WO2020143118A1 - 胶囊内窥镜及其定位方法及系统 - Google Patents

胶囊内窥镜及其定位方法及系统 Download PDF

Info

Publication number
WO2020143118A1
WO2020143118A1 PCT/CN2019/079528 CN2019079528W WO2020143118A1 WO 2020143118 A1 WO2020143118 A1 WO 2020143118A1 CN 2019079528 W CN2019079528 W CN 2019079528W WO 2020143118 A1 WO2020143118 A1 WO 2020143118A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule endoscope
magnetic field
magnetic
magnet
driving magnet
Prior art date
Application number
PCT/CN2019/079528
Other languages
English (en)
French (fr)
Inventor
王东远
胡进
Original Assignee
深圳市资福医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市资福医疗技术有限公司 filed Critical 深圳市资福医疗技术有限公司
Publication of WO2020143118A1 publication Critical patent/WO2020143118A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging

Definitions

  • the invention belongs to the technical field of three-dimensional positioning, and particularly relates to a capsule endoscope and a positioning method and system thereof.
  • Capsule endoscope also known as intelligent capsule endoscope system, is a capsule-shaped endoscope.
  • the capsule endoscope has a built-in camera and signal transmission device, which is subjected to oral administration by the subject, and moves and takes images in the digestive tract to obtain images of the subject's digestive tract.
  • the capsule endoscope will not bring trauma to the examinee, does not affect the examinee's activities, and is very convenient.
  • it is necessary to locate the position of the capsule endoscope in the human body in real time.
  • Embodiments of the present invention provide a capsule endoscope and a positioning method and system thereof, aiming to improve the positioning accuracy of the capsule endoscope.
  • An embodiment of the present invention provides a positioning method for a capsule endoscope.
  • the capsule endoscope is provided with a magnetic sensor and a magnet in the capsule endoscope.
  • the method includes:
  • the posture information of the capsule endoscope in the world coordinate system is determined according to the posture information of the drive magnet in the world coordinate system and the posture information of the capsule endoscope relative to the drive magnet.
  • the step of measuring the magnetic field of the driving magnet driving the capsule endoscope through the magnetic sensor includes:
  • the first magnetic field value being the total value of the magnetic field of the internal magnet of the capsule endoscope, the geomagnetic field and the surrounding magnetic field without being affected by the driving magnet;
  • the second magnetic field value is obtained through measurement by the magnetic sensor, and the second magnetic field value is the total value of the magnetic field of the driving magnet, the internal magnet of the capsule endoscope, the geomagnetic field, and the surrounding magnetic field;
  • a magnetic field measurement value of the driving magnet is calculated.
  • the step of calculating the posture information of the capsule endoscope relative to the driving magnet includes:
  • the magnetic field measurement error of the driving magnet is minimized by the optimization algorithm to obtain posture information of the capsule endoscope relative to the driving magnet.
  • the method further includes:
  • the driving magnetic field model is constructed according to the magnetic dipole model, the distance between the magnetic sensor and the center of the capsule endoscope, and the relative permeability of the driving magnet.
  • At least two of the magnetic sensors are provided inside the capsule endoscope, and the magnetic sensors are three-axis magnetic sensors.
  • an inertial sensor is provided inside the capsule endoscope, and the inertial sensor is used to measure the spin angle of the capsule endoscope.
  • An embodiment of the present invention also provides a capsule endoscope, including: a magnetic sensor provided in the capsule endoscope, a magnet in the capsule endoscope, and a spin angle measurement sensor;
  • the magnetic sensor is used to measure the magnetic field of the driving magnet driving the capsule endoscope to obtain the magnetic field measurement value of the driving magnet;
  • the magnetic sensor includes a first magnetic sensor and a second magnetic sensor, and the first magnetic sensor and the second magnetic sensor are dispersedly welded and disposed on a circuit board in the capsule endoscope;
  • the spin angle measurement sensor is used to measure the spin angle of the capsule endoscope, so that the positioning system combines the preset driving magnetic field model and the pre-measurement according to the measured value of the spin angle obtained from the magnetic sensor Set an optimization algorithm to calculate the posture information of the capsule endoscope relative to the drive magnet, according to the posture information of the drive magnet in the world coordinate system and the position of the capsule endoscope relative to the drive magnet Information to determine the posture information of the capsule endoscope in the world coordinate system.
  • the first sensor or the second magnetic sensor is a three-axis magnetic sensor.
  • the spin angle measurement sensor includes an inertial sensor.
  • the magnetic sensor includes two or more dispersed first sensors or second sensors.
  • An embodiment of the present invention provides a positioning system for positioning the position information of a capsule endoscope in a world coordinate system.
  • the capsule endoscope includes: a magnetic device provided in the capsule endoscope A sensor, a magnet in the capsule endoscope and a spin angle measurement sensor; the magnetic sensor is used to measure the magnetic field of the driving magnet driving the capsule endoscope to obtain the magnetic field measurement value of the driving magnet;
  • the magnetic sensor includes a first magnetic sensor and a second magnetic sensor, and the first magnetic sensor and the second magnetic sensor are disposed on the circuit board in the capsule endoscope by discrete welding; the spin angle measurement sensor is used For measuring the spin angle of the capsule endoscope;
  • the positioning system includes: a receiver and a processing device;
  • the receiver is configured to acquire the magnetic field measurement value of the driving magnet from the magnetic sensor and the spin angle measurement value obtained from the spin angle measurement sensor;
  • the processing device is configured to combine the preset drive according to the measured value of the magnetic field of the driving magnet obtained from the magnetic sensor and the measured value of the spin angle obtained from the spin angle measuring sensor
  • the magnetic field model and the preset optimization algorithm calculate the posture information of the capsule endoscope relative to the driving magnet, according to the posture information of the driving magnet in the world coordinate system.
  • the capsule endoscope includes a radio frequency module, the first magnetic sensor, the second magnetic sensor and the spin angle measurement sensor are connected to the radio frequency module, the first magnetic sensor and the The second magnetic sensor sends the magnetic field measurement value of the drive magnet to the receiver through the radio frequency module, and the spin angle measurement sensor sends the spin angle measurement value to the receiver through the radio frequency module ⁇ Receiver.
  • the processing device is further used to calculate the magnetic field measurement error of the driving magnet according to the driving magnetic field model, the magnetic field measurement value of the driving magnet and the spin angle measurement value; through the optimization The algorithm minimizes the measurement error of the magnetic field of the driving magnet to obtain the posture information of the capsule endoscope relative to the driving magnet.
  • the processing device is also used to obtain the distance between the magnetic sensor and the center of the capsule endoscope, and obtain the relative permeability of the driving magnet; according to the magnetic dipole model, the magnetic sensor
  • the driving magnetic field model is constructed by the distance from the center of the capsule endoscope and the relative permeability of the driving magnet.
  • An embodiment of the present invention also provides a positioning system for positioning a capsule endoscope.
  • the capsule endoscope is provided with a magnetic sensor and a magnet in the capsule endoscope.
  • the positioning system includes:
  • a magnetic field measuring unit for measuring the magnetic field of the driving magnet driving the capsule endoscope through a magnetic sensor to obtain a magnetic field measurement value of the driving magnet
  • a spin measuring unit configured to measure the spin angle of the capsule endoscope, and obtain a measurement value of the spin angle of the capsule endoscope
  • the relative posture calculation unit is used to calculate the capsule endoscope relative to the drive magnet according to the measured value of the magnetic field of the drive magnet, the measured value of the spin angle, a preset drive magnetic field model and a preset optimization algorithm Posture information;
  • the capsule position and orientation determining unit is configured to determine the position of the capsule endoscope in the world coordinate system based on the position and orientation information of the drive magnet in the world coordinate system and the position and orientation information of the capsule endoscope relative to the drive magnet Pose information.
  • the magnetic field measurement unit includes:
  • a first magnetic field value obtaining unit configured to obtain a pre-measured first magnetic field value, the first magnetic field value is the internal magnet of the capsule endoscope, the geomagnetic field and the ambient magnetic field without being affected by the driving magnet The total value of the magnetic field;
  • a second magnetic field value measuring unit configured to obtain a second magnetic field value measured by the magnetic sensor, the second magnetic field value is the magnetic field of the driving magnet, the internal magnet of the capsule endoscope, the geomagnetic field and the surrounding magnetic field Total value;
  • the magnetic field value calculation unit is configured to calculate the magnetic field measurement value of the driving magnet according to the first magnetic field value and the second magnetic field value.
  • the relative pose calculation unit includes:
  • An error calculation unit for calculating the magnetic field measurement error of the driving magnet based on the driving magnet model, the magnetic field measurement value of the driving magnet and the spin angle measurement value;
  • An error minimizing unit is used for minimizing the magnetic field measurement error of the driving magnet by the optimization algorithm, and obtaining posture information of the capsule endoscope relative to the driving magnet.
  • the positioning system further includes:
  • a parameter acquisition unit for acquiring the distance between the magnetic sensor and the center of the capsule endoscope and acquiring the relative permeability of the driving magnet
  • the magnetic field model building unit is used to construct the driving magnetic field model according to the magnetic dipole model, the distance between the magnetic sensor and the center of the capsule endoscope, and the relative permeability of the driving magnet.
  • the invention measures the magnetic field of the driving magnet through a magnetic sensor to obtain the magnetic field measurement value of the driving magnet, and simultaneously measures the spin angle of the capsule endoscope, and obtains the measurement value of the spin angle of the capsule endoscope.
  • the measured value of the rotation angle, the preset driving magnetic field model and the preset optimization algorithm calculate the posture information of the capsule endoscope relative to the driving magnet, and then obtain the capsule endoscope in the world according to the posture information of the driving magnet in the world coordinate system Position information of the coordinate system, so as to position the capsule endoscope according to the measured value of the magnetic field of the driving magnet, the driving field model, the measurement value of the spin angle and the optimization algorithm, avoiding the positioning magnet of the capsule endoscope to be driven by the driving magnet Magnetic field and improve the positioning accuracy of the capsule endoscope.
  • FIG. 1 is an implementation flowchart of a positioning method for a capsule endoscope provided in Embodiment 1 of the present invention
  • FIG. 2 is an example diagram of the three-axis direction of an inertial sensor in a positioning method of a capsule endoscope according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of an implementation of a positioning method of a capsule endoscope provided by Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a capsule endoscope provided in Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a positioning system according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic diagram of a preferred structure of a positioning system provided by Embodiment 4 of the present invention.
  • FIG. 7 is a schematic structural diagram of a positioning system for positioning a capsule endoscope according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic diagram of a preferred structure of a positioning system for positioning a capsule endoscope provided by Embodiment 5 of the present invention.
  • the positioning methods mainly include optical positioning, ultrasonic positioning, ray positioning and magnetic positioning.
  • Optical positioning is not suitable for in vivo positioning, the ultrasonic positioning accuracy is not high, and the ray positioning is radiant.
  • the capsule endoscope is equipped with a small magnet, and a large magnet is provided in the magnetic control system outside the human body.
  • the large magnet and the small magnet are permanent magnets.
  • the large magnet is used as the driving magnet in the magnetic control system to provide a driving magnetic field. Driven by the driving magnetic field, the capsule endoscope moves in the human digestive system.
  • the position of the capsule endoscope is obtained by measuring the magnetic field change of the small magnet.
  • the large magnetic field strength of the large magnet will affect the measurement of the magnetic field strength of the small magnet, resulting in accurate positioning of the capsule endoscope. Degree is not high.
  • the position information of the capsule endoscope is determined to effectively avoid the positioning accuracy of the driving magnetic field Influence, improve the positioning accuracy of the capsule endoscope.
  • FIG. 1 shows an implementation process of a positioning method of a capsule endoscope provided in Embodiment 1 of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, and details are as follows:
  • step S101 the magnetic field of the driving magnet driving the capsule endoscope is measured by a magnetic sensor to obtain a magnetic field measurement value of the driving magnet.
  • a magnetic sensor and a magnet in the capsule endoscope are provided inside the capsule endoscope.
  • the driving magnet outside the capsule endoscope interacts with the magnet in the capsule endoscope to drive the capsule Speculum moves.
  • the capsule endoscope needs to be positioned in real time. Because the relative posture between the magnet in the capsule endoscope and the driving magnet is different when the posture of the capsule endoscope changes, the capsule The magnetic field at the position of the endoscope will also change. Therefore, when positioning the capsule endoscope, the magnetic field strength of the driving magnet is measured by a magnetic sensor inside the capsule endoscope, and the measured value is the magnetic field measurement value of the driving magnet.
  • the magnetic field measurement value of the driving magnet may be expressed as V l , where l represents the l-th magnetic sensor.
  • the magnetic sensors are dispersed inside the capsule endoscope, the magnetic sensors are separated from the magnets inside the capsule endoscope, and the distance is fixed.
  • the magnetic field measurement range is greater than or equal to the superimposed value of the magnetic field strength of the two magnets inside the capsule endoscope, so as to improve the utilization rate and measurement effect of the magnetic sensor.
  • the magnetic sensor is a three-axis magnetic sensor, which can measure the strength of the magnetic field in the direction of three measurement axes to improve the measurement effect of the magnetic sensor.
