WO2020143187A1 - 一种用于海上风电塔基探测的声波远探测成像与评价系统 - Google Patents

一种用于海上风电塔基探测的声波远探测成像与评价系统 Download PDF

Info

Publication number
WO2020143187A1
WO2020143187A1 PCT/CN2019/093141 CN2019093141W WO2020143187A1 WO 2020143187 A1 WO2020143187 A1 WO 2020143187A1 CN 2019093141 W CN2019093141 W CN 2019093141W WO 2020143187 A1 WO2020143187 A1 WO 2020143187A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
offshore wind
wind power
evaluation system
power tower
Prior art date
Application number
PCT/CN2019/093141
Other languages
English (en)
French (fr)
Inventor
王东
赵刚
Original Assignee
中科云声(苏州)电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科云声(苏州)电子科技有限公司 filed Critical 中科云声(苏州)电子科技有限公司
Publication of WO2020143187A1 publication Critical patent/WO2020143187A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/001Survey of boreholes or wells for underwater installation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/46Data acquisition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/52Structural details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/12Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using gamma or X-ray sources

Definitions

  • the invention relates to the technical field of offshore wind power exploration design and offshore detection logging equipment, in particular to an acoustic remote detection imaging and evaluation system for offshore wind power tower base detection.
  • Offshore wind power exploration and design is an indispensable part of the preliminary work of offshore wind power and the foundation for the design, construction and construction of offshore wind power tower foundations.
  • the design evaluation of offshore wind power tower foundation mainly includes several technical approaches, namely conventional geophysical exploration technology, downhole measurement technology and borehole sampling technology. Each technology includes different implementation methods and forms a variety of measurement and implementation instrument products.
  • the object of the present invention is to provide an acoustic remote detection imaging and evaluation system for offshore wind power tower foundation detection, which is used to complete the measurement of acoustic characteristic parameters of the wind power tower foundation construction and the comprehensive evaluation of structural geological bodies at one time.
  • the technical solution of the present invention is:
  • An acoustic remote detection imaging and evaluation system for offshore wind power tower foundation detection includes a downhole instrument unit, a data acquisition and transmission unit, an exploration ship, and a surface data processing unit.
  • the downhole instrument unit is placed in the hole to be measured using the exploration ship.
  • the downhole instrument unit completes the collection of various modes of sound waves (longitudinal waves, transverse waves, Stoneley waves, leaky mode waves, reflected waves, etc.) in the borehole and uploads the data to
  • the ground data processing unit, the ground data processing unit completes various data management and algorithm processing, outputs various processing results, and provides detailed evaluation reports.
  • the downhole instrument unit includes a receiving sound system section, a sound insulation body section and a transmitting sound system section connected in sequence, the receiving sound system section, the sound insulation body section and the transmitting sound system section are sequentially through bolts connection.
  • the receiving sound system spool includes a receiving sleeve, a receiving circuit module provided on the receiving sleeve, and a plurality of receiving transducers, and the lead wires of the receiving transducer are connected to the receiving circuit module.
  • the receiving transducer includes a first cavity formed by a first skeleton and a first piezoelectric vibrator disposed in the first cavity.
  • the first piezoelectric vibrator is rectangular or disc-shaped.
  • the transmitting sound system short section includes a transmitting sleeve, a transmitting circuit module provided on the transmitting sleeve, and a plurality of transmitting transducers, and the leads of the transmitting transducer are connected to the transmitting circuit module.
  • the transmitting transducer includes a second cavity formed by a second skeleton and a second piezoelectric vibrator disposed in the second cavity.
  • the emission transducer includes a monopole emission transducer and a dipole emission transducer.
  • the second piezoelectric vibrator of the monopole emission transducer is a piezoelectric ceramic round tube.
  • the second piezoelectric vibrator of the dipole emitting transducer has a rectangular sheet structure.
  • the sound insulation body subsection includes a plurality of sound insulation body sub-units, each of the sound insulation body sub-units includes an outer shell and a potting compound disposed in the outer shell, and the sound insulation sub-units are connected by bolts .
  • a bolt connection is used between the receiving sleeve, the sound insulation body and the transmitting sleeve.
  • the data acquisition and transmission unit includes an industrial control computer and an oscilloscope.
  • the industrial control computer is provided with an acquisition circuit module.
  • the oscilloscope displays the sound wave waveform in real time, and on the other hand, it transmits to The ground data processing unit.
  • the acquisition circuit module includes a data acquisition circuit module, a data transmission control module and a depth coding control module, the industrial control computer issues instructions, the data acquisition circuit module collects data, and the data is encoded by the depth coding control module with depth Mark, the data with depth mark is displayed on the one hand by the oscilloscope, and on the other hand, it is transmitted to the ground data processing unit.
  • the ground data processing unit includes a general industrial computer and a display, and a processing software module is provided in the general industrial computer.
  • the processing software module includes a data management module and a data processing module.
  • the data management module completes editing functions of received data, such as data format conversion, data storage, multiple data depth alignment and correction, scale setting, drawing header editing, Data merge and data output format setting etc.
  • the data processing module completes the preprocessing of original acoustic wave data, data filtering, time difference extraction of various modes, multiple correlation processing algorithms, and various mode wave speed, phase and attenuation parameters obtained by the algorithm, and calculates and determines the stratum Correlation and characteristic parameters of geological bodies beside the well structure.
  • the data is collected by the data collection and transmission unit and transmitted to the ground data processing system, and after being processed by the general industrial computer, it is displayed on the display and outputs an evaluation report.
  • the exploration vessel includes a cable, a hoisting unit, and a hydraulic unit.
  • the cable is both a hoisting tool for a downhole instrument unit and a carrier for data transmission.
  • the surface data processing unit, data acquisition transmission unit, and downhole instrument unit pass through the The cable performs data transmission.
  • the hoisting unit includes a pulley and a wellhead centering control device.
  • the hydraulic unit controls the hoisting unit to complete the lifting and lowering of the instrument.
