WO2020143091A1 - 一种多腔叠加式非共振光声池及气体检测系统 - Google Patents

一种多腔叠加式非共振光声池及气体检测系统 Download PDF

Info

Publication number
WO2020143091A1
WO2020143091A1 PCT/CN2019/073828 CN2019073828W WO2020143091A1 WO 2020143091 A1 WO2020143091 A1 WO 2020143091A1 CN 2019073828 W CN2019073828 W CN 2019073828W WO 2020143091 A1 WO2020143091 A1 WO 2020143091A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoacoustic
cavity
resonant
resonant photoacoustic
acoustic wave
Prior art date
Application number
PCT/CN2019/073828
Other languages
English (en)
French (fr)
Inventor
宫振峰
于清旭
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/289,658 priority Critical patent/US20210404949A1/en
Publication of WO2020143091A1 publication Critical patent/WO2020143091A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1704Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in gases

Definitions

  • the invention belongs to the technical field of trace gas detection, and relates to a multi-cavity superimposed non-resonant photoacoustic cell structure and a high-sensitivity gas detection system based on the photoacoustic cell.
  • Photoacoustic spectroscopy is a spectral calorimetry technique that directly measures the heat generated by the absorption of light energy by a gas, and is a background-free absorption spectroscopy technique.
  • the basic principle of gas photoacoustic spectroscopy is that after the gas to be measured absorbs light energy in a special band, the gas molecule transitions from the ground state to the excited state, but due to the instability of the high-level excited state, it will return to the ground state through collision relaxation At the same time, according to the law of conservation of energy, the absorbed light energy is converted into the translational kinetic energy of the molecule, which causes a local temperature increase in the gas chamber. When the excitation light undergoes periodic modulation, the local temperature in the gas chamber will periodically increase and decrease, thereby generating an acoustic signal consistent with the laser modulation frequency. Acoustic wave detectors are used to collect the generated acoustic wave signals, and the concentration information of the gas to be measured can be obtained through analysis and processing.
  • the photoacoustic cell is a place where sound waves are generated.
  • the photoacoustic cell is divided into two structures: a resonant photoacoustic cell and a non-resonant photoacoustic cell.
  • the non-resonant photoacoustic cell is small and can be used in conjunction with an infrared light source.
  • non-resonant photoacoustic systems measure more gas types, so for existing online photoacoustic spectrometers, including GE's Kelman TRANSFIX series products and CAMLIN POWER's TOTUS series products, are commonly used
  • the non-resonant photoacoustic cell serves as a sound wave generating unit.
  • the photoacoustic signal can be improved by reducing the cross-sectional area of the photoacoustic cell cavity, but too small a cross-sectional area of the cavity will make it impossible to match the microphone; in addition, by reducing the excitation light source
  • the frequency is modulated to improve the photoacoustic signal, but the response of the small-sized microphone to low-frequency sound wave signals is relatively weak.
  • the sensitivity of traditional non-resonant photoacoustic systems is low. Therefore, designing a high-sensitivity non-resonant photoacoustic cell system has important application value in the field of trace gas detection.
  • the purpose of the present invention is to propose a multi-cavity superposed non-resonant photoacoustic cell and gas detection system, aiming to solve the problem of low sensitivity of the traditional non-resonant photoacoustic system.
  • Using optical fiber acoustic wave sensor as the acoustic wave detection unit can solve the problem of mismatch between the microphone and the photoacoustic pool and the electromagnetic interference in a complex environment, and expand more space for the online application of photoacoustic spectroscopy technology.
  • a multi-cavity superimposed non-resonant photoacoustic cell including a cylindrical metal shell 1, a plurality of non-resonant photoacoustic cavities 2, an optical fiber Fabry-Perot acoustic wave sensor sensitive diaphragm 3, an optical glass window 4, an air intake Port 5 and air outlet 6;
  • the cylindrical metal shell 1 has openings at both ends, and the inside contains a plurality of independent cylindrical through holes, which are polished and used as a non-resonant photoacoustic cavity 2; one end of the cylindrical metal shell 1 passes through the laser The method of welding the metal film or the adhesive organic film fixes the sensitive film 3 of the optical fiber Fabry-Perot acoustic wave sensor, and the other end is sealed by the optical glass window 4;
  • the cylindrical metal shell 1 has an air inlet 5 at one end, and the other An air outlet 6 is opened at one end, and the gas to be measured enters from the air inlet 5, diffuses into a plurality of non-resonant photoacoustic
  • the photoacoustic signal amplitude is inversely proportional to the size of the cross-section of a single non-resonant photoacoustic cavity 2 and the size of the excitation light source modulation frequency, respectively.
  • the cross-sectional area of the non-resonant photoacoustic cavity 2 is small, so a strong photoacoustic signal is generated inside a single non-resonant photoacoustic cavity 2.
  • the photoacoustic signals generated in each non-resonant photoacoustic cavity 2 are superimposed, which further enhances the photoacoustic signals of the multi-cavity superposed non-resonant photoacoustic cell.
