WO2020143113A1 - 一种双极化阵列天线及其应用 - Google Patents

一种双极化阵列天线及其应用 Download PDF

Info

Publication number
WO2020143113A1
WO2020143113A1 PCT/CN2019/077937 CN2019077937W WO2020143113A1 WO 2020143113 A1 WO2020143113 A1 WO 2020143113A1 CN 2019077937 W CN2019077937 W CN 2019077937W WO 2020143113 A1 WO2020143113 A1 WO 2020143113A1
Authority
WO
WIPO (PCT)
Prior art keywords
dual
polarized
array antenna
array
row
Prior art date
Application number
PCT/CN2019/077937
Other languages
English (en)
French (fr)
Inventor
维克托·亚历山德罗维奇·斯莱德科夫
维亚切斯拉夫·鲁达科夫
李梓萌
Original Assignee
广东司南通信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东司南通信科技有限公司 filed Critical 广东司南通信科技有限公司
Publication of WO2020143113A1 publication Critical patent/WO2020143113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • This application relates to the field of antennas, in particular to a dual-polarization array antenna and its application.
  • base station array antennas mostly used vertical narrow beams and horizontal wide beams covering 120-degree sectors. This type of base station array antenna is not suitable for coverage in narrow and long areas, such as highways and high-speed rails. Therefore, a narrow-beam base station antenna is required to achieve 60-degree sector coverage.
  • the existing directional antenna covering the range of 60 degrees has a horizontal half-power beam width of about 33 degrees, and usually includes two or more rows of radiating elements parallel to each other connected by a power splitter to reduce the horizontal half-power beam width. As shown in FIGS.
  • FIG. 1 shows a structure in which three columns of high-frequency radiating elements 12 are interposed between two columns of low-frequency radiating elements 13 and are arranged on a reflective plate 11, and FIG. 2 shows two columns of low-frequency radiating elements 23 Two columns of high-frequency radiating elements 22 are arranged in the middle and arranged on the reflective plate 21.
  • FIG. 1 and FIG. 2 refer to the patent application CN105846113A, which describes a dual-frequency dipole with a horizontal power beam width of 33-40 degrees Array antenna.
  • CN105846113A describes a dual-frequency dipole with a horizontal power beam width of 33-40 degrees Array antenna.
  • a general dual-polarized array antenna that is, a single-frequency dual-polarized array antenna, it is usually composed of two parallel rows of radiating elements connected by a power splitter, as shown in FIG.
  • Figure 3 which shows a two Columns arranged in ten rows with a bandwidth of 1.7-2.17 GHz are dual-polarized array antennas.
  • the horizontal plane patterns at different frequencies are shown in Figures 4 and 5.
  • Figure 4 is the horizontal plane pattern at a frequency of 1.71 GHz.
  • Figure 5 is Horizontal pattern of frequency 2.17GHz.
  • the existing dual-polarization array antenna including two or more rows of radiating elements has the biggest disadvantage that the beam shape has a large frequency dependence.
  • the beam at the lowest frequency is too wide, and the side lobes at the highest frequency are too large, as shown in Figures 4 and 5.
  • these antennas contain twice or more radiating elements and more power dividers, and are more complicated to manufacture than array antennas with a horizontal half-power beam width of 65 degrees.
  • the purpose of this application is to provide a dual polarized array antenna with improved structure and its application.
  • a dual-polarized array antenna which includes N-row dual-polarized radiation units, N-row dual-polarized radiation units are arranged on a reflective plate, and N-row dual-polarized radiation units are provided with N
  • the two beamforming networks at the output port feed signals to generate narrow beams in the vertical plane; where there are at least N/2 rows of radiating elements, each of which contains at least two dual-polarized radiating elements, and each row of bipolar
  • the polarized radiation unit is connected by a power splitter, and then the two beamforming networks are used for signal feeding; at least one row at the top and bottom of the dual-polarized array antenna is only one dual-polarized radiation unit, which is directly connected to the two Beamforming network connection.
  • the dual-polarized array antenna of the present application has a relative operating bandwidth of at least 25%, a horizontal half-power beam width of 30-40 degrees, and side lobes of at least less than -20dB, which is different from the existing 33-40 Compared with an antenna with a horizontal half-power beam width, the dual-polarized array antenna of the present application contains fewer radiating elements and power dividers, and has a simpler structure, which not only makes the array antenna easier to manufacture, but also has material and process costs. Also lower.
  • a side wall of the reflecting plate extends upward along the installation surface of the dual-polarized radiation unit.
  • both sides of the single dual-polarized radiation unit on the top and bottom of the dual-polarized array antenna are provided with a reflective wall along the length of the reflective plate, and the reflective wall is fixedly installed in the plane of the reflective plate and is connected to the single dual-polarized The radiation units are adjacent.
  • the reflecting wall is bent outwards to resemble an inverted “eight” character or a funnel shape to sandwich the corresponding dual-polarized radiation unit in the middle.
  • the half-power beam width under different frequency band widths can be adjusted; for example, in one implementation of the present application, In the state of the lowest frequency bandwidth of 1.71 GHz, a half-power beam width of less than 40 degrees can be obtained.
  • the dual-polarized radiation unit is composed of a folded vibrator, the folded vibrator includes a slit and a slot, and is arranged in a planar radiation manner.
  • the dual polarized radiation unit is composed of crossed dipoles.
