WO2020143519A1 - 信息处理方法、装置及计算机可读存储介质 - Google Patents

信息处理方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2020143519A1
WO2020143519A1 PCT/CN2020/070056 CN2020070056W WO2020143519A1 WO 2020143519 A1 WO2020143519 A1 WO 2020143519A1 CN 2020070056 W CN2020070056 W CN 2020070056W WO 2020143519 A1 WO2020143519 A1 WO 2020143519A1
Authority
WO
WIPO (PCT)
Prior art keywords
green light
phase
intersection
time
light time
Prior art date
Application number
PCT/CN2020/070056
Other languages
English (en)
French (fr)
Inventor
张茂雷
吴田田
王磊
张辉
Original Assignee
阿里巴巴集团控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里巴巴集团控股有限公司 filed Critical 阿里巴巴集团控股有限公司
Publication of WO2020143519A1 publication Critical patent/WO2020143519A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals

Definitions

  • the present invention relates to the field of traffic control technology, and more particularly, to an information processing method, device, and computer-readable storage medium.
  • the effective control of signal lights at intersections is an important direction in the field of traffic control. Especially at intersections with high traffic volume and complicated traffic conditions, the effective control of signal lights becomes particularly important. Therefore, it is of great significance to improve the control effectiveness of signal lights at intersections.
  • the phase green signal ratio time to be adjusted at the intersection is usually determined based on the obtained cross-sectional flow during the green light period of the intersection, that is, the number of vehicles passing the stop line during the green light period.
  • the phase green signal ratio time to be adjusted at the intersection is fed back to the traffic signal at the intersection, so as to realize the feedback control of the traffic signal at the intersection.
  • An object of the embodiments of the present invention is to provide a new technology solution for information processing.
  • an information processing method includes:
  • the green light time of each phase of the intersection is calculated.
  • the determination of the total green light loss time of the intersection includes:
  • the sum of the green light loss time of each phase is determined as the total green light loss time of the intersection.
  • the determining the total traffic supply and demand intensity of the intersection based on the total green light loss time includes:
  • the sum of the traffic supply and demand intensity of each phase of the intersection is determined as the total traffic supply and demand intensity of the intersection.
  • calculate the The steps of traffic supply and demand intensity include:
  • the step of calculating the green light time of each phase of the intersection based on the total traffic supply and demand intensity and the preset signal period of the intersection includes:
  • the method further includes:
  • the step of determining that the green light time phase needs to be increased and the green light time phase needs to be compressed includes:
  • the phase where the green light time is greater than or equal to the corresponding minimum green light time is determined as the phase where the green light time needs to be compressed.
  • the step of adjusting the green light time of each phase according to a preset adjustment method includes:
  • n represents the number of phases that need to increase the green light time
  • the method further includes:
  • an information processing apparatus including:
  • the first determination module is used to determine the total green light loss time of the intersection
  • a second determination module configured to determine the total traffic supply and demand intensity of the intersection according to the total green light loss time
  • the calculation module is used to calculate the green light time of each phase of the intersection according to the total traffic supply and demand intensity and the preset signal period of the intersection.
  • an information processing apparatus including a memory and a processor, where the memory is used to store instructions; the instructions are used to control the processor to operate to perform the present invention.
  • the information processing method according to any one of the first aspect of the embodiments.
  • a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements any one of the first aspects of the embodiments of the present invention Item information processing method.
  • the reasonable green signal ratio of the intersection can be calculated according to the actual traffic demand of the intersection.
  • FIG. 1 shows a schematic flowchart of Embodiment 1 of the information processing method provided by the present invention.
  • FIG. 2 shows a schematic flowchart of Embodiment 2 of the information processing method provided by the present invention.
  • FIG. 3 shows a schematic flowchart of an example of an embodiment of the present invention.
  • FIG. 4 shows a schematic block diagram of an information processing apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 shows a schematic block diagram of an information processing apparatus according to Embodiment 2 of the present invention.
  • FIG. 1 shows a schematic flowchart of Embodiment 1 of the information processing method of the present invention.
  • the information processing method provided in this embodiment may be specifically implemented by a server device, such as a server.
  • the total green light loss time of the intersection is determined.
  • the green light loss time refers to the time that cannot be used by the traffic within a signal period, that is, the time that no traffic can obtain the right of way.
  • the signal timing of a group of green, yellow, and red lights that are assigned to one or more independent traffic within a signal cycle at an intersection is called the phase of the intersection.
  • an intersection has multiple phases. There may be a green light loss time for each phase.
  • the green light loss time of each phase of the intersection needs to be obtained first; then the sum of the green light loss time of each phase is determined as the total green light loss time of the intersection.
  • step 1200 the total traffic supply and demand intensity of the intersection is determined according to the total green light loss time.
  • the total traffic supply and demand intensity of the intersection can be calculated based on the traffic engineering signal control principle. First, it is necessary to obtain the historical signal period of the intersection, the actual traffic demand of each phase of the intersection, and the saturation flow rate of each phase of the intersection.
  • Saturated flow rate refers to the maximum flow rate that a lane or group of lanes can pass during a green light.
  • the key lane refers to the lane with the largest actual traffic demand in the phase.
  • the actual traffic demand of the lane is calculated by detecting lane passing data, historically executed signal timing scheme, lane queuing length, lane stop times and minimum green light time.
  • the actual traffic demand of each phase of the intersection and the saturation flow rate of each phase of the intersection are respectively calculating the traffic supply and demand intensity of each phase of the intersection.
  • S j represents the saturation flow rate of phase j
  • T cycle represents the historical signal period
  • the traffic supply and demand intensity of each phase of the intersection is summed and calculated, and the sum of the traffic supply and demand intensity of each phase of the intersection is determined as the total traffic supply and demand intensity I inter of the intersection.
  • step 1300 is entered, and the green light time of each phase of the intersection is calculated according to the total traffic supply and demand intensity and the preset signal period of the intersection.
  • the information processing method of this embodiment has been described above with reference to FIG. 1.
  • the reasonable green light time of the intersection is calculated based on the actual traffic demand of the intersection.
  • the information processing method provided by the embodiment of the present invention may further include:
  • step 2100 it is determined that the phase of the green light time needs to be increased and the phase of the green light time needs to be compressed.
  • the green light time of each phase of the intersection is compared with the corresponding minimum green light time.