  • the superimposed photoacoustic signal will cause the periodic vibration of the sensitive diaphragm 3 of the optical fiber Fabry-Perot acoustic wave sensor, and the gas concentration can be measured by demodulating the vibration of the sensitive diaphragm 3 of the optical fiber Fabry-Perot acoustic wave sensor.
  • a gas detection system based on a multi-cavity superimposed non-resonant photoacoustic cell includes an infrared thermal radiation light source 7, a chopper 8, a filter 9, a multi-cavity superimposed non-resonant photoacoustic cell 10, and an optical fiber Fabry- Perot acoustic wave sensor 11, tunable semiconductor laser 12, circulator 13, photodetector 14, data acquisition card 15 and industrial computer 16; the broad-spectrum light emitted by the infrared thermal radiation light source 7 is modulated and filtered by the chopper 8 After the band-pass effect of the sheet 9, it becomes a narrow-band light suitable for the absorption of a single gas; if measuring a multi-component gas, a plurality of filters 9 are arranged; the narrow-band light is incident on the multi-cavity superimposed type through the optical glass window 4 In the resonant photoacoustic cell 10, due to the photoacoustic effect, a photoacoustic signal is generated in the non-
  • the beneficial effects of the present invention By reducing the radius of the non-resonant photoacoustic cavity and the superposition of the photoacoustic signals in multiple photoacoustic cavities, the intensity of the system photoacoustic signal can be greatly improved.
  • the diaphragm type optical fiber Fabry-Perot acoustic wave sensor is easier to match with the photoacoustic cavity, which provides a new solution for the detection of multi-component high-sensitivity trace gases.
  • FIG. 1 is a schematic structural view of a multi-cavity superimposed non-resonant photoacoustic cell.
  • FIG. 2 is a schematic diagram of a gas detection system based on a multi-cavity superimposed non-resonant photoacoustic cell.
  • the invention provides a multi-cavity superimposed non-resonant photoacoustic cell as shown in FIG. 1, which is mainly composed of a cylindrical metal shell 1, a plurality of non-resonant photoacoustic cavities 2, and a sensitive membrane 3 of an optical fiber Fabry-Perot acoustic wave sensor , Optical glass window 4, air inlet 5 and air outlet 6.
  • the sensitive diaphragm 3 of the optical fiber Fabry-Perot acoustic wave sensor is fixed on one end of the multi-cavity superimposed non-resonant photoacoustic cell, and the photoacoustic signals generated in the multiple non-resonant photoacoustic chambers 2 are in the optical fiber Fabry-Perot acoustic wave
  • the superposition of the sensitive diaphragm 3 of the sensor causes periodic vibration of the sensitive diaphragm 3 of the optical fiber Fabry-Perot acoustic wave sensor, which can be obtained by demodulating and analyzing the vibration of the sensitive diaphragm 3 of the optical fiber Fabry-Perot acoustic wave sensor Information about the concentration of the gas to be measured.
  • An optical glass window 4 is installed on the other end surface of the multi-cavity superimposed non-resonant photoacoustic cell to allow the excitation light to pass through smoothly 5 ⁇ 6 ⁇ 5 and outlet 6.
  • Figure 2 shows a gas detection system based on a multi-chamber superimposed non-resonant photoacoustic cell.
  • the broad-spectrum light emitted by the infrared thermal radiation light source 7 becomes periodic modulated light after passing through the chopper 8, and the periodic modulated light becomes narrow-band light that can be absorbed by the gas to be measured after passing through the band-pass filter 9.
  • the modulated narrow-band light enters the multiple non-resonant photoacoustic cavities 2 in the multi-cavity superimposed non-resonant photoacoustic cell 10 through the optical glass window 4.
  • the gas to be measured absorbs the periodically modulated narrow-band light in the non-resonant photoacoustic cavity 2 to generate a photoacoustic signal.
  • the photoacoustic signals in the multiple non-resonant photoacoustic cavity 2 are superimposed at the sensitive membrane 3 of the optical fiber Fabry-Perot acoustic wave sensor , Causing the periodic vibration of the sensitive diaphragm 3 of the optical fiber Fabry-Perot acoustic wave sensor.
  • the laser light emitted by the tunable semiconductor laser 12 is incident on the Fabry-Perot cavity of the optical fiber Fabry-Perot acoustic wave sensor 11 through the circulator 13, the optical fiber
  • the reflected light of the end face interferes with the reflected light of the sensitive diaphragm 3 of the optical fiber Fabry-Perot acoustic wave sensor.
  • the periodic vibration of the sensitive diaphragm 3 of the optical fiber Fabry-Perot acoustic wave sensor will cause the periodic change of the Fabry-Perot cavity length, thereby causing the periodic change of the interference optical signal.
  • the reflected interference light is received by the photodetector 14 through the circulator 13 and converts the interference light signal into an electrical signal.
  • the amplified electrical signal is collected by the data acquisition card 15 and finally the signal is sent to the industrial control machine 16 for processing.
  • the data acquisition card 15 controls the tunable semiconductor laser 12 through a driver program, and uses the wavelength tuning function of the tunable semiconductor laser 12 to compensate for the drift of the operating point and realize the stability of the operating point.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种多腔叠加式非共振光声池及气体检测系统。多腔叠加式非共振光声池包括圆柱形金属壳体(1)、多个非共振光声腔(2)、光纤法布里-珀罗声波传感器敏感膜片(3)、光学玻璃窗片(4)、进气口(5)和出气孔(6)。光纤法布里-珀罗声波传感器的圆形敏感膜片(3)固定在圆柱形金属壳体(1)的一侧,圆柱形金属壳体(1)的另一侧由光学玻璃窗片(4)密封。待测气体从进气口(5)进入,扩散进入多个非共振光声腔(2)中,从另一侧的出气口(6)排出。本发明通过减小非共振光声腔(2)的半径和多个光声腔内光声信号的叠加,可大幅度提高系统光声信号的强度。

