of the second layer 110b is in contact with the negative electrode and the other surface of the second layer 110b is in contact with the third layer 110c.
  • the average pore diameter of the first layer 110a and the second layer 110b is smaller than the average pore diameter of the third layer 110c, and the total thickness of the first layer 110a and the second layer 110b is the third layer 110c. Greater than the thickness of.
  • FIG. 2 is an exploded perspective view showing an example of a lead storage battery.
  • the lead-acid battery 1 shown in FIG. 2 includes a plurality of positive electrode plates 2, a plurality of negative electrode plates 3, a plurality of separators 4, a hollow battery case 5, and a lid body 6 for sealing the battery case 5.
  • the lid 6 is provided with a control valve 7 that controls the pressure in the battery case 5, a positive electrode terminal 8 that connects the positive electrode plate 2 to the outside, and a negative electrode terminal 9 that connects the negative electrode plate 3 to the outside. ..
  • the positive electrode plate 2 has a positive electrode current collector and a positive electrode active material filling portion filled in the positive electrode current collector.
  • the negative electrode plate 3 has a negative electrode current collector and a negative electrode active material filling portion filled in the negative electrode current collector.
  • a positive electrode plate 2 and a negative electrode plate 3 are alternately arranged, and a separator 4 is arranged between the positive electrode plate 2 and the negative electrode plate 3 to form an electrode plate group.
  • the plurality of positive electrode plates 2 are electrically connected to each other by connecting the ears 2a provided on each positive electrode plate 2 via the straps 2b.
  • the plurality of negative electrode plates 3 are electrically connected to each other by connecting the ears 3a provided on each negative electrode plate 3 to each other via the strap 3b.
  • the strap 2b of the positive electrode plate 2 is provided with a positive electrode column 2c for connecting the positive electrode plate 2 to the positive electrode terminal 8.
  • the strap 3b of the negative electrode plate 3 is provided with a negative electrode column 3c for connecting the negative electrode plate 3 to the negative electrode terminal 9.
  • the separator 4 can be used, for example, as an electrolytic solution holder (retainer) that holds an electrolytic solution.
  • the separator 4 has the above-mentioned first layer, second layer, and third layer.
  • the first layer contacts the positive electrode plate 2 and the second layer contacts the negative electrode plate 3.
  • the battery case 5 can accommodate the electrode plate group and is not particularly limited as long as it has resistance to an electrolytic solution such as dilute sulfuric acid.
  • the battery case 5 is made of polypropylene, polyethylene, ABS resin or the like.
  • the inside of the battery case 5 may be divided into a plurality of cell chambers. In this case, for example, the electrode plate group is housed in each cell chamber. Then, the lead plate battery is accommodated by connecting the electrode plate group housed in one cell chamber and the electrode plate group housed in the cell chamber adjacent thereto to each other so that straps of opposite polarities are connected to each other. Can be configured.
  • the battery case 5 contains an electrode plate group and an electrolytic solution.
  • the electrolytic solution contains, for example, sulfuric acid.
  • the electrolytic solution may further contain aluminum ions.
  • the electrolytic solution containing aluminum ions can be obtained, for example, by mixing sulfuric acid and aluminum sulfate.
  • the lid 6 is made of, for example, the same material as the battery case 5.
  • the lid 6 is attached to the battery case 5 by, for example, heat fusion or adhesion using an adhesive.
  • the separator according to the present embodiment may not contain an inorganic filler, and may contain an inorganic filler. At least one selected from the group consisting of the first layer, the second layer, and the third layer may not contain an inorganic filler, and may contain an inorganic filler.
  • the content of the inorganic filler may be 0.001% by mass or less, and 0.0001% by mass or less, based on the total mass of the separator, the first layer, the second layer, or the third layer. May be 0.00001% by mass or less.
  • the separator according to this embodiment can contain glass fiber. At least one selected from the group consisting of the first layer, the second layer, and the third layer can contain glass fiber.
  • the glass fiber As the glass fiber, commercially available glass fiber that is usually used for a lead storage battery separator can be used.
  • the glass fiber preferably contains an alkali glass from the viewpoint of easily obtaining excellent durability and acid resistance.
  • the glass fiber may include C glass.
  • the glass fiber of the C glass composition has excellent acid resistance.
  • one kind or two or more kinds of fibers may be mixed and used for obtaining a glass sheet having a desired pore size.
  • the fiber diameter of the glass fiber (for example, the number average fiber diameter) is not particularly limited, but is preferably within the following range.
  • the fiber diameter is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 0.8 ⁇ m or more, from the viewpoint of easily increasing the pore size of the separator.
  • the fiber diameter is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 20 ⁇ m or less, from the viewpoint that the electrolytic solution tends to be easily retained in the separator. From these viewpoints, the fiber diameter is preferably 0.3 ⁇ m to 100 ⁇ m.
  • At least one selected from the group consisting of the first layer and the second layer can contain a glass fiber having a fiber diameter (for example, a number average fiber diameter) smaller than that of the glass fiber of the third layer.
  • At least one selected from the group consisting of the first layer and the second layer preferably contains glass fibers having a fiber diameter (for example, a number average fiber diameter) within the following range.
  • the fiber diameter is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 0.8 ⁇ m or more, from the viewpoint of easily preventing permeation short circuit.
  • the fiber diameter is preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less, still more preferably 1 ⁇ m or less, from the viewpoint of easily preventing permeation short circuit and from the viewpoint of easily holding the electrolytic solution in the separator. From these viewpoints, the fiber diameter is preferably 0.3 to 5 ⁇ m.
  • the third layer preferably contains glass fibers having a fiber diameter (for example, number average fiber diameter) in the following range.
  • the fiber diameter is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, still more preferably 2 ⁇ m or more, from the viewpoint of easily preventing permeation short circuit and from the viewpoint of easily increasing the pore size.
  • the fiber diameter is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 20 ⁇ m or less, particularly preferably 10 ⁇ m or less, from the viewpoint of easily preventing permeation short-circuiting and from the viewpoint of easily holding the electrolytic solution in the separator. It is preferably 5 ⁇ m or less, very preferably 3 ⁇ m or less. From these viewpoints, the fiber diameter is preferably 1 to 100 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the fiber length (for example, the number average fiber length) of glass fibers is not particularly limited, but is preferably in the following range.
  • the fiber length is preferably 1 ⁇ m or more, more preferably 100 ⁇ m or more, still more preferably 500 ⁇ m or more, from the viewpoint that it tends to be easily adjusted to a uniform pore size.
  • the fiber length is preferably 30 mm or less, from the viewpoint that a separator having a sufficiently high strength (for example, 1 MPa or more) tends to be easily manufactured, and from the viewpoint that good paper-forming property tends to be easily obtained at the time of paper-making described later, 20 mm or less is more preferable, and 10 mm or less is further preferable. From these viewpoints, the fiber length is preferably 1 ⁇ m to 30 mm.
  • the fiber diameter (for example, number average fiber diameter) and fiber length (for example, number average fiber length) of glass fibers are determined by dynamic image analysis method and laser scanning method (for example, JIS L 1081 (wool fiber test method)). ), or by direct observation with a scanning electron microscope (SEM) or the like.
  • the number average fiber diameter and the number average fiber length can be determined by observing at least about 200 glass fibers using these methods and taking the average value thereof.
  • the separator according to the present embodiment can contain an organic binder, and may contain glass fiber and an organic binder. At least one selected from the group consisting of the first layer, the second layer, and the third layer can contain an organic binder, and may contain glass fiber and an organic binder.
  • the organic binder preferably has excellent acid resistance and water resistance, and examples thereof include an olefin resin, an acrylic resin, a urethane resin, and a styrene resin.
  • a thermoplastic resin introduced with a hydrophilic group such as a sulfo group or a carboxyl group may be used from the viewpoint of easily improving the affinity between the separator and the electrolytic solution.
  • the organic binder preferably contains at least one selected from the group consisting of an olefin resin and a styrene resin from the viewpoint of easily achieving both excellent mechanical strength and liquid retaining property of the electrolytic solution.
  • the organic binder may contain at least one selected from the group consisting of polypropylene and polyethylene from the viewpoint of easily obtaining excellent acid resistance and water resistance, and from the viewpoint of easily obtaining excellent affinity of the separator for sulfuric acid. It is more preferable to include polypropylene.
  • the organic binders may be used alone or in combination of two or more.
  • the content of the organic binder contained in the separator is preferably in the following range with respect to the total mass of the glass fiber (total mass in the separator).
  • the content of the organic binder contained in at least one selected from the group consisting of the first layer, the second layer and the third layer is such that the total mass of the glass fiber (the first layer, the second layer or the The following range is preferable with respect to the total mass in the layer 3).
  • the content of the organic binder is preferably 0.5% by mass or more, more preferably 1% by mass or more, further preferably 2% by mass or more, further preferably 3% by mass from the viewpoint that the separator is easily broken because the strength of the separator is easily maintained.
  • the content of the organic binder is preferably 20% by mass or less, more preferably 15% by mass or less, further preferably 10% by mass or less, and particularly preferably 9% by mass or less, from the viewpoint of easily retaining the electrolytic solution in the separator. , 7 mass% or less is extremely preferable. From these viewpoints, the content of the organic binder is preferably 0.5 to 20% by mass.
  • the average pore diameter Da of at least one selected from the group consisting of the first layer and the second layer is preferably in the following range.
  • the average pore diameter Da is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, still more preferably 2 ⁇ m or more, particularly preferably 2.5 ⁇ m or more, particularly preferably 3 ⁇ m or more, from the viewpoint of easy diffusion of the electrolytic solution. 5 ⁇ m or more is very preferable, and 4 ⁇ m or more is even more preferable.
  • the average pore diameter Da is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, further preferably 7 ⁇ m or less, particularly preferably 6 ⁇ m or less, very preferably 5 ⁇ m or less, and very preferably 4.5 ⁇ m or less from the viewpoint of easily retaining the electrolytic solution. Is preferred. From these viewpoints, the average pore diameter Da is preferably 1 to 10 ⁇ m.
  • the average pore diameters of the first layer and the second layer may be the same or different from each other.
  • the average pore diameter Db of the third layer is preferably in the following range.
  • the average pore diameter Db is preferably 5 ⁇ m or more, more preferably more than 5 ⁇ m, further preferably 6 ⁇ m or more, particularly preferably 7 ⁇ m or more, and particularly preferably 8 ⁇ m or more, from the viewpoint of easily holding the electrolytic solution in the separator, 9 ⁇ m
  • the above is very preferable, 10 ⁇ m or more is further preferable, 10.5 ⁇ m or more is further preferable, and 11 ⁇ m or more is particularly preferable.
  • the average pore diameter Db is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, further preferably 50 ⁇ m or less, particularly preferably 30 ⁇ m or less, and most preferably 20 ⁇ m or less, from the viewpoint of being able to delay the diffusion of the electrolytic solution, and 18 ⁇ m or less. Is more preferable, 15 ⁇ m or less is even more preferable, 13 ⁇ m or less is further preferable, 12 ⁇ m or less is particularly preferable, and 11.5 ⁇ m or less is extremely preferable. From these viewpoints, the average pore diameter Db is preferably 5 to 100 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the average pore diameter of the first layer and the second layer is smaller than the average pore diameter of the third layer. That is, the ratio of the average pore diameter of the first layer and the second layer to the average pore diameter of the third layer (average pore diameter of the first layer and the second layer/average pore diameter of the third layer) Is less than 1 from the viewpoint of preventing permeation short circuit.
  • the average pore diameter of each layer can be increased by increasing the fiber diameter of the glass fiber.
  • the ratio Da/Db of the average pore diameter Da of at least one selected from the group consisting of the first layer and the second layer to the average pore diameter Db of the third layer is preferably in the following range.
  • the ratio Da/Db is preferably 0.1 or more, more preferably 0.2 or more, further preferably 0.25 or more, particularly preferably 0.3 or more, and 0.35 or more, from the viewpoint of easily preventing permeation short circuit. Is highly preferred.
  • the ratio Da/Db is preferably 0.9 or less, more preferably 0.8 or less, still more preferably 0.7 or less, particularly preferably 0.6 or less, and 0.5 or less, from the viewpoint of easily preventing a permeation short circuit. Is extremely preferable, 0.45 or less is very preferable, and 0.4 or less is even more preferable. From these viewpoints, the ratio Da/Db is preferably 0.1 or more and less than 1.
  • the total thickness (film thickness) T of the separator according to this embodiment is preferably in the following range.
  • the total thickness T of the separator is preferably 0.1 mm or more, more preferably 0.3 mm or more, and more preferably 0.1 mm or more from the viewpoint of easily manufacturing the separator by a general papermaking method and easily holding a necessary amount of the electrolytic solution. 4 mm or more is more preferable, 0.5 mm or more is particularly preferable, 0.6 mm or more is extremely preferable, and 0.7 mm or more is very preferable.
  • the total thickness T of the separator is preferably 1.5 mm or less, more preferably 1.2 mm or less, and more preferably 1.0 mm or less from the viewpoint that the number of electrodes (electrode plates etc.) used can be increased and the capacity of the lead storage battery can be easily increased. Is more preferable, and 0.8 mm or less is particularly preferable. From these viewpoints, the total thickness T of the separator is preferably 0.1 to 1.5 mm. The total thickness T of the separator may exceed 1.5 mm.
  • the ratio Ta/T of at least one thickness Ta selected from the group consisting of the first layer and the second layer to the total thickness T of the separator is preferably in the following range.
  • the ratio Ta/T is preferably 0.6 or less, more preferably 0.5 or less, still more preferably 0.45 or less, particularly preferably 0.4 or less, and 0.375 or less from the viewpoint of easily preventing a permeation short circuit. Is highly preferred.
  • the ratio Ta/T is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.25 or more, particularly preferably 0.3 or more, and more preferably 1/3 or more, from the viewpoint of easily preventing a permeation short circuit. Is extremely preferable, and 0.35 or more is very preferable. From these viewpoints, the ratio Ta/T is preferably 0.1 to 0.6.
  • the thickness Ta of at least one selected from the group consisting of the first layer and the second layer is preferably in the following range.
  • the thickness Ta is preferably 0.01 mm or more, more preferably 0.05 mm or more, further preferably 0.1 mm or more, particularly preferably 0.2 mm or more, and more preferably 0.25 mm or more, from the viewpoint of easily preventing a permeation short circuit. Very preferable, and 0.3 mm or more is very preferable.
  • the thickness Ta is preferably 1 mm or less, more preferably 0.8 mm or less, further preferably 0.6 mm or less, particularly preferably 0.4 mm or less, and particularly preferably 0.35 mm or less, from the viewpoint of easily preventing a permeation short circuit. .. From these viewpoints, the thickness Ta is preferably 0.01 to 1 mm.
  • the thicknesses of the first layer and the second layer may be the same or different from each other.
  • the ratio Tb/T of the thickness Tb of the third layer to the total thickness T of the separator is preferably in the following range.
  • the ratio Tb/T is preferably 0.1 or more, more preferably 0.15 or more, further preferably 0.2 or more, and particularly preferably 0.25 or more, from the viewpoint of easily preventing a permeation short circuit.
  • the ratio Tb/T is preferably 0.9 or less, more preferably 0.7 or less, still more preferably 0.5 or less, particularly preferably 0.4 or less, and more preferably 1/3 or less from the viewpoint of easily preventing a permeation short circuit. Is extremely preferable, and 0.3 or less is very preferable. From these viewpoints, the ratio Tb/T is preferably 0.1 to 0.9.
  • the thickness Tb of the third layer is preferably in the following range.
  • the thickness Tb is preferably 0.02 mm or more, more preferably 0.05 mm or more, further preferably 0.1 mm or more, particularly preferably 0.15 mm or more, and particularly preferably 0.2 mm or more, from the viewpoint of easily preventing a permeation short circuit. Highly preferred.
  • the thickness Tb is preferably 2 mm or less, more preferably 1.5 mm or less, further preferably 1 mm or less, particularly preferably 0.8 mm or less, and particularly preferably 0.6 mm or less, from the viewpoint of easily preventing a permeation short circuit. Very preferably 0.5 mm or less, more preferably 0.45 mm or less, even more preferably 0.4 mm or less, particularly preferably 0.3 mm or less. From these viewpoints, the thickness Tb is preferably 0.02 to 2 mm.
  • the ratio Ta/Tb of the thickness Ta of at least one selected from the group consisting of the first layer and the second layer to the thickness Tb of the third layer is preferably in the following range.
  • the ratio Ta/Tb is preferably 0.1 or more, more preferably 0.3 or more, further preferably 0.5 or more, particularly preferably 0.7 or more, and 0.9 or more, from the viewpoint of easily preventing a permeation short circuit. Is extremely preferable, 1 or more is very preferable, more than 1 is even more preferable, 1.25 or more is further preferable, and 1.5 or more is particularly preferable.
  • the ratio Ta/Tb is preferably 3 or less, more preferably 2.5 or less, further preferably 2 or less, particularly preferably 1.75 or less, and most preferably 1.5 or less, from the viewpoint of easily preventing a permeation short circuit. From these viewpoints, the ratio Ta/Tb is preferably 0.1 to 3.
  • the total thickness Tt of the first layer and the second layer is larger than the thickness Tb of the third layer. That is, the ratio Tt/Tb of the total Tt of the thicknesses of the first layer and the second layer to the thickness Tb of the third layer is more than 1 from the viewpoint of preventing permeation short circuit.
  • the ratio Tt/Tb is preferably 1.2 or more, more preferably 1.5 or more, further preferably 1.75 or more, particularly preferably 2 or more, and particularly preferably 2.5 or more, from the viewpoint of easily preventing a permeation short circuit.
  • Preferably, 2.75 or more is very preferable, and 3 or more is even more preferable.
  • the ratio Tt/Tb is preferably 10 or less, more preferably 8 or less, further preferably 6 or less, particularly preferably 5 or less, very preferably 4 or less, and very preferably 3 or less, from the viewpoint of easily preventing a permeation short circuit. .. From these viewpoints, the ratio Tt/Tb is preferably more than 1 and 10 or less.
  • each layer constituting the separator can be measured by the method described in the examples.
  • the method for manufacturing a separator according to the present embodiment is a method for manufacturing a lead-acid battery separator having at least the above-mentioned first layer, second layer and third layer. According to the separator manufacturing method of the present embodiment, the separator of the present embodiment can be obtained.
  • the separator manufacturing method includes a separator manufacturing step of manufacturing a separator having at least the above-mentioned first layer, second layer, and third layer.
  • the separator producing step includes, for example, a first layer producing step of obtaining a first layer, a second layer producing step of obtaining a second layer, and a third layer producing step of obtaining a third layer. You may have.
  • the first layer preparation step or the second layer preparation step, the third layer preparation step
  • the first layer is performed by performing papermaking using a slurry containing glass fiber and an organic binder.
  • the step of obtaining the second layer and the third layer is performed by performing papermaking using a slurry containing glass fiber and an organic binder.
  • the glass fiber can have a fiber diameter in the above-described preferable range (for example, a number average fiber diameter).
  • the first layer, the second layer and/or the third layer by adjusting the fiber diameter of the glass fiber used in the first layer producing step, the second layer producing step and/or the third layer producing step.
  • the pore size of the can be adjusted.
  • the separator manufacturing step includes a stacking step of stacking the first layer, the second layer, and the third layer on each other to obtain a stack having the first layer, the second layer, and the third layer. You may have.
  • the method of manufacturing the separator according to the present embodiment is not particularly limited, and includes wet papermaking, dry papermaking and the like. Among these, it is preferable to adopt a papermaking method based on a wet method (wet papermaking).
  • This manufacturing method is a glass fiber, a slurry preparation step of preparing a slurry containing an organic binder, a papermaking body manufacturing step of making a papermaking body by making a slurry, and a papermaking body in a thickness direction using a pressing machine.
  • the method includes a compressed body producing step of producing a compressed body by compression, and a heat treatment step of heat treating the compressed body at a temperature equal to or higher than the softening point of the resin (organic binder), if necessary.
  • the paper product obtained by paper-making the slurry is a sheet-shaped or mat-shaped molded product in which glass fibers are bonded with an organic binder, and may be referred to as a “glass sheet” hereinafter.
  • the compressed body is obtained by compressing this glass sheet in the thickness direction.
  • the number of glass sheets used for producing the compressed body may be one, or a plurality of glass sheets may be stacked in the thickness direction.
  • glass fiber and organic binder are dispersed in a prescribed dispersion medium.
  • the slurry can be prepared by, for example, a mixer, a ball mill, a pulper, or the like. Water can be used as the dispersion medium.
  • the content of each raw material component in the slurry can be adjusted, for example, so that the content of each raw material component in the obtained lead storage battery separator falls within the above range.
  • the blending amount of the organic binder in the slurry preparation step is preferably within the following range with respect to the total mass of the glass fiber.
  • the amount of the organic binder is preferably 0.75 mass% or more, more preferably 1.5 mass% or more, still more preferably 3 mass% or more, from the viewpoint of easily obtaining a separator that is not easily broken because strength is easily maintained. 4.5% by mass or more is particularly preferable, 7.5% by mass or more is extremely preferable, and 9% by mass or more is very preferable.
  • the blending amount of the organic binder is preferably 30% by mass or less, more preferably 22.5% by mass or less, further preferably 15% by mass or less, from the viewpoint of easily obtaining a separator that easily retains the electrolytic solution. A mass% or less is particularly preferable, and 10.5 mass% or less is extremely preferable. From these viewpoints, the compounding amount of the organic binder is preferably 0.75 to 30% by mass.
  • the slurry may contain a surfactant.
  • the surfactant may be decomposed in a subsequent heat treatment.
  • the surfactant may be any of a silane coupling agent, a cationic surfactant, an anionic surfactant, a nonionic surfactant and the like.
  • the content of the surfactant is preferably 0.01 to 5 mass% based on the total mass of the slurry.
  • an alkyl ammonium salt as the cationic surfactant.
  • the cationic surfactant include dioctyldimethylammonium chloride, didecyldimethylammonium chloride, dicocodimethylammonium chloride, coco (rectification) benzyldimethylammonium chloride, octadecyltrimethylammonium chloride, dioctadecyldimethylammonium chloride, and dihexadecyl chloride.
  • anionic surfactant examples include carboxylates, N-acyl sarcosinates, alkane sulfonates, straight chain and branched chain alkyl aryl sulfonates, dialkyl sulfosuccinates, aryl sulfonates, naphthalene sulfonates, N -Acyl-N-alkyl laurates, 2-sulfoethyl esters of fatty acids, olefin sulfonates, alkyl sulphates, sulphated natural oils, sulphated alkylphenol alkoxylates, alkanols, phenols and alkylphenols Phosphate esters of alkoxylates, alkyl (aryl) sulfonates, sulfate esters, phosphate esters, alkyl (aryl) phosphates, alkyl (aryl) phosphonates, polyoxyethylene alkyl ether
  • nonionic surfactants include polyoxyalkylene dialkyl esters, polyoxyalkylene alkyl esters, polyoxyalkylene alkyl ethers, sorbitan alkyl esters, and the like.
  • the slurry may contain a flocculant.
  • the flocculant may be any of inorganic flocculants (aluminum sulfate, polyaluminum chloride, polyferric sulfate, ferric chloride, etc.), cationic polymer flocculants, anionic polymer flocculants, etc. Good.
  • As the aggregating agent one type may be used alone, or two or more types may be used in combination.
  • the content of the aggregating agent is preferably 0.01 to 10 mass% based on the total amount of the solid content of the slurry.
  • the content of the aggregating agent is preferably 1 to 10% by mass, more preferably 2 to 8% by mass, still more preferably 3 to 6% by mass, based on the total mass of the glass fiber.
  • the paper making body is applied in the thickness direction using a pressure machine.
  • a compression body (separator for a lead storage battery) is produced by compression.
  • the paper product (glass sheet) used for producing the compressed body one sheet may be used alone, or a plurality of sheets may be stacked in the thickness direction and used.
  • the heat treatment step is not necessarily performed, but can be performed as necessary according to the material composition of the separator.
  • the organic binder By heat-treating the compressed body at a temperature equal to or higher than the softening point of the resin (organic binder) in the heat treatment step, the organic binder is softened and glass fibers, clay minerals and the like can be reliably bound to each other.
  • a resin (organic binder) By coating a part or all of the surface of glass fiber, clay mineral, etc. with a resin (organic binder), flexibility can be imparted to the separator. Further, the resin (organic binder) is partially decomposed to function as a template, and the holding power of the electrolytic solution can be improved.
  • the treatment temperature is not necessarily limited because it depends on the softening point of the resin (organic binder), but is preferably 100 to 200°C. When the treatment temperature is 100° C. or higher, glass fibers, clay minerals, etc. tend to be easily bound to each other. When the processing temperature is 200° C. or lower, the manufacturing process can be simplified easily.
  • the heat treatment step may be performed under appropriate pressure depending on the constituent material of the lead storage battery separator.
  • the positive electrode active material may include ⁇ -PbO 2 as a Pb component.
  • the positive electrode active material may include alpha-PbO 2, it may not include the alpha-PbO 2.
  • the positive electrode active material may contain a Pb component other than PbO 2 (for example, PbSO 4 ) and an additive described below, if necessary.
  • the positive electrode active material is obtained by obtaining an unformed positive electrode active material by aging and drying a paste positive electrode active material (positive electrode active material paste) containing a raw material of the positive electrode active material, and then forming the unformed positive electrode active material.
  • the unformed positive electrode active material is obtained by aging and drying the pasty positive electrode active material filled in the positive electrode current collector (casting grid body, expanded lattice body, etc.). It can be obtained by forming.
  • the unformed positive electrode active material may contain tribasic lead sulfate as a main component. Examples of the raw material for the positive electrode active material include lead powder and red lead (Pb 3 O 4 ).
  • the positive electrode current collector serves as a conductive path for a current from the positive electrode active material and holds the positive electrode active material.
  • the positive electrode current collector has, for example, a lattice shape.
  • Examples of the composition of the positive electrode current collector include lead alloys such as lead-calcium-tin alloys and lead-antimony-arsenic alloys. Selenium, silver, bismuth, etc. may be added to the positive electrode current collector depending on the application.
  • a positive electrode current collector can be obtained by forming these lead alloys in a grid shape by a gravity casting method, an expanding method, a punching method or the like.
  • additives that can be included in the positive electrode active material include carbon materials (excluding carbon fibers) and reinforcing short fibers.
  • carbon material include carbon black and graphite.
  • carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
  • the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
  • the negative electrode active material may include Pb as a Pb component.
  • the negative electrode active material can contain a Pb component other than Pb (for example, PbSO 4 ) and an additive described later, if necessary.
  • the negative electrode active material may include porous spongy lead.
  • the negative electrode active material is obtained by aging and drying a pasty negative electrode active material (negative electrode active material paste) containing a raw material of the negative electrode active material to obtain an unformed negative electrode active material and then forming the unformed negative electrode active material.
  • a pasty negative electrode active material negative electrode active material paste
  • the unformed negative electrode active material is obtained by aging and drying the paste-like negative electrode active material filled in the negative electrode current collector (cast grid, expanded grid, etc.). It can be obtained by forming.
  • the unformed negative electrode active material may contain tribasic lead sulfate as a main component. Examples of the raw material for the negative electrode active material include lead powder.
  • the negative electrode current collector serves as a conductive path for a current from the negative electrode active material and holds the negative electrode active material.
  • the negative electrode current collector may be the same as or different from the positive electrode current collector described above.
  • additives that can be contained in the negative electrode active material include resins having a sulfo group and/or a sulfonate group, barium sulfate, carbon materials (excluding carbon fibers), and reinforcing short fibers.
  • resins having a sulfo group and/or a sulfonate group include, for example, lignin sulfonic acid, lignin sulfonate, and a condensate of phenols, aminoaryl sulfonic acid, and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid, and (Condensation product with formaldehyde).
  • the carbon material include carbon black and graphite.
  • Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black.
  • Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
  • the pasty positive electrode active material and/or the pasty negative electrode active material may contain a solvent and/or sulfuric acid.
  • the solvent include water (for example, ion-exchanged water) and an organic solvent.
  • Example 1> (Number average fiber diameter measurement) The number average fiber diameter of the glass fibers described below was measured in advance by the following procedure. After glass fiber was cast with epoxy resin, it was sliced with a diamond cutter to a thickness of 4 mm. After slicing, the cross section of the glass fiber (cross section perpendicular to the length direction of the glass fiber) was polished with diamond abrasive grains having a diameter of 9 ⁇ m. Further, a measurement sample was prepared by polishing with diamond abrasive grains having a diameter of 5 ⁇ m and then polishing with diamond abrasive grains having a diameter of 1 ⁇ m.
  • a mixed solution (mixed solution B) was prepared by the same procedure and then stirred. After stirring, 4.5 kg was taken from the mixed solution A containing the glass fibers A, 0.5 kg was taken from the mixed solution B containing the glass fibers B, and these were mixed to obtain a mixed solution C. That is, this mixed liquid C contained 90% by mass of glass fibers having a number average fiber diameter of 0.8 ⁇ m and 10% by mass of glass fibers having a number average fiber diameter of 4.1 ⁇ m, based on the total mass of the glass fibers. ..
  • a slurry B was prepared by the same procedure when only the glass fibers C having a number average fiber diameter of 2.4 ⁇ m were used.
  • slurry A 140 g was poured into a ⁇ 160 mm round sheet machine (made by Kumagai Riki Kogyo Co., Ltd.) equipped with an 80 mesh wire mesh while pouring water. Water was injected until the amount of water in the sheet machine became about 80% (7 L), and then the mixture was stirred several times with a stirring rod. Then, water was drained and papermaking was performed to obtain a glass sheet A1. By repeating the same operation, a glass sheet A2 similar to the glass sheet A1 was obtained. Next, 100 g of the slurry B was similarly paper-made to obtain a glass sheet B.
  • the glass sheet A1 After covering the glass sheet A1 with a first filter paper (26-WA, manufactured by Advantech Co., Ltd.) and thoroughly dehydrating it with a couching roll, the glass sheet A1 is peeled off together with the first filter paper from the above-mentioned 80 mesh wire mesh. I took it. Next, the glass sheet A1 and the glass sheet B were brought into contact with each other, and then the first filter paper was covered with the second filter paper (26-WA, manufactured by Advantech Co., Ltd.) and thoroughly dehydrated with a cooling roll. Then, the first filter paper and the second filter paper were peeled off to obtain a laminate. Then, the glass sheet A2 was superposed on the glass sheet B in the above-mentioned laminate.
  • a first filter paper 26-WA, manufactured by Advantech Co., Ltd.
  • the glass sheet A1 was covered with a third filter paper (26-WA, manufactured by Advantech Co., Ltd.) and thoroughly dehydrated with a couching roll. Subsequently, the third filter paper was peeled off to prepare a glass sheet having a three-layer structure.
  • a third filter paper 26-WA, manufactured by Advantech Co., Ltd.
  • This glass sheet was pressed at 410 kPa for 5 minutes with a press (made by Kumagai Riki Kogyo Co., Ltd.) and then dehydrated. After dehydration, it was heated and dried with a rotary dryer (Kumagaya Riki Kogyo Co., Ltd.) at 120° C. for 4 minutes, and further sufficiently dried in a constant temperature bath at 105° C. to obtain a lead storage battery separator.
  • the amount of binder in the separator was measured by the following procedure. First, 3 g of the separator was completely dried in a thermostat at 105°C. Next, after cooling to room temperature in a desiccator, the mass of the separator before heating was measured. After the measurement, the separator was put in a crucible and dried by heating at about 500° C. for 30 minutes or more. Next, after cooling to room temperature in a desiccator, the mass of the separator after heating was measured. The amount of binder was obtained from the mass difference before and after heating.
  • a raw material for the positive electrode active material, 0.07 mass% of reinforcing short fibers (acrylic fibers) based on the total mass of the raw material for the positive electrode active material, and water were mixed and kneaded.
  • a paste-like positive electrode active material was prepared by kneading while adding dilute sulfuric acid (specific gravity 1.280) little by little.
  • Lead powder was used as a raw material of the negative electrode active material.
  • lignin-based resin lignin sulfonate
  • acrylic fiber 0.1% by mass of reinforcing short fibers (acrylic fiber)
  • barium sulfate 1.0% by mass of barium sulfate
  • carbon material furnace black
  • the electrode plate so that the ratio (N/P) of the total mass (N) of the negative electrode active material and the total mass (P) of the positive electrode active material in the control valve type lead storage battery in a fully charged state is 0.7.
  • the positive electrode current collector was filled with the paste positive electrode active material, and the electrode plate (negative electrode current collector) was filled with the paste negative electrode active material.
  • a cast grid body made of a lead alloy was used as the electrode plate.
  • an unformed positive electrode plate was produced by going through the aging process of the following aging conditions 1 to 3 and the drying process of the following drying conditions.
  • Aging condition 1 "Temperature: 80°C, Humidity: 98%, Time: 10 hours”
  • Aging condition 2 "Temperature: 65°C, Humidity: 75%, Time: 13 hours”
  • Aging condition 3 "Temperature: 40°C, Humidity: 65%, Time: 40 hours”
  • Drying condition “Temperature: 60°C, Time: 24 hours”
  • Example 2 Similar to Example 1 except that the polypropylene emulsion was added to the mixed solution C such that the resin content was 15% by mass with respect to the total mass of the glass fibers, and then the slurry A was prepared by stirring for 2 minutes. Each evaluation was performed by carrying out.
  • Example 3 When glass sheets A1 and A2 were produced, glass fibers having a number average fiber diameter of 2.4 ⁇ m were used in addition to glass fibers A and B, so that the number average fiber diameter was 0.8 ⁇ m based on the total mass of the glass fibers.
  • Example 1 except that 70% by mass of the glass fibers, 7% by mass of the glass fibers having a number average fiber diameter of 4.1 ⁇ m, and 23% by mass of the glass fibers having a number average fiber diameter of 2.4 ⁇ m were prepared. Each evaluation was performed by performing in the same manner as.
  • Example 4 When glass sheets A1 and A2 were produced, glass fibers having a number average fiber diameter of 2.4 ⁇ m were used in addition to glass fibers A and B, so that the number average fiber diameter was 0.8 ⁇ m based on the total mass of the glass fibers.
  • Example 1 except that a mixed solution C containing 55% by mass of glass fibers, 10% by mass of glass fibers having a number average fiber diameter of 4.1 ⁇ m, and 35% by mass of glass fibers having a number average fiber diameter of 2.4 ⁇ m was prepared. Each evaluation was performed by performing in the same manner as.
  • Example 5 By using glass fibers having a number average fiber diameter of 5.5 ⁇ m in place of the glass fibers B in the production of the glass sheets A1 and A2, a glass having a number average fiber diameter of 0.8 ⁇ m based on the total mass of the glass fibers. Same as Example 1 except that a mixed solution C containing 90% by mass of fibers and 10% by mass of glass fibers having a number average fiber diameter of 5.5 ⁇ m was prepared and the amount of the slurry A used was changed to 90 g. Each evaluation was performed by performing.
  • Example 6 By using glass fibers C having a number average fiber diameter of 0.8 ⁇ m in addition to the glass fibers C in the production of the glass sheet B, the glass fibers 70 having a number average fiber diameter of 2.4 ⁇ m based on the total mass of the glass fibers 70. Each evaluation was performed in the same manner as in Example 3 except that a mixed solution C containing 30% by mass of glass fiber and 0.8% by mass of glass fiber was prepared.
  • Example 1 Same as Example 1 except that the amount of the slurry A used in producing the glass sheets A1 and A2 was changed to 90 g, and the amount of the slurry B used in producing the glass sheet B was changed to 160 g. Each evaluation was performed by performing.
  • Example 5 Each evaluation was performed in the same manner as in Example 1 except that a glass sheet obtained by changing the amount of the slurry A used to 250 g was used as the separator having a single-layer structure.
  • Table 1 shows the pore diameter and thickness of each layer of the separator, the total thickness of the separator and the amount of binder, and the results of the permeation short circuit evaluation.
  • SYMBOLS 1... Lead acid battery, 2... Positive electrode plate (positive electrode), 3... Negative electrode plate (negative electrode), 4,100... Separator, 100a... One surface, 100b... Other surface, 110a... 1st layer, 110b... 2nd layer , 110c... Third layer.

