WO2020142858A1 - System for predicting a risk index in conditions of chronic intermittent hypobaric hypoxia - Google Patents

System for predicting a risk index in conditions of chronic intermittent hypobaric hypoxia Download PDF

Info

Publication number
WO2020142858A1
WO2020142858A1 PCT/CL2020/050004 CL2020050004W WO2020142858A1 WO 2020142858 A1 WO2020142858 A1 WO 2020142858A1 CL 2020050004 W CL2020050004 W CL 2020050004W WO 2020142858 A1 WO2020142858 A1 WO 2020142858A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
factor
risk index
physiological
height
Prior art date
Application number
PCT/CL2020/050004
Other languages
Spanish (es)
French (fr)
Inventor
Karina GÓMEZ GARCÍA
Carlos MADRID GÓMEZ
Original Assignee
Sleepmed Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sleepmed Spa filed Critical Sleepmed Spa
Publication of WO2020142858A1 publication Critical patent/WO2020142858A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B23/00Alarms responsive to unspecified undesired or abnormal conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention describes a method and system that makes it possible to measure and record in real time how certain operability conditions affect the internal state of the operator, directly affecting workability.
  • This system and method is also capable of measuring the effect of chronic intermittent hypobaria, at geographic height or by exposure to underground tunnels, among others, on a subject's body directly on the physiological parameters and operational health of workers, with the objective to predict the real risk index to which workers are exposed when undergoing these conditions during the working day.
  • the risk index that workers face depends on external factors and human factors, the latter being responsible for the greatest number of accidents. For this reason, the determination of the risk index of the present invention refers to the physiological and mental state of an operator, where under these specific working conditions objectively decreases his work ability, exposing him to an event that can trigger an accident.
  • a system and method was developed that through differential data processing allows determining a risk index in operators considering different factors that affect their work aptitude.
  • the parallel processing of the method allows detecting the risk index to which operators are exposed in real time at least considering physiological parameters, which are processed in real time.
  • the method is capable of monitoring the risk index to which operators are exposed, also considering the effect of chronic intermittent hypobaric hypoxia, considering the effect of this condition on health and acclimatization, on work ability.
  • the system and method of the present invention is capable of predicting the risk index in conditions of chronic intermittent hypobaric hypoxia, by recording physiological parameters in real time and anthropometric variables that account for the health status of workers under conditions of height and / or geographic depth, monitoring predictively, preventively and considering inter-personal differences in events of fatigue and drowsiness.
  • the system and method of the present invention is capable of reducing the risk index by real-time detection of events of fatigue and drowsiness, through records of physiological parameters and subsequent management of fatigue management and drowsiness of the worker, through exit actions.
  • the acclimatization factor at the geographical height and the health factor of each individual is considered, improving the workability of the workers, thus reducing the accident rate.
  • a system and method to predict an individual's risk index is described, which considers the inter-personal differences of the workers including the effect of intermittent chronic hypobaric hypoxia in case the operator is exposed to this geographic condition.
  • the method uses a predictive model that allows alerting the driver's physical and mental state in advance, in real time, by monitoring physiological parameters, indicating states of fatigue and drowsiness considering these particular operability conditions.
  • a detection device or devices By means of a detection device or devices, through a biosensors system, brain electrical activity, oxygen saturation and skin conductivity are measured and recorded in real time to determine the psychophysiological state of the operator during the working day, and therefore their work aptitude. These physiological variables are closely related to the state of the person, accounting for events of fatigue, drowsiness and stress, which affect and impact workers, negatively influencing their work ability as decision-making, erratic behaviors are altered , reaction speed, attention, exposing the worker to risky events and therefore a higher accident rate.
  • anthropometric variables such as: weight, height and cervical girth, added to age and sex, are taken into account, which gives us an account of the worker's state of health, with respect to occupational diseases that have a higher incidence in conditions of Chronic intermittent hypobaric hypoxia, which affects both the acclimatization of the operator and his work ability. In this way it is possible to monitor in a personalized way the risk index to which workers are exposed during their working hours in conditions of chronic intermittent hypobaric hypoxia.
  • the system By processing the data obtained from the biosensors, the system enables the risk index to be determined to determine when at least one physiological parameter being recorded exceeds or falls below the pre-established physiological ranges underlying a fitness Optimal work, generating exit actions that allow the physiological parameters to be re-established, up to adequate values, to thus recover the operator's alertness and wakefulness, improving their workability and thus reducing the risk index to which the workers.
  • the predictive model will incorporate the processing of anthropometric data to obtain the health factor and the geographic height level to consider the acclimatization factor, which allows the generation of the index of risk and the appropriate exit actions for each individual.
  • FIG. 1 Block diagram of the system of the present invention.
  • FIG. 2 Schematic diagram of the modules that make up the system of the present invention.
  • FIG. 3 Block diagram of the data acquisition and signal adjustment module.
  • FIG. 4. Flow diagram of the method of the present invention.
  • the risk index refers to the physiological and mental state of an operator, where his occupational fitness decreases objectively, exposing him to an event that can trigger an accident.
  • the risk index that workers face depends on human factors and external factors. In the case of accidents involving driving, 70% - 90% depends on the person or psychophysiological state of the driver and 10% - 30% on external factors such as vehicle conditions, physical characteristics of the route, environmental conditions, working days. shift workers among others.
  • the present invention is capable of being a system and method that predicts the risk index in conditions of chronic intermittent hypobaric hypoxia, by measuring and recording in real time physiological parameters that account for the internal state and anthropometric variables that give an account of the state of health of the operators.
  • a large number of work activities associated with the mining sector are carried out over 2,500 meters in height.
  • the increase in commercial and service activities carried out at altitude has determined the displacement of many people, which poses a major challenge in terms of job security.
  • Acute mountain sickness is about the body's lack of adaptation to heights and all the secondary symptoms associated with this.
  • the atmospheric pressure decreases since there are fewer air molecules exerting pressure, in global terms the mean value of the pressure at sea level is 760 mmHg or 1 atm., It can be said that the pressure decreases approximately at a rate of 100 mmHg for every thousand meters of height ascended.
  • the lower atmospheric pressure implies a lower partial pressure of oxygen (P02), which limits the transport of oxygen to the body tissues, producing the state known as hypoxia, this being the main factor responsible for the negative effects of altitude on human health.
  • the main symptoms correspond to: dizziness, headache, nausea and vomiting, lack of appetite, fatigue, nervousness, sleep disorders, which can be drowsiness or insomnia.
  • ICH chronic intermittent hypobaric hypoxia
  • the geographical height is a transcendental determining factor in the work aptitude of the workers. Hypobaric hypoxia reaches greater clinical significance at a limit height of 2,500 meters. Acute exposure to altitude implies for humans a very marked physiological stress that requires a series of acute and other chronic responses that allow acclimatization to this very adverse environment. These responses include: • The lower barometric pressure found at altitude leads to a decrease in the partial pressure of oxygen at all levels of the oxygen cascade.
  • Hyperventilation tends to correct hypoxemia and also produces a decrease in the arterial C0 2 partial pressure, that is, a respiratory alkalosis.
  • This respiratory alkalosis decreases the responsiveness of the respiratory center to hypoxemia and shifts the dissociation curve of hemoglobin to the left, making it difficult to supply oxygen to the tissues.
  • a greater renal excretion of bicarbonate takes place, generating a metabolic compensation and thus, the acid-base balance is restored. But this can create a problem, since the loss of total alkaline reserve decreases the blood's ability to buffer acids (such as lactic acid, for example).
  • Acute or chronic hypoxia has negative effects on brain function and affects the state of cognitive functions such as attention span, memory, and executive functions. Studies suggest that the acute effects of hypoxia can negatively alter information processing and, in turn, induce difficulties in the decision-making process, which directly affects the work ability of workers.
  • the monitoring system of the present invention considers the effect of chronic intermittent hypobaric hypoxia, on the physiological parameters and the health of workers, changes on circadian rhythms (physiological and behavioral, among others) as a result of rotating shifts as part of the prediction of the real risk to which workers are exposed during their workday.
  • the sleep and wake behavior has a circadian rhythm, that is, it has a time period of 24 hours.
  • This cycle is regulated by different external factors, the most important being sunlight.
  • the light which enters the retina through the eye, which communicates directly with a region of the brain located in the hypothalamus called the Supra-chiasmatic nucleus.
