WO2020143420A1 - 高像素广角日夜共焦光学系统及其应用的摄像模组 - Google Patents

高像素广角日夜共焦光学系统及其应用的摄像模组 Download PDF

Info

Publication number
WO2020143420A1
WO2020143420A1 PCT/CN2019/126536 CN2019126536W WO2020143420A1 WO 2020143420 A1 WO2020143420 A1 WO 2020143420A1 CN 2019126536 W CN2019126536 W CN 2019126536W WO 2020143420 A1 WO2020143420 A1 WO 2020143420A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
focal length
convex
concave
Prior art date
Application number
PCT/CN2019/126536
Other languages
English (en)
French (fr)
Inventor
刘洪海
刘振庭
刘佳俊
汪鸿飞
宁博
杜亮
徐程
龙泽刚
殷露冰
Original Assignee
广东弘景光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东弘景光电科技股份有限公司 filed Critical 广东弘景光电科技股份有限公司
Publication of WO2020143420A1 publication Critical patent/WO2020143420A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation

Definitions

  • the invention relates to an optical system and a camera module applied thereto, in particular to a high-pixel wide-angle day-night confocal optical system and an applied camera module.
  • day and night confocal optical systems or camera modules due to their large viewing angle, can observe a wider spatial range, while the characteristics of day and night confocal can also ensure that it is in day and night conditions Can work effectively, so it is widely used in the field of automobiles and driving assistance.
  • it lacks a large number of lenses and a complicated structure.
  • an embodiment of the present invention provides a high-pixel wide-angle day-night confocal optical system on one aspect.
  • High-pixel wide-angle day and night confocal optical system including the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens and the first lens in order from the object plane to the image plane along the optical axis Eight lens
  • the object side of the first lens is convex, and the image side is concave, and its optical power is negative;
  • the object side of the second lens is concave, and the image side is convex, and its optical power is positive;
  • the object side of the third lens is convex, and its optical power is positive;
  • the object side of the fourth lens is concave, and the image side is concave, and its optical power is negative;
  • the image surface side of the fifth lens is convex, and its optical power is positive;
  • the object side of the sixth lens is convex, and the image side is convex, and its optical power is positive;
  • the object side of the seventh lens is concave, the image side is convex, and its optical power is negative;
  • the object side of the eighth lens is convex, and the image side is convex, and its optical power is positive;
  • the optical system satisfies TTL/EFL ⁇ 5.40, where TTL is the distance between the vertex of the object side of the first lens of the optical system and the imaging plane, and EFL is the effective focal length of the optical system.
  • an embodiment of the present invention also provides a camera module.
  • a camera module at least includes an optical lens, and the above-mentioned high-pixel wide-angle day-night confocal optical system is installed in the optical lens.
  • the optical system or camera module of the embodiment of the present invention is mainly composed of 8 lenses.
  • the number of lenses is reasonable and the structure is simple. Different lenses are combined with each other and the power is reasonably distributed. It has day and night confocal, large viewing angle, high pixels, and Very good performance such as poor heat dissipation.
  • FIG. 1 is a schematic structural diagram 1 of an embodiment of an optical system or camera module of the present invention.
  • 2 is a distortion curve diagram at +25°C of an embodiment of the optical system or camera module of the present invention
  • FIG. 7 is a second schematic structural diagram of an embodiment of an optical system or camera module of the present invention.
  • FIG. 8 is a schematic structural diagram 3 of an embodiment of an optical system or camera module of the present invention.
  • FIG. 9 is a schematic structural diagram 4 of an embodiment of an optical system or camera module of the present invention.
  • FIG. 10 is a schematic structural diagram 5 of an embodiment of an optical system or camera module of the present invention.
  • this embodiment provides a high-pixel wide-angle day-night confocal optical system, which includes, in order from the object plane to the image plane 10 along the optical axis: a first lens 1, a second lens 2, a third lens 3, The fourth lens 4, the fifth lens 5, the sixth lens 6, the seventh lens 7, and the eighth lens 8.
  • the object side of the first lens 1 is convex, and the image side is concave, and its optical power is negative;
  • the object side of the second lens 2 is concave, the image side is convex, and its optical power is positive;
  • the object side of the third lens 3 is a convex surface, the image side is a flat surface, and its optical power is positive;
  • the object side of the fourth lens 4 is concave, and the image side is concave, and its optical power is negative;
  • the object surface side of the fifth lens 5 is a flat surface, the image surface side is a convex surface, and its optical power is positive;