  • step S102 the spin angle of the capsule endoscope is measured to obtain a measurement value of the spin angle of the capsule endoscope.
  • the posture of the capsule endoscope is a three-dimensional posture, which also includes three
  • the spin angle of the capsule endoscope can be measured by the spin angle measuring sensor in the capsule endoscope.
  • an inertial sensor is provided inside the capsule endoscope, and the spin angle of the capsule endoscope is measured by the inertial sensor to improve the measurement accuracy of the spin angle of the capsule endoscope.
  • inertial sensors include linear acceleration sensors and gyroscopes.
  • the linear acceleration sensor in the inertial sensor is a three-axis acceleration sensor and a three-axis gyroscope
  • ax, ay, and az respectively represent the three measurement axes of the three-axis acceleration sensor
  • ⁇ x, ⁇ y, and ⁇ z respectively represent
  • the three measurement axes of the three-axis gyroscope, the directions of az and ⁇ z are the H 0 direction
  • acc is the linear acceleration received by the inertial sensor
  • is the spin angle of the capsule endoscope, Is the angle between az and acc.
  • the formula for calculating the measurement value of the spin angle of the capsule endoscope through the three-axis gyroscope in the inertial sensor is Where N is the number of data measured by the three-axis gyroscope, dt is the data collection interval of the three-axis gyroscope, and ⁇ zi is the data point of the angular velocity of the capsule endoscope spin measured on the measurement axis of ⁇ z.
  • a linear acceleration sensor or a gyroscope can be used alone or in combination.
  • the linear acceleration sensor is a three-axis acceleration sensor, and the gyroscope measures the number of axes No restrictions. After calculating the measured value ⁇ of the spin angle, it is necessary to calculate the coordinate transformation relationship R( ⁇ ) about the measured value ⁇ of the spin angle.
  • the expression of R( ⁇ ) The shape will change, when the axial direction of the magnetic sensor is the same as the axial direction of the inertial sensor, that is, the axial direction of the magnetic sensor Bx,
  • Bz corresponds to the axial direction of the inertial sensor ax (or ⁇ x), ay (or ⁇ y) , Az (or wz)
  • the coordinate transformation relationship R( ⁇ ) about the measured value ⁇ of the spin angle can be obtained as:
  • R( ⁇ ) is used to solve the posture information of six degrees of freedom of the capsule endoscope.
  • step S103 according to the measured value of the magnetic field of the driving magnet, the measured value of the spin angle, the preset driving magnetic field model and the preset optimization algorithm, the posture information of the capsule endoscope relative to the driving magnet is calculated.
  • a driving magnetic field model is constructed in advance, and the magnetic field measurement error of the driving magnet is calculated according to the driving magnetic field model, the magnetic field measurement value of the driving magnet and the measurement value of the spin angle, and the magnetic field measurement error is minimized by an optimization algorithm
  • the position and posture information of the capsule endoscope relative to the driving magnet can be calculated.
  • the driving magnetic field model when constructing the driving magnetic field model, the distance (x l , y l , z l ) T between each magnetic sensor and the center of the capsule endoscope is obtained, the relative permeability ⁇ r of the driving magnet is obtained, and the magnetic dipole model It has high calculation efficiency in magnetic positioning operation and is suitable for real-time positioning. Based on the obtained parameters and magnetic dipole model, a driving magnetic field model is constructed.
  • the driving magnetic field model is expressed as:
  • the relative position of the center of the capsule endoscope and the center of the drive magnet is (a, b, c) T
  • R l is the mode of P l
  • there is a constraint m 2 +n 2 + p 2 1
  • ⁇ 0 is the vacuum permeability
  • M T is a constant characterizing the magnetic field strength
  • B l is the value of a drive magnetic field model.
  • the magnetic field measurement error Err of the driving magnet When calculating the magnetic field measurement error Err of the driving magnet according to the driving magnetic field model, the magnetic field measurement value of the driving magnet and the measurement value of the spin angle, further preferably, the magnetic field measurement error is expressed as:
  • the position and posture information of the capsule endoscope relative to the driving magnet can be calculated through the error minimization process.
  • the preferred algorithm uses a nonlinear least squares-LM algorithm or an intelligent algorithm-PSO algorithm to improve the effect of minimizing the magnetic field measurement error.
  • step S104 the posture information of the capsule endoscope in the world coordinate system is determined according to the posture information of the drive magnet in the world coordinate system and the posture information of the capsule endoscope relative to the drive magnet.
  • the posture information (position and posture) of the driving magnet in the world coordinate system is known, and after obtaining the posture information of the capsule endoscope relative to the driving magnet, it can be based on the driving magnet in the world coordinate system
  • the posture information of the capsule endoscope and the relative position of the driving magnet of the capsule endoscope is converted to obtain the posture information of the capsule endoscope in the world coordinate system, and the positioning of the capsule endoscope is completed.
  • a capsule endoscope model is established on the user interface of the host, the posture information of the capsule endoscope model is refreshed according to the posture information of the capsule endoscope obtained by positioning, and the posture information at the next moment after receiving the user input
  • the magnetic force can be generated by adjusting the position and posture of the driving magnet, so that the capsule endoscope moves to the position and posture in the posture information at the next moment, thereby realizing the human-computer interaction process of the positioning and movement of the capsule endoscope, and improving the user experience .
  • the posture of the capsule endoscope is continuously adjusted according to the posture information fed back by the capsule endoscope in real time to balance the inside of the capsule
  • the force of the speculum causes the capsule endoscope to suspend.
  • the spin angle of the capsule endoscope is measured, based on the driving magnetic field model, the measured value of the magnetic field of the driving magnet, the measured value of the spin angle of the capsule endoscope and the optimization algorithm , Minimize the measurement error of the magnetic field of the driving magnet to determine the position information of the capsule endoscope, so as to effectively avoid the influence of the driving magnetic field on the positioning accuracy and improve the positioning accuracy of the capsule endoscope.
  • FIG. 3 shows an implementation process of a positioning method of a capsule endoscope provided by Embodiment 2 of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, and details are as follows:
  • step S301 the first measured magnetic field value is acquired.
  • the first magnetic field value is measured by the magnetic sensor inside the capsule endoscope, and the first magnetic field value It is the total value of the magnet, geomagnetic field and ambient magnetic field in the capsule endoscope.
  • the ambient magnetic field is the magnetic field of the device around the capsule endoscope (such as some medical equipment, or the user's mobile phone, computer, etc.), excluding The magnetic field that drives the magnet.
  • the first magnetic field value is a fixed value.
  • step S302 the second magnetic field value is obtained by the magnetic sensor measurement.
  • the capsule endoscope when the driving magnet drives the capsule endoscope to move, the capsule endoscope is located within the magnetic field range of the driving magnet, and the second magnetic field value is measured by a magnetic sensor inside the capsule endoscope, and the second magnetic field value is The total value of the magnetic field of the driving magnet, the internal magnet of the capsule endoscope, the geomagnetic field and the ambient magnetic field.
  • step S303 based on the first magnetic field value and the second magnetic field value, a magnetic field measurement value of the driving magnet is calculated.
  • the first magnetic field value is the total value of the magnets in the capsule endoscope, the geomagnetic field and the ambient magnetic field
  • the second magnetic field value is the driving magnet, the internal magnet of the capsule endoscope, the geomagnetic field and the surrounding The total value of the magnetic field of the environmental magnetic field, so the magnetic field measurement value V l of the driving magnet can be calculated by subtracting the first magnetic field value from the second magnetic field value.
  • the calculation formula of the magnetic field measurement value V l of the driving magnet is:
  • V l V l1 -V l0 , where V l0 is the first magnetic field value measured by the l-th magnetic sensor, and V l1 is the second magnetic field value measured by the l-th magnetic sensor.
  • step S304 the spin angle of the capsule endoscope is measured to obtain a measurement value of the spin angle of the capsule endoscope.
  • step S305 according to the measured value of the magnetic field of the driving magnet, the measured value of the spin angle, the preset driving magnetic field model and the preset optimization algorithm, the posture information of the capsule endoscope relative to the driving magnet is calculated.
  • step S306 the posture information of the capsule endoscope in the world coordinate system is determined according to the posture information of the drive magnet in the world coordinate system and the posture information of the capsule endoscope relative to the drive magnet.
  • the magnetic field measurement value of the driving magnet is calculated, according to the driving magnetic field model,
  • the measurement value of the magnetic field of the driving magnet, the measurement value of the spin angle of the capsule endoscope and the optimization algorithm minimize the measurement error of the magnetic field of the driving magnet to obtain the posture information of the capsule endoscope, so that there is no need to rely on the capsule endoscope
  • the magnetic field measurement value of the internal magnet realizes the positioning of the capsule endoscope, effectively avoids the influence of the driving magnetic field on the positioning accuracy, and improves the positioning accuracy of the capsule endoscope.
  • FIG. 4 shows a capsule endoscope 40 provided in Embodiment 3 of the present invention.
  • the capsule endoscope 40 is suitable for the positioning method of the capsule endoscope shown in Embodiments 1 and 2 above. For ease of description, only parts related to the embodiments of the present invention are shown.
  • the capsule endoscope 40 includes a magnetic sensor 41 provided in the capsule endoscope, a magnet 42 in the capsule endoscope, and a spin angle measurement sensor 43. among them:
  • the magnetic sensor 41 is used to measure the driving magnet driving the capsule endoscope 40 to obtain a magnetic field measurement value of the driving magnet.
  • the magnetic sensor 41 includes a first magnetic sensor 411 and a second magnetic sensor 412, and the first magnetic sensor 411 and the first The two magnetic sensors 412 are scattered and soldered on the circuit board of the capsule endoscope 40;
  • the spin angle measuring sensor 43 is used to measure the spin angle of the capsule endoscope 40.
  • the positioning system for positioning the capsule endoscope 40 is based on the magnetic field measurement value of the driving magnet obtained from the magnetic sensor 41 and the spin obtained from the spin angle measurement sensor 43
  • the measured value of the angle combined with the preset driving magnetic field model and the preset optimization algorithm, calculates the posture information of the capsule endoscope 40 relative to the driving magnet, according to the position information of the driving magnet in the world coordinate system and the relative driving magnet of the capsule endoscope 40 Position information of the capsule endoscope 40 in the world coordinate system.
  • the optimization algorithm, and the posture information of the capsule endoscope 40 relative to the driving magnet reference may be made to the description of the corresponding steps in Embodiment 1, which will not be repeated here.
  • the first magnetic sensor 411 and the second magnetic sensor 412 are arranged on the circuit board of the capsule endoscope 40 by soldering, so as to simultaneously measure the magnetic field values at different positions inside the capsule endoscope 40, and When the capsule endoscope 40 is positioned, positioning is performed according to the magnetic field measurement values of the driving magnets obtained by the first sensor 411 and the second sensor 412 respectively, thereby improving the positioning accuracy of the capsule endoscope 40.
  • the magnetic sensor 41 includes two or more dispersed first sensors 411 and second sensors 412, so that the magnetic field values at different positions inside the capsule endoscope 40 are measured by a plurality of dispersed magnetic sensors 41, The positioning accuracy of the capsule endoscope 40 is improved.
  • the process of acquiring the magnetic field measurement value of the driving magnet reference may be made to the detailed description of the corresponding steps in Embodiment 1 and Embodiment 2, and details are not described herein again.
  • the first magnetic sensor 411 or the second magnetic sensor 412 is a three-axis magnetic sensor, which can measure the magnetic field values in three measurement axis directions, combined with the magnetic field values in the three measurement axis directions and the spin angle measurement sensor 43 to measure According to the spin angle of the capsule endoscope 40, the position and posture (six degrees of freedom) of the capsule endoscope 40 can be achieved.
  • the spin angle measurement sensor 43 includes an inertial sensor, and the spin angle of the capsule endoscope 40 is measured by the inertial sensor to improve the accuracy of measuring the spin angle of the capsule endoscope 40.
  • the spin angle measurement sensor 43 may also be a linear acceleration sensor and/or a gyroscope. Further, the linear acceleration sensor is a three-axis acceleration sensor.
  • the capsule endoscope 40 is further provided with a radio frequency module.
  • the radio frequency module is connected to the first magnetic sensor 411, the second magnetic sensor 412 and the spin angle measurement sensor 43, and is used to connect the first magnetic sensor 411 and the second magnetic sensor.
  • the magnetic field measurement values of the driving magnetic field measured by the sensors 412 are sent out respectively, and the measurement values of the spin angle of the capsule endoscope 40 measured by the spin angle measurement sensor 43 are sent out so that the outside can be connected to the capsule endoscope 40
  • the processor can process these measurement data in time.
  • it can also be implemented by other communication modules (such as Bluetooth modules) capable of data communication.
  • the capsule endoscope includes a magnetic sensor provided in the capsule endoscope, a magnet in the capsule endoscope, and a spin angle measurement sensor, and the driving magnet interacts with the magnet in the capsule endoscope.
  • the capsule endoscope is driven to move based on the measurement value of the driving magnetic field obtained by the magnetic sensor in the capsule endoscope, the measurement value of the spin angle obtained by the spin angle measurement sensor in the capsule endoscope, combined with the preset driving magnetic field model and
  • the preset optimization algorithm realizes the positioning of the capsule endoscope, and improves the positioning effect of the capsule endoscope.
  • FIG. 5 shows a structure of a positioning system 50 provided by Embodiment 4 of the present invention.
  • the positioning system 50 is used to locate the position information of the capsule endoscope in Embodiment 3 in the world coordinate system. For convenience of description, only The part related to the embodiment of the present invention is shown. Among them, the positioning system 50 includes: a receiver 51 and a processing device 52;