  • the present invention has the following advantages: the acoustic remote detection imaging and evaluation system for offshore wind power tower base detection is provided with an exploration ship, a surface data processing unit, a data acquisition transmission unit and a downhole instrument unit The four units have been designed to form a complete and independent measurement system.
  • the sonic remote detection imaging and evaluation system for offshore wind power tower foundation detection the acoustic characteristics of the wind power tower foundation construction are completed in one go Parameter measurement and comprehensive evaluation of structural geological bodies.
  • FIG. 1 is a schematic structural diagram of an acoustic wave remote detection imaging and evaluation system for offshore wind power tower foundation detection according to a specific embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a transmitting transducer according to a specific embodiment of the present invention.
  • FIG. 3 is a detailed view at A in FIG. 1;
  • FIG. 4 is a schematic structural diagram of a receiving transducer according to a specific embodiment of the present invention.
  • FIG. 5 is a detailed view at B in FIG. 1.
  • 1-downhole instrument unit 11-receiving sleeve, 12-receiving circuit module, 13-receiving transducer, 131-first piezoelectric vibrator, 14-transmitting sleeve, 15-transmitting circuit module, 16-transmitting transducer, 161-second piezoelectric vibrator, 17-isolator subunit, 171-housing, 2-data acquisition and transmission unit, 21-industrial computer, 22-oscilloscope, 211-data acquisition circuit module, 212-Data transmission control module, 213-Depth coding control module, 3-Exploration vessel, 31-Hoisting structure, 32-Hydraulic structure, 4-Ground data processing unit, 41-General industrial computer, 42-Display, 43-Processing software Module, 5-cable.
  • an acoustic remote detection imaging and evaluation system for offshore wind power tower foundation detection including a downhole instrument unit 1, a data acquisition and transmission unit 2, an exploration vessel 3, and a surface data processing unit 4, using an offshore exploration vessel 3
  • the downhole instrument unit 1 completes various modes of sound waves (longitudinal wave, transverse wave, Stoneley wave, leakage mode) in the borehole Wave, reflected wave, etc.) data collection, and upload the data to the ground data processing unit 4, the ground data processing unit 4 completes various data management and algorithm processing, outputs a variety of processing results, and provides wind power tower foundation Detailed evaluation report.
  • the surface data processing unit 4, the data acquisition and transmission unit 2 and the downhole instrument unit 1 perform data transmission through the cable 5.
  • the downhole instrument unit 1 includes a receiving sound system section, a sound insulation body section and a transmitting sound system section connected in sequence, and the receiving sound system section, sound insulation body section and transmission sound system section are connected by bolts. Secondary connection.
  • the receiving sound system spool includes a receiving sleeve 11, a receiving circuit module 12 provided on the receiving sleeve 11, and a plurality of receiving transducers 13, and the lead wires of the receiving transducer 13 are connected
  • the receiving circuit module 12 in this embodiment, eight receiving transducers 13 are provided.
  • the receiving transducer 13 includes a first cavity formed by a first skeleton and a first piezoelectric vibrator 131 disposed in the first cavity, the first piezoelectric vibrator 131 is rectangular or disc-shaped
  • Each of the receiving transducers 13 is provided with four first piezoelectric vibrators 131 and combined in an orthogonal manner.
  • the sealing process of the receiving sleeve 11 is provided by filling with silicone oil or rubber potting.
  • the receiving transducer 13 completes the reception of all mode waves such as unipolar longitudinal waves and bending waves. According to the bandwidth characteristics of the receiving transducer 13, a 32-channel receiving control circuit is completed.
  • the transmitting sound system spool includes a transmitting sleeve 14, a transmitting circuit module 15 disposed on the transmitting sleeve 14 and a number of transmitting transducers 16, and the leads of the transmitting transducer 16 are connected ⁇ 15 ⁇ The transmission circuit module 15.
  • the transmitting transducer 16 includes a second cavity formed by a second skeleton and a second piezoelectric vibrator 161 disposed in the second cavity, the transmitting sleeve 14 is sealed, and filled with silicone oil or rubber Potting method.
  • the emission transducer 16 includes a monopole emission transducer and a dipole emission transducer.
  • the monopole emission transducer selects a high-power circular tube structure transducer that meets the specifications of the instrument, and the second piezoelectric vibrator 161 uses a piezoelectric ceramic circular tube.
  • two transmission transducers 16 are provided, connected in parallel, and the operating frequency is controlled at 10 kHz to 30 kHz. Then, according to the impedance characteristics of the transducer, a matching circuit for unipolar emission control is completed.
  • the dipole emission transducer selects a three-layer bending vibration transducer that conforms to the structure of the instrument. In this embodiment, eight transducers are provided.
  • the second piezoelectric vibrator 161 is a rectangular sheet structure.
  • the electric vibrator 161 is a long piece forming a dipole long piece emission transducer
  • the second piezoelectric vibrator 161 is a short piece forming a dipole short piece emission transducer
  • four of the dipole long piece emission transducers are provided
  • the transmitter and the four dipole chip emission transducers are combined in an orthogonal manner with a frequency controlled at 0.5 kHz to 6 kHz. According to the transducer bandwidth and impedance characteristics, a matching circuit for dipole emission control is completed.
  • the downhole instrument unit in order to prevent the acoustic emission signal from directly propagating through the instrument casing to the receiving transducer, the downhole instrument unit must develop a sound isolating short section, and the structure must take into account both the monopole longitudinal wave and dipole bending wave signal direct waves
  • the sound insulation treatment is generally flexible and slotted.
  • the sound isolating sub-section includes a number of sound isolating sub-units 17, each of the sound isolating sub-units 17 includes a housing 171 and a potting colloid disposed in the housing, the sound insulating The body subunits 17 are connected by bolts.
  • the receiving sleeve 11, the housing 171 of the sound insulator subunit 17 and the transmitting sleeve 14 are connected by bolts.
  • the downhole instrument unit completes the acoustic measurement by setting the receiving sound system spool and the transmitting sound system spool.
  • the downhole instrument unit is also equipped with a borehole diameter measurement unit, which provides the measurement of the borehole diameter while completing the acoustic measurement, which is also very important for the detection and evaluation of offshore wind power tower foundations.
  • a borehole natural gamma measurement unit is also installed to provide natural gamma measurement, which can be used to evaluate the lithological composition and content of the seafloor formation.