  • the minimum green light time is preset according to the intersection demand. If the green light time of a phase is less than the corresponding minimum green light time, it indicates that the calculated green light time of the phase cannot meet the actual demand of the intersection, and the green light time of each phase of the intersection needs to be calculated twice.
  • the phase where the green light time is less than the corresponding minimum green light time is determined as the phase where the green light time needs to be increased; the phase where the green light time is greater than or equal to the corresponding green light time is determined as the green light time that needs to be compressed The phase.
  • step 2200 the green light time of each phase is adjusted according to a preset adjustment method.
  • the green light time of the phase whose green light time is less than the corresponding minimum green light time is adjusted to the minimum green light time corresponding to the phase, and then the green light time compression amount of each phase that needs to compress the green light time is calculated.
  • n represents the number of phases that need to increase the green light time
  • the reasonable green light time of the intersection can be calculated according to the actual traffic demand of the intersection, and can be combined with the minimum green light time demand of the intersection.
  • the green light does not meet the minimum green light time requirement, the green light The second calculation of time makes the calculation result meet the minimum green light time requirement of the intersection.
  • FIG. 3 shows a schematic flowchart of an example of an embodiment of the present invention.
  • step 3100 whichever is largest phase d i lane as the phase of the phase j critical phase j lane actual traffic demand, actual traffic demand actual traffic lane critical phase as the phase j to the phase of phase j demand which is, Saturated flow rate as a critical lane saturation flow rate of phase j S j phase, the loss of green as a green lane critical time lost time ⁇ l j the phase of phase j.
  • the actual traffic demand of the lane is calculated by detecting the passing data of the lane, the signal timing scheme executed historically, the queue length of the lane, the number of lane stops, and the minimum green light time.
  • step 3200 the total green light loss time ⁇ L for each cycle of the intersection is calculated.
  • the green light loss time of the M phases of the intersection is summed, that is
  • step 3300 according to the traffic engineering signal control principle, calculate the traffic supply and demand intensity of M phases of the intersection
  • S j represents the saturation flow rate of phase j
  • T cycle represents the historical signal period
  • step 3400 according to the traffic supply and demand intensity of the M phases and the preset signal period of the intersection, the green light time of the M phases of the intersection is calculated
  • the reasonable green signal ratio of the intersection can be calculated according to the actual traffic demand of the intersection.
  • step 3500 After calculating the green light time of each phase of the intersection, proceed to step 3500, if it is determined that the green light time of the phase is less than the minimum green light time required by the intersection, that is, According to the minimum green light time, the green light time of each phase is calculated twice.
  • the phase that needs to increase the green light time and the phase that needs to compress the green light time are determined, and the green light time of each phase of the intersection is adjusted according to the preset adjustment method .
  • the green light time that needs to increase the phase of the green light time is adjusted to the minimum green light time, that is,
  • n represents the number of phases that need to increase the green light time
  • the green light time compression amounts of MN phases that need to compress green light time are calculated according to the formulas respectively
  • the information processing method provided in this embodiment has been combined with the drawings above, and the reasonable green light time of the intersection can be calculated according to the actual traffic demand of the intersection, and the minimum green light time of the intersection can be combined with the intersection.
  • the second calculation of the green light time is performed so that the calculation result meets the minimum green light time requirement of the intersection.
  • An information processing device including a module for performing various operations in the information processing method according to the above-described embodiment.
  • FIG. 4 shows a schematic block diagram of an information processing apparatus according to Embodiment 1 of the present invention.
  • the information processing apparatus 4000 includes: a first determination module 4100, a second determination module 4200, and a calculation module 4300.
  • the first determination module 4100 is used to determine the total green light loss time of the intersection; the second determination module 4200 is used to determine the total traffic supply and demand intensity of the intersection according to the total green light loss time; the calculation module 4300 is used to determine the total The intensity of traffic supply and demand and the preset signal period of the intersection are calculated to obtain the green light time of each phase of the intersection.
  • the first determining module 4100 is configured to obtain the green light loss time of each phase of the intersection; determine the sum of the green light loss time of each phase as the total green light loss time of the intersection.
  • the second determining module 4200 is specifically configured to obtain the historical signal period of the intersection, the actual traffic demand and saturation flow rate of each phase of the intersection; according to the historical signal period, the total green light loss time, the intersection The actual traffic demand of each phase and the saturation flow rate of each phase of the intersection, respectively calculating the traffic supply and demand intensity of each phase of the intersection; the sum of the traffic supply and demand intensity of each phase of the intersection is determined as the total of the intersection Traffic supply and demand intensity.
  • the second determining module 4200 calculates the traffic supply and demand intensity of each phase, it can specifically according to the formula Calculate the traffic supply and demand intensity of phase j among them, Represents the actual traffic demand of phase j, S j represents the saturation flow rate of phase j, T cycle represents the historical signal period, Indicates the total green light lost time.
  • calculation module 4300 is specifically used to formulate Calculate the green time of phase j
  • the information processing device 4000 may further include a third determination module and an adjustment module (not shown in the figure).
  • the third determining module is used to determine the phase that needs to increase the green light time and the phase that needs to compress the green light time; the adjusting module is used to adjust the green light time of each phase according to a preset adjustment method.
  • the third determining module compares the green light time of each phase with the corresponding minimum green light time respectively.
  • the phase in which the green light time is less than the corresponding minimum green light time is determined as the phase in which the green light time needs to be increased.
  • the phase where the green light time is greater than or equal to the corresponding minimum green light time is determined as the phase where the green light time needs to be compressed.
  • the adjustment module is triggered to adjust the green light time of each phase according to a preset adjustment method.
  • the adjustment module calculates the total increase of the green light time of the phase that needs to increase the green light time according to the following formula
  • n represents the number of phases that need to increase the green light time
  • the adjustment module calculates the green light time compression amount of each phase that needs to compress the green light time according to the following formula
  • the adjustment module obtains the total increase of the green light time separately And green light time compression amount ⁇ T j,adjust- , according to the formula Calculate mn new green light times corresponding to the phases that need to compress the green light time.
  • the adjustment module may be further used to adjust the green light time of the corresponding phase in the traffic signal light according to the calculated green light time of each phase of the intersection.
  • the information processing apparatus of this embodiment may be used to execute the technical solutions of the above method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 5 shows a schematic block diagram of an information processing apparatus according to Embodiment 2 of the present invention.