  • the object side of the sixth lens 6 is a convex surface, and the image side is a convex surface, and its optical power is positive;
  • the object side of the seventh lens 7 is concave, the image side is convex, and its optical power is negative;
  • the object side of the eighth lens 8 is convex, and the image side is convex, and its optical power is positive;
  • the optical system satisfies TTL/EFL ⁇ 5.40, where TTL is the distance between the apex of the object side of the first lens 1 of the optical system and the imaging plane 10, and EFL is the effective focal length of the optical system.
  • the optical system of the embodiment of the present invention is mainly composed of 8 lenses.
  • the number of lenses is reasonable and the structure is simple. Different lenses are combined with each other and the power is reasonably distributed. It has day and night confocal, large viewing angle, high pixels, and very good Good performance such as poor heat.
  • the object side of the first lens 1 is convex, and the image side is concave, and its optical power is negative;
  • the object side of the second lens 2 is concave, the image side is convex, and its optical power is positive;
  • the object side of the third lens 3 is a convex surface, and the image side is a concave surface, and its optical power is positive;
  • the object side of the fourth lens 4 is concave, and the image side is concave, and its optical power is negative;
  • the object surface side of the fifth lens 5 is a flat surface, the image surface side is a convex surface, and its optical power is positive;
  • the object side of the sixth lens 6 is a convex surface, and the image side is a convex surface, and its optical power is positive;
  • the object side of the seventh lens 7 is concave, the image side is convex, and its optical power is negative;
  • the object surface side of the eighth lens 8 is a convex surface, and the image surface side is a convex surface, and its optical power is positive.
  • the object side of the first lens 1 is convex, and the image side is concave, and its optical power is negative;
  • the object side of the second lens 2 is concave, the image side is convex, and its optical power is positive;
  • the object side of the third lens 3 is convex, and the image side is convex, and its optical power is positive;
  • the object side of the fourth lens 4 is concave, and the image side is concave, and its optical power is negative;
  • the object surface side of the fifth lens 5 is a flat surface, the image surface side is a convex surface, and its optical power is positive;
  • the object side of the sixth lens 6 is a convex surface, and the image side is a convex surface, and its optical power is positive;
  • the object side of the seventh lens 7 is concave, the image side is convex, and its optical power is negative;
  • the object surface side of the eighth lens 8 is a convex surface, and the image surface side is a convex surface, and its optical power is positive.
  • the object side of the first lens 1 is convex, and the image side is concave, and its optical power is negative;
  • the object side of the second lens 2 is concave, the image side is convex, and its optical power is positive;
  • the object side of the third lens 3 is a convex surface, the image side is a flat surface, and its optical power is positive;
  • the object side of the fourth lens 4 is concave, and the image side is concave, and its optical power is negative;
  • the object side of the fifth lens 5 is convex, and the image side is convex, and its optical power is positive;
  • the object side of the sixth lens 6 is a convex surface, and the image side is a convex surface, and its optical power is positive;
  • the object side of the seventh lens 7 is concave, the image side is convex, and its optical power is negative;
  • the object surface side of the eighth lens 8 is a convex surface, and the image surface side is a convex surface, and its optical power is positive.
  • the object side of the first lens 1 is convex, and the image side is concave, and its optical power is negative;
  • the object side of the second lens 2 is concave, the image side is convex, and its optical power is positive;
  • the object side of the third lens 3 is a convex surface, the image side is a flat surface, and its optical power is positive;
  • the object side of the fourth lens 4 is concave, and the image side is concave, and its optical power is negative;
  • the object side of the fifth lens 5 is concave, the image side is convex, and its optical power is positive;
  • the object side of the sixth lens 6 is a convex surface, and the image side is a convex surface, and its optical power is positive;
  • the object side of the seventh lens 7 is concave, the image side is convex, and its optical power is negative;
  • the object surface side of the eighth lens 8 is a convex surface, and the image surface side is a convex surface, and its optical power is positive.
  • each lens of the optical system satisfies the following conditions:
  • f1 is the focal length of the first lens 1
  • f2 is the focal length of the second lens 2
  • f3 is the focal length of the third lens 3