  • the receiver 51 is used to obtain the magnetic field measurement value of the driving magnet from the magnetic sensor and the measurement value of the spin angle obtained from the spin angle measurement sensor;
  • the processing device 52 is used for combining the preset driving magnetic field model and the preset optimization algorithm according to the measured magnetic field value of the driving magnet obtained from the magnetic sensor and the measured value of the spin angle obtained from the spin angle measuring sensor , Calculate the posture information of the capsule endoscope relative to the drive magnet, and determine the posture of the capsule endoscope in the world coordinate system based on the posture information of the drive magnet in the world coordinate system and the posture information of the capsule endoscope relative to the drive magnet information.
  • the processing device 52 is also used to obtain the distance between the magnetic sensor and the center of the capsule endoscope, and to obtain the relative permeability of the driving magnet.
  • the driving magnetic field model is constructed. For the specific construction process, reference may be made to the detailed description of the corresponding steps in Embodiment 1, and details are not described herein again.
  • the processing device 52 is also used to calculate the magnetic field measurement error of the driving magnet according to the driving magnetic field model, the magnetic field measurement value of the driving magnet and the measurement value of the spin angle; the magnetic field measurement error of the driving magnet through an optimization algorithm Minimize to obtain the posture information of the capsule endoscope relative to the driving magnet.
  • the specific calculation process reference may be made to the detailed description of the corresponding steps in Embodiment 1, and details are not described herein again.
  • the positioning system 50 further includes the capsule endoscope 40 in the third embodiment.
  • the positioning system 50 is used to locate the position and posture of the capsule endoscope 40 in real time, wherein the capsule endoscope 40 includes The magnetic sensor 41, the magnet 42 in the capsule endoscope, and the spin angle measurement sensor 43.
  • the capsule endoscope 40 may be provided with a plurality of first magnetic sensors 411 and a plurality of second magnetic sensors 412.
  • a radio frequency module is further provided in the capsule endoscope 40, and the radio frequency module is connected to the first magnetic sensor 411, the second magnetic sensor 412, and the spin angle measurement sensor 43, and is used to connect the first magnetic sensor
  • the magnetic field measurement values of the driving magnetic field respectively measured by the sensor 411 and the second magnetic sensor 412 are sent to the receiver 51 of the positioning system 50, and the spin angle measurement value of the capsule endoscope 40 measured by the spin angle measurement sensor 43 Sent to the receiver 51 of the positioning system 50 to assist the positioning system 50 in positioning the capsule endoscope 40.
  • the radio frequency module it can also be implemented by other communication modules (such as Bluetooth modules) capable of data communication.
  • the receiver in the positioning system receives the measurement value of the magnetic field of the driving magnet and the measurement value of the spin angle of the capsule endoscope sent by the capsule endoscope.
  • the measured value of the spin angle of the endoscope combined with the preset driving magnetic field model, the preset optimization algorithm and the position information of the driving magnet in the world coordinate system, determine the position information of the capsule endoscope in the world coordinate system, thereby achieving The positioning of the capsule endoscope improves the positioning accuracy of the capsule endoscope.
  • FIG. 7 shows a structure of a positioning system for positioning a capsule endoscope according to Embodiment 5 of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, including:
  • the magnetic field measuring unit 71 is configured to measure the magnetic field of the driving magnet driving the capsule endoscope through a magnetic sensor, and obtain a magnetic field measurement value of the driving magnet.
  • a magnetic sensor and a magnet in the capsule endoscope are provided inside the capsule endoscope.
  • the driving magnet outside the capsule endoscope interacts with the magnet in the capsule endoscope to drive the capsule Speculum moves.
  • the capsule endoscope needs to be positioned in real time. Because the relative posture between the magnet in the capsule endoscope and the driving magnet is different when the posture of the capsule endoscope changes, the capsule The magnetic field where the endoscope is located will also change. Therefore, when positioning the capsule endoscope, the magnetic field strength of the driving magnet is measured by all the magnetic sensors inside the capsule endoscope, and the measured value is the magnetic field measurement value of the driving magnet.
  • the magnetic field measurement value of the driving magnet may be expressed as V l , where l represents the l-th magnetic sensor.
  • the magnetic sensors are dispersed inside the capsule endoscope, the magnetic sensors are separated from the magnets inside the capsule endoscope, and the distance is fixed.
  • the magnetic field measurement range is greater than or equal to the superimposed value of the magnetic field strength of the two magnets inside the capsule endoscope, so as to improve the utilization rate and measurement effect of the magnetic sensor.
  • the magnetic sensor is a three-axis magnetic sensor, which can measure the strength of the magnetic field in the direction of three measurement axes to improve the measurement effect of the magnetic sensor.
  • the spin measuring unit 72 is used to measure the spin angle of the capsule endoscope, and obtain the measurement value of the spin angle of the capsule endoscope.
  • the posture of the capsule endoscope is a three-dimensional posture, which also includes three
  • the spin angle of the capsule endoscope needs to be measured.
  • the spin angle of the capsule endoscope can be measured by the spin angle measuring sensor in the capsule endoscope.
  • an inertial sensor is provided inside the capsule endoscope, and the spin angle of the capsule endoscope is measured by the inertial sensor to improve the measurement accuracy of the spin angle of the capsule endoscope.
  • inertial sensors include linear acceleration sensors and gyroscopes.
  • the linear acceleration sensor in the inertial sensor is a three-axis acceleration sensor and a three-axis gyroscope
  • ax, ay, and az respectively represent the three measurement axes of the three-axis acceleration sensor
  • ⁇ x, ⁇ y, and ⁇ z respectively represent
  • the three measurement axes of the three-axis gyroscope, the directions of az and ⁇ z are the H 0 direction
  • acc is the linear acceleration received by the inertial sensor
  • is the spin angle of the capsule endoscope, Is the angle between az and acc.
  • the formula for calculating the measurement value of the spin angle of the capsule endoscope through the three-axis gyroscope in the inertial sensor is Where N is the number of data measured by the three-axis gyroscope, dt is the data collection interval of the three-axis gyroscope, and ⁇ zi is the data point of the angular velocity of the capsule endoscope spin measured on the measurement axis of ⁇ z.
  • a three-axis acceleration sensor or a three-axis gyroscope can be used alone, or a combination of the two can be used.
  • the linear acceleration sensor is a three-axis acceleration sensor and the gyroscope measures The number of axes is not limited. After calculating the measured value ⁇ of the spin angle, it is necessary to calculate the coordinate transformation relationship R( ⁇ ) about the measured value ⁇ of the spin angle.
  • R( ⁇ ) is used to solve the posture information of six degrees of freedom of the capsule endoscope.
  • the relative posture calculation unit 73 is configured to calculate the posture information of the capsule endoscope relative to the drive magnet according to the measured value of the magnetic field of the drive magnet, the measured value of the spin angle, the preset drive magnetic field model, and the preset optimization algorithm.
  • a driving magnetic field model is constructed in advance, and the magnetic field measurement error of the driving magnet is calculated according to the driving magnetic field model, the magnetic field measurement value of the driving magnet and the measurement value of the spin angle, and the magnetic field measurement error is minimized by an optimization algorithm
  • the position and posture information of the capsule endoscope relative to the driving magnet can be calculated.
  • the construction of the driving magnetic field model and the calculation of the posture information of the capsule endoscope relative to the driving magnet are performed by the processing device in the positioning system.
  • the driving magnetic field model when constructing the driving magnetic field model, the distance (x l , y l , z l ) T between each magnetic sensor and the center of the capsule endoscope is obtained, the relative permeability ⁇ r of the driving magnet is obtained, and the magnetic dipole model It has high calculation efficiency in magnetic positioning operation and is very suitable for real-time positioning. Therefore, based on the obtained parameters and magnetic dipole model, a driving magnetic field model is constructed.
  • the driving magnetic field model is expressed as:
  • the relative position of the center of the capsule endoscope and the center of the drive magnet is (a, b, c) T
  • R l is the mode of P l
  • there is a constraint m 2 +n 2 + p 2 1
  • ⁇ 0 is the vacuum permeability
  • M T is a constant characterizing the magnetic field strength
  • B l is the value of a drive magnetic field model.
  • the magnetic field measurement error Err of the driving magnet When calculating the magnetic field measurement error Err of the driving magnet according to the driving magnetic field model, the magnetic field measurement value of the driving magnet and the measurement value of the spin angle, further preferably, the magnetic field measurement error is expressed as:
  • the position and posture information of the capsule endoscope relative to the driving magnet can be calculated through the error minimization process.
  • the preferred algorithm uses a nonlinear least squares-LM algorithm or an intelligent algorithm-PSO algorithm to improve the effect of minimizing the magnetic field measurement error.
  • the capsule posture determination unit 74 is configured to determine the posture information of the capsule endoscope in the world coordinate system based on the posture information of the drive magnet in the world coordinate system and the posture information of the capsule endoscope relative to the drive magnet.
  • the posture information (position and posture) of the driving magnet in the world coordinate system is known, and after obtaining the posture information of the capsule endoscope relative to the driving magnet, it can be based on the driving magnet in the world coordinate system
  • the posture information of the capsule endoscope and the relative position of the driving magnet of the capsule endoscope is converted to obtain the posture information of the capsule endoscope in the world coordinate system, and the positioning of the capsule endoscope is completed.
  • a capsule endoscope model is established on the user interface of the host, the posture information of the capsule endoscope model is refreshed according to the posture information of the capsule endoscope obtained by positioning, and the posture information at the next moment after receiving the user input
  • the magnetic force can be generated by adjusting the position and posture of the driving magnet, so that the capsule endoscope moves to the position and posture in the posture information at the next moment, thereby realizing the human-computer interaction process of the positioning and movement of the capsule endoscope, and improving the user experience .
  • the capsule endoscope moves to the position and posture in the posture information at the next moment, according to the posture information fed back by the capsule endoscope in real time, the posture of the capsule endoscope is continuously adjusted to balance the inside of the capsule The force of the speculum makes the capsule endoscope float.
  • the magnetic field measurement unit 71 includes:
  • the first magnetic field value obtaining unit 711 is used to obtain a first measured first magnetic field value, the first magnetic field value is the total value of the magnetic field of the internal magnet of the capsule endoscope, the geomagnetic field, and the surrounding magnetic field without being affected by the driving magnet;
  • the second magnetic field value measuring unit 712 is configured to obtain a second magnetic field value measured by a magnetic sensor, and the second magnetic field value is the total value of the magnetic field of the driving magnet, the internal magnet of the capsule endoscope, the geomagnetic field, and the surrounding magnetic field;
  • the magnetic field value calculation unit 713 is used to calculate the magnetic field measurement value of the driving magnet according to the first magnetic field value and the second magnetic field value.
  • the first magnetic field value is measured by the magnetic sensor inside the capsule endoscope, and the first magnetic field value It is the total value of the magnetic field of the magnet, the geomagnetic field and the surrounding magnetic field in the capsule endoscope.
  • the ambient magnetic field is the magnetic field of the device around the capsule endoscope, excluding the magnetic field of the driving magnet.
  • the first magnetic field value is a fixed value.
  • the capsule endoscope when the driving magnet drives the capsule endoscope to move, the capsule endoscope is located within the magnetic field range of the driving magnet, and the second magnetic field value is measured by a magnetic sensor inside the capsule endoscope, and the second magnetic field value is The total value of the magnetic field of the driving magnet, the internal magnet of the capsule endoscope, the geomagnetic field and the ambient magnetic field.
  • the first magnetic field value is the total value of the magnets in the capsule endoscope, the geomagnetic field and the ambient magnetic field
  • the second magnetic field value is the driving magnet, the internal magnet of the capsule endoscope, the geomagnetic field and the surrounding The total value of the magnetic field of the environmental magnetic field, so the magnetic field measurement value V l of the driving magnet can be calculated by subtracting the first magnetic field value from the second magnetic field value.
  • the calculation formula of the magnetic field measurement value V l of the driving magnet is:
  • V l V l1 -V l0 , where V l0 is the first magnetic field value measured by the l-th magnetic sensor, and V l1 is the second magnetic field value measured by the l-th magnetic sensor.
  • the relative pose calculation unit 73 includes:
  • the error calculation unit 731 is used to calculate the magnetic field measurement error of the driving magnet based on the driving magnet model, the magnetic field measurement value of the driving magnet and the spin angle measurement value;
  • the error minimization unit 732 is used to minimize the magnetic field measurement error of the driving magnet through an optimization algorithm to obtain the position and posture information of the capsule endoscope relative to the driving magnet.
  • the positioning system further includes:
  • a parameter acquisition unit for acquiring the distance between the magnetic sensor and the center of the capsule endoscope and acquiring the relative permeability of the driving magnet
  • the magnetic field model building unit is used to construct a driving magnetic field model based on the magnetic dipole model, the distance between the magnetic sensor and the center of the capsule endoscope, and the relative permeability of the driving magnet.
  • the spin angle of the capsule endoscope is measured, based on the driving magnetic field model, the measured value of the magnetic field of the driving magnet, the measured value of the spin angle of the capsule endoscope and the optimization algorithm , Minimize the measurement error of the magnetic field of the driving magnet to determine the position information of the capsule endoscope, so as to effectively avoid the influence of the driving magnetic field on the positioning accuracy and improve the positioning accuracy of the capsule endoscope.

