WO2020143228A1 - Pile de surveillance beidou de haute précision intégrée à un gyroscope électronique - Google Patents

Pile de surveillance beidou de haute précision intégrée à un gyroscope électronique Download PDF

Info

Publication number
WO2020143228A1
WO2020143228A1 PCT/CN2019/101556 CN2019101556W WO2020143228A1 WO 2020143228 A1 WO2020143228 A1 WO 2020143228A1 CN 2019101556 W CN2019101556 W CN 2019101556W WO 2020143228 A1 WO2020143228 A1 WO 2020143228A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnss
monitoring pile
gnss receiver
electronic gyroscope
dtu
Prior art date
Application number
PCT/CN2019/101556
Other languages
English (en)
Chinese (zh)
Inventor
梁晓东
周俊华
熊用
杨振武
雷创业
Original Assignee
湖南联智桥隧技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南联智桥隧技术有限公司 filed Critical 湖南联智桥隧技术有限公司
Publication of WO2020143228A1 publication Critical patent/WO2020143228A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the technical field of foundation pit monitoring, in particular to an integrated electronic gyroscope high-precision Beidou monitoring pile.
  • geological changes are usually detected through satellite remote sensing technology or using aircraft aerial photography, and the subtle changes in the geological environment cannot be found, which affects the timeliness of monitoring the geological environment.
  • the purpose of the present invention is to provide a high-precision Beidou monitoring pile integrated with an electronic gyroscope to solve the problems of real-time monitoring and poor reliability of monitoring accuracy.
  • the present invention provides a high-precision Beidou monitoring pile with integrated electronic gyroscope, which includes a monitoring pile body, a DTU and GNSS receiver installed inside the monitoring pile body, a GNSS measuring antenna fixed on the top of the monitoring pile body, and The photovoltaic power supply system fixed on the monitoring pile.
  • the DTU is connected to the COM interface of the GNSS receiver through a serial cable; the GNSS measurement antenna is connected to the ANT interface of the GNSS receiver through an antenna cable; the photovoltaic power supply system is connected to the DTU and GNSS receiver through a power cable, respectively, to provide power for the equipment.
  • the GNSS receiver's PCB main board integrates an electronic gyroscope, GNSS board and MCU to improve the positioning accuracy and effectiveness of the Beidou monitoring pile.
  • a 4G antenna is connected to the DTU for communication.
  • the GNSS board is an OEM board, and the OEM board is a GNSS high-precision positioning and orientation board.
  • the photovoltaic power supply system includes a photovoltaic panel, a photovoltaic controller and a battery; the photovoltaic panel is fixed on the monitoring pile through a triangular bracket, and the photovoltaic controller is connected to the photovoltaic panel and the battery through a power cord, respectively.
  • a radome is provided outside the GNSS measurement antenna to protect the GNSS measurement antenna.
  • the present invention is an integrated electronic gyroscope high-precision Beidou monitoring pile, which integrates a high-precision electronic gyroscope and MCU (micro control unit) on the GNSS receiver main board to improve the resolution accuracy.
  • the invention has simple structure design, convenient connection, embedded MCU, strong controllability and low cost.
  • the GNSS measuring antenna receives the Beidou navigation satellite signal, and the signal is transmitted to the GNSS receiver's PCB main board for decoding.
  • the MCU (micro control unit) on the GNSS receiver reads the attitude on the electronic gyroscope Data and decoded data;
  • GNSS receiver packages the received attitude data and decoded data together through a serial line to DTU (data transmission unit), DTU has a built-in communication card, and transmits the received data to the server through the operator network for settlement Analysis;
  • the GNSS receiver uses the satellite data received by the DTU and the real-time data information of the electronic gyroscope to send to the server at the same time, realizing the real-time auxiliary correction of the GNSS calculation results to achieve high-precision monitoring.
  • Figure 1 is a schematic diagram of Beidou monitoring pile structure
  • Figure 2 is a schematic diagram of the internal wiring of the Beidou monitoring pile
  • Figure 3 is a schematic diagram of a GNSS receiver
  • FIG. 4 is a schematic diagram of the structure of the GNSS receiver motherboard
  • Figure 5 is a schematic diagram of the function control of the GNSS receiver motherboard
  • Figure 6 is the positioning result of 1s output (2mm one grid);
  • Figure 7 is the 1min output positioning results (0.5mm one grid).
  • Figure 8 is the 15min output positioning results (0.5mm one grid).
  • Figure 9 is 1h output positioning results (north to 0.02mm a grid).
  • Figure 10 is the 12h output positioning results (north to 0.02mm a grid);
  • Figure 11 is the 24h output positioning results
  • Figure 12 is the eastward 1h filter positioning results
  • Figure 13 is the northbound 1h filter positioning results
  • Figure 14 is the result of the 1h filtering positioning in the sky
  • a high-precision Beidou monitoring pile with integrated electronic gyroscope includes a monitoring pile body 1, a DTU2 and a GNSS receiver 3 installed inside the monitoring pile body, and a GNSS measuring antenna 4 fixed on the top of the monitoring pile body And a photovoltaic power supply system 5 fixed on the monitoring pile; the GNSS measuring antenna 4 is provided with a radome outside to protect the GNSS measuring antenna.
  • DTU2 is connected to the COM interface of GNSS receiver 3 through serial line 3.3; GNSS measurement antenna 4 is connected to the ANT interface of GNSS receiver 3 through antenna connection line 4.1; PV power supply system 5 is connected to DTU2 and GNSS receiver 3 through power line 5.4, respectively Connect to provide power for the device; 4G antenna 2.1 is connected to the DTU2 for communication.
  • the GNSS receiver 3 integrates the electronic gyroscope 3.1, GNSS board and MCU on the PCB main board to improve the positioning accuracy and effectiveness of the Beidou monitoring pile.
  • the GNSS board is preferably an OEM board 3.2, which is a GNSS high-precision positioning and orientation board.
