WO2020144648A1 - Superlight double-structure expanded particles and production method - Google Patents

Superlight double-structure expanded particles and production method Download PDF

Info

Publication number
WO2020144648A1
WO2020144648A1 PCT/IB2020/050195 IB2020050195W WO2020144648A1 WO 2020144648 A1 WO2020144648 A1 WO 2020144648A1 IB 2020050195 W IB2020050195 W IB 2020050195W WO 2020144648 A1 WO2020144648 A1 WO 2020144648A1
Authority
WO
WIPO (PCT)
Prior art keywords
superlight
expanded particles
further characterized
obtaining
particles according
Prior art date
Application number
PCT/IB2020/050195
Other languages
Spanish (es)
French (fr)
Inventor
José WALLS MUYCELO
Original Assignee
Tecnwm S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecnwm S.A. De C.V. filed Critical Tecnwm S.A. De C.V.
Publication of WO2020144648A1 publication Critical patent/WO2020144648A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica

Definitions

  • the present invention is related to superlight aggregates for construction and to the processes for obtaining such aggregates, and more particularly is related to superlight double structure expanded particles and the process to obtain them.
  • JP2001261463 describes a process for forming porous ceramic particles in which a foaming agent is used to promote pore formation and subsequently, during a cold solidification step, the size, orientation and amount of the pores by controlled movements, but this greatly complicates the process of formation of said pores.
  • patent documents US20060016598 and CA2475668 the production of a sintered porous ceramic particle for use as a construction aggregate is described.
  • the base that is used is obtained through a sol-gel process, and then it must be pelletized to achieve the proper shape to be sintered and that once sintered, it must be followed molding to obtain a specific shape.
  • the steps of molding the ceramic compound for the production of porous particles make the operation very inefficient without really giving a competitive advantage to the final product in addition to the porosity and the ability to be sintered.
  • the materials obtained from the procedures described in these documents have not had good results since they have interconnected pores that merit the absorption of the concrete, thus losing the characteristics of lightness. It is for the same reason that it has not been detected that this type of material can weigh less than 600 kg / m 3 .
  • the manufacturing process of the mentioned particles consists, in most of the cases, of a ceramic particle manufacturing process followed by a sintering process to achieve its expansion and therefore, an increase in its porosity.
  • you must have special control over the geometry and dimensions of the particles paying attention to the drying process of the base material with which it is being formed or adding stages in which the particles before being expanded.
  • the particles must continue to be shaped after sintering, making the process highly inefficient and susceptible to error.
  • Another drawback of these ceramic particles is that they have open pores, which does not make it possible to obtain high-lightness concrete with said particles, since the binder with which they mix to form the concrete fills the open pores of the particles when they are mixed for concrete formation.
  • silicates are used for the production of porous particles.
  • they in order to be sintered and thus have a lower density, they usually require being in combination with other compounds, which do not necessarily give the final mixture properties additional, but only serve to achieve the formation of pores in the particles and their subsequent mixing with construction elements.
  • porous particles are prepared from a mixture of quartz, various clays, sodium hydroxide and an agent to promote expansion. Also, additional steps are often employed to prepare the particles before sintering as shown in EP1840084, where it is stated that the particles are obtained by a hydrolysis process using water, an organic solvent, a surfactant and a base, and which subsequently combine with sodium alumina to form the granules that will be expanded. Yet another document showing processes for expanding silicon-based particles is EP1894907, where the initial mixture is composed of silicon particles, a linker and a plasticizer, which must be extracted later, making the process very complicated and expensive. .
  • Another object of the present invention is to provide a super light concrete comprising double structure super light expanded particles.
  • a first aspect of the present invention comprises superlight double-structured expanded particles having a density of 40 to 400 kg / m 3 .
  • a second aspect of the present invention is a process for obtaining double-structure superlight expanded particles that comprises the following steps:
  • At least one property modifying agent selected from: a gas generating agent, an elasticity and surface tension enhancing agent, a hardening agent, a stabilizing agent, a porosity modifying agent, or a pH regulating agent;
  • the silicate can be obtained from any sand according to the following steps: (i) analyze a sand from any origin to determine its silica content (Si0); (ii) add silica to obtain a sand with a silica content of at least 80% by weight in case the silica content of the sand is less than 80% by weight; (iii) mixing the silica-containing sand of at least 80% by weight with a base in a weight ratio of 5 to 80% of the base with respect to the sand; and (iv) heating the mixture to a temperature of between 80 and 1800 ° C to obtain the silicate.
  • the process may comprise an additional step of cooling the dual-structure superlight expanded particles, as well as an additional step of separating the residual filler material from the dual-structure superlight expanded particles.
  • a third aspect of the present invention refers to a superlight concrete that comprises the double structure superlight expanded particles as an aggregate and a binder, where said concrete has a density of less than 350 kg / m 3 .
  • double-structure superlight expanded particles which can be used as a construction aggregate that mixed with any binder or cementitious agent can produce superlight concrete for the manufacture of any lightweight construction element with insulating properties, but without losing strength to compression thanks to the rigidity of its external structure and even being fireproof.
  • Said aggregate can even be mixed with resins, polymers, rubber, silicones or any binder for the manufacture of products for different applications, such as wood substitutes.
  • the present invention relates in a first aspect to superlight double structured expanded particles with a density of 40 to 400 kg / m 3 .
  • the dual structure superlight expanded particles preferably have an average size between 0.001 to 10 mm.
  • Dual structure superlight expanded particles have an internal structure and an external structure.
  • the internal structure of the double-structured superlight expanded particles comprises a porous body.
  • said porous body comprises closed pores, that is, pores that do not have contact with the outside and have encapsulated air inside them, which gives insulating properties to the superlight double-structured expanded particles. Therefore, the superlight double-structured expanded particles are resistant to temperatures up to 1200 ° C.
  • the porous body that forms the internal structure of double-structure superlight expanded particles is formed by a complex silicate
  • the precise composition of said complex silicate will depend on the silicate and property modifying agents that are used, according to the process for obtaining superlight double-structured expanded particles that will be described later, and / or the natural composition of the sand that is have used to obtain it, if applicable.
  • the outer structure of dual-structure superlight expanded particles is a thin rigid layer of a filler material that increases the compressive strength of the particles.
  • the filler is selected from: aluminum silicate, calcium silicate, magnesium silicate, aluminum, silica, aluminum carbonate, calcium carbonate, magnesium carbonate, cement, gypsum, fine sand, kaolins, clays or mixtures thereof. More preferably, the filler material is selected from cement, silica, aluminum silicate, calcium silicate, magnesium silicate, aluminum carbonate, calcium carbonate, magnesium carbonate, or mixtures thereof. Even more preferably, the filler is silica or cement, with Portland cement being preferred.
  • the superlight double structure expanded particles are suitable as an aggregate for different construction applications such as concrete and mortar manufacturing, with high resistance to chemical attack and compression, with insulating properties and are fireproof.
  • a second aspect of the present invention is a process for obtaining double-structure superlight expanded particles that comprises the following steps:
  • At least one property modifying agent selected from: a gas generating agent, an elasticity and surface tension enhancing agent, a hardening agent, a stabilizing agent, a porosity modifying agent, or a pH regulating agent;
  • the silicate is selected from sodium silicate, aluminum silicate, iron silicate, magnesium silicate, calcium silicate, or mixtures thereof.
  • the silicate may be obtained from any sand according to the following steps: (i) analyzing a sand from any source to determine its content of silica (S ⁇ 0 2); (ii) add silica to obtain a sand with a silica content of at least 80% by weight in case the silica content of the sand is less than 80% by weight; (iii) mixing the silica-containing sand of at least 80% by weight with a base in a weight ratio of 5 to 80% of the base with respect to the sand; and (iv) heating the mixture to a temperature of between 80 and 1800 ° C to obtain the silicate.
  • the silica content of the sand should be between 80 and 99.99% by weight.
  • a base is added in a weight ratio of 5 to 80% of base with respect to the sand, and said mixture is heated to a temperature between 80 and 1800 ° C to obtain the silicate.
  • the required temperature will depend on the melting point of the sand, since it needs to be melted.
  • water at least 100% water relative to the weight of the sand, is added to the sand and base mixture.
  • the base may be in a solution or in a high purity state in the form of a pellet.
  • the base is selected from among sodium-containing bases such as sodium hydroxide, sodium carbonate, or mixtures thereof. It is desirable that the heating of the mixture in the silicate forming step is carried out under stirring conditions.
  • the reaction medium that is mixed with the silicate in step (a) is added in a ratio of between 20% and 100% by weight with respect to the mixture.
  • the reaction medium is water.
  • Step (b) of the process comprises mixing the product obtained in the previous step with at least one property modifying agent.
  • Said property modifying agent has the objective of giving the final product, which is the superlight double structure expanded particles, some special characteristic.
  • the property modifying agent is selected from a gas generating agent, an elasticity and surface tension enhancing agent, a hardening agent, a stabilizing agent, a porosity modifying agent, or a pH regulating agent.
  • the property modifying agent can be added in an amount of between 0.1 and 20% by weight with respect to the rest of the mixture. In an even more preferred embodiment, depending on the selected property modifier, the amount by weight thereof with respect to the rest of the mixture is selected according to Table 1.
  • the gas generating agent is selected from: ethyl acetate, acetone, urea, toluene, or organic potassium or ammonium compounds. More preferably, in an embodiment where the mixture product is intended to have a reduced cure time, the gas generating agent is ethyl acetate.
  • the elasticity and surface tension enhancing agent is selected from: calcium carbonate, urea, and boron compounds. More preferably, in an embodiment where the particles are sought to expand further, the elasticity and surface tension enhancer is a boron compound such as sodium borate (borax).
  • the curing agent is selected from among metal oxides. More preferably, the curing agent is selected from iron oxides, titanium oxides, and magnesium oxides.
  • the stabilizing agent is selected from: sodium carbonate, calcium carbonate and aluminum silicate. More preferably, in an embodiment in which the final product is sought to have greater hardness and resistance, the stabilizing agent is aluminum silicate, and in an embodiment in which it is sought to avoid concrete slump and increase the size of the pores. of the aggregate, the stabilizing agent is calcium carbonate.
  • the porosity modifying agent is selected from: aluminum hydroxide and magnesium hydroxide.
  • the pH regulator is selected from: sulfuric acid, nitric acid, and hydrochloric acid.
  • Process step (c) comprises stirring the mixture to increase the interaction of the property modifying agent with the mixture for a period of time sufficient for the reaction to proceed.
  • This reaction is an exothermic reaction that must be controlled to maintain the temperature between 80 and 100 ° C.
  • the stirring time is between 4 and 6 hours.
  • step (d) of the process of the present invention once the reaction is complete, the reaction medium is removed to obtain a solid.
  • the reaction medium is separated by means of drying.
  • superlight double-structured expanded particles can have various uses, depending on the properties given to them in the previous steps. These can be used as a construction aggregate, and in such a case it will be required that they have a certain size and that said size be homogeneous, so in step (e) of the process of the present invention grinding and screening are carried out to obtain a certain particle size.
  • the particles obtained by grinding and screening the solid have an average size between 0.000001 and 1 mm.
  • the particles are mixed with a filler material to coat their surface, which will form the external structure of the superlight double-structured expanded particles that give them important properties, which depend on the type of filler material. that is used.
  • the filler is selected from: aluminum silicate, calcium silicate, magnesium silicate, aluminum, silica, aluminum carbonate, calcium carbonate, magnesium carbonate, cement, gypsum, fine sand, kaolins, clays and mixtures thereof. More preferably, the filler material is selected from cement, silica, aluminum silicate, calcium silicate, magnesium silicate, aluminum carbonate, calcium carbonate, magnesium carbonate, or mixtures thereof.
  • the filler is silica or cement, with Portland cement being preferred.
  • the particles coated with the filler material are passed through a sintering step to achieve their expansion and the formation of the internal structure of the dual-structure superlight expanded particles. comprising a porous body of complex silicate.
  • the sintering step is carried out at a temperature of between 500 and 1200 ° C to achieve expansion.
  • the process comprises a further subsequent step of cooling the double-structured superlight expanded particles.
  • a further additional step may be carried out which comprises separating the residual filler material from the dual-structure superlight expanded particles.
  • this stage is carried out by means of screening.
  • a third aspect of the present invention refers to a superlight concrete that comprises the double structure superlight expanded particles as an aggregate and a binder, where said concrete has a density of less than 350 kg / m 3 .
  • the superlight concrete comprises from 25 to 75% by volume of double structure superlight expanded particles as aggregate in relation to the total volume of the mixture thereof and the binder.
  • the binder is selected from cement, gypsum, lime, or mixtures thereof.
  • water is added to the mixture of the superlight double-structured expanded particles and the binder to form the superlight concrete.
  • the volume of the water that is added corresponds to 20 to 60% of the volume of the binder.
  • a test was carried out to prepare double structure superlight expanded particles according to the principles of the present invention from a sand.
  • the silica content (S ⁇ 0) is less than 80%, so silica was added to the chosen sand until it was 98% by weight. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added:
  • a test was carried out to prepare double structure superlight expanded particles according to the principles of the present invention from a sand.
  • the silica content (S ⁇ 0 2 ) is greater than 80%, so no silica was added to the chosen sand. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added:
  • a test was carried out to prepare double structure superlight expanded particles according to the principles of the present invention from a sand.
  • the silica content (S ⁇ 0) is greater than 80%, so no silica was added to the chosen sand. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added: TABLE 7
  • a test was carried out to prepare double structure superlight expanded particles according to the principles of the present invention from a sand.
  • the silica content (S ⁇ 0) is less than 80%, so silica was added to the chosen sand until it reached 98.5% by weight. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added:
  • EXAMPLE 5 A test was carried out to prepare superlight double structured expanded particles according to the principles of the present invention from a sand.
  • the silica content (S ⁇ 0) is less than 80%, so silica was added to the chosen sand until it was 98% by weight. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added:
  • the double structure superlight expanded particles have been designed to have a very low density and to serve as a superlight aggregate that can be used to manufacture a superlight concrete, and it will be evident to any expert in the Matter that the modalities of double structure superlight expanded particles as described above are only illustrative but not limiting of the present invention, since numerous changes of consideration in their details are possible without departing from the scope of the invention.