Abstract

This separator 100 for a lead storage battery has a first layer 110a, a second layer 110b, and a third layer 110c, wherein the first layer 110a is disposed on one surface 100a of the separator 100, the second layer 110b is disposed on the other surface 100b of the separator 100, the third layer 110c is disposed between the first layer 110a and the second layer 110b, the first layer 110a and the second layer 110b have average pore sizes that are smaller than the average pore size of the third layer 110c, and the total thickness of the first layer 110a and the second layer 110b is greater than the thickness of the third layer 110c.

Description

セパレーター及び鉛蓄電池Separator and lead acid battery
 本発明は、鉛蓄電池に使用可能なセパレーター、及び、鉛蓄電池に関する。 The present invention relates to a separator that can be used in a lead storage battery, and a lead storage battery.
 現在、無停電電源及び電力貯蔵用途に、メンテナンスフリーの制御弁式鉛蓄電池が用いられている。また、近年では、制御弁式鉛蓄電池は、電動車用等のサイクル用途でも利用されている。このようなサイクル用途には、高出力化が必要である。高出力化には、電極厚み、セパレーター厚み等を薄くすることで電槽内の電極枚数を増やし対応している。 Currently, maintenance-free valve-regulated lead-acid batteries are used for uninterruptible power supplies and power storage applications. Further, in recent years, the valve-regulated lead-acid battery is also used for cycle applications such as for electric vehicles. For such a cycle application, higher output is required. For higher output, the number of electrodes in the battery case can be increased by reducing the electrode thickness, separator thickness, etc.
 制御弁式鉛蓄電池のセパレーターとしては、ガラス繊維を用いたシートが利用されており、セパレーターは、電解液である硫酸を保持して正極及び負極に電解液を供給する役目も担っている。このように、セパレーターは、その内部に電解液を保持していることから、電池作製工程における、「電槽化成」と呼ばれる放電工程で、セパレーター内に硫酸鉛が溶出しやすく、セパレーターの厚さを薄くすると、充放電によって短絡(浸透短絡)が発生しやすくなるといった課題がある。そのため、浸透短絡を防ぐ目的で、比較的厚いセパレーター(厚さ数mmのセパレーター)が用いられているのが現状であり、セパレーターの薄膜化が困難となっている。 A sheet made of glass fiber is used as a separator for control valve type lead-acid batteries, and the separator also holds the sulfuric acid, which is the electrolytic solution, and also supplies the electrolytic solution to the positive and negative electrodes. Thus, since the separator holds the electrolytic solution inside, in the battery manufacturing process, in the discharging step called "Battery formation", lead sulfate easily elutes in the separator, and the thickness of the separator If the thickness is made thin, there is a problem that a short circuit (penetration short circuit) easily occurs due to charge and discharge. Therefore, a relatively thick separator (separator having a thickness of several mm) is currently used for the purpose of preventing permeation short-circuiting, and it is difficult to reduce the thickness of the separator.
 この課題に対して、下記特許文献1では、ガラス繊維に無機充填剤を添加することで浸透短絡の抑制と薄膜化とを両立するセパレーターが提案されている。また、下記特許文献2では、無機充填剤が片側一面に偏在するガラスシート2枚における、無機充填剤が偏在する面同士を張り合わせたセパレーターが提案されている。 In order to solve this problem, Patent Document 1 below proposes a separator that is capable of suppressing permeation short-circuit and achieving a thin film by adding an inorganic filler to the glass fiber. Further, in Patent Document 2 below, a separator is proposed, in which two glass sheets having an inorganic filler unevenly distributed on one side are stuck together with the surfaces having the inorganic filler unevenly distributed.
特開平11-260335号公報Japanese Patent Laid-Open No. 11-260335 特開2002-151033号公報Japanese Patent Laid-Open No. 2002-151033
 しかしながら、特許文献1及び特許文献2のようにセパレーターに無機充填剤を添加する方法では、ガラスシート中の空孔が塞がれてしまうため、電解液を保持しにくくなるといった課題がある。そのため、鉛蓄電池用セパレーターに対しては、セパレーターの厚みを薄くした場合において他の方法により電槽化成時の浸透短絡を防止することが求められている。 However, the method of adding an inorganic filler to the separator as in Patent Documents 1 and 2 has a problem that it becomes difficult to retain the electrolytic solution because the pores in the glass sheet are blocked. Therefore, it is required for the lead-acid battery separator to prevent permeation short-circuiting during battery case formation by another method when the thickness of the separator is reduced.
 本発明は、セパレーターの厚みを薄くしても電槽化成時の浸透短絡を防止できる鉛蓄電池用セパレーター、及び、それを用いた鉛蓄電池を提供することを目的とする。 An object of the present invention is to provide a lead storage battery separator that can prevent a permeation short circuit during battery case formation even if the separator thickness is thin, and a lead storage battery using the same.
 本発明の一側面に係るセパレーターは、少なくとも第1の層、第2の層及び第3の層を有する鉛蓄電池用セパレーターであって、前記第1の層が前記セパレーターの一方面側に配置され、前記第2の層が前記セパレーターの他方面側に配置され、前記第3の層が前記第1の層及び前記第2の層の間に配置され、前記第1の層及び前記第2の層の平均細孔径が前記第3の層の平均細孔径より小さく、前記第1の層及び前記第2の層の厚さの合計が前記第3の層の厚さより大きい。 A separator according to one aspect of the present invention is a lead-acid battery separator having at least a first layer, a second layer, and a third layer, the first layer being disposed on one surface side of the separator. , The second layer is disposed on the other surface side of the separator, the third layer is disposed between the first layer and the second layer, and the first layer and the second layer The average pore diameter of the layer is smaller than the average pore diameter of the third layer, and the total thickness of the first layer and the second layer is larger than the thickness of the third layer.
 本発明の他の一側面に係る鉛蓄電池は、正極と、負極と、上述のセパレーターと、を備え、前記セパレーターが前記正極及び前記負極の間に配置されている。 A lead storage battery according to another aspect of the present invention includes a positive electrode, a negative electrode, and the separator described above, and the separator is arranged between the positive electrode and the negative electrode.
 これらのセパレーター及び鉛蓄電池によれば、セパレーターの厚みを薄くしても電槽化成時の浸透短絡を防止できる。 With these separators and lead-acid batteries, even if the separator thickness is reduced, it is possible to prevent penetration short-circuiting during battery case formation.
 本発明によれば、鉛蓄電池において、セパレーターの厚みを薄くしても電槽化成時の浸透短絡を防止できる。 According to the present invention, in a lead-acid battery, even if the thickness of the separator is reduced, it is possible to prevent an infiltration short circuit during formation of the battery case.
セパレーターの一例を示す断面図である。It is sectional drawing which shows an example of a separator. 鉛蓄電池の一例を示す分解斜視図である。It is an exploded perspective view showing an example of a lead acid battery. ガラス繊維の数平均繊維径の測定方法を説明するための電子顕微鏡写真の模式図である。It is a schematic diagram of an electron micrograph for explaining the measuring method of the number average fiber diameter of glass fiber.
 以下、本発明の実施形態について説明をするが、本発明はこれらの実施形態に何ら限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「膜」及び「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。比重は、温度によって変化するため、本明細書においては、20℃で換算した比重と定義する。 In the present specification, the numerical range indicated by using "to" indicates the range including the numerical values before and after "to" as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of a certain stage can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another stage. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. “A or B” may include either one of A and B, or may include both. Unless otherwise specified, the materials exemplified in the present specification can be used alone or in combination of two or more kinds. The content of each component in the composition means the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. The terms “film” and “layer” include not only the structure of the shape formed on the entire surface but also the structure of the part formed when observed as a plan view. The term “step” is included in the term as long as the intended action of the step is achieved not only when it is an independent step but also when it cannot be clearly distinguished from other steps. Since the specific gravity changes with temperature, it is defined as the specific gravity converted at 20° C. in this specification.
 本実施形態に係るセパレーターは、少なくとも第1の層、第2の層及び第3の層を有する鉛蓄電池用セパレーターである。本実施形態では、第1の層がセパレーターの一方面側に配置され、第2の層がセパレーターの他方面側に配置され、第3の層が第1の層及び第2の層の間に配置される。第1の層及び第2の層の平均細孔径は、第3の層の平均細孔径より小さく、第1の層及び第2の層の厚さの合計は、第3の層の厚さより大きい。本実施形態に係るセパレーターは、少なくとも第1の層、第3の層及び第2の層をこの順に積層して得られる構造を有している。 The separator according to this embodiment is a lead-acid battery separator having at least a first layer, a second layer, and a third layer. In the present embodiment, the first layer is arranged on the one surface side of the separator, the second layer is arranged on the other surface side of the separator, and the third layer is arranged between the first layer and the second layer. Will be placed. The average pore diameter of the first layer and the second layer is smaller than the average pore diameter of the third layer, and the total thickness of the first layer and the second layer is larger than the thickness of the third layer. .. The separator according to the present embodiment has a structure obtained by stacking at least a first layer, a third layer and a second layer in this order.
 本実施形態によれば、鉛蓄電池において、セパレーターの厚みを薄くしても(例えば、厚さ1.5mm以下であっても)電槽化成時の浸透短絡を防止できる。本実施形態によれば、セパレーターの厚みを薄くしても、空孔を塞ぐ無機充填剤を使用することなく電槽化成時の浸透短絡を防止できる。 According to the present embodiment, in a lead storage battery, even if the thickness of the separator is thin (for example, even if the thickness is 1.5 mm or less), it is possible to prevent the permeation short circuit during the formation of the battery case. According to this embodiment, even if the thickness of the separator is reduced, it is possible to prevent the permeation short circuit during the formation of the battery case without using the inorganic filler that blocks the pores.
 浸透短絡が防止される要因は、下記のとおりであると推測される。但し、要因は下記内容に限定されない。
 すなわち、一般的に鉛蓄電池では、電槽化成時の放電中に、硫酸鉛が生成すると共に電解液の比重(硫酸濃度)が低下する。そして、硫酸鉛が電解液中に溶出してセパレーター内に浸透すると、浸透短絡が生じる場合がある。
 本実施形態では、外側層である第1の層及び第2の層の平均細孔径が、中間層である第3の層の平均細孔径より小さいことにより、中間層に比べて外側層中の電解液の拡散が遅い。この場合、拡散性の低い外側層では、放電により比重が低下した電解液が拡散し難いのに対し、拡散性の高い中間層では、放電により比重が低下した電解液が拡散しやすく、外側層よりも電解液の比重が低くなりやすい。これにより、外側層と中間層との間における電解液の比重差が生じやすく、中間層では、比重の小さい電解液が外側層側の比重の大きい電解液と接触する(混ざる)ことで比重が大きくなり、硫酸鉛の溶解度が低下するため硫酸鉛が析出する。一方、外側層では、硫酸鉛が析出しにくくなる。
 また、本実施形態では、外側層である第1の層及び第2の層の厚さの合計が、中間層である第3の層の厚さより大きい。この場合、中間層内の全体に硫酸鉛が析出することを抑制しやすいと共に、比重の低い電解液が外側層内に染み込むことにより外側層でも硫酸鉛が析出することを抑制しやすい。
 これらにより、本実施形態では、浸透短絡を防止できる。
It is assumed that the factors that prevent the penetration short circuit are as follows. However, the factors are not limited to the following contents.
That is, generally, in a lead storage battery, lead sulfate is generated during discharge during formation of a battery case and the specific gravity (sulfuric acid concentration) of the electrolytic solution is reduced. Then, when lead sulfate is eluted into the electrolytic solution and permeates into the separator, an infiltration short circuit may occur.
In the present embodiment, the average pore diameters of the first layer and the second layer, which are the outer layers, are smaller than the average pore diameter of the third layer, which is the intermediate layer. Electrolyte diffuses slowly. In this case, in the outer layer having a low diffusibility, the electrolytic solution whose specific gravity has decreased due to discharge is difficult to diffuse, whereas in the intermediate layer having a high diffusive property, the electrolytic solution whose specific gravity has decreased due to discharge easily diffuses, and the outer layer The specific gravity of the electrolytic solution tends to be lower than that. As a result, a difference in specific gravity of the electrolytic solution between the outer layer and the intermediate layer is likely to occur, and in the intermediate layer, the electrolytic solution having a small specific gravity comes into contact with (is mixed with) the electrolytic solution having a large specific gravity on the outer layer side, so that the specific gravity is It becomes large and the solubility of lead sulfate decreases, so that lead sulfate precipitates. On the other hand, in the outer layer, lead sulfate is less likely to deposit.
Further, in the present embodiment, the total thickness of the first layer and the second layer that are the outer layers is larger than the thickness of the third layer that is the intermediate layer. In this case, it is easy to suppress the precipitation of lead sulfate in the entire intermediate layer, and it is easy to suppress the precipitation of lead sulfate in the outer layer as well because the electrolytic solution having a low specific gravity permeates into the outer layer.
Due to these, in the present embodiment, it is possible to prevent an infiltration short circuit.
 本実施形態によれば、セパレーターの厚みを薄くすることで、使用する電極(極板等)を増やすことにより鉛蓄電池を高容量化できる。そのため、本実施形態によれば、セパレーターの厚みを薄くしても、電槽化成時の浸透短絡を防止し、かつ、鉛蓄電池を高容量化できる。 According to the present embodiment, by reducing the thickness of the separator, the capacity of the lead storage battery can be increased by increasing the number of electrodes (electrode plates etc.) used. Therefore, according to the present embodiment, even if the thickness of the separator is reduced, it is possible to prevent the permeation short circuit at the time of forming the battery case and to increase the capacity of the lead storage battery.
 本実施形態に係る鉛蓄電池は、正極と、負極と、本実施形態に係るセパレーターと、を備え、セパレーターが正極及び負極の間に配置されている。本実施形態に係る鉛蓄電池は、制御弁式鉛蓄電池として用いることができる。本実施形態に係る鉛蓄電池は、電動車に用いることができる。電動車としては、例えば、ISS車(start-stop system vehicle)、発電制御車等のマイクロハイブリッド車が挙げられる。本実施形態に係る電動車は、本実施形態に係る鉛蓄電池を備える。 The lead storage battery according to the present embodiment includes a positive electrode, a negative electrode, and a separator according to the present embodiment, and the separator is arranged between the positive electrode and the negative electrode. The lead storage battery according to the present embodiment can be used as a control valve type lead storage battery. The lead storage battery according to this embodiment can be used in an electric vehicle. Examples of electric vehicles include micro hybrid vehicles such as ISS (start-stop system vehicles) and power generation control vehicles. The electric vehicle according to the present embodiment includes the lead storage battery according to the present embodiment.
 正極(例えば正極板)は、正極集電体と、正極活物質充填部とを有しており、正極活物質が正極集電体に充填されることにより正極活物質充填部が形成されている。負極(例えば負極板)は、負極集電体と、負極活物質充填部とを有しており、負極活物質が負極集電体に充填されることにより負極活物質充填部が形成されている。本明細書では、化成後の正極から正極集電体を除いたものを「正極活物質」と称し、化成後の負極から負極集電体を除いたものを「負極活物質」と称する。 The positive electrode (for example, the positive electrode plate) has a positive electrode current collector and a positive electrode active material filling portion, and the positive electrode active material is filled with the positive electrode current material to form the positive electrode active material filling portion. .. The negative electrode (for example, the negative electrode plate) has a negative electrode current collector and a negative electrode active material filling portion, and the negative electrode active material is filled in the negative electrode current material to form the negative electrode active material filling portion. .. In the present specification, the positive electrode after the chemical conversion and the positive electrode current collector are removed is referred to as a “positive electrode active material”, and the negative electrode after the chemical conversion is removed from the negative electrode current collector is referred to as the “negative electrode active material”.
 本実施形態に係るセパレーターにおける第1の層及び第2の層のうちの一方は、正極に接し、第1の層及び第2の層のうちの他方は、負極に接する。本実施形態に係るセパレーターは、浸透短絡を防止しやすい観点から、第1の層、第2の層及び第3の層からなることが好ましい。本実施形態に係るセパレーターは、第1の層、第2の層及び第3の層以外の層を第1の層及び第2の層の間に有していてよい。 One of the first layer and the second layer in the separator according to the present embodiment is in contact with the positive electrode, and the other of the first layer and the second layer is in contact with the negative electrode. The separator according to the present embodiment is preferably composed of the first layer, the second layer, and the third layer from the viewpoint of easily preventing a permeation short circuit. The separator according to the present embodiment may have a layer other than the first layer, the second layer, and the third layer between the first layer and the second layer.
 本実施形態では、セパレーターの少なくとも一部が正極及び負極の間に配置されている。セパレーターは、袋状であってよい。セパレーターは、正極及び負極からなる群より選ばれる少なくとも一種を包んでいてよい。セパレーターは、正極及び負極を包んでいなくてもよい。 In this embodiment, at least a part of the separator is arranged between the positive electrode and the negative electrode. The separator may be bag-shaped. The separator may wrap at least one selected from the group consisting of a positive electrode and a negative electrode. The separator does not have to surround the positive electrode and the negative electrode.
 図1は、セパレーターの一例を示す断面図である。本実施形態に係るセパレーター100は、セパレーター100の一方面100a側に配置された第1の層110aと、セパレーター100の他方面100b側に配置された第2の層110bと、第1の層110a及び第2の層110bの間に配置された第3の層110cと、を有している。セパレーター100は、第1の層110a、第2の層110b及び第3の層110cからなる。セパレーター100は、正極及び負極の間に配置される。例えば、第1の層110aは正極に接し、第2の層110bは負極に接する。第1の層110aの一方面は正極に接し、第1の層110aの他方面は第3の層110cに接する。例えば、第2の層110bの一方面は負極に接し、第2の層110bの他方面は第3の層110cに接する。第1の層110a及び第2の層110bの平均細孔径は第3の層110cの平均細孔径より小さく、第1の層110a及び第2の層110bの厚さの合計は第3の層110cの厚さより大きい。 FIG. 1 is a sectional view showing an example of a separator. The separator 100 according to the present embodiment includes a first layer 110a arranged on the one surface 100a side of the separator 100, a second layer 110b arranged on the other surface 100b side of the separator 100, and a first layer 110a. And a third layer 110c disposed between the second layer 110b and the second layer 110b. The separator 100 is composed of a first layer 110a, a second layer 110b and a third layer 110c. The separator 100 is disposed between the positive electrode and the negative electrode. For example, the first layer 110a is in contact with the positive electrode and the second layer 110b is in contact with the negative electrode. One surface of the first layer 110a is in contact with the positive electrode, and the other surface of the first layer 110a is in contact with the third layer 110c. For example, one surface of the second layer 110b is in contact with the negative electrode and the other surface of the second layer 110b is in contact with the third layer 110c. The average pore diameter of the first layer 110a and the second layer 110b is smaller than the average pore diameter of the third layer 110c, and the total thickness of the first layer 110a and the second layer 110b is the third layer 110c. Greater than the thickness of.