  • the information processing apparatus 5000 includes a memory 5200 and a processor 5100.
  • the memory 5200 is used to store instructions, and the instructions are used to control the processor 5100 to operate to perform any one of the information processing methods provided by the embodiments of the present invention.
  • the technician can design instructions according to the scheme disclosed in the present invention. How instructions control the processor to operate is well known in the art, so it will not be described in detail here.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any information processing method as provided in the foregoing embodiment is implemented. .
  • the invention may be a device, a method and/or a computer program product.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for causing the processor to implement various aspects of the present invention.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, but is not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Non-exhaustive list of computer readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM (Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a computer on which instructions are stored
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read only memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a computer on which instructions are stored
  • the convex structure in the hole card or the groove and any suitable combination of the above.
  • the computer-readable storage medium used herein is not to be interpreted as a transient signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (eg, optical pulses through fiber optic cables), or through wires The transmitted electrical signal.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
  • Computer program instructions for performing the operations of the present invention may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more programming languages Source code or object code written in any combination.
  • the programming languages include object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
  • the computer-readable program instructions can be executed entirely on the user's computer, partly on the user's computer, as an independent software package, partly on the user's computer and partly on a remote computer, or completely on the remote computer or server carried out.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider to pass the Internet connection).
  • electronic circuits such as programmable logic circuits, field programmable gate arrays (FPGAs) or programmable logic arrays (PLAs), are personalized by utilizing the state information of computer-readable program instructions, which can be Computer-readable program instructions are executed to implement various aspects of the present invention.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, or other programmable data processing device, thereby producing a machine that causes these instructions to be executed by the processor of a computer or other programmable data processing device A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is generated.
  • the computer-readable program instructions may also be stored in a computer-readable storage medium. These instructions enable the computer, programmable data processing apparatus, and/or other devices to work in a specific manner. Therefore, the computer-readable medium storing the instructions includes An article of manufacture that includes instructions to implement various aspects of the functions/acts specified in one or more blocks in the flowcharts and/or block diagrams.
  • the computer-readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment, so that a series of operating steps are performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , So that the instructions executed on the computer, other programmable data processing device, or other equipment implement the functions/acts specified in one or more blocks in the flowchart and/or block diagram.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more Executable instructions.