  • a depth measurement unit is installed to provide the measurement of the depth of the borehole. The depth measurement can be used to determine the depth range of various formations on the seabed.
  • the data acquisition and transmission unit 2 includes an industrial computer 21 and an oscilloscope 22.
  • the industrial computer 21 is provided with an acquisition circuit module and a data transmission module, and controls the acquisition circuit module to complete data acquisition of various mode waves.
  • the collected data displays the sound wave waveform through the oscilloscope 22 in real time, and on the other hand, it is transmitted to the ground data processing unit 4 through the data transmission module.
  • the acquisition circuit module includes a data acquisition circuit module 211, a data transmission control module 212 and a depth coding control module 213, the industrial control computer 21 issues an instruction, the data acquisition circuit module 211 collects data, and the data passes through the data transmission control module 212 Transmitted to the depth encoding control module 213 Encoded with depth markers, the data with depth markers is displayed on the one hand by the oscilloscope 22, and on the other hand is transmitted to the ground data processing unit by the data transmission module 4.
  • the data transmission module adopts a network cable method when transmitting in a short range, and uses a data compression method for transmitting in a long range, such as Manchester encoding.
  • the data acquisition and transmission unit adopts multiple modes of wave signal acquisition modes, such as time difference mode, full-wave column monopole mode, orthogonal dipole mode, low-frequency dipole reflected wave mode, etc., to collect as many data sets as possible In order to complete the detection and evaluation needs of offshore wind power tower foundation.
  • the ground data processing unit includes a general industrial computer 41 and a display 42.
  • the general industrial computer 41 is provided with a processing software module 43
  • the processing software module 43 includes a data management module and a data processing module
  • the data management module completes the editing function of received data, such as data format conversion, data storage, multiple Data depth alignment and correction, scale setting, header editing, data merging and data output format setting.
  • the data processing module completes the preprocessing of original acoustic wave data, data filtering, time difference extraction of various modes, multiple correlation processing algorithms, and various mode wave speed, phase and attenuation parameters obtained by the algorithm, and calculates and determines the stratum Correlation and characteristic parameters of geological bodies beside the well structure.
  • the initial data After the initial data is processed by the data acquisition and transmission unit, it is transmitted to the ground data processing unit 4, and after being processed again by the general industrial computer 41, the evaluation report is displayed and output by the display 42.
  • the data acquisition and transmission unit 2 and the ground data processing unit 4 are integrated in hardware, and all are running on the general industrial computer 41 to complete on-site rapid processing of data.
  • the exploration vessel 3 controls the position of the downhole instrument unit 1 in the hole to be measured
  • the hoisting structure 31 includes a pulley and a wellhead centering control device, etc., to complete the lifting and lowering of the downhole instrument unit 1
  • the hydraulic structure 32 includes Hydraulic control and control platform to complete the movement control of the cable 5, and the setting of related logging parameters including lifting speed, lowering speed, cable tension measurement and so on.
  • the cable 5 also serves as a hoisting tool for the downhole instrument unit 1, the hydraulic structure 32 controls the hoisting structure 31, and the lifting or lowering of the downhole instrument unit 1 is controlled by the pulley and the wellhead centering control structure to control the position in the well to be measured.
  • the cable 5 is both a hoisting tool for a downhole instrument unit and a carrier for data transmission. Therefore, a multi-core armored cable is selected and subjected to seawater corrosion resistance treatment.
  • the sonic remote detection imaging and evaluation system for offshore wind power tower base detection ensures the integrity of the offshore wind power tower base sonic remote detection imaging and evaluation implementation. With the system, wind power can be completed by only one-time downhole measurement Taki evaluation of various needs. The characteristics and advantages of the system are obvious.
  • the structure and specifications of the product system can fully meet the measurement environment of offshore wind power tower base drilling, including: the use of high-power monopole longitudinal wave transmission transducers and the establishment of low-frequency orthogonal couples
  • the polar launch transducer is equipped with multi-station four-azimuth high-sensitivity receiving arrays, portable ground acquisition and processing hardware is selected, and a set of wind power tower-based acoustic remote detection data processing algorithms is optimized and developed.
  • the sonic remote detection imaging and evaluation system for offshore wind power tower foundation detection is fully functional.
  • the design of the downhole instrument unit includes a high-power unipolar longitudinal wave transmitting transducer, a low-frequency broadband orthogonal dipole transmitting transducer and a broadband receiving transducer
  • the energy array can be used to obtain formation longitudinal, transverse and reflected wave information in one downhole measurement. The comprehensive utilization of these information can obtain various formation mechanical characteristics parameters required for wind power tower foundation construction.
  • the sonic remote detection imaging and evaluation system used for offshore wind power tower base detection has excellent performance.
  • the monopole emission transducer has been designed for high-power emission to obtain information on the longitudinal wave of the base layer of the tower.
  • the dipole emission conversion The low-frequency and wide-band design of the energy device can ensure that the shear wave information is obtained in the low-speed seabed formation. The most important thing is that these model wave information can be used to evaluate the distribution characteristics of geological bodies in a large area near the well.
  • the sonic remote detection imaging and evaluation system for offshore wind power tower foundation detection is specially designed for tower foundation construction evaluation, and each operation unit is designed specifically, and a ground data processing unit,
  • the four operating units of the exploration vessel, data acquisition and transmission unit and downhole instrument unit form a complete and independent measurement system, which can complete the measurement of the characteristic parameters of the wind power tower foundation construction and the comprehensive evaluation of the structural geological body.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种用于海上风电塔基探测的声波远探测成像与评价系统,包括井下仪器单元(1)、数据采集传输单元(2)、勘探船(3)和地面数据处理单元(4),勘探船(3)将井下仪器单元(1)放入待测井孔后逐步提升井下仪器单元(1)开始实施测井,数据采集传输单元(2)采集井下仪器单元(1)作业时的数据,并上传数据到地面数据处理单元(4),由地面数据处理单元(4)进行数据处理。用于海上风电塔基探测的声波远探测成像与评价系统形成了一个完成而独立的测量系统,应用该系统一次性完成风电塔基建设地层声学特性参数的测量及结构地质体的综合评价。