Abstract

The present invention relates to superlight double-structure expanded particles having a density of 40-400 kg/m3 for use as construction aggregate; a method for obtaining the superlight double-structure expanded particles; and a superlight concrete comprising the superlight double-structure expanded particles as aggregate, and a binding agent, wherein the concrete has a density below 350 kg/m3, for producing any light construction element with insulating properties without losing compressive strength, owing to the rigidity of its external structure.

Description

PARTÍCULAS EXPANDIDAS SUPERLIGERAS DE DOBLE ESTRUCTURA Y PROCESO DE SUPER LIGHT EXPANDED PARTICLES OF DOUBLE STRUCTURE AND PROCESS OF
OBTENCIÓN OBTAINING
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención está relacionada con agregados superligeros para la construcción y con los procesos para la obtención de dichos agregados, y más particularmente está relacionada con partículas expandidas superligeras de doble estructura y el proceso para obtener las mismas. The present invention is related to superlight aggregates for construction and to the processes for obtaining such aggregates, and more particularly is related to superlight double structure expanded particles and the process to obtain them.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Los materiales de construcción empleados hoy en día buscan reunir todas las propiedades necesarias para cumplir con las normas de la materia y llevar a cabo su función específica. Aunque en general se busca que dichos materiales tengan una resistencia muy alta a la compresión y un peso relativamente ligero para poderse manejar de forma segura y a bajo costo, muchos de los mismos, dependiendo del uso que se les dará, buscan reunir algunas propiedades adicionales como son : propiedades aislantes, incombustibles, flexibilidad, apariencia decorativa, entre otros. The construction materials used today seek to gather all the properties necessary to comply with the standards of the matter and carry out their specific function. Although in general it is sought that these materials have a very high resistance to compression and a relatively light weight to be able to handle them safely and at low cost, many of them, depending on the use to which they will be put, seek to gather some additional properties such as they are: insulating, fireproof properties, flexibility, decorative appearance, among others.
Es por lo anterior que en el estado de la técnica se han desarrollado agregados diferentes que le pueden dar al concreto diversas propiedades, mejorando así sus características. La principal propiedad que se busca dar al concreto es una mayor ligereza aunada a una dureza suficientemente alta como para poder servir de elemento constructivo en un edificio y para reducir la susceptibilidad a rupturas o daños estructurales. Para obtener un concreto ligero y resistente, en el estado de la técnica se han desarrollado agregados para concreto que sean fabricados a partir de materiales con resistencias superiores a las de cualquier agregado y que cuente con altas cantidades de poros cerrados que no absorban el concreto sino que den resistencia y ligereza a los materiales. For this reason, different aggregates have been developed in the state of the art that can give concrete various properties, thus improving its characteristics. The main property that is sought to give concrete is a greater lightness combined with a sufficiently high hardness to be able to serve as a constructive element in a building and to reduce the susceptibility to rupture or structural damage. In order to obtain a light and resistant concrete, concrete aggregates have been developed in the state of the art that are manufactured from materials with higher strengths than any aggregate and that have high amounts of closed pores that do not absorb concrete but that give resistance and lightness to the materials.
En relación con lo anterior, en el estado de la técnica se han desarrollado partículas cerámicas para ser empleadas como agregados de construcción. Por ejemplo, en el documento JP2001261463 se describe un proceso para formar partículas cerámicas porosas en el que se emplea un agente espumante para favorecer la formación de poros y posteriormente, durante una etapa de solidificación en frío, se manipula el tamaño, orientación y cantidad de los poros mediante movimientos controlados, pero esto complica mucho el proceso de formación de dichos poros. También, en los documentos de patente US20060016598 y CA2475668, se describe la producción de una partícula cerámica porosa sinterizada para ser empleada como agregado de construcción. En el proceso de producción de dicha partícula, se menciona que la base que se emplea, se obtiene mediante un proceso sol-gel, y posteriormente se debe peletizar para lograr la forma adecuada para poder ser sinterizada y que una vez sinterizada, se debe seguir moldeando para obtener una forma específica. Las etapas de moldeo del compuesto cerámico para la producción de partículas porosas hacen muy ineficiente la operación sin dar realmente una ventaja competitiva al producto final además de la porosidad y la capacidad de ser sinterizada. Otro documento en el que también emplean un procedimiento similar, en el que se peletiza el material inicial para darle la forma adecuada para ser sinterizado y posteriormente se sigue moldeando, es el documento US20060162929. Los materiales obtenidos a partir de los procedimientos descritos en dichos documentos no han tenido buenos resultados al tener poros intercomunicados que meriten la absorción del concreto con lo que se pierden las características de ligereza. Es por lo mismo que no se ha detectado que este tipo de materiales puedan pesar menos de 600 kg/m3. In relation to the above, ceramic particles have been developed in the state of the art to be used as construction aggregates. For example, JP2001261463 describes a process for forming porous ceramic particles in which a foaming agent is used to promote pore formation and subsequently, during a cold solidification step, the size, orientation and amount of the pores by controlled movements, but this greatly complicates the process of formation of said pores. Also, in patent documents US20060016598 and CA2475668, the production of a sintered porous ceramic particle for use as a construction aggregate is described. In the production process of said particle, it is mentioned that the base that is used is obtained through a sol-gel process, and then it must be pelletized to achieve the proper shape to be sintered and that once sintered, it must be followed molding to obtain a specific shape. The steps of molding the ceramic compound for the production of porous particles make the operation very inefficient without really giving a competitive advantage to the final product in addition to the porosity and the ability to be sintered. Another document in which they also employ a similar procedure, in the The initial material is pelletized to give it the proper shape to be sintered and then it is further molded, it is US20060162929. The materials obtained from the procedures described in these documents have not had good results since they have interconnected pores that merit the absorption of the concrete, thus losing the characteristics of lightness. It is for the same reason that it has not been detected that this type of material can weigh less than 600 kg / m 3 .
El proceso de fabricación de las partículas mencionadas consiste, en la mayor parte de los casos, de un proceso de fabricación de partículas cerámicas seguido por un proceso de sinterización para lograr su expansión y por lo tanto, un aumento en su porosidad. En la mayor parte de los agregados cerámicos, se debe tener un control especial sobre la geometría y dimensiones de las partículas, poniendo atención al proceso de secado del material base con el que se está formando o añadiendo etapas en las que se da forma a las partículas antes de ser expandidas. En muchos de estos casos, también se indica que para asegurar las dimensiones y geometría deseadas, se debe seguir dando forma a las partículas una vez sinterizadas, haciendo que el proceso se vuelva muy ineficiente y susceptible a errores. Otro inconveniente de estas partículas cerámicas es que tienen poros abiertos, lo que no permite obtener con dichas partículas concretos de alta ligereza, ya que el aglomerante con el que se mezcla para formar el concreto rellena los poros abiertos de las partículas cuando se mezclan para la formación del concreto. The manufacturing process of the mentioned particles consists, in most of the cases, of a ceramic particle manufacturing process followed by a sintering process to achieve its expansion and therefore, an increase in its porosity. In most ceramic aggregates, you must have special control over the geometry and dimensions of the particles, paying attention to the drying process of the base material with which it is being formed or adding stages in which the particles before being expanded. In many of these cases, it is also indicated that to ensure the desired dimensions and geometry, the particles must continue to be shaped after sintering, making the process highly inefficient and susceptible to error. Another drawback of these ceramic particles is that they have open pores, which does not make it possible to obtain high-lightness concrete with said particles, since the binder with which they mix to form the concrete fills the open pores of the particles when they are mixed for concrete formation.
Por otro lado, en el estado de la técnica se emplean silicatos para la producción de partículas porosas. En los procesos conocidos de producción de agregados para la construcción a partir de silicatos, se ha detectado que para poder ser sinterizados y así tener una menor densidad, suelen requerir estar en combinación con otros compuestos, mismos que no necesariamente dan a la mezcla final propiedades adicionales sino que únicamente sirven para lograr la formación de poros en las partículas y su posterior mezclado con elementos de construcción. On the other hand, in the state of the art, silicates are used for the production of porous particles. In the known processes of production of aggregates for construction from silicates, it has been detected that in order to be sintered and thus have a lower density, they usually require being in combination with other compounds, which do not necessarily give the final mixture properties additional, but only serve to achieve the formation of pores in the particles and their subsequent mixing with construction elements.
Como un ejemplo, en el documento de patente EP1180503 se preparan partículas porosas a partir de una mezcla de cuarzo, diversas arcillas, hidróxido de sodio y un agente para favorecer la expansión. También, se suelen emplear etapas adicionales para preparar las partículas antes de la sinterización como se muestra en la patente EP1840084, donde se indica que las partículas se obtienen mediante un proceso de hidrólisis en el que se emplea agua, un solvente orgánico, un surfactante y una base, y que posteriormente, se combinan con alúmina de sodio para formar los gránulos que serán expandidos. Otro documento más donde se muestran procesos para expandir partículas con base de silicio es el EP1894907, donde la mezcla inicial está compuesta por partículas de silicio, un enlazador y un plastificante, mismo que debe ser extraído más adelante, haciendo el proceso muy complicado y costoso. As an example, in patent document EP1180503 porous particles are prepared from a mixture of quartz, various clays, sodium hydroxide and an agent to promote expansion. Also, additional steps are often employed to prepare the particles before sintering as shown in EP1840084, where it is stated that the particles are obtained by a hydrolysis process using water, an organic solvent, a surfactant and a base, and which subsequently combine with sodium alumina to form the granules that will be expanded. Yet another document showing processes for expanding silicon-based particles is EP1894907, where the initial mixture is composed of silicon particles, a linker and a plasticizer, which must be extracted later, making the process very complicated and expensive. .