 図2は、鉛蓄電池の一例を示す分解斜視図である。図2に示す鉛蓄電池1は、複数の正極板2と、複数の負極板3と、複数のセパレーター4と、中空状の電槽5と、電槽5を密閉する蓋体6とを備えている。蓋体6には、電槽5内の圧力を制御する制御弁7と、正極板2を外部に接続する正極端子8と、負極板3を外部に接続する負極端子9とが設けられている。 FIG. 2 is an exploded perspective view showing an example of a lead storage battery. The lead-acid battery 1 shown in FIG. 2 includes a plurality of positive electrode plates 2, a plurality of negative electrode plates 3, a plurality of separators 4, a hollow battery case 5, and a lid body 6 for sealing the battery case 5. There is. The lid 6 is provided with a control valve 7 that controls the pressure in the battery case 5, a positive electrode terminal 8 that connects the positive electrode plate 2 to the outside, and a negative electrode terminal 9 that connects the negative electrode plate 3 to the outside. ..
 正極板2は、正極集電体と、正極集電体に充填された正極活物質充填部とを有している。負極板3は、負極集電体と、負極集電体に充填された負極活物質充填部とを有している。正極板2と負極板3とが交互に配置されると共に正極板2と負極板3との間にセパレーター4が配置されることにより極板群が構成される。 The positive electrode plate 2 has a positive electrode current collector and a positive electrode active material filling portion filled in the positive electrode current collector. The negative electrode plate 3 has a negative electrode current collector and a negative electrode active material filling portion filled in the negative electrode current collector. A positive electrode plate 2 and a negative electrode plate 3 are alternately arranged, and a separator 4 is arranged between the positive electrode plate 2 and the negative electrode plate 3 to form an electrode plate group.
 各正極板2に設けられた耳部2a同士がストラップ2bを介して接続されることにより、複数の正極板2は互いに電気的に接続されている。各負極板3に設けられた耳部3a同士がストラップ3bを介して接続されることにより、複数の負極板3は互いに電気的に接続されている。正極板2のストラップ2bには、正極板2を正極端子8に接続するための正極柱2cが設けられている。負極板3のストラップ3bには、負極板3を負極端子9に接続するための負極柱3cが設けられている。 The plurality of positive electrode plates 2 are electrically connected to each other by connecting the ears 2a provided on each positive electrode plate 2 via the straps 2b. The plurality of negative electrode plates 3 are electrically connected to each other by connecting the ears 3a provided on each negative electrode plate 3 to each other via the strap 3b. The strap 2b of the positive electrode plate 2 is provided with a positive electrode column 2c for connecting the positive electrode plate 2 to the positive electrode terminal 8. The strap 3b of the negative electrode plate 3 is provided with a negative electrode column 3c for connecting the negative electrode plate 3 to the negative electrode terminal 9.
 セパレーター4は、例えば、電解液を保持する電解液保持体(リテーナ)として用いることができる。セパレーター4は、上述の第1の層、第2の層及び第3の層を有しており、例えば、第1の層が正極板2に接すると共に第2の層が負極板3に接する。 The separator 4 can be used, for example, as an electrolytic solution holder (retainer) that holds an electrolytic solution. The separator 4 has the above-mentioned first layer, second layer, and third layer. For example, the first layer contacts the positive electrode plate 2 and the second layer contacts the negative electrode plate 3.
 電槽5は、極板群を収容可能であり、希硫酸等の電解液に対する耐性を有していれば特に制限されない。電槽5は、ポリプロピレン、ポリエチレン、ABS樹脂等で形成されている。電槽5内は、複数のセル室に分けられていてよく、この場合、例えば、各セル室内に極板群が収容される。そして、一のセル室内に収容された極板群と、それに隣接するセル室内に収容された極板群とを、反対の極性のストラップ間が接続されるように互いに接続することにより鉛蓄電池を構成できる。 The battery case 5 can accommodate the electrode plate group and is not particularly limited as long as it has resistance to an electrolytic solution such as dilute sulfuric acid. The battery case 5 is made of polypropylene, polyethylene, ABS resin or the like. The inside of the battery case 5 may be divided into a plurality of cell chambers. In this case, for example, the electrode plate group is housed in each cell chamber. Then, the lead plate battery is accommodated by connecting the electrode plate group housed in one cell chamber and the electrode plate group housed in the cell chamber adjacent thereto to each other so that straps of opposite polarities are connected to each other. Can be configured.
 電槽5には、極板群と電解液とが収容されている。電解液は、例えば、硫酸を含有している。電解液は、アルミニウムイオンを更に含有していてもよい。アルミニウムイオンを含有する電解液は、例えば、硫酸及び硫酸アルミニウムを混合することにより得ることができる。 The battery case 5 contains an electrode plate group and an electrolytic solution. The electrolytic solution contains, for example, sulfuric acid. The electrolytic solution may further contain aluminum ions. The electrolytic solution containing aluminum ions can be obtained, for example, by mixing sulfuric acid and aluminum sulfate.
 蓋体6は、例えば、電槽5と同じ材料で形成されている。蓋体6は、例えば、熱融着又は接着剤を用いた接着により電槽5に取り付けられる。 The lid 6 is made of, for example, the same material as the battery case 5. The lid 6 is attached to the battery case 5 by, for example, heat fusion or adhesion using an adhesive.
 本実施形態に係るセパレーターは、無機充填剤を含有していなくてよく、無機充填剤を含有していてもよい。第1の層、第2の層及び第3の層からなる群より選ばれる少なくとも一種は、無機充填剤を含有していなくてよく、無機充填剤を含有していてもよい。無機充填剤の含有量は、セパレーター、第1の層、第2の層又は第3の層の全質量を基準として、0.001質量%以下であってよく、0.0001質量%以下であってよく、0.00001質量%以下であってよい。 The separator according to the present embodiment may not contain an inorganic filler, and may contain an inorganic filler. At least one selected from the group consisting of the first layer, the second layer, and the third layer may not contain an inorganic filler, and may contain an inorganic filler. The content of the inorganic filler may be 0.001% by mass or less, and 0.0001% by mass or less, based on the total mass of the separator, the first layer, the second layer, or the third layer. May be 0.00001% by mass or less.
 本実施形態に係るセパレーターは、ガラス繊維を含有できる。第1の層、第2の層及び第3の層からなる群より選ばれる少なくとも一種は、ガラス繊維を含有できる。 The separator according to this embodiment can contain glass fiber. At least one selected from the group consisting of the first layer, the second layer, and the third layer can contain glass fiber.
 ガラス繊維としては、鉛蓄電池用セパレーターに通常使用されている市販のガラス繊維を使用できる。ガラス繊維は、優れた耐久性及び耐酸性が得られやすい観点から、アルカリガラスを含むことが好ましい。ガラス繊維は、Cガラスを含んでいてよい。Cガラス組成のガラス繊維は、耐酸性に優れる。ガラス繊維としては、目的とする細孔径のガラスシートを得る等のために1種又は2種以上の繊維を混合して使用してもよい。 As the glass fiber, commercially available glass fiber that is usually used for a lead storage battery separator can be used. The glass fiber preferably contains an alkali glass from the viewpoint of easily obtaining excellent durability and acid resistance. The glass fiber may include C glass. The glass fiber of the C glass composition has excellent acid resistance. As the glass fibers, one kind or two or more kinds of fibers may be mixed and used for obtaining a glass sheet having a desired pore size.
 ガラス繊維の繊維径(例えば数平均繊維径)は、特に制限はないが、下記の範囲であることが好ましい。繊維径は、セパレーターの細孔径を大きくしやすい傾向にある観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.8μm以上が更に好ましい。繊維径は、セパレーター内に電解液を保持しやすい傾向にある観点から、100μm以下が好ましく、50μm以下がより好ましく、20μm以下が更に好ましい。これらの観点から、繊維径は、0.3μm~100μmが好ましい。 The fiber diameter of the glass fiber (for example, the number average fiber diameter) is not particularly limited, but is preferably within the following range. The fiber diameter is preferably 0.3 μm or more, more preferably 0.5 μm or more, still more preferably 0.8 μm or more, from the viewpoint of easily increasing the pore size of the separator. The fiber diameter is preferably 100 μm or less, more preferably 50 μm or less, still more preferably 20 μm or less, from the viewpoint that the electrolytic solution tends to be easily retained in the separator. From these viewpoints, the fiber diameter is preferably 0.3 μm to 100 μm.
 第1の層及び第2の層からなる群より選ばれる少なくとも一種は、第3の層のガラス繊維より小さい繊維径(例えば数平均繊維径)を有するガラス繊維を含有することができる。 At least one selected from the group consisting of the first layer and the second layer can contain a glass fiber having a fiber diameter (for example, a number average fiber diameter) smaller than that of the glass fiber of the third layer.
 第1の層及び第2の層からなる群より選ばれる少なくとも一種は、繊維径(例えば数平均繊維径)が下記の範囲であるガラス繊維を含有することが好ましい。繊維径は、浸透短絡を防止しやすい観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.8μm以上が更に好ましい。繊維径は、浸透短絡を防止しやすい観点、及び、セパレーター内に電解液を保持しやすい傾向にある観点から、5μm以下が好ましく、2μm以下がより好ましく、1μm以下が更に好ましい。これらの観点から、繊維径は、0.3~5μmが好ましい。 At least one selected from the group consisting of the first layer and the second layer preferably contains glass fibers having a fiber diameter (for example, a number average fiber diameter) within the following range. The fiber diameter is preferably 0.3 μm or more, more preferably 0.5 μm or more, still more preferably 0.8 μm or more, from the viewpoint of easily preventing permeation short circuit. The fiber diameter is preferably 5 μm or less, more preferably 2 μm or less, still more preferably 1 μm or less, from the viewpoint of easily preventing permeation short circuit and from the viewpoint of easily holding the electrolytic solution in the separator. From these viewpoints, the fiber diameter is preferably 0.3 to 5 μm.
 第3の層は、繊維径(例えば数平均繊維径)が下記の範囲であるガラス繊維を含有することが好ましい。繊維径は、浸透短絡を防止しやすい観点、及び、細孔径を大きくしやすい傾向にある観点から、1μm以上が好ましく、1.5μm以上がより好ましく、2μm以上が更に好ましい。繊維径は、浸透短絡を防止しやすい観点、及び、セパレーター内に電解液を保持しやすい傾向にある観点から、100μm以下が好ましく、50μm以下がより好ましく、20μm以下が更に好ましく、10μm以下が特に好ましく、5μm以下が極めて好ましく、3μm以下が非常に好ましい。これらの観点から、繊維径は、1~100μmが好ましく、1~10μmがより好ましい。 The third layer preferably contains glass fibers having a fiber diameter (for example, number average fiber diameter) in the following range. The fiber diameter is preferably 1 μm or more, more preferably 1.5 μm or more, still more preferably 2 μm or more, from the viewpoint of easily preventing permeation short circuit and from the viewpoint of easily increasing the pore size. The fiber diameter is preferably 100 μm or less, more preferably 50 μm or less, further preferably 20 μm or less, particularly preferably 10 μm or less, from the viewpoint of easily preventing permeation short-circuiting and from the viewpoint of easily holding the electrolytic solution in the separator. It is preferably 5 μm or less, very preferably 3 μm or less. From these viewpoints, the fiber diameter is preferably 1 to 100 μm, more preferably 1 to 10 μm.
 ガラス繊維の繊維長(例えば数平均繊維長)は、特に制限はないが、下記の範囲であることが好ましい。繊維長は、均一な細孔径に調整しやすい傾向にある観点から、1μm以上が好ましく、100μm以上がより好ましく、500μm以上が更に好ましい。繊維長は、充分に高い強度(例えば、1MPa以上)を有するセパレーターを製造しやすい傾向にある観点、及び、後述する抄造時に良好な抄造性を得やすい傾向にある観点から、30mm以下が好ましく、20mm以下がより好ましく、10mm以下が更に好ましい。これらの観点から、繊維長は、1μm~30mmが好ましい。 The fiber length (for example, the number average fiber length) of glass fibers is not particularly limited, but is preferably in the following range. The fiber length is preferably 1 μm or more, more preferably 100 μm or more, still more preferably 500 μm or more, from the viewpoint that it tends to be easily adjusted to a uniform pore size. The fiber length is preferably 30 mm or less, from the viewpoint that a separator having a sufficiently high strength (for example, 1 MPa or more) tends to be easily manufactured, and from the viewpoint that good paper-forming property tends to be easily obtained at the time of paper-making described later, 20 mm or less is more preferable, and 10 mm or less is further preferable. From these viewpoints, the fiber length is preferably 1 μm to 30 mm.
 本実施形態において、ガラス繊維の繊維径(例えば数平均繊維径)及び繊維長(例えば数平均繊維長)は、動的画像解析法、レーザースキャン法(例えば、JIS L 1081(羊毛繊維試験方法)に準拠)、走査型電子顕微鏡(SEM)等による直接観察などにより求めることができる。具体的には、これらの方法を用いて少なくとも200本程度のガラス繊維を観察し、その平均値をとることで、上記数平均繊維径及び数平均繊維長を求めることができる。 In the present embodiment, the fiber diameter (for example, number average fiber diameter) and fiber length (for example, number average fiber length) of glass fibers are determined by dynamic image analysis method and laser scanning method (for example, JIS L 1081 (wool fiber test method)). ), or by direct observation with a scanning electron microscope (SEM) or the like. Specifically, the number average fiber diameter and the number average fiber length can be determined by observing at least about 200 glass fibers using these methods and taking the average value thereof.
 本実施形態に係るセパレーターは、有機系バインダーを含有することが可能であり、ガラス繊維及び有機系バインダーを含有してよい。第1の層、第2の層及び第3の層からなる群より選ばれる少なくとも一種は、有機系バインダーを含有することが可能であり、ガラス繊維及び有機系バインダーを含有してよい。 The separator according to the present embodiment can contain an organic binder, and may contain glass fiber and an organic binder. At least one selected from the group consisting of the first layer, the second layer, and the third layer can contain an organic binder, and may contain glass fiber and an organic binder.
 有機系バインダーとしては、耐酸性及び耐水性に優れるものが好ましく、オレフィン系樹脂、アクリル系樹脂、ウレタン系樹脂、スチレン系樹脂等が挙げられる。有機系バインダーとしては、セパレーターと電解液との親和性が向上しやすい観点から、スルホ基、カルボキシル基等の親水基を導入した熱可塑性樹脂を用いてもよい。有機系バインダーは、優れた機械的強度及び電解液の保液性を両立しやすい観点から、オレフィン系樹脂及びスチレン系樹脂からなる群より選ばれる少なくとも一種を含むことが好ましい。有機系バインダーは、優れた耐酸性及び耐水性が得られやすい観点、及び、セパレーターの硫酸に対する優れた親和性が得られやすい観点から、ポリプロピレン及びポリエチレンからなる群より選ばれる少なくとも一種を含むことが好ましく、ポリプロピレンを含むことがより好ましい。有機系バインダーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The organic binder preferably has excellent acid resistance and water resistance, and examples thereof include an olefin resin, an acrylic resin, a urethane resin, and a styrene resin. As the organic binder, a thermoplastic resin introduced with a hydrophilic group such as a sulfo group or a carboxyl group may be used from the viewpoint of easily improving the affinity between the separator and the electrolytic solution. The organic binder preferably contains at least one selected from the group consisting of an olefin resin and a styrene resin from the viewpoint of easily achieving both excellent mechanical strength and liquid retaining property of the electrolytic solution. The organic binder may contain at least one selected from the group consisting of polypropylene and polyethylene from the viewpoint of easily obtaining excellent acid resistance and water resistance, and from the viewpoint of easily obtaining excellent affinity of the separator for sulfuric acid. It is more preferable to include polypropylene. The organic binders may be used alone or in combination of two or more.
 セパレーター中に含まれる有機系バインダーの含有量は、ガラス繊維の全質量(セパレーター中の全質量)に対して下記の範囲が好ましい。第1の層、第2の層及び第3の層からなる群より選ばれる少なくとも一種に含まれる有機系バインダーの含有量は、ガラス繊維の全質量(第1の層、第2の層又は第3の層中の全質量)に対して下記の範囲が好ましい。有機系バインダーの含有量は、セパレーターの強度が保たれやすいためセパレーターが破れにくい観点から、0.5質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上が更に好ましく、3質量%以上が特に好ましく、5質量%以上が極めて好ましく、6質量%以上が非常に好ましい。有機系バインダーの含有量は、電解液をセパレーター内に保持しやすい観点から、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、9質量%以下が特に好ましく、7質量%以下が極めて好ましい。これらの観点から、有機系バインダーの含有量は、0.5~20質量%が好ましい。 The content of the organic binder contained in the separator is preferably in the following range with respect to the total mass of the glass fiber (total mass in the separator). The content of the organic binder contained in at least one selected from the group consisting of the first layer, the second layer and the third layer is such that the total mass of the glass fiber (the first layer, the second layer or the The following range is preferable with respect to the total mass in the layer 3). The content of the organic binder is preferably 0.5% by mass or more, more preferably 1% by mass or more, further preferably 2% by mass or more, further preferably 3% by mass from the viewpoint that the separator is easily broken because the strength of the separator is easily maintained. % Or more is particularly preferable, 5% by mass or more is extremely preferable, and 6% by mass or more is very preferable. The content of the organic binder is preferably 20% by mass or less, more preferably 15% by mass or less, further preferably 10% by mass or less, and particularly preferably 9% by mass or less, from the viewpoint of easily retaining the electrolytic solution in the separator. , 7 mass% or less is extremely preferable. From these viewpoints, the content of the organic binder is preferably 0.5 to 20% by mass.
 第1の層及び第2の層からなる群より選ばれる少なくとも一種の平均細孔径Daは、下記の範囲が好ましい。平均細孔径Daは、電解液が拡散しやすい観点から、1μm以上が好ましく、1.5μm以上がより好ましく、2μm以上が更に好ましく、2.5μm以上が特に好ましく、3μm以上が極めて好ましく、3.5μm以上が非常に好ましく、4μm以上がより一層好ましい。平均細孔径Daは、電解液を保持しやすい観点から、10μm以下が好ましく、8μm以下がより好ましく、7μm以下が更に好ましく、6μm以下が特に好ましく、5μm以下が極めて好ましく、4.5μm以下が非常に好ましい。これらの観点から、平均細孔径Daは、1~10μmが好ましい。第1の層及び第2の層の平均細孔径は、互いに同一であってもよく、異なっていてもよい。 The average pore diameter Da of at least one selected from the group consisting of the first layer and the second layer is preferably in the following range. The average pore diameter Da is preferably 1 μm or more, more preferably 1.5 μm or more, still more preferably 2 μm or more, particularly preferably 2.5 μm or more, particularly preferably 3 μm or more, from the viewpoint of easy diffusion of the electrolytic solution. 5 μm or more is very preferable, and 4 μm or more is even more preferable. The average pore diameter Da is preferably 10 μm or less, more preferably 8 μm or less, further preferably 7 μm or less, particularly preferably 6 μm or less, very preferably 5 μm or less, and very preferably 4.5 μm or less from the viewpoint of easily retaining the electrolytic solution. Is preferred. From these viewpoints, the average pore diameter Da is preferably 1 to 10 μm. The average pore diameters of the first layer and the second layer may be the same or different from each other.
 第3の層の平均細孔径Dbは、下記の範囲が好ましい。平均細孔径Dbは、セパレーター内に電解液を保持させやすい観点から、5μm以上が好ましく、5μmを超えることがより好ましく、6μm以上が更に好ましく、7μm以上が特に好ましく、8μm以上が極めて好ましく、9μm以上が非常に好ましく、10μm以上がより一層好ましく、10.5μm以上が更に好ましく、11μm以上が特に好ましい。平均細孔径Dbは、電解液の拡散を遅くすることができる観点から、100μm以下が好ましく、80μm以下がより好ましく、50μm以下が更に好ましく、30μm以下が特に好ましく、20μm以下が極めて好ましく、18μm以下が非常に好ましく、15μm以下がより一層好ましく、13μm以下が更に好ましく、12μm以下が特に好ましく、11.5μm以下が極めて好ましい。これらの観点から、平均細孔径Dbは、5~100μmが好ましく、5~20μmがより好ましい。 The average pore diameter Db of the third layer is preferably in the following range. The average pore diameter Db is preferably 5 μm or more, more preferably more than 5 μm, further preferably 6 μm or more, particularly preferably 7 μm or more, and particularly preferably 8 μm or more, from the viewpoint of easily holding the electrolytic solution in the separator, 9 μm The above is very preferable, 10 μm or more is further preferable, 10.5 μm or more is further preferable, and 11 μm or more is particularly preferable. The average pore diameter Db is preferably 100 μm or less, more preferably 80 μm or less, further preferably 50 μm or less, particularly preferably 30 μm or less, and most preferably 20 μm or less, from the viewpoint of being able to delay the diffusion of the electrolytic solution, and 18 μm or less. Is more preferable, 15 μm or less is even more preferable, 13 μm or less is further preferable, 12 μm or less is particularly preferable, and 11.5 μm or less is extremely preferable. From these viewpoints, the average pore diameter Db is preferably 5 to 100 μm, more preferably 5 to 20 μm.