  • the functions marked in the blocks may also occur in an order different from that marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, and sometimes they can also be executed in reverse order, depending on the functions involved.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented with dedicated hardware-based systems that perform specified functions or actions Or, it can be realized by a combination of dedicated hardware and computer instructions. It is well known to those skilled in the art that implementation by hardware, implementation by software, and implementation by combining software and hardware are all equivalent.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种信息处理方法、装置及计算机可读存储介质。方法包括:确定路口的总绿灯损失时间(1100);根据总绿灯损失时间确定路口的总交通供需强度(1200);根据总交通供需强度及路口的预设信号周期,计算得到路口各相位的绿灯时间(1300)。可以根据路口的实际交通需求,计算出路口合理的绿灯时间。

Description

信息处理方法、装置及计算机可读存储介质
本申请要求2019年01月10日递交的申请号为201910023414.9、发明名称为“信息处理方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及交通控制技术领域,更具体地,涉及一种信息处理方法、装置及计算机可读存储介质。
背景技术
对于交叉路口信号灯的有效控制,是交通控制领域中的一个重要方向,特别是在车流量较大、交通情况复杂的交叉路口,信号灯的有效控制变得尤为重要。因此,提高交叉路口信号灯的控制有效性具有重大意义。
现有技术中,在控制路口的交通信号灯时,通常根据获取到的路口绿灯期间内的断面流量,即,获取绿灯期间内通过停止线的车辆数量来确定路口待调整的相位绿信比时间,并将路口待调整的相位绿信比时间反馈给路口的交通信号灯,从而实现对路口交通信号灯的反馈控制。
但是,当道路出现严重拥堵时,在路口绿灯期间内能够通行的车辆数很少,上述方案中所获取的断面流量并不能真实反映路口的实际交通需求,相应的,根据断面流量计算出的各相位绿信比时间也并不符合实际需求。因此,发明人认为,有必要针对上述现有技术中存在的至少一个问题进行改进。
发明内容
本发明实施例的一个目的是提供一种信息处理的新技术方案。
根据本发明实施例的第一方面,提供了一种信息处理方法,所述方法包括:
确定路口的总绿灯损失时间;
根据所述总绿灯损失时间确定所述路口的总交通供需强度;
根据所述总交通供需强度及所述路口的预设信号周期,计算得到路口各相位的绿灯时间。
可选的,所述确定路口的总绿灯损失时间,包括:
获取所述路口各相位的绿灯损失时间;
将所述各相位的绿灯损失时间之和确定为所述路口的总绿灯损失时间。
可选的,所述根据所述总绿灯损失时间确定所述路口的总交通供需强度,包括:
获取所述路口的历史信号周期,所述路口各相位的实际交通需求及所述路口各相位的饱和流率;
根据所述历史信号周期、所述总绿灯损失时间、所述路口各相位的实际交通需求和所述路口各相位的饱和流率,分别计算所述路口各相位的所述交通供需强度;
将所述路口各相位的交通供需强度之和确定为所述路口的总交通供需强度。
可选的,所述根据所述历史信号周期、所述总绿灯损失时间、所述路口各相位的实际交通需求和所述路口各相位的饱和流率,分别计算所述路口各相位的所述交通供需强度的步骤,包括:
根据公式
Figure PCTCN2020070056-appb-000001
计算得到相位j的交通供需强度
Figure PCTCN2020070056-appb-000002
其中,
Figure PCTCN2020070056-appb-000003
表示相位j的所述实际交通需求,S j表示相位j的所述饱和流率,T cycle表示所述历史信号周期,
Figure PCTCN2020070056-appb-000004
表示所述总绿灯损失时间。
可选的,所述根据所述总交通供需强度及所述路口的预设信号周期,计算得到所述路口各相位的绿灯时间的步骤,包括:
根据公式
Figure PCTCN2020070056-appb-000005
计算得到相位j的绿灯时间
Figure PCTCN2020070056-appb-000006
其中,
Figure PCTCN2020070056-appb-000007
表示所述预设信号周期,
Figure PCTCN2020070056-appb-000008
表示相位j的所述交通供需强度,
Figure PCTCN2020070056-appb-000009
表示所述路口m个相位的总交通供需强度。
可选的,所述方法还包括:
确定需要增加绿灯时间的相位,以及需要压缩绿灯时间的相位;
按照预设调整方式,调整各相位的绿灯时间。
可选的,所述确定需要增加绿灯时间的相位,以及需要压缩绿灯时间的相位的步骤,包括:
分别将各相位的所述绿灯时间与对应的最小绿灯时间进行比较;其中,所述最小绿灯时间是根据路口需求预先设置的;
将所述绿灯时间小于对应的所述最小绿灯时间的相位确定为所述需要增加绿灯时间的相位;
将所述绿灯时间大于等于对应的所述最小绿灯时间的相位确定为所述需要压缩绿灯时间的相位。
可选的,所述按照预设调整方式,调整各相位的绿灯时间的步骤,包括:
根据公式
Figure PCTCN2020070056-appb-000010
计算所述需要增加绿灯时间的相位的绿灯时间总增加量
Figure PCTCN2020070056-appb-000011
其中,n表示需要增加绿灯时间的相位的数量,
Figure PCTCN2020070056-appb-000012
表示相位k对应的所述最小绿灯时间,
Figure PCTCN2020070056-appb-000013
表示所述预设信号周期,
Figure PCTCN2020070056-appb-000014
表示相位k的交通供需强度,
Figure PCTCN2020070056-appb-000015
表示所述路口m个相位的总交通供需强度;
根据公式
Figure PCTCN2020070056-appb-000016
计算各所述需要压缩绿灯时间的相位的绿灯时间压缩量ΔT j,adjust-;其中,
Figure PCTCN2020070056-appb-000017
表示相位j对应的所述最小绿灯时间,
Figure PCTCN2020070056-appb-000018
表示需要压缩绿灯时间的m-n个相位的绿灯时间的总压缩量,
Figure PCTCN2020070056-appb-000019
表示绿灯时间总增加量,
Figure PCTCN2020070056-appb-000020
表示相位j的绿灯时间;
根据公式
Figure PCTCN2020070056-appb-000021
计算得到m-n个所述需要压缩绿灯时间的相位对应的新的绿灯时间。
可选的,所述计算得到路口各相位的绿灯时间的步骤之后,所述方法还包括:
根据计算得到的所述路口各相位的绿灯时间,调整交通信号灯中的对应相位的绿灯时间。
根据本发明实施例的第二方面,提供了一种信息处理装置,包括:
第一确定模块,用于确定路口的总绿灯损失时间;
第二确定模块,用于根据所述总绿灯损失时间确定所述路口的总交通供需强度;
计算模块,用于根据所述总交通供需强度及所述路口的预设信号周期,计算得到路口各相位的绿灯时间。
根据本发明实施例的第三方面,提供了一种信息处理装置,包括存储器和处理器,所述存储器用于存储指令;所述指令用于控制所述处理器进行操作,以执行如本发明实施例的第一方面中任意一项所述的信息处理方法。
根据本发明实施例的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器执行时实现如本发明实施例的第一方面中任意一项所述的信息处理方法。