También en el estado de la técnica se han descrito concretos ligeros obtenidos a partir de utilizar agregados de baja densidad en su elaboración, sin embargo, para lograr un mejor funcionamiento de los mismos, se tienen que añadir otros componentes como son plastificantes, enlazadores, gases, agentes espumantes o agentes para reducir la compresibilidad. Tal es el caso de los desarrollos descritos en los documentos MXPA2003000467 y FR2933091. También, existen casos en los que las partículas ligeras de agregado deben tener un tratamiento especial previo para ser añadidos a la mezcla de concreto, como es el caso del documento EP1805114, donde las partículas de vidrio poroso formado deben haber sido tratadas con un componente adherente para mejorar sus propiedades dentro de la mezcla con cemento. También, existen desarrollos en los que la baja densidad se obtiene al expandir partículas poliméricas y añadirlas a una combinación de cemento, que, al igual que en los desarrollos anteriores, requiere de otros agregados como plastificantes y fibras como el descrito en el documento MX2007011485. Also in the state of the art, lightweight concretes obtained from using low-density aggregates in their preparation have been described, however, to achieve better performance, other components such as plasticizers, linkers, gases, must be added. , blowing agents or agents to reduce compressibility. Such is the case of the developments described in documents MXPA2003000467 and FR2933091. Also, there are cases in which the light aggregate particles must have a special prior treatment to be added to the concrete mix, as is the case in EP1805114, where the porous glass particles formed must have been treated with an adherent component to improve their properties within the cement mix. Also, there are developments in which low density is obtained by expanding polymeric particles and adding them to a combination of cement, which, as in previous developments, requires other aggregates such as plasticizers and fibers such as that described in MX2007011485.
Adicionalmente, se han detectado algunos agregados de construcción que buscan darle al concreto propiedades adicionales como es el que sean aislantes, o resistentes al fuego y a altas temperaturas tal y como se describe en el documento JP2003240451. No obstante, dichos materiales no proporcionan al concreto las propiedades de dureza deseables y no alcanzan la ligereza necesaria para la preparación de un concreto superligero. Additionally, some construction aggregates have been detected that seek to give concrete additional properties such as being insulating, or resistant to fire and high temperatures as described in document JP2003240451. However, such materials do not provide concrete with the desirable hardness properties and do not achieve the necessary lightness for the preparation of a super light concrete.
Con base en lo anterior, aunque se ha detectado que existen hoy en día múltiples desarrollos para obtener agregados de construcción que logren que el concreto sea ligero, es decir, que tenga una densidad reducida, sin perder sus propiedades de dureza y resistencia, no se ha detectado uno que logre alcanzar una densidad de 400 kg/m3 manteniendo una alta resistencia a la compresibilidad y que sea resistente a ataques químicos y a altas temperaturas. Además, las partículas descritas en el estado de la técnica presentan el inconveniente de tener poros abiertos, lo que no permite obtener con dichas partículas concretos de alta ligereza. Adicional mente no se detectó ningún documento en el que se describa un procedimiento que a partir de cualquier arena pueda obtener una variedad de agregados con propiedades características para ser empleados en diferentes productos de construcción como por ejemplo, concreto ligero y resistente, materiales resistentes a la flama, materiales aislantes, materiales con una apariencia decorativa, pinturas aislantes, entre otros. Based on the above, although it has been detected that there are currently multiple developments to obtain construction aggregates that achieve concrete that is light, that is, that it has a reduced density, without losing its properties of hardness and resistance, it was not has detected one that achieves a density of 400 kg / m 3 while maintaining a high compressibility resistance and that is resistant to chemical attacks and high temperatures. In addition, the particles described in the state of the art have the drawback of having open pores, which does not allow obtaining with said particles high lightness. Additionally, no document was detected that describes a procedure that, from any sand, can obtain a variety of aggregates with characteristic properties to be used in different construction products such as light and resistant concrete, materials resistant to flame, insulating materials, materials with a decorative appearance, insulating paints, among others.
Por lo tanto, es necesario desarrollar un proceso para fabricar un agregado para diferentes aplicaciones en la construcción, que sea susceptible de ser aglutinado con sustancias orgánicas o inorgánicas y que tenga una densidad menor a 400 kg/m3, lo cual le permita ser adecuado para la preparación de un concreto superligero y además le permita tener características mejoradas en cuanto a dureza, resistencia a ataques químicos, o aislamiento térmico, entre otras. Therefore, it is necessary to develop a process to manufacture an aggregate for different construction applications, which is capable of being bonded with organic or inorganic substances and has a density of less than 400 kg / m 3 , which allows it to be suitable for the preparation of a super light concrete and also allows it to have improved characteristics in terms of hardness, resistance to chemical attacks, or thermal insulation, among others.
OBJETOS DE LA INVENCIÓN OBJECTS OF THE INVENTION
Considerando los problemas y desventajas del estado de la técnica que se mencionaron previamente, es un objeto de la presente invención proporcionar un proceso para la obtención de partículas expandidas superligeras de doble estructura, el cual puede partir de cualquier arena. Considering the problems and disadvantages of the state of the art that were previously mentioned, it is an object of the present invention to provide a process for obtaining superlight double structure expanded particles, which can start from any sand.
Es otro objeto de la presente invención proporcionar unas partículas expandidas superligeras de doble estructura con una densidad de 40 a 400 kg/m3, que puedan ser empleadas en diferentes aplicaciones en la construcción. It is another object of the present invention to provide superlight double structure expanded particles with a density of 40 to 400 kg / m 3 , which can be used in different applications in construction.
Además, otro objeto de la presente invención es proporcionar un concreto superligero que comprende las partículas expandidas superligeras de doble estructura. BREVE DESCRIPCIÓN DE LA INVENCIÓN Furthermore, another object of the present invention is to provide a super light concrete comprising double structure super light expanded particles. BRIEF DESCRIPTION OF THE INVENTION
Para ello, un primer aspecto de la presente invención comprende partículas expandidas superligeras de doble estructura que presentan una densidad de 40 a 400 kg/m3. For this purpose, a first aspect of the present invention comprises superlight double-structured expanded particles having a density of 40 to 400 kg / m 3 .
Un segundo aspecto de la presente invención es un proceso para la obtención de partículas expandidas superligeras de doble estructura que comprende las siguientes etapas: A second aspect of the present invention is a process for obtaining double-structure superlight expanded particles that comprises the following steps:
(a) mezclar un silicato con un medio de reacción y calentar a una temperatura entre (a) mix a silicate with a reaction medium and heat to a temperature between
80 y 100 °C; 80 and 100 ° C;
(b) agregar a la mezcla anterior por lo menos un agente modificador de propiedades seleccionado de entre: un agente generador de gas, un agente potenciador de elasticidad y tensión superficial, un agente endurecedor, un agente estabilizador, un agente modificador de porosidad, o un agente regulador de pH; (b) adding to the above mixture at least one property modifying agent selected from: a gas generating agent, an elasticity and surface tension enhancing agent, a hardening agent, a stabilizing agent, a porosity modifying agent, or a pH regulating agent;
(c) agitar la mezcla durante un periodo de tiempo suficiente para que reaccione el agente modificador; (c) stirring the mixture for a period of time sufficient for the modifying agent to react;
(d) separar el medio de reacción para obtener un sólido; (d) separating the reaction medium to obtain a solid;
(e) moler el sólido y cribarlo para obtener partículas de un tamaño determinado; (e) grinding the solid and screening it to obtain particles of a certain size;
(f) mezclar las partículas con un material de carga para recubrir la superficie de las mismas; y (f) mixing the particles with a filler material to coat the surface of the particles; and
(g) hacer pasar las partículas recubiertas con el material de carga por una etapa de sinterización a una temperatura suficiente para lograr su expansión y obtener partículas expandidas superligeras de doble estructura. (g) passing the particles covered with the filler through a sintering stage at a temperature sufficient to achieve their expansion and obtain superlight double-structured expanded particles.
En una modalidad preferida de la presente invención, el silicato puede ser obtenido a partir de cualquier arena de acuerdo con los siguientes pasos: (i) analizar una arena de cualquier origen para determinar su contenido de sílice (Si0 ); (ii) agregar sílice para obtener una arena con un contenido de sílice de por lo menos 80% en peso en caso de que el contenido de sílice de la arena sea menor a 80% en peso; (iii) mezclar la arena con contenido de sílice de por lo menos 80% en peso con una base en una relación en peso de 5 a 80% de la base con respecto a la arena; y (iv) calentar la mezcla a una temperatura de entre 80 y 1800 °C para obtener el silicato. In a preferred embodiment of the present invention, the silicate can be obtained from any sand according to the following steps: (i) analyze a sand from any origin to determine its silica content (Si0); (ii) add silica to obtain a sand with a silica content of at least 80% by weight in case the silica content of the sand is less than 80% by weight; (iii) mixing the silica-containing sand of at least 80% by weight with a base in a weight ratio of 5 to 80% of the base with respect to the sand; and (iv) heating the mixture to a temperature of between 80 and 1800 ° C to obtain the silicate.
En otra modalidad preferida de la presente invención, el proceso puede comprender una etapa adicional de enfriado de las partículas expandidas superligeras de doble estructura, así como una etapa adicional de separación del material de carga residual de las partículas expandidas superligeras de doble estructura. In another preferred embodiment of the present invention, the process may comprise an additional step of cooling the dual-structure superlight expanded particles, as well as an additional step of separating the residual filler material from the dual-structure superlight expanded particles.
Un tercer aspecto de la presente invención se refiere a un concreto superligero que comprende las partículas expandidas superligeras de doble estructura como agregado y un aglomerante, en donde dicho concreto tiene una densidad inferior a los 350 kg/m3. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN A third aspect of the present invention refers to a superlight concrete that comprises the double structure superlight expanded particles as an aggregate and a binder, where said concrete has a density of less than 350 kg / m 3 . DETAILED DESCRIPTION OF THE INVENTION
Se ha encontrado que es posible obtener partículas expandidas superligeras de doble estructura, las cuales pueden ser usadas como agregado de construcción que mezclado con cualquier aglomerante o cementante puede producir concreto superligero para la fabricación de cualquier elemento constructivo ligero con propiedades aislantes, pero sin perder resistencia a la compresión gracias a la rigidez de su estructura externa y resultando incluso incombustible. Dicho agregado puede ser incluso mezclado con resinas, polímeros, hules, silicones o cualquier aglutinante para la fabricación de productos para diferentes aplicaciones, como sustitutos de madera. It has been found that it is possible to obtain double-structure superlight expanded particles, which can be used as a construction aggregate that mixed with any binder or cementitious agent can produce superlight concrete for the manufacture of any lightweight construction element with insulating properties, but without losing strength to compression thanks to the rigidity of its external structure and even being fireproof. Said aggregate can even be mixed with resins, polymers, rubber, silicones or any binder for the manufacture of products for different applications, such as wood substitutes.
Por lo tanto, la presente invención se refiere en un primer aspecto a partículas expandidas superligeras de doble estructura con una densidad de 40 a 400 kg/m3. Therefore, the present invention relates in a first aspect to superlight double structured expanded particles with a density of 40 to 400 kg / m 3 .
Las partículas expandidas superligeras de doble estructura preferiblemente tienen un tamaño promedio entre 0.001 a 10 mm. The dual structure superlight expanded particles preferably have an average size between 0.001 to 10 mm.
Las partículas expandidas superligeras de doble estructura tienen una estructura interna y una estructura externa. Dual structure superlight expanded particles have an internal structure and an external structure.