Description

一种用于海上风电塔基探测的声波远探测成像与评价系统 技术领域
本发明涉及海上风电勘探设计和海上探测测井设备技术领域,尤其涉及一种用于海上风电塔基探测的声波远探测成像与评价系统。
背景技术
海上风电勘探设计是海上风电前期工作必备的环节,是海上风电塔基设计建设、建造的基础。海上风电塔基的设计评价主要包括几种技术途径,即常规物探技术、井下测量技术和钻孔取样技术,每种技术有包括不同的实现方法,并形成多种测量和实施仪器产品。
海上风电塔基建设,需要了解塔基区域地层力学特性和区域内地质结构体的分布特征。目前,现有仪器面临的主要问题是仪器不能用于海上塔基探测的综合评价,现有仪器仅对钻孔极其有限的范围内进行测量,并不是为风电塔基大范围的区域地层和结构分布评价而设计,从海上作业,到数据采集,以及后期数据处理评价尚无完整的系统。
发明内容
本发明的目的是提供一种用于海上风电塔基探测的声波远探测成像与评价系统,用于一次性完成风电塔基建设地层声学特性参数的测量及结构地质体的综合评价。
为了解决上述技术问题,本发明的技术方案是:
一种用于海上风电塔基探测的声波远探测成像与评价系统,包括井下仪器单元、数据采集传输单元、勘探船和地面数据处理单元,利用勘探船将井下仪 器单元放入待测井孔,在所述数据采集传输单元的控制下,所述井下仪器单元完成井孔中各种模式声波(纵波、横波、斯通利波、泄露模式波、反射波等)数据的采集,并上传数据到所述地面数据处理单元,所述地面数据处理单元完成数据的各种管理和算法处理,输出多种处理成果,并提供详细评价报告。
所述井下仪器单元包括依次连接的接收声系短节、隔声体短节和发射声系短节,所述接收声系短节、隔声体短节和发射声系短节通过螺栓顺次连接。
所述接收声系短节包括接收套筒、设置在所述接收套筒上的接收电路模块和若干接收换能器,所述接收换能器的引线连接所述接收电路模块。所述接收换能器包括由第一骨架形成的第一腔室以及设置在所述第一腔室中的第一压电振子,所述第一压电振子为矩形或圆片形。
所述发射声系短节包括发射套筒、设置在所述发射套筒上的发射电路模块和若干发射换能器,所述发射换能器的引线与所述发射电路模块连接。所述发射换能器包括由第二骨架形成的第二腔室以及设置在所述第二腔室中的第二压电振子。所述发射换能器包括单极子发射换能器和偶极子发射换能器。所述单极子发射换能器的所述第二压电振子为压电陶瓷圆管。所述偶极子发射换能器的第二压电振子为矩形片状结构。
所述隔声体短节包括若干隔声体子单元,每个所述隔声体子单元包括外壳和设置在所述外壳内的灌封胶体,所述隔声体子单元之间采用螺栓连接。
所述接收套筒、隔声体和发射套筒之间采用螺栓连接。
所述数据采集和传输单元包括工控机和示波器,所述工控机内设置采集电路模块,通过控制所述采集电路模块完成数据采集,一方面通过所述示波器实时显示声波波形,另一方面传输至所述地面数据处理单元。所述采集电路模块包括数据采集电路模块、数据传输控制模块和深度编码控制模块,所述工控机发出指令,所述数据采集电路模块采集数据,数据经所述深度编码控制模块编码后带有深度标记,带有深度标记的数据一方面经所述示波器显示,另一方面,传输至所述地面数据处理单元。
所述地面数据处理单元包括总工控机和显示器,所述总工控机内设置有处理软件模块。所述处理软件模块包括数据管理模块和数据处理模块,所述数据管理模块完成接收数据的编辑功能,例如数据格式转换、数据存储、多种数据深度对齐与校正、比例尺设定、图头编辑、数据合并和数据输出格式设定等。所述数据处理模块完成原始声波数据的预处理、数据滤波、各种模式波时差提取、多种相关性处理算法,以及利用算法得到的各种模式波速度、相位和衰减参数,计算确定与地层相关和井旁结构地质体特征参数等。数据经过所述数据采集传输单元采集并传输至所述地面数据处理系统,经过所述总工控机处理之后经所述显示器显示并输出评价报告。
所述勘探船包括电缆、吊装单元和液压单元,所述电缆既是井下仪器单元的吊装工具,也是数据传输的载体,所述地面数据处理单元、数据采集传输单元和井下仪器单元之间通过所述电缆进行数据传输,所述吊装单元包括滑轮和井口居中控制装置等,所述液压单元控制所述吊装单元完成仪器的提升和下放。
与现有技术相比,本发明具有以下优点:所述用于海上风电塔基探测的声波远探测成像与评价系统,设置了包括勘探船、地面数据处理单元、数据采集传输单元以及井下仪器单元四个单元,进行了针对性的设计,形成了一个完整而独立的测量系统,应用所述用于海上风电塔基探测的声波远探测成像与评价系统,一次性完成风电塔基建设地层声学特性参数的测量及结构地质体的综合评价。
附图说明
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并不是具体限定本发明各部件的形状和比例尺寸。本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸 来实施本发明。在附图中:
图1是本发明一具体实施例的用于海上风电塔基探测的声波远探测成像与评价系统的结构示意图;
图2是本发明一具体实施例的发射换能器的结构示意图;
图3是图1中A处的细节图;
图4是本发明一具体实施例的接收换能器的结构示意图;
图5是图1中B处的细节图。
图中所示:1-井下仪器单元、11-接收套筒、12-接收电路模块、13-接收换能器、131-第一压电振子、14-发射套筒、15-发射电路模块、16-发射换能器、161-第二压电振子、17-隔声体子单元、171-外壳、2-数据采集传输单元、21-工控机、22-示波器、211-数据采集电路模块、212-数据传输控制模块、213-深度编码控制模块、3-勘探船、31-吊装结构、32-液压结构、4-地面数据处理单元、41-总工控机、42-显示器、43-处理软件模块、5-电缆。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术 领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参见图1,一种用于海上风电塔基探测的声波远探测成像与评价系统,包括井下仪器单元1、数据采集传输单元2、勘探船3和地面数据处理单元4,利用海上的勘探船3将井下仪器单元1放入待测井,在所述数据采集传输单元2的控制下,所述井下仪器单元1完成井孔中各种模式声波(纵波、横波、斯通利波、泄露模式波、反射波等)数据的采集,并上传数据到所述地面数据处理单元4,所述地面数据处理单元4完成数据的各种管理和算法处理,输出多种处理结果,并提供风电塔基的详细评价报告。所述地面数据处理单元4、数据采集传输单元2和井下仪器单元1之间通过电缆5进行数据的传输。
所述井下仪器单元1包括依次连接的接收声系短节、隔声体短节和发射声系短节,所述接收声系短节、隔声体短节和发射声系短节通过螺栓顺次连接。
结合参见图4,所述接收声系短节包括接收套筒11、设置在所述接收套筒11上的接收电路模块12和若干接收换能器13,所述接收换能器13的引线连接所述接收电路模块12,本实施例中,所述接收换能器13设有8只。所述接收换能器13包括由第一骨架形成的第一腔室以及设置在所述第一腔室中的第一压电振子131,所述第一压电振子131为矩形或圆片形,每个所述接收换能器13中设置4个所述第一压电振子131,并且正交方式组合。设置所述接收套筒11密封处理,采用填充硅油或者橡胶灌封的方式。所述接收换能器13完成单极纵波和弯曲波等所有模式波的接收,依据所述接收换能器13带宽特征,完成32道接收控制电路。
结合参见图2,所述发射声系短节包括发射套筒14、设置在所述发射套筒14上的发射电路模块15和若干发射换能器16,所述发射换能器16的引线连接所述发射电路模块15。所述发射换能器16包括由第二骨架形成的第二腔室以及设置在所述第二腔室中的第二压电振子161,设置所述发射套筒14密封,采用 填充硅油或者橡胶灌封的方式。本实施例中,所述发射换能器16包括单极子发射换能器和偶极子发射换能器。所述单极子发射换能器选择符合仪器规格尺寸的大功率圆管结构换能器,所述第二压电振子161采用压电陶瓷圆管。本实施例中,所述发射换能器16设置2个,并联连接,工作频率控制在10kHz~30kHz,然后根据换能器阻抗特性,完成一道单极发射控制的匹配电路。所述偶极子发射换能器选择符合仪器结构的三叠片弯曲振动换能器,本实施例中设置8只,所述第二压电振子161为矩形片状结构,所述第二压电振子161为长片形成偶极子长片发射换能器,所述第二压电振子161为短片形成偶极子短片发射换能器,设置四个所述偶极子长片发射换能器和四个所述偶极子短片发射换能器,正交方式组合,频率控制在0.5kHz~6kHz,依据换能器带宽和阻抗特性,完成偶极发射控制的匹配电路。
结合参见图3,为避免声波发射信号通过仪器外壳直接传播到接收换能器,所述井下仪器单元必须研制隔声体短节,该结构要同时兼顾单极纵波和偶极弯曲波信号直达波的隔声处理,一般的,采用柔性和开槽结构方式。本实施例中,所述隔声体短节包括若干隔声体子单元17,每个所述隔声体子单元17包括外壳171和设置在所述外壳内的灌封胶体,所述隔声体子单元17之间采用螺栓连接。
所述接收套筒11、隔声体子单元17的外壳171和发射套筒14之间采用螺栓连接。
所述井下仪器单元通过设置所述接收声系短节和发射声系短节,完成声学测量。所述井下仪器单元还加装钻孔井径测量单元,在完成声学测量的同时,提供井孔直径的测量,这一点对于海上风电塔基的探测评价也是非常重要的。同时,还加装钻孔自然伽马测量单元,提供自然伽马的测量,自然伽马的测量,可以用于评价海底地层的岩性组成和含量。另外的,还加装深度测量单元,提供井孔深度的测量,深度测量可以用于确定海底各种地层的深度范围。