  • This region of the brain regulates the internal body clock by establishing behavioral rhythms such as the sleep-wake cycle, or the secretion of neuro-hormonal factors such as melatonin secretion, which basically results in being active during the day and sleeping at night.
  • the mining industry has characteristics that make it particularly different from other economic sectors, such as rotating shifts, long working hours, driving on dangerous routes, among others, which make it a highly risky activity.
  • it operates at a great geographical height with highly precise and highly specialized equipment, and therefore each operator cannot lose concentration on the task they are performing, having to make the appropriate decisions since the life of others depends on their function.
  • the length of the working day reduces the concentration capacity of workers, its effects are mainly detected during the final period of the working day and during night shifts; Most operators manifest during these phases suffering from mental saturation, which favors erratic behaviors during the operation, making accidents more feasible.
  • the human body reacts with resistance to the phenomenon of height, which has different effects. Those related to fatigue, deterioration of attention, drowsiness, and stress and anxiety, acquire greater relevance at work, since the psychophysiological state of the driver is the cause of the 70% -90% of automobile accidents at work. So low atmospheric pressure and tissue hypoxia exert detrimental effects on human physiology. At great geographical heights sleep disorders and other incident diseases are observed, such as metabolic syndrome, obstructive apnea, central apnea among others that increase the events of fatigue and drowsiness, which further conditions the work aptitude of workers, which is why All these conditions must be taken into account when determining the real risk index to which workers are subjected in conditions of chronic intermittent hypobaric hypoxia.
  • the first nights of exposure to the geographical altitude appear with greater intensity. Poor sleep quality, particularly before acclimatization is complete, is a factor affecting professional performance. Due to the repeated occasions when the subject wakes up, the quality of sleep is poor, so that, although the total sleep time has been normal, the person gets up with the feeling of having spent a restless night or not. to have slept. Sleep quality is closely related to the O2 Saturation level (SatC> 2) during sleep, which is always lower than when awake. At each altitude the brain must build the sleep architecture, but with less oxygen. To this lower SatC> 2 are added the Periodic Breaths, RP, which is a biological characteristic of sleeping in hypobaric hypoxia. In general it is described that the natives of height have a dream architecture comparable to that of sea level, but with RP.
  • Obstructive sleep apnea syndrome is a common disease in the adult population. It is characterized by recurrent episodes of partial or total collapse of the upper airway during sleep, as a consequence of which there is an increase in chest-abdominal effort and a fall in arterial oxygen saturation, which leads to a micro-awakening reaction that resumes the breathing. This awakening reaction causes fragmentation and alteration of the sleep architecture, with deterioration in the quality of sleep, bringing with it excessive daytime sleepiness and increased fatigue events.
  • OSA Obstructive sleep apnea syndrome
  • Central sleep apnea can occur as a result of other disorders such as heart failure, stroke, and also due to exposure at geographic height. It is evident to point out that more than one factor could appear in the workers.
  • Central sleep apnea occurs as a consequence of the absence of adequate neural activity that controls the muscles involved in breathing. This disorder is usually due to an instability in the body's feedback mechanisms that control breathing. It is characterized by a lack of impulse to breathe during sleep (10-30 seconds intermittently or per respiratory cycle) and is generally associated with a reduction in blood oxygen saturation. This disorder is different from obstructive sleep apnea, in which it is not possible to breathe normally due to an obstruction in the upper airway.
  • the physiological responses that are generated in conditions of geographic altitude vary according to a series of objective characteristics such as: the altitude reached, the environmental humidity, the temperature and the rate of ascent, among others. But they also influence individual characteristics. Height tolerance is highly dependent on each person and it is often difficult to predict how height affects each individual if the system does not consider inter-personal differences that influence geographic height. For this reason, measuring and analyzing physiological parameters in accordance with anthropometric data, which give us an account of the individual's state of health, is essential for determining and monitoring the real risk index.
  • the system of the present invention is capable of collecting information from the subject under observation and through a method associated with a personalized algorithm, which considers the interpersonal differences of workers at height, considering the state of health and the response Physiological in conditions of chronic intermittent hypobaric hypoxia, allowing to determine the real risk index that each worker suffers under certain conditions.
  • Figure 1 shows a general diagram of the different elements or parts that make up the system for determining the risk index in real time.
  • Figure 2 describes the structure of the different modules that make up the system to predict in real time the physiological and mental state of a subject under conditions of chronic intermittent hypobaric hypoxia of the present invention, which consists of: i) Module of acquisition of data
  • the current predictive model can determine the risk index in a personalized way in the following way.
  • the software remotely updates data on the age, sex of the worker and anthropometric data, including weight, height and cervical girth, these data must be updated from time to time in conjunction with specific medical examinations to diagnose incident diseases in geographical height with the support of the STOP-BANG survey.
  • the algorithm developed yields the health factor, which is part of the risk index of workers in conditions of chronic intermittent hypobaria, since it conditions both acclimatization and the psychophysiological state of workers exposed to geographic altitude. Taken together, these data allow the detection or prediction of diseases that hinder the acclimatization process at a geographic height, which directly affects the physiological and mental state of an operator and, therefore, his work ability, exposing him to an event that may trigger an accident.
  • the system allows predicting the risk factor to which workers are exposed through a method that includes a predictive model of risk that through the recording of physiological and anthropometric variables directly represents the state of neuro-cognitive, respiratory, metabolic and behavioral and as the deterioration of these are increasing the probability of exposing themselves to a situation of risk to the worker.
  • Physiological parameters Our body generates different types of signals according to specific functions or states in which the body is found.
  • a detection device based on a biosensors system allows registering physiological variables of the central nervous system, the somatic and autonomic peripheral nervous system. These physiological variables account in real time for the internal state of the operator, parameters that are altered when there is a decrease in the level of wakefulness.
  • the biosensors system obtains information on brain electrical activity, oxygen saturation in the blood and galvanic conductance of the operator's skin. These physiological variables are closely related to the state of the person in conditions of geographical height and / or rotating shifts, accounting to the system about the state of stress, drowsiness, fatigue or emotional reactions as well as incident diseases that influence decision-making , erratic behaviors, reaction speed, attention and therefore allow to have an important database for the determination of the risk index in real time of him or the operators.
  • the variables considered by the predictive model of risk factor correspond to: A) neurophysiological variable: electroencephalogram; B) respiratory variable, oxygen saturation; C) Metabolic variable, anthropometric data such as weight, height and cervical circumference; D) behavioral variable, galvanic conductivity of the skin.
  • Neurophysiological variable Electro-Encephalogram (EEG).
  • Fatigue is shown as an indicator of an implicit problem: the loss of an individual's basic resources such as reacting in a timely and appropriate manner to the unforeseen, significantly increasing the worker's accident rate.
  • hypoxia produces cerebral vasodilation, while the reduced partial pressure of C0 2 in the arteries causes vasoconstriction.
  • the two factors are in conflict as a consequence of geographic altitude and alter neuropsychological functions necessary for complex cognitive tasks such as occurs in mining, that is, the continuous physical and mental wear and tear of these operations plus rotating working hours (circadian cycle alteration ), deteriorate the psychophysiological state of the driver, observing the symptoms: fatigue, drowsiness, impaired attention, stress, anxiety, among others.
  • fatigue This is defined as a change in the physiological and psychological states that a person experiences during the performance of a high-demand cognitive activity for an extended period of time. This change is reflected as a decrease in performance in the execution of said activity, generating a feeling of exhaustion, tiredness or lack of energy and motivation, which appears as a regulatory, alarm mechanism that indicates the organism the loss of resources below a threshold and the need to recover them through rest.
  • EEG waves an answer can be given to the early detection of this state, even before the person presents a visible symptom of fatigue, which reduces the probability of an accident.
  • the EEG has the potential to be an accurate and highly specific tool to detect the early stages of fatigue in operators (eg drivers) and minimize the likelihood of accidents.
  • hypoxia As the geographical altitude is increased, the barometric pressure decreases, also decreasing the concentration of oxygen available to the tissues, which is known as hypoxia. The latter is the cause of a series of physiological changes that occur in the body, which allow maintaining adequate oxygen levels for proper cognitive and motor functions.
  • hypobaric hypoxia occurs as a consequence of the low partial pressure of oxygen (PO2) in the inspired air, which results from the low barometric pressure found at high altitudes.
  • PO2 partial pressure of oxygen
  • a lower arterial PO2 in turn initiates a physiological response that attempts to maintain tissue oxygenation.