En una modalidad preferida de la presente invención, la estructura interna de las partículas expandidas superligeras de doble estructura comprende un cuerpo poroso. Preferiblemente, dicho cuerpo poroso comprende poros cerrados, es decir poros que no tienen contacto con el exterior y tienen en su interior aire encapsulado, lo cual le brinda propiedades aislantes a las partículas expandidas superligeras de doble estructura. Por lo anterior, las partículas expandidas superligeras de doble estructura son resistentes a temperaturas de hasta 1200 °C. In a preferred embodiment of the present invention, the internal structure of the double-structured superlight expanded particles comprises a porous body. Preferably, said porous body comprises closed pores, that is, pores that do not have contact with the outside and have encapsulated air inside them, which gives insulating properties to the superlight double-structured expanded particles. Therefore, the superlight double-structured expanded particles are resistant to temperatures up to 1200 ° C.
En una modalidad preferida de la presente invención, el cuerpo poroso que forma la estructura interna de las partículas expandidas superligeras de doble estructura está formado por un silicato complejo, término que para fines del presente texto descriptivo deberá entenderse como una mezcla de diversos silicatos, entre los cuales pueden encontrase silicato de sodio, silicato de aluminio, silicato de hierro, silicato de magnesio, silicato de calcio, entre otros. La composición precisa de dicho silicato complejo dependerá del silicato y agentes modificadores de propiedades que se utilicen, conforme al proceso para la obtención de partículas expandidas superligeras de doble estructura que se describirá más adelante, y/o de la composición natural de la arena que se haya utilizado para su obtención de ser el caso. In a preferred embodiment of the present invention, the porous body that forms the internal structure of double-structure superlight expanded particles is formed by a complex silicate, a term that for the purposes of the present descriptive text should be understood as a mixture of various silicates, between which can be found sodium silicate, aluminum silicate, iron silicate, magnesium silicate, calcium silicate, among others. The precise composition of said complex silicate will depend on the silicate and property modifying agents that are used, according to the process for obtaining superlight double-structured expanded particles that will be described later, and / or the natural composition of the sand that is have used to obtain it, if applicable.
La estructura externa de las partículas expandidas superligeras de doble estructura es una capa rígida delgada de un material de carga que incrementa la resistencia a la compresión de las partículas. En una modalidad preferida de la presente invención, el material de carga se selecciona de entre: silicato de aluminio, silicato de calcio, silicato de magnesio, aluminio, sílice, carbonato de aluminio, carbonato de calcio, carbonato de magnesio, cemento, yeso, arena fina, caolines, arcillas o mezclas de los mismos. Más preferiblemente, el material de carga se selecciona entre cemento, sílice, silicato de aluminio, silicato de calcio, silicato de magnesio, carbonato de aluminio, carbonato de calcio, carbonato de magnesio o mezclas de los mismos. Aún más preferiblemente, el material de carga es sílice o cemento, siendo cemento Portland el preferido. Las partículas expandidas superligeras de doble estructura son adecuadas como agregado para diferentes aplicaciones en la construcción como la fabricación de concreto y morteros, con alta resistencia a los ataques químicos y a la compresión, con propiedades aislantes y son incombustibles. The outer structure of dual-structure superlight expanded particles is a thin rigid layer of a filler material that increases the compressive strength of the particles. In a preferred embodiment of the present invention, the filler is selected from: aluminum silicate, calcium silicate, magnesium silicate, aluminum, silica, aluminum carbonate, calcium carbonate, magnesium carbonate, cement, gypsum, fine sand, kaolins, clays or mixtures thereof. More preferably, the filler material is selected from cement, silica, aluminum silicate, calcium silicate, magnesium silicate, aluminum carbonate, calcium carbonate, magnesium carbonate, or mixtures thereof. Even more preferably, the filler is silica or cement, with Portland cement being preferred. The superlight double structure expanded particles are suitable as an aggregate for different construction applications such as concrete and mortar manufacturing, with high resistance to chemical attack and compression, with insulating properties and are fireproof.
Un segundo aspecto de la presente invención es un proceso para la obtención de partículas expandidas superligeras de doble estructura que comprende las siguientes etapas: A second aspect of the present invention is a process for obtaining double-structure superlight expanded particles that comprises the following steps:
(a) mezclar un silicato con un medio de reacción y calentar a una temperatura entre (a) mix a silicate with a reaction medium and heat to a temperature between
80 y 100 °C; 80 and 100 ° C;
(b) agregar a la mezcla anterior por lo menos un agente modificador de propiedades seleccionado de entre: un agente generador de gas, un agente potenciador de elasticidad y tensión superficial, un agente endurecedor, un agente estabilizador, un agente modificador de porosidad, o un agente regulador de pH; (b) adding to the above mixture at least one property modifying agent selected from: a gas generating agent, an elasticity and surface tension enhancing agent, a hardening agent, a stabilizing agent, a porosity modifying agent, or a pH regulating agent;
(c) agitar la mezcla durante un periodo de tiempo suficiente para que reaccione el agente modificador; (c) stirring the mixture for a period of time sufficient for the modifying agent to react;
(d) separar el medio de reacción para obtener un sólido; (d) separating the reaction medium to obtain a solid;
(e) moler el sólido y cribarlo para obtener partículas de un tamaño determinado; (e) grinding the solid and screening it to obtain particles of a certain size;
(f) mezclar las partículas con un material de carga para recubrir la superficie de las mismas; y (f) mixing the particles with a filler material to coat the surface of the particles; and
(g) hacer pasar las partículas recubiertas con el material de carga por una etapa de sinterización a una temperatura suficiente para lograr su expansión y obtener partículas expandidas superligeras de doble estructura. (g) passing the particles covered with the filler through a sintering stage at a temperature sufficient to achieve their expansion and obtain superlight double-structured expanded particles.
Preferiblemente el silicato se selecciona entre silicato de sodio, silicato de aluminio, silicato de hierro, silicato de magnesio, silicato de calcio, o mezclas de los mismos. Preferably the silicate is selected from sodium silicate, aluminum silicate, iron silicate, magnesium silicate, calcium silicate, or mixtures thereof.
En una modalidad preferida de la presente invención, el silicato puede ser obtenido a partir de cualquier arena de acuerdo con los siguientes pasos: (i) analizar una arena de cualquier origen para determinar su contenido de sílice (S¡02); (ii) agregar sílice para obtener una arena con un contenido de sílice de por lo menos 80% en peso en caso de que el contenido de sílice de la arena sea menor a 80% en peso; (iii) mezclar la arena con contenido de sílice de por lo menos 80% en peso con una base en una relación en peso de 5 a 80% de la base con respecto a la arena; y (iv) calentar la mezcla a una temperatura de entre 80 y 1800 °C para obtener el silicato. Preferiblemente, el contenido de sílice de la arena debe encontrarse entre 80 y 99.99% en peso. Una vez que se tiene una arena con contenido de sílice de por lo menos 80% en peso, se le añade una base en una relación en peso de 5 a 80% de base con respecto a la arena, y dicha mezcla se calienta a una temperatura entre 80 y 1800 °C para obtener el silicato. La temperatura requerida dependerá del punto de fusión de la arena, ya que es necesario fundirla. En una modalidad preferida, a la mezcla de arena y base se le agrega agua, por lo menos 100% de agua con relación al peso de la arena. De forma preferida, la base puede estar en una solución o en estado de alta pureza en forma de pellet. Preferiblemente, la base se selecciona de entre bases con contenido de sodio tales como hidróxido de sodio, carbonato de sodio, o mezclas de los mismos. Es deseable que el calentamiento de la mezcla en la etapa de formación de silicato se lleva a cabo en condiciones de agitación. En una modalidad preferida de la presente invención, el medio de reacción que se mezcla con el silicato en la etapa (a) se agrega en una relación entre 20% y 100% en peso con respecto a la mezcla. Preferiblemente, el medio de reacción es agua. In a preferred embodiment of the present invention, the silicate may be obtained from any sand according to the following steps: (i) analyzing a sand from any source to determine its content of silica (S¡0 2); (ii) add silica to obtain a sand with a silica content of at least 80% by weight in case the silica content of the sand is less than 80% by weight; (iii) mixing the silica-containing sand of at least 80% by weight with a base in a weight ratio of 5 to 80% of the base with respect to the sand; and (iv) heating the mixture to a temperature of between 80 and 1800 ° C to obtain the silicate. Preferably, the silica content of the sand should be between 80 and 99.99% by weight. Once you have a sand with a silica content of at least 80% by weight, a base is added in a weight ratio of 5 to 80% of base with respect to the sand, and said mixture is heated to a temperature between 80 and 1800 ° C to obtain the silicate. The required temperature will depend on the melting point of the sand, since it needs to be melted. In a preferred embodiment, water, at least 100% water relative to the weight of the sand, is added to the sand and base mixture. Preferably, the base may be in a solution or in a high purity state in the form of a pellet. Preferably, the base is selected from among sodium-containing bases such as sodium hydroxide, sodium carbonate, or mixtures thereof. It is desirable that the heating of the mixture in the silicate forming step is carried out under stirring conditions. In a preferred embodiment of the present invention, the reaction medium that is mixed with the silicate in step (a) is added in a ratio of between 20% and 100% by weight with respect to the mixture. Preferably the reaction medium is water.
La etapa (b) del proceso comprende mezclar el producto obtenido en la etapa anterior con por lo menos un agente modificador de propiedades. Dicho agente modificador de propiedades tiene el objetivo de dar al producto final, que son las partículas expandidas superligeras de doble estructura, alguna característica especial. Step (b) of the process comprises mixing the product obtained in the previous step with at least one property modifying agent. Said property modifying agent has the objective of giving the final product, which is the superlight double structure expanded particles, some special characteristic.
El agente modificador de propiedades es seleccionado de entre un agente generador de gas, un agente potenciador de elasticidad y tensión superficial, un agente endurecedor, un agente estabilizador, un agente modificador de porosidad, o un agente regulador de pH. The property modifying agent is selected from a gas generating agent, an elasticity and surface tension enhancing agent, a hardening agent, a stabilizing agent, a porosity modifying agent, or a pH regulating agent.
En una modalidad preferida, el agente modificador de propiedades puede agregarse en un cantidad de entre 0.1 y 20% en peso con respecto al resto de la mezcla. En una modalidad aún más preferida, dependiendo del modificador de propiedades seleccionado, la cantidad en peso del mismo con respecto al resto de la mezcla se selecciona de acuerdo con la tabla 1. In a preferred embodiment, the property modifying agent can be added in an amount of between 0.1 and 20% by weight with respect to the rest of the mixture. In an even more preferred embodiment, depending on the selected property modifier, the amount by weight thereof with respect to the rest of the mixture is selected according to Table 1.
TABLA 1 TABLE 1
Figure imgf000008_0001
Figure imgf000008_0001
En una modalidad preferida de la presente invención, el agente generador de gas se selecciona de entre: acetato de etilo, acetona, urea, tolueno o compuestos orgánicos de potasio o amonio. Más preferiblemente, en una modalidad en la que se busca que el producto de la mezcla tenga un tiempo de endurecimiento reducido, el agente generador de gas es acetato de etilo. In a preferred embodiment of the present invention, the gas generating agent is selected from: ethyl acetate, acetone, urea, toluene, or organic potassium or ammonium compounds. More preferably, in an embodiment where the mixture product is intended to have a reduced cure time, the gas generating agent is ethyl acetate.