  • the dual polarized radiation units are arranged in the shape of a dipole array, and are fed by four oblique baluns.
  • the key to this application is the overall structure design of the dual-polarized array antenna.
  • the dual-polarized radiation unit it can be selected according to the requirements, for example, it can be a folded dipole, crossed dipole, or array-shaped arrangement
  • the poles are not specifically limited here.
  • each beamforming network includes N-1 phase shifting devices for providing different phases to the dual polarized radiation unit.
  • Another aspect of the present application discloses a two-beam antenna array structure, including the use of two dual-polarized array antennas of this application, the reflectors of the two dual-polarized array antennas are assembled in a form sharing a length side, and two The angle of the reflection plate of the dual-polarization array antenna is 20-80 degrees, and the dual-polarization radiation unit is installed on the outer surface of the angle to form a two-beam antenna array structure.
  • Another aspect of the present application discloses a two-beam antenna, including at least two two-beam antenna array structures of the present invention installed in combination to form at least two two-beam antennas.
  • the dual-polarized array antenna of the present application has a simpler structure, uses fewer radiating units and power dividers, is easier to manufacture, and has lower material cost and process cost , To meet the needs of large-scale mass production.
  • FIG. 1 is a schematic structural diagram of a prior art dual-polarization array antenna, which shows a structure in which high-frequency radiation units are arranged in three columns;
  • FIG. 2 is a schematic structural diagram of another dual-polarization array antenna in the prior art, which shows a structure in which high-frequency radiation units are arranged in two columns;
  • FIG. 3 is a schematic structural diagram of another dual-polarization array antenna in the prior art, which shows a dual-polarization array antenna with a frequency bandwidth of 1.7-2.17 GHz arranged in two columns and ten rows;
  • FIG. 4 is a horizontal directional diagram of the frequency of 1.71 GHz of the dual-polarized array antenna shown in FIG. 3;
  • FIG. 5 is a horizontal directional diagram of the frequency of 2.17 GHz of the dual polarized array antenna shown in FIG. 3;
  • FIG. 6 is a schematic structural diagram of a dual-polarization array antenna according to Embodiment 1 of the present application.
  • FIG. 7 is a simple circuit diagram of a dual-polarization array antenna according to Embodiment 1 of the present application.
  • FIG. 10 is a schematic structural diagram of a dual-polarization array antenna according to Embodiment 2 of the present application.
  • FIG. 11 is a horizontal directional diagram of the frequency of 1.71 GHz of the dual-polarized array antenna according to Embodiment 2 of the present application;
  • FIG. 13 to 15 are schematic structural diagrams of different dual-polarization radiating elements used in the dual-polarization array antenna of Embodiment 3 of the present application;
  • FIG. 16 is a schematic diagram of a two-beam antenna array unit structure in Embodiment 4 of the present application.
  • FIG. 17 is a schematic structural diagram of a two-beam antenna assembled from two two-beam antenna array unit structures in Embodiment 4 of the present application.
  • the dual-polarized array antenna shown in FIG. 3 includes 20 radiating elements.
  • the radiating elements are arranged in 2 rows and 10 rows. The distance between the two rows of radiating elements can be minimized.
  • the half-power beam width is less than 40 degrees.
  • the results of Fig. 4 and Fig. 5 show the difference in the horizontal plane pattern of the array antenna at the lowest frequency bandwidth of 1.71 GHz and the highest frequency bandwidth of 2.17 GHz.
  • the frequency bandwidth is 2.17 GHz
  • the side lobe level of the array antenna rises -15dB higher.
  • this dual-polarized array antenna with two columns of radiating elements can obtain low side-lobe levels only at a low frequency bandwidth.
  • the dual-polarized array antenna of the present application has a side lobe level of less than -20 dB at a maximum frequency bandwidth of 2.17 GHz, that is, a low side lobe level can be obtained even at a high frequency bandwidth.
  • the dual-polarized array antenna of this example includes two polarized radiating elements 2 arranged in rows of reflecting plates 1 and 10 along the length of the reflecting plate 1; as shown in FIG. 7, two vertical narrow beams are generated
  • the beam forming networks 61 and 62 are respectively provided with the same number of output ports as the two rows of the dual-polarized radiation unit, that is, ports NO.1 to NO.10; where the six rows of the central portion 01 of the dual-polarized array antenna are composed of two
  • the parallel polarized radiation units 2 are composed of two parallel polarized radiation units 2 connected by a power splitter 3, and then connected to the beam forming networks 61 and 62; the top 02 and bottom 03 of the dual polarized array antenna
  • Each of the two rows is a single dual-polarized radiation unit 2.
  • the single dual-polarized radiation unit does not need to use a power splitter, and is directly connected to the beam forming networks 61, 62.
  • side walls 41, 42, 43, and 44 extend upward along the mounting surface of the dual-polarized radiation unit 2 on the side of the reflective plate 1, that is, there are edges on the four sides of the reflective plate 1 wall.
  • reflective walls 51, 52, 53 and 54 are provided along the length of the reflective plate 1, namely the top two