  • a parameter used to determine the respiratory response and the transport of oxygen in the blood to the tissues is the percentage of hemoglobin saturation (% of SaC> 2), which is estimated through pulse oximetry. At sea level, the values fluctuate between 95 and 97%. Values below 90% SaC> 2 are associated with pathological situations such as respiratory failure.
  • AMS acute mountain sickness
  • the acute response to hypoxia depends mainly on 4 factors: the altitude reached, that is, the degree of hypobaric hypoxia, the rate of ascent, the individual susceptibility, and the physical and environmental requirements on the ascent and arrival.
  • hypoxia personal susceptibilities to hypoxia have to do with the presence of oxygen sensors and effective physiological adaptations. Depending on the susceptibility to hypoxia, exposed individuals can be classified as good responders, who tolerate and acclimatize without symptoms; a group with a low response and temporary minor symptoms that can limit performance; and poor responders, showing low sensitivity to hypoxia and ineffective compensatory physiological responses. Measuring this parameter using pulse oximetry, alerts about the effect of geographic height on the body of the workers, which provides information on the internal state of the worker and therefore is in optimal conditions to carry out their job functions. Acute or chronic hypoxia has negative effects on brain function and affects the state of cognitive functions such as attention span, memory, and executive functions. The acute effects of hypoxia can negatively alter the processing of information, and in turn, induce difficulties in the decision-making process, which negatively affects the work ability of workers.
  • Measurements of resistance and electrical conductivity characterize the functional state of the skin and allow us to estimate the activity of the autonomic, sympathetic, and parasympathetic nervous system, due to the fact that in the granular layer of the epidermis the regulatory processes of the nerve terminals that reflect the human emotional state.
  • the value of this impedance depends on sweating, fat secretion, and the concentration of mineral salts, gases, and extracellular fluids. Sweating of the human body is regulated by the Autonomous Nervous System (ANS).
  • ANS Autonomous Nervous System
  • the sweat glands are excited or inhibited by the sympathetic nervous system.
  • the sympathetic activity (SNS) of the ANS increases, the activity of the sweat gland also increases, which in turn increases the skin conductance, and vice versa.
  • the states of anxiety and stress which originate from the long working hours and the demanding working conditions at height, modify and disturb the performance of different cognitive tasks directed towards a goal.
  • the number of cognitive functions that can be affected by stress is important: attention, learning, memory, decision making, and reasoning.
  • the intensity of stress and individual differences determine to what degree stress will influence the response of each function.
  • the change of emotions for example, states of stress or anxiety, generate changes in nervous excitation, increasing the moisturizing activity of the glands, increasing the electroconductive properties of the skin and decreasing ohmic resistance, an effect known as psychogalvanic reflex (SGR). .
  • SGR psychogalvanic reflex
  • sweating increases, resulting in a decrease in the electrical resistance of the skin; otherwise, if the user enters a state of relaxation, sweating will decrease and skin resistance will increase. Through this physiological response we will be able to determine the effect of stress or anxiety on the work aptitude of the workers.
  • Metabolic variables anthropometric data
  • Obesity and overweight are common in high-altitude mining industry workers exposed to chronic intermittent hypobaric hypoxia. Obesity and overweight are associated with higher rates of high blood pressure, and cholesterol and glucose levels, having a significant implication in the syndrome of obstructive, central and mixed apneas.
  • Cervical circumference is an innovative and innovative anthropometric measurement that saves time and is non-invasive for use in the field. ii) Control Module
  • the system of the present invention allows the capture and processing of physiological variables and anthropometric data, in a differential way, allowing the risk index to be determined in real time.
  • the system consists of an analog subsystem, which performs a first adaptation of the signal, obtained by its biosensors system or devices, for its subsequent acquisition by means of an analog-digital converter, and a digital subsystem in charge of filtering and processing the signals obtained by the analog stage (see Fig. 3).
  • the digital subsystem is in charge of acquiring the signals from the analog-to-digital converter for correct processing on a microprocessor card, the processing of physiological parameters by the subsystem is capable of generating the risk index by itself when the operator is not find yourself exposed to conditions of chronic intermittent hypobaric hypoxia.
  • the processing of anthropometric data is carried out using an algorithm that generates a health factor, which indicates the health status of the operator.
  • the system allows the transmission of both health factor and acclimatization through a communication network, which can be at least mobile internet, Wifi, Bluetooth, infrared, ultrasound, radio frequency, Satellite Antenna, Ethernet and serial communication, when the operator is exposed to conditions of chronic intermittent hypobaric hypoxia.
  • the predictive model can generate risk index and exit actions considering at least one of the three factors considered by the current method, for each worker under different working conditions.
  • the system control module has a communication network.
  • Data communication can be done through a private network (Intranet) or via the Internet, through at least one mobile internet system, Wifi, Bluetooth, infrared, ultrasound, radio frequency, Satellite, Ethernet and through serial or parallel communication, for the transmission of the health factor obtained from the processing of the anthropometric data of the operator entered into the platform, and the transmission of acclimatization factor according to the level of geographical height that the workers operate in case they are under conditions of chronic intermittent hypobaric hypoxia to that all the factors previously described in the processing unit are processed by the predictive model that will give both the risk index and the customized exit actions for each operator.
  • Display panel module can be done through a private network (Intranet) or via the Internet, through at least one mobile internet system, Wifi, Bluetooth, infrared, ultrasound, radio frequency, Satellite, Ethernet and through serial or parallel communication, for the transmission of the health factor obtained from the processing of the anthropometric data of the operator entered into the platform, and the transmission of acclimatization factor according to the
  • the system includes an interface that allows to visualize the risk index as a result of the processing of the measured and recorded data.
  • the risk index is displayed on the display panel locally for the driver or worker and is transmitted via the internet signal to a centralized platform.
  • Centralized platform alerts allow generating a comprehensive report with all the information associated with different events while driving.
  • the data transmission allows exchanging information related to the risk index by radio communication to any external device such as: Smartphone, tablets. Notebook, etc.
  • the display panel has a memory that stores the data in case of not having an adequate internet signal for the transmission of data to the database of the server. v) Action generation module.
  • the system includes actuators that can be activated locally or remotely to execute some action on the worker in order to improve the risk index. These actions consider, for example, providing O2 to the cabin where the worker is located, generating changes in luminosity, emitting sounds, among others.
  • the method of the present invention allows predicting the predictive index of risk in real time, considering at least the psychophysiological factor during the activity being carried out, in the event that the operators are in Chronic intermittent hypobaric hypoxia conditions, the method considers the individual effect of geographic height on work ability, by recording physiological parameters and anthropometric variables in real time, using the predictive model processing the 3 factors: Health factor, Acclimatization factor and Psychophysiological Factor.
  • the method of the present invention comprises the analytical processing of the data in a differential way in real time, by means of an adaptive development, which manages to evaluate in a personalized way the worker's work ability in these specific working conditions, based on physiological information on driving of each operator.
  • the method allows predicting a change in the predicted risk index, which exceeds the predetermined reference based on the activity of the central nervous system, autonomic nervous system, and / or anthropometric data of the operator, emitting an alert signal that is displayed in a display panel, providing both the user and the person in charge of supervising operations, information about the operator's risk index and, on the other hand, the method allows correcting and preventing a change in the risk index predicted by the actions that orders to achieve re- establish adequate physiological levels to decrease the risk index in workers.
  • This system and method through differential data processing allows determining a risk index in operators considering different factors that affect their work ability.
  • the parallel processing of the method allows detecting the risk index to which operators are exposed in real time, at least considering physiological parameters, which are processed in real time.
  • the method is capable of monitoring the risk index to which operators are exposed, also considering the effect of chronic intermittent hypoxia if necessary, considering the effect of this condition on health and acclimatization, on work ability and either to generate a risk index and the appropriate exit actions according to these operability conditions.
  • the method of the present invention has been implemented in a microprocessor of the control module to carry out the following steps in real time:
  • the predictive model determines the risk index in a personalized way as follows.
  • the system allows to remotely update data on the age, sex of the worker and anthropometric data, including weight, height and cervical girth. These data together by means of an algorithm allow predicting and / or detecting diseases that hinder the acclimatization process at geographic height, which further deteriorates the psychophysiological state of workers, that is, directly affects the physiological and mental state of an operator and therefore his work aptitude, exposing him to an event that can trigger an accident.