En una modalidad preferida de la presente invención, el agente potenciador de elasticidad y tensión superficial se selecciona de entre: carbonato de calcio, urea, y compuestos de boro. Más preferiblemente, en una modalidad en la que se busca que las partículas se expandan más, el potenciador de elasticidad y tensión superficial es un compuesto de boro como por ejemplo borato de sodio (bórax). En una modalidad preferida de la presente invención, el agente endurecedor se selecciona de entre óxidos metálicos. Más preferiblemente, el agente endurecedor se selecciona de entre óxidos de hierro, óxidos de titanio y óxidos de magnesio. In a preferred embodiment of the present invention, the elasticity and surface tension enhancing agent is selected from: calcium carbonate, urea, and boron compounds. More preferably, in an embodiment where the particles are sought to expand further, the elasticity and surface tension enhancer is a boron compound such as sodium borate (borax). In a preferred embodiment of the present invention, the curing agent is selected from among metal oxides. More preferably, the curing agent is selected from iron oxides, titanium oxides, and magnesium oxides.
En una modalidad preferida de la presente invención, el agente estabilizador se selecciona de entre: carbonato de sodio, carbonato de calcio y silicato de aluminio. Más preferiblemente, en una modalidad en la que se busque que el producto final tenga una mayor dureza y resistencia el agente estabilizador es silicato de aluminio, y en una modalidad en la que se busca evitar el revenimiento del concreto y aumentar el tamaño de los poros del agregado, el agente estabilizador es carbonato de calcio. In a preferred embodiment of the present invention, the stabilizing agent is selected from: sodium carbonate, calcium carbonate and aluminum silicate. More preferably, in an embodiment in which the final product is sought to have greater hardness and resistance, the stabilizing agent is aluminum silicate, and in an embodiment in which it is sought to avoid concrete slump and increase the size of the pores. of the aggregate, the stabilizing agent is calcium carbonate.
En una modalidad preferida de la presente invención, el agente modificador de porosidad se selecciona de entre: hidróxido de aluminio e hidróxido de magnesio. In a preferred embodiment of the present invention, the porosity modifying agent is selected from: aluminum hydroxide and magnesium hydroxide.
En una modalidad preferida de la presente invención, el regulador de pH se selecciona de entre: ácido sulfúrico, ácido nítrico y ácido clorhídrico. In a preferred embodiment of the present invention, the pH regulator is selected from: sulfuric acid, nitric acid, and hydrochloric acid.
La etapa (c) del proceso comprende agitar la mezcla para aumentar la interacción del agente modificador de propiedades con la mezcla durante un periodo de tiempo suficiente para que se lleve a cabo la reacción. Esta reacción es una reacción exotérmica que deberá controlarse para mantener la temperatura entre 80 y 100 °C. En una modalidad preferida de la presente invención, el tiempo de agitación es de entre 4 y 6 horas. Process step (c) comprises stirring the mixture to increase the interaction of the property modifying agent with the mixture for a period of time sufficient for the reaction to proceed. This reaction is an exothermic reaction that must be controlled to maintain the temperature between 80 and 100 ° C. In a preferred embodiment of the present invention, the stirring time is between 4 and 6 hours.
En la etapa (d) del proceso de la presente invención, una vez que termina la reacción, se separara el medio de reacción para obtener un sólido. En una modalidad preferida, el medio de reacción se separa por medio de secado. In step (d) of the process of the present invention, once the reaction is complete, the reaction medium is removed to obtain a solid. In a preferred embodiment, the reaction medium is separated by means of drying.
Como se menciona previamente, las partículas expandidas superligeras de doble estructura pueden tener diversos usos, dependiendo de las propiedades que se le hayan dado en las etapas anteriores. Éstas pueden usarse como agregado de construcción, y en dado caso se requerirá que tengan un tamaño determinado y que dicho tamaño sea homogéneo, por lo que en la etapa (e) del proceso de la presente invención se lleva a cabo la molienda y el cribado para obtener un ta maño de partícula determinado. En una modalidad preferida de la presente invención, las partículas que se obtienen de moler y cribar el sólido tienen un tamaño promedio entre 0.000001 y 1 mm. As previously mentioned, superlight double-structured expanded particles can have various uses, depending on the properties given to them in the previous steps. These can be used as a construction aggregate, and in such a case it will be required that they have a certain size and that said size be homogeneous, so in step (e) of the process of the present invention grinding and screening are carried out to obtain a certain particle size. In a preferred embodiment of the present invention, the particles obtained by grinding and screening the solid have an average size between 0.000001 and 1 mm.
En la etapa (f) del proceso referido las partículas se mezclan con un material de carga para recubrir su superficie que formará la estructura externa de las partículas expandidas superligeras de doble estructura que les da propiedades importantes, mismas que dependen del tipo de material de carga que se emplee. En una modalidad preferida de la presente invención, el material de carga se selecciona de entre: silicato de aluminio, silicato de calcio, silicato de magnesio, aluminio, sílice, carbonato de aluminio, carbonato de calcio, carbonato de magnesio, cemento, yeso, arena fina, caolines, arcillas y mezclas de los mismos. Más preferiblemente, el material de carga se selecciona entre cemento, sílice, silicato de aluminio, silicato de calcio, silicato de magnesio, carbonato de aluminio, carbonato de calcio, carbonato de magnesio o mezclas de los mismos. Aún más preferiblemente, el material de carga es sílice o cemento, siendo cemento Portland el preferido. En la etapa (g) del proceso conforme lo descrito, las partículas recubiertas con el material de carga se hacen pasar por una etapa de sinterización para lograr la expansión de las mismas y la formación de la estructura interna de las partículas expandidas superligeras de doble estructura que comprende un cuerpo poroso de silicato complejo. In stage (f) of the referred process, the particles are mixed with a filler material to coat their surface, which will form the external structure of the superlight double-structured expanded particles that give them important properties, which depend on the type of filler material. that is used. In a preferred embodiment of the present invention, the filler is selected from: aluminum silicate, calcium silicate, magnesium silicate, aluminum, silica, aluminum carbonate, calcium carbonate, magnesium carbonate, cement, gypsum, fine sand, kaolins, clays and mixtures thereof. More preferably, the filler material is selected from cement, silica, aluminum silicate, calcium silicate, magnesium silicate, aluminum carbonate, calcium carbonate, magnesium carbonate, or mixtures thereof. Even more preferably, the filler is silica or cement, with Portland cement being preferred. In step (g) of the process as described, the particles coated with the filler material are passed through a sintering step to achieve their expansion and the formation of the internal structure of the dual-structure superlight expanded particles. comprising a porous body of complex silicate.
En una modalidad preferida de la presente invención, la etapa de sinterización se lleva a cabo a una temperatura de entre 500 y 1200 °C para lograr la expansión. In a preferred embodiment of the present invention, the sintering step is carried out at a temperature of between 500 and 1200 ° C to achieve expansion.
Opcionalmente, el proceso comprende una etapa adicional posterior de enfriado de las partículas expandidas superligeras de doble estructura. Optionally, the process comprises a further subsequent step of cooling the double-structured superlight expanded particles.
Además, en otra modalidad opcional, se puede llevar a cabo una etapa adicional posterior que comprende separar el material de carga residual de las partículas expandidas superligeras de doble estructura. Preferiblemente, esta etapa se lleva a cabo por medio de cribación. Furthermore, in a further optional embodiment, a further additional step may be carried out which comprises separating the residual filler material from the dual-structure superlight expanded particles. Preferably, this stage is carried out by means of screening.
Un tercer aspecto de la presente invención se refiere a un concreto superligero que comprende las partículas expandidas superligeras de doble estructura como agregado y un aglomerante, en donde dicho concreto tiene una densidad inferior a los 350 kg/m3. A third aspect of the present invention refers to a superlight concrete that comprises the double structure superlight expanded particles as an aggregate and a binder, where said concrete has a density of less than 350 kg / m 3 .
En una modalidad preferida, el concreto superligero comprende de 25 a 75% en volumen de partículas expandidas superligeras de doble estructura como agregado en relación al volumen total de la mezcla de las mismas y el aglomerante. In a preferred embodiment, the superlight concrete comprises from 25 to 75% by volume of double structure superlight expanded particles as aggregate in relation to the total volume of the mixture thereof and the binder.
En una modalidad preferida, el aglomerante se selecciona entre cemento, yeso, cal, o mezclas de los mismos. In a preferred embodiment, the binder is selected from cement, gypsum, lime, or mixtures thereof.
En una modalidad preferida, a la mezcla de las partículas expandidas superligeras de doble estructura y el aglomerante se agrega agua para formar el concreto superligero. Preferiblemente el volumen del agua que se agrega corresponde de 20 a 60% del volumen del aglomerante. In a preferred embodiment, water is added to the mixture of the superlight double-structured expanded particles and the binder to form the superlight concrete. Preferably the volume of the water that is added corresponds to 20 to 60% of the volume of the binder.
Opcionalmente, es posible agregar polímeros o copolímeros al concreto para mejorar sus propiedades de rigidez o de elasticidad. Optionally, it is possible to add polymers or copolymers to concrete to improve its stiffness or elasticity properties.
La presente invención será mejor entendida a partir de los siguientes ejemplos, los cuales se presentan únicamente con fines ilustrativos para permitir la comprensión cabal de las modalidades preferidas de la presente invención, sin que ello implique que no existen otras modalidades no ilustradas que puedan llevarse a la práctica con base en la descripción detallada arriba realizada. The present invention will be better understood from the following examples, which are presented for illustrative purposes only to allow a full understanding of the preferred embodiments of the present invention, without implying that there are no other non-illustrated embodiments that can be the practice based on the detailed description above.
EJEMPLO 1 EXAMPLE 1
Se llevó a cabo un ensayo para preparar partículas expandidas superligeras de doble estructura conforme a los principios de la presente invención a partir de una arena. A test was carried out to prepare double structure superlight expanded particles according to the principles of the present invention from a sand.
Para esto, se llevó a cabo un análisis del contenido original de una arena, obteniendo los siguientes resultados: For this, an analysis of the original content of a sand was carried out, obtaining the following results:
TABLA 2
Figure imgf000010_0001
Figure imgf000011_0001
TABLE 2
Figure imgf000010_0001
Figure imgf000011_0001
Como se puede observar el contenido de sílice (S¡0 ) es menor a 80%, por lo que se agregó sílice a la arena elegida hasta llevarlo a 98% en peso. Se agregó agua y 50% en peso de NaOH. La mezcla se calentó a 1000 °C para formar el silicato. Posteriormente la temperatura se bajó a 95 °C y se agregaron los siguientes modificadores de propiedades: As can be seen, the silica content (S¡0) is less than 80%, so silica was added to the chosen sand until it was 98% by weight. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added:
TABLA 3 TABLE 3
Figure imgf000011_0002
Figure imgf000012_0001
Figure imgf000011_0002
Figure imgf000012_0001