Abstract

一种胶囊内窥镜及其定位方法以及系统。该胶囊内窥镜内部设有磁传感器和胶囊内窥镜内部磁体,通过磁传感器对驱动胶囊内窥镜移动的驱动磁体进行磁场测量,获得驱动磁体的磁场测量值,测量胶囊内窥镜的自旋角度,获得胶囊内窥镜的自旋角度的测量值,依据驱动磁体的磁场测量值、自旋角度的测量值、预设驱动磁场模型和预设优化算法,计算胶囊内窥镜相对驱动磁体的位姿信息,根据驱动磁体在世界坐标系的位姿信息和胶囊内窥镜相对驱动磁体的位姿信息,确定胶囊内窥镜在世界坐标系的位姿信息。该定位方法避免了胶囊内窥镜定位过程受驱动磁体的磁场影响,有效提高了胶囊内窥镜的定位准确度。

Description

胶囊内窥镜及其定位方法及系统 技术领域
本发明属于三维定位技术领域,尤其涉及一种胶囊内窥镜及其定位方法及系统。
背景技术
胶囊内窥镜,又称智能胶囊式内窥镜系统,为胶囊形状的内窥镜。胶囊内窥镜内置有摄像与信号传输装置,经受检者口服,在消化道内运动并拍摄图像,以获得受检者消化道内部的图像。相较于传统的内窥镜,胶囊内窥镜不会给受检者带来创伤,不影响受检者的活动,十分便利。为了更精确得控制胶囊内窥镜对人体消化道系统进行检测,需要实时定位胶囊内窥镜在人体内的位置。
发明内容
本发明实施例提供一种胶囊内窥镜及其定位方法及系统,旨在提高胶囊内窥镜的定位准确度。
本发明实施例提供了一种胶囊内窥镜的定位方法,所述胶囊内窥镜内部设有磁传感器和所述胶囊内窥镜中的磁体,所述方法包括:
通过所述磁传感器对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量,获得所述驱动磁体的磁场测量值;
测量所述胶囊内窥镜的自旋角度,获得所述胶囊内窥镜的自旋角度的测量值;
依据所述驱动磁体的磁场测量值、所述自旋角度的测量值、预设驱动磁场模型和预设优化算法,计算所述胶囊内窥镜相对所述驱动磁体的位姿信息;
根据所述驱动磁体在世界坐标系的位姿信息和所述胶囊内窥镜相对所述驱动磁体的位姿信息,确定所述胶囊内窥镜在世界坐标系的位姿信息。
更进一步地,通过磁传感器对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量的步骤,包括:
获取预先测量的第一磁场值,所述第一磁场值为在不受所述驱动磁体的影响下所述胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;
通过所述磁传感器测量得到第二磁场值,所述第二磁场值为所述驱动磁体、所述胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;
依据所述第一磁场值和所述第二磁场值,计算所述驱动磁体的磁场测量值。
更进一步地,计算所述胶囊内窥镜相对所述驱动磁体的位姿信息的步骤,包括:
依据所述驱动磁场模型、所述驱动磁体的磁场测量值和所述自旋角度的测量值,计算所述驱动磁体的磁场测量误差;
通过所述优化算法对所述驱动磁体的磁场测量误差进行最小化,获得所述胶囊内窥镜相对所述驱动磁体的位姿信息。
更进一步地,通过磁传感器对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量的步骤之前,所述方法还包括:
获取所述磁传感器与所述胶囊内窥镜中心的距离,并获取所述驱动磁体的相对磁导率;
根据磁偶极子模型、所述磁传感器与所述胶囊内窥镜中心的距离和所述驱动磁体的相对磁导率,构建所述驱动磁场模型。
更进一步地,所述胶囊内窥镜内部设有至少两个所述磁传感器,所述磁传感器为三轴磁传感器。
更进一步地,所述胶囊内窥镜内部设有惯性传感器,所述惯性传感器用来测量所述胶囊内窥镜的自旋角度。
本发明实施例还提供了一种胶囊内窥镜,包括:设置在所述胶囊内窥镜中的磁传感器、胶囊内窥镜中的磁体和自旋角度测量传感器;
所述磁传感器用于对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量,获得所述驱动磁体的磁场测量值;
所述磁传感器包括第一磁传感器和第二磁传感器,所述第一磁传感器和所述第二磁传感器分散焊接设置在所述胶囊内窥镜中的电路板上;
所述自旋角度测量传感器用于测量所述胶囊内窥镜的自旋角度,从而定位系统根据从所述磁传感器处获得的所述自旋角度的测量值,结合预设驱动磁场模型和预设优化算法,计算所述胶囊内窥镜相对于所述驱动磁体的位姿信息,根据所述驱动磁体在世界坐标系的位姿信息和所述胶囊内窥镜相对于所述驱动磁体的位置信息,确定所述胶囊内窥镜在世界坐标系的位姿信息。
更进一步地,所述第一次传感器或所述第二磁传感为三轴磁传感器。
更进一步地,所述自旋角度测量传感器包括惯性传感器。
更进一步地,所述磁传感器包括两个或两个以上分散的所述第一传感器或所述第二传感器。
本发明实施例提供了一种定位系统,所述定位系统用于定位胶囊内窥镜在世界坐标系的 位姿信息,所述胶囊内窥镜包括:设置在所述胶囊内窥镜中的磁传感器、胶囊内窥镜中的磁体和自旋角度测量传感器;所述磁传感器用于对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量,获得所述驱动磁体的磁场测量值;所述磁传感器包括第一磁传感器和第二磁传感器,所述第一磁传感器和所述第二磁传感器分散焊接设置在所述胶囊内窥镜中的电路板上;所述自旋角度测量传感器用于测量所述胶囊内窥镜的自旋角度;
所述定位系统包括:接收器和处理装置;
所述接收器,用于从所述磁传感器处获取所述驱动磁体的磁场测量值,以及从所述自旋角度测量传感器处获得的所述自旋角度的测量值;
所述处理装置,用于根据所述磁传感器处获得的所述驱动磁体的磁场测量值,以及根据从所述自旋角度测量传感器处获得的所述自旋角度的测量值,结合预设驱动磁场模型和预设优化算法,计算所述胶囊内窥镜相对所述驱动磁体的位姿信息,根据所述驱动磁体在世界坐标系的位姿信息。
更进一步地,所述胶囊内窥镜包括射频模块,所述第一磁传感器、所述第二磁传感器和所述自旋角度测量传感器与所述射频模块连接,所述第一磁传感器和所述第二磁传感器分别通过所述射频模块将所述驱动磁体的磁场测量值发送至所述接收器,所述自旋角度测量传感器通过所述射频模块发送所述自旋角度的测量值至所述接收器。
更进一步地,所述处理装置还用于依据所述驱动磁场模型、所述驱动磁体的磁场测量值和所述自旋角度的测量值,计算所述驱动磁体的磁场测量误差;通过所述优化算法对所述驱动磁体的磁场测量误差进行最小化,获得所述胶囊内窥镜相对所述驱动磁体的位姿信息。
更进一步地,所述处理装置还用于获取所述磁传感器与所述胶囊内窥镜中心的距离,并获取所述驱动磁体的相对磁导率;根据磁偶极子模型、所述磁传感器与所述胶囊内窥镜中心的距离和所述驱动磁体的相对磁导率,构建所述驱动磁场模型。
本发明实施例还提供一种对胶囊内窥镜进行定位的定位系统,所述胶囊内窥镜内部设有磁传感器和所述胶囊内窥镜中的磁体,所述定位系统包括:
磁场测量单元,用于通过磁传感器对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量,获得所述驱动磁体的磁场测量值;
自旋测量单元,用于测量所述胶囊内窥镜的自旋角度,获得所述胶囊内窥镜的自旋角度的测量值;
相对位姿计算单元,用于依据所述驱动磁体的磁场测量值、所述自旋角度的测量值、预设驱动磁场模型和预设优化算法,计算所述胶囊内窥镜相对所述驱动磁体的位姿信息;以及
胶囊位姿确定单元,用于根据所述驱动磁体在世界坐标系的位姿信息和所述胶囊内窥镜相对所述驱动磁体的位姿信息,确定所述胶囊内窥镜在世界坐标系的位姿信息。
更进一步地,所述磁场测量单元包括:
第一磁场值获取单元,用于获取预先测量的第一磁场值,所述第一磁场值为在不受所述驱动磁体的影响下所述胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;
第二磁场值测量单元,用于通过所述磁传感器测量得到第二磁场值,所述第二磁场值为所述驱动磁体、所述胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;以及
磁场值计算单元,用于依据所述第一磁场值和所述第二磁场值,计算所述驱动磁体的磁场测量值。
更进一步地,所述相对位姿计算单元包括:
误差计算单元,用于依据所述驱动磁体模型、所述驱动磁体的磁场测量值和所述自旋角度的测量值,计算所述驱动磁体的磁场测量误差;以及
误差最小化单元,用于通过所述优化算法对所述驱动磁体的磁场测量误差进行最小化,获得所述胶囊内窥镜相对所述驱动磁体的位姿信息。
更进一步地,所述定位系统还包括:
参数获取单元,用于获取所述磁传感器与所述胶囊内窥镜中心的距离,并获取所述驱动磁体的相对磁导率;以及
磁场模型构建单元,用于根据磁偶极子模型、所述磁传感器与所述胶囊内窥镜中心的距离和所述驱动磁体的相对磁导率,构建所述驱动磁场模型。
本发明通过磁传感器对驱动磁体进行磁场测量,获得驱动磁体的磁场测量值,同时测量胶囊内窥镜的自旋角度,获得胶囊内窥镜的自旋角度的测量值,依据磁场测量值、自旋角度的测量值、预设驱动磁场模型和预设优化算法,计算胶囊内窥镜相对驱动磁体的位姿信息,再依据驱动磁体在世界坐标系的位姿信息,获得胶囊内窥镜在世界坐标系的位姿信息,从而依据驱动磁体的磁场测量值、驱动磁场模型、自旋角度的测量值和优化算法,对胶囊内窥镜进行定位,避免了胶囊内窥镜的定位过程受驱动磁体的磁场影响,并提高胶囊内窥镜的定位准确度。
附图说明
图1是本发明实施例一提供的一种胶囊内窥镜的定位方法的实现流程图;
图2是本发明实施例一提供的一种胶囊内窥镜的定位方法中惯性传感器三轴方向的示例 图;
图3是本发明实施例二提供的一种胶囊内窥镜的定位方法的实现流程图;
图4是本发明实施例三提供的一种胶囊内窥镜的结构示意图;
图5是本发明实施例四提供的一种定位系统的结构示意图;
图6是本发明实施例四提供的一种定位系统的优选结构示意图;
图7是本发明实施例五提供的一种对胶囊内窥镜进行定位的定位系统的结构示意图;以及
图8是本发明实施例五提供的一种对胶囊内窥镜进行定位的定位系统的优选结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
目前,定位方式主要有光学定位、超声波定位、射线定位和磁定位,光学定位不适用于体内定位,超声波定位精度不高,射线定位具有辐射性。胶囊内窥镜内设有小磁体,在人体外部的磁控系统中设有大磁体,大磁体和小磁体都是永磁体,大磁体作为磁控系统中的驱动磁体,用于提供驱动磁场,在驱动磁场的驱动下胶囊内窥镜在人体消化系统内运动。目前的磁定位技术中,通过测量小磁体的磁场变化,来得到胶囊内窥镜的位置,然而,大磁体磁场强度大,会对小磁体的磁场强度测量造成影响,导致胶囊内窥镜定位准确度不高。在本发明中,通过测量驱动磁体的磁场,并依据驱动磁场模型、胶囊内窥镜的自旋角度和优化算法,确定胶囊内窥镜的位姿信息,有效地避免驱动磁场对定位准确度的影响,提高胶囊内窥镜的定位准确度。
实施例一
图1示出了本发明实施例一提供的一种胶囊内窥镜的定位方法的实现流程,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
在步骤S101中,通过磁传感器对驱动胶囊内窥镜移动的驱动磁体进行磁场测量,获得驱动磁体的磁场测量值。