  • the health assessment shows the health factor, which is part of the risk index of workers in conditions of intermittent chronic hypobaria, since it conditions both acclimatization and the psychophysiological state of workers exposed to geographic altitude.
  • the health evaluation seeks to detect easily, predictively and quickly, according to the values of the cervical circumference, weight and height, the presence of diseases such as obstructive sleep apnea and obesity, it is relevant to detect these pathologies since they affect Acclimatization and the work aptitude of the workers significantly, due to the symptoms that these entail; drowsiness, physical fatigue and mental fatigue, by means of this health factor, the risk to which operators are exposed in conditions of high altitude suffering from these pathologies is predicted in the first instance.
  • One of the main comparative advantages of the method of the present invention is that it considers key diseases that predispose the psychophysiological state of the worker in conditions of geographical height, to predict the risk index in the workday in a personalized way. ii) Acclimatization factor
  • Acclimatization corresponds to the set of adaptive physiological processes that start when the organism is exposed to a decrease in atmospheric pressure, the main action of which is to decrease the availability of inspired oxygen. These are intended to mitigate the effect of the drop in supply of oxygen at the cellular level and improve the body's ability to tolerate high altitude.
  • the acute phase two categories of physiological responses are recognized, the acute phase and the chronic phase.
  • the acute phase a set of initial respiratory, cardiovascular, renal, and hormonal responses to hypoxic stress are observed, due to less availability of O2 molecules in a hypobaric environment.
  • This reaction is quickly expressed by perceived symptoms and signs, which over the course of hours, unless good oxygenation occurs, can give rise to the symptoms of Acute Mountain Sickness.
  • This phase lasts from 48 to 72 and the chronic phase corresponds to physiological processes to attenuate and compensate hypobaric hypoxia, producing slightly slower internal changes, which help to achieve the acclimatization of the worker, allowing him to perform in his work day free of symptoms .
  • the height level reached is decisive in the period of time that the body takes to achieve full acclimatization. But in the case of workers exposed to intermittent chronic hypobaria, these changes are reversed once they descend to sea level for more than 48-72 hours. This shift system that periodically alternates workers between height and sea level, allows absolute acclimatization at approximately 18 months of exposure to these conditions.
  • the predictive model indicates the risk index considering the acclimatization of the workers, according to the level of geographic height at which the operator works, information that is updated remotely in the system. It is through a comparison of the physiological parameters expected at the different levels of geographic altitude considered by the system, with the physiological parameters monitored by the detection device, specifically the values recorded for blood saturation, during the acclimatization phases.
  • the system recognizes the acclimatization time in the different ranges of height reached differently, the range between 2,000-3,000 meters above sea level takes 5 days , the range between 3,000-4,000 above sea level it takes 10 days and the range between 4,000-5,000 meters above sea level takes 15 days.
  • the method establishes the acclimatization factor in a differentiated way according to the level of height reached and the time that the individual is exposed to this condition, considering the differences in the physiological parameters during the acute phase and the chronic phase, that is, the values of the physiological parameters that indicate that an individual is in his optimal conditions to carry out his work functions, he will be differentiated for both the acute phase and the chronic phase during the acclimatization time established by the system.
  • the system is able to recognize, by saturating oxygen in the blood, if the organism is presenting acclimatization problems and to predict the risk index to which the worker is exposed during the workday.
  • the predictive model determines a risk index that considers the effect of these pathologies on the acclimatization process, warning early on the risk to which it is exposed. This worker.
  • a risk index that considers the effect of these pathologies on the acclimatization process, warning early on the risk to which it is exposed.
  • This worker At geographic height, it has been seen that obesity and obstructive sleep apnea can condition an increased risk of acute mountain sickness and worsen acclimatization, which directly affects the risk index of workers.
  • the method allows real-time monitoring of the psychophysiological state, considering the acclimatization process and the diseases that affect this process, by registering and analyzing physiological and anthropometric variables, detecting early states of fatigue, drowsiness, deterioration of attention and stress, indicating to the worker the risk index to which you are exposed during your working day and the exit actions for the proper management of the risk index.
  • iii) Factor of the psychophysiological state recording of physiological parameters in real time.
  • the human body generates different types of signals according to specific functions or states in which the organism is found.
  • the system comprises at least one detection device based on biosensors that is capable of registering the physiological variables that undergo the greatest alteration, accounting for the operator's physiological and mental state, under conditions of at least exposure to geographic height, long working hours and rotating shift system.
  • the system is able to predict the risk index to which the worker is subjected, according to the deterioration of the physiological functions recorded by the detection device under these working conditions in real time and, on the other hand, the method it allows correcting and preventing a change in the forecasted risk index through the actions it orders to re-establish the appropriate physiological levels to decrease the risk index in the workers.
  • This detection device consists of a system of biosensors that obtain information on brain electrical activity, oxygen saturation and galvanic conductance from the operator's skin. These physiological variables are closely related to the psychophysiological state of the worker, detecting through them early the presence of stress, drowsiness, fatigue and deterioration of attention, which significantly influences the risk index of the workers.
  • hypoxia As the geographical altitude is increased, the barometric pressure decreases, also decreasing the concentration of oxygen available to the tissues, which is known as hypoxia. The latter is the cause of a series of physiological changes that occur in the body, which allow oxygen levels to be maintained properly for cognitive and motor functions.
  • a pulse oximeter the percentage of hemoglobin saturation (% SatC> 2) is determined.
  • the pulse oximeter measures the absorption of light of specific wavelengths that will depend on the ratio of oxygenated hemoglobin or oxyhemoglobin to deoxygenated hemoglobin.
  • the detection device will be recording the respiratory response and oxygen transport in the blood in real time, providing information about the operator's state of health, regarding respiratory disorders, independent of the acclimatization process, which will also It is considered by the risk index and the respective exit actions.
  • the predictive model of the invention is based on different ranges of geographic height
  • the predictive model manages correspond to the following:
  • SatC> 2 will be greater than 96%
  • SatC> 2 is between 91-95%
  • SatC> 2 workers exposed to heights greater than 3900 meters above sea level, SatC> 2 are in the range of 90% -85%.
  • one of the main comparative advantages of the system is that it is the only one that considers key diseases that predispose the worker's psychophysiological state in conditions of geographic altitude, diseases that have a higher incidence, such as obstructive and central sleep apnea, since these pathologies can reach under 90% of oxygen saturation in the blood at sea level, making acclimatization more complex and therefore negatively predisposing the psychophysiological state of the worker, since the symptoms associated with this range of blood saturation, They promote states of fatigue, drowsiness, physical and mental saturation, sleep disorders, among others, exposing the individual to a higher accident rate.
  • diseases that predispose the worker's psychophysiological state in conditions of geographic altitude diseases that have a higher incidence, such as obstructive and central sleep apnea, since these pathologies can reach under 90% of oxygen saturation in the blood at sea level, making acclimatization more complex and therefore negatively predisposing the psychophysiological state of the worker, since the symptoms associated with
  • the predictive model determines the individual's risk index since it predicts how complex the acclimatization will be and therefore the greatest deterioration of the psychophysiological state during the working day of an individual exposed to conditions of geographical height. Based on this information, the method is capable of monitoring acclimatization, considering height level, the different susceptibilities to hypoxia, during the acute phase and the chronic phase, and diseases that affect adequate acclimatization.
  • the human brain produces electrical impulses, called action potentials, that travel through our neurons. These electrical impulses produce rhythms that are known as brain waves. Electrical impulses are information that travels from neuron to neuron using hundreds of thousands of them to transport and perform a certain function. Brain wave activity can be recorded through an electroencephalogram or EEG. It is known that different brain wave patterns are bijectively related to different states of consciousness, such as intense concentration, alertness, drowsiness, fatigue, among others. The main brain waves that are related to these states are beta, alpha, theta, and delta waves. Beta waves. They occur when the brain is awake and involved in mental activities. They are broad waves and the ones with the highest transmission speed of the four. Their frequency ranges from 13-30 Hertz denoting intense mental activity. Alpha waves. Alpha represents a state of poor brain activity and relaxation. These waves are slower and wider than the betas. Its frequency ranges between 8 and 12 Hertz.
  • Teta waves are waves of greater amplitude and lower frequency between 4 and 8 Hertz. Studies show that Teta activity generally increases during homework time and mental fatigue. This increase is often accompanied by a lower cognitive and motor capacity, with a decrease in speed in reaction times and a deterioration in attention. It is a state in which the tasks carried out have been automated, you no longer need to have attentive and conscious control of their execution.