  • the photovoltaic power supply system 5 includes a photovoltaic panel 5.1, a photovoltaic controller 5.2 and a battery 5.3; the photovoltaic panel 5.1 is fixed on the monitoring pile 1 by a triangular bracket, and the photovoltaic controller 5.2 is respectively connected to the photovoltaic panel 5.1 and the battery 5.3 through a power cord 5.4 .
  • the physical indicators of the GNSS receiver are shown in the following table:
  • the GNSS measuring antenna receives the Beidou navigation satellite signal, and the signal is transmitted to the OEM board of the GNSS receiver for decoding.
  • the MCU (micro control unit) on the GNSS receiver reads the attitude data on the electronic gyroscope and decodes it. data.
  • the GNSS receiver packages and transmits the received attitude data and decoded data to the DTU through the serial line.
  • the DTU has a built-in communication card, and transmits the received data to the server through the operator's network for settlement analysis.
  • the GNSS receiver uses the satellite data received by the DTU and the real-time data information of the electronic gyroscope to send to the server at the same time, to achieve real-time auxiliary correction of the GNSS calculation results to achieve high-precision monitoring.
  • This embodiment is used to detect the timeliness of the positioning solution of the Beidou monitoring pile.
  • Test equipment and tools two sets of integrated electronic gyroscope high-precision Beidou monitoring pile, GNSS measuring antenna, tripod measuring instrument. (Note: In order to better simulate the deformation of the foundation pit during actual use, this embodiment does not fix the GNSS receiver, DTU and other components on the detection pile, and uses a power box to replace the photovoltaic power supply system to supply power to the corresponding equipment.)
  • Two GNSS receivers with DTU are placed in the power box and connected to the power supply; one of the two GNSS measuring antennas is used as the reference station antenna, placed on the detection pier, fixed; the other GNSS measuring antenna Placed as a rover antenna on a tripod measuring instrument.
  • the differential data output by the base station contains original satellite observation data (Beidou, GPS pseudorange, carrier phase, navigation message, etc.) and coordinate information.
  • the monitoring point not only receives data from the base station through the data link, but also collects satellite observations.
  • the data is composed of differential observations in the system for real-time processing, and at the same time gives centimeter-level positioning results, plus smoothing and filtering algorithms, it can achieve millimeter-level accuracy after initialization.
  • output gpenu sentence (gpenu sentence is a custom command, its function is to output different filtering positioning structure), the output contains 1s, 1min, 15min, 1h, 12h, 24h smooth data, matlab read After taking, calculate the mean, standard deviation and peak-to-peak value of each direction, the unit is meter.
  • the advantage of smoothing and filtering algorithm is that the real-time result per second may be centimeter level, and the result after 24 hours is millimeter level .
  • the output result is the northeast sky position relative to the reference station, as shown in the following table:
  • the eastward standard deviation of the output at 12h is 0.05mm, the northward standard deviation is 0.08mm, and the skyward standard deviation is 0.07mm;
  • the eastward standard deviation of the 24h output is 0.05mm
  • the northward standard deviation is 0.04mm
  • the skyward standard deviation is 0.05mm.
  • This embodiment is used to detect the monitoring accuracy of the Beidou monitoring pile.
  • Test equipment and tools two sets of integrated electronic gyroscope high-precision Beidou monitoring pile equipment (one group serves as a reference station, the other group serves as a rover), and a tripod measuring instrument.
  • this embodiment does not fix the GNSS receiver, DTU and other components on the monitoring pile, and uses a power box to replace the photovoltaic power supply system to supply power to the corresponding equipment.
  • Two GNSS receivers with DTU are placed in the power box and connected to the power supply; one of the two GNSS measuring antennas is used as a reference antenna, placed on the monitoring pier, fixed; the other GNSS measuring antenna As the rover antenna is placed on the tripod measuring instrument, the rover antenna can be moved on the tripod measuring instrument in the horizontal and elevation directions by millimeters.
  • the test time is from 14:00 to 20:00. When it is ready, the power-on test starts at 14:15. The initialization time of this test is 1h (more than 12h is recommended). Then during the test, the displacement of the rover antenna is adjusted at intervals (randomly selected time points) to simulate the deformation of the foundation pit during actual use.
  • the GNSS receiver of the rover will transmit the positioning results to the server in real time, and compare the uploaded positioning results with the real movement parameters by reading.
  • the coordinates used in this test are northeast sky coordinates.
  • the horizontal movement during the test is mainly along the north direction, and there is basically no change in the east direction.
  • the sky direction is the elevation direction.
  • the specific data analysis is as follows.
  • the abscissa represents time, and the ordinate represents eastward distance, and the minimum scale is 0.1mm. It can be seen from the figure that the eastward position does not change much, the change value is within millimeters, the peak The peak value is 1mm, that is, the change value fluctuates within 1mm.
  • the abscissa represents the time
  • the ordinate represents the northward distance
  • each cell of the ordinate is 1mm, according to the positioning results uploaded by real-time settlement:
  • the abscissa represents time
  • the ordinate represents the distance in the sky direction.
  • Each cell of the ordinate is 1mm.
  • the eastward position is stable and the displacement fluctuates within 1mm; the northward (horizontal direction) detects 4.5mm and 4mm fluctuations each time; the elevation (elevation direction) has 3mm and 2mm fluctuations each time.
  • the test result error is within the true value 2mm fluctuation range (RMS), and the test result meets the requirements.