  • the rows of single dual-polarized radiation units 2 are provided with reflective walls 51 and 52 on both sides, and the bottom two rows of single dual-polarized radiation units 2 are provided with reflective walls 53 and 54 on both sides; the reflective walls 51, 52, 53 and 54 are fixedly installed In the plane of the reflective plate 1, adjacent to the corresponding dual-polarized radiation unit 2; and, the reflecting walls on both sides are arranged in a funnel shape with the corresponding dual-polarized radiation unit 2 as the center, and the corresponding dual-polarized radiation unit The clip is set in the middle.
  • a dual-polarized radiating element with a frequency bandwidth of 1.71-2.17 GHz is designed and used.
  • FIG. 8 is a horizontal pattern of the frequency of 1.71 GHz
  • FIG. 9 is a horizontal pattern of the frequency of 2.17 GHz.
  • the results of Figures 8 and 9 show that, in the range of frequency bands from 1.71-2.17 GHz, at the highest band width of 2.17 GHz, the side lobes of the dual-polarized array antenna of this example are also below -20 dB; Dual-polarized array antennas can achieve low side lobe suppression over a wider frequency range.
  • the dual-polarized array antenna of this example uses only 16 radiating elements and 12 power splitters. Compared with the dual-polarized array antenna shown in FIG.
  • the dual-polarized array antenna of this example With the same half-power beam width, the dual-polarized array antenna of this example
  • the array antenna structure is simpler and easier to manufacture, and the material and process costs are lower.
  • the dimensions and sizes of the dual-polarized radiating element, reflector, and side wall of FIG. 3 are the same as the dual-polarized array antenna of this example.
  • the basic structure of the dual-polarized array antenna of this example is the same as that of the first embodiment, except that, as shown in FIG. 10, 6 rows of dual-polarized radiating elements are installed on the reflective plate, and the middle of the dual-polarized array antenna
  • the three rows are composed of two parallel polarized radiation units that are parallel to each other.
  • the two parallel polarized radiation units are connected by a power divider and then connected to the feed network;
  • the top of the dual polarized array antenna has two rows of single
  • the side wall in the length direction of the reflection plate extends upwards along the installation surface of the dual-polarized radiation unit, and then bends backward and extends downward to form the side wall structure of this example; as for the side wall in the width direction of the reflection plate, The structure needs to be omitted. As shown in FIG. 10, there is no side wall in the width direction of the reflector on the top of the antenna in this example. The rest are the same as in the first embodiment.
  • Fig. 11 is a horizontal pattern of the frequency of 1.71 GHz
  • Fig. 12 is a horizontal pattern of the frequency of 2.17 GHz.
  • the results of Figures 11 and 12 show that the dual-polarized array antenna of this example has a half-power beamwidth of 40 degrees at the lowest frequency bandwidth of 1.71 GHz; a half-power beamwidth of 32 degrees at the highest frequency bandwidth of 2.17 GHz, and side lobes Below -20dB. This result is similar to the first embodiment, indicating that the dual-polarized array antenna of this example can achieve low side lobe suppression in a wider frequency range.
  • FIGS. 13 to 15 are shown in FIGS. 13 to 15.
  • Fig. 13 is a radiating unit of a planar radiating structure.
  • the planar radiating structure contains slits and slots, and four folded dipoles are fed through a balun.
  • Embodiments 1 and 2 are also radiating units of this structure.
  • Fig. 14 is a cross-dipole radiating unit commonly used for making broadband array antennas.
  • Fig. 15 is a radiating element arranged in the shape of a dipole array. The crossed dipoles of the radiating element are arranged in a square shape, and are fed by four diagonal baluns. This kind of radiating unit is widely used to make low-band or dual-band array antennas.
  • the dual-polarized radiation unit currently available for purchase can be selected according to different usage requirements or antenna design requirements.
  • a two-beam antenna array structure is fabricated. As shown in FIG. 16, a two-beam antenna with 120° sector coverage is further prepared from the two-beam antenna array structure, as shown in FIG. 17 Shown.
  • the structure of the two-beam antenna array of this example includes the use of two dual-polarized array antennas of the second embodiment, and the reflection plates 1 of the two dual-polarized array antennas are assembled in a form sharing a length side, and The reflection plates 1 of the two dual-polarization array antennas form an angle of 60 degrees, and the dual-polarization radiation unit 2 is installed on the outer surface of the angle to form a two-beam antenna array structure.
  • the angle between the two reflectors can be adjusted according to the coverage area.
  • the two-beam antenna is vertically arranged by two two-beam antenna array structures, that is, the two two-beam antenna array unit structures are connected in a row to form a two-beam antenna, and the number of rows of dual-polarized radiation units can be increased or decreased according to demand As long as the top and bottom dual-polarized array antennas are guaranteed to be a single dual-polarized radiating element, as shown in FIG. 17, it is a two-beam antenna composed of antenna one 171 and antenna two 172.
  • the reflection plate of the dual-polarization array antenna in the two-beam antenna or the reflection plate in the structure of the two-beam antenna array can be designed as an integrated structure to facilitate antenna assembly.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种双极化阵列天线及其应用。本申请的双极化阵列天线,包含N排双极化辐射单元,N排双极化辐射单元排布在反射板上,N排双极化辐射单元由设有N个输出端口的两个波束形成网络进行信号馈送,在垂直面生成窄波束;至少有N/2排的辐射单元,各排包含至少两个双极化辐射单元,各排的双极化辐射单元由功分器连接,再由两个波束形成网络进行信号馈送;双极化阵列天线的顶部和底部至少有一排是只有一个双极化辐射单元,该双极化辐射单元直接与两个波束形成网络连接。本申请的双极化阵列天线,与相同功能的现有天线相比,结构更简单,采用的辐射单元和功分器的数量更少,更易制作,材料成本和工艺成本也更低。