Description

一种多腔叠加式非共振光声池及气体检测系统 技术领域
本发明属于痕量气体检测技术领域,涉及到一种多腔叠加式非共振光声池结构及基于此光声池的高灵敏度气体检测系统。
背景技术
痕量气体检测在工业生产过程控制、环境监测、健康检测以及危险品检测等领域愈来愈受到广泛的关注。随着激光技术的发展,光谱技术已经成为一种具有高灵敏度、响应时间快和选择性强等优势的气体检测方法。光声光谱是通过直接测量气体因吸收光能而产生热量的光谱量热技术,是一种无背景吸收光谱技术。气体光声光谱技术的基本原理为:待测气体吸收特殊波段的光能量后,气体分子从基态跃迁到激发态,但由于高能级激发态的不稳定性,会通过碰撞弛豫重新回到基态,同时根据能量守恒定律,将吸收的光能量转化为分子的平动能,即造成气室中局部温度升高。当激励光经过周期性调制后,气室中的局部温度就会周期性的升高降低,从而产生与激光调制频率一致的声波信号。利用声波探测器对产生的声波信号进行采集,通过分析处理就可以获得待测气体的浓度信息。
基于光声光谱检测技术的探测系统中,光声池是产生声波的场所。光声池分为共振式光声池和非共振式光声池两种结构。非共振式光声池体积较小,并可以与红外光源配合使用。由于红外光源的宽谱特性,非共振式光声系统的测量气体种类更多,因此对于现有的在线光声光谱仪,包括GE公司的Kelman TRANSFIX系列产品和CAMLIN POWER公司的TOTUS系列产品,普遍使用非共振式光声池作为声波产生单元。对于非共振式光声池系统,可以通过减小光声池腔体的横截面积提高光声信号,但是腔体横截面过小会导致无法与微音器匹配;另外可以通过降低激励光源的调制频率来提高光声信号,但是小尺寸的微音器对于低频声波信号的响应能力相对较弱。综合以上原因,传统的非共振光声系统的灵敏度较低。因此设计一种高灵敏度的非共振光声池系统对于微量气体检测领域具有重要的应用价值。
技术问题
本发明的目的是提出一种多腔叠加式非共振光声池及气体检测系统,旨在解决传统的非共振光声系统灵敏度较低的问题。采用光纤声波传感器作为声波探测单元,可以解决微音器与光声池不匹配以及在复杂环境中的电磁干扰问题,为光声光谱技术在线应用拓展更大的空间。
技术解决方案
本发明的技术方案:
一种多腔叠加式非共振光声池,包括圆柱形金属壳体1、多个非共振光声腔2、光纤法布里-珀罗声波传感器敏感膜片3、光学玻璃窗片4、进气口5和出气口6;圆柱形金属壳体1两端为开口结构,其内部包含多个互通独立的圆柱形通孔,抛光后作为非共振光声腔2;圆柱形金属壳体1一端通过激光焊接金属膜或胶粘有机膜的方法固定光纤法布里-珀罗声波传感器敏感膜片3,另一端由光学玻璃窗片4密封;圆柱形金属壳体1一端开有进气口5,另一端开有出气口6,待测气体从进气口5进入,扩散进入多个非共振光声腔2中,从另一端的出气口6排出。
对于多腔叠加式非共振光声池,光声信号幅度分别反比于单个非共振光声腔2横截面的大小和激励光源调制频率的大小。非共振光声腔2的横截面积较小,因此单个非共振光声腔2内部会产生较强的光声信号。同时在光纤法布里-珀罗声波传感器敏感膜片3处,每个非共振光声腔2内产生的光声信号叠加,进一步增强了多腔叠加式非共振光声池的光声信号。叠加之后的光声信号会引起光纤法布里-珀罗声波传感器敏感膜片3的周期性振动,通过解调光纤法布里-珀罗声波传感器敏感膜片3的振动情况实现气体浓度的测量。