 第1の層及び第2の層の平均細孔径は第3の層の平均細孔径より小さい。すなわち、第1の層及び第2の層の平均細孔径の第3の層の平均細孔径に対する比率(第1の層及び第2の層の平均細孔径/第3の層の平均細孔径)は、浸透短絡を防止する観点から、1未満である。各層の平均細孔径は、ガラス繊維の繊維径を大きくすることにより大きくすることができる。 The average pore diameter of the first layer and the second layer is smaller than the average pore diameter of the third layer. That is, the ratio of the average pore diameter of the first layer and the second layer to the average pore diameter of the third layer (average pore diameter of the first layer and the second layer/average pore diameter of the third layer) Is less than 1 from the viewpoint of preventing permeation short circuit. The average pore diameter of each layer can be increased by increasing the fiber diameter of the glass fiber.
 第1の層及び第2の層からなる群より選ばれる少なくとも一種の平均細孔径Daの第3の層の平均細孔径Dbに対する比率Da/Dbは、下記の範囲が好ましい。比率Da/Dbは、浸透短絡を防止しやすい観点から、0.1以上が好ましく、0.2以上がより好ましく、0.25以上が更に好ましく、0.3以上が特に好ましく、0.35以上が極めて好ましい。比率Da/Dbは、浸透短絡を防止しやすい観点から、0.9以下が好ましく、0.8以下がより好ましく、0.7以下が更に好ましく、0.6以下が特に好ましく、0.5以下が極めて好ましく、0.45以下が非常に好ましく、0.4以下がより一層好ましい。これらの観点から、比率Da/Dbは、0.1以上1未満が好ましい。 The ratio Da/Db of the average pore diameter Da of at least one selected from the group consisting of the first layer and the second layer to the average pore diameter Db of the third layer is preferably in the following range. The ratio Da/Db is preferably 0.1 or more, more preferably 0.2 or more, further preferably 0.25 or more, particularly preferably 0.3 or more, and 0.35 or more, from the viewpoint of easily preventing permeation short circuit. Is highly preferred. The ratio Da/Db is preferably 0.9 or less, more preferably 0.8 or less, still more preferably 0.7 or less, particularly preferably 0.6 or less, and 0.5 or less, from the viewpoint of easily preventing a permeation short circuit. Is extremely preferable, 0.45 or less is very preferable, and 0.4 or less is even more preferable. From these viewpoints, the ratio Da/Db is preferably 0.1 or more and less than 1.
 本実施形態に係るセパレーターの全厚(膜厚)Tは、下記の範囲が好ましい。セパレーターの全厚Tは、一般的な抄造方法でセパレーターを作製しやすく、かつ、必要量の電解液を保持しやすい観点から、0.1mm以上が好ましく、0.3mm以上がより好ましく、0.4mm以上が更に好ましく、0.5mm以上が特に好ましく、0.6mm以上が極めて好ましく、0.7mm以上が非常に好ましい。セパレーターの全厚Tは、使用する電極(極板等)を増やすことができ、鉛蓄電池を高容量化しやすい観点から、1.5mm以下が好ましく、1.2mm以下がより好ましく、1.0mm以下が更に好ましく、0.8mm以下が特に好ましい。これらの観点から、セパレーターの全厚Tは、0.1~1.5mmが好ましい。セパレーターの全厚Tは、1.5mmを超えていてもよい。 The total thickness (film thickness) T of the separator according to this embodiment is preferably in the following range. The total thickness T of the separator is preferably 0.1 mm or more, more preferably 0.3 mm or more, and more preferably 0.1 mm or more from the viewpoint of easily manufacturing the separator by a general papermaking method and easily holding a necessary amount of the electrolytic solution. 4 mm or more is more preferable, 0.5 mm or more is particularly preferable, 0.6 mm or more is extremely preferable, and 0.7 mm or more is very preferable. The total thickness T of the separator is preferably 1.5 mm or less, more preferably 1.2 mm or less, and more preferably 1.0 mm or less from the viewpoint that the number of electrodes (electrode plates etc.) used can be increased and the capacity of the lead storage battery can be easily increased. Is more preferable, and 0.8 mm or less is particularly preferable. From these viewpoints, the total thickness T of the separator is preferably 0.1 to 1.5 mm. The total thickness T of the separator may exceed 1.5 mm.
 セパレーターの全厚Tに対する、第1の層及び第2の層からなる群より選ばれる少なくとも一種の厚さTaの比率Ta/Tは、下記の範囲が好ましい。比率Ta/Tは、浸透短絡を防止しやすい観点から、0.6以下が好ましく、0.5以下がより好ましく、0.45以下が更に好ましく、0.4以下が特に好ましく、0.375以下が極めて好ましい。比率Ta/Tは、浸透短絡を防止しやすい観点から、0.1以上が好ましく、0.2以上がより好ましく、0.25以上が更に好ましく、0.3以上が特に好ましく、1/3以上が極めて好ましく、0.35以上が非常に好ましい。これらの観点から、比率Ta/Tは、0.1~0.6が好ましい。 The ratio Ta/T of at least one thickness Ta selected from the group consisting of the first layer and the second layer to the total thickness T of the separator is preferably in the following range. The ratio Ta/T is preferably 0.6 or less, more preferably 0.5 or less, still more preferably 0.45 or less, particularly preferably 0.4 or less, and 0.375 or less from the viewpoint of easily preventing a permeation short circuit. Is highly preferred. The ratio Ta/T is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.25 or more, particularly preferably 0.3 or more, and more preferably 1/3 or more, from the viewpoint of easily preventing a permeation short circuit. Is extremely preferable, and 0.35 or more is very preferable. From these viewpoints, the ratio Ta/T is preferably 0.1 to 0.6.
 第1の層及び第2の層からなる群より選ばれる少なくとも一種の厚さTaは、下記の範囲であることが好ましい。厚さTaは、浸透短絡を防止しやすい観点から、0.01mm以上が好ましく、0.05mm以上がより好ましく、0.1mm以上が更に好ましく、0.2mm以上が特に好ましく、0.25mm以上が極めて好ましく、0.3mm以上が非常に好ましい。厚さTaは、浸透短絡を防止しやすい観点から、1mm以下が好ましく、0.8mm以下がより好ましく、0.6mm以下が更に好ましく、0.4mm以下が特に好ましく、0.35mm以下が極めて好ましい。これらの観点から、厚さTaは、0.01~1mmが好ましい。第1の層及び第2の層の厚さは、互いに同一であってもよく、異なっていてもよい。 The thickness Ta of at least one selected from the group consisting of the first layer and the second layer is preferably in the following range. The thickness Ta is preferably 0.01 mm or more, more preferably 0.05 mm or more, further preferably 0.1 mm or more, particularly preferably 0.2 mm or more, and more preferably 0.25 mm or more, from the viewpoint of easily preventing a permeation short circuit. Very preferable, and 0.3 mm or more is very preferable. The thickness Ta is preferably 1 mm or less, more preferably 0.8 mm or less, further preferably 0.6 mm or less, particularly preferably 0.4 mm or less, and particularly preferably 0.35 mm or less, from the viewpoint of easily preventing a permeation short circuit. .. From these viewpoints, the thickness Ta is preferably 0.01 to 1 mm. The thicknesses of the first layer and the second layer may be the same or different from each other.
 セパレーターの全厚Tに対する第3の層の厚さTbの比率Tb/Tは、下記の範囲が好ましい。比率Tb/Tは、浸透短絡を防止しやすい観点から、0.1以上が好ましく、0.15以上がより好ましく、0.2以上が更に好ましく、0.25以上が特に好ましい。比率Tb/Tは、浸透短絡を防止しやすい観点から、0.9以下が好ましく、0.7以下がより好ましく、0.5以下が更に好ましく、0.4以下が特に好ましく、1/3以下が極めて好ましく、0.3以下が非常に好ましい。これらの観点から、比率Tb/Tは、0.1~0.9が好ましい。 The ratio Tb/T of the thickness Tb of the third layer to the total thickness T of the separator is preferably in the following range. The ratio Tb/T is preferably 0.1 or more, more preferably 0.15 or more, further preferably 0.2 or more, and particularly preferably 0.25 or more, from the viewpoint of easily preventing a permeation short circuit. The ratio Tb/T is preferably 0.9 or less, more preferably 0.7 or less, still more preferably 0.5 or less, particularly preferably 0.4 or less, and more preferably 1/3 or less from the viewpoint of easily preventing a permeation short circuit. Is extremely preferable, and 0.3 or less is very preferable. From these viewpoints, the ratio Tb/T is preferably 0.1 to 0.9.
 第3の層の厚さTbは、下記の範囲であることが好ましい。厚さTbは、浸透短絡を防止しやすい観点から、0.02mm以上が好ましく、0.05mm以上がより好ましく、0.1mm以上が更に好ましく、0.15mm以上が特に好ましく、0.2mm以上が極めて好ましい。厚さTbは、浸透短絡を防止しやすい観点から、2mm以下が好ましく、1.5mm以下がより好ましく、1mm以下が更に好ましく、0.8mm以下が特に好ましく、0.6mm以下が極めて好ましく、0.5mm以下が非常に好ましく、0.45mm以下がより一層好ましく、0.4mm以下が更に好ましく、0.3mm以下が特に好ましい。これらの観点から、厚さTbは、0.02~2mmが好ましい。 The thickness Tb of the third layer is preferably in the following range. The thickness Tb is preferably 0.02 mm or more, more preferably 0.05 mm or more, further preferably 0.1 mm or more, particularly preferably 0.15 mm or more, and particularly preferably 0.2 mm or more, from the viewpoint of easily preventing a permeation short circuit. Highly preferred. The thickness Tb is preferably 2 mm or less, more preferably 1.5 mm or less, further preferably 1 mm or less, particularly preferably 0.8 mm or less, and particularly preferably 0.6 mm or less, from the viewpoint of easily preventing a permeation short circuit. Very preferably 0.5 mm or less, more preferably 0.45 mm or less, even more preferably 0.4 mm or less, particularly preferably 0.3 mm or less. From these viewpoints, the thickness Tb is preferably 0.02 to 2 mm.
 第1の層及び第2の層からなる群より選ばれる少なくとも一種の厚さTaの第3の層の厚さTbに対する比率Ta/Tbは、下記の範囲が好ましい。比率Ta/Tbは、浸透短絡を防止しやすい観点から、0.1以上が好ましく、0.3以上がより好ましく、0.5以上が更に好ましく、0.7以上が特に好ましく、0.9以上が極めて好ましく、1以上が非常に好ましく、1を超えることがより一層好ましく、1.25以上が更に好ましく、1.5以上が特に好ましい。比率Ta/Tbは、浸透短絡を防止しやすい観点から、3以下が好ましく、2.5以下がより好ましく、2以下が更に好ましく、1.75以下が特に好ましく、1.5以下が極めて好ましい。これらの観点から、比率Ta/Tbは、0.1~3が好ましい。 The ratio Ta/Tb of the thickness Ta of at least one selected from the group consisting of the first layer and the second layer to the thickness Tb of the third layer is preferably in the following range. The ratio Ta/Tb is preferably 0.1 or more, more preferably 0.3 or more, further preferably 0.5 or more, particularly preferably 0.7 or more, and 0.9 or more, from the viewpoint of easily preventing a permeation short circuit. Is extremely preferable, 1 or more is very preferable, more than 1 is even more preferable, 1.25 or more is further preferable, and 1.5 or more is particularly preferable. The ratio Ta/Tb is preferably 3 or less, more preferably 2.5 or less, further preferably 2 or less, particularly preferably 1.75 or less, and most preferably 1.5 or less, from the viewpoint of easily preventing a permeation short circuit. From these viewpoints, the ratio Ta/Tb is preferably 0.1 to 3.
 第1の層及び第2の層の厚さの合計Ttは、第3の層の厚さTbより大きい。すなわち、第3の層の厚さTbに対する第1の層及び第2の層の厚さの合計Ttの比率Tt/Tbは、浸透短絡を防止する観点から、1を超えている。比率Tt/Tbは、浸透短絡を防止しやすい観点から、1.2以上が好ましく、1.5以上がより好ましく、1.75以上が更に好ましく、2以上が特に好ましく、2.5以上が極めて好ましく、2.75以上が非常に好ましく、3以上がより一層好ましい。比率Tt/Tbは、浸透短絡を防止しやすい観点から、10以下が好ましく、8以下がより好ましく、6以下が更に好ましく、5以下が特に好ましく、4以下が極めて好ましく、3以下が非常に好ましい。これらの観点から、比率Tt/Tbは、1を超え10以下が好ましい。 The total thickness Tt of the first layer and the second layer is larger than the thickness Tb of the third layer. That is, the ratio Tt/Tb of the total Tt of the thicknesses of the first layer and the second layer to the thickness Tb of the third layer is more than 1 from the viewpoint of preventing permeation short circuit. The ratio Tt/Tb is preferably 1.2 or more, more preferably 1.5 or more, further preferably 1.75 or more, particularly preferably 2 or more, and particularly preferably 2.5 or more, from the viewpoint of easily preventing a permeation short circuit. Preferably, 2.75 or more is very preferable, and 3 or more is even more preferable. The ratio Tt/Tb is preferably 10 or less, more preferably 8 or less, further preferably 6 or less, particularly preferably 5 or less, very preferably 4 or less, and very preferably 3 or less, from the viewpoint of easily preventing a permeation short circuit. .. From these viewpoints, the ratio Tt/Tb is preferably more than 1 and 10 or less.
 セパレーターを構成する各層の細孔径及び厚さは、実施例に記載の方法により測定できる。 The pore size and thickness of each layer constituting the separator can be measured by the method described in the examples.
 本実施形態に係るセパレーターの製造方法は、少なくとも上述の第1の層、第2の層及び第3の層を有する鉛蓄電池用セパレーターの製造方法である。本実施形態に係るセパレーターの製造方法によれば、本実施形態に係るセパレーターを得ることができる。 The method for manufacturing a separator according to the present embodiment is a method for manufacturing a lead-acid battery separator having at least the above-mentioned first layer, second layer and third layer. According to the separator manufacturing method of the present embodiment, the separator of the present embodiment can be obtained.
 本実施形態に係るセパレーターの製造方法は、少なくとも上述の第1の層、第2の層及び第3の層を有するセパレーターを作製するセパレーター作製工程を備える。セパレーター作製工程は、例えば、第1の層を得る第1の層作製工程と、第2の層を得る第2の層作製工程と、第3の層を得る第3の層作製工程と、を有してよい。第1の層作製工程(又は、第2の層作製工程、第3の層作製工程)は、ガラス繊維及び有機系バインダーを含むスラリーを用いて抄造を行うことにより第1の層(又は、第2の層、第3の層)を得る工程であってよい。この場合、ガラス繊維は、上述の好ましい範囲の繊維径(例えば数平均繊維径)を有することができる。第1の層作製工程、第2の層作製工程及び/又は第3の層作製工程において用いるガラス繊維の繊維径を調整することにより第1の層、第2の層及び/又は第3の層の細孔径を調整することができる。第1の層作製工程、第2の層作製工程及び/又は第3の層作製工程において用いるガラス繊維及び有機系バインダーの量を調整することにより第1の層、第2の層及び/又は第3の層の厚さを調整することができる。セパレーター作製工程は、第1の層、第2の層及び第3の層を互いに積層することにより、第1の層、第2の層及び第3の層を有する積層物を得る積層工程を有していてもよい。 The separator manufacturing method according to the present embodiment includes a separator manufacturing step of manufacturing a separator having at least the above-mentioned first layer, second layer, and third layer. The separator producing step includes, for example, a first layer producing step of obtaining a first layer, a second layer producing step of obtaining a second layer, and a third layer producing step of obtaining a third layer. You may have. In the first layer preparation step (or the second layer preparation step, the third layer preparation step), the first layer (or the first layer (or the first layer preparation step) is performed by performing papermaking using a slurry containing glass fiber and an organic binder. The step of obtaining the second layer and the third layer). In this case, the glass fiber can have a fiber diameter in the above-described preferable range (for example, a number average fiber diameter). The first layer, the second layer and/or the third layer by adjusting the fiber diameter of the glass fiber used in the first layer producing step, the second layer producing step and/or the third layer producing step. The pore size of the can be adjusted. By adjusting the amounts of the glass fiber and the organic binder used in the first layer forming step, the second layer forming step and/or the third layer forming step, the first layer, the second layer and/or the The thickness of the three layers can be adjusted. The separator manufacturing step includes a stacking step of stacking the first layer, the second layer, and the third layer on each other to obtain a stack having the first layer, the second layer, and the third layer. You may have.
 本実施形態に係るセパレーターの製造方法としては、特に制限はなく、湿式抄造、乾式抄造等が挙げられる。これらの中でも、湿式法に基づく抄造法(湿式抄造)を採用することが好ましい。この製造方法は、ガラス繊維、有機系バインダー等を含むスラリーを調製するスラリー調製工程と、スラリーを抄紙して抄造体を作製する抄造体作製工程と、加圧機を用いて抄造体を厚み方向に圧縮して圧縮体を作製する圧縮体作製工程と、必要に応じ圧縮体を樹脂(有機系バインダー)の軟化点以上の温度で熱処理する熱処理工程と、を備える。この方法により、低コストかつ薄い鉛蓄電池用セパレーターを容易に製造することができる。ここで、スラリーを抄紙して得られる抄造体は、ガラス繊維を有機系バイダーで接着したシート状又はマット状の成形体であり、以下、「ガラスシート」ということがある。また、圧縮体は、このガラスシートを厚み方向に圧縮したものである。圧縮体を作製するのに用いるガラスシートは、1枚であってもよく、複数枚を厚み方向に積み重ねたものでもよい。 The method of manufacturing the separator according to the present embodiment is not particularly limited, and includes wet papermaking, dry papermaking and the like. Among these, it is preferable to adopt a papermaking method based on a wet method (wet papermaking). This manufacturing method is a glass fiber, a slurry preparation step of preparing a slurry containing an organic binder, a papermaking body manufacturing step of making a papermaking body by making a slurry, and a papermaking body in a thickness direction using a pressing machine. The method includes a compressed body producing step of producing a compressed body by compression, and a heat treatment step of heat treating the compressed body at a temperature equal to or higher than the softening point of the resin (organic binder), if necessary. By this method, a low cost and thin lead acid battery separator can be easily manufactured. Here, the paper product obtained by paper-making the slurry is a sheet-shaped or mat-shaped molded product in which glass fibers are bonded with an organic binder, and may be referred to as a “glass sheet” hereinafter. The compressed body is obtained by compressing this glass sheet in the thickness direction. The number of glass sheets used for producing the compressed body may be one, or a plurality of glass sheets may be stacked in the thickness direction.
 スラリー調製工程においては、ガラス繊維及び有機系バインダーを所定の分散媒体に分散させる。スラリーの調製は、例えば、ミキサー、ボールミル、パルパー等により行うことができる。分散媒体としては、水を用いることができる。スラリー中の各原料成分の含有量は、例えば、得られる鉛蓄電池用セパレーター中の各原料成分の含有量が上記の範囲となるように調整することができる。 In the slurry preparation process, glass fiber and organic binder are dispersed in a prescribed dispersion medium. The slurry can be prepared by, for example, a mixer, a ball mill, a pulper, or the like. Water can be used as the dispersion medium. The content of each raw material component in the slurry can be adjusted, for example, so that the content of each raw material component in the obtained lead storage battery separator falls within the above range.
 スラリー調製工程における有機系バインダーの配合量は、ガラス繊維の全質量に対して下記の範囲が好ましい。有機系バインダーの配合量は、強度が保たれやすいため破れにくいセパレーターを得やすい観点から、0.75質量%以上が好ましく、1.5質量%以上がより好ましく、3質量%以上が更に好ましく、4.5質量%以上が特に好ましく、7.5質量%以上が極めて好ましく、9質量%以上が非常に好ましい。有機系バインダーの配合量は、電解液を保持しやすいセパレーターが得られやすい観点から、30質量%以下が好ましく、22.5質量%以下がより好ましく、15質量%以下が更に好ましく、13.5質量%以下が特に好ましく、10.5質量%以下が極めて好ましい。これらの観点から、有機系バインダーの配合量は、0.75~30質量%が好ましい。 The blending amount of the organic binder in the slurry preparation step is preferably within the following range with respect to the total mass of the glass fiber. The amount of the organic binder is preferably 0.75 mass% or more, more preferably 1.5 mass% or more, still more preferably 3 mass% or more, from the viewpoint of easily obtaining a separator that is not easily broken because strength is easily maintained. 4.5% by mass or more is particularly preferable, 7.5% by mass or more is extremely preferable, and 9% by mass or more is very preferable. The blending amount of the organic binder is preferably 30% by mass or less, more preferably 22.5% by mass or less, further preferably 15% by mass or less, from the viewpoint of easily obtaining a separator that easily retains the electrolytic solution. A mass% or less is particularly preferable, and 10.5 mass% or less is extremely preferable. From these viewpoints, the compounding amount of the organic binder is preferably 0.75 to 30% by mass.