Description

一种双极化阵列天线及其应用 技术领域
本申请涉及天线领域,特别是涉及一种双极化阵列天线及其应用。
背景技术
现代社会人们普遍使用移动电话,每年双极化天线的需求量巨大,因此业内投入了相当大的人力和物力研发更易于制造的双极化天线。以往基站阵列天线多采用垂直面窄波束和覆盖120度扇区的水平宽波束。这种结构形式的基站阵列天线不适合用于狭长地区的覆盖,例如高速公路、高铁沿线等。因此,需要采用一个窄波束的基站天线来实现60度扇区覆盖。现有的覆盖60度范围的定向天线,其水平面半功率波束宽度大约在33度,通常包含由功分器连接的两列或多列彼此平行的辐射单元,以此降低水平半功率波束宽度,如图1和图2所示,图1展示了两列低频辐射单元13中间夹设三列高频辐射单元12,布置于反射板11上的结构形式,图2展示了两列低频辐射单元23中间夹设两列高频辐射单元22,布置于反射板21上的结构形式,图1和图2均参考专利申请CN105846113A,其描述了水平面半功率波束宽度为33-40度的双频双极化阵列天线。而对于一般的双极化阵列天线,即单频双极化阵列天线而言,通常是由功分器连接的两列彼此平行的辐射单元构成,如图3所示,图3展示了一个两列十行排列的频带宽度为1.7-2.17GHz的双极化阵列天线,其不同频率下的水平面方向图如图4和图5所示,图4为频率1.71GHz的水平面方向图,图5为频率2.17GHz的水平面方向图。
现有这种包含两列或多列辐射单元的双极化阵列天线,其最大的不足在于波束形状对频率的依赖性较大。最低频率上的波束太宽,最高频率上的水平面的旁瓣太大,如图4和图5所示。并且,这些天线包含两倍或以上的辐射单元和更多的功分器,在制作上比水平面半功率波束宽度为65度的阵列天线更复杂。
发明内容
本申请的目的是提供一种结构改进的双极化阵列天线及其应用。
为了实现上述目的,本申请采用了以下技术方案:
本申请的一方面公开了一种双极化阵列天线,包含N排双极化辐射单元,N排双极化辐射单元排布在反射板上,N排双极化辐射单元由设有N个输出端 口的两个波束形成网络进行信号馈送,在垂直面生成窄波束;其中,至少有N/2排的辐射单元,其每排包含至少两个双极化辐射单元,并且各排的双极化辐射单元由功分器连接,再由两个波束形成网络进行信号馈送;双极化阵列天线的顶部和底部至少有一排是只有一个双极化辐射单元,该双极化辐射单元直接与两个波束形成网络连接。
需要说明的是,本申请的双极化阵列天线,工作相对带宽至少为25%,生成的水平面半功率波束宽度为30-40度,旁瓣至少低于-20dB,与现有的33-40度水平面半功率波束宽度的天线相比,本申请的双极化阵列天线包含的辐射单元和功分器的数量更少,结构更简单,不仅使得阵列天线更易于制作,而且材料成本和工艺成本也更低。
优选的,反射板的侧边沿着双极化辐射单元安装面向上延伸有边墙。
优选的,双极化阵列天线的顶部和底部的单个双极化辐射单元的两旁,沿着反射板的长度方向设置有反射壁,反射壁固定安装于反射板的平面内,与单个双极化辐射单元相邻。
优选的,反射壁向外折弯呈类倒“八”字或漏斗形将相应的双极化辐射单元夹设于中间。
需要说明的是,通过调节反射板的宽度、边墙的高度以及反射壁的角度和高度,可以调节不同频带宽度下的半功率波束宽度;例如,本申请的一种实现方式中,可以使得在最低频带宽度1.71GHz的状态下,可获得小于40度的半功率波束宽度。
优选的,双极化辐射单元由折合振子构成,折合振子包含切口和狭槽,且呈平面辐射方式排列。
优选的,双极化辐射单元由交叉偶极子构成。
优选的,双极化辐射单元呈偶极子阵形状排布,并由四个斜向巴伦馈电。
需要说明的是,本申请的关键在于双极化阵列天线的整体结构设计,至于双极化辐射单元可以根据需求进行选择,例如,可以是折合振子、交叉偶极子或阵形状排布的偶极子等,在此不作具体限定。