一种基于多腔叠加式非共振光声池的气体检测系统,包括红外热辐射光源7、斩波器8、滤光片9、多腔叠加式非共振光声池10、光纤法布里-珀罗声波传感器11、可调谐半导体激光器12、环形器13、光电探测器14、数据采集卡15和工控机16;红外热辐射光源7发出的宽谱光经过斩波器8的调制和滤光片9的带通作用后,成为适用于某一单一气体吸收的窄带光;若测量多组分气体,配置多个滤光片9;窄带光通过光学玻璃窗片4入射到多腔叠加式非共振光声池10中,由于光声效应,非共振光声腔2中产生光声信号,非共振光声腔2内各处的声压基本相等;利用光纤法布里-珀罗声波传感器11作为声波探测单元,很好的解决了传统的微音器无法与小横截面积的光声腔匹配的问题,同时可以通过减小激励光源的调制频率进一步提高系统的光声信号,降低系统的气体检测极限灵敏度。
有益效果
本发明的有益效果:通过减小非共振光声腔的半径和多个光声腔内光声信号的叠加,可大幅度提高系统光声信号的强度。膜片式光纤法布里-珀罗声波传感器作为声波探测单元,与光声腔更容易匹配,为多组分高灵敏度痕量气体的检测提供了新的解决方案。
附图说明
图1是多腔叠加式非共振光声池的结构示意图。
图2是基于多腔叠加式非共振光声池的气体检测系统示意图。
图中:1圆柱形金属壳体;2非共振光声腔;3光纤法布里-珀罗声波传感器敏感膜片;4光学玻璃窗片;5进气口;6出气口;7红外热辐射光源;8斩波器;9滤光片;10多腔叠加式非共振光声池;11光纤法布里-珀罗声波传感器;12可调谐半导体激光器;13环形器;14光电探测器;15数据采集卡;16工控机。
本发明的实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
本发明提供了如图1所示的多腔叠加式非共振光声池,主要由圆柱形金属壳体1、多个非共振光声腔2、光纤法布里-珀罗声波传感器敏感膜片3、光学玻璃窗片4、进气口5和出气孔6组成。在多腔叠加式非共振光声池的一端面固定光纤法布里-珀罗声波传感器敏感膜片3,多个非共振光声腔2内产生的光声信号在光纤法布里-珀罗声波传感器敏感膜片3处发生叠加,引起光纤法布里-珀罗声波传感器敏感膜片3的周期性振动,通过解调分析光纤法布里-珀罗声波传感器敏感膜片3的振动情况可以获得待测气体的浓度信息。在多腔叠加式非共振光声池的另一端面安装有光学玻璃窗片4,可以让激励光顺利通过,在多腔叠加式非共振光声池靠近两端的侧壁分别设有进气口5和出气口6。
图2表示的是基于多腔叠加式非共振光声池的气体检测系统。红外热辐射光源7发出的宽谱光经过斩波器8后成为周期性的调制光,周期性的调制光经过带通滤光片9后成为可以被待测气体吸收的窄带光。经过调制的窄带光通过光学玻璃窗片4进入到多腔叠加式非共振光声池10中的多个非共振光声腔2中。待测气体在非共振光声腔2中吸收周期性调制的窄带光产生光声信号,多个非共振光声腔2中的光声信号在光纤法布里-珀罗声波传感器敏感膜片3处叠加,引起光纤法布里-珀罗声波传感器敏感膜片3的周期性振动。作为光纤法布里-珀罗声波传感器11的探测光源,可调谐半导体激光器12发出的激光经过环形器13入射到光纤法布里-珀罗声波传感器11的法布里-珀罗腔中,光纤端面的反射光和光纤法布里-珀罗声波传感器敏感膜片3的反射光发生干涉作用。光纤法布里-珀罗声波传感器敏感膜片3的周期性振动会引起法布里-珀罗腔长的周期性变化,从而引起干涉光信号的周期性变化。反射回来的干涉光经过环形器13被光电探测器14接收,将干涉光信号转化为电信号,放大后的电信号由数据采集卡15采集,最后信号被送到工控机16进行处理。数据采集卡15通过驱动程序对可调谐半导体激光器12进行控制,利用可调谐半导体激光器12的波长调谐功能来补偿工作点的漂移,实现工作点的稳定。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