结合参见图5,所述数据采集传输单元2包括工控机21和示波器22,所述工控机21设置采集电路模块和数据传输模块,通过控制所述采集电路模块完成 各种模式波的数据采集,采集的数据一方面通过所述示波器22实时显示声波波形,另一方面通过所述数据传输模块传输至所述地面数据处理单元4。所述采集电路模块包括数据采集电路模块211、数据传输控制模块212和深度编码控制模块213,所述工控机21发出指令,所述数据采集电路模块211采集数据,数据通过所述数据传输控制模块212传输至所述深度编码控制模块213编码后带有深度标记,带有深度标记的数据,一方面经所述示波器22显示,另一方面经所述数据传输模块传输至所述地面数据处理单元4。所述数据传输模块,在近距离范围内传输时采用网线方式,在远距离范围传输采用数据压缩方式传输,如曼彻斯特编码。遇到钻孔比较深的情况,为保证在上传过程中数据的衰减,一般采用数据压缩方式传输。所述数据采集传输单元采用多种模式波信号的采集模式,例如,时差模式、全波列单极模式、正交偶极模式、低频偶极反射波模式等,尽可能地采集多种数据集,以完成海上风电塔基的探测评价需要。
所述地面数据处理单元包括总工控机41和显示器42。所述总工控机41设置有处理软件模块43,所述处理软件模块43包括数据管理模块和数据处理模块,所述数据管理模块完成接收数据的编辑功能,例如数据格式转换、数据存储、多种数据深度对齐与校正、比例尺设定、图头编辑、数据合并和数据输出格式设定等。所述数据处理模块完成原始声波数据的预处理、数据滤波、各种模式波时差提取、多种相关性处理算法,以及利用算法得到的各种模式波速度、相位和衰减参数,计算确定与地层相关和井旁结构地质体特征参数等。原始数据经过所述数据采集传输单元初步处理之后,传输至所述地面数据处理单元4,经过所述总工控机41再次处理之后经所述显示器42显示并输出评价报告。在现场作业时,所述数据采集传输单元2和地面数据处理单元4硬件一体化,全部在总工控机41运行,完成数据的现场快速处理。
所述勘探船3控制所述井下仪器单元1在待测孔井中的位置,所述吊装结构31包括滑轮和井口居中控制装置等,完成井下仪器单元1的提升和下放,所述液压结构32包括液压控制和控制平台,完成电缆5的运动控制,以及包括提 升速度、下放速度、电缆张力测量等相关测井参数的设置。电缆5同时作为井下仪器单元1的吊装工具,所述液压结构32控制吊装结构31,通过滑轮和井口居中控制结构控制所述井下仪器单元1的提升或者下放,控制在待测井中的位置。
所述电缆5既是井下仪器单元的吊装工具,也是数据传输的载体,因此选择多芯铠装电缆,并进行海水耐腐蚀处理。
所述用于海上风电塔基探测的声波远探测成像与评价系统保证了海上风电塔基声波远探测成像与评价实施的完整性,利用所述系统,仅通过一次性井下测量,即可完成风电塔基评价的各种需求。所述系统特点和优势明显,产品系统的结构和规格尺寸设计可完全满足海上风电塔基钻孔的测量环境,包括:采用了大功率单极子纵波发射换能器,搭建了低频正交偶极发射换能器,布设了多站四方位高灵敏度接收阵列,选择了便携式地面采集和处理硬件,优化发展了一套风电塔基声学远探测数据处理算法。
所述用于海上风电塔基探测的声波远探测成像与评价系统功能齐备,井下仪器单元设计包括有大功率单极纵波发射换能器、低频宽带正交偶极发射换能器和宽带接收换能器阵列,一次下井测量即可以获得地层纵波、横波和反射波信息,这些信息的综合利用,可以获得风电塔基建设所需要的各种地层力学特性参数。同时,所述用于海上风电塔基探测的声波远探测成像与评价系统性能优良,单极子发射换能器进行了大功率发射设计,可以获得塔基地层纵波的信息,偶极子发射换能器采用了低频和宽带设计,可以保证在低速的海底地层中获得横波信息,最重要的是,利用这些模式波信息可以评价井旁大范围内的地质体分布特征信息。进一步的,所述用于海上风电塔基探测的声波远探测成像与评价系统是专门为塔基建设评价而设计的,对各个作业单元均进行了针对性的设计,设计了地面数据处理单元、勘探船、数据采集传输单元以及井下仪器单元四个作业单元,形成了一个完整而独立的测量系统,可以一次性地完成风电塔基建设地层特性参数的测量及结构地质体的综合评价。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施例和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照前述权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为申请人没有将该主题考虑为所公开的发明主题的一部分。