 スラリーは、界面活性剤を含んでいてもよい。スラリーが界面活性剤を含むことで、鉛蓄電池用セパレーターを製造する際に原料成分を分散させやすい。界面活性剤は、後の熱処理において分解されてもよい。界面活性剤は、シランカップリング剤、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤等のいずれであってもよい。界面活性剤の含有量は、スラリーの全質量を基準として、0.01~5質量%であることが好ましい。 The slurry may contain a surfactant. When the slurry contains the surfactant, the raw material components are easily dispersed when the lead storage battery separator is manufactured. The surfactant may be decomposed in a subsequent heat treatment. The surfactant may be any of a silane coupling agent, a cationic surfactant, an anionic surfactant, a nonionic surfactant and the like. The content of the surfactant is preferably 0.01 to 5 mass% based on the total mass of the slurry.
 カチオン性界面活性剤としては、アルキルアンモニウム塩を用いることが好ましい。カチオン性界面活性剤としては、塩化ジオクチルジメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化ジココジメチルアンモニウム、塩化ココ(精留)ベンジルジメチルアンモニウム、塩化オクタデシルトリメチルアンモニウム、塩化ジオクタデシルジメチルアンモニウム、塩化ジヘキサデシルジメチルアンモニウム、塩化ジ(水素化牛脂)ジメチルアンモニウム、塩化ジ(水素化牛脂)ベンジルメチルアンモニウム、塩化(水素化牛脂)ベンジルジメチルアンモニウム、塩化ジオレイルジメチルアンモニウム、塩化ジ(エチレンヘキサデカンカルボキシレート)ジメチルアンモニウム、塩化ジアリルジメチルアンモニウム、二塩化N-オクタデシル-N-ジメチル-N’-トリメチル-プロピレン-ジアンモニウム、ポリ(塩化ジオクチルジメチルアンモニウム)、ポリ(塩化ジデシルジメチルアンモニウム)、ポリ(塩化ジココジメチルアンモニウム)、ポリ(塩化ココベンジルジメチルアンモニウム)、ポリ(塩化オクタデシルトリメチルアンモニウム)、ポリ(塩化ジオクタデシルジメチルアンモニウム)、ポリ(塩化ジヘキサデシルジメチルアンモニウム)、ポリ(塩化ジオレイルジメチルアンモニウム)、ポリ(塩化ジ(エチレンヘキサデカンカルボキシレート)ジメチルアンモニウム)、ポリ(塩化ジアリルジメチルアンモニウム)等が挙げられる。 It is preferable to use an alkyl ammonium salt as the cationic surfactant. Examples of the cationic surfactant include dioctyldimethylammonium chloride, didecyldimethylammonium chloride, dicocodimethylammonium chloride, coco (rectification) benzyldimethylammonium chloride, octadecyltrimethylammonium chloride, dioctadecyldimethylammonium chloride, and dihexadecyl chloride. Dimethylammonium, Di(hydrogenated tallow) dimethylammonium, Di(hydrogenated tallow) benzylmethylammonium, Chloride (hydrogenated tallow) benzyldimethylammonium, Dioleyldimethylammonium chloride, Di(ethylenehexadecanecarboxylate) dimethylammonium , Diallyldimethylammonium chloride, N-octadecyl-N-dimethyl-N'-trimethyl-propylene-diammonium chloride, poly(dioctyldimethylammonium chloride), poly(didecyldimethylammonium chloride), poly(dicocodimethylammonium chloride) ), poly(cocobenzyldimethylammonium chloride), poly(octadecyltrimethylammonium chloride), poly(dioctadecyldimethylammonium chloride), poly(dihexadecyldimethylammonium chloride), poly(dioleyldimethylammonium chloride), poly(chloride) Di (ethylene hexadecane carboxylate) dimethyl ammonium), poly (diallyl dimethyl ammonium chloride), etc. are mentioned.
 アニオン性界面活性剤としては、カルボキシレート類、N-アシルサルコシネート類、アルカンスルホネート類、直鎖及び分岐鎖アルキルアリールスルホネート類、ジアルキルスルホスクシネート類、アリールスルホネート類、ナフタリンスルホネート類、N-アシル-N-アルキルラウレート類、脂肪酸類の2-スルホエチルエステル類、オレフインスルホネート類、アルキルサルフエート類、サルフエート化した天然オイル類、サルフエート化したアルキルフェノールアルコキシレート類、アルカノール類、フェノール及びアルキルフェノールアルコキシレート類のホスフェートエステル類、アルキル(アリール)スルホネート類、スルフェートエステル類、ホスフェートエステル類、アルキル(アリール)ホスフェート類、アルキル(アリール)ホスホネート類、ポリオキシエチレンアルキルエーテルホスフェート類、カルボキシル化アルキルエトキシレート類、カルボキシル化ドデシルベンゼンスルホネート類、アンモニウムポリオキシエチレンアルキルエーテルサルフェート類等が挙げられる。 Examples of the anionic surfactant include carboxylates, N-acyl sarcosinates, alkane sulfonates, straight chain and branched chain alkyl aryl sulfonates, dialkyl sulfosuccinates, aryl sulfonates, naphthalene sulfonates, N -Acyl-N-alkyl laurates, 2-sulfoethyl esters of fatty acids, olefin sulfonates, alkyl sulphates, sulphated natural oils, sulphated alkylphenol alkoxylates, alkanols, phenols and alkylphenols Phosphate esters of alkoxylates, alkyl (aryl) sulfonates, sulfate esters, phosphate esters, alkyl (aryl) phosphates, alkyl (aryl) phosphonates, polyoxyethylene alkyl ether phosphates, carboxylated alkyl ethoxy Examples thereof include rates, carboxylated dodecylbenzene sulfonates, ammonium polyoxyethylene alkyl ether sulfates and the like.
 ノニオン性界面活性剤としては、ポリオキシアルキレンジアルキルエステル類、ポリオキシアルキレンアルキルエステル類、ポリオキシアルキレンアルキルエーテル類、ソルビタンアルキルエステル類等が挙げられる。 Examples of nonionic surfactants include polyoxyalkylene dialkyl esters, polyoxyalkylene alkyl esters, polyoxyalkylene alkyl ethers, sorbitan alkyl esters, and the like.
 スラリーは、凝集剤を含んでいてもよい。スラリーが凝集剤を含むことで、製造されるセパレーターの歩留まりを向上させることができる。凝集剤は、無機系凝集剤(硫酸アルミニウム、ポリ塩化アルミ二ウム、ポリ硫酸第二鉄、塩化第二鉄等)、カチオン性高分子凝集剤、アニオン性高分子凝集剤などのいずれであってもよい。凝集剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。凝集剤の含有量は、スラリーの固形分の全量を基準として、0.01~10質量%が好ましい。凝集剤の含有量は、ガラス繊維の全質量に対して、1~10質量%が好ましく、2~8質量%がより好ましく、3~6質量%が更に好ましい。 The slurry may contain a flocculant. When the slurry contains the aggregating agent, the yield of the manufactured separator can be improved. The flocculant may be any of inorganic flocculants (aluminum sulfate, polyaluminum chloride, polyferric sulfate, ferric chloride, etc.), cationic polymer flocculants, anionic polymer flocculants, etc. Good. As the aggregating agent, one type may be used alone, or two or more types may be used in combination. The content of the aggregating agent is preferably 0.01 to 10 mass% based on the total amount of the solid content of the slurry. The content of the aggregating agent is preferably 1 to 10% by mass, more preferably 2 to 8% by mass, still more preferably 3 to 6% by mass, based on the total mass of the glass fiber.
 例えば、抄造体作製工程において、一般的な抄紙機を用いてスラリーを抄紙することにより抄造体(ガラスシート)を作製した後、圧縮体作製工程において、加圧機を用いて抄造体を厚み方向に圧縮することにより圧縮体(鉛蓄電池用セパレーター)を作製する。所望の圧縮体を得るためには、抄造体を1~30MPaにて1~5分間圧縮することが好ましい。圧縮体を作製するのに用いる抄造体(ガラスシート)は、1枚を単独で用いてよく、複数枚を厚み方向に積み重ねて用いてもよい。 For example, in the paper making process, after making a paper product (glass sheet) by making a slurry with a general paper machine in the paper making process, in the compression product making process, the paper making body is applied in the thickness direction using a pressure machine. A compression body (separator for a lead storage battery) is produced by compression. In order to obtain a desired compact, it is preferable to compress the paper product at 1 to 30 MPa for 1 to 5 minutes. As the paper product (glass sheet) used for producing the compressed body, one sheet may be used alone, or a plurality of sheets may be stacked in the thickness direction and used.
 熱処理工程は必ずしも行う工程ではないが、セパレーターの材料構成に合わせて必要に応じて行うことができる。熱処理工程において樹脂(有機系バインダー)の軟化点以上の温度で圧縮体を熱処理することで、有機系バインダーが軟化してガラス繊維、粘土鉱物等同士を確実に結着させることができ、また、ガラス繊維、粘土鉱物等の表面の一部又は全部を樹脂(有機系バインダー)で被覆することで、セパレーターに柔軟性を付与することができる。さらに、樹脂(有機系バインダー)が一部分解してテンプレートとして機能し、電解液の保持力を向上させることができる。処理温度は、樹脂(有機系バインダー)の軟化点に依存するため必ずしも限定されないが、100~200℃であることが好ましい。処理温度が100℃以上であることで、ガラス繊維、粘土鉱物等同士を結着させやすい傾向にある。処理温度が200℃以下であることで、製造工程を簡略化しやすい。熱処理工程は、鉛蓄電池用セパレーターの構成材料に応じて、適宜加圧しながら行ってもよい。 The heat treatment step is not necessarily performed, but can be performed as necessary according to the material composition of the separator. By heat-treating the compressed body at a temperature equal to or higher than the softening point of the resin (organic binder) in the heat treatment step, the organic binder is softened and glass fibers, clay minerals and the like can be reliably bound to each other. By coating a part or all of the surface of glass fiber, clay mineral, etc. with a resin (organic binder), flexibility can be imparted to the separator. Further, the resin (organic binder) is partially decomposed to function as a template, and the holding power of the electrolytic solution can be improved. The treatment temperature is not necessarily limited because it depends on the softening point of the resin (organic binder), but is preferably 100 to 200°C. When the treatment temperature is 100° C. or higher, glass fibers, clay minerals, etc. tend to be easily bound to each other. When the processing temperature is 200° C. or lower, the manufacturing process can be simplified easily. The heat treatment step may be performed under appropriate pressure depending on the constituent material of the lead storage battery separator.
 正極活物質は、Pb成分としてβ-PbOを含むことができる。正極活物質は、α-PbOを含んでいてよく、α-PbOを含んでいなくてもよい。正極活物質は、必要に応じて、PbO以外のPb成分(例えばPbSO)及び後述の添加剤を含むことができる。 The positive electrode active material may include β-PbO 2 as a Pb component. The positive electrode active material may include alpha-PbO 2, it may not include the alpha-PbO 2. The positive electrode active material may contain a Pb component other than PbO 2 (for example, PbSO 4 ) and an additive described below, if necessary.
 正極活物質は、正極活物質の原料を含むペースト状正極活物質(正極活物質ペースト)を熟成及び乾燥することにより未化成の正極活物質を得た後に未化成の正極活物質を化成することで得ることができる。正極は、正極集電体(鋳造格子体、エキスパンド格子体等)に充填されたペースト状正極活物質を熟成及び乾燥することにより未化成の正極活物質を得た後に未化成の正極活物質を化成することで得ることができる。未化成の正極活物質は、主成分として三塩基性硫酸鉛を含んでいてよい。正極活物質の原料としては、鉛粉、鉛丹(Pb)等が挙げられる。 The positive electrode active material is obtained by obtaining an unformed positive electrode active material by aging and drying a paste positive electrode active material (positive electrode active material paste) containing a raw material of the positive electrode active material, and then forming the unformed positive electrode active material. Can be obtained at For the positive electrode, the unformed positive electrode active material is obtained by aging and drying the pasty positive electrode active material filled in the positive electrode current collector (casting grid body, expanded lattice body, etc.). It can be obtained by forming. The unformed positive electrode active material may contain tribasic lead sulfate as a main component. Examples of the raw material for the positive electrode active material include lead powder and red lead (Pb 3 O 4 ).
 正極集電体は、正極活物質からの電流の導電路となり、かつ、正極活物質を保持するものである。正極集電体は、例えば格子状を呈している。正極集電体の組成としては、例えば、鉛-カルシウム-錫系合金、鉛-アンチモン-ヒ素系合金等の鉛合金が挙げられる。用途に応じて適宜セレン、銀、ビスマス等を正極集電体に添加してもよい。これらの鉛合金を重力鋳造法、エキスパンド法、打ち抜き法等で格子状に形成することにより正極集電体を得ることができる。 The positive electrode current collector serves as a conductive path for a current from the positive electrode active material and holds the positive electrode active material. The positive electrode current collector has, for example, a lattice shape. Examples of the composition of the positive electrode current collector include lead alloys such as lead-calcium-tin alloys and lead-antimony-arsenic alloys. Selenium, silver, bismuth, etc. may be added to the positive electrode current collector depending on the application. A positive electrode current collector can be obtained by forming these lead alloys in a grid shape by a gravity casting method, an expanding method, a punching method or the like.
 正極活物質に含まれ得る添加剤としては、例えば、炭素材料(炭素繊維を除く)及び補強用短繊維が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。補強用短繊維としては、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、及び、炭素繊維が挙げられる。 Examples of additives that can be included in the positive electrode active material include carbon materials (excluding carbon fibers) and reinforcing short fibers. Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
 負極活物質は、Pb成分としてPbを含むことができる。負極活物質は、必要に応じて、Pb以外のPb成分(例えばPbSO)及び後述の添加剤を含むことができる。負極活物質は、多孔質の海綿状鉛(Spongy Lead)を含んでいてよい。 The negative electrode active material may include Pb as a Pb component. The negative electrode active material can contain a Pb component other than Pb (for example, PbSO 4 ) and an additive described later, if necessary. The negative electrode active material may include porous spongy lead.
 負極活物質は、負極活物質の原料を含むペースト状負極活物質(負極活物質ペースト)を熟成及び乾燥することにより未化成の負極活物質を得た後に未化成の負極活物質を化成することで得ることができる。負極は、負極集電体(鋳造格子体、エキスパンド格子体等)に充填されたペースト状負極活物質を熟成及び乾燥することにより未化成の負極活物質を得た後に未化成の負極活物質を化成することで得ることができる。未化成の負極活物質は、主成分として三塩基性硫酸鉛を含んでいてよい。負極活物質の原料としては、鉛粉等が挙げられる。 The negative electrode active material is obtained by aging and drying a pasty negative electrode active material (negative electrode active material paste) containing a raw material of the negative electrode active material to obtain an unformed negative electrode active material and then forming the unformed negative electrode active material. Can be obtained at For the negative electrode, the unformed negative electrode active material is obtained by aging and drying the paste-like negative electrode active material filled in the negative electrode current collector (cast grid, expanded grid, etc.). It can be obtained by forming. The unformed negative electrode active material may contain tribasic lead sulfate as a main component. Examples of the raw material for the negative electrode active material include lead powder.
 負極集電体は、負極活物質からの電流の導電路となり、かつ、負極活物質を保持するものである。負極集電体は、上述した正極集電体と同一であってもよく、異なっていてもよい。 The negative electrode current collector serves as a conductive path for a current from the negative electrode active material and holds the negative electrode active material. The negative electrode current collector may be the same as or different from the positive electrode current collector described above.
 負極活物質に含まれ得る添加剤としては、例えば、スルホ基及び/又はスルホン酸塩基を有する樹脂、硫酸バリウム、炭素材料(炭素繊維を除く)及び補強用短繊維が挙げられる。スルホ基及び/又はスルホン酸塩基を有する樹脂としては、例えば、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。補強用短繊維としては、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、及び、炭素繊維が挙げられる。 Examples of additives that can be contained in the negative electrode active material include resins having a sulfo group and/or a sulfonate group, barium sulfate, carbon materials (excluding carbon fibers), and reinforcing short fibers. Examples of the resin having a sulfo group and/or a sulfonate group include, for example, lignin sulfonic acid, lignin sulfonate, and a condensate of phenols, aminoaryl sulfonic acid, and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid, and (Condensation product with formaldehyde). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and Ketjen black. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
 ペースト状正極活物質及び/又はペースト状負極活物質は、溶媒及び/又は硫酸を含んでいてもよい。溶媒としては、例えば、水(例えばイオン交換水)及び有機溶媒が挙げられる。 The pasty positive electrode active material and/or the pasty negative electrode active material may contain a solvent and/or sulfuric acid. Examples of the solvent include water (for example, ion-exchanged water) and an organic solvent.
 以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
<実施例1>
(数平均繊維径測定)
 後述するガラス繊維の数平均繊維径は、予め下記の手順で測定した。ガラス繊維をエポキシ樹脂で注型した後、ダイヤモンドカッターで厚さ4mmにスライスした。スライス後、ガラス繊維の断面部分(ガラス繊維の長さ方向に垂直な断面部分)を直径9μmのダイヤモンド砥粒で研磨した。さらに、直径5μmのダイヤモンド砥粒で研磨した後に直径1μmのダイヤモンド砥粒で研磨することにより測定サンプルを作製した。測定サンプルにイオンスパッタ(株式会社日立ハイテクノロジーズ製、商品名:E-1030)で白金を蒸着後、SEM(株式会社日立ハイテクノロジーズ製、商品名:S-8020)を用いてガラス繊維の断面を観察した。計200本のガラス繊維の繊維径を測定し、この平均値を数平均繊維径として得た。このとき、ガラス繊維の断面が真円状である場合は、真円の直径を繊維径として取得し、ガラス繊維の断面が楕円形状である場合は、短径を繊維径として取得した(図3参照。符号A及びBは繊維径を表す)。ガラス繊維の長さ方向に平行な断面は繊維径の測定からは除外した。
<Example 1>
(Number average fiber diameter measurement)
The number average fiber diameter of the glass fibers described below was measured in advance by the following procedure. After glass fiber was cast with epoxy resin, it was sliced with a diamond cutter to a thickness of 4 mm. After slicing, the cross section of the glass fiber (cross section perpendicular to the length direction of the glass fiber) was polished with diamond abrasive grains having a diameter of 9 μm. Further, a measurement sample was prepared by polishing with diamond abrasive grains having a diameter of 5 μm and then polishing with diamond abrasive grains having a diameter of 1 μm. After depositing platinum on the measurement sample by ion sputtering (manufactured by Hitachi High Technologies Co., Ltd., trade name: E-1030), a cross section of the glass fiber was formed using SEM (manufactured by Hitachi High Technologies Co., Ltd., trade name: S-8020). I observed. The fiber diameter of a total of 200 glass fibers was measured, and the average value was obtained as the number average fiber diameter. At this time, if the cross section of the glass fiber is a perfect circle, the diameter of the perfect circle is acquired as the fiber diameter, and if the cross section of the glass fiber is an elliptical shape, the minor axis is acquired as the fiber diameter (FIG. 3). See the reference numerals A and B represent fiber diameters). The cross section parallel to the length direction of the glass fiber was excluded from the measurement of the fiber diameter.
(セパレーターの作製)
 数平均繊維径0.8μmのガラス繊維A(含水率:5質量%、Lauscha社製、商品名:C-08-R)210gに水を加えて20kgに調整した後、界面活性剤(分散剤、明成化学工業株式会社製、商品名:パスコールHA-52、「パスコール」は登録商標)20gを加えて混合液Aを得た。この混合液Aを20L用のパルパー(熊谷理機工業株式会社製)に投入した後、混合液Aを10分間撹拌した。数平均繊維径4.1μmのガラス繊維Bについても、同様の手順で混合液(混合液B)を調製した後に撹拌した。撹拌後、ガラス繊維Aを含む混合液Aから4.5kgを分取し、ガラス繊維Bを含む混合液Bから0.5kgを分取した後、これらを混合して混合液Cを得た。つまり、この混合液Cは、ガラス繊維の全質量を基準として、数平均繊維径0.8μmのガラス繊維90質量%、及び、数平均繊維径4.1μmのガラス繊維10質量%を含んでいた。
(Preparation of separator)
210 g of glass fibers A (water content: 5% by mass, manufactured by Lauscha, trade name: C-08-R) having a number average fiber diameter of 0.8 μm were adjusted to 20 kg by adding water, and then a surfactant (dispersant) was used. Manufactured by Meisei Chemical Industry Co., Ltd., trade name: PASCOR HA-52, “PASCOR” is a registered trademark) 20 g was added to obtain a mixed solution A. After this mixed solution A was put into a 20 L pulper (manufactured by Kumagai Riki Kogyo Co., Ltd.), the mixed solution A was stirred for 10 minutes. With respect to the glass fiber B having a number average fiber diameter of 4.1 μm, a mixed solution (mixed solution B) was prepared by the same procedure and then stirred. After stirring, 4.5 kg was taken from the mixed solution A containing the glass fibers A, 0.5 kg was taken from the mixed solution B containing the glass fibers B, and these were mixed to obtain a mixed solution C. That is, this mixed liquid C contained 90% by mass of glass fibers having a number average fiber diameter of 0.8 μm and 10% by mass of glass fibers having a number average fiber diameter of 4.1 μm, based on the total mass of the glass fibers. ..
 ガラス繊維の全質量に対して4質量%の硫酸アルミニウム(凝集剤、日本軽金属株式会社製)を混合液Cに加えた後、撹拌機で10分間撹拌した。そして、有機系バインダーとしてポリプロピレンエマルション(株式会社ユニチカ製、商品名:TC-4010、プロピレン-アクリル酸共重合体をアミン中和した水分散体)を、ガラス繊維の全質量に対して、樹脂分が9質量%となるように混合液Cに加えた後に2分間撹拌することによりスラリーAを調製した。 4% by mass of aluminum sulfate (coagulant, manufactured by Nippon Light Metal Co., Ltd.) with respect to the total mass of the glass fiber was added to the mixed solution C, and then stirred with a stirrer for 10 minutes. Then, as an organic binder, polypropylene emulsion (manufactured by Unitika Ltd., trade name: TC-4010, an aqueous dispersion obtained by amine-neutralizing a propylene-acrylic acid copolymer) was used as a resin component based on the total mass of the glass fiber. Was added to the mixed solution C so that the content of the mixture was 9% by mass, and the mixture was stirred for 2 minutes to prepare a slurry A.