  1. 一种多腔叠加式非共振光声池,其特征在于,所述的多腔叠加式非共振光声池包括圆柱形金属壳体(1)、多个非共振光声腔(2)、光纤法布里-珀罗声波传感器敏感膜片(3)、光学玻璃窗片(4)、进气口(5)和出气口(6);圆柱形金属壳体(1)两端为开口结构,其内部包含多个互通独立的圆柱形通孔,抛光后作为非共振光声腔(2);圆柱形金属壳体(1)一端通过激光焊接或胶粘的方法固定光纤法布里-珀罗声波传感器敏感膜片(3),另一端由光学玻璃窗片(4)密封;圆柱形金属壳体(1)一端开有进气口(5),另一端开有出气口(6),待测气体从进气口(5)进入,扩散进入多个非共振光声腔(2)中,从另一端的出气口(6)排出。
  2. 一种基于多腔叠加式非共振光声池的气体检测系统,其特征在于,所述的气体检测系统包括红外热辐射光源(7)、斩波器(8)、滤光片(9)、多腔叠加式非共振光声池(10)、光纤法布里-珀罗声波传感器(11)、可调谐半导体激光器(12)、环形器(13)、光电探测器(14)、数据采集卡(15)和工控机(16);红外热辐射光源(7)发出的宽谱光经过斩波器(8)的调制和滤光片(9)的带通作用后,成为适用于某一单一气体吸收的窄带光;若测量多组分气体,配置多个滤光片(9);窄带光通过光学玻璃窗片(4)入射到多腔叠加式非共振光声池(10)中,由于光声效应,非共振光声腔(2)中产生光声信号,非共振光声腔(2)内各处的声压基本相等;利用光纤法布里-珀罗声波传感器(11)作为声波探测单元。
     
PCT/CN2019/073828 2019-01-07 2019-01-30 一种多腔叠加式非共振光声池及气体检测系统 WO2020143091A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/289,658 US20210404949A1 (en) 2019-01-07 2019-01-30 Multi-cavity superimposed non-resonant photoacoustic cell and gas detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910011769.6 2019-01-07
CN201910011769.6A CN109490217B (zh) 2019-01-07 2019-01-07 一种多腔叠加式非共振光声池及气体检测系统

Publications (1)

Publication Number Publication Date
WO2020143091A1 true WO2020143091A1 (zh) 2020-07-16

Family

ID=65714118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073828 WO2020143091A1 (zh) 2019-01-07 2019-01-30 一种多腔叠加式非共振光声池及气体检测系统