  • f4 is the focal length of the fourth lens 4
  • f5 is the focal length of the fifth lens 5
  • f6 is the first
  • f7 is the focal length of the seventh lens 7
  • f8 is the focal length of the eighth lens 8.
  • each lens of the optical system satisfies the following conditions:
  • f is the focal length of the entire optical system
  • f1 is the focal length of the first lens 1
  • f2 is the focal length of the second lens 2
  • f3 is the focal length of the third lens 3
  • f4 is the focal length of the fourth lens 4
  • f5 is the fifth
  • f6 is the focal length of the sixth lens 6
  • f7 is the focal length of the seventh lens 7
  • f8 is the focal length of the eighth lens 8.
  • the material refractive index Nd1 of the first lens 1 and the material Abbe constant Vd1 satisfy: 1.67 ⁇ Nd1 ⁇ 1.95, 40 ⁇ Vd1 ⁇ 60.
  • the structure is simple, which can ensure good optical performance.
  • the material refractive index Nd2 and the material Abbe constant Vd2 of the second lens 2 satisfy: 1.70 ⁇ Nd2 ⁇ 1.95, 17 ⁇ Vd2 ⁇ 45.
  • the structure is simple, which can ensure good optical performance.
  • the material refractive index Nd3 and the material Abbe constant Vd3 of the third lens 3 satisfy: 1.75 ⁇ Nd3 ⁇ 1.95, 17 ⁇ Vd3 ⁇ 35.
  • the structure is simple, which can ensure good optical performance.
  • the material refractive index Nd4 and the material Abbe constant Vd4 of the fourth lens 4 satisfy: 1.45 ⁇ Nd4 ⁇ 1.75, 15 ⁇ Vd4 ⁇ 50.
  • the structure is simple, which can ensure good optical performance.
  • the material refractive index Nd5 and the material Abbe constant Vd5 of the fifth lens 5 satisfy: 1.45 ⁇ Nd5 ⁇ 1.75, 45 ⁇ Vd5 ⁇ 70.
  • the structure is simple, which can ensure good optical performance.
  • the material refractive index Nd6 and the material Abbe constant Vd6 of the sixth lens 6 satisfy: 1.45 ⁇ Nd6 ⁇ 1.65, 60 ⁇ Vd6 ⁇ 90.
  • the structure is simple, which can ensure good optical performance.
  • the material refractive index Nd7 of the seventh lens 7 and the material Abbe constant Vd7 satisfy: 1.75 ⁇ Nd7 ⁇ 2.05, 15 ⁇ Vd7 ⁇ 40.
  • the structure is simple, which can ensure good optical performance.
  • the material refractive index Nd8 and the material Abbe constant Vd8 of the eighth lens 8 satisfy: 1.45 ⁇ Nd8 ⁇ 1.65, 50 ⁇ Vd8 ⁇ 90.
  • the structure is simple, which can ensure good optical performance.
  • the sixth lens 6 and the seventh lens 7 are cemented with each other to form a combined lens.
  • the combined lens satisfies the following condition: 10 ⁇ f67 ⁇ 50, where f67 is the focal length of the combined lens.
  • the structure is simple, which can ensure good optical performance.
  • the first lens 1 to the eighth lens 8 are all glass spherical lenses.
  • the structure is simple, which can ensure good optical performance.
  • the diaphragm 9 of the optical system is located between the second lens 2 and the third lens 3. Used to adjust the intensity of the beam.
  • a double-pass filter is provided between the eighth lens 8 and the image plane 10 to allow visible light and designated infrared light to pass through.
  • the focal length f1 of the first lens 1 -5.22 mm
  • the focal length f2 of the second lens 2 145.54 mm
  • the focal length f3 of the third lens 3 8.18 mm
  • the focal length f4 of the fourth lens 4 -5.37mm
  • the focal length f5 of the fifth lens 5 7.19mm
  • the focal length f6 of the sixth lens 6 5.65mm
  • the focal length f7 of the seventh lens 7 -7.38mm
  • the focal length f8 of the eighth lens 8 13.96mm.
  • the basic parameters of this optical system are shown in the following table:
  • S1 and S2 correspond to the two surfaces of the first lens 1; S3 and S4 correspond to the two surfaces of the second lens 2; S5 is the diaphragm STO; S6 , S7 corresponds to the two surfaces of the third lens 3; S8, S9 corresponds to the two surfaces of the fourth lens 4; S10, S11 corresponds to the two surfaces of the fifth lens 5; S12, S13 corresponds to the sixth lens 6 S13, S14 correspond to the two surfaces of the seventh lens 7; S15, S16 correspond to the two surfaces of the eighth lens 8; S17, S18 correspond to the two surfaces of the dual-pass filter; IMA ⁇ 10.
  • the optical system of this embodiment has good performances such as day and night confocal, large viewing angle, high pixels, and very good adiabatic difference.
  • a camera module at least includes an optical lens, and the above-mentioned high-pixel wide-angle day-night confocal optical system is installed in the optical lens.
  • the camera module of the embodiment of the present invention is mainly composed of 8 lenses.
  • the number of lenses is reasonable and the structure is simple. Different lenses are combined with each other and the power is reasonably distributed. It has day and night confocal, large viewing angle, high pixels, and very good Good performance such as poor heat dissipation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种高像素广角日夜共焦光学系统,沿光轴从物面到像面(10)依次包括:第一透镜(1)、第二透镜(2)、第三透镜(3)、第四透镜(4)、第五透镜(5)、第六透镜(6)、第七透镜(7)以及第八透镜(8);第一透镜(1)的物面侧为凸面,像面侧为凹面;第二透镜(2)的物面侧为凹面,像面侧为凸面;第三透镜(3)的物面侧为凸面;第四透镜(4)为双凹透镜;第五透镜(5)的像面侧为凸面;第六透镜(6)为双凸透镜;第七透镜(7)的物面侧为凹面,像面侧为凸面;第八透镜(8)为双凸透镜。还提供了一种摄像模组。光学系统或摄像模组,主要由8枚透镜构成,镜片枚数合理,结构简单,具有良好光学性能。