根据本发明实施例的一个实施例,可以根据路口的实际交通需求,计算出路口合理的绿信比。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1示出了本发明提供的信息处理方法实施例一的示意性流程图。
图2示出了本发明提供的信息处理方法实施例二的示意性流程图。
图3示出了本发明实施例的例子的示意性流程图。
图4示出了根据本发明实施例一的信息处理装置的示意性框图。
图5示出了根据本发明实施例二的信息处理装置的示意性框图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面,参照附图描述根据本发明实施例的各个实施例和例子。
<方法>
图1示出了本发明的信息处理方法实施例一的示意性流程图。
本实施例提供的信息处理方法具体可以由服务端装置,例如服务器实现。
如图1所示,在步骤1100,确定路口的总绿灯损失时间。
其中,绿灯损失时间是指在一个信号周期内,不能被车流利用的时间,也就是任何车流都不能获得通行权的时间。
路口在一个信号周期内分配给一股或多股独立交通的一组绿、黄、红灯变化的信号时序被称为路口的相位,通常,一个路口具有多个相位。每个相位可能都存在绿灯损失时间。
在本步骤中,要确定路口的绿灯损失时间,需要先获取所述路口各相位的绿灯损失时间;再将所述各相位的绿灯损失时间之和确定为所述路口的总绿灯损失时间。
在步骤1200,根据所述总绿灯损失时间确定所述路口的总交通供需强度。
具体的,可以根据交通工程信号控制原理,计算得到路口的总交通供需强度。首先,需要获取所述路口的历史信号周期,所述路口各相位的实际交通需求及所述路口各相位的饱和流率。
饱和流率是指某一车道或车道组在绿灯期间能通过的最大流量。在获取路口各相位的实际交通需求和饱和流率时,分别确定路口各相位中的关键车道,将关键车道的饱和流率作为该相位的饱和流率,将关键车道的实际交通需求作为该相位的实际交通需求。
其中,关键车道是指相位中实际交通需求最大的车道。车道的实际交通需求是通过检测车道的过车数据、历史执行的信号配时方案、车道排队长度、车道停车次数以及最小绿灯时间计算出来的。
在获取所述路口的历史信号周期,所述路口各相位的实际交通需求及所述路口各相位的饱和流率后,根据所述历史信号周期、所述总绿灯损失时间、所述路口各相位的实际交通需求和所述路口各相位的饱和流率,分别计算所述路口各相位的所述交通供需强度。
具体的,根据公式
Figure PCTCN2020070056-appb-000022
计算得到相位j的交通供需强度
Figure PCTCN2020070056-appb-000023
其中,
Figure PCTCN2020070056-appb-000024
表示相位j的所述实际交通需求,S j表示相位j的所述饱和流率,T cycle表示所述历史信号周期,
Figure PCTCN2020070056-appb-000025
表示所述总绿灯损失时间。
然后,对上述路口各相位的交通供需强度进行求和计算,将所述路口各相位的交通供需强度之和确定为所述路口的总交通供需强度I inter
即,
Figure PCTCN2020070056-appb-000026
在确定所述路口的总交通供需强度之后,进入步骤1300,根据所述总交通供需强度及所述路口的预设信号周期,计算得到路口各相位的绿灯时间。
根据公式
Figure PCTCN2020070056-appb-000027
计算得到相位j的绿灯时间
Figure PCTCN2020070056-appb-000028
其中,
Figure PCTCN2020070056-appb-000029
表示所述预设信号周期,
Figure PCTCN2020070056-appb-000030
表示相位j的所述交通供需强度,
Figure PCTCN2020070056-appb-000031
表示所述路口m个相位的总交通供需强度。
以上已结合图1对本实施例的信息处理方法进行了说明。在本实施例中,在计算路口各相位的绿灯时间时,结合路口的实际交通需求,计算出了路口合理的绿灯时间。
在上述实施例的基础上,在步骤1300之后,如图2所示,本发明实施例提供的信息处理方法进一步还可以包括:
步骤2100,确定需要增加绿灯时间的相位,以及需要压缩绿灯时间的相位。
具体的,分别将路口各相位的所述绿灯时间与对应的最小绿灯时间进行比较。其中,所述最小绿灯时间是根据路口需求预先设置的。若有相位的绿灯时间小于对应的最小绿灯时间,表明计算出的该相位的绿灯时间不能满足路口的实际需求,则需要对路口各相位的绿灯时间进行二次计算。
需要说明的是,在本实施例中,为了保证路口要求的预设信号周期不变,以上需要 增加绿灯时间的相位的绿灯时间的增加量需要从其他相位中压缩分担。
因此,将所述绿灯时间小于对应的最小绿灯时间的相位确定为所述需要增加绿灯时间的相位;将所述绿灯时间大于等于对应的所述最小绿灯时间的相位确定为所述需要压缩绿灯时间的相位。
在步骤2200,按照预设调整方式,调整各相位的绿灯时间。
将绿灯时间小于对应的最小绿灯时间的相位的绿灯时间,调整为该相位对应的最小绿灯时间,然后计算各需要压缩绿灯时间的相位的绿灯时间压缩量。
具体的,先根据公式
Figure PCTCN2020070056-appb-000032
计算所述需要增加绿灯时间的相位的绿灯时间总增加量
Figure PCTCN2020070056-appb-000033
其中,n表示需要增加绿灯时间的相位的数量,
Figure PCTCN2020070056-appb-000034
表示相位k对应的所述最小绿灯时间,
Figure PCTCN2020070056-appb-000035
表示所述预设信号周期,
Figure PCTCN2020070056-appb-000036
表示相位k的交通供需强度,
Figure PCTCN2020070056-appb-000037
表示所述路口m个相位的总交通供需强度。
然后根据公式
Figure PCTCN2020070056-appb-000038
计算各所述需要压缩绿灯时间的相位的绿灯时间压缩量ΔT j,adjust-
其中,
Figure PCTCN2020070056-appb-000039
表示相位j对应的所述最小绿灯时间,
Figure PCTCN2020070056-appb-000040
表示需要压缩绿灯时间的m-n个相位的绿灯时间的总压缩量,
Figure PCTCN2020070056-appb-000041
表示绿灯时间总增加量,
Figure PCTCN2020070056-appb-000042
表示相位j的绿灯时间。
根据公式
Figure PCTCN2020070056-appb-000043
计算得到m-n个所述需要压缩绿灯时间的相位对应的新的绿灯时间。
在计算得到路口各相位对应的新的绿灯时间后,根据计算得到的路口各相位的绿灯时间,调整交通信号灯中对应相位的绿灯时间,以使绿灯时间满足路口的实际交通需求。
以上已结合图2对本实施例的信息处理方法进行了说明。在本实施例中,可以根据路口的实际交通需求,计算出路口合理的绿灯时间,并且可以结合路口对最小绿灯时间的需求,当计算出的绿灯时间不满足最小绿灯时间的需求时,进行绿灯时间的二次计算,使得计算结果满足路口的最小绿灯时间需求。
<例子>
图3示出了本发明实施例的例子的示意性流程图。
在本例中,假设路口包含M个相位。
如图3所示,在步骤3100,取相位phase j中实际交通需求d i最大的车道作为相位phase j的关键车道,用相位phase j的关键车道的实际交通需求作为的相位phase j的实际交通需求
Figure PCTCN2020070056-appb-000044
即,
Figure PCTCN2020070056-appb-000045
将关键车道的饱和流率作为相位phase j的饱和流率S j,将关键车道的绿灯损失时间作为相位phase j的绿灯损失时间Δl j
其中,车道的实际交通需求,是通过检测车道的过车数据、历史执行的信号配时方案、车道排队长度、车道停车次数以及最小绿灯时间计算出来的。
在步骤3200,计算得到路口每个周期的总绿灯损失时间ΔL。
具体的,对路口M个相位的绿灯损失时间求和,即
Figure PCTCN2020070056-appb-000046
在步骤3300,根据交通工程信号控制原理,计算路口M个相位的交通供需强度
Figure PCTCN2020070056-appb-000047
即,
Figure PCTCN2020070056-appb-000048
其中,
Figure PCTCN2020070056-appb-000049
表示相位j的所述实际交通需求,S j表示相位j的所述饱和流率,T cycle表示所述历史信号周期,
Figure PCTCN2020070056-appb-000050
表示所述总绿灯损失时间。
在计算出M个相位的交通供需强度
Figure PCTCN2020070056-appb-000051
后,计算路口的总交通供需强度I inter
即,
Figure PCTCN2020070056-appb-000052
在步骤3400,根据M个相位的交通供需强度及路口的预设信号周期,计算路口M个相位的绿灯时间
