WO2020143492A1 - 一种终端相序自动识别方法 - Google Patents
一种终端相序自动识别方法 Download PDFInfo
- Publication number
- WO2020143492A1 WO2020143492A1 PCT/CN2019/129710 CN2019129710W WO2020143492A1 WO 2020143492 A1 WO2020143492 A1 WO 2020143492A1 CN 2019129710 W CN2019129710 W CN 2019129710W WO 2020143492 A1 WO2020143492 A1 WO 2020143492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- current
- terminal
- sequence
- phase sequence
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/18—Indicating phase sequence; Indicating synchronism
Definitions
- the invention belongs to the field of electrical engineering, and in particular relates to a terminal phase sequence automatic identification method.
- the early phase sequence detection circuit is composed of capacitors and resistors.
- phase sequence detection methods use digital logic circuits or single-chip computers, and the circuits are relatively complicated.
- the number of terminals used to detect electrical identification of residential users is also gradually increasing.
- the terminals are being installed and powered off. In the case of restarting, short circuit, etc., it is necessary to judge the phase sequence. Therefore, it is an urgent need to establish terminal three-phase automatic identification.
- Non-home smart terminal is a kind of identification terminal for identifying consumer electrical appliances. It has the technical characteristics of intelligence, miniaturization, low power consumption, one-to-many, self-learning, online upgrade, etc. It can serve the fine-grained use of power companies Electricity information collection, on this basis, carry out advanced supply and demand interactive services such as energy visualization diagnosis and demand side management for residential users.
- This terminal is small in size and low in power consumption. It is installed near a strong electric well and inside the electric company's meter box. There is no need to enter the indoor construction and users do not need to provide electrical nameplate parameters.
- a single terminal supports up to 12 households of fine-grained power behavior identification , Regularly upload 15-minute granularity of ⁇ appliance type, start-stop time, power consumption> identification result sequence; optional 2G/3G/4G full-mode wireless communication mode or narrowband/broadband power line carrier communication mode; complete identification of electrical appliances, identification accuracy High, identifying the types of appliances including fixed frequency air conditioners, inverter air conditioners, microwave ovens, rice cookers, kitchen appliances, electric heating, other electric heating and other major interactive appliances, supporting online upgrades of feature libraries and identification algorithms.
- the present invention proposes a terminal phase sequence automatic identification method, so as to accurately, quickly and automatically identify the A, B, and C three-phase power of voltage and current.
- a terminal phase sequence automatic identification method includes the following steps:
- Step 1 Collect the basic electrical parameters of the terminal during stable operation: voltage U and current I;
- Step 2 Perform frequency domain decomposition on the collected voltage U and current I to obtain the fundamental frequency amplitude-frequency characteristics of the voltage and current;
- Step 3 Determine whether the voltage and current are in the same phase sequence according to the phase angle of the voltage and current waveform in the fundamental wave of voltage and current at the corresponding moment.
- step 1 the basic electrical parameters of the terminal during stable operation are collected: voltage U and current I, specifically:
- sampling frequency of the voltage U and the current I in step 1 is between 500 Hz and 2 kHz.
- the voltage U and the current I in step 1 are the sampling sequence of the voltage signal and the current signal after filtering and denoising, respectively.
- step 2 frequency domain decomposition is performed on the collected voltage and current signals to obtain the fundamental frequency amplitude-frequency characteristics of the voltage and current, specifically:
- the fundamental frequency amplitude-frequency characteristic of the voltage is obtained by the following formula:
- V and ⁇ V are the voltage amplitude and voltage phase angle sequence at different frequencies after the fast Fourier transform of the voltage using the discrete Fourier transform fast algorithm, U(i) is the collected voltage sequence, and N is the discrete The number of sampling points used in the fast Fourier transform algorithm;
- I and ⁇ I are the current amplitude and current phase angle sequence at different frequencies after the fast Fourier transform of the current using the discrete Fourier transform fast algorithm
- I(i) is the collected current sequence
- N is The number of sampling points used in the discrete Fourier transform fast algorithm.