La mezcla se agitó por 5 horas y el agua se separó por evaporación. El sólido obtenido se molió y cribó para obtener partículas. Éstas se mezclaron con cemento Portland como material de carga. Después, las partículas se sinterizaron a una temperatura de 1200 °C para expandirlas. Se obtuvieron partículas expandidas superligeras de doble estructura con un tamaño entre 0.000001 y 10 mm con un peso de 122 Kg/m3. The mixture was stirred for 5 hours and the water was evaporated off. The obtained solid was ground and screened to obtain particles. These were mixed with Portland cement as a filler. The particles were then sintered at a temperature of 1200 ° C to expand them. Superlight double structure expanded particles with a size between 0.000001 and 10 mm with a weight of 122 Kg / m 3 were obtained .
EJEMPLO 2 EXAMPLE 2
Se llevó a cabo un ensayo para preparar partículas expandidas superligeras de doble estructura conforme a los principios de la presente invención a partir de una arena. A test was carried out to prepare double structure superlight expanded particles according to the principles of the present invention from a sand.
Para esto, se llevó a cabo un análisis del contenido original de una arena, obteniendo los siguientes resultados: TABLA 4 For this, an analysis of the original content of a sand was carried out, obtaining the following results: TABLE 4
Figure imgf000012_0002
Como se puede observar el contenido de sílice (S¡02) es mayor a 80%, por lo que no se agregó sílice a la arena elegida. Se agregó agua y 50% en peso de NaOH. La mezcla se calentó a 1000 °C para formar el silicato. Posteriormente la temperatura se bajó a 95 °C y se agregaron los siguientes modificadores de propiedades:
Figure imgf000012_0002
As can be seen, the silica content (S¡0 2 ) is greater than 80%, so no silica was added to the chosen sand. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added:
TABLA 5 TABLE 5
Figure imgf000013_0001
Figure imgf000013_0001
La mezcla se agitó por 5 horas y el agua se separó por evaporación. El sólido obtenido se molió y cribó para obtener partículas. Éstas se mezclaron con cemento Portland como material de carga. Después, las partículas se sinterizaron a una temperatura de 900 °C para expandirlas. Se obtuvieron partículas expandidas superligeras de doble estructura con un tamaño entre 0.000001 y 10 mm con un peso de 60 Kg/m3. The mixture was stirred for 5 hours and the water was evaporated off. The obtained solid was ground and screened to obtain particles. These were mixed with Portland cement as a filler. The particles were then sintered at a temperature of 900 ° C to expand them. Superlight double structure expanded particles with a size between 0.000001 and 10 mm with a weight of 60 Kg / m 3 were obtained .
EJEMPLO 3 EXAMPLE 3
Se llevó a cabo un ensayo para preparar partículas expandidas superligeras de doble estructura conforme a los principios de la presente invención a partir de una arena. A test was carried out to prepare double structure superlight expanded particles according to the principles of the present invention from a sand.
Para esto, se llevó a cabo un análisis del contenido original de una arena, obteniendo los siguientes resultados: TABLA 6 For this, an analysis of the original content of a sand was carried out, obtaining the following results: TABLE 6
Figure imgf000014_0001
Figure imgf000014_0001
Como se puede observar el contenido de sílice (S¡0 ) es mayor a 80%, por lo que no se agregó sílice a la arena elegida. Se agregó agua y 50% en peso de NaOH. La mezcla se calentó a 1000 °C para formar el silicato. Posteriormente la temperatura se bajó a 95 °C y se agregaron los siguientes modificadores de propiedades: TABLA 7 As can be seen, the silica content (S¡0) is greater than 80%, so no silica was added to the chosen sand. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added: TABLE 7
Figure imgf000015_0001
Figure imgf000015_0001
La mezcla se agitó por 5 horas y el agua se separó por evaporación. El sólido obtenido se molió y cribó para obtener partículas. Éstas se mezclaron con cemento Portland como material de carga. Después, las partículas se sinterizaron a una temperatura de 800 °C para expandirlas. Se obtuvieron partículas expandidas superligeras de doble estructura con un tamaño entre 0.000001 y 10 mm con un peso de 42 Kg/m3. The mixture was stirred for 5 hours and the water was evaporated off. The obtained solid was ground and screened to obtain particles. These were mixed with Portland cement as a filler. The particles were then sintered at a temperature of 800 ° C to expand them. Superlight double structure expanded particles with a size between 0.000001 and 10 mm with a weight of 42 Kg / m 3 were obtained .
EJEMPLO 4 EXAMPLE 4
Se llevó a cabo un ensayo para preparar partículas expandidas superligeras de doble estructura conforme a los principios de la presente invención a partir de una arena. A test was carried out to prepare double structure superlight expanded particles according to the principles of the present invention from a sand.
Para esto, se llevó a cabo un análisis del contenido original de una arena, obteniendo los siguientes resultados: For this, an analysis of the original content of a sand was carried out, obtaining the following results:
TABLA 8 TABLE 8
Figure imgf000015_0002
Figure imgf000016_0001
Figure imgf000015_0002
Figure imgf000016_0001
Como se puede observar el contenido de sílice (S¡0 ) es menor a 80%, por lo que se agregó sílice a la arena elegida hasta llevarlo a 98.5% en peso. Se agregó agua y 50% en peso de NaOH. La mezcla se calentó a 1000 °C para formar el silicato. Posteriormente la temperatura se bajó a 95 °C y se agregaron los siguientes modificadores de propiedades: As can be seen, the silica content (S¡0) is less than 80%, so silica was added to the chosen sand until it reached 98.5% by weight. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added:
TABLA 9 TABLE 9
Figure imgf000016_0002
Figure imgf000017_0001
Figure imgf000016_0002
Figure imgf000017_0001
La mezcla se agitó por 5 horas y el agua se separó por evaporación. El sólido obtenido se molió y cribó para obtener partículas. Éstas se mezclaron con cemento Portland como material de carga. Después, las partículas se sinterizaron a una temperatura de 700 °C para expandirlas. Se obtuvieron partículas expandidas superligeras de doble estructura con un tamaño entre 0.000001 y 10 mm con un peso de 85 Kg/m3. The mixture was stirred for 5 hours and the water was evaporated off. The obtained solid was ground and screened to obtain particles. These were mixed with Portland cement as a filler. The particles were then sintered at a temperature of 700 ° C to expand them. Superlight double structure expanded particles with a size between 0.000001 and 10 mm with a weight of 85 Kg / m 3 were obtained .
EJEMPLO 5 Se llevó a cabo un ensayo para preparar partículas expandidas superligeras de doble estructura conforme a los principios de la presente invención a partir de una arena. EXAMPLE 5 A test was carried out to prepare superlight double structured expanded particles according to the principles of the present invention from a sand.
Para esto, se llevó a cabo un análisis del contenido original de una arena, obteniendo los siguientes resultados: TABLA 10 For this, an analysis of the original content of a sand was carried out, obtaining the following results: TABLE 10
Figure imgf000017_0002
Como se puede observar el contenido de sílice (S¡0 ) es menor a 80%, por lo que se agregó sílice a la arena elegida hasta llevarlo a 98% en peso. Se agregó agua y 50% en peso de NaOH. La mezcla se calentó a 1000 °C para formar el silicato. Posteriormente la temperatura se bajó a 95 °C y se agregaron los siguientes modificadores de propiedades:
Figure imgf000017_0002
As can be seen, the silica content (S¡0) is less than 80%, so silica was added to the chosen sand until it was 98% by weight. Water and 50% by weight of NaOH were added. The mixture was heated to 1000 ° C to form the silicate. Subsequently, the temperature was lowered to 95 ° C and the following property modifiers were added:
TABLA 11 TABLE 11
Figure imgf000018_0001
Figure imgf000018_0001
La mezcla se agitó por 5 horas y el agua se separó por evaporación. El sólido obtenido se molió y cribó para obtener partículas. Éstas se mezclaron con cemento Portland como material de carga. Después, las partículas se sinterizaron a una temperatura de 900 °C para expandirlas. Se obtuvieron partículas expandidas superligeras de doble estructura con un tamaño entre 0.000001 y 10 mm con un peso de 88 Kg/m3. The mixture was stirred for 5 hours and the water was evaporated off. The obtained solid was ground and screened to obtain particles. These were mixed with Portland cement as a filler. The particles were then sintered at a temperature of 900 ° C to expand them. Superlight double structure expanded particles with a size between 0.000001 and 10 mm with a weight of 88 Kg / m 3 were obtained .
EJEMPLO 6 EXAMPLE 6
Se llevó a cabo un ensayo para preparar partículas expandidas superligeras de doble estructura conforme a los principios de la presente invención a partir de silicato de sodio. A test was carried out to prepare double-structure superlight expanded particles according to the principles of the present invention from sodium silicate.
Se mezclaron 75 kg de silicato de sodio y 20 L de agua. La mezcla se calentó a 95 °C y posteriormente se agregaron los siguientes modificadores de propiedades: TABLA 12 75 kg of sodium silicate and 20 L of water were mixed. The mixture was heated to 95 ° C and the following property modifiers were subsequently added: TABLE 12
Figure imgf000019_0001
Figure imgf000019_0001
La mezcla se agitó por 5 horas y el agua se separó por evaporación. El sólido obtenido se molió y cribó para obtener partículas. Éstas se mezclaron con cemento Portland como material de carga. Después, las partículas se sinterizaron a una temperatura de 750 °C para expandirlas. Se obtuvieron partículas expandidas superligeras de doble estructura con un tamaño entre 0.000001 y 10 mm con un peso de 54 Kg/m3. The mixture was stirred for 5 hours and the water was evaporated off. The obtained solid was ground and screened to obtain particles. These were mixed with Portland cement as a filler. The particles were then sintered at a temperature of 750 ° C to expand them. Superlight double structure expanded particles with a size between 0.000001 and 10 mm with a weight of 54 Kg / m 3 were obtained .
EJEMPLO 7 EXAMPLE 7
Se llevó a cabo un ensayo para preparar partículas expandidas superligeras de doble estructura conforme a los principios de la presente invención a partir de silicato de sodio. A test was carried out to prepare double-structure superlight expanded particles according to the principles of the present invention from sodium silicate.
Se mezclaron 75 kg de silicato de sodio y 20 L de agua. La mezcla se calentó a 95 °C y posteriormente se agregaron los siguientes modificadores de propiedades: 75 kg of sodium silicate and 20 L of water were mixed. The mixture was heated to 95 ° C and the following property modifiers were subsequently added:
TABLA 13 TABLE 13
Figure imgf000019_0002
Figure imgf000020_0001
Figure imgf000019_0002
Figure imgf000020_0001
La mezcla se agitó por 5 horas y el agua se separó por evaporación. El sólido obtenido se molió y cribó para obtener partículas. Éstas se mezclaron con cemento Portland como material de carga. Después, las partículas se sinterizaron a una temperatura de 650 °C para expandirlas. Se obtuvieron partículas expandidas superligeras de doble estructura con un tamaño entre 0.000001 y 10 mm con un peso de 72 Kg/m3. The mixture was stirred for 5 hours and the water was evaporated off. The obtained solid was ground and screened to obtain particles. These were mixed with Portland cement as a filler. The particles were then sintered at a temperature of 650 ° C to expand them. Superlight double structure expanded particles with a size between 0.000001 and 10 mm with a weight of 72 Kg / m 3 were obtained .
De conformidad con lo anteriormente descrito, se podrá observar que las partículas expandidas superligeras de doble estructura han sido ideadas para tener una densidad muy baja y poder servir como un agregado superligero que sirva para fabricar un concreto superligero, y será evidente para cualquier experto en la materia que las modalidades de las partículas expandidas superligeras de doble estructura según se describió anteriormente son únicamente ilustrativas más no limitativas de la presente invención, ya que son posibles numerosos cambios de consideración en sus detalles sin apartarse del alcance de la invención. In accordance with what has been previously described, it will be seen that the double structure superlight expanded particles have been designed to have a very low density and to serve as a superlight aggregate that can be used to manufacture a superlight concrete, and it will be evident to any expert in the Matter that the modalities of double structure superlight expanded particles as described above are only illustrative but not limiting of the present invention, since numerous changes of consideration in their details are possible without departing from the scope of the invention.
Por lo tanto, la presente invención no deberá considerarse como restringida excepto por lo que exija la técnica anterior y por el alcance de las reivindicaciones anexas. Therefore, the present invention should not be considered as restricted except as required by the prior art and by the scope of the appended claims.