Description

高像素广角日夜共焦光学系统及其应用的摄像模组 技术领域:
本发明涉及一种光学系统及其应用的摄像模组,尤其是一种高像素广角日夜共焦光学系统及其应用的摄像模组。
背景技术:
随着科学技术的发展,高像素广角日夜共焦光学系统或摄像模组,因其大视角,可以观察到更宽广的空间范围,同时日夜共焦特性又可以保证其在白天和黑夜情况下都能有效工作,因而广泛应用于汽车领域及辅助驾驶领域。但其存在镜片枚数多,结构复杂的缺乏。
发明内容:
为克服现有光学系统或摄像模组存在镜片枚数多,结构复杂的问题,本发明实施例一方面提供了一种高像素广角日夜共焦光学系统。
高像素广角日夜共焦光学系统,沿光轴从物面到像面依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜以及第八透镜;
所述第一透镜的物面侧为凸面,像面侧为凹面,其光焦度为负;
所述第二透镜的物面侧为凹面,像面侧为凸面,其光焦度为正;
所述第三透镜的物面侧为凸面,其光焦度为正;
所述第四透镜的物面侧为凹面,像面侧为凹面,其光焦度为负;
所述第五透镜的像面侧为凸面,其光焦度为正;
所述第六透镜的物面侧为凸面,像面侧为凸面,其光焦度为正;
所述第七透镜的物面侧为凹面,像面侧为凸面,其光焦度为负;
所述第八透镜的物面侧为凸面,像面侧为凸面,其光焦度为正;
其中,光学系统满足TTL/EFL≤5.40,其中TTL为光学系统的第一透镜物面侧顶点至成像面之间的距离,EFL为光学系统的有效焦距。
另一方面,本发明实施例还提供了一种摄像模组。
一种摄像模组,至少包括光学镜头,光学镜头内安装有上述所述的高像素广角日夜共焦光学系统。
本发明实施例之光学系统或摄像模组,主要由8枚透镜构成,镜片枚数合理,结构简单;采用不同透镜相互组合及合理分配光焦度,具有日夜共焦、大视角、高像素、以及非常好的消热差等良好性能。
附图说明:
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的光学系统或摄像模组实施例的结构示意图一;
图2为本发明的光学系统或摄像模组实施例的+25℃下的畸变曲线图;
图3为本发明的光学系统或摄像模组实施例的+25℃下的MTF曲线图;
图4为本发明的光学系统或摄像模组实施例的+25℃下的相对照度图;
图5为本发明的光学系统或摄像模组实施例的-40℃下的MTF曲线图;
图6为本发明的光学系统或摄像模组实施例的+85℃下的MTF曲线图;
图7为本发明的光学系统或摄像模组实施例的结构示意图二;
图8为本发明的光学系统或摄像模组实施例的结构示意图三;
图9为本发明的光学系统或摄像模组实施例的结构示意图四;
图10为本发明的光学系统或摄像模组实施例的结构示意图五。
具体实施方式:
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本实施例提供了一种高像素广角日夜共焦光学系统,沿光轴从物面到像面10依次包括:第一透镜1、第二透镜2、第三透镜3、第四透镜4、第五透镜5、第六透镜6、第七透镜7以及第八透镜8。
所述第一透镜1的物面侧为凸面,像面侧为凹面,其光焦度为负;
所述第二透镜2的物面侧为凹面,像面侧为凸面,其光焦度为正;
所述第三透镜3的物面侧为凸面,像面侧为平面,其光焦度为正;
所述第四透镜4的物面侧为凹面,像面侧为凹面,其光焦度为负;
所述第五透镜5的物面侧为平面,像面侧为凸面,其光焦度为正;
所述第六透镜6的物面侧为凸面,像面侧为凸面,其光焦度为正;
所述第七透镜7的物面侧为凹面,像面侧为凸面,其光焦度为负;
所述第八透镜8的物面侧为凸面,像面侧为凸面,其光焦度为正;
其中,光学系统满足TTL/EFL≤5.40,其中TTL为光学系统的第一透镜1物面侧顶点至成像面10之间的距离,EFL为光学系统的有效焦距。
本发明实施例之光学系统,主要由8枚透镜构成,镜片枚数合理,结构简单;采用不同透镜相互组合及合理分配光焦度,具有日夜共焦、大视角、高像素、以及非常好的消热差等良好性能。
进一步地,作为本发明的另一种优选实施方式而非限定,如图7所示,
所述第一透镜1的物面侧为凸面,像面侧为凹面,其光焦度为负;
所述第二透镜2的物面侧为凹面,像面侧为凸面,其光焦度为正;
所述第三透镜3的物面侧为凸面,像面侧为凹面,其光焦度为正;
所述第四透镜4的物面侧为凹面,像面侧为凹面,其光焦度为负;