优选的,每个波束形成网络都包含N-1个移相装置,用于向双极化辐射单元提供不同的相位。
本申请的再一面公开了一种两波束天线阵结构,包括采用两个本申请的双极化阵列天线,两个双极化阵列天线的反射板以共用一个长度边的形式组装,并且两个双极化阵列天线的反射板的夹角为20-80度,双极化辐射单元安装于夹角的外表面,形成两波束天线阵结构。
本申请的再一面公开了一种两波束天线,包括组合安装的至少两个本申请的两波束天线阵结构,形成至少两个两波束天线。
由于采用以上技术方案,本申请的有益效果在于:
本申请的双极化阵列天线,与相同功能的现有天线相比,结构更简单,所采用的辐射单元和功分器的数量更少,更易于制作,而且材料成本和工艺成本也更低,能够满足大批量规模化生产的需求。
附图说明
图1是现有技术双极化阵列天线的结构示意图,其展示了高频辐射单元排布成三列的结构形式;
图2是现有技术另一双极化阵列天线的结构示意图,其展示了高频辐射单元排布成两列的结构形式;
图3是现有技术另一双极化阵列天线的结构示意图,其展示了两列十行排列的频带宽度为1.7-2.17GHz的双极化阵列天线;
图4是图3所示双极化阵列天线的1.71GHz频率的水平面方向图;
图5是图3所示双极化阵列天线的2.17GHz频率的水平面方向图;
图6是本申请实施例一的双极化阵列天线的结构示意图;
图7是本申请实施例一的双极化阵列天线的简易电路图;
图8是本申请实施例一的双极化阵列天线的1.71GHz频率的水平面方向图;
图9是本申请实施例一的双极化阵列天线的2.17GHz频率的水平面方向图;
图10是本申请实施例二的双极化阵列天线的结构示意图;
图11是本申请实施例二的双极化阵列天线的1.71GHz频率的水平面方向图;
图12是本申请实施例二的双极化阵列天线的2.17GHz频率的水平面方向图;
图13至图15是本申请实施例三的双极化阵列天线采用的不同的双极化辐射单元的结构示意图;
图16是本申请实施例四中两波束天线阵单元结构的示意图;
图17是本申请实施例四中由两个两波束天线阵单元结构组装的两波束天线的结构示意图。
具体实施方式
现有的双极化阵列天线,如图1至图3所示,结构都比较复杂。以结构相对简单的图3所示双极化阵列天线为例进行说明,其包含20个辐射单元,辐射单元采用2列10排的排布方式,两列辐射单元之间的距离可以实现在最低频带宽度为1.71GHz时,半功率波束宽度小于40度。图4和图5的结果显示了该阵列天线在最低频带宽度1.71GHz与最高频带宽度2.17GHz时的水平面方向图上的差别,在频带宽度为2.17GHz时,该阵列天线的旁瓣电平升高-15dB。由此可见,这个含有2列辐射单元的双极化阵列天线只有在低频带宽度上才能获得低旁瓣电平。而本申请的双极化阵列天线,在最高频带宽度2.17GHz时,其旁瓣电平也低于-20dB,即在高频带宽度上也能获得低旁瓣电平。
下面通过具体实施例和附图对本申请作进一步详细说明。以下实施例仅对本申请进行进一步说明,不应理解为对本申请的限制。
实施例一
本例的双极化阵列天线,如图6所示,包括反射板1和10排沿反射板1长度方向排列的双极化辐射单元2;如图7所示,生成垂直窄波束的两个波束形成网络61、62分别设有与双极化辐射单元2排数相同的输出端口,即端口NO.1至NO.10;其中,双极化阵列天线的中部01的6排是由两个相互平行的双极化辐射单元2组成,并且两相互平行的双极化辐射单元2由功分器3连接,再接入波束形成网络61、62;双极化阵列天线的顶部02和底部03各有两排是单个双极化辐射单元2,单个双极化辐射单元不需要采用功分器,直接连接到波束形成网络61、62中。