 同様に、数平均繊維径2.4μmのガラス繊維Cのみを用いた場合についても同様の手順でスラリーBを調製した。 Similarly, a slurry B was prepared by the same procedure when only the glass fibers C having a number average fiber diameter of 2.4 μm were used.
 80メッシュの金網を設置したφ160mm丸型シートマシン(熊谷理機工業株式会社製)に、水を注入しながらスラリーA140gを流し入れた。シートマシン内部の水量が80%程度(7L)になるまで水を注入した後、撹拌棒で数回攪拌した。その後、水を抜き、抄紙してガラスシートA1を得た。また、同様の操作を繰り返すことにより、ガラスシートA1と同様のガラスシートA2を得た。次に、100gのスラリーBも同様に抄紙してガラスシートBを得た。 140 g of slurry A was poured into a φ160 mm round sheet machine (made by Kumagai Riki Kogyo Co., Ltd.) equipped with an 80 mesh wire mesh while pouring water. Water was injected until the amount of water in the sheet machine became about 80% (7 L), and then the mixture was stirred several times with a stirring rod. Then, water was drained and papermaking was performed to obtain a glass sheet A1. By repeating the same operation, a glass sheet A2 similar to the glass sheet A1 was obtained. Next, 100 g of the slurry B was similarly paper-made to obtain a glass sheet B.
 ガラスシートA1に第1のろ紙(アドバンテック株式会社製、26-WA)を被せてクーチングロールで充分に脱水した後、ガラスシートA1を第1のろ紙と一緒に上述の80メッシュの金網から剥がし取った。次に、ガラスシートA1とガラスシートBとを接触させた後、第1のろ紙に第2のろ紙(アドバンテック株式会社製、26-WA)を被せてクーチングロールで充分に脱水した。その後、第1のろ紙及び第2のろ紙を剥がし取ることにより積層物を得た。そして、ガラスシートA2を上述の積層物におけるガラスシートBと重ね合わせた。さらに、ガラスシートA1に第3のろ紙(アドバンテック株式会社製、26-WA)を被せてクーチングロールで充分に脱水した。続いて、第3のろ紙を剥がし取ることにより3層構成のガラスシートを作製した。 After covering the glass sheet A1 with a first filter paper (26-WA, manufactured by Advantech Co., Ltd.) and thoroughly dehydrating it with a couching roll, the glass sheet A1 is peeled off together with the first filter paper from the above-mentioned 80 mesh wire mesh. I took it. Next, the glass sheet A1 and the glass sheet B were brought into contact with each other, and then the first filter paper was covered with the second filter paper (26-WA, manufactured by Advantech Co., Ltd.) and thoroughly dehydrated with a cooling roll. Then, the first filter paper and the second filter paper were peeled off to obtain a laminate. Then, the glass sheet A2 was superposed on the glass sheet B in the above-mentioned laminate. Further, the glass sheet A1 was covered with a third filter paper (26-WA, manufactured by Advantech Co., Ltd.) and thoroughly dehydrated with a couching roll. Subsequently, the third filter paper was peeled off to prepare a glass sheet having a three-layer structure.
 このガラスシートをプレス機(熊谷理機工業株式会社製)にて410kPa下で5分間プレスした後に脱水した。脱水後、回転ドライヤ(熊谷理機工業株式会社製)で120℃4分加熱乾燥し、さらに、105℃の恒温槽で充分に乾燥することにより鉛蓄電池用セパレーターを得た。 This glass sheet was pressed at 410 kPa for 5 minutes with a press (made by Kumagai Riki Kogyo Co., Ltd.) and then dehydrated. After dehydration, it was heated and dried with a rotary dryer (Kumagaya Riki Kogyo Co., Ltd.) at 120° C. for 4 minutes, and further sufficiently dried in a constant temperature bath at 105° C. to obtain a lead storage battery separator.
(厚さ測定)
 ショッパー形厚さ測定器(安田精機株式会社製)を用い、20kgf/cm(1.96MPa)加圧下で厚さを6点測定し、その平均値を鉛蓄電池用セパレーターの厚さとして得た。複数層のセパレーターの各層の厚さについては、それぞれの層のみでセパレーターを作製し、その厚さを各層の厚さとして得た。
(Thickness measurement)
Using a Shopper type thickness meter (manufactured by Yasuda Seiki Co., Ltd.), the thickness was measured at 6 points under pressure of 20 kgf/cm 2 (1.96 MPa), and the average value was obtained as the thickness of the lead storage battery separator. .. Regarding the thickness of each layer of the multi-layer separator, a separator was prepared using only each layer, and the thickness was obtained as the thickness of each layer.
(細孔径分析)
 全自動細孔分布測定装置(Poro Master 60-GT、Quanta Chrome Co.社製)を用い、セパレーター0.05gをスモールセル(径:10mm×30mm)に加えてセパレーターの平均細孔径を測定した。水銀パラメータについては、水銀接触角を140degreesに設定し、水銀表面張力を480dyn/cmに設定した。細孔径の測定範囲を0.0036~1000μmの範囲に設定してそれぞれの値を算出し、メジアン細孔径をセパレーターの平均細孔径として得た。複数層のセパレーターの各層の細孔径については、それぞれの層のみでセパレーターを作製し、その細孔径を各層の細孔径として得た。
(Pore size analysis)
Using a fully automatic pore size distribution analyzer (Poro Master 60-GT, Quanta Chrome Co.), 0.05 g of the separator was added to a small cell (diameter: 10 mm×30 mm) to measure the average pore size of the separator. Regarding the mercury parameters, the mercury contact angle was set to 140 degrees and the mercury surface tension was set to 480 dyn/cm. The measurement range of the pore size was set to the range of 0.0036 to 1000 μm, and each value was calculated to obtain the median pore size as the average pore size of the separator. Regarding the pore size of each layer of the multi-layer separator, a separator was prepared using only each layer, and the pore size was obtained as the pore size of each layer.
(バインダー量の測定)
 セパレーターにおけるバインダー量(基準:ガラス繊維の全質量)を下記手順で測定した。まず、セパレーター3gを105℃の恒温槽で完全乾燥した。次に、デシケータ中で室温に冷却後、セパレーターの加熱前の質量を測定した。測定後、セパレーターをるつぼに入れ、約500℃で30分以上加熱乾燥した。次に、デシケータ中で室温に冷却後、セパレーターの加熱後の質量を測定した。加熱前後の質量差からバインダー量を得た。
(Measurement of binder amount)
The amount of binder in the separator (reference: total mass of glass fiber) was measured by the following procedure. First, 3 g of the separator was completely dried in a thermostat at 105°C. Next, after cooling to room temperature in a desiccator, the mass of the separator before heating was measured. After the measurement, the separator was put in a crucible and dried by heating at about 500° C. for 30 minutes or more. Next, after cooling to room temperature in a desiccator, the mass of the separator after heating was measured. The amount of binder was obtained from the mass difference before and after heating.
(極板の作製)
 正極活物質の原料として、鉛粉及び鉛丹(Pb)を用いた(鉛粉:鉛丹=96:4(質量比))。正極活物質の原料と、正極活物質の原料の全質量を基準として0.07質量%の補強用短繊維(アクリル繊維)と、水とを混合して混練した。続いて、希硫酸(比重1.280)を少量ずつ添加しながら混練して、ペースト状正極活物質を調製した。
 負極活物質の原料として鉛粉を用いた。リグニン系樹脂(リグニンスルホン酸塩)を0.2質量%(固形分換算)、補強用短繊維(アクリル繊維)を0.1質量%、硫酸バリウムを1.0質量%、炭素材料(ファーネスブラック)を0.2質量%含む混合物を前記鉛粉に添加した後に乾式混合した(前記配合量は、負極活物質の原料の全質量を基準とした配合量である)。次に、水を加えた後に混練した。続いて、希硫酸(比重1.280)を少量ずつ添加しながら混練して、ペースト状負極活物質を調製した。
 満充電状態である制御弁式鉛蓄電池内の負極活物質の総質量(N)と正極活物質の総質量(P)との比率(N/P)が0.7となるように、極板(正極集電体)にペースト状正極活物質を充填すると共に極板(負極集電体)にペースト状負極活物質を充填した。極板として、鉛合金からなる鋳造格子体を用いた。
(Production of electrode plate)
Lead powder and red lead (Pb 3 O 4 ) were used as raw materials for the positive electrode active material (lead powder:lead red=96:4 (mass ratio)). A raw material for the positive electrode active material, 0.07 mass% of reinforcing short fibers (acrylic fibers) based on the total mass of the raw material for the positive electrode active material, and water were mixed and kneaded. Subsequently, a paste-like positive electrode active material was prepared by kneading while adding dilute sulfuric acid (specific gravity 1.280) little by little.
Lead powder was used as a raw material of the negative electrode active material. 0.2% by mass of lignin-based resin (lignin sulfonate) (as solid content), 0.1% by mass of reinforcing short fibers (acrylic fiber), 1.0% by mass of barium sulfate, carbon material (furnace black) ) Was added to the lead powder and then dry mixed (the compounding amount is the compounding amount based on the total mass of the raw materials of the negative electrode active material). Next, after adding water, the mixture was kneaded. Subsequently, diluted sulfuric acid (specific gravity: 1.280) was added little by little and kneaded to prepare a pasty negative electrode active material.
The electrode plate so that the ratio (N/P) of the total mass (N) of the negative electrode active material and the total mass (P) of the positive electrode active material in the control valve type lead storage battery in a fully charged state is 0.7. The positive electrode current collector was filled with the paste positive electrode active material, and the electrode plate (negative electrode current collector) was filled with the paste negative electrode active material. A cast grid body made of a lead alloy was used as the electrode plate.
 ペースト状正極活物質を充填した極板を用いて、下記熟成条件1~3の熟成工程、及び、下記乾燥条件の乾燥工程を経ることにより未化成正極板を作製した。
 熟成条件1「温度:80℃、湿度:98%、時間:10時間」
 熟成条件2「温度:65℃、湿度:75%、時間:13時間」
 熟成条件3「温度:40℃、湿度:65%、時間:40時間」
 乾燥条件 「温度:60℃、時間:24時間」
Using the electrode plate filled with the paste-like positive electrode active material, an unformed positive electrode plate was produced by going through the aging process of the following aging conditions 1 to 3 and the drying process of the following drying conditions.
Aging condition 1 "Temperature: 80°C, Humidity: 98%, Time: 10 hours"
Aging condition 2 "Temperature: 65°C, Humidity: 75%, Time: 13 hours"
Aging condition 3 "Temperature: 40°C, Humidity: 65%, Time: 40 hours"
Drying condition "Temperature: 60℃, Time: 24 hours"
 ペースト状負極活物質を充填した極板を用いて、熟成条件「温度:40℃、湿度:98%、時間:40時間」の熟成工程、及び、乾燥条件「温度:60℃、時間:24時間」の乾燥工程を経ることにより未化成負極板を作製した。 Using an electrode plate filled with a paste-like negative electrode active material, an aging step under aging conditions "temperature: 40°C, humidity: 98%, time: 40 hours" and a drying condition "temperature: 60°C, time: 24 hours". An unformed negative electrode plate was produced by going through the drying step of “.
(鉛蓄電池の作製)
 セパレーターの一方面を上述の未化成負極板へ当接させると共に、セパレーターの他方面を上述の未化成正極板へ当接させた状態で、未化成正極板3枚及び未化成負極板4枚を上述のセパレーターを介して交互に積層することにより極板群を作製した。極板群を電槽へ挿入した後に正極端子及び負極端子を極板群に溶接し、さらに、電槽を密閉した。次に、比重1.28の希硫酸を主成分とする電解液を排気栓口から電槽に注入した後に制御弁を取り付けることにより計3個の鉛蓄電池を作製した。
(Preparation of lead acid battery)
While one surface of the separator is in contact with the unformed negative electrode plate and the other surface of the separator is in contact with the unformed positive electrode plate, three unformed positive electrode plates and four unformed negative electrode plates are attached. An electrode plate group was produced by alternately laminating the above separators. After inserting the electrode plate group into the battery case, the positive electrode terminal and the negative electrode terminal were welded to the electrode plate group, and the battery case was sealed. Next, a total of three lead acid batteries were produced by injecting an electrolytic solution containing diluted sulfuric acid as a main component with a specific gravity of 1.28 into the battery case through an exhaust plug and then attaching a control valve.
(浸透短絡評価)
 浸透短絡評価として、上述の鉛蓄電池3個を水槽中、「水温度:35℃、課電量:正極活物質の理論化成電気量に対し250%、時間:60時間」の条件で電槽化成し、電槽化成後の開放電圧が2V以上の場合を「浸透短絡なし」と判定した。3個の鉛蓄電池が全て浸透短絡しなかった場合を「A」と評価し、1個の鉛蓄電池が浸透短絡した場合を「B」と評価し、2個の鉛蓄電池が浸透短絡した場合を「C」と評価し、全ての鉛蓄電池が浸透短絡した場合を「D」と評価した。
(Evaluation of penetration short circuit)
As a permeation short-circuit evaluation, the above-mentioned 3 lead acid batteries were formed in a water tank under the conditions of "water temperature: 35°C, applied amount: 250% of theoretical formation amount of positive electrode active material, time: 60 hours". When the open-circuit voltage after forming the battery case was 2 V or more, it was judged as "no penetration short circuit". The case where all of the three lead acid batteries did not undergo an osmotic short circuit was evaluated as "A", the case where one lead acid battery did an osmotic short circuit was evaluated as "B", and the case where two lead acid batteries did an osmotic short circuit. It was evaluated as “C”, and the case where all lead acid batteries were permeated and short-circuited was evaluated as “D”.
<実施例2>
 ポリプロピレンエマルションを、ガラス繊維の全質量に対して、樹脂分が15質量%となるように混合液Cに加えた後に2分間撹拌することによりスラリーAを調製したこと以外は、実施例1と同様に行うことにより各評価を行った。
<Example 2>
Similar to Example 1 except that the polypropylene emulsion was added to the mixed solution C such that the resin content was 15% by mass with respect to the total mass of the glass fibers, and then the slurry A was prepared by stirring for 2 minutes. Each evaluation was performed by carrying out.
<実施例3>
 ガラスシートA1及びA2の作製の際に、ガラス繊維A及びBに加えて数平均繊維径2.4μmのガラス繊維を用いることにより、ガラス繊維の全質量を基準として、数平均繊維径0.8μmのガラス繊維70質量%、数平均繊維径4.1μmのガラス繊維7質量%、及び、数平均繊維径2.4μmのガラス繊維23質量%を含む混合液Cを調製した以外は、実施例1と同様に行うことにより各評価を行った。
<Example 3>
When glass sheets A1 and A2 were produced, glass fibers having a number average fiber diameter of 2.4 μm were used in addition to glass fibers A and B, so that the number average fiber diameter was 0.8 μm based on the total mass of the glass fibers. Example 1 except that 70% by mass of the glass fibers, 7% by mass of the glass fibers having a number average fiber diameter of 4.1 μm, and 23% by mass of the glass fibers having a number average fiber diameter of 2.4 μm were prepared. Each evaluation was performed by performing in the same manner as.
<実施例4>
 ガラスシートA1及びA2の作製の際に、ガラス繊維A及びBに加えて数平均繊維径2.4μmのガラス繊維を用いることにより、ガラス繊維の全質量を基準として、数平均繊維径0.8μmのガラス繊維55質量%、数平均繊維径4.1μmのガラス繊維10質量%、及び、数平均繊維径2.4μmのガラス繊維35質量%を含む混合液Cを調製した以外は、実施例1と同様に行うことにより各評価を行った。
<Example 4>
When glass sheets A1 and A2 were produced, glass fibers having a number average fiber diameter of 2.4 μm were used in addition to glass fibers A and B, so that the number average fiber diameter was 0.8 μm based on the total mass of the glass fibers. Example 1 except that a mixed solution C containing 55% by mass of glass fibers, 10% by mass of glass fibers having a number average fiber diameter of 4.1 μm, and 35% by mass of glass fibers having a number average fiber diameter of 2.4 μm was prepared. Each evaluation was performed by performing in the same manner as.
<実施例5>
 ガラスシートA1及びA2の作製の際に、ガラス繊維Bに代えて数平均繊維径5.5μmのガラス繊維を用いることにより、ガラス繊維の全質量を基準として、数平均繊維径0.8μmのガラス繊維90質量%、及び、数平均繊維径5.5μmのガラス繊維10質量%を含む混合液Cを調製すると共に、スラリーAの使用量を90gに変更したこと以外は、実施例1と同様に行うことにより各評価を行った。
<Example 5>
By using glass fibers having a number average fiber diameter of 5.5 μm in place of the glass fibers B in the production of the glass sheets A1 and A2, a glass having a number average fiber diameter of 0.8 μm based on the total mass of the glass fibers. Same as Example 1 except that a mixed solution C containing 90% by mass of fibers and 10% by mass of glass fibers having a number average fiber diameter of 5.5 μm was prepared and the amount of the slurry A used was changed to 90 g. Each evaluation was performed by performing.
<実施例6>
 ガラスシートBの作製の際に、ガラス繊維Cに加えて数平均繊維径0.8μmのガラス繊維を用いることにより、ガラス繊維の全質量を基準として、数平均繊維径2.4μmのガラス繊維70質量%、及び、0.8μmのガラス繊維30質量%を含む混合液Cを調製した以外は実施例3と同様に行うことにより各評価を行った。
<Example 6>
By using glass fibers C having a number average fiber diameter of 0.8 μm in addition to the glass fibers C in the production of the glass sheet B, the glass fibers 70 having a number average fiber diameter of 2.4 μm based on the total mass of the glass fibers 70. Each evaluation was performed in the same manner as in Example 3 except that a mixed solution C containing 30% by mass of glass fiber and 0.8% by mass of glass fiber was prepared.
<比較例1>
 ガラスシートA1及びA2の作製の際にスラリーAの使用量を90gに変更すると共に、ガラスシートBの作製の際にスラリーBの使用量を160gに変更したこと以外は、実施例1と同様に行うことにより各評価を行った。
<Comparative Example 1>
Same as Example 1 except that the amount of the slurry A used in producing the glass sheets A1 and A2 was changed to 90 g, and the amount of the slurry B used in producing the glass sheet B was changed to 160 g. Each evaluation was performed by performing.
<比較例2>
 ガラスシートA2を作製せずにガラスシートA1(負極側層)及びガラスシートB(正極側層)の二層構造のセパレーターを用いると共に、ガラスシートA1の作製の際にスラリーAの使用量を250gに変更したこと以外は、実施例1と同様に行うことにより各評価を行った。
<Comparative example 2>
A separator having a two-layer structure of a glass sheet A1 (negative electrode side layer) and a glass sheet B (positive electrode side layer) is used without producing the glass sheet A2, and the amount of the slurry A used is 250 g when producing the glass sheet A1. Each evaluation was performed in the same manner as in Example 1 except that the above was changed.
<比較例3>
 下記の事項以外は、比較例2と同様に行うことにより各評価を行った。すなわち、ガラスシートBの作製の際にスラリーBの使用量を125gに変更した。ガラスシートA1の作製の際に、ガラス繊維Bに代えて数平均繊維径5.5μmのガラス繊維を用いることにより、ガラス繊維の全質量を基準として、数平均繊維径0.8μmのガラス繊維90質量%、及び、数平均繊維径5.5μmのガラス繊維10質量%を含む混合液Cを調製すると共に、スラリーAの使用量を125gに変更した。これらにより、ガラスシートA1(負極側層)及びガラスシートB(正極側層)の二層構造のセパレーターを用いた。
<Comparative example 3>
Each evaluation was performed in the same manner as in Comparative Example 2 except for the following matters. That is, the amount of the slurry B used when producing the glass sheet B was changed to 125 g. By using glass fibers having a number average fiber diameter of 5.5 μm in place of the glass fibers B in the production of the glass sheet A1, the glass fibers 90 having a number average fiber diameter of 0.8 μm based on the total mass of the glass fibers 90. A mixed liquid C containing 10% by mass of glass fiber having a mass average of 5.5 μm and a number average fiber diameter of 5.5 μm was prepared, and the amount of the slurry A used was changed to 125 g. Due to these, a separator having a two-layer structure of the glass sheet A1 (negative electrode side layer) and the glass sheet B (positive electrode side layer) was used.
<比較例4>
 セパレーターのガラスシートA1を正極側に配置し、ガラスシートBを負極側に配置したこと以外は、比較例3と同様に行うことにより各評価を行った。
<Comparative example 4>
Each evaluation was performed in the same manner as in Comparative Example 3 except that the glass sheet A1 of the separator was placed on the positive electrode side and the glass sheet B was placed on the negative electrode side.
<比較例5>
 単層構造のセパレーターとして、スラリーAの使用量を250gに変更して得られたガラスシートを用いたこと以外は、実施例1と同様に行うことにより各評価を行った。
<Comparative Example 5>
Each evaluation was performed in the same manner as in Example 1 except that a glass sheet obtained by changing the amount of the slurry A used to 250 g was used as the separator having a single-layer structure.
 セパレーターの各層の細孔径及び厚さ、セパレーターの全厚及びバインダー量、並びに、浸透短絡評価の結果を表1に示す。 Table 1 shows the pore diameter and thickness of each layer of the separator, the total thickness of the separator and the amount of binder, and the results of the permeation short circuit evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1…鉛蓄電池、2…正極板(正極)、3…負極板(負極)、4,100…セパレーター、100a…一方面、100b…他方面、110a…第1の層、110b…第2の層、110c…第3の層。 DESCRIPTION OF SYMBOLS 1... Lead acid battery, 2... Positive electrode plate (positive electrode), 3... Negative electrode plate (negative electrode), 4,100... Separator, 100a... One surface, 100b... Other surface, 110a... 1st layer, 110b... 2nd layer , 110c... Third layer.