- step 3 it is determined whether the voltage and current are in the same phase sequence according to the phase angle of the voltage and current waveforms in the fundamental wave at the corresponding moments, specifically:
- the terminal phase sequence automatic identification method of the present invention can determine the three phases A, B, and C of the current and voltage only by the phase angle difference, which has the advantages of simplicity, economy, and easy promotion and application. This method is helpful for the identification terminal to judge whether there is some kind of open circuit in the three-phase power and lack of equal conditions, and can make corresponding auxiliary judgment for its fault diagnosis.
- FIG. 1 is a general flowchart of the present invention
- FIG. 3 is a waveform diagram of the three-phase current collected by the present invention.
- the terminal phase sequence automatic identification method of the present invention includes the following steps:
- Step 1 Collect the basic electrical parameters voltage U and current I when the terminal is in stable operation; use voltage and current transformers to separately collect the voltage and current in the terminal in stable working state, where the voltage U and current I are filtered and denoised After the sampling sequence of the voltage signal, set the sampling frequency to be between 500 Hz and 2 kHz.
- Step 2 Perform frequency domain decomposition on the collected voltage and current signals to obtain the fundamental frequency amplitude and frequency characteristics of the voltage and current;
- the frequency domain analysis method of the discrete Fourier transform fast algorithm is selected, and the frequency and current signals are decomposed by the discrete Fourier transform fast algorithm to obtain the amplitude and frequency characteristics of the fundamental wave of voltage and current;
- (V, ⁇ V ) is the voltage amplitude and phase angle sequence at different frequencies after the fast Fourier transform of the voltage using the discrete Fourier transform fast algorithm function
- U(i) is the collected voltage sequence
- N The number of sampling points used for the discrete Fourier transform fast algorithm
- (I, ⁇ I ) is the current amplitude and phase angle sequence at different frequencies after the fast Fourier transform of the current using the discrete Fourier transform fast algorithm function