本例的双极化阵列天线,在反射板1的侧边沿着双极化辐射单元2安装面向上延伸有边墙41、42、43和44,即反射板1的四边侧边上都有边墙。同时,在双极化阵列天线的顶部和底部的两排的单个双极化辐射单元2的两旁,沿着反射板1的长度方向设置有反射壁51、52、53和54,即顶部的两排的单个双极化辐射单元2的两旁设置反射壁51和52,底部的两排的单个双极化辐射单元2的两旁设置反射壁53和54;反射壁51、52、53和54固定安装于反射板1的平面内,与相应的双极化辐射单元2相邻;并且,两旁的反射壁以相应的双极化辐射单元2为中心呈漏斗形布置,将相应的双极化辐射单元夹设于中间。每个波束形成网络都包含9个移相装置,用于向双极化辐射单元2提供不同的相位。
本例设计并采用了频带宽度为1.71-2.17GHz的双极化辐射单元。
测试本例的双极化阵列天线在不同频率下的水平面方向图,结果如图8和 图9所示。图8是1.71GHz频率的水平面方向图,图9是2.17GHz频率的水平面方向图。图8和图9的结果显示,在频带宽度为1.71-2.17GHz的范围内,在最高频带宽度2.17GHz时,本例的双极化阵列天线的旁瓣也低于-20dB;说明本例的双极化阵列天线可以在更宽频率范围上实现低旁瓣抑制。并且,本例的双极化阵列天线仅仅采用了16个辐射单元和12个功分器,与相同半功率波束宽度的图3所示的双极化阵列天线相比,本例的双极化阵列天线结构更简单、更易制作,且材料和工艺成本都更低。在用于对比分析时,图3的双极化辐射单元、反射板和边墙的尺寸、大小都与本例的双极化阵列天线相同。
实施例二
本例的双极化阵列天线与实施例一的基本结构相同,所不同的是,如图10所示,反射板上安装有6排双极化辐射单元,并且,双极化阵列天线的中部3排是由两个相互平行的双极化辐射单元组成,两个相互平行的双极化辐射单元由功分器连接,再接入馈电网络;双极化阵列天线的顶部有两排单个双极化辐射单元,底部有一排单个双极化辐射单元,相应的改变其馈电网络和移相装置个数。此外,反射板长度方向的边墙沿着双极化辐射单元的安装面向上延伸后,再反向弯折向下延伸,形成本例的边墙结构;至于反射板宽度方向的边墙可以根据结构需要进行省略,如图10所示,本例天线顶部的反射板宽度方向就没有设计边墙。其余都与实施例一相同。
同样的,对本例的双极化阵列天线进行水平面方向图测试,结果如图11和图12所示。图11是1.71GHz频率的水平面方向图,图12是2.17GHz频率的水平面方向图。图11和图12的结果显示,本例的双极化阵列天线在最低频带宽度1.71GHz的半功率波束宽度为40度;在最高频带宽度2.17GHz的半功率波束宽度为32度,且旁瓣低于-20dB。该结果与实施例一类似,说明本例的双极化阵列天线可以在更宽频率范围上实现低旁瓣抑制。
实施例三
本例在实施例一的基础上,分别采用了不同的双极化辐射单元,这些双极化辐射单元都是目前市场上可以直接购买获得的,其基本结构如图13至图15所示。图13是平面辐射结构的辐射单元,该平面辐射结构含有切口和狭槽,四个折合偶极子通过巴伦馈电。实施例一和实施例二也是采用的这种结构的辐射单元。图14是目前制作宽带阵列天线常用的交叉偶极子辐射单元。图15是一种呈偶极子阵形状排布的辐射单元,该辐射单元的交叉偶极子成四方形排布, 并由四个斜向巴伦馈电。这种辐射单元大量用于制作低频段或双频段阵列天线。
原则上,可以根据不同的使用需求或天线设计需求,选用目前可直接购买获得的双极化辐射单元即可。
实施例四
本例以实施例二的双极化阵列天线为基础,制作两波束天线阵结构,如图16所示,进一步的由两波束天线阵结构制备120°扇区覆盖的两波束天线,如图17所示。