Claims (11)

  1.  少なくとも第1の層、第2の層及び第3の層を有する鉛蓄電池用セパレーターであって、
     前記第1の層が前記セパレーターの一方面側に配置され、
     前記第2の層が前記セパレーターの他方面側に配置され、
     前記第3の層が前記第1の層及び前記第2の層の間に配置され、
     前記第1の層及び前記第2の層の平均細孔径が前記第3の層の平均細孔径より小さく、
     前記第1の層及び前記第2の層の厚さの合計が前記第3の層の厚さより大きい、セパレーター。
    A lead storage battery separator having at least a first layer, a second layer and a third layer,
    The first layer is disposed on one side of the separator,
    The second layer is disposed on the other surface side of the separator,
    The third layer is disposed between the first layer and the second layer,
    The average pore diameter of the first layer and the second layer is smaller than the average pore diameter of the third layer,
    A separator, wherein the sum of the thicknesses of the first layer and the second layer is greater than the thickness of the third layer.
  2.  前記セパレーターの全厚が1.5mm以下である、請求項1に記載のセパレーター。 The separator according to claim 1, wherein the total thickness of the separator is 1.5 mm or less.
  3.  前記第1の層及び前記第2の層からなる群より選ばれる少なくとも一種の平均細孔径が1~10μmである、請求項1又は2に記載のセパレーター。 The separator according to claim 1 or 2, wherein the average pore diameter of at least one selected from the group consisting of the first layer and the second layer is 1 to 10 µm.
  4.  前記第3の層の平均細孔径が5~20μmである、請求項1~3のいずれか一項に記載のセパレーター。 The separator according to any one of claims 1 to 3, wherein the average pore diameter of the third layer is 5 to 20 µm.
  5.  前記第1の層及び前記第2の層からなる群より選ばれる少なくとも一種の厚さTaの前記第3の層の厚さTbに対する比率Ta/Tbが0.1~3である、請求項1~4のいずれか一項に記載のセパレーター。 The ratio Ta/Tb of the thickness Ta of at least one selected from the group consisting of the first layer and the second layer to the thickness Tb of the third layer is 0.1 to 3. The separator according to any one of to 4.
  6.  前記第1の層及び前記第2の層からなる群より選ばれる少なくとも一種の厚さが0.01~1mmである、請求項1~5のいずれか一項に記載のセパレーター。 The separator according to any one of claims 1 to 5, wherein the thickness of at least one selected from the group consisting of the first layer and the second layer is 0.01 to 1 mm.
  7.  前記第3の層の厚さが0.02~2mmである、請求項1~6のいずれか一項に記載のセパレーター。 The separator according to any one of claims 1 to 6, wherein the thickness of the third layer is 0.02 to 2 mm.
  8.  前記セパレーターがガラス繊維と有機系バインダーとを含有する、請求項1~7のいずれか一項に記載のセパレーター。 The separator according to any one of claims 1 to 7, wherein the separator contains glass fiber and an organic binder.
  9.  前記有機系バインダーがポリプロピレンを含む、請求項8に記載のセパレーター。 The separator according to claim 8, wherein the organic binder includes polypropylene.
  10.  前記セパレーターが前記第1の層、前記第2の層及び前記第3の層からなる、請求項1~9のいずれか一項に記載のセパレーター。 The separator according to any one of claims 1 to 9, wherein the separator comprises the first layer, the second layer and the third layer.
  11.  正極と、負極と、請求項1~10のいずれか一項に記載のセパレーターと、を備え、
     前記セパレーターが前記正極及び前記負極の間に配置されている、鉛蓄電池。
    A positive electrode, a negative electrode, and the separator according to any one of claims 1 to 10,
    A lead storage battery, wherein the separator is disposed between the positive electrode and the negative electrode.
PCT/JP2019/000100 2019-01-07 2019-01-07 Separator and lead storage battery WO2020144732A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/000100 WO2020144732A1 (en) 2019-01-07 2019-01-07 Separator and lead storage battery
JP2020565045A JPWO2020144732A1 (en) 2019-01-07 2019-01-07 Separator and lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000100 WO2020144732A1 (en) 2019-01-07 2019-01-07 Separator and lead storage battery