- I(i) is the collected current sequence
- N The number of sampling points used for the discrete Fourier transform fast algorithm
- Step 3 Analyze the phase angles of the voltage and current waveforms at the corresponding time in the fundamental wave to determine whether the voltage and current are in the same phase sequence; if the absolute value of the phase difference of the fundamental waves at the corresponding time of the voltage and current is less than 0.05 radians, it is judged to be the same Phase sequence, otherwise it is not the same phase sequence;
- ⁇ Vbase is the phase angle of the fundamental wave of voltage at a frequency of 50 Hz
- ⁇ Ibase is the phase angle of the fundamental wave of current at a frequency of 50 Hz
- phase angles corresponding to UA, IA, IB, and IC at 50 Hz fundamental wave are calculated as follows:
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measuring Frequencies, Analyzing Spectra (AREA)
Abstract
一种终端相序自动识别方法,包括以下步骤:采集终端稳定工作时的电压U和电流I;步骤2:对采集的电压U和电流I进行频域分解,得到电压和电流的基波幅频特性;步骤3:根据电压和电流的基波中电压和电流波形对应时刻的相角,判断电压和电流是否为同一个相序。这种终端相序自动识别方法只需通过相角差就可判断出电流电压的三相,具有简单、经济、易于推广应用等优点。
Description
本发明属于电气工程领域,具体涉及一种终端相序自动识别方法。
电动执行器、挖掘机、三相电动机等用电设备因维修或工作地点转移,需要与电源重新进行连接时难免将相序接反,使其不能正常工作;对于只允许单向旋转的设备来说,可能造成其旋转器件的损坏;载人电梯因相序的改变,使运行方向和预定方向相反,可能危及人生安全。而早期的相序检测电路由电容、电阻组成,虽然结构简单,但电容值较大,需要指示灯的指示,功耗大,体积也大,还需要人工去判别灯的亮度,且不能实现自动检测,现有的相序检测方法有的使用数字逻辑电路或单片机,电路较为复杂。在生活工作中,需要使用三相电的设备很多,目前居民人口众多,用电负荷也日趋变大,对于使用于检测居民用户电器辨识的终端的数量也逐步增多,然而终端在安装,断电重启,短路等情况下都需要进行相序的判断,因此,建立终端三相电自动识别成为一种迫切的需求。
非入户式智能终端是一种辨识居民用户电器的辨识终端,具有智能化、小型化、低功耗、一对多、自学习、在线升级等技术特点,可服务于电力公司的细粒度用电信息采集,在此基础之上开展对居民用户的能源可视化诊断、需求侧管理等高级供需互动服务。此终端体积小,功耗低,安装在强电井,内部的电力公司电表箱附近,无需进入室内施工,无需用户提供电器铭牌参数;单台终端最大支持12户居民的细粒度用电行为辨识,定时上传15分钟粒度的<电器类型,启停时间,电能消耗>辨识结果序列;选配2G/3G/4G全模式无线通讯模式或窄带/宽带电力线载波通信模式;辨识电器种类齐全、辨识精度高,辨识电器种类包括定频空调、变频空调、微波炉、电饭煲、厨房电器、电采暖、其它电热等主要互动电器,支持特征库和辨识算法的在线升级。
目前尚无文献提出一种准确、有效、快速终端相序自动识别的方法。
因此,需要一种新的终端相序自动识别方法以解决上述问题。
发明内容
为解决现有技术的不足,本发明提出一种终端相序自动识别方法,从而准确有效快速地自动识别电压和电流的A、B、C三相电。
为达成上述目的,本发明所采用的技术方案如下:
一种终端相序自动识别方法,包括以下步骤:
步骤1:采集终端稳定工作时的基本电气参量:电压U和电流I;
步骤2:对采集的电压U和电流I进行频域分解,得到电压和电流的基波幅频特性;
步骤3:根据电压和电流的基波中电压和电流波形对应时刻的相角,判断电压和电流是否为同一个相序。
更进一步的,步骤1中采集终端稳定工作时的基本电气参量:电压U和电流I,具体为:
用电压互感器和电流互感器分别采集终端稳定工作状态下的电压值和电流值。
更进一步的,步骤1中电压U和电流I的采样频率为500Hz-2kHz之间。