在本发明实施例中,胶囊内窥镜内部设有磁传感器和胶囊内窥镜中的磁体,胶囊内窥镜外部的驱动磁体通过与胶囊内窥镜中的磁体之间相互作用,驱动胶囊内窥镜移动。在驱动 胶囊内窥镜移动的过程中,需要实时对胶囊内窥镜进行定位,由于胶囊内窥镜位姿发生变化时胶囊内窥镜中的磁体与驱动磁体之间的相对位姿不同,胶囊内窥镜所处位置的磁场也会发生变化。所以,在对胶囊内窥镜进行定位时,通过胶囊内窥镜内部的磁传感器测量驱动磁体的磁场强度,测量得到的值即为驱动磁体的磁场测量值。
优选地,在胶囊内窥镜内部设有至少两个磁传感器,以通过多个磁传感器同时进行测量,来提高驱动磁体磁场测量的准确度。作为示例地,驱动磁体的磁场测量值可表示为V l,其中,l表示第l个磁传感器。
当胶囊内窥镜内部设有至少两个磁传感器时,优选地,磁传感器在胶囊内窥镜内部位置分散,磁传感器与胶囊内窥镜内部的磁体分离布置、且距离固定,单个磁传感器的磁场测量范围大于或等于胶囊内窥镜内部两个磁体的磁场强度叠加值,以提高磁传感器的利用率和测量效果。
进一步优选地,磁传感器为三轴磁传感器,可以测量到三个测量轴方向上的磁场强度,以提高磁传感器的测量效果。
在步骤S102中,测量胶囊内窥镜的自旋角度,获得胶囊内窥镜的自旋角度的测量值。
在本发明实施例中,在获得驱动磁体的磁场测量值后,由于胶囊内窥镜的位置为三维位置,即包括三个自由度,胶囊内窥镜的姿态为三维空间的姿态,也包括三个自由度,为了后续能够更为准确地确定胶囊内窥镜的位姿信息(位置和姿态),即确定6个自由度的值,需要测量胶囊内窥镜的自旋角度。可通过胶囊内窥镜中的自旋角度测量传感器测量胶囊内窥镜的自旋角度。
优选地,在胶囊内窥镜内部设有惯性传感器,通过惯性传感器来测量胶囊内窥镜的自旋角度,以提高胶囊内窥镜自旋角度的测量准确度。
具体地,惯性传感器包括线加速度传感器和陀螺仪。
当惯性传感器中的线加速度传感器为三轴线加速度传感器和三轴陀螺仪时,如图2所示,ax、ay、az分别表示三轴线加速度传感器的三个测量轴,ωx、ωy、ωz分别表示三轴陀螺仪的三个测量轴,az、ωz的方向为H 0方向,acc为惯性传感器受到的线加速度,θ为胶囊内窥镜的自旋角度,
Figure PCTCN2019079528-appb-000001
为az与acc之间的夹角。三轴线加速度传感器在三个测量轴上的分量分别为:
Figure PCTCN2019079528-appb-000002
Figure PCTCN2019079528-appb-000003
进而求得胶囊内窥镜的自旋角度的测量值为θ=arctan(-acc y/acc x)。通过惯性传感器中的三轴陀螺仪来计算胶囊内窥镜的自旋角度的测量值的公式为
Figure PCTCN2019079528-appb-000004
其中,N为三轴陀螺仪测量到数据的个数,dt为三轴陀螺仪的数据采集间隔,ω zi为ωz测量轴上测量胶囊内窥镜自旋的角速率数据点。在采用惯性传感器测量胶囊内窥镜的自旋角度时,可单独采用线加速度传感器或陀螺仪,也可以结合两者一起测量,其中,线加速度传感器为三轴线加速度传感器,陀螺仪测量轴的数量不作限制。在计算得到自旋角度的测量值θ后,需计算关于自旋角度的测量值θ的坐标变换关系R(θ),依据磁传感器的轴向与惯性传感器的轴向,R(θ)的表示形会有所变化,当磁传感器的轴向与惯性传感器的轴向相同时,即磁传感器的轴向Bx、By、Bz分别对应惯性传感器的轴向ax(或ωx)、ay(或ωy)、az(或wz),可得到关于自旋角度的测量值θ的坐标变换关系R(θ)为:
Figure PCTCN2019079528-appb-000005
其中,R(θ)用于后续求解胶囊内窥镜六个自由度的位姿信息。
在步骤S103中,依据驱动磁体的磁场测量值、自旋角度的测量值、预设驱动磁场模型和预设优化算法,计算胶囊内窥镜相对驱动磁体的位姿信息。
在本发明实施例中,预先构建驱动磁场模型,依据驱动磁场模型、驱动磁体的磁场测量值和自旋角度的测量值,来计算驱动磁体的磁场测量误差,通过优化算法对磁场测量误差进行最小化,可计算得到胶囊内窥镜相对于驱动磁体的位姿信息。
优选地,在构建驱动磁场模型时,获取各磁传感器与胶囊内窥镜中心的距离(x l,y l,z l) T,获取驱动磁体的相对磁导率μ r,磁偶极子模型在磁定位运算中具有较高的运算效率,很适合实时定位,依据获得的这些参数和磁偶极子模型,构建驱动磁场模型,驱动磁场模型表示为:
Figure PCTCN2019079528-appb-000006
其中,胶囊内窥镜中心与驱动磁体中心的相对位置为(a,b,c) T,胶囊内窥镜中心与驱动磁体中心的相对姿态为H 0=(m,n,p) T,P l表示第l个磁传感器与驱动磁体中心的距离且P l=(x l-a,y l-b,z l-c) T,R l为P l的模,存在约束条件m 2+n 2+p 2=1,μ 0为真空磁导率,M T为表征磁体磁场强度的常数,B l为驱动磁场的磁场模型值。求解胶囊内窥镜相对驱动磁体的位姿信息,即求解(a,b,c) T和H 0=(m,n,p) T
在依据驱动磁场模型、驱动磁体的磁场测量值和自旋角度的测量值,计算驱动磁体的磁场测量误差Err时,进一步优选地,磁场测量误差表示为:
Figure PCTCN2019079528-appb-000007
以提高磁场测量误差的计算准确度,并能够通过误差最小化过程计算得到胶囊内窥镜相对驱动磁体的位姿信息。在通过优化算法对磁场测量误差进行最小化时,进一步优选地,优选算法采用非线性最小二乘法-LM算法或智能算法-PSO算法,以提高磁场测量误差的最小化效果。
在步骤S104中,根据驱动磁体在世界坐标系的位姿信息和胶囊内窥镜相对驱动磁体的位姿信息,确定胶囊内窥镜在世界坐标系的位姿信息。
在本发明实施例中,驱动磁体在世界坐标系的位姿信息(位置和姿态)是已知的,在获得胶囊内窥镜相对驱动磁体的位姿信息,即可根据驱动磁体在世界坐标系的位姿信息和胶囊内窥镜相对驱动磁体的位姿信息,转换得到胶囊内窥镜在世界坐标系的位姿信息,完成对胶囊内窥镜的定位。
优选地,在主机用户界面建立胶囊内窥镜模型,根据定位得到的胶囊内窥镜的位姿信息,刷新胶囊内窥镜模型的位姿信息,在接收到用户输入的下一时刻位姿信息时,可通过调整驱动磁体的位置姿态产生磁力,使得胶囊内窥镜运动到下一时刻位姿信息中的位置和姿态,从而实现胶囊内窥镜定位和运动的人机交互过程,提高用户体验。此外,当胶囊内窥镜运动到下一时刻位姿信息中的位置和姿态时,根据胶囊内窥镜实时反馈的位姿信息,对胶囊内窥镜的位姿进行不断调整,以平衡胶囊内窥镜的受力,使得胶囊内窥镜实现悬浮。
在本发明实施例中,通过测量驱动磁体的磁场,测量胶囊内窥镜的自旋角度,依据驱动磁场模型、驱动磁体的磁场测量值、胶囊内窥镜的自旋角度的测量值和优化算法,对驱动磁体的磁场测量误差进行最小化,以确定胶囊内窥镜的位姿信息,从而有效地避免驱动磁场对定位准确度的影响,提高胶囊内窥镜的定位准确度。
实施例二
图3示出了本发明实施例二提供的一种胶囊内窥镜的定位方法的实现流程,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
在步骤S301中,获取预先测量的第一磁场值。
在本发明实施例中,在没有驱动磁体的磁场时(即胶囊内窥镜位于驱动磁体的磁场范围之外时),通过胶囊内窥镜内部的磁传感器测量第一磁场值,第一磁场值为胶囊内窥镜中的磁体、地磁场及周围环境磁场的磁场总值,周围环境磁场为胶囊内窥镜周围设备(例如一些医疗设备,或者用户的手机、电脑等设备)的磁场,不包括驱动磁体的磁场。其中,在不考虑周围环境磁场变化时,第一磁场值为固定值。
在步骤S302中,通过磁传感器测量得到第二磁场值。
在本发明实施例中,在驱动磁体驱动胶囊内窥镜移动时,胶囊内窥镜位于驱动磁体的磁场范围内,通过胶囊内窥镜内部的磁传感器测量第二磁场值,第二磁场值为驱动磁体、胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值。
在步骤S303中,依据第一磁场值和第二磁场值,计算驱动磁体的磁场测量值。
在本发明实施例中,第一磁场值为胶囊内窥镜中的磁体、地磁场及周围环境磁场的磁场总值,第二磁场值为驱动磁体、胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值,因此可通过将第二磁场值减去第一磁场值,计算得到驱动磁体的磁场测量值V l
优选地,驱动磁体的磁场测量值V l的计算公式为:
V l=V l1-V l0,其中,V l0为第l个磁传感器测量到的第一磁场值,V l1为第l个磁传感器测量到的第二磁场值。
在步骤S304中,测量胶囊内窥镜的自旋角度,获得胶囊内窥镜的自旋角度的测量值。
在步骤S305中,依据驱动磁体的磁场测量值、自旋角度的测量值、预设驱动磁场模型和预设优化算法,计算胶囊内窥镜相对驱动磁体的位姿信息。
在步骤S306中,根据驱动磁体在世界坐标系的位姿信息和胶囊内窥镜相对驱动磁体的位姿信息,确定胶囊内窥镜在世界坐标系的位姿信息。
在本发明实施例中,步骤S304至步骤S306的详细内容可参照实施例一种步骤S102至步骤S104的描述,在此不再赘述。
在本发明实施例种,通过获取驱动磁体磁场存在时和驱动磁体磁场不存在时,胶囊内窥镜内部磁传感器分别测量到的测量值,计算得到驱动磁体的磁场测量值,依据驱动磁场模型、驱动磁体的磁场测量值、胶囊内窥镜的自旋角度的测量值和优化算法,对驱动磁体的磁场测量误差进行最小化,获得胶囊内窥镜的位姿信息,从而无需依赖胶囊内窥镜内部磁体的磁场测量值来实现胶囊内窥镜的定位,有效地避免驱动磁场对定位准确度的影响,提高胶囊内窥镜的定位准确度。
实施例三
图4示出了本发明实施例三提供的一种胶囊内窥镜40,该胶囊内窥镜40适用于上述实施例一和实施例二示出的胶囊内窥镜的定位方法。为了便于说明,仅示出与本发明实施例相关的部分。
在本发明实施例中,胶囊内窥镜40包括设置于胶囊内窥镜中的磁传感器41、胶囊内窥镜中的磁体42和自旋角度测量传感器43。其中:
磁传感器41用于对驱动胶囊内窥镜40移动的驱动磁体进行测量,获得驱动磁体的磁场 测量值,磁传感器41包括第一磁传感器411和第二磁传感器412,第一磁传感器411和第二磁传感器412分散焊接设置在胶囊内窥镜40的电路板上;
自旋角度测量传感器43用于测量胶囊内窥镜40的自旋角度。
在本发明实施例中,用于对胶囊内窥镜40进行定位的定位系统根据从磁传感器41处获取到的驱动磁体的磁场测量值,以及根据从自旋角度测量传感器43处获得的自旋角度的测量值,结合预设驱动磁场模型和预设优化算法,计算胶囊内窥镜40相对驱动磁体的位姿信息,根据驱动磁体在世界坐标系的位置信息和胶囊内窥镜40相对驱动磁体的位姿信息,确定胶囊内窥镜40在世界坐标系的位姿信息。其中,驱动磁场模型、优化算法和胶囊内窥镜40相对驱动磁体的位姿信息的计算过程可参照实施例一相应步骤的描述,在此不再赘述。
在本发明实施例中,第一磁传感器411和第二磁传感器412分散焊接设置在胶囊内窥镜40的电路板上,以同时测量到胶囊内窥镜40内部不同位置处的磁场值,进而在对胶囊内窥镜40进行定位时依据第一传感器411和第二传感器412分别获取的驱动磁体的磁场测量值进行定位,提高胶囊内窥镜40的定位准确度。优选地,磁传感器41包括两个或两个以上分散的第一传感器411和第二传感器412,从而通过多个分散的磁传感器41来测量到胶囊内窥镜40内部不同位置处的磁场值,提高胶囊内窥镜40的定位准确度。其中,驱动磁体的磁场测量值的获取过程可参照实施例一和实施例二相应步骤的详细描述,在此不再赘述。
优选地,第一磁传感器411或第二磁传感器412为三轴磁传感器,可以测量到三个测量轴方向上的磁场值,结合三个测量轴方向的磁场值和自旋角度测量传感器43测量到的胶囊内窥镜40的自旋角度,可以实现对胶囊内窥镜40位姿(六个自由度)的定位。