Publications (1)

Publication Number Publication Date
WO2020144732A1 true WO2020144732A1 (en) 2020-07-16

Family

ID=71521575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000100 WO2020144732A1 (en) 2019-01-07 2019-01-07 Separator and lead storage battery

Country Status (2)

Country Link
JP (1) JPWO2020144732A1 (en)
WO (1) WO2020144732A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214835A (en) * 1975-07-14 1977-02-04 Yuasa Battery Co Ltd Maintenanceefree lead battery
JPS5510737A (en) * 1978-07-07 1980-01-25 Yuasa Battery Co Ltd Paste system lead accumulator
US20140272535A1 (en) * 2013-03-15 2014-09-18 Hollingsworth & Vose Company Three-region battery separator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538741A (en) * 1976-07-12 1978-01-26 Yuasa Battery Co Ltd Paste lead battery
JPS63190249A (en) * 1987-02-02 1988-08-05 Matsushita Electric Ind Co Ltd Lead storage battery
JP5432813B2 (en) * 2010-05-11 2014-03-05 日本板硝子株式会社 Sealed lead-acid battery separator and sealed lead-acid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214835A (en) * 1975-07-14 1977-02-04 Yuasa Battery Co Ltd Maintenanceefree lead battery
JPS5510737A (en) * 1978-07-07 1980-01-25 Yuasa Battery Co Ltd Paste system lead accumulator
US20140272535A1 (en) * 2013-03-15 2014-09-18 Hollingsworth & Vose Company Three-region battery separator

Also Published As

Publication number Publication date
JPWO2020144732A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
EP3281241B1 (en) Battery separators comprising inorganic particles
US4529677A (en) Battery separator material
US6372379B1 (en) Microporous membrane battery separator for silver zinc batteries
JP2020119899A (en) Electrode material with mixed particle size
CN107004810B (en) Battery separator with controlled pore structure
KR20150013648A (en) Separator for electrochemical element and fabrication method for same
EP1275162A2 (en) Conductive sheet material
CN106229448B (en) A kind of lithium battery diaphragm paper and preparation method thereof
WO2020144732A1 (en) Separator and lead storage battery
JPH04229950A (en) Storage battery isolating plate for reunion type storage battery
WO2019111628A1 (en) Separator for lead acid storage batteries, and lead acid storage battery
WO2003082757A2 (en) Methods of modifying fibers
WO2015064535A1 (en) Separator for valve-regulated lead battery and control valve-regulated lead battery using same
JP6544126B2 (en) Control valve type lead storage battery
JP2021136219A (en) Separator, method of manufacturing the same, and power storage device
US6929858B2 (en) Glass fibers
JP2020123482A (en) Lead-acid battery separator, lead-acid battery and manufacturing method thereof, and adhesion improving method
JPH06257097A (en) Electrically conductive sheet having density change and its production
JPS5944750B2 (en) Battery diaphragm
JP3054254B2 (en) Paper-made separator for lead-acid battery, its manufacturing method and lead-acid battery
WO2016121511A1 (en) Lead storage cell separator and lead storage cell
CN220155703U (en) Non-diaphragm sodium ion cell and battery
KR20230163118A (en) Method and apparatus for preparing dry electrode sheet for secondary battery, dry electrode sheet for secondary battery, electrode for secondary battery and secondary battery
JP6796278B2 (en) Separator for lead-acid batteries
EP3114719B1 (en) Separator for batteries and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19909591

Country of ref document: EP

Kind code of ref document: A1