更进一步的,步骤1中所述电压U和电流I分别为经过滤波和去噪处理后的电压信号和电流信号的采样序列。
更进一步的,步骤2中对采集的电压和电流信号进行频域分解,得到电压和电流的基波幅频特性,具体为:
利用离散傅氏变换快速算法分别对电压和电流进行频域分解,得到电压和电流的基波幅频特性;
其中,电压的基波幅频特性通过下式得到:
(V,θ
V)=FFT(U(i))(i=1,2,...,N)
上式中,V和θ
V为利用离散傅氏变换快速算法对电压进行快速Fourier变换后的不同频率下的电压幅值和电压相角序列,U(i)为采集的电压序列,N为离散傅氏变换快速算法所用采样点数;
电流的基波幅频特性通过下式得到:
(I,θ
I)=FFT(I(i))(i=1,2,...,N)
上式中,I和θ
I分别为利用离散傅氏变换快速算法对电流进行快速Fourier变换后的不同频率下的电流幅值和电流相角序列,I(i)为采集的电流序列,N为离散傅氏变换快速算法所用采样点数。
更进一步的,步骤3中根据基波中电压和电流波形对应时刻的相角,判断电压和电流是否为同一个相序,具体的:
若电压和电流对应时刻的基波相角差绝对值|θ
Vbase-θ
Ibase|小于0.05,则电压和电流为同一相序,反之则不是同一相序,其中,θ
Vbase=θ
V(f=50Hz),θ
Ibase=θ
I(f=50Hz),θ
Vbase为频率为50Hz下的电压基波相角,θ
Ibase为频率为50Hz下的电流基波相角。
有益效果为:本发明的终端相序自动识别方法,只需通过相角差就可判断出电流电压的A,B,C三相,具有简单、经济、易于推广应用等优点。该方法有助于辨识终端判断三相电是否出现某种断路,缺相等情况,并可对其故障诊断做出相应的辅助判断。
图1为本发明的总体流程图;
图2为本发明采集的三相电压的波形图;
图3为本发明采集的三相电流的波形图。
下面结合附图和具体实施方式对本发明作进一步详细的描述。
请参阅图1、图2和图3所示,本发明的终端相序自动识别方法,包括以下步骤:
步骤1:采集终端稳定工作时的基本电气参量电压U和电流I;用电压和电流互感器分别采集终端稳定工作状态下的电压和电流,其中,电压U和电流I为经过滤波和去噪处理后的电压信号的采样序列,设置采样频率为500Hz-2kHz之间。
步骤2:对采集的电压和电流信号进行频域分解,得到电压和电流的基波幅频特性;
选用离散傅氏变换快速算法的频域分析方法,通过离散傅氏变换快速算法对电压和电流信号进行频域分解,得到电压和电流的基波幅频特性;
公式为:
(V,θ
V)=FFT(U(i)) (i=1,2,...,N)
上式中,(V,θ
V)为利用离散傅氏变换快速算法函数对电压进行快速Fourier变换后的不同频率下的电压幅值和相角序列,U(i)为采集的电压序列,N为离散傅氏变换快速算法所用采样点数;
(I,θ
I)=FFT(I(i)) (i=1,2,...,N)
上式中,(I,θ
I)为利用离散傅氏变换快速算法函数对电流进行快速Fourier变换后的不同频率下的电流幅值和相角序列,I(i)为采集的电流序列,N为离散傅氏变换快速算法所用采样点数;
通过对电压和电流的幅值、相角序列的离散傅里叶变换得出电压、电流的幅频特性,完成频域分析
步骤3:分析基波中电压和电流波形对应时刻的相角,判断电压和电流是否为同一 个相序;若电压和电流对应时刻的基波相角差绝对值小于0.05弧度,则判断为同一相序,反之则不为同一相序;
θ
Vbase=θ
V(f=50Hz)
θ
Ibase=θ
I(f=50Hz)
if(|θ
Vbase-θ
Ibase|<0.05)
判断得:电压和电流属于同一个相序。
上式中,θ
Vbase为频率为50Hz下的电压基波相角,θ
Ibase为频率为50Hz下的电流基波相角。
根据步骤2中得到的不同频率下的辐频特性可知,计算50Hz基波下的UA,IA,IB,IC对应的相角如下:
θ
Vbase(UA1)=2.1989(弧度)=126.0516°
θ
Ibase(IA1)=2.2113(弧度)=126.7624°
θ
Ibase(IB1)=0.1203(弧度)=6.8962°
θ
Ibase(IC1)=-1.982(弧度)=-113.6178°
根据式if(|θ
Vbase-θ
Ibase|<0.05),计算各基波相角的差绝对值,可得:
将UA,IA基波相角做差绝对值,可得到|2.2113-2.1989|=0.0124<0.05即可判断为同一相位;
将UA,IB基波相角做差绝对值,可得到|2.1989-0.1203|=2.0786>0.05即可判断不为同一相位;
将UA,IC基波相角做差绝对值,可得到|2.1989-0.1203|=2.0786>0.05即可判断不为同一相位。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。
Claims (6)
- 一种终端相序自动识别方法,其特征在于,包括以下步骤:步骤1:采集终端稳定工作时的电压U和电流I;步骤2:对采集的电压U和电流I进行频域分解,得到电压和电流的基波幅频特性;步骤3:根据电压和电流的基波中电压和电流波形对应时刻的相角,判断电压和电流是否为同一个相序。
- 根据权利要求1所述的终端相序自动识别方法,其特征在于,步骤1中采集终端稳定工作时的基本电气参量:电压U和电流I,具体为:用电压互感器和电流互感器分别采集终端稳定工作状态下的电压值和电流值。
- 根据权利要求1所述的终端相序自动识别方法,其特征在于,步骤1中电压U和电流I的采样频率为500Hz-2kHz之间。