Claims

REIVINDICACIONES NOVEDAD DE LA INVENCIÓN CLAIMS NOVELTY OF THE INVENTION
1. Partículas expandidas superligeras de doble estructura con una densidad de 40 a 400 kg/m3. 1. Superlight double structure expanded particles with a density of 40 to 400 kg / m 3 .
2. Las partículas expandidas superligeras de conformidad con la reivindicación 1, caracterizadas además porque tienen un tamaño promedio entre 0.001 a 10 mm. 2. The superlight expanded particles according to claim 1, further characterized in that they have an average size between 0.001 to 10 mm.
3. Las partículas expandidas superligeras de conformidad con la reivindicación 1, caracterizadas además porque son resistentes a temperaturas de hasta 1200 °C. 3. The superlight expanded particles according to claim 1, further characterized in that they are resistant to temperatures up to 1200 ° C.
4. Las partículas expandidas superligeras de conformidad con la reivindicación 1, caracterizadas además porque tienen una estructura interna y una estructura externa. 4. The superlight expanded particles according to claim 1, further characterized in that they have an internal structure and an external structure.
5. Las partículas expandidas superligeras de conformidad con la reivindicación 4, caracterizadas además porque la estructura interna comprende un cuerpo poroso. 5. The superlight expanded particles according to claim 4, further characterized in that the internal structure comprises a porous body.
6. Las partículas expandidas superligeras de conformidad con la reivindicación 5, caracterizadas además porque el cuerpo poroso comprende poros cerrados. 6. The superlight expanded particles according to claim 5, further characterized in that the porous body comprises closed pores.
7. Las partículas expandidas superligeras de conformidad con la reivindicación 5, caracterizadas además porque el cuerpo poroso está formado por un silicato complejo. 7. The superlight expanded particles according to claim 5, further characterized in that the porous body is formed by a complex silicate.
8. Las partículas expandidas superligeras de conformidad con la reivindicación 4, caracterizadas además porque la estructura externa es una capa rígida delgada de un material de carga que incrementa la resistencia a la compresión de las partículas. 8. The superlight expanded particles according to claim 4, further characterized in that the outer structure is a thin rigid layer of a filler material that increases the compressive strength of the particles.
9. Las partículas expandidas superligeras de conformidad con la reivindicación 8, caracterizadas además porque el material de carga se selecciona de entre silicato de aluminio, silicato de calcio, silicato de magnesio, aluminio, sílice, carbonato de aluminio, carbonato de calcio, carbonato de magnesio, cemento, yeso, arena fina, caolines, arcillas o mezclas de los mismos. 9. The superlight expanded particles according to claim 8, further characterized in that the filler material is selected from among aluminum silicate, calcium silicate, magnesium silicate, aluminum, silica, aluminum carbonate, calcium carbonate, carbonate of magnesium, cement, plaster, fine sand, kaolin, clay or mixtures thereof.
10. Las partículas expandidas superligeras de conformidad con la reivindicación 1, caracterizadas además porque son adecuadas como agregado para diferentes aplicaciones en la construcción. 10. The superlight expanded particles according to claim 1, further characterized in that they are suitable as an aggregate for different applications in construction.
11. Un proceso para la obtención de partículas expandidas superligeras de doble estructura caracterizado porque comprende las siguientes etapas: 11. A process for obtaining superlight double-structured expanded particles characterized in that it comprises the following stages:
(a) mezclar un silicato con un medio de reacción y calentar a una temperatura entre (a) mix a silicate with a reaction medium and heat to a temperature between
80 y 100 °C; 80 and 100 ° C;
(b) agregar a la mezcla anterior por lo menos un agente modificador de propiedades seleccionado de entre: un agente generador de gas, un agente potenciador de elasticidad y tensión superficial, un agente endurecedor, un agente estabilizador, un agente modificador de porosidad, o un agente regulador de pH; (b) adding to the above mixture at least one property modifying agent selected from: a gas generating agent, an elasticity and surface tension enhancing agent, a hardening agent, a stabilizing agent, a porosity modifying agent, or a pH regulating agent;
(c) agitar la mezcla durante un periodo de tiempo suficiente para que reaccione el agente modificador; (c) stirring the mixture for a period of time sufficient for the modifying agent to react;
(d) separar el medio de reacción para obtener un sólido; (e) moler el sólido y cribarlo para obtener partículas de un tamaño determinado;(d) separating the reaction medium to obtain a solid; (e) grinding the solid and screening it to obtain particles of a certain size;
(f) mezclar las partículas con un material de carga para recubrir la superficie de las mismas; y (f) mixing the particles with a filler material to coat the surface of the particles; and
(g) hacer pasar las partículas recubiertas con el material de carga por una etapa de sinterización a una temperatura suficiente para lograr su expansión y obtener partículas expandidas superligeras de doble estructura. (g) passing the particles covered with the filler through a sintering stage at a temperature sufficient to achieve their expansion and obtain superlight double-structured expanded particles.
12. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el silicato se selecciona entre silicato de sodio, silicato de aluminio, silicato de hierro, silicato de magnesio, silicato de calcio, o mezclas de los mismos. 12. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the silicate is selected from sodium silicate, aluminum silicate, iron silicate, magnesium silicate, calcium silicate, or mixtures of the themselves.
13. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el silicato se obtiene a partir de una arena. 13. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the silicate is obtained from a sand.
14. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 13, caracterizado además porque la obtención del silicato a partir de arena comprende los siguientes pasos: (i) analizar una arena de cualquier origen para determinar su contenido de sílice (Si0 ); (ii) agregar sílice para obtener una arena con un contenido de sílice de por lo menos 80% en peso en caso de que el contenido de sílice de la arena sea menor a 80% en peso; (iii) mezclar la arena con contenido de sílice de por lo menos 80% en peso con una base en una relación en peso de 5 a 80% de la base con respecto a la arena; y (iv) calentar la mezcla a una temperatura de entre 80 y 1800 °C para obtener el silicato. 14. The process for obtaining superlight expanded particles according to claim 13, further characterized in that obtaining the silicate from sand comprises the following steps: (i) analyzing a sand of any origin to determine its silica content ( Si0); (ii) add silica to obtain a sand with a silica content of at least 80% by weight in case the silica content of the sand is less than 80% by weight; (iii) mixing the silica-containing sand of at least 80% by weight with a base in a weight ratio of 5 to 80% of the base with respect to the sand; and (iv) heating the mixture to a temperature of between 80 and 1800 ° C to obtain the silicate.
15. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 14, caracterizado además porque la base puede estar en una solución o en estado de alta pureza en forma de pellet. 15. The process for obtaining superlight expanded particles according to claim 14, further characterized in that the base can be in a solution or in a high purity state in the form of pellets.
16. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 14, caracterizado además porque la base se selecciona de entre bases con contenido de sodio. 16. The process for obtaining superlight expanded particles according to claim 14, further characterized in that the base is selected from among bases with sodium content.
17. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 16, caracterizada además porque la base se selecciona entre hidróxido de sodio, carbonato de sodio, o mezclas de los mismos. 17. The process for obtaining superlight expanded particles according to claim 16, further characterized in that the base is selected from sodium hydroxide, sodium carbonate, or mixtures thereof.
18. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque en la etapa (a) el medio de reacción se agrega en una relación entre 20% y 100% en peso con respecto a la mezcla. 18. The process for obtaining superlight expanded particles according to claim 11, further characterized in that in step (a) the reaction medium is added in a ratio between 20% and 100% by weight with respect to the mixture.
19. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el medio de reacción es agua. 19. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the reaction medium is water.
20. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el agente modificador de propiedades puede agregarse en un cantidad de entre 0.1 y 20% en peso con respecto al resto de la mezcla. 20. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the property modifying agent can be added in an amount of between 0.1 and 20% by weight with respect to the rest of the mixture.
21. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 20, caracterizado además porque la cantidad en peso con respecto al resto de la mezcla se selecciona de 1% a 15% para agentes generadores de gas, 0.1% a 20% para agentes potenciadores de la elasticidad y tensión superficial, 0.1% a 10% para agentes endurecedores, 1% a 15% para agentes estabilizadores, 0.1% a 5% para agentes modificadores de porosidad, y 0.1% a 5% para agentes reguladores de pH. 21. The process for obtaining superlight expanded particles according to claim 20, further characterized in that the amount by weight with respect to the rest of the mixture is selected from 1% to 15% for gas generating agents, 0.1% to 20 % for agents elasticity and surface tension enhancers, 0.1% to 10% for hardening agents, 1% to 15% for stabilizing agents, 0.1% to 5% for porosity modifying agents, and 0.1% to 5% for pH regulating agents.
22. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el agente generador de gas se selecciona de entre acetato de etilo, acetona, urea, tolueno o compuestos orgánicos de potasio o amonio. 22. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the gas generating agent is selected from among ethyl acetate, acetone, urea, toluene or organic compounds of potassium or ammonia.
23. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el agente potenciador de elasticidad y tensión superficial se selecciona de entre carbonato de calcio, urea, y compuestos de boro. 23. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the elasticity and surface tension enhancing agent is selected from calcium carbonate, urea, and boron compounds.
24. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el agente endurecedor se selecciona de entre óxidos metálicos. 24. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the hardening agent is selected from among metal oxides.
25. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el agente estabilizador se selecciona de entre carbonato de sodio, carbonato de calcio y silicato de aluminio. 25. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the stabilizing agent is selected from among sodium carbonate, calcium carbonate and aluminum silicate.
26. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el agente modificador de porosidad se selecciona de entre hidróxido de aluminio e hidróxido de magnesio. 26. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the porosity modifying agent is selected from aluminum hydroxide and magnesium hydroxide.
27. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el regulador de pH se selecciona de entre ácido sulfúrico, ácido nítrico y ácido clorhídrico. 27. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the pH regulator is selected from among sulfuric acid, nitric acid and hydrochloric acid.
28. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque el tiempo de agitación es de entre 4 y 6 horas. 28. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the stirring time is between 4 and 6 hours.
29. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque en la etapa (d) el medio de reacción se separa por medio de secado. 29. The process for obtaining superlight expanded particles according to claim 11, further characterized in that in step (d) the reaction medium is separated by means of drying.
30. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque las partículas obtenidas en la etapa (e) tienen un tamaño promedio entre 0.000001 y 1 mm. 30. The process for obtaining superlight expanded particles according to claim 11, further characterized in that the particles obtained in step (e) have an average size between 0.000001 and 1 mm.
31. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque en la etapa (f) el material de carga se selecciona de entre silicato de aluminio, silicato de calcio, silicato de magnesio, aluminio, sílice, carbonato de aluminio, carbonato de calcio, carbonato de magnesio, cemento, yeso, arena fina, caolines, arcillas y mezclas de los mismos. 31. The process for obtaining superlight expanded particles according to claim 11, further characterized in that in step (f) the filler is selected from among aluminum silicate, calcium silicate, magnesium silicate, aluminum, silica , aluminum carbonate, calcium carbonate, magnesium carbonate, cement, gypsum, fine sand, kaolin, clay and mixtures thereof.
32. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque la etapa (g) se lleva a cabo a una temperatura de entre 500 y 1200 °C. 32. The process for obtaining superlight expanded particles according to claim 11, further characterized in that step (g) is carried out at a temperature of between 500 and 1200 ° C.
33. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque comprende una etapa adicional posterior de enfriado de las partículas expandidas superligeras de doble estructura . 33. The process for obtaining superlight expanded particles according to claim 11, further characterized in that it comprises a further subsequent step of cooling the double structure superlight expanded particles.
34. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 11, caracterizado además porque comprende una etapa adicional posterior de separación del material de carga residual de las partículas expandidas superligeras de doble estructura. 34. The process for obtaining superlight expanded particles according to claim 11, further characterized in that it comprises a subsequent additional step of separating the residual filler material from the double-structure superlight expanded particles.
35. El proceso para la obtención de partículas expandidas superligeras de conformidad con la reivindicación 34, caracterizado además porque la etapa adicional posterior de separación del material de carga residual de las partículas expandidas superligeras de doble estructura se lleva a cabo por cribación. 35. The process for obtaining superlight expanded particles according to claim 34, further characterized in that the subsequent additional step of separating the residual charge material from the double-structure superlight expanded particles is carried out by screening.
36. Un concreto superligero caracterizado porque comprende partículas expandidas superligeras de doble estructura como agregado y un aglomerante. 36. A superlight concrete characterized in that it comprises superlight double structure expanded particles as an aggregate and a binder.
37. El concreto superligero de conformidad con la reivindicación 36, caracterizado además porque tiene una densidad inferior a los 350 kg/m3. 37. The superlight concrete according to claim 36, further characterized in that it has a density of less than 350 kg / m 3 .
38. El concreto superligero de conformidad con la reivindicación 36, caracterizado además porque comprende de 25 a 75% en volumen de partículas expandidas superligeras de doble estructura como agregado en relación al volumen total de la mezcla de las mismas y el aglomerante. 38. The superlight concrete according to claim 36, further characterized in that it comprises from 25 to 75% by volume of double structure superlight expanded particles as aggregate in relation to the total volume of the mixture of the same and the binder.
39. El concreto superligero de conformidad con la reivindicación 36, caracterizado además porque el aglomerante se selecciona entre cemento, yeso, cal, o mezclas de los mismos. 39. Superlight concrete according to claim 36, further characterized in that the binder is selected from cement, gypsum, lime, or mixtures thereof.
40. El concreto superligero de conformidad con la reivindicación 36, caracterizado además porque comprende agua. 40. The superlight concrete according to claim 36, further characterized in that it comprises water.
41. El concreto superligero de conformidad con la reivindicación 40, caracterizado además porque el volumen del agua corresponde de 20 a 60% del volumen del aglomerante. 41. The superlight concrete according to claim 40, further characterized in that the volume of the water corresponds to 20 to 60% of the volume of the binder.
42. El concreto superligero de conformidad con la reivindicación 40, caracterizado además porque comprende polímeros o copolímeros que mejoran sus propiedades de rigidez o de elasticidad. 42. The superlight concrete according to claim 40, further characterized in that it comprises polymers or copolymers that improve its stiffness or elasticity properties.
PCT/IB2020/050195 2019-01-11 2020-01-10 Superlight double-structure expanded particles and production method WO2020144648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2019/000535 2019-01-11
MX2019000535 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020144648A1 true WO2020144648A1 (en) 2020-07-16