  • Delta waves are the waves with the greatest amplitude and lowest frequency 1-4 Hertz. They are normally associated with stages of deep sleep. In brain activity, these waves occur in stages three and four, in cases of brain damage and coma. Delta waves occur in deep dreamless sleep and are not present in the other stages of sleep (1, 2, and rapid eye movement). When we go to sleep, the brain waves go successively from beta to alpha, theta and finally, delta. During sleep cycles that last about 90 minutes occur.
  • the system is capable of detecting the deterioration of the psychophysiological state in real time, by recording brain activity through an electrode system.
  • the algorithm recognizes brain patterns, through which it early determines the presence of fatigue, drowsiness and / or attention impairment during work activity. According to the presence of these states, the predictive model indicates the risk index, considering the actual deterioration of the driver's psychophysiological state and, therefore, the exposure that is found to be part of a risk situation.
  • Stress can be defined as a real or supposed threat to an individual's physiological or psychological integrity that results in a physiological and / or behavioral response. Physical and mental stress elicits physiological responses that are mediated by the autonomic nervous system. The physiological adjustments that the body makes in response to the stressful event are reflected in the modulation of the signals associated with stress by the sympathetic system. This physiological mechanism enables the body to respond to an emergency, whether fighting or fleeing it, prepares it to face a stressful situation with focus, strength and alertness.
  • Acute stress caused by an acute short-term stress factor, depending on the level, may have to do with an improvement in the task, since they are associated with greater motivation and commitment.
  • the state of chronic stress which originates from the long working hours and the demanding working conditions, that modify and disturb the performance of different cognitive tasks aimed at a goal.
  • the number of cognitive functions that can be affected by stress is important: attention, learning, memory, decision making, and reasoning.
  • the intensity of stress and individual differences determine to what degree stress will influence the response of each function.
  • the symptoms that are observed in chronic stress states are associated with fatigue, drowsiness, sleep disorders among others.
  • the detection system has an ohmmeter that is capable of obtaining measurements of the electrical resistance of the skin, which allow us to estimate the activity of the autonomic nervous system, specifically the sympathetic nervous system. This system recognizes stress states in real time, through the galvanic response of the skin.
  • the detection device determines the presence of stress or anxiety during work activity, by detecting an increase in the galvanic response of the skin.
  • the predictive model indicates differentiated risk index, considering the negative effect that acute stress has on acclimatization and chronic stress on the performance of different cognitive tasks aimed at a goal, regardless of the conditions. geographic, increasing the risk that the operator ineffectively executes its functions or that affects the correct decision-making, resulting in greater exposure to risk for him and that of the other operators during the working day.
  • the analytical processing of the data in a differential way in real time allows to assess in a personalized way the work aptitude based on physiological information in the driving of each operator.
  • the anthropometric data entered into the system remotely are considered, as well as the geographical height level at which the worker operates.
  • the system and method allow predicting a predictive risk index in real time, considering at least the psychophysiological factor during the activity being carried out. If the operators are in chronic intermittent hypobaric hypoxia conditions, the method considers the individual effect of geographic height on work ability, by recording physiological parameters and anthropometric variables in real time, using the model predictive processing the 3 factors: Health factor, Acclimatization factor and Psychophysiological Factor.
  • the method and system is also capable of generating the risk index considering at least one of the three factors that predict the risk index: the health factor, the acclimatization factor and the psychophysiological state factor. These inputs are processed by the predictive model to obtain 3 levels of risk index: mild, moderate and severe. On the other hand, through the processing of these data, the system is capable of throwing out actions, in accordance with the health factor and / or acclimatization factor in real time, against the detection of the risk index, with the aim of improve the work ability of workers during the working day in conditions of chronic intermittent hypobaric hypoxia.
  • chronic intermittent hypobaric hypoxia Due Due to the large participation of native sea level workers who ascend to their jobs located at a greater geographical height or work in underground mines, chronic intermittent hypobaric hypoxia (HIC) becomes a relevant antecedent to consider when we observe the effects it has on the work aptitude of the workers.
  • HAC chronic intermittent hypobaric hypoxia
  • ICH has long-term effects which favor the presence of incident diseases in these conditions, as well as short-term effects such as the consequences it has on fatigue and drowsiness of workers, which are a risk factor for incidents / accidents due to drowsiness and fatigue, due to poor quality of sleep and reduced aerobic capacity during working hours, a condition which is known to be one of the main causes of accidents at work driving.
  • ICH has known effects on human health that directly affect job performance, increasing the probability of risk for workers because the symptoms of these diseases are associated with insomnia, fatigue and drowsiness.
  • the conditions of low pressure and lack of oxygen affect each individual differently. Although there is the acclimatization process, which partially reduces the consequences of the drop in oxygen supply at the cellular level, improving the body's ability to tolerate high altitude, in the case of workers exposed to shifts that periodically alternate between height and sea level, acclimatization is only recently achieved between 12 to 19 months.
  • the current system by detecting and managing fatigue and drowsiness, reduces the risk index, improving the work ability of workers in conditions of chronic intermittent hypobaric hypoxia, thus reducing the accident rate.
  • the risk index depends on the psychophysiological state of the driver. Since the psychophysiological state is related to physiological parameters that determine the behavior of the individual.
  • the risk index refers to the physiological and mental state of an operator, where his occupational fitness decreases, exposing him to an event that can trigger an accident. This is why, by recording the physiological variables in real time, we monitor the psychophysiological state of the driver, as well as the work aptitude, considering the effect that the acclimatization process and the health of the operators have on this state during their working day. labor. These physiological variables are closely related to the state of the person in HCI conditions, accounting for the state of fatigue and drowsiness that affects and impacts workers, negatively influencing decision making, erratic behaviors, reaction speed, attention and they expose the worker to risky events, therefore a higher accident rate. i) Assessment of fatigue and drowsiness
  • the current system is capable of recognizing by monitoring physiological parameters whether it is the effect of ICH, the complex acclimatization process to which workers are subjected and / or the continuous physical and mental wear and tear of these operations in working conditions that require a high cognitive demand, added to the rotating working hours, which alter the physiology of circadian rhythms, and which are responsible for the deterioration of the psychophysiological state, triggering changes in the driver's alert level and whose effects are observed in symptoms such as fatigue, drowsiness, deterioration of attention, among others, work aptitude is affected and therefore increases the risk of being involved in a risky event.
  • the system is able to identify if the physiological conditioner that is triggering an increase in the risk index while driving it corresponds to a decrease in oxygen saturation or certain brain patterns that favor events of fatigue and drowsiness.
  • the system is capable of identifying, by monitoring the risk index, by registering biometric sensors, the physiological parameters that are outside the established range and that are affecting the work ability of the workers. Therefore, the output actions determined by the system in real time, after the fatigue and drowsiness evaluation process, will be focused on re-establishing the physiological parameters, up to established values, in order to thus recover the state of alertness and wakefulness. of operators, thereby reducing the risk index.
  • the system through the evaluation of fatigue and drowsiness, allows to identify if the increase in the risk index in an established time is due to a decrease in the oxygen saturation in the blood, which favors drowsiness, due to the poor quality of workers sleep and increases fatigue due to reduced aerobic capacity during working hours or due to a cognitive activity that requires high concentration for a long period of time, which causes a drop in cognitive and psychomotor performance, decreasing performance while performing a task.
  • the output actions generated for the proper management of the risk index are obtained through data processing.
  • the system By processing the data obtained from the biosensors, the system is able to detect the increase in the risk index when at least one physiological parameter that is being recorded exceeds or falls below the pre-established physiological ranges that underlie an aptitude for work. optimal. Based on these comparisons, the controller can then determine the level of risk index, giving the corresponding exit action in the form of a visual, audible and / or vibrating alarm, through the interface or display panel of the system informing about the physiological status of the operator and therefore the instructions to achieve re -establish the physiological parameters allowing with this to recover the state of alert and the management of the risk index in real time.
  • the exit action Within these exit actions, two classes of preventive and corrective actions are generated that will allow the risk index to be managed.
  • the first is the supply of oxygen in real time through a device while driving.