如图16所示,本例的两波束天线阵结构,包括采用两个实施例二的双极化阵列天线,两个双极化阵列天线的反射板1以共用一个长度边的形式组装,并且两个双极化阵列天线的反射板1呈60度的夹角,双极化辐射单元2安装于夹角的外表面,形成两波束天线阵结构。其中,两个反射板的夹角可以根据覆盖区域进行调整。
两波束天线,是由两个两波束天线阵结构纵向排列,即两个两波束天线阵单元结构一字排开连接形成两波束天线,其中双极化辐射单元的排数可以根据需求进行增减,只要保障顶部和底部的双极化阵列天线是单个双极化辐射单元即可,如图17所示,是由天线一171和天线二172构成的两波束天线。
在结构设计上,两波束天线中的双极化阵列天线的反射板或者两波束天线阵结构中的反射板可以设计为一体结构,以方便天线组装。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种双极化阵列天线,其特征在于:包含N排双极化辐射单元(2),所述N排双极化辐射单元(2)排布在反射板(1)上,N排双极化辐射单元由设有N个输出端口的两个波束形成网络(61和62)进行信号馈送,在垂直面上生成窄波束;
    其中,至少有N/2排的辐射单元,其每排包含至少两个双极化辐射单元(2),并且各排的双极化辐射单元(2)由功分器(3)连接在一起,再由两个波束形成网络(61和62)进行信号馈送;
    所述双极化阵列天线的顶部和底部至少有一排是只有一个双极化辐射单元(2),该双极化辐射单元(2)直接与两个波束形成网络(61和62)连接。
  2. 根据权利要求1所述的双极化阵列天线,其特征在于:所述反射板(1)的侧边沿着双极化辐射单元(2)安装面向上延伸有边墙(41、42、43和44)。
  3. 根据权利要求1所述的双极化阵列天线,其特征在于:所述双极化阵列天线的顶部和底部的单个双极化辐射单元(2)的两旁,沿着反射板(1)的长度方向设置有反射壁(51、52、53和54),反射壁(51、52、53和54)固定安装于反射板(1)的平面内,与单个双极化辐射单元(2)相邻。
  4. 根据权利要求3所述的双极化阵列天线,其特征在于:所述反射壁(51、52、53和54)向外折弯呈类倒“八”字或漏斗形将相应的双极化辐射单元夹设于中间。
  5. 根据权利要求1-4任一项所述的双极化阵列天线,其特征在于:所述双极化辐射单元(2)由折合振子构成,所述折合振子包含切口和狭槽,且呈平面辐射方式排列。
  6. 根据权利要求1-4任一项所述的双极化阵列天线,其特征在于:所述双极化辐射单元(2)由交叉偶极子构成。
  7. 根据权利要求1-4任一项所述的双极化阵列天线,其特征在于:所述双极化辐射单元(2)呈偶极子阵形状排布,并由四个斜向巴伦馈电。
  8. 根据权利要求1-4任一项所述的双极化阵列天线,其特征在于:每个波束形成网络都包含N-1个移相装置,用于向双极化辐射单元(2)提供不同的相位。
  9. 一种两波束天线阵结构,其特征在于:包括采用两个权利要求1-8任一项所述的双极化阵列天线,两个双极化阵列天线的反射板(1)以共用一个长度边的形式组成,并且两个双极化阵列天线的反射板(1)的夹角在20-80度之间,双极化辐射单元(2)安装于夹角的外表面,形成两波束天线阵结构。
  10. 一种两波束天线,其特征在于:包括组合安装的至少两个权利要求9所述的两波束天线阵结构,形成至少两个两波束天线。
PCT/CN2019/077937 2019-01-08 2019-03-13 一种双极化阵列天线及其应用 WO2020143113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910016895.0 2019-01-08
CN201910016895.0A CN109599665B (zh) 2019-01-08 2019-01-08 一种双极化阵列天线及其应用