Family

ID=71520812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/050195 WO2020144648A1 (en) 2019-01-11 2020-01-10 Superlight double-structure expanded particles and production method

Country Status (1)

Country Link
WO (1) WO2020144648A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4162166A (en) * 1975-08-27 1979-07-24 Walls Mycelo Jose Porous, lightweight, particulate aggregates and process of manufacture
MX147334A (en) * 1977-09-30 1982-11-17 Walls Mycelo Jose IMPROVED COMPOSITION OF LIGHT ARID OF DISCRETE POROUS AND EXPANDED PARTICLES
KR20020059895A (en) * 2001-01-08 2002-07-16 김상운 Manufacturing method of light weight materials
US6818055B2 (en) * 2000-08-16 2004-11-16 Mattig & Lindner Gmbh Porous silicate granular material and method for producing it
US20180193811A1 (en) * 2017-01-06 2018-07-12 Sun Bai Method of manufacturing a composite granular grouting material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4162166A (en) * 1975-08-27 1979-07-24 Walls Mycelo Jose Porous, lightweight, particulate aggregates and process of manufacture
MX147334A (en) * 1977-09-30 1982-11-17 Walls Mycelo Jose IMPROVED COMPOSITION OF LIGHT ARID OF DISCRETE POROUS AND EXPANDED PARTICLES
US6818055B2 (en) * 2000-08-16 2004-11-16 Mattig & Lindner Gmbh Porous silicate granular material and method for producing it
KR20020059895A (en) * 2001-01-08 2002-07-16 김상운 Manufacturing method of light weight materials
US20180193811A1 (en) * 2017-01-06 2018-07-12 Sun Bai Method of manufacturing a composite granular grouting material

Similar Documents

Publication Publication Date Title
ES2885865T3 (en) Composition for construction material based on metakaolin, associated manufacturing process and use for the realization of construction elements
ES2796865T3 (en) High-strength geopolymer composite cellular concrete
ES2863499T3 (en) Compositions in the form of particles for the formation of geopolymers, their use and procedures to form geopolymers with these
ES2604658T3 (en) Fire protection mortar
ES2849198T3 (en) Thermal insulation material and manufacturing procedure
ES2395702T3 (en) Durable magnesium oxychloride cement and procedure for it
JP5066766B2 (en) Geopolymer high-strength cured product containing calcined kaolin as active filler and method for producing the same
ES2719149T3 (en) Fire protection plate and manufacturing procedure
CZ2010855A3 (en) Cement composites resistant to acids and high temperature values and process for preparing thereof
ES2863427T3 (en) Procedure for the manufacture of foam concrete moldings
CN108726908A (en) Preparation method of artificial composite lightweight aggregate for foam concrete and artificial composite lightweight aggregate
Zawrah et al. Fabrication and characterization of non-foamed and foamed geopolymers from industrial waste clays
ES2610511B2 (en) PROCEDURE TO PREPARE A MICRO-NANOESTRUCTURED COMPOSITE CEMENTICEO, MORTARS AND CONCRETE LONG-TERM CONCRETE, UNDERSTANDING THAT COMPOSITE
WO2020144648A1 (en) Superlight double-structure expanded particles and production method
KR100863139B1 (en) The manufacturing method of construction materials using waterworks sludge
JP6624822B2 (en) Lightweight aerated concrete panel
ES2588836T3 (en) Mineral formulation containing sulfate-aluminate cement and expanded closed pore perlite
JP2017186186A (en) Geopolymer composition, and geopolymer cured body
JP2001329629A (en) Heat-insulating coating granule
CN104876479A (en) Lightweight thermal mortar and preparation method thereof
KR100554718B1 (en) Incombustible and Heat-Resistant Panel for Structures using Clay Minerals and Method for Manufacturing thereof
KR101262447B1 (en) Paste composition for manufacturing artificial stone, method of manufacturing artificial stone using the paste composition and inoragnic binder artificial stone manufactured the method
JP7132569B2 (en) Geopolymer solidification material, geopolymer solidification method
KR20120131936A (en) Foam concrete composition, foam concrete and method for preparing the foam concrete
KR100857510B1 (en) Artificial aggregate composition for enhancing fire-resistance of high-strength concretes, method for producing the same and concrete compositions using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 20738260

Country of ref document: EP

Kind code of ref document: A1