  • the exit action considers different facilities that are in or near the work area such as siestaries, medical centers, oxygen supply stations, among others, which must have the conditions adequate for the correct supply of oxygen and the second corresponds to an activation plan, it is an effective pause, which requires or does not require facilities such as siestaries, among others, that allow effective rest and / or the reactivation of alertness.
  • A) Oxygen supply is an effective pause, which requires or does not require facilities such as siestaries, among others, that allow effective rest and / or the reactivation of alertness.
  • the current system is able to recognize that the increased risk index is due to a decrease in blood oxygen saturation as it compares the input data with the pre-established thresholds. Based on these comparisons, the controller determines the corresponding output action in the form of a visual, audible and / or vibrating alarm through the system interface, informing about the operator's physiological status and therefore instructions on how to re-establish the physiological parameters. that are outside the normal range, thus allowing the management of the risk index in real time.
  • the system is capable of activating exit actions that allow oxygen supply in the most efficient way, which considers geolocation and the available infrastructure establishing intelligent routes for the operator, which will allow the corresponding risk index to be managed in the shortest possible time, a second alarm is activated with a higher frequency of appearance in the interface or display panel of the system when there is a delay on the part of the operator in performing the exit action suggested by the system.
  • the remote transmission is activated (health manager, health center, supervisor, personnel in charge, among others) which makes a call, notice, message to the cell phone, satellite phone or any device Connected to the system to inform you about the permitting management that must be carried out regarding the management of the risk index.
  • the critical increase in the risk index detected by the system is due to a decrease in oxygen saturation, which puts the life of the operator at risk, the activation of several exit actions that simultaneously manage this risk index occur simultaneously; the transmission of data to an operating system, computer, platform, server, among others, which activates the remote assistant (medical center, personnel, supervisor, virtual, among others), who through a cell phone, satellite phone, base unit between Others remain in contact with the operator, assisting him while receiving adequate medical assistance.
  • the deceleration of the car, the reduction of engine power, the activation of braking devices, among other operations will be activated by connecting the system with the vehicle's computer since the operator is not able to continue driving.
  • the operator's physiological parameters are transmitted to the server through the communication network, which can be at least mobile internet, Wi-Fi, Bluetooth, infrared, ultrasound, radio frequency, Satellite Antenna, Ethernet and serial communication.
  • the server can process the parameters and / or store the data in the database, which can be part of the server or a separate device located near or in a remote location (health centers, oxygen supply stations, siestaries, among others ) in order to update the risk index, updating your medical history and so that you receive the oxygen supply in the shortest possible time and make the actions of outputs activated by the system more personalized and efficient in terms of managing the index risky. It is important to have a record of the oxygen saturation in the blood of workers as it allows the early treatment of diseases that affect work ability to be detected and therefore expose it to a higher accident rate.
  • the deterioration of the psychophysiological state of the driver is observed behaviorally in the presence of fatigue, drowsiness, impaired attention, stress, anxiety, among others. Of these symptoms the one that is linked to the highest accident rate during driving is fatigue. This is defined as a change in the physiological and psychological states that a person experiences during the performance of a high-demand cognitive activity for an extended period of time. This change is reflected as a decrease in performance in the execution of said activity, generating a feeling of exhaustion, tiredness or lack of energy and motivation, which appears as a regulatory, alarm mechanism that indicates the organism the loss of resources below a threshold and the need to recover them through rest.
  • Fatigue is shown as an indicator of an implicit problem: the loss of an individual's basic resources such as reacting in a timely and appropriate way to a unforeseen, significantly increasing the worker's accident rate.
  • the earliest stages of this state can be detected, even before the person presents a visible symptom of fatigue, allowing the system to execute exit actions that efficiently reduce the risk index.
  • the current system is capable of detecting the early stages of fatigue and drowsiness, which allows generating different exit actions for the proper management of the different levels of risk indexes, with the aim that the alert status of the workers is maintained. at optimal levels for proper job performance.
  • the system activates exit actions that are specific to the risk index levels focused on maintaining or improving the alert status of workers regardless of the geographical conditions to which the operator is subjected;
  • exit actions that are specific to the risk index levels focused on maintaining or improving the alert status of workers regardless of the geographical conditions to which the operator is subjected;
  • self-management which is established as an exit action in the earliest stages of fatigue and drowsiness, later when the risk index registers a significant decrease in alertness and the operator is exposed to risky events by decrease in their work ability due to the significant decrease in alertness
  • the activation plan is mobilized to manage fatigue and drowsiness in later states, these actions are different for day and night.
  • the difference between these activation plans is due to the fact that the organism has a characteristic biological rhythm during the day and at night, which must be considered in the different exit actions of the system.
  • the system detects through the recording of brain patterns early stages of fatigue and drowsiness, this processed information activates an alarm that can be an audible, visual and / or vibratory warning that feeds back to the operator informing him about the level of fatigue and drowsiness that he has and It must start the self-management process including at least: hydration, improve posture in the seat, lower the window, lower the temperature of the cabin, play music, among others.
  • self-management is not enough to revoke this state of fatigue and drowsiness and there is a considerable drop in performance
  • the system generates the second alarm to the worker indicating that he must execute the activation plan which, as previously stated, obeys different patterns during the day and night.
  • Activation plan during the day can be an audible, visual and / or vibratory warning that feeds back to the operator informing him about the level of fatigue and drowsiness that he has and It must start the self-management process including at least: hydration, improve posture in the seat, lower the window
  • Mental fatigue is described as a change in both the psychological and physiological states that an individual experiences during the development of a cognitive activity that demands high concentration over a prolonged period of time.
  • driving for example, the physical effort involved in driving long distances, the monotony of the route, the geographical altitude, working hours and shifts, among others, are factors that could accelerate the occurrence of mental fatigue and drowsiness.
  • These changes are mainly shown as a decrease in cognitive and psychomotor performance, they decrease performance during the performance of a task.
  • mental fatigue is linked to a state of decreased alertness, where fatigue and lack of energy gradually predominate.
  • the current system is capable of generating different actions in parallel that allow managing the risk index during the day in the best way;
  • the system recognizes episodes of fatigue and drowsiness through brain activity, it generates an alarm that corresponds to an auditory, visual and / or vibratory warning that informs the driver that self-management was not effective and an activation plan is required.
  • the system is able to recognize, through the recording of brain patterns, more advanced stages of fatigue and drowsiness, for which rest, nap, among others, is established, since it is the most efficient way to recover alertness during the day, yes there is a homeostatic pressure to sleep. It is highly recommended to take a nap, lasting no more than 30 minutes, between 1:00 and 4:00 pm. This rest will provide a quick alert boost as the onset of sleep inertia is mitigated. c) Overnight activation plan
  • the current system is capable of generating different actions in parallel that allow managing the risk index overnight in the best way;
  • the system recognizes episodes of fatigue and drowsiness through brain activity, it generates an alarm that corresponds to an auditory, visual and / or vibratory warning that informs the driver that self-management was not effective, in terms of recovering the alert state, generating an exit action that corresponds to an effective pause, which refers to an activity focused on recovering the alertness of workers, for example getting off the machine, performing some type of physical activity, listening to some type of music, among others accompanied by significant visual, auditory, olfactory and / or tactile stimuli that increase their alertness level to optimally return to their job functions.
  • Light pulse system When the system recognizes episodes of fatigue and drowsiness through brain activity, it generates an alarm that corresponds to an auditory, visual and / or vibratory warning that informs the driver that self-management was not effective, in terms of recovering the alert state, generating an exit action that corresponds to an effective pause, which refer
  • the sleep and wake behavior has a circadian rhythm, that is, it has a time period of 24 hours.
  • This cycle is regulated by different external factors, the most important being light.
  • the light which enters the retina through the eye, which communicates directly with a region of the brain located in the hypothalamus called the Suprachiasmatic nucleus.
  • This region of the brain regulates the internal body clock by establishing behavioral rhythms such as the sleep-wake cycle, or the secretion of neuro-hormonal factors such as melatonin secretion, which basically results in being active during the day and sleeping at night.
  • the system generates, as an output action during night hours, the activation of LED light pulses either inside the cabins, along the route, siestaries, Adequate facilities, among others, with an intensity and from time to time determined to have a direct regulatory effect on the biological clock and achieve a delay in the circadian rhythm, allowing delayed sleep and maximum fatigue in workers during night shifts, improving work performance and ensuring in the individual a better quality of sleep in the morning.