Claims (15)

  1. 一种用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,包括井下仪器单元、数据采集传输单元、勘探船和地面数据处理单元,所述勘探船将所述井下仪器单元放入待测孔井后逐步提升所述井下仪器单元开始实施测井,所述数据采集传输单元采集所述井下仪器单元作业时的数据,并上传数据到所述地面数据处理单元,由所述地面数据处理单元进行数据处理。
  2. 根据权利要求1所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述井下仪器单元包括顺次连接的接收声系短节、隔声体短节和发射声系短节;所述接收声系短节包括接收套筒、设置在所述接收套筒上的接收电路模块和若干接收换能器;所述发射声系短节包括发射套筒、设置在所述发射套筒上的发射电路模块和若干发射换能器。
  3. 根据权利要求2所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述接收换能器包括由第一骨架形成的第一腔室以及设置在所述第一腔室中的第一压电振子。
  4. 根据权利要求3所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述第一压电振子为矩形或圆片形结构。
  5. 根据权利要求2所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述发射换能器包括由第二骨架形成的第二腔室以及设置在所述第二腔室中的第二压电振子。
  6. 根据权利要求5所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述发射换能器为单极子发射换能器,设置两个且并联设置。
  7. 根据权利要求6所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述第二压电振子为压电陶瓷圆管。
  8. 根据权利要求5所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述发射换能器为偶极子发射换能器,设置八个且正交组合设置。
  9. 根据权利要求8所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述第二压电振子为矩形片状结构。
  10. 根据权利要求2所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述隔声体短节包括若干隔声体子单元,每个所述隔声体子单元包括外壳和设置在所述外壳内的灌封胶体。
  11. 根据权利要求1所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述数据采集传输单元包括工控机和用于显示声波波形的示波器,所述工控机内设置采集电路模块,通过控制所述采集电路模块完成数据采集。
  12. 根据权利要求11所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述采集电路模块包括数据采集电路模块、数据传输控制模块和深度编码控制模块,所述工控机发出指令,所述数据采集电路模块采集数据,数据经所述深度编码控制模块编码后带有深度标记,带有深度标记的数据一方面经所述示波器显示,另一方面,传输至所述地面数据处理单元。
  13. 根据权利要求1所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述地面数据处理单元包括总工控机和显示器,所述总工控机内设置有处理软件模块,所述处理软件模块对数据进行管理处理和算法处理,经过所述显示器输出结果。
  14. 根据权利要求13所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述处理软件模块包括数据管理模块和数据处理模块,所述数据管理模块对接收数据进行数据格式转换、数据存储、多种数据深度对齐与校正、比例尺设定、图头编辑、数据合并和数据输出格式设定的编辑,所述数据处理模块对接收数据进行预处理、数据滤波、各种模式波时差提取、多 种相关性处理算法,以及利用算法得到的各种模式波速度、相位和衰减参数,计算确定与地层相关和井旁结构地质体特征参数的处理。
  15. 根据权利要求1所述的用于海上风电塔基探测的声波远探测成像与评价系统,其特征在于,所述地面数据处理单元、数据采集传输单元和井下仪器单元之间通过电缆进行数据的传输。
PCT/CN2019/093141 2019-01-11 2019-06-27 一种用于海上风电塔基探测的声波远探测成像与评价系统 WO2020143187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910026184.1 2019-01-11
CN201910026184.1A CN109736780A (zh) 2019-01-11 2019-01-11 一种用于海上风电塔基探测的声波远探测成像与评价系统