- 根据权利要求1所述的终端相序自动识别方法,其特征在于,步骤1中所述电压U和电流I分别为经过滤波和去噪处理后的电压信号和电流信号的采样序列。
- 根据权利要求1所述的终端相序自动识别方法,其特征在于,步骤2中对采集的电压和电流信号进行频域分解,得到电压和电流的基波幅频特性,具体为:利用离散傅氏变换快速算法分别对电压和电流进行频域分解,得到电压和电流的基波幅频特性;其中,电压的基波幅频特性通过下式得到:(V,θ V)=FFT(U(i))(i=1,2,...,N)上式中,V和θ V为利用离散傅氏变换快速算法对电压进行快速Fourier变换后的不同频率下的电压幅值和电压相角序列,U(i)为采集的电压序列,N为离散傅氏变换快速算法所用采样点数;电流的基波幅频特性通过下式得到:(I,θ I)=FFT(I(i))(i=1,2,...,N)上式中,I和θ I分别为利用离散傅氏变换快速算法对电流进行快速Fourier变换后的不同频率下的电流幅值和电流相角序列,I(i)为采集的电流序列,N为离散傅氏变换快速算法所用采样点数。
- 根据权利要求1所述的终端相序自动识别方法,其特征在于,步骤3中根据基波中电压和电流波形对应时刻的相角,判断电压和电流是否为同一个相序,具体的:若电压和电流对应时刻的基波相角差绝对值|θ Vbase-θ Ibase|小于0.05,则电压和电流 为同一相序,反之则不是同一相序,其中,θ Vbase=θ V(f=50Hz),θ Ibase=θ I(f=50Hz),θ Vbase为频率为50Hz下的电压基波相角,θ Ibase为频率为50Hz下的电流基波相角。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910018241.1 | 2019-01-09 | ||
CN201910018241.1A CN109683030A (zh) | 2019-01-09 | 2019-01-09 | 一种终端相序自动识别方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020143492A1 true WO2020143492A1 (zh) | 2020-07-16 |
Family
ID=66192766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/129710 WO2020143492A1 (zh) | 2019-01-09 | 2019-12-30 | 一种终端相序自动识别方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109683030A (zh) |
WO (1) | WO2020143492A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109683030A (zh) * | 2019-01-09 | 2019-04-26 | 江苏智臻能源科技有限公司 | 一种终端相序自动识别方法 |
CN110609165B (zh) * | 2019-09-19 | 2021-06-22 | 国网天津市电力公司电力科学研究院 | 电能质量在线监测装置接线错误自动检测与数据校正方法 |
CN110798174B (zh) * | 2019-11-15 | 2023-08-22 | 北京普源精电科技有限公司 | 信号触发方法及系统 |
CN111707881B (zh) * | 2020-07-10 | 2022-08-19 | 陕西航空电气有限责任公司 | 一种三相交流电源相序识别方法及装置 |
CN112798878A (zh) * | 2021-02-25 | 2021-05-14 | 山东科汇电力自动化股份有限公司 | 一种基于电压同步比较的线路换位自动相序识别方法 |
CN113866628B (zh) * | 2021-11-19 | 2023-12-19 | 国网辽宁省电力有限公司鞍山供电公司 | 一种基于电流、电压双相序比对的开关状态分析方法 |
CN117200333B (zh) * | 2023-11-08 | 2024-03-08 | 深圳鹏城新能科技有限公司 | 一种基于单相逆变器的相序处理方法、装置和电子设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005099043A (ja) * | 2004-11-30 | 2005-04-14 | Hioki Ee Corp | 位相差算出方法 |
CN1898573A (zh) * | 2003-10-22 | 2007-01-17 | Abb有限公司 | 识别间歇性接地故障的方法和设备 |
CN101893662A (zh) * | 2010-07-23 | 2010-11-24 | 江苏省电力公司常州供电公司 | 数字变电站的核相方法 |
CN102279323A (zh) * | 2011-04-29 | 2011-12-14 | 河南省电力公司鹤壁供电公司 | 智能变电站的二次准确核相方法 |
CN103187915A (zh) * | 2012-11-07 | 2013-07-03 | 东北大学 | 基于组态的励磁发电储能控制装置及方法 |
CN104459435A (zh) * | 2014-11-21 | 2015-03-25 | 国家电网公司 | 一种用于变电站的接线验证方法及装置 |