Figure PCTCN2020070056-appb-000053
具体的,
Figure PCTCN2020070056-appb-000054
其中,
Figure PCTCN2020070056-appb-000055
表示预设信号周期,
Figure PCTCN2020070056-appb-000056
表示相位j的交通供需强度,
Figure PCTCN2020070056-appb-000057
表示路口M个相位的总交通供需强度。
根据上述步骤3100至步骤3400,可以根据路口的实际交通需求,计算出路口合理的绿信比。
进一步的,在计算出路口各相位的绿灯时间后,进入步骤3500,如果判断出有相位的绿灯时间小于路口要求的最小绿灯时间,即,
Figure PCTCN2020070056-appb-000058
则根据最小绿灯时间,对各相位的绿灯时间进行二次计算。
即,通过分别将各相位的绿灯时间与对应的最小绿灯时间进行比较,确定出需要增加绿灯时间的相位,以及需要压缩绿灯时间的相位,并按照预设调整方式,调整路口各相位的绿灯时间。
具体的,将需要增加绿灯时间的相位的绿灯时间调整为最小绿灯时间,即,
Figure PCTCN2020070056-appb-000059
假设有N个相位是需要增加绿灯时间的相位,根据公式计算路口N个相位的绿灯时间的总增加量
Figure PCTCN2020070056-appb-000060
Figure PCTCN2020070056-appb-000061
其中,n表示需要增加绿灯时间的相位的数量,
Figure PCTCN2020070056-appb-000062
表示相位k对应的所述最小绿灯时间,
Figure PCTCN2020070056-appb-000063
表示所述预设信号周期,
Figure PCTCN2020070056-appb-000064
表示相位k的交通供需强度,
Figure PCTCN2020070056-appb-000065
表示所述路口m个相位的总交通供需强度。
为了保证路口要求的预设信号周期
Figure PCTCN2020070056-appb-000066
不变,以上N个相位的绿灯时间总增加量需要从其他M-N个相位中压缩分担。
具体的,根据公式分别计算得到M-N个需要压缩绿灯时间的相位的绿灯时间压缩量
Figure PCTCN2020070056-appb-000067
Figure PCTCN2020070056-appb-000068
其中,
Figure PCTCN2020070056-appb-000069
表示相位j对应的所述最小绿灯时间,
Figure PCTCN2020070056-appb-000070
表示需要压缩绿灯时间的m-n个相位的绿灯时间的总压缩量,
Figure PCTCN2020070056-appb-000071
表示绿灯时间总增加量,
Figure PCTCN2020070056-appb-000072
表示相位j的绿灯时间。
则,重新计算后,M-N个相位的绿灯时间
Figure PCTCN2020070056-appb-000073
为:
Figure PCTCN2020070056-appb-000074
根据
Figure PCTCN2020070056-appb-000075
调整交通信号灯中相位j的绿灯时间。
以上已结合附图对本实施例提供的信息处理方法,可以根据路口的实际交通需求,计算出路口合理的绿灯时间,并且可以结合路口对最小绿灯时间的需求,当计算出的绿灯时间不满足最小绿灯时间的需求时,进行绿灯时间的二次计算,使得计算结果满足路口的最小绿灯时间需求。
<信息处理装置>
本领域技术人员应当理解,在电子技术领域中,可以通过软件、硬件以及软件和硬件结合的方式,将上述方法体现在产品中本领域技术人员很容易基于上面发明实施例的方法,产生一种信息处理装置,所述信息处理装置包括用于执行根据上述实施例的信息处理方法中的各个操作的模块。
图4示出了根据本发明实施例一的信息处理装置的示意性框图。
例如,如图4所示,所述信息处理装置4000包括:第一确定模块4100,第二确定模块4200以及计算模块4300。
其中,第一确定模块4100用于确定路口的总绿灯损失时间;第二确定模块4200用于根据所述总绿灯损失时间确定所述路口的总交通供需强度;计算模块4300用于根据所述总交通供需强度及所述路口的预设信号周期,计算得到路口各相位的绿灯时间。
具体的,所述第一确定模块4100用于获取所述路口各相位的绿灯损失时间;将所述各相位的绿灯损失时间之和确定为所述路口的总绿灯损失时间。
所述第二确定模块4200具体用于获取所述路口的历史信号周期,所述路口各相位的实际交通需求及饱和流率;根据所述历史信号周期、所述总绿灯损失时间、所述路口各相位的实际交通需求和所述路口各相位的饱和流率,分别计算所述路口各相位的所述交通供需强度;将所述路口各相位的交通供需强度之和确定为所述路口的总交通供需强度。
其中,所述第二确定模块4200在计算各相位的所述交通供需强度时,具体可以根据公式
Figure PCTCN2020070056-appb-000076
计算得到相位j的交通供需强度
Figure PCTCN2020070056-appb-000077
其中,
Figure PCTCN2020070056-appb-000078
表示相位j的所述实际交通需求,S j表示相位j的所述饱和流率,T cycle表示所述历史信 号周期,
Figure PCTCN2020070056-appb-000079
表示所述总绿灯损失时间。
实际应用中,所述计算模块4300具体用于根据公式
Figure PCTCN2020070056-appb-000080
计算得到相位j的绿灯时间
Figure PCTCN2020070056-appb-000081
其中,
Figure PCTCN2020070056-appb-000082
表示所述预设信号周期,
Figure PCTCN2020070056-appb-000083
表示相位j的所述交通供需强度,
Figure PCTCN2020070056-appb-000084
表示所述路口m个相位的总交通供需强度。
进一步的,所述信息处理装置4000还可以包括第三确定模块和调整模块(图中未示出)。其中,所述第三确定模块用于确定需要增加绿灯时间的相位,以及需要压缩绿灯时间的相位;所述调整模块用于按照预设调整方式,调整各相位的绿灯时间。
具体的,所述第三确定模块在确定需要增加绿灯时间的相位,以及需要压缩绿灯时间的相位时,分别将各相位的所述绿灯时间与对应的所述最小绿灯时间进行比较。将所述绿灯时间小于对应的所述最小绿灯时间的相位确定为所述需要增加绿灯时间的相位。将所述绿灯时间大于等于对应的所述最小绿灯时间的相位确定为所述需要压缩绿灯时间的相位。
在所述第三确定模块确定需要增加绿灯时间的相位,和需要压缩绿灯时间的相位后,触发所述调整模块所述按照预设调整方式,调整各相位的绿灯时间。
具体的,所述调整模块根据如下公式计算所述需要增加绿灯时间的相位的绿灯时间总增加量
Figure PCTCN2020070056-appb-000085
Figure PCTCN2020070056-appb-000086
其中,n表示需要增加绿灯时间的相位的数量,
Figure PCTCN2020070056-appb-000087
表示相位k对应的所述最小绿灯时间,
Figure PCTCN2020070056-appb-000088
表示所述预设信号周期,
Figure PCTCN2020070056-appb-000089
表示相位k的交通供需强度,
Figure PCTCN2020070056-appb-000090
表示所述路口m个相位的总交通供需强度。
同时,所述调整模块根据如下公式计算各所述需要压缩绿灯时间的相位的绿灯时间压缩量
Figure PCTCN2020070056-appb-000091
Figure PCTCN2020070056-appb-000092
其中,
Figure PCTCN2020070056-appb-000093
表示相位j对应的所述最小绿灯时间,
Figure PCTCN2020070056-appb-000094
表示需要压缩绿灯时间的m-n个相位的绿灯时间的总压缩量,
Figure PCTCN2020070056-appb-000095
表示绿灯时间总增加量,
Figure PCTCN2020070056-appb-000096
表示相位j的绿灯时间。
所述调整模块在分别得到绿灯时间总增加量
Figure PCTCN2020070056-appb-000097
和绿灯时间压缩量ΔT j,adjust-后,根据公式
Figure PCTCN2020070056-appb-000098
计算得到m-n个所述需要压缩绿灯时间的相位对应的新的绿灯时间。
进一步的,所述调整模块还可以用于根据计算得到的所述路口各相位的绿灯时间,调整交通信号灯中的对应相位的绿灯时间。
本实施例的信息处理装置,可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