Publications (1)

Publication Number Publication Date
WO2020143187A1 true WO2020143187A1 (zh) 2020-07-16

Family

ID=66364492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093141 WO2020143187A1 (zh) 2019-01-11 2019-06-27 一种用于海上风电塔基探测的声波远探测成像与评价系统

Country Status (2)

Country Link
CN (1) CN109736780A (zh)
WO (1) WO2020143187A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109736780A (zh) * 2019-01-11 2019-05-10 中科云声(苏州)电子科技有限公司 一种用于海上风电塔基探测的声波远探测成像与评价系统
CN115478843A (zh) * 2022-09-28 2022-12-16 中国石油大学(北京) 一种基于声波探测的鸡蛋壳地层识别装置
CN116241239B (zh) * 2023-05-08 2023-07-18 中海油田服务股份有限公司 基于远近单极的固井评价的方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2621300Y (zh) * 2003-06-03 2004-06-23 中海油田服务股份有限公司 多极子阵列声波测井换能器
CN102996120A (zh) * 2012-11-20 2013-03-27 中国石油大学(北京) 一种基于三电极系的救援井与事故井连通探测系统
CN105257282A (zh) * 2015-09-28 2016-01-20 中国科学院声学研究所 一种随钻声波测井发射单元及其装置
CN108643886A (zh) * 2018-04-24 2018-10-12 中国海洋石油集团有限公司 一种深水井环空圈闭压力监测装置及方法
CN109736780A (zh) * 2019-01-11 2019-05-10 中科云声(苏州)电子科技有限公司 一种用于海上风电塔基探测的声波远探测成像与评价系统
US10364815B2 (en) * 2016-12-28 2019-07-30 Upwing Energy, LLC Downhole blower system with integrated construction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6820716B2 (en) * 2003-01-16 2004-11-23 Baker Hughes Incorporated Acoustic isolator for well logging system
CN1676871A (zh) * 2004-04-02 2005-10-05 中海石油(中国)有限公司天津分公司 一种串接的组合式测井仪器
BR112014016132A2 (pt) * 2011-12-29 2020-02-27 Shell Int Research método e sistema para intervenção com cabo de perfuração em um poço submarino a partir de uma embarcação flutuante
EP2900901A4 (en) * 2012-12-14 2016-06-08 Halliburton Energy Services Inc ARRANGEMENT FOR REMOVING UNDERWATER TROUBLESHOOTING AND ASSOCIATED METHOD USING A RECORDING DEVICE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2621300Y (zh) * 2003-06-03 2004-06-23 中海油田服务股份有限公司 多极子阵列声波测井换能器
CN102996120A (zh) * 2012-11-20 2013-03-27 中国石油大学(北京) 一种基于三电极系的救援井与事故井连通探测系统
CN105257282A (zh) * 2015-09-28 2016-01-20 中国科学院声学研究所 一种随钻声波测井发射单元及其装置
US10364815B2 (en) * 2016-12-28 2019-07-30 Upwing Energy, LLC Downhole blower system with integrated construction
CN108643886A (zh) * 2018-04-24 2018-10-12 中国海洋石油集团有限公司 一种深水井环空圈闭压力监测装置及方法
CN109736780A (zh) * 2019-01-11 2019-05-10 中科云声(苏州)电子科技有限公司 一种用于海上风电塔基探测的声波远探测成像与评价系统

Also Published As

Publication number Publication date
CN109736780A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
WO2020143187A1 (zh) 一种用于海上风电塔基探测的声波远探测成像与评价系统
CN203100704U (zh) 压入式桩身形状及桩长超声波检测装置
CN102162358B (zh) 一种随钻声波测井装置
CN110067554B (zh) 井中三分量声波远探测测井装置及其测量方法
CN103437756A (zh) 一种偶极子声波测井仪
CN203452778U (zh) 一种偶极子声波测井仪
CN107479098B (zh) 一种水力压裂过程中同井微地震监测工艺
JP2013545980A (ja) 掘削機と表面装置との間でデータを通信するシステムおよび方法
CN115598217B (zh) 一种海底沉积层的低频声学特性原位测量装置与方法
CN204152507U (zh) 一种声波测井换能器
CN2802085Y (zh) 数字声波测井仪声系
RU2608636C1 (ru) Устройство для определения плотности без источника, способы и системы
WO2020151235A1 (zh) 一种井下声系
CN204691763U (zh) 随钻声波测井装置
CN102305065A (zh) 油气井无缆信号传输方法及其系统
CN212130539U (zh) 矿井瓦斯增透系统
CN105388528A (zh) 一种利用声波测量地层密度方法及其探测装置
CN210572783U (zh) 光纤声波传感正交偶极声波测井系统
CN112362155A (zh) 一种干孔弹性波速度测试探头及测试方法
CN210217717U (zh) 一种井下仪器单元
CN102425410A (zh) 一种随钻测量超声波数据传输方法及装置
CN103015988B (zh) 无线数据互传地层测试系统及其测试方法
CN209469427U (zh) 一种井下声系
CN114265117A (zh) 一种实验室内无刻槽隔声装置的阵列声波测量系统
CN210289767U (zh) 井中三分量声波远探测测井装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908969

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19908969

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19908969

Country of ref document: EP

Kind code of ref document: A1