  • this system and method being preventive and corrective, carry out periodic health evaluations that allow knowing the real risk index to which workers are exposed, remember that there are incident diseases in conditions of chronic intermittent hypobaric hypoxia that condition both the acclimatization of workers as their psychophysiological state and this is because adaptive reactions to chronic intermittent hypobaric hypoxia can cause disorders of varying severity, either due to excess or defective functioning of the physiological mechanisms involved in acclimatization to intermittent hypobaric hypoxia chronicle.
  • the digestive processes become slower, therefore, they cause greater absorption of fats, favoring the appearance of the Metabolic Syndrome, with diagnoses of Fatty Liver, alteration of the Lipid Profile, main generators of Obesity. Even more so if there is no permanent balanced feeding program, which allows balancing the needs that originate in these environments.
  • This obesity originated in these conditions also causes and favors various disorders, such as Sleep Apnea, both Central and Obstructive and mixed, and vascular disorders.
  • Obesity and overweight are common in high-altitude mining industry workers exposed to chronic intermittent hypobaric hypoxia. Obesity and overweight are associated with higher rates of high blood pressure, and cholesterol and glucose levels, having a significant implication in the syndrome of obstructive, central and mixed apneas. These disorders have a higher accident rate on the part of workers, due to the symptoms that these pathologies entail; drowsiness, physical fatigue and mental fatigue directly affect the work ability of workers. Early detection allows you to be aware of the influence of these Incident diseases in these geographical conditions of chronic intermittent hypobaric hypoxia in the work aptitude of workers.
  • the health assessment, medical diagnosis and treatment that is part of the method as a control measure of the risk index in conditions of chronic intermittent hypobaric hypoxia, which allows monitoring the effect of these diseases on the work ability of operators to define more precisely the output actions that the system must indicate according to the processing of the data in real time and the information provided by the health factor in the monitoring system.

Abstract

Described as a system and method for predicting a risk index of an individual, which considers the interpersonal differences of operators who are exposed to chronic intermittent hypobaric hypoxia in their working day. The method uses a predictive model that allows real-time early warning of the operator's physical and mental state, by monitoring physiological parameters and anthropometric variables.

Description

SISTEMA PARA PREDECIR ÍNDICE DE RIESGO EN CONDICIONES DE HIPOXIA HIPOBÁRICA INTERMITENTE CRÓNICA SYSTEM FOR PREDICTING RISK INDEX IN CONDITIONS OF CHRONIC INTERMITTENT HYPOBARIC HYPOXIA
MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
Campo de aplicación Scope
Existen ciertas actividades económicas que presenta características que la hacen particularmente distinta de otros sectores económicos, como por ejemplo los turnos rotativos, extensas jornadas laborales, conducción en rutas peligrosas, complejidad en la aclimatación por exposición a una hipoxia intermitente crónica, falta de espacios para el descanso adecuado entre otras, que las convierten en actividades altamente riesgosa. Sumado a esto en la mayoría de los casos se opera con equipos muy precisos de alta especialización, y por tanto cada operador no puede perder la concentración de la tarea que está realizando, teniendo que tomar las decisiones adecuadas ya que de su función depende la vida de otros. Entre estas actividades se consideran al menos camiones mineros, operadores de tráfico aéreo, operadores de grúas o maquinarias pesadas, choferes de transporte público, etc. Las estadísticas muestran que una de las principales causas de accidentes de tráfico mortales o causantes de lesiones es la disminución del nivel de vigilia principalmente asociados a eventos de fatiga y somnolencia. Esta compleja interacción de factores fisiológicos, el ritmo circadiano, la presión homeostática por dormir, desaclimatación por exposición a la condición de hipoxia intermitente crónica son factores que hay que considerar ya que repercuten en el nivel de vigilia aumentando la tasa de accidentabilidad de los operadores. There are certain economic activities that have characteristics that make it particularly different from other economic sectors, such as rotating shifts, long working hours, driving on dangerous routes, complexity in acclimatization due to exposure to chronic intermittent hypoxia, lack of spaces for adequate rest among others, which make them highly risky activities. In addition to this, in most cases it is operated with highly precise, highly specialized equipment, and therefore each operator cannot lose concentration on the task they are performing, having to make the appropriate decisions since life depends on their function. of others. These activities include at least mining trucks, air traffic operators, crane or heavy machinery operators, public transport drivers, etc. Statistics show that one of the main causes of fatal or injury-causing traffic accidents is the decrease in the level of wakefulness mainly associated with events of fatigue and drowsiness. This complex interaction of physiological factors, the circadian rhythm, the homeostatic pressure for sleeping, disaclimation due to exposure to the condition of hypoxia Chronic intermittent are factors that must be considered since they affect the level of wakefulness, increasing the accident rate of the operators.
La presente invención describe un método y sistema que permite medir y registrar en tiempo real cómo afectan determinadas condiciones de operabilidad en el estado interno del operador repercutiendo directamente en la aptitud laboral. Este sistema y método es capaz de medir también el efecto de la hipobaria intermitente crónica, en altura geográfica o por exposición a túneles subterráneos entre otros, en el organismo de un sujeto directamente los parámetros fisiológicos y la salud operacional de los trabajadores, con el objetivo de predecir el índice de riesgo real al que están expuestos los trabajadores al someterse a estas condiciones durante la jornada laboral. The present invention describes a method and system that makes it possible to measure and record in real time how certain operability conditions affect the internal state of the operator, directly affecting workability. This system and method is also capable of measuring the effect of chronic intermittent hypobaria, at geographic height or by exposure to underground tunnels, among others, on a subject's body directly on the physiological parameters and operational health of workers, with the objective to predict the real risk index to which workers are exposed when undergoing these conditions during the working day.
Problema Técnico Technical problem
En un escenario de entorno laboral donde los sistemas operativos dependen del rendimiento humano, desarrollar tecnologías para aumentar la seguridad, el bienestar y el mejoramiento de las condiciones laborales de los trabajadores es un importante desafío. Los accidentes, muchos de ellos con lamentables causas fatales, a menudo resultan en la suspensión temporal de las operaciones y la pérdida de producción. El costo real de los accidentes va más allá de los pagos de indemnización y seguros, los gastos médicos y los costos de investigación y, por tanto, existe una expectativa global para reducir lesiones, eliminar muertes y prevenir incidentes catastróficos, que en definitiva van a disminuir las perdidas y/o aumentar la productividad. In a work environment scenario where operating systems depend on human performance, developing technologies to increase the safety, well-being and improvement of workers' working conditions is a major challenge. Accidents, many of them with unfortunate fatalities, often result in temporary suspension of operations and loss of production. The real cost of accidents goes beyond compensation and insurance payments, medical expenses, and investigative costs, and therefore there is a global expectation to reduce injuries, eliminate deaths, and prevent catastrophic incidents, which ultimately will decrease losses and / or increase productivity.
Una forma de reducir la probabilidad de ocurrencia de un accidente es poder determinar el efecto que poseen estas particulares condiciones laborales a lo que están expuestos los trabajadores. El índice de riesgo al que se enfrentan los trabajadores depende de factores externos y factores humanos, siendo estos últimos los responsables de la mayor cantidad de accidentes. Por tal motivo, la determinación del índice de riesgo de la presente invención hace referencia al estado fisiológico y mental de un operador, en donde bajo estas condiciones laborales especificas disminuye objetivamente su aptitud laboral, exponiéndolo a un evento que puede desencadenar un accidente. One way to reduce the probability of an accident occurring is to be able to determine the effect of these particular working conditions to which workers are exposed. The risk index that workers face depends on external factors and human factors, the latter being responsible for the greatest number of accidents. For this reason, the determination of the risk index of the present invention refers to the physiological and mental state of an operator, where under these specific working conditions objectively decreases his work ability, exposing him to an event that can trigger an accident.
Existen sectores económicos en donde el estado psicofisiológico de los trabajadores está condicionado por las demandantes condiciones laborales, para el caso de la minería, en donde la altura geográfica aumenta el factor de riesgo significativamente para los trabajadores sumada a los efectos que tiene en el organismo las jornadas laborales por turno rotativo y extensas jornadas laborales. Las consecuencias de la hipobaria intermitente crónica en las personas que trabajan mediante turnos rotativos han sido poco consideradas en la mayoría de los sistemas que hoy utilizan variables fisiológicas para describir un estado de fatiga y somnolencia. There are economic sectors where the psychophysiological state of the workers is conditioned by the demanding working conditions, in the case of mining, where the geographical height increases the risk factor significantly for the workers, added to the effects that the working hours per rotating shift and long working hours. The consequences of chronic intermittent hypobaria in people who work by rotating shifts have been little considered in most systems that today use physiological variables to describe a state of fatigue and drowsiness.