Country Status (3)

Country Link
US (1) US20210404949A1 (zh)
CN (1) CN109490217B (zh)
WO (1) WO2020143091A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486731A (zh) * 2021-12-27 2022-05-13 西安理工大学 基于法珀腔的光纤气体传感器
CN117233112A (zh) * 2023-09-04 2023-12-15 国网甘肃省电力公司电力科学研究院 一种微型光纤痕量乙炔气体检测系统及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490217B (zh) * 2019-01-07 2021-05-07 大连理工大学 一种多腔叠加式非共振光声池及气体检测系统
CN109870414A (zh) * 2019-04-08 2019-06-11 大连理工大学 一种散射增强型气体传感探头
CN110346302B (zh) * 2019-07-20 2021-08-10 大连理工大学 基于聚一氯对二甲苯的膜片共振式气体传感器及检测系统
CN110346296A (zh) * 2019-07-20 2019-10-18 大连理工大学 一种多腔式半开腔共振光声池及多种气体同时测量系统
CN110488565A (zh) * 2019-08-26 2019-11-22 句容福芯电子有限公司 一种利用光声效应实现空气成像的装置及系统
CN111413281B (zh) * 2020-04-14 2021-05-07 大连理工大学 一种高灵敏度可遥测式气体传感器
CN112683806B (zh) * 2020-12-08 2022-09-02 大连理工大学 一种利用醋酸纤维膜实现光声系统灵敏度增强和光声池免抛光的方法
US11940375B2 (en) * 2020-12-08 2024-03-26 State Grid Anhui Electric Power Research Institute Fiber-optic photoacoustic sensing probe capable of resisting interference from ambient noise, and sensing system
CN114062275B (zh) * 2021-11-18 2024-04-30 国网安徽省电力有限公司电力科学研究院 一种光纤光声传感器的空间域复用解调仪器及方法
CN114062273B (zh) * 2021-11-18 2024-06-11 国网安徽省电力有限公司电力科学研究院 一种抗干扰光纤光声气体传感系统及方法
US11662301B1 (en) * 2022-03-29 2023-05-30 Anhui University of Science and Technology Mine dust real-time detection system based on double-photo acoustic spectrometry and detection method
CN115586151A (zh) * 2022-09-28 2023-01-10 国网湖北省电力有限公司电力科学研究院 基于激光光声光谱技术的sf6分解产物在线监测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099848A1 (en) * 2011-01-18 2012-07-26 The Regents Of The University Of Michigan Fabry-perot based optofluidic sensor
CN203365315U (zh) * 2013-05-29 2013-12-25 中州大学 气体浓度检测装置
CN103994954A (zh) * 2014-05-13 2014-08-20 中国科学技术大学先进技术研究院 一种低成本高精度雾霾测量仪
CN107041799A (zh) * 2017-02-08 2017-08-15 上海纽脉太惟医疗科技有限公司 可实时测量球囊径向扩张力的微型压力传感装置
US20170336255A1 (en) * 2012-08-30 2017-11-23 University of Maribor Fiber-optic measurement system and methods based on ultra-short cavity length fabry-perot sensors and low resolution spectrum analysis
CN107677610A (zh) * 2017-09-15 2018-02-09 大连理工大学 一种悬臂梁与光声池双共振增强型光声光谱检测系统及方法
CN109490217A (zh) * 2019-01-07 2019-03-19 大连理工大学 一种多腔叠加式非共振光声池及气体检测系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034943B1 (en) * 2000-03-03 2006-04-25 Aritron Intrumente AG Gas sensors
US8294898B2 (en) * 2007-08-28 2012-10-23 Trustees Of Princeton University Rotationally asymmetric chaotic optical multi-pass cavity
US9587976B2 (en) * 2011-02-17 2017-03-07 University Of Massachusetts Photoacoustic probe
CN102661918A (zh) * 2012-05-28 2012-09-12 中国科学院电工研究所 非共振光声光谱检测分析装置
US20160313233A1 (en) * 2015-04-23 2016-10-27 National Institute Of Standards And Technology Photoacoustic spectrometer for nondestructive aerosol absorption spectroscopy
CN205333497U (zh) * 2015-12-24 2016-06-22 湖北索瑞电气有限公司 一种用于混合气体检测的非共振式光声池
CN206740639U (zh) * 2017-03-03 2017-12-12 江苏舒茨测控设备股份有限公司 利用光声光谱法检测氨气气体检测装置
CN107389597B (zh) * 2017-07-14 2020-04-17 山西大学 一种高灵敏气体检测装置及方法
CN109060725B (zh) * 2018-06-08 2020-01-21 清华大学 具有纳米孔阵的法布里-珀罗结构、制备方法和操作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099848A1 (en) * 2011-01-18 2012-07-26 The Regents Of The University Of Michigan Fabry-perot based optofluidic sensor
US20170336255A1 (en) * 2012-08-30 2017-11-23 University of Maribor Fiber-optic measurement system and methods based on ultra-short cavity length fabry-perot sensors and low resolution spectrum analysis
CN203365315U (zh) * 2013-05-29 2013-12-25 中州大学 气体浓度检测装置
CN103994954A (zh) * 2014-05-13 2014-08-20 中国科学技术大学先进技术研究院 一种低成本高精度雾霾测量仪
CN107041799A (zh) * 2017-02-08 2017-08-15 上海纽脉太惟医疗科技有限公司 可实时测量球囊径向扩张力的微型压力传感装置
CN107677610A (zh) * 2017-09-15 2018-02-09 大连理工大学 一种悬臂梁与光声池双共振增强型光声光谱检测系统及方法
CN109490217A (zh) * 2019-01-07 2019-03-19 大连理工大学 一种多腔叠加式非共振光声池及气体检测系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486731A (zh) * 2021-12-27 2022-05-13 西安理工大学 基于法珀腔的光纤气体传感器
CN114486731B (zh) * 2021-12-27 2024-05-03 西安理工大学 基于法珀腔的光纤气体传感器
CN117233112A (zh) * 2023-09-04 2023-12-15 国网甘肃省电力公司电力科学研究院 一种微型光纤痕量乙炔气体检测系统及方法