优选地,自旋角度测量传感器43包括惯性传感器,通过惯性传感器来测量胶囊内窥镜40的自旋角度,以提高胶囊内窥镜40自旋角度的测量准确度。此外,自旋角度测量传感器43还可为线加速度传感器和/或陀螺仪。进一步地,线加速度传感器为三轴线加速度传感器。
优选地,胶囊内窥镜40中还设有射频模块,射频模块与第一磁传感器411、第二磁传感器412和自旋角度测量传感器43连接,用于将第一磁传感器411和第二磁传感器412分别测量到的驱动磁场的磁场测量值发送出去,并将自旋角度测量传感器43测量到的胶囊内窥镜40自旋角度的测量值发送出去,以便外界与胶囊内窥镜40连接的处理器能够及时对这些测量数据进行处理。除射频模块以外,还可以通过能够实现数据通信的其它通信模块(例如蓝牙模块)实现。
在本发明实施例中,胶囊内窥镜包括设置于胶囊内窥镜中的磁传感器、胶囊内窥镜中的磁体和自旋角度测量传感器,驱动磁体与胶囊内窥镜中的磁体相互作用,驱动胶囊内窥镜移动,依据胶囊内窥镜中的磁传感器获取的驱动磁场测量值、胶囊内窥镜中的自旋角度测量 传感器获取的自旋角度的测量值、结合预设驱动磁场模型和预设优化算法,实现对胶囊内窥镜的定位,并提高了胶囊内窥镜的定位效果。
实施例四
图5示出了本发明实施例四提供的一种定位系统50的结构,该定位系统50用于定位实施例三中的胶囊内窥镜在世界坐标系的位姿信息,为了便于说明,仅示出了与本发明实施例相关的部分。其中,定位系统50包括:接收器51和处理装置52;
接收器51,用于从磁传感器处获取驱动磁体的磁场测量值,以及从自旋角度测量传感器处获得的自旋角度的测量值;
处理装置52,用于根据从磁传感器处获取到的驱动磁体的磁场测量值,以及根据从自旋角度测量传感器处获得的自旋角度的测量值,结合预设驱动磁场模型和预设优化算法,计算胶囊内窥镜相对驱动磁体的位姿信息,根据驱动磁体在世界坐标系的位姿信息和胶囊内窥镜相对驱动磁体的位姿信息,确定胶囊内窥镜在世界坐标系的位姿信息。
在本发明实施例中,处理装置52还用于获取磁传感器与胶囊内窥镜中心的距离,并获取驱动磁体的相对磁导率,根据磁偶极子模型、磁传感器与胶囊内窥镜中心的距离和驱动磁体的相对磁导率,构建驱动磁场模型。具体的构建过程可参照实施例一相应步骤的详细描述,在此不再赘述。
在本发明实施例中,处理装置52还用于依据驱动磁场模型、驱动磁体的磁场测量值和自旋角度的测量值,计算驱动磁体的磁场测量误差;通过优化算法对驱动磁体的磁场测量误差进行最小化,获得胶囊内窥镜相对驱动磁体的位姿信息。具体的计算过程可参照实施例一相应步骤的详细描述,在此不再赘述。
优选地,如图6所示,定位系统50还包括实施例三中的胶囊内窥镜40,定位系统50用于实时定位胶囊内窥镜40的位姿,其中,胶囊内窥镜40中包括磁传感器41、胶囊内窥镜中的磁体42和自旋角度测量传感器43。胶囊内窥镜40中可设有多个第一磁传感器411和多个第二磁传感器412。
优选地,如图6所示,胶囊内窥镜40中还设有射频模块,射频模块与第一磁传感器411、第二磁传感器412和自旋角度测量传感器43连接,用于将第一磁传感器411和第二磁传感器412分别测量到的驱动磁场的磁场测量值发送至定位系统50的接收器51,并将自旋角度测量传感器43测量到的胶囊内窥镜40自旋角度的测量值发送至定位系统50的接收器51,以辅助定位系统50实现对胶囊内窥镜40的定位。除射频模块以外,还可以通过能够实现数据通信的其它通信模块(例如蓝牙模块)实现。
在本发明实施例中,定位系统中的接收器接收胶囊内窥镜发送的驱动磁体的磁场测量 值和胶囊内窥镜自旋角度的测量值,由处理装置依据驱动磁体的磁场测量值、胶囊内窥镜自旋角度的测量值,结合预设驱动磁场模型、预设优化算法和驱动磁体在世界坐标系中的位姿信息,确定胶囊内窥镜在世界坐标系的位姿信息,从而实现对胶囊内窥镜的定位,并提高了胶囊内窥镜定位的准确度。
实施例五
图7示出了本发明实施例五提供的一种对胶囊内窥镜进行定位的定位系统的结构,为了便于说明,仅示出了与本发明实施例相关的部分,其中包括:
磁场测量单元71,用于通过磁传感器对驱动胶囊内窥镜移动的驱动磁体进行磁场测量,获得驱动磁体的磁场测量值。
在本发明实施例中,胶囊内窥镜内部设有磁传感器和胶囊内窥镜中的磁体,胶囊内窥镜外部的驱动磁体通过与胶囊内窥镜中的磁体之间相互作用,驱动胶囊内窥镜移动。在驱动胶囊内窥镜移动的过程中,需要实时对胶囊内窥镜进行定位,由于胶囊内窥镜位姿发生变化时胶囊内窥镜中的磁体与驱动磁体之间的相对位姿不同,胶囊内窥镜所处位置的磁场也会发生变化。所以,在对胶囊内窥镜进行定位时,通过胶囊内窥镜内部的所有磁传感器实现对驱动磁体磁场强度的测量,测量得到的值即为驱动磁体的磁场测量值。
优选地,在胶囊内窥镜内部设有至少两个磁传感器,以通过多个磁传感器同时进行测量,来提高驱动磁体磁场测量的准确度。作为示例地,驱动磁体的磁场测量值可表示为V l,其中,l表示第l个磁传感器。
当胶囊内窥镜内部设有至少两个磁传感器时,优选地,磁传感器在胶囊内窥镜内部位置分散,磁传感器与胶囊内窥镜内部的磁体分离布置、且距离固定,单个磁传感器的磁场测量范围大于或等于胶囊内窥镜内部两个磁体的磁场强度叠加值,以提高磁传感器的利用率和测量效果。
进一步优选地,磁传感器为三轴磁传感器,可以测量到三个测量轴方向上的磁场强度,以提高磁传感器的测量效果。
自旋测量单元72,用于测量胶囊内窥镜的自旋角度,获得胶囊内窥镜的自旋角度的测量值。
在本发明实施例中,在获得驱动磁体的磁场测量值后,由于胶囊内窥镜的位置为三维位置,即包括三个自由度,胶囊内窥镜的姿态为三维空间的姿态,也包括三个自由度,为了后续能够确定胶囊内窥镜的位姿信息(位置和姿态),即为了可以确定6个自由度的值,需要测量胶囊内窥镜的自旋角度。可通过胶囊内窥镜中的自旋角度测量传感器实现对胶囊内窥 镜自旋角度的测量。
优选地,在胶囊内窥镜内部设有惯性传感器,通过惯性传感器来测量胶囊内窥镜的自旋角度,以提高胶囊内窥镜自旋角度的测量准确度。
具体地,惯性传感器包括线加速度传感器和陀螺仪。
当惯性传感器中的线加速度传感器为三轴线加速度传感器和三轴陀螺仪时,如图2所示,ax、ay、az分别表示三轴线加速度传感器的三个测量轴,ωx、ωy、ωz分别表示三轴陀螺仪的三个测量轴,az、ωz的方向为H 0方向,acc为惯性传感器受到的线加速度,θ为胶囊内窥镜的自旋角度,
Figure PCTCN2019079528-appb-000008
为az与acc之间的夹角。三轴线加速度传感器在三个测量轴上的分量分别为:
Figure PCTCN2019079528-appb-000009
Figure PCTCN2019079528-appb-000010
进而求得胶囊内窥镜的自旋角度的测量值为θ=arctan(-acc y/acc x)。通过惯性传感器中的三轴陀螺仪来计算胶囊内窥镜的自旋角度的测量值的公式为
Figure PCTCN2019079528-appb-000011
其中,N为三轴陀螺仪测量到数据的个数,dt为三轴陀螺仪的数据采集间隔,ω zi为ωz测量轴上测量胶囊内窥镜自旋的角速率数据点。在采用惯性传感器测量胶囊内窥镜的自旋角度时,可单独采用三轴线加速度传感器或三轴陀螺仪,也可以结合两者一起测量,其中,线加速度传感器为三轴线加速度传感器,陀螺仪测量轴的数量不作限制。在计算得到自旋角度的测量值θ后,需计算关于自旋角度的测量值θ的坐标变换关系R(θ),依据磁传感器的轴向与惯性传感器的轴向,R(θ)的表示形会有所变化,当磁传感器的轴向与惯性传感器的轴向相同时,即磁传感器的轴向Bx、By、Bz分别对应惯性传感器的轴向ax(或ωx)、ay(或ωy)、az(或wz),可得到关于自旋角度的测量值θ的坐标变换关系R(θ)为:
Figure PCTCN2019079528-appb-000012
其中,R(θ)用于后续求解胶囊内窥镜六个自由度的位姿信息。
相对位姿计算单元73,用于依据驱动磁体的磁场测量值、自旋角度的测量值、预设驱动磁场模型和预设优化算法,计算胶囊内窥镜相对驱动磁体的位姿信息。
在本发明实施例中,预先构建驱动磁场模型,依据驱动磁场模型、驱动磁体的磁场测量值和自旋角度的测量值,来计算驱动磁体的磁场测量误差,通过优化算法对磁场测量误差进行最小化,可计算得到胶囊内窥镜相对于驱动磁体的位姿信息。其中,驱动磁场模型的构 建和胶囊内窥镜相对于驱动磁体的位姿信息的计算(包括磁场测量误差的计算和最小化过程)由定位系统中的处理装置执行。
优选地,在构建驱动磁场模型时,获取各磁传感器与胶囊内窥镜中心的距离(x l,y l,z l) T,获取驱动磁体的相对磁导率μ r,磁偶极子模型在磁定位运算中具有较高的运算效率,很适合实时定位,因此再依据获得的这些参数和磁偶极子模型,构建驱动磁场模型,驱动磁场模型表示为:
Figure PCTCN2019079528-appb-000013
其中,胶囊内窥镜中心与驱动磁体中心的相对位置为(a,b,c) T,胶囊内窥镜中心与驱动磁体中心的相对姿态为H 0=(m,n,p) T,P l表示第l个磁传感器与驱动磁体中心的距离且P l=(x l-a,y l-b,z l-c) T,R l为P l的模,存在约束条件m 2+n 2+p 2=1,μ 0为真空磁导率,M T为表征磁体磁场强度的常数,B l为驱动磁场的磁场模型值。求解胶囊内窥镜相对驱动磁体的位姿信息,即求解(a,b,c) T和H 0=(m,n,p) T
在依据驱动磁场模型、驱动磁体的磁场测量值和自旋角度的测量值,计算驱动磁体的磁场测量误差Err时,进一步优选地,磁场测量误差表示为:
Figure PCTCN2019079528-appb-000014
以提高磁场测量误差的计算准确度,并能够通过误差最小化过程计算得到胶囊内窥镜相对驱动磁体的位姿信息。在通过优化算法对磁场测量误差进行最小化时,进一步优选地,优选算法采用非线性最小二乘法-LM算法或智能算法-PSO算法,以提高磁场测量误差的最小化效果。
胶囊位姿确定单元74,用于根据驱动磁体在世界坐标系的位姿信息和胶囊内窥镜相对驱动磁体的位姿信息,确定胶囊内窥镜在世界坐标系的位姿信息。
在本发明实施例中,驱动磁体在世界坐标系的位姿信息(位置和姿态)是已知的,在获得胶囊内窥镜相对驱动磁体的位姿信息,即可根据驱动磁体在世界坐标系的位姿信息和胶囊内窥镜相对驱动磁体的位姿信息,转换得到胶囊内窥镜在世界坐标系的位姿信息,完成对胶囊内窥镜的定位。
优选地,在主机用户界面建立胶囊内窥镜模型,根据定位得到的胶囊内窥镜的位姿信息,刷新胶囊内窥镜模型的位姿信息,在接收到用户输入的下一时刻位姿信息时,可通过调整驱动磁体的位置姿态产生磁力,使得胶囊内窥镜运动到下一时刻位姿信息中的位置和姿态,从而实现胶囊内窥镜定位和运动的人机交互过程,提高用户体验。此外,当胶囊内窥镜运动到 下一时刻位姿信息中的位置和姿态时,根据胶囊内窥镜实时反馈的位姿信息,对胶囊内窥镜的位姿进行不断调整,以平衡胶囊内窥镜的受力,使得胶囊内窥镜实现悬浮。
优选地,如图8所示,磁场测量单元71包括:
第一磁场值获取单元711,用于获取预先测量的第一磁场值,第一磁场值为在不受驱动磁体的影响下胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;
第二磁场值测量单元712,用于通过磁传感器测量得到第二磁场值,第二磁场值为驱动磁体、胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;以及
磁场值计算单元713,用于依据第一磁场值和第二磁场值,计算驱动磁体的磁场测量值。