CN105785144A (zh) * | 2016-05-23 | 2016-07-20 | 国网江苏省电力公司电力科学研究院 | 一种无线分布式变电站电气量整站检测系统及方法 |
CN109683030A (zh) * | 2019-01-09 | 2019-04-26 | 江苏智臻能源科技有限公司 | 一种终端相序自动识别方法 |
-
2019
- 2019-01-09 CN CN201910018241.1A patent/CN109683030A/zh active Pending
- 2019-12-30 WO PCT/CN2019/129710 patent/WO2020143492A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1898573A (zh) * | 2003-10-22 | 2007-01-17 | Abb有限公司 | 识别间歇性接地故障的方法和设备 |
JP2005099043A (ja) * | 2004-11-30 | 2005-04-14 | Hioki Ee Corp | 位相差算出方法 |
CN101893662A (zh) * | 2010-07-23 | 2010-11-24 | 江苏省电力公司常州供电公司 | 数字变电站的核相方法 |
CN102279323A (zh) * | 2011-04-29 | 2011-12-14 | 河南省电力公司鹤壁供电公司 | 智能变电站的二次准确核相方法 |
CN103187915A (zh) * | 2012-11-07 | 2013-07-03 | 东北大学 | 基于组态的励磁发电储能控制装置及方法 |
CN104459435A (zh) * | 2014-11-21 | 2015-03-25 | 国家电网公司 | 一种用于变电站的接线验证方法及装置 |
CN105785144A (zh) * | 2016-05-23 | 2016-07-20 | 国网江苏省电力公司电力科学研究院 | 一种无线分布式变电站电气量整站检测系统及方法 |
CN109683030A (zh) * | 2019-01-09 | 2019-04-26 | 江苏智臻能源科技有限公司 | 一种终端相序自动识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109683030A (zh) | 2019-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020143492A1 (zh) | 一种终端相序自动识别方法 | |
US10218181B2 (en) | Grid frequency response | |
CN106199341A (zh) | 一种单相故障接地工况下的故障线路识别方法和装置 | |
CN110988600B (zh) | 一种配电网断线故障区间定位方法 | |
CN110531155B (zh) | 一种用于户变关系识别的投切电阻信号生成方法及系统 | |
CN105375498A (zh) | 三相换相开关装置 | |
CN103149492B (zh) | 一种基于智能电表的微电网短路故障诊断方法 | |
CN101738565A (zh) | 自适应故障指示器 | |
CN111342425A (zh) | 一种剩余电流动作断路器及台区网络拓扑识别方法 | |
CN105158722A (zh) | 一种电能表性能指标评价方法 | |
CN203337722U (zh) | 电网架空输电线路的电压和电流采集装置 | |
CN206096341U (zh) | 应用于配电网单相故障接地工况下的故障线路识别装置 | |
WO2014099135A1 (en) | Remote disconnect safety mechanism | |
CN111381127A (zh) | 矿山供电系统单相接地故障及绝缘监测的方法和装置 | |
CN211701459U (zh) | 一种实现剩余电流动作断路器装置 | |
CN203216993U (zh) | 电网谐波实时在线监测仪 | |
CN201378176Y (zh) | 变电站地网缺陷综合诊断系统抗干扰高精度激励电源 | |
CN105203886A (zh) | 一种电容型电流互感器在线检测装置及方法 | |
CN205176158U (zh) | 一种电容型电流互感器在线检测装置 | |
CN206250776U (zh) | 一种换相装置 | |
CN210465559U (zh) | 一种应用于智能建筑的电能质量在线检测装置 | |
CN104316762A (zh) | 一种配电变压器动态负载谐波监测方法及装置 | |
CN204495948U (zh) | 一种断线监测装置 | |
CN209709758U (zh) | 一种配电变压器一体式数字化智能终端 | |
CN112865323A (zh) | 一种基于智能ct的谐波分析和三相不平衡监测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19908220 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19908220 Country of ref document: EP Kind code of ref document: A1 |