Publications (1)

Publication Number Publication Date
WO2020143113A1 true WO2020143113A1 (zh) 2020-07-16

Family

ID=65965897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077937 WO2020143113A1 (zh) 2019-01-08 2019-03-13 一种双极化阵列天线及其应用

Country Status (2)

Country Link
CN (1) CN109599665B (zh)
WO (1) WO2020143113A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864361B (zh) * 2019-04-29 2023-03-28 深圳市通用测试系统有限公司 天线单元及具有其的双极化天线
WO2021082016A1 (zh) * 2019-11-01 2021-05-06 华为技术有限公司 天线阵列和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120268324A1 (en) * 2007-10-16 2012-10-25 Bill Vassilakis Dual beam sector antenna array with low loss beam forming network
CN203760639U (zh) * 2013-12-31 2014-08-06 张家港保税区国信通信有限公司 超宽带双极化辐射单元及交错阵列天线
CN104269649A (zh) * 2014-09-19 2015-01-07 广东博纬通信科技有限公司 一种超宽频带多频段阵列天线
CN106576280A (zh) * 2014-01-31 2017-04-19 昆特尔科技有限公司 具有波束宽度控制的天线系统
CN208028207U (zh) * 2018-04-09 2018-10-30 深圳国人通信股份有限公司 一种双宽频基站天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058846A1 (de) * 2009-12-18 2011-06-22 Kathrein-Werke KG, 83022 Dualpolarisierte Gruppenantenne, insbesondere Mobilfunkantenne
CN103647138B (zh) * 2013-11-19 2016-08-17 广州杰赛科技股份有限公司 宽频双极化天线
CN103700927A (zh) * 2013-12-31 2014-04-02 张家港保税区国信通信有限公司 超宽带双极化辐射单元及交错阵列天线
CN205319333U (zh) * 2015-12-31 2016-06-15 广州桑瑞通信设备有限公司 一种双频双极化基站天线
CN205543221U (zh) * 2016-03-08 2016-08-31 深圳国人通信股份有限公司 一种独立可调双频双极化基站天线
CN205790402U (zh) * 2016-05-25 2016-12-07 广东博纬通信科技有限公司 一种双频双极化窄波束阵列天线
CN206076491U (zh) * 2016-09-13 2017-04-05 江苏捷士通射频系统有限公司 一种双极化天线
CN108448237A (zh) * 2018-05-22 2018-08-24 广东博纬通信科技有限公司 一种超宽频双极化双向覆盖天线
CN209434383U (zh) * 2019-01-08 2019-09-24 广东司南通信科技有限公司 双极化阵列天线、两波束天线阵结构和两波束天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120268324A1 (en) * 2007-10-16 2012-10-25 Bill Vassilakis Dual beam sector antenna array with low loss beam forming network
CN203760639U (zh) * 2013-12-31 2014-08-06 张家港保税区国信通信有限公司 超宽带双极化辐射单元及交错阵列天线
CN106576280A (zh) * 2014-01-31 2017-04-19 昆特尔科技有限公司 具有波束宽度控制的天线系统
CN104269649A (zh) * 2014-09-19 2015-01-07 广东博纬通信科技有限公司 一种超宽频带多频段阵列天线
CN208028207U (zh) * 2018-04-09 2018-10-30 深圳国人通信股份有限公司 一种双宽频基站天线

Also Published As

Publication number Publication date
CN109599665B (zh) 2024-04-19
CN109599665A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
US10205226B2 (en) Miniaturized dual-polarized base station antenna
JP4890618B2 (ja) 移動通信基地局用二重帯域二重偏波アンテナ
US9871296B2 (en) Mixed structure dual-band dual-beam three-column phased array antenna
KR101756112B1 (ko) 안테나 방사소자 및 다중대역 안테나
JP2020506631A (ja) 新型のスペクトル拡散広帯域基地局アンテナ
KR101690085B1 (ko) 다중대역 다중편파 무선 통신 안테나
WO2009056001A1 (en) Broadband annular dual-polarization radiation element and line shape antenna array
CN106207456B (zh) 一种多频天线
US20190288406A1 (en) Antenna feed structure and base station antenna
CN211879611U (zh) 双频双极化天线及辐射单元
CN104134856B (zh) 一种双极化宽频天线振子单元以及宽频双极化天线
CN104733844A (zh) 平面宽带双极化基站天线
EP3539179A1 (en) Dual-band radiation system and antenna array thereof
CN102570058A (zh) 复合式多天线系统及其无线通信装置
WO2020107362A1 (zh) 一种基于阵列天线的准平面波生成器
AU2014213078A1 (en) An antenna arrangement and a base station
CN107946736B (zh) 多频基站天线及其低频辐射单元
CN110957569A (zh) 一种宽频辐射单元及天线
AU2014211633A1 (en) An antenna arrangement and a base station
WO2021000476A1 (zh) 多频窄波束天线
WO2020143113A1 (zh) 一种双极化阵列天线及其应用
CN113437534A (zh) Ku/Ka双频双极化相控阵天线辐射阵列
CN111048912A (zh) 矩形赋形阵列天线及室内基站
CN109301459B (zh) 多频阵列天线
Chine et al. Three dimensional, efficient, directive microstrip antenna array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19909441

Country of ref document: EP

Kind code of ref document: A1