所述第五透镜5的物面侧为平面,像面侧为凸面,其光焦度为正;
所述第六透镜6的物面侧为凸面,像面侧为凸面,其光焦度为正;
所述第七透镜7的物面侧为凹面,像面侧为凸面,其光焦度为负;
所述第八透镜8的物面侧为凸面,像面侧为凸面,其光焦度为正。
再进一步地,作为本发明的另一种优选实施方式而非限定,如图8所示,
所述第一透镜1的物面侧为凸面,像面侧为凹面,其光焦度为负;
所述第二透镜2的物面侧为凹面,像面侧为凸面,其光焦度为正;
所述第三透镜3的物面侧为凸面,像面侧为凸面,其光焦度为正;
所述第四透镜4的物面侧为凹面,像面侧为凹面,其光焦度为负;
所述第五透镜5的物面侧为平面,像面侧为凸面,其光焦度为正;
所述第六透镜6的物面侧为凸面,像面侧为凸面,其光焦度为正;
所述第七透镜7的物面侧为凹面,像面侧为凸面,其光焦度为负;
所述第八透镜8的物面侧为凸面,像面侧为凸面,其光焦度为正。
再进一步地,作为本发明的另一种优选实施方式而非限定,如图9所示,
所述第一透镜1的物面侧为凸面,像面侧为凹面,其光焦度为负;
所述第二透镜2的物面侧为凹面,像面侧为凸面,其光焦度为正;
所述第三透镜3的物面侧为凸面,像面侧为平面,其光焦度为正;
所述第四透镜4的物面侧为凹面,像面侧为凹面,其光焦度为负;
所述第五透镜5的物面侧为凸面,像面侧为凸面,其光焦度为正;
所述第六透镜6的物面侧为凸面,像面侧为凸面,其光焦度为正;
所述第七透镜7的物面侧为凹面,像面侧为凸面,其光焦度为负;
所述第八透镜8的物面侧为凸面,像面侧为凸面,其光焦度为正。
更进一步地,作为本发明的另一种优选实施方式而非限定,如图10所示,
所述第一透镜1的物面侧为凸面,像面侧为凹面,其光焦度为负;
所述第二透镜2的物面侧为凹面,像面侧为凸面,其光焦度为正;
所述第三透镜3的物面侧为凸面,像面侧为平面,其光焦度为正;
所述第四透镜4的物面侧为凹面,像面侧为凹面,其光焦度为负;
所述第五透镜5的物面侧为凹面,像面侧为凸面,其光焦度为正;
所述第六透镜6的物面侧为凸面,像面侧为凸面,其光焦度为正;
所述第七透镜7的物面侧为凹面,像面侧为凸面,其光焦度为负;
所述第八透镜8的物面侧为凸面,像面侧为凸面,其光焦度为正。
进一步地,作为本发明的一种优选实施方式而非限定,本光学系统的各透镜满足如下条件:
(1)-12<f1<-3;
(2)50<f2<150;
(3)5<f3<10;
(4)-10<f4<-3;
(5)5<f5<10;
(6)2<f6<10;
(7)-10<f7<-5;
(8)5<f8<20;
其中,f1为第一透镜1的焦距,f2为第二透镜2的焦距,f3为第三透镜3的焦距,f4为第四透镜4的焦距,f5为第五透镜5的焦距,f6为第六透镜6的焦距,f7为第七透镜7的焦距,f8为第八透镜8的焦距。通过不同透镜的相互组合及其合理分配光焦度,使光学系统具有大孔径、大视角、高像素、以及非常好的消热差等良好性能。
再进一步地,作为本发明的一种优选实施方式而非限定,该光学系统的各透镜满足如下条件:
(1)-5<f1/f<-1;
(2)5<f2/f<50;
(3)1<f3/f<10;
(4)-10<f4/f<-1;
(5)1.5<f5/f<10;
(6)1.0<f6/f<7;
(7)-7<f7/f<-1.2;
(8)2<f8/f<10;
其中,f为整个光学系统的焦距,f1为第一透镜1的焦距,f2为第二透镜2的焦距,f3为第三透镜3的焦距,f4为第四透镜4的焦距,f5为第五透镜5的焦距,f6为第六透镜6的焦距,f7为第七透镜7的焦距,f8为第八透镜8的焦距。通过不同透镜的相互组合及其合理分配光焦度,使光学系统具有大孔径、大视角、高像素、以及非常好的消热差等良好性能。
又进一步地,作为本发明的一种优选实施方式而非限定,第一透镜1的材料折射率Nd1、材料阿贝常数Vd1满足:1.67<Nd1<1.95,40<Vd1<60。结构简单,可保证良好的光学性能。
再进一步地,作为本发明的一种优选实施方式而非限定,第二透镜2的材料折射率Nd2、材料阿贝常数Vd2满足:1.70<Nd2<1.95,17<Vd2<45。结构简单,可保证良好的光学性能。
更进一步地,作为本发明的一种优选实施方式而非限定,第三透镜3的材料折射率Nd3、材料阿贝常数Vd3满足:1.75<Nd3<1.95,17<Vd3<35。结构简单,可保证良好的光学性能。