在本发明实施例中,在没有驱动磁体的磁场时(即胶囊内窥镜位于驱动磁体的磁场范围之外时),通过胶囊内窥镜内部的磁传感器测量第一磁场值,第一磁场值为胶囊内窥镜中的磁体、地磁场及周围环境磁场的磁场总值,周围环境磁场为胶囊内窥镜周围设备的磁场,不包括驱动磁体的磁场。其中,在不考虑周围环境磁场变化时,第一磁场值为固定值。
在本发明实施例中,在驱动磁体驱动胶囊内窥镜移动时,胶囊内窥镜位于驱动磁体的磁场范围内,通过胶囊内窥镜内部的磁传感器测量第二磁场值,第二磁场值为驱动磁体、胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值。
在本发明实施例中,第一磁场值为胶囊内窥镜中的磁体、地磁场及周围环境磁场的磁场总值,第二磁场值为驱动磁体、胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值,因此可通过将第二磁场值减去第一磁场值,计算得到驱动磁体的磁场测量值V l
优选地,驱动磁体的磁场测量值V l的计算公式为:
V l=V l1-V l0,其中,V l0为第l个磁传感器测量到的第一磁场值,V l1为第l个磁传感器测量到的第二磁场值。
优选地,如图8所示,相对位姿计算单元73包括:
误差计算单元731,用于依据驱动磁体模型、驱动磁体的磁场测量值和自旋角度的测量值,计算驱动磁体的磁场测量误差;以及
误差最小化单元732,用于通过优化算法对驱动磁体的磁场测量误差进行最小化,获得胶囊内窥镜相对驱动磁体的位姿信息。
在本发明实施例中,误差计算单元731和误差最小化单元732的详细内容已在相对位姿计算单元73进行描述,不再赘述。
优选地,定位系统还包括:
参数获取单元,用于获取磁传感器与胶囊内窥镜中心的距离,并获取驱动磁体的相对磁 导率;以及
磁场模型构建单元,用于根据磁偶极子模型、磁传感器与胶囊内窥镜中心的距离和驱动磁体的相对磁导率,构建驱动磁场模型。
在本发明实施例中,通过测量驱动磁体的磁场,测量胶囊内窥镜的自旋角度,依据驱动磁场模型、驱动磁体的磁场测量值、胶囊内窥镜的自旋角度的测量值和优化算法,对驱动磁体的磁场测量误差进行最小化,以确定胶囊内窥镜的位姿信息,从而有效地避免驱动磁场对定位准确度的影响,提高胶囊内窥镜的定位准确度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种胶囊内窥镜的定位方法,其特征在于,所述胶囊内窥镜内部设有磁传感器和所述胶囊内窥镜中的磁体,所述方法包括:
    通过所述磁传感器对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量,获得所述驱动磁体的磁场测量值;
    测量所述胶囊内窥镜的自旋角度,获得所述胶囊内窥镜的自旋角度的测量值;
    依据所述驱动磁体的磁场测量值、所述自旋角度的测量值、预设驱动磁场模型和预设优化算法,计算所述胶囊内窥镜相对所述驱动磁体的位姿信息;
    根据所述驱动磁体在世界坐标系的位姿信息和所述胶囊内窥镜相对所述驱动磁体的位姿信息,确定所述胶囊内窥镜在世界坐标系的位姿信息。
  2. 如权利要求1所述的方法,其特征在于,通过磁传感器对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量的步骤,包括:
    获取预先测量的第一磁场值,所述第一磁场值为在不受所述驱动磁体的影响下所述胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;
    通过所述磁传感器测量得到第二磁场值,所述第二磁场值为所述驱动磁体、所述胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;
    依据所述第一磁场值和所述第二磁场值,计算所述驱动磁体的磁场测量值。
  3. 如权利要求1所述的方法,其特征在于,计算所述胶囊内窥镜相对所述驱动磁体的位姿信息的步骤,包括:
    依据所述驱动磁场模型、所述驱动磁体的磁场测量值和所述自旋角度的测量值,计算所述驱动磁体的磁场测量误差;
    通过所述优化算法对所述驱动磁体的磁场测量误差进行最小化,获得所述胶囊内窥镜相对所述驱动磁体的位姿信息。
  4. 如权利要求1所述的方法,其特征在于,通过磁传感器对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量的步骤之前,所述方法还包括:
    获取所述磁传感器与所述胶囊内窥镜中心的距离,并获取所述驱动磁体的相对磁导率;
    根据磁偶极子模型、所述磁传感器与所述胶囊内窥镜中心的距离和所述驱动磁体的相对磁导率,构建所述驱动磁场模型。
  5. 如权利要求1所述的方法,其特征在于,所述胶囊内窥镜内部设有至少两个所述磁传感器,所述磁传感器为三轴磁传感器。
  6. 如权利要求1所述的方法,其特征在于,所述胶囊内窥镜内部设有惯性传感器,所述惯性传感器用来测量所述胶囊内窥镜的自旋角度。
  7. 一种胶囊内窥镜,其特征在于,包括:设置在所述胶囊内窥镜中的磁传感器、胶囊内窥镜中的磁体和自旋角度测量传感器;
    所述磁传感器用于对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量,获得所述驱动磁体的磁场测量值;
    所述磁传感器包括第一磁传感器和第二磁传感器,所述第一磁传感器和所述第二磁传感器分散焊接设置在所述胶囊内窥镜中的电路板上;
    所述自旋角度测量传感器用于测量所述胶囊内窥镜的自旋角度,从而定位系统根据从所述磁传感器处获取到的所述驱动磁体的磁场测量值,以及根据从所述自旋角度测量传感器处获得的所述自旋角度的测量值,结合预设驱动磁场模型和预设优化算法,计算所述胶囊内窥镜相对所述驱动磁体的位姿信息,根据所述驱动磁体在世界坐标系的位姿信息和所述胶囊内窥镜相对所述驱动磁体的位姿信息,确定所述胶囊内窥镜在世界坐标系的位姿信息。
  8. 如权利要求7所述的胶囊内窥镜,其特征在于,所述第一磁传感器或所述第二磁传感器为三轴磁传感器。
  9. 如权利要求7或8所述的胶囊内窥镜,其特征在于,所述自旋角度测量传感器包括惯性传感器。
  10. 如权利要求7所述的胶囊内窥镜,其特征在于,所述磁传感器包括两个或两个以上分散的所述第一磁传感器或所述第二传感器。
  11. 一种定位系统,其特征在于,用于定位如权利要求7-10中任一所述的胶囊内窥镜在世界坐标系的位姿信息,所述胶囊内窥镜包括:设置在所述胶囊内窥镜中的磁传感器、胶囊内窥镜中的磁体和自旋角度测量传感器;所述磁传感器用于对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量,获得所述驱动磁体的磁场测量值;所述磁传感器包括第一磁传感器和第二磁传感器,所述第一磁传感器和所述第二磁传感器分散焊接设置在所述胶囊内窥镜中的电路板上;所述自旋角度测量传感器用于测量所述胶囊内窥镜的自旋角度;
    所述定位系统包括:接收器和处理装置;
    所述接收器,用于从所述磁传感器处获取所述驱动磁体的磁场测量值,以及从所述自旋角度测量传感器处获得的所述自旋角度的测量值;
    所述处理装置,用于根据从所述磁传感器处获取到的所述驱动磁体的磁场测量值,以及根据从所述自旋角度测量传感器处获得的所述自旋角度的测量值,结合预设驱动磁场模型和预设优化算法,计算所述胶囊内窥镜相对所述驱动磁体的位姿信息,根据所述驱动磁体在 世界坐标系的位姿信息和所述胶囊内窥镜相对所述驱动磁体的位姿信息,确定所述胶囊内窥镜在世界坐标系的位姿信息。
  12. 如权利要求1所述的定位系统,其特征在于,所述定位系统还包括如权利要求7-10中任一所述的胶囊内窥镜,所述胶囊内窥镜包括射频模块,所述第一磁传感器、所述第二次磁传感器和所述自旋角度测量传感器与所述射频模块连接,所述第一磁传感器和所述第二磁传感器分别通过所述射频模块将所述驱动磁体的磁场测量值发送至所述接收器,所述自旋角度测量传感器通过所述射频模块发送所述自旋角度的测量值至所述接收器。
  13. 如权利要求11或12所述的定位系统,其特征在于,所述处理装置还用于依据所述驱动磁场模型、所述驱动磁体的磁场测量值和所述自旋角度的测量值,计算所述驱动磁体的磁场测量误差;通过所述优化算法对所述驱动磁体的磁场测量误差进行最小化,获得所述胶囊内窥镜相对所述驱动磁体的位姿信息。
  14. 如权利要求11或12所述的定位系统,其特征在于,所述处理装置还用于获取所述磁传感器与所述胶囊内窥镜中心的距离,并获取所述驱动磁体的相对磁导率;根据磁偶极子模型、所述磁传感器与所述胶囊内窥镜中心的距离和所述驱动磁体的相对磁导率,构建所述驱动磁场模型。
  15. 一种对胶囊内窥镜进行定位的定位系统,其特征在于,所述胶囊内窥镜内部设有磁传感器和所述胶囊内窥镜中的磁体,所述定位系统包括:
    磁场测量单元,用于通过磁传感器对驱动所述胶囊内窥镜移动的驱动磁体进行磁场测量,获得所述驱动磁体的磁场测量值;
    自旋测量单元,用于测量所述胶囊内窥镜的自旋角度,获得所述胶囊内窥镜的自旋角度的测量值;
    相对位姿计算单元,用于依据所述驱动磁体的磁场测量值、所述自旋角度的测量值、预设驱动磁场模型和预设优化算法,计算所述胶囊内窥镜相对所述驱动磁体的位姿信息;以及
    胶囊位姿确定单元,用于根据所述驱动磁体在世界坐标系的位姿信息和所述胶囊内窥镜相对所述驱动磁体的位姿信息,确定所述胶囊内窥镜在世界坐标系的位姿信息。
  16. 如权利要求15所述的系统,其特征在于,所述磁场测量单元包括:
    第一磁场值获取单元,用于获取预先测量的第一磁场值,所述第一磁场值为在不受所述驱动磁体的影响下所述胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;
    第二磁场值测量单元,用于通过所述磁传感器测量得到第二磁场值,所述第二磁场值为所述驱动磁体、所述胶囊内窥镜内部磁体、地磁场及周围环境磁场的磁场总值;以及
    磁场值计算单元,用于依据所述第一磁场值和所述第二磁场值,计算所述驱动磁体的磁场测量值。
  17. 如权利要求15所述的定位系统,其特征在于,所述相对位姿计算单元包括:
    误差计算单元,用于依据所述驱动磁体模型、所述驱动磁体的磁场测量值和所述自旋角度的测量值,计算所述驱动磁体的磁场测量误差;以及
    误差最小化单元,用于通过所述优化算法对所述驱动磁体的磁场测量误差进行最小化,获得所述胶囊内窥镜相对所述驱动磁体的位姿信息。
  18. 如权利要求15所述的定位系统,其特征在于,所述定位系统还包括:
    参数获取单元,用于获取所述磁传感器与所述胶囊内窥镜中心的距离,并获取所述驱动磁体的相对磁导率;以及
    磁场模型构建单元,用于根据磁偶极子模型、所述磁传感器与所述胶囊内窥镜中心的距离和所述驱动磁体的相对磁导率,构建所述驱动磁场模型。
PCT/CN2019/079528 2019-01-10 2019-03-25 胶囊内窥镜及其定位方法及系统 WO2020143118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910021483.6 2019-01-10
CN201910021483.6A CN109620104B (zh) 2019-01-10 2019-01-10 胶囊内窥镜及其定位方法及系统