Abstract

L'invention concerne une pile de surveillance Beidou de haute précision intégrée à un gyroscope électronique, comprenant un corps de pile de surveillance (1), une unité de transfert de données, DTU, (2) et un récepteur de système mondial de navigation par satellite, GNSS, (3) monté à l'intérieur du corps de pile de surveillance (1), une antenne de mesure GNSS (4) fixée au sommet du corps de pile de surveillance (1), et un système d'alimentation électrique photovoltaïque (5) fixé sur le corps de pile de surveillance (1). La DTU (2) est connectée à une interface de communication, COM, du récepteur GNSS (3) au moyen d'une ligne de port série (3,3) ; l'antenne de mesure GNSS (4) est connectée à une interface d'antenne, ANT, du récepteur GNSS (3) au moyen d'une ligne de connexion d'antenne (4.1) ; le système d'alimentation électrique photovoltaïque (5) est connecté séparément à la DTU (2) et au récepteur GNSS (3) au moyen d'une ligne d'alimentation (5.4) pour alimenter en électricité un équipement. Un gyroscope électronique (3.1), une carte GNSS et une unité de micro-contrôleur, MCU, sont intégrés sur une carte mère à carte de circuit imprime, PCB, du récepteur GNSS (3) pour améliorer la précision de positionnement et la rapidité de la pile de surveillance BeiDou. L'antenne de mesure GNSS (4) reçoit des signaux de satellite de navigation BeiDou, et transmet les signaux à la carte mère du récepteur GNSS (3) pour un décodage ; le récepteur GNSS (3) envoie des données de satellite reçues par la DTU (2) et des informations de données en temps réel du gyroscope électronique (3.1) simultanément à un serveur, ce qui permet de mettre en oeuvre une correction auxiliaire en temps réel d'un résultat de solution GNSS pour obtenir une surveillance de haute précision.
PCT/CN2019/101556 2019-01-11 2019-08-20 Pile de surveillance beidou de haute précision intégrée à un gyroscope électronique WO2020143228A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910027411.2A CN109581420A (zh) 2019-01-11 2019-01-11 一种集成电子陀螺仪高精度北斗监测桩
CN201910027411.2 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020143228A1 true WO2020143228A1 (fr) 2020-07-16

Family

ID=65916609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101556 WO2020143228A1 (fr) 2019-01-11 2019-08-20 Pile de surveillance beidou de haute précision intégrée à un gyroscope électronique

Country Status (2)