又进一步地,作为本发明的一种优选实施方式而非限定,第四透镜4的材料折射率Nd4、材料阿贝常数Vd4满足:1.45<Nd4<1.75,15<Vd4<50。结构简单,可保证良好的光学性能。
再进一步地,作为本发明的一种优选实施方式而非限定,第五透镜5的材料折射率Nd5、材料阿贝常数Vd5满足:1.45<Nd5<1.75,45<Vd5<70。结构简单,可保证良好的光学性能。
更进一步地,作为本发明的一种优选实施方式而非限定,第六透镜6的材料折射率Nd6、材料阿贝常数Vd6满足:1.45<Nd6<1.65,60<Vd6<90。结构简单,可保证良好的光学性能。
又进一步地,作为本发明的一种优选实施方式而非限定,第七透镜7的材料折射率Nd7、材料阿贝常数Vd7满足:1.75<Nd7<2.05,15<Vd7<40。结构简单,可保证良好的光学性能。
再进一步地,作为本发明的一种优选实施方式而非限定,第八透镜8的材料折射率Nd8、材料阿贝常数Vd8满足:1.45<Nd8<1.65,50<Vd8<90。结构简 单,可保证良好的光学性能。
更进一步地,作为本发明的一种优选实施方式而非限定,第六透镜6和第七透镜7相互胶合形成组合透镜。
又进一步地,作为本发明的一种优选实施方式而非限定,组合透镜满足如下条件:10<f67<50,其中,f67为组合透镜的焦距。结构简单,可保证良好的光学性能。
再进一步地,作为本发明的一种优选实施方式而非限定,第一透镜1至第八透镜8均为玻璃球面透镜。结构简单,可保证良好的光学性能。
更进一步地,作为本发明的一种优选实施方式而非限定,光学系统的光阑9位于第二透镜2与第三透镜3之间。用来调节光束的强度。
又进一步地,作为本发明的一种优选实施方式而非限定,所述第八透镜8与像面10之间设有双波通滤光片,允许可见光和指定红外光波通过。
具体地,在本实施例中,第一透镜1的焦距f1=-5.22mm,第二透镜2的焦距f2=145.54mm,第三透镜3的焦距f3=8.18mm,第四透镜4的焦距f4=-5.37mm,第五透镜5的焦距f5=7.19mm,第六透镜6的焦距f6=5.65mm,第七透镜7的焦距f7=-7.38mm,第八透镜8的焦距f8=13.96mm。本光学系统的各项基本参数如下表所示:
表面 曲率半径R(mm) 间隔D(mm) 折射率Nd 色散值Vd
S1 15.00 0.5 1.6 55
S2 2.90 2.2    
S3 -7.00 2.0 1.8 23
S4 -7.50 0.0    
S5 INFINITY 0.1    
S6 7.00 1.5 1.8 23
S7 INFINITY 0.5    
S8 -5.50 0.5 1.6 33
S9 10.00 0.3    
S10 INFINITY 1.7 1.6 56
S11 -4.50 0.1    
S12 7.50 2.0 1.4 70
S13 -4.00 0.4 1.9 17
S14 -9.70 0.1    
S15 12.00 2.0 1.4 70
S16 -15.00 1.0    
S17 INFINITY 0.3 1.5 64
S18 INFINITY 5.4    
IMA INFINITY 0.0    
上表中,沿光轴从物面到像面10,S1、S2对应为第一透镜1的两个表面;S3、S4对应为第二透镜2的两个表面;S5为光阑STO;S6、S7对应为第三透镜3的两个表面;S8、S9对应为第四透镜4的两个表面;S10、S11对应为第五透镜5的两个表面;S12、S13对应为第六透镜6的两个表面;S13、S14对应为第七透镜7的两个表面;S15、S16对应为第八透镜8的两个表面;S17、S18对应为双波通滤光片的两个表面;IMA为像面10。
从图2至图6中可以看出,本实施例之光学系统具有日夜共焦、大视角、高像素、以及非常好的消热差等良好性能。
一种摄像模组,至少包括光学镜头,光学镜头内安装有上述所述的高像素 广角日夜共焦光学系统。
本发明实施例之摄像模组,主要由8枚透镜构成,镜片枚数合理,结构简单;采用不同透镜相互组合及合理分配光焦度,具有日夜共焦、大视角、高像素、以及非常好的消热差等良好性能。
如上所述是结合具体内容提供的一种或多种实施方式,并不认定本发明的具体实施只局限于这些说明。凡与本发明的方法、结构等近似、雷同,或是对于本发明构思前提下做出若干技术推演或替换,都应当视为本发明的保护范围。