Publications (1)

Publication Number Publication Date
WO2020143118A1 true WO2020143118A1 (zh) 2020-07-16

Family

ID=66061058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079528 WO2020143118A1 (zh) 2019-01-10 2019-03-25 胶囊内窥镜及其定位方法及系统

Country Status (2)

Country Link
CN (1) CN109620104B (zh)
WO (1) WO2020143118A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3942992A4 (en) * 2019-06-17 2022-12-21 Shenzhen Sibernetics Co., Ltd. MAGNETIC CAPSULE ENDOSCOPE CONTROL DEVICE AND METHOD FOR CONTROLLING THE MOVEMENT OF A CAPSULE ENDOSCOPE IN A TISSUE CAVITY
CN111184497B (zh) 2020-04-08 2020-07-17 上海安翰医疗技术有限公司 胶囊内窥镜控制方法及系统
CN111870211A (zh) * 2020-07-28 2020-11-03 北京信息科技大学 一种具有器具位姿导航的三维内窥镜及其导航方法
CN112741586B (zh) * 2020-12-23 2022-04-01 武汉大学 一种基于胶囊内镜人体内位置获取系统的位置获取方法
CN115104999A (zh) * 2021-03-18 2022-09-27 深圳硅基智控科技有限公司 胶囊内窥镜系统及其胶囊内窥镜磁定位方法
CN113238291B (zh) * 2021-06-21 2023-11-17 福建世新机器人科技有限公司 基于磁性部件定位跟踪的地磁矢量实时估计与分离方法
CN114487968A (zh) * 2022-01-28 2022-05-13 上海安翰医疗技术有限公司 一种磁球校准方法和磁球校准装置
CN114668362B (zh) * 2022-03-18 2022-11-11 元化智能科技(深圳)有限公司 无线胶囊内窥镜的定位系统、装置及计算机设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7398117B2 (en) * 2003-12-26 2008-07-08 Olympus Corporation System for detecting position of capsule endoscope in subject
US20140187907A1 (en) * 2010-04-05 2014-07-03 Ankon Technologies Co., Ltd Computer-implemented system and method for determining the position of a remote object
CN103908216A (zh) * 2014-04-10 2014-07-09 重庆金山科技(集团)有限公司 一种具磁场定位功能的胶囊内镜系统及其胶囊内镜
WO2014113697A1 (en) * 2013-01-17 2014-07-24 Vanderbilt University Real-time pose and magnetic force detection for wireless magnetic capsule
CN105962879A (zh) * 2016-04-22 2016-09-28 重庆金山科技(集团)有限公司 胶囊内窥镜的位姿控制系统、控制方法及胶囊内窥镜
CN106725272A (zh) * 2016-12-21 2017-05-31 重庆金山医疗器械有限公司 胶囊内窥镜在生物腔体内的自动扫描方法
CN108827133A (zh) * 2018-06-15 2018-11-16 北京理工大学 一种检测移动磁源位姿的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735863B1 (ko) * 2006-10-16 2007-07-06 한국항공대학교산학협력단 캡슐형 내시경 위치 측정 시스템
JP5243750B2 (ja) * 2007-08-09 2013-07-24 オリンパスメディカルシステムズ株式会社 医療装置誘導システム、作動方法および医療装置誘導システムで用いるルックアップテーブルの作成方法
CN102302357A (zh) * 2011-06-22 2012-01-04 清华大学 用于球囊内窥镜的姿态感知系统及球囊内窥镜
CN102670158A (zh) * 2012-05-10 2012-09-19 无锡市华焯光电科技有限公司 一种可定位胶囊内窥镜系统
CN103006164A (zh) * 2012-12-13 2013-04-03 天津大学 基于多传感器的内窥镜跟踪定位与数字人动态同步显示装置
CN106618456B (zh) * 2016-12-21 2019-02-12 重庆金山医疗器械有限公司 胶囊内窥镜控制系统
CN107348931B (zh) * 2017-05-27 2021-01-12 重庆金山医疗器械有限公司 一种胶囊内窥镜空间姿态测定系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7398117B2 (en) * 2003-12-26 2008-07-08 Olympus Corporation System for detecting position of capsule endoscope in subject
US20140187907A1 (en) * 2010-04-05 2014-07-03 Ankon Technologies Co., Ltd Computer-implemented system and method for determining the position of a remote object
WO2014113697A1 (en) * 2013-01-17 2014-07-24 Vanderbilt University Real-time pose and magnetic force detection for wireless magnetic capsule
CN103908216A (zh) * 2014-04-10 2014-07-09 重庆金山科技(集团)有限公司 一种具磁场定位功能的胶囊内镜系统及其胶囊内镜
CN105962879A (zh) * 2016-04-22 2016-09-28 重庆金山科技(集团)有限公司 胶囊内窥镜的位姿控制系统、控制方法及胶囊内窥镜
CN106725272A (zh) * 2016-12-21 2017-05-31 重庆金山医疗器械有限公司 胶囊内窥镜在生物腔体内的自动扫描方法
CN108827133A (zh) * 2018-06-15 2018-11-16 北京理工大学 一种检测移动磁源位姿的方法

Also Published As

Publication number Publication date
CN109620104A (zh) 2019-04-16
CN109620104B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2020143118A1 (zh) 胶囊内窥镜及其定位方法及系统
US11432879B2 (en) Method and apparatus for wide area multi-body 6D pose tracking system
WO2016183812A1 (zh) 一种混合运动捕捉系统及方法
KR20180075191A (ko) 무인 이동체를 제어하기 위한 방법 및 전자 장치
CN107348931B (zh) 一种胶囊内窥镜空间姿态测定系统
JP2017090979A (ja) 情報処理装置、情報処理システム、および情報処理方法
US20220000448A1 (en) Instrumented Ultrasound Probes For Machine-Learning Generated Real-Time Sonographer Feedback
US20200214682A1 (en) Methods and apparatuses for tele-medicine
CN105125160B (zh) 一种口腔内窥镜检测系统及其检测方法
WO2023186136A1 (zh) 无线胶囊定位装置、磁场传感器定位方法和装置
EP1071369A1 (en) Motion tracking system
CN115666398A (zh) 人体内部器官的超声图像的采集系统
WO2020176779A1 (en) Method and system utilizing phased array beamforming for six degree of freedom tracking for an emitter in augmented reality systems
EP4111442A1 (en) Hand and totem input fusion for wearable systems
CN107374566B (zh) 一种基于变化磁场的胶囊内窥镜全姿态测定系统
TWI476733B (zh) 運動軌跡重建方法及其裝置
CN113784767A (zh) 热电堆阵列融合跟踪
WO2011016302A1 (ja) モーションキャプチャ用のマーカ
CN111374784B (zh) 一种增强现实ar定位系统及方法
CN111420391A (zh) 一种头戴显示系统及其空间定位方法
CN114533111A (zh) 一种基于惯性导航系统的三维超声重建系统
CN112168348A (zh) 用于手术的定位与导航系统及其运作方法
JP2022047374A (ja) 手術ナビゲーションシステム、手術ナビゲーション機能を備えた医用撮像システム、および、手術ナビゲーション用の医用画像の位置合わせ方法
EP3918449A1 (en) Method and system for resolving hemisphere ambiguity in six degree of freedom pose measurements
TWI494797B (zh) 用於動作感測的電子裝置及取得其結果偏差的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909238

Country of ref document: EP

Kind code of ref document: A1