Also Published As

Publication number Publication date
US20210404949A1 (en) 2021-12-30
CN109490217B (zh) 2021-05-07
CN109490217A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
WO2020143091A1 (zh) 一种多腔叠加式非共振光声池及气体检测系统
US11300499B2 (en) Multi-cavity semi-open resonant photoacoustic cell and multi-gas simultaneous measurement system
CN110044824B (zh) 一种基于石英音叉的双光谱气体检测装置及方法
CN101055243B (zh) 光纤气体传感的方法和传感器
CN107677610B (zh) 一种悬臂梁与光声池双共振增强型光声光谱检测系统及方法
CN104280340B (zh) 基于led光源并采用电学调制相消法的气体探测装置及方法
CN110346302B (zh) 基于聚一氯对二甲苯的膜片共振式气体传感器及检测系统
CN103063574A (zh) 一种膜片式微型光声池及其应用
CN108051400A (zh) 一种扫描激光干涉型光纤声波锁相探测系统及方法
CN104251819A (zh) 一种基于红外光源的光声光谱气体检测装置
Scholz et al. MID-IR led-based, photoacoustic CO2 sensor
US8330956B1 (en) Optical coupled-cavity photo-acoustic spectroscopy
CN101887009A (zh) 基于光学声波传感器的本征安全光声光谱气体监测系统
CN109269999A (zh) 一种红外光声光谱检测系统
CN201034929Y (zh) 光纤气体传感器
Zhang et al. Miniature 3D-printed resonant photoacoustic cell for flowing gas detection
CN104280345A (zh) 一种基于可调谐激光器的石英音叉增强型光声光谱分布式光纤气体传感器
Pan et al. All-optical light-induced thermoacoustic spectroscopy for remote and non-contact gas sensing
CN112924388A (zh) 正交双通道声学谐振模块及包括该模块的装置
CN109490215A (zh) 利用光声光谱法检测溴甲烷气体浓度的系统及方法
CN114813574A (zh) 基于双通道t型光声池的差分光声光谱气体浓度检测装置
Wei et al. Dual-gas detection based on high-performance spherical photoacoustic cells
Yehya et al. Time-resolved time-dependent photo-acoustic spectroscopy of NO 2 in a high frequency multi-resonant cavity
CN109374529B (zh) 一种半开腔共振式光声池
CN113567377A (zh) 一种基于石英音叉的免校准波长调制气体检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909328

Country of ref document: EP

Kind code of ref document: A1