Claims (10)

  1. 高像素广角日夜共焦光学系统,沿光轴从物面到像面依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜以及第八透镜;其特征在于,
    所述第一透镜的物面侧为凸面,像面侧为凹面,其光焦度为负;
    所述第二透镜的物面侧为凹面,像面侧为凸面,其光焦度为正;
    所述第三透镜的物面侧为凸面,其光焦度为正;
    所述第四透镜的物面侧为凹面,像面侧为凹面,其光焦度为负;
    所述第五透镜的像面侧为凸面,其光焦度为正;
    所述第六透镜的物面侧为凸面,像面侧为凸面,其光焦度为正;
    所述第七透镜的物面侧为凹面,像面侧为凸面,其光焦度为负;
    所述第八透镜的物面侧为凸面,像面侧为凸面,其光焦度为正;
    其中,光学系统满足TTL/EFL≤5.40,其中TTL为光学系统的第一透镜物面侧顶点至成像面之间的距离,EFL为光学系统的有效焦距。
  2. 根据权利要求1所述的高像素广角日夜共焦光学系统,其特征在于,该光学系统的各透镜满足如下条件:
    (1)-12<f1<-3;
    (2)50<f2<150;
    (3)5<f3<10;
    (4)-10<f4<-3;
    (5)5<f5<10;
    (6)2<f6<10;
    (7)-10<f7<-5;
    (8)5<f8<20;
    其中,f1为第一透镜的焦距,f2为第二透镜的焦距,f3为第三透镜的焦距,f4为第四透镜的焦距,f5为第五透镜的焦距,f6为第六透镜的焦距,f7为第七透镜的焦距,f8为第八透镜的焦距。
  3. 根据权利要求1所述的高像素广角日夜共焦光学系统,其特征在于,该光学系统的各透镜满足如下条件:
    (1)-5<f1/f<-1;
    (2)5<f2/f<50;
    (3)1<f3/f<10;
    (4)-10<f4/f<-1;
    (5)1.5<f5/f<10;
    (6)1.0<f6/f<7;
    (7)-7<f7/f<-1.2;
    (8)2<f8/f<10;
    其中,f为整个光学系统的焦距,f1为第一透镜的焦距,f2为第二透镜的焦距,f3为第三透镜的焦距,f4为第四透镜的焦距,f5为第五透镜的焦距,f6为第六透镜的焦距,f7为第七透镜的焦距,f8为第八透镜的焦距。
  4. 根据权利要求1或2或3所述的高像素广角日夜共焦光学系统,其特征在于,第一透镜的材料折射率Nd1、材料阿贝常数Vd1满足:1.67<Nd1<1.95,40<Vd1<60。
  5. 根据权利要求1或2或3所述的高像素广角日夜共焦光学系统,其特征在于,第二透镜的材料折射率Nd2、材料阿贝常数Vd2满足:1.70<Nd2<1.95,17<Vd2<45。
  6. 根据权利要求1或2或3所述的高像素广角日夜共焦光学系统,其特征在于,第三透镜的材料折射率Nd3、材料阿贝常数Vd3满足:1.75<Nd3<1.95,17<Vd3<35。
  7. 根据权利要求1或2或3所述的高像素广角日夜共焦光学系统,其特征在于,第四透镜的材料折射率Nd4、材料阿贝常数Vd4满足:1.45<Nd4<1.75,15<Vd4<50。
  8. 根据权利要求1或2或3所述的高像素广角日夜共焦光学系统,其特征在于,第五透镜的材料折射率Nd5、材料阿贝常数Vd5满足:1.45<Nd5<1.75,45<Vd5<70。
  9. 根据权利要求1或2或3所述的高像素广角日夜共焦光学系统,其特征在于,第六透镜的材料折射率Nd6、材料阿贝常数Vd6满足:1.45<Nd6<1.65,60<Vd6<90。
  10. 一种摄像模组,至少包括光学镜头,其特征在于,光学镜头内安装有权利要求1-9任一项所述的高像素广角日夜共焦光学系统。
PCT/CN2019/126536 2019-01-07 2019-12-19 高像素广角日夜共焦光学系统及其应用的摄像模组 WO2020143420A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910010426.8 2019-01-07
CN201910010426.8A CN109581634B (zh) 2019-01-07 2019-01-07 高像素广角日夜共焦光学系统及其应用的摄像模组

Publications (1)

Publication Number Publication Date
WO2020143420A1 true WO2020143420A1 (zh) 2020-07-16

Family

ID=65915694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126536 WO2020143420A1 (zh) 2019-01-07 2019-12-19 高像素广角日夜共焦光学系统及其应用的摄像模组

Country Status (2)

Country Link
CN (3) CN109581634B (zh)
WO (1) WO2020143420A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929816A (zh) * 2020-08-20 2020-11-13 湖南长步道光学科技有限公司 一种高清航拍光学系统及镜头
CN114442285A (zh) * 2021-12-23 2022-05-06 广东弘景光电科技股份有限公司 基于自由曲面设计的摄像模组

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581634B (zh) * 2019-01-07 2023-11-21 广东弘景光电科技股份有限公司 高像素广角日夜共焦光学系统及其应用的摄像模组
CN110161655A (zh) * 2019-05-28 2019-08-23 广东弘景光电科技股份有限公司 广角日夜共焦型无热化光学系统及其应用的摄像模组
CN110531589B (zh) * 2019-08-16 2024-03-26 中山依瓦塔光学有限公司 一种光刻机的投影物镜镜头
CN114185158B (zh) * 2021-12-07 2024-04-09 苏州东方克洛托光电技术有限公司 一种日盲紫外波段成像镜头
CN114994875B (zh) * 2022-08-04 2022-11-18 东莞市宇瞳光学科技股份有限公司 一种长焦镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642229A (en) * 1993-06-15 1997-06-24 Mitsubishi Denki Kabushiki Kaisha Projection lens unit
JP4278756B2 (ja) * 1998-07-16 2009-06-17 株式会社ニコン 読取用レンズ
CN107167898A (zh) * 2017-06-29 2017-09-15 江西联创电子有限公司 鱼眼镜头
CN107367828A (zh) * 2017-09-15 2017-11-21 东莞市宇瞳光学科技股份有限公司 一种大光圈4k定焦镜头
CN109581634A (zh) * 2019-01-07 2019-04-05 广东弘景光电科技股份有限公司 高像素广角日夜共焦光学系统及其应用的摄像模组
CN209400781U (zh) * 2019-01-07 2019-09-17 广东弘景光电科技股份有限公司 高像素广角日夜共焦光学系统及其应用的摄像模组