另外,图5示出了根据本发明实施例二的信息处理装置的示意性框图。
如图5所示,信息处理装置5000包括存储器5200和处理器5100。所述存储器5200用于存储指令,所述指令用于控制所述处理器5100进行操作以执行本发明实施例提供的任意一项信息处理方法。技术人员可以根据本发明所公开方案设计指令。指令如何控制处理器进行操作,这是本领域公知,故在此不再详细描述。
<计算机可读存储介质>
在本实施例中,还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,所述计算机程序在被处理器执行时实现如上述实施例提供的任意一种信息处理方法。
本领域技术人员公知的是,随着诸如大规模集成电路技术的电子信息技术的发展和软件硬件化的趋势,要明确划分计算机系统软、硬件界限已经显得比较困难了。因为,任何操作可以软件来实现,也可以由硬件来实现。任何指令的执行可以由硬件完成,同样也可以由软件来完成。对于某一机器功能采用硬件实现方案还是软件实现方案,取决于价格、速度、可靠性、存储容量、变更周期等非技术性因素。对于技术人员来说,软件实现方式和硬件实现方式是等同的。技术人员可以根据需要选择软件或硬件来实现上述方案。因此,这里不对具体的软件或硬件进行限制。
本发明可以是设备、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本发明的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设 备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本发明操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本发明的各个方面。
这里参照根据本发明实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本发明的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。对于本领域技术人员来说公知的是,通过硬件方式实现、通过软件方式实现以及通过软件和硬件结合的方式实现都是等价的。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本发明的范围由所附权利要求来限定。

Claims (12)

  1. 一种信息处理方法,其特征在于,所述方法包括:
    确定路口的总绿灯损失时间;
    根据所述总绿灯损失时间确定所述路口的总交通供需强度;
    根据所述总交通供需强度及所述路口的预设信号周期,计算得到路口各相位的绿灯时间。
  2. 根据权利要求1所述的方法,其特征在于,所述确定路口的总绿灯损失时间,包括:
    获取所述路口各相位的绿灯损失时间;
    将所述各相位的绿灯损失时间之和确定为所述路口的总绿灯损失时间。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述总绿灯损失时间确定所述路口的总交通供需强度,包括:
    获取所述路口的历史信号周期,所述路口各相位的实际交通需求及所述路口各相位的饱和流率;
    根据所述历史信号周期、所述总绿灯损失时间、所述路口各相位的实际交通需求及所述路口各相位的饱和流率,分别计算所述路口各相位的所述交通供需强度;
    将所述路口各相位的交通供需强度之和确定为所述路口的总交通供需强度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述历史信号周期、所述总绿灯损失时间、所述路口各相位的实际交通需求及所述路口各相位的饱和流率,分别计算所述路口各相位的所述交通供需强度的步骤,包括:
    根据公式
    Figure PCTCN2020070056-appb-100001
    计算得到相位j的交通供需强度
    Figure PCTCN2020070056-appb-100002
    其中,
    Figure PCTCN2020070056-appb-100003
    表示相位j的所述实际交通需求,S j表示相位j的所述饱和流率,T cycle表示所述历史信号周期,
    Figure PCTCN2020070056-appb-100004
    表示所述总绿灯损失时间。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述总交通供需强度及所述路口的预设信号周期,计算得到所述路口各相位的绿灯时间的步骤,包括:
    根据公式
    Figure PCTCN2020070056-appb-100005
    计算得到相位j的绿灯时间
    Figure PCTCN2020070056-appb-100006
    其中,
    Figure PCTCN2020070056-appb-100007
    表示所述预设信号周期,
    Figure PCTCN2020070056-appb-100008
    表示相位j的所述交通供需强度,
    Figure PCTCN2020070056-appb-100009
    表示所述路口m个相位的总交通供需强度。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定需要增加绿灯时间的相位,以及需要压缩绿灯时间的相位;
    按照预设调整方式,调整各相位的绿灯时间。
  7. 根据权利要求6所述的方法,其特征在于,所述确定需要增加绿灯时间的相位,以及需要压缩绿灯时间的相位的步骤,包括:
    分别将各相位的所述绿灯时间与对应的最小绿灯时间进行比较;其中,所述最小绿灯时间是根据路口需求预先设置的;
    将所述绿灯时间小于对应的所述最小绿灯时间的相位确定为所述需要增加绿灯时间的相位;
    将所述绿灯时间大于等于对应的所述最小绿灯时间的相位确定为所述需要压缩绿灯时间的相位。
  8. 根据权利要求7所述的方法,其特征在于,所述按照预设调整方式,调整各相位的绿灯时间的步骤,包括:
    根据公式
    Figure PCTCN2020070056-appb-100010
    计算所述需要增加绿灯时间的相位的绿灯时间总增加量
    Figure PCTCN2020070056-appb-100011
    其中,n表示需要增加绿灯时间的相位的数量,
    Figure PCTCN2020070056-appb-100012
    表示相位k对应的所述最小绿灯时间,
    Figure PCTCN2020070056-appb-100013
    表示所述预设信号周期,
    Figure PCTCN2020070056-appb-100014
    表示相位k的交通供需强度,
    Figure PCTCN2020070056-appb-100015
    表示所述路口m个相位的总交通供需强度;
    根据公式
    Figure PCTCN2020070056-appb-100016
    计算各所述需要压缩绿灯时间的相位的绿灯时间压缩量ΔT j,adjust-;其中,
    Figure PCTCN2020070056-appb-100017
    表示相位j对应的所述最小绿灯时间,
    Figure PCTCN2020070056-appb-100018
    表示需要压缩绿灯时间的m-n个相位的绿灯时间的总压缩量,
    Figure PCTCN2020070056-appb-100019
    表示绿灯时间总增加量,
    Figure PCTCN2020070056-appb-100020
    表示相位j的绿灯时间;
    根据公式
    Figure PCTCN2020070056-appb-100021
    计算得到m-n个所述需要压缩绿灯时间的相位对应的新的绿灯时间。
  9. 根据权利要求1所述的方法,其特征在于,所述计算得到路口各相位的绿灯时间的步骤之后,所述方法还包括:
    根据计算得到的所述路口各相位的绿灯时间,调整交通信号灯中的对应相位的绿灯时间。
  10. 一种信息处理装置,其特征在于,包括:
    第一确定模块,用于确定路口的总绿灯损失时间;
    第二确定模块,用于根据所述总绿灯损失时间确定所述路口的总交通供需强度;
    计算模块,用于根据所述总交通供需强度及所述路口的预设信号周期,计算得到路口各相位的绿灯时间。
  11. 一种信息处理装置,其特征在于,包括存储器和处理器,所述存储器用于存储指令;所述指令用于控制所述处理器进行操作,以执行如权利要求1-9中任意一项所述的信息处理方法。
  12. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序在被处理器执行时实现如权利要求1-9中任意一项所述的信息处理方法。