Country Link
CN (1) CN109581420A (fr)
WO (1) WO2020143228A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581420A (zh) * 2019-01-11 2019-04-05 湖南联智桥隧技术有限公司 一种集成电子陀螺仪高精度北斗监测桩
CN110161546B (zh) * 2019-05-23 2021-04-16 杭州中科微电子有限公司 一种利用迭代加权模糊度函数法的卫星定向装置及方法
CN110133686A (zh) * 2019-06-06 2019-08-16 上海华测导航技术股份有限公司 高集成度的北斗卫星地灾专业监测站
CN111538057A (zh) * 2019-12-27 2020-08-14 广东电网有限责任公司电力科学研究院 一种北斗定位装置及其定位方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636149A (zh) * 2012-05-04 2012-08-15 东南大学 挠性体动态变形的组合测量装置及测量方法
CN102661716A (zh) * 2012-04-20 2012-09-12 武汉理工大学 基于光纤陀螺技术的桥梁和隧道线形及刚度检测方法与系统
CN107449392A (zh) * 2017-08-14 2017-12-08 中国电建集团成都勘测设计研究院有限公司 基于惯性测量单元的边坡变形测量方法
US20180073870A1 (en) * 2015-04-10 2018-03-15 Octio As Method and system for measuring subsidence
CN207779468U (zh) * 2018-02-28 2018-08-28 湖南联智桥隧技术有限公司 基于北斗卫星导航系统的一体式边坡监测桩
CN109581420A (zh) * 2019-01-11 2019-04-05 湖南联智桥隧技术有限公司 一种集成电子陀螺仪高精度北斗监测桩
CN209433013U (zh) * 2019-01-11 2019-09-24 湖南联智桥隧技术有限公司 一种集成电子陀螺仪高精度北斗监测桩

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293535B (zh) * 2013-05-24 2015-11-18 北京东方计量测试研究所 卫星导航接收机实时测试系统
CN107329001A (zh) * 2017-05-25 2017-11-07 北京中科飞龙传感技术有限责任公司 基于mems电场传感器的临近带电线路监控报警装置
CN108519045A (zh) * 2018-05-14 2018-09-11 桂林电子科技大学 一种北斗精密形变监测与预警系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661716A (zh) * 2012-04-20 2012-09-12 武汉理工大学 基于光纤陀螺技术的桥梁和隧道线形及刚度检测方法与系统
CN102636149A (zh) * 2012-05-04 2012-08-15 东南大学 挠性体动态变形的组合测量装置及测量方法
US20180073870A1 (en) * 2015-04-10 2018-03-15 Octio As Method and system for measuring subsidence
CN107449392A (zh) * 2017-08-14 2017-12-08 中国电建集团成都勘测设计研究院有限公司 基于惯性测量单元的边坡变形测量方法
CN207779468U (zh) * 2018-02-28 2018-08-28 湖南联智桥隧技术有限公司 基于北斗卫星导航系统的一体式边坡监测桩
CN109581420A (zh) * 2019-01-11 2019-04-05 湖南联智桥隧技术有限公司 一种集成电子陀螺仪高精度北斗监测桩
CN209433013U (zh) * 2019-01-11 2019-09-24 湖南联智桥隧技术有限公司 一种集成电子陀螺仪高精度北斗监测桩

Also Published As

Publication number Publication date
CN109581420A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2020143228A1 (fr) Pile de surveillance beidou de haute précision intégrée à un gyroscope électronique
CN110501736B (zh) 利用视觉影像和gnss测距信号紧耦合定位系统与方法
CN101008669A (zh) 基于gprs通讯的米级精度实时差分gps手持采集器
CN201266237Y (zh) 高精度gps差分系统
CN103974197A (zh) 一种基于蓝牙技术的室内定位系统
CN101784908A (zh) 卫星定位系统中的独立高度测量
KR20200077325A (ko) 간편 설치형 내수침수 감지시스템
CN105527656A (zh) 塔架式机场跑道异物定位方法
CN201081728Y (zh) 一种便携式卫星天线辅助寻星装置
CN102735209B (zh) 一种基于向量分解法的光伏跟踪系统跟踪精度的测量方法
CN209433013U (zh) 一种集成电子陀螺仪高精度北斗监测桩
CN205015483U (zh) 基于北斗导航卫星的无人机差分精密定位系统
CN204758845U (zh) 一种基于物联网的微型气象监测装置
CN103529464A (zh) 基于北斗卫星系统的终端设备
CN103744083A (zh) 一种浮标式声纳导航系统装置
CN102879834B (zh) 一种实现卫星导航气象探空仪导航数据通信的方法
CN106895821A (zh) 一种基于北斗定位系统的沉降监测路灯
KR20200077326A (ko) 볼라드형 내수침수 모니터링 시스템
CN102646318A (zh) 电力野外巡线遇险呼救器及呼救方法
CN213363858U (zh) 一种复杂环境下输电杆塔监测装置
CN204925404U (zh) 目标定位装置
CN208060721U (zh) 一种基于gprs移动端的人员定位装置
CN109143299B (zh) 基于gps的室内高精度经纬线映射定位方法及系统
CN208953696U (zh) 一种基于4g网络通信的厘米级定位与惯性导航装置
CN204719392U (zh) 一种能与gnss-rtk快速连接联合使用的全景相机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909097

Country of ref document: EP

Kind code of ref document: A1