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3514318B2 (ja) * 1992-10-16 2004-03-31 富士写真光機株式会社 撮影用レンズ
JP2003287679A (ja) * 2002-03-27 2003-10-10 Ricoh Co Ltd ズームレンズおよびカメラ装置
JP2006106117A (ja) * 2004-09-30 2006-04-20 Nikon Corp ズームレンズ
EP2397880B1 (en) * 2010-06-16 2017-04-12 Ricoh Company, Ltd. Image-forming lens, and camera device and portable information terminal device with the image-forming lens
CN102566015A (zh) * 2010-12-29 2012-07-11 凤凰光学(上海)有限公司 定焦型投影机镜头
JP2012173299A (ja) * 2011-02-17 2012-09-10 Sony Corp 撮像レンズおよび撮像装置
JP2013235239A (ja) * 2012-04-12 2013-11-21 Konica Minolta Inc マクロレンズおよび撮像装置
JP6238103B2 (ja) * 2013-03-15 2017-11-29 株式会社リコー 撮像光学系、カメラ装置および携帯情報端末装置
JP6148145B2 (ja) * 2013-10-04 2017-06-14 株式会社シグマ 結像光学系
CN105866932B (zh) * 2016-05-30 2018-07-03 广东弘景光电科技股份有限公司 高像素日夜共焦全景摄像光学系统及其应用的镜头
CN106842504B (zh) * 2017-02-24 2022-09-13 东莞市宇光光电科技有限公司 内窥用摄像物镜光学系统
CN108983400B (zh) * 2017-06-01 2021-11-12 富晋精密工业(晋城)有限公司 超广角镜头
CN114137694B (zh) * 2017-11-22 2024-04-19 浙江舜宇光学有限公司 光学成像镜头
CN208156289U (zh) * 2018-03-27 2018-11-27 广东弘景光电科技股份有限公司 高像素超广角光学系统及其应用的摄像模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642229A (en) * 1993-06-15 1997-06-24 Mitsubishi Denki Kabushiki Kaisha Projection lens unit
JP4278756B2 (ja) * 1998-07-16 2009-06-17 株式会社ニコン 読取用レンズ
CN107167898A (zh) * 2017-06-29 2017-09-15 江西联创电子有限公司 鱼眼镜头
CN107367828A (zh) * 2017-09-15 2017-11-21 东莞市宇瞳光学科技股份有限公司 一种大光圈4k定焦镜头
CN109581634A (zh) * 2019-01-07 2019-04-05 广东弘景光电科技股份有限公司 高像素广角日夜共焦光学系统及其应用的摄像模组
CN209400781U (zh) * 2019-01-07 2019-09-17 广东弘景光电科技股份有限公司 高像素广角日夜共焦光学系统及其应用的摄像模组

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929816A (zh) * 2020-08-20 2020-11-13 湖南长步道光学科技有限公司 一种高清航拍光学系统及镜头
CN114442285A (zh) * 2021-12-23 2022-05-06 广东弘景光电科技股份有限公司 基于自由曲面设计的摄像模组
CN114442285B (zh) * 2021-12-23 2024-05-03 广东弘景光电科技股份有限公司 基于自由曲面设计的摄像模组

Also Published As

Publication number Publication date
CN111796404B (zh) 2022-04-15
CN111796405A (zh) 2020-10-20
CN111796405B (zh) 2022-04-15
CN111796404A (zh) 2020-10-20
CN109581634B (zh) 2023-11-21
CN109581634A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2020143420A1 (zh) 高像素广角日夜共焦光学系统及其应用的摄像模组
WO2018176924A1 (zh) 超广角摄像光学系统及其应用的摄像模组
CN108445608B (zh) 高像素广角红外光学系统及其应用的摄像模组
CN106443976B (zh) 大孔径高清光学系统及其应用的镜头
CN210072173U (zh) 广角日夜共焦型无热化光学系统及其应用的摄像模组
CN108319004B (zh) 高像素超广角光学系统及其应用的摄像模组
CN107193111B (zh) 高像素鱼眼光学系统及其应用的摄像模组
CN109116516A (zh) 大光圈光学系统及其应用的摄像模组
CN209400781U (zh) 高像素广角日夜共焦光学系统及其应用的摄像模组
CN107065138B (zh) 小体积高像素鱼眼光学系统及其应用的摄像模组
CN111045197A (zh) 高清广角日夜共焦光学系统及其应用的摄像模组
CN211878291U (zh) 高清广角日夜共焦光学系统及摄像模组
CN107608058B (zh) 低畸变广角光学系统
CN108614344B (zh) 一种车载广角镜头
CN110161655A (zh) 广角日夜共焦型无热化光学系统及其应用的摄像模组
CN107621689B (zh) 小型化鱼眼光学系统
CN107121758B (zh) 高像素超广角光学系统及其应用的摄像模组
CN207440378U (zh) 小型化鱼眼光学系统及其应用的摄像模组
CN114609762B (zh) 小体积大广角光学系统及其应用的摄像模组
CN207181793U (zh) 高像素鱼眼光学系统及其应用的摄像模组
CN114815175B (zh) 广角高清光学系统及其应用的摄像模组
CN108427184A (zh) 共焦化大靶面深度成像光学系统及其应用的摄像模组
CN111781713B (zh) 超广角超高像素低色差的小体积鱼眼光学系统
WO2021082223A1 (zh) 高像素红外光学系统及其应用的摄像模组
WO2020207049A1 (zh) 疲劳驾驶预警用监控光学系统及其应用的摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908646

Country of ref document: EP

Kind code of ref document: A1