PCT/CN2020/070056 2019-01-10 2020-01-02 信息处理方法、装置及计算机可读存储介质 WO2020143519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910023414.9A CN111429715B (zh) 2019-01-10 2019-01-10 信息处理方法、装置及计算机可读存储介质
CN201910023414.9 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143519A1 true WO2020143519A1 (zh) 2020-07-16

Family

ID=71520945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070056 WO2020143519A1 (zh) 2019-01-10 2020-01-02 信息处理方法、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111429715B (zh)
WO (1) WO2020143519A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114419895A (zh) * 2022-02-11 2022-04-29 青岛海信网络科技股份有限公司 一种交通路口疏散方案生成方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143621A1 (en) * 2012-03-30 2013-10-03 Nec Europe Ltd. Method and system for adapting vehicular traffic flow
CN103578281A (zh) * 2012-08-02 2014-02-12 中兴通讯股份有限公司 一种交通干线信号灯优化控制方法和装置
CN104036645A (zh) * 2014-06-03 2014-09-10 东南大学 基于可变车道的交叉口信号控制方法
CN104299432A (zh) * 2014-10-31 2015-01-21 青岛海信网络科技股份有限公司 一种过饱和路口信号灯控制方法及装置
CN109035786A (zh) * 2018-10-10 2018-12-18 南京宁昱通交通科技有限公司 一种提高主干路相邻交叉口通行效率的交通时段控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257194A (en) * 1991-04-30 1993-10-26 Mitsubishi Corporation Highway traffic signal local controller
CN101763735B (zh) * 2010-02-01 2015-02-25 王茜 可具有负系统损失时间的动态信号控制系统的控制方法
CN101976510A (zh) * 2010-10-26 2011-02-16 隋亚刚 高清视频检测条件下的交叉口机动车信号优化控制方法
CN106023608B (zh) * 2016-06-08 2018-08-14 吉林大学 一种十字路口交通信号灯实时动态配时的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143621A1 (en) * 2012-03-30 2013-10-03 Nec Europe Ltd. Method and system for adapting vehicular traffic flow
CN103578281A (zh) * 2012-08-02 2014-02-12 中兴通讯股份有限公司 一种交通干线信号灯优化控制方法和装置
CN104036645A (zh) * 2014-06-03 2014-09-10 东南大学 基于可变车道的交叉口信号控制方法
CN104299432A (zh) * 2014-10-31 2015-01-21 青岛海信网络科技股份有限公司 一种过饱和路口信号灯控制方法及装置
CN109035786A (zh) * 2018-10-10 2018-12-18 南京宁昱通交通科技有限公司 一种提高主干路相邻交叉口通行效率的交通时段控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114419895A (zh) * 2022-02-11 2022-04-29 青岛海信网络科技股份有限公司 一种交通路口疏散方案生成方法及装置
CN114419895B (zh) * 2022-02-11 2022-12-27 青岛海信网络科技股份有限公司 一种交通路口疏散方案生成方法及装置

Also Published As

Publication number Publication date
CN111429715B (zh) 2022-07-15
CN111429715A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
CN111931350A (zh) 超导电路中量子门的评估方法及装置、设备、存储介质
US11574254B2 (en) Adaptive asynchronous federated learning
US20160154727A1 (en) System, method, and computer program to improve the productivity of unit testing
US9965518B2 (en) Handling missing data tuples in a streaming environment
US11748305B2 (en) Suggesting a destination folder for a file to be saved
US9697322B2 (en) Hierarchical wire-pin co-optimization
US9754062B2 (en) Timing adjustments across transparent latches to facilitate power reduction
JP2022101679A (ja) 交通信号機の制御信号生成方法、装置、電子機器、記憶媒体及びコンピュータプログラム
US9727687B2 (en) Method for calculating an effect on timing of moving a pin from an edge to an inboard position in processing large block synthesis (LBS)
WO2020143519A1 (zh) 信息处理方法、装置及计算机可读存储介质
US9576085B2 (en) Selective importance sampling
US10970447B2 (en) Leverage cycle stealing within optimization flows
US9633145B2 (en) Traffic simulation method, program, and system
US20170124219A1 (en) Determining data field offsets using a document object model representation
US9965503B2 (en) Data cube generation
US9495502B2 (en) Congestion aware layer promotion
WO2020230043A1 (en) Feature vector feasibilty estimation
US20230177243A1 (en) Processor chip timing adjustment enhancement
US10657211B2 (en) Circuit generation based on zero wire load assertions
CN113075921B (zh) 无人驾驶设备的局部路径规划方法和装置
US11568633B2 (en) Floorplan of a design for an integrated circuit
US10423741B1 (en) Constrained metric verification analysis of a system on chip
US9710594B2 (en) Variation-aware timing analysis using waveform construction
KR101590719B1 (ko) 빅 데이터 분석을 위한 웹 서비스 간 데이터 전달 방법 및 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738061

Country of ref document: EP

Kind code of ref document: A1