Actualmente la mayoría de los sistemas que se vinculan con la seguridad de los trabajadores , monitorean fatiga, causa con mayor incidencia en los accidentes automovilísticos y de lesiones, pero enfocándose sólo en el estado de somnolencia, sin considerar otros gatillantes de la fatiga, ni tampoco como afectan ciertas condiciones geográficas como la hipoxia hipobárica intermitente crónica en la salud de los operadores ni en sus parámetros fisiológicos. Currently, most systems related to worker safety monitor fatigue, causing the highest incidence in car accidents and injuries, but focusing only on the state of drowsiness, without considering other triggers of fatigue, or how they affect certain geographical conditions such as chronic intermittent hypobaric hypoxia in the health of the operators or in their physiological parameters.
Apuntando a esta problemática se desarrolló un sistema y método que mediante el procesamiento diferencial de los datos permite determinar un índice de riesgo en operadores considerando distintos factores que afectan su aptitud laboral. El procesamiento paralelo del método permite detectar el índice de riesgo al que están expuestos los operadores en tiempo real al menos considerando parámetros fisiológicos, los cuales son procesados en tiempo real. El método es capaz de monitorear el índice de riesgo al que están expuestos los operadores considerando también el efecto de la hipoxia hipobárica intermitente crónica, considerando el efecto de esta condición en la salud y en la aclimatación, en la aptitud laboral. Aiming at this problem, a system and method was developed that through differential data processing allows determining a risk index in operators considering different factors that affect their work aptitude. The parallel processing of the method allows detecting the risk index to which operators are exposed in real time at least considering physiological parameters, which are processed in real time. The method is capable of monitoring the risk index to which operators are exposed, also considering the effect of chronic intermittent hypobaric hypoxia, considering the effect of this condition on health and acclimatization, on work ability.
El sistema y método de la presente invención es capaz de predecir el índice de riesgo en condiciones de hipoxia hipobárica intermitente crónica, mediante el registro de parámetros fisiológicos en tiempo real y variables antropométricas que dan cuenta del estado de salud de los trabajadores sometidos a condiciones de altura y/o profundidad geográfica, monitoreando de manera predictiva, preventiva y considerando diferencias ínter-personales eventos de fatiga y somnolencia. El sistema y método de la presente invención es capaz de reducir el índice de riesgo mediante la detección en tiempo real de eventos de fatiga y somnolencia, a través de registros de parámetros fisiológicos y la posterior gestión de manejo de la fatiga y somnolencia del trabajador, a través de acciones de salida. En caso que los operadores estén expuestos a hipoxia hipobárica intermitente crónica se considera el factor de aclimatación a la altura geográfica y factor de salud de cada individuo, mejorando la aptitud laboral de los trabajadores logrando así disminuir la tasa de accidentabilidad. The system and method of the present invention is capable of predicting the risk index in conditions of chronic intermittent hypobaric hypoxia, by recording physiological parameters in real time and anthropometric variables that account for the health status of workers under conditions of height and / or geographic depth, monitoring predictively, preventively and considering inter-personal differences in events of fatigue and drowsiness. The system and method of the present invention is capable of reducing the risk index by real-time detection of events of fatigue and drowsiness, through records of physiological parameters and subsequent management of fatigue management and drowsiness of the worker, through exit actions. In the event that the operators are exposed to chronic intermittent hypobaric hypoxia, the acclimatization factor at the geographical height and the health factor of each individual is considered, improving the workability of the workers, thus reducing the accident rate.
RESUMEN. SUMMARY.
Se describe un sistema y método para predecir un índice de riesgo de un individuo, que considera las diferencias ínter-personales de los trabajadores incluyendo el efecto de la hipoxia hipobaria crónica intermitente en caso que el operador este expuesto a esta condición geográfica. El método utiliza un modelo predictivo que permite alertar anticipadamente el estado físico y mental del conductor, en tiempo real, mediante el monitoreo de parámetros fisiológicos, indicando estados de fatiga y somnolencia considerando estas particulares condiciones de operabilidad. A system and method to predict an individual's risk index is described, which considers the inter-personal differences of the workers including the effect of intermittent chronic hypobaric hypoxia in case the operator is exposed to this geographic condition. The method uses a predictive model that allows alerting the driver's physical and mental state in advance, in real time, by monitoring physiological parameters, indicating states of fatigue and drowsiness considering these particular operability conditions.
Mediante un dispositivo o unos dispositivos de detección, a través de un sistema de biosensores, se mide y registra en tiempo real: la actividad eléctrica cerebral, saturación de oxígeno y conductividad de la piel para conocer el estado psicofisiológico del operador durante la jornada laboral, y por lo tanto su aptitud laboral. Estas variables fisiológicas están estrechamente relacionadas con el estado de la persona dando cuenta de eventos de fatiga, somnolencia y estrés, los cuales afectan e impactan a los trabajadores, influyendo negativamente en su aptitud laboral ya que se ve alterada la toma de decisiones, conductas erráticas, velocidad de reacción, atención, exponiendo al trabajador a eventos riesgosos y por lo tanto a una mayor tasa de accidentes. By means of a detection device or devices, through a biosensors system, brain electrical activity, oxygen saturation and skin conductivity are measured and recorded in real time to determine the psychophysiological state of the operator during the working day, and therefore their work aptitude. These physiological variables are closely related to the state of the person, accounting for events of fatigue, drowsiness and stress, which affect and impact workers, negatively influencing their work ability as decision-making, erratic behaviors are altered , reaction speed, attention, exposing the worker to risky events and therefore a higher accident rate.
Por otra parte, se toman en consideración variables antropométricas como: peso, talla y circunvalación cervical, sumado a la edad y el sexo, que nos da cuenta del estado de salud del trabajador, con respecto a enfermedades laborales que tienen mayor incidencia en condiciones de hipoxia hipobaria intermitente crónica, lo que afecta tanto a la aclimatación del operador como a su aptitud laboral. De esta manera es posible monitorear de manera personalizada el índice de riesgo al que están expuestos los trabajadores durante sus jornadas laborales en condiciones de hipoxia hipobárica intermitente crónica. On the other hand, anthropometric variables such as: weight, height and cervical girth, added to age and sex, are taken into account, which gives us an account of the worker's state of health, with respect to occupational diseases that have a higher incidence in conditions of Chronic intermittent hypobaric hypoxia, which affects both the acclimatization of the operator and his work ability. In this way it is possible to monitor in a personalized way the risk index to which workers are exposed during their working hours in conditions of chronic intermittent hypobaric hypoxia.
Mediante el procesamiento de los datos obtenidos de los biosensores, el sistema permite determinar el índice de riesgo para determinar cuándo al menos un parámetro fisiológico que se está registrando excede o está por debajo de los rangos fisiológicos pre-establecido que subyacen una aptitud laboral óptima, generando acciones de salida que permiten re-establecer los parámetros fisiológicos, hasta valores adecuados, para lograr así recuperar el estado de alerta y vigilia del operador, mejorando su aptitud laboral y disminuyendo con esto el índice de riesgo al que están expuestos los trabajadores. En caso que el operador se encuentre expuesto a hipoxia hipobarica intermitente crónica, el modelo predictivo incorporara el procesamiento de los datos antropométricos para la obtención del factor de salud y el nivel de altura geográfica para considerar el factor de aclimatación lo que permite generar el índice de riesgo y las acciones de salida adecuadas para cada individuo. By processing the data obtained from the biosensors, the system enables the risk index to be determined to determine when at least one physiological parameter being recorded exceeds or falls below the pre-established physiological ranges underlying a fitness Optimal work, generating exit actions that allow the physiological parameters to be re-established, up to adequate values, to thus recover the operator's alertness and wakefulness, improving their workability and thus reducing the risk index to which the workers. In the event that the operator is exposed to chronic intermittent hypobaric hypoxia, the predictive model will incorporate the processing of anthropometric data to obtain the health factor and the geographic height level to consider the acclimatization factor, which allows the generation of the index of risk and the appropriate exit actions for each individual.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
FIG. 1. Diagrama en bloques del sistema de la presente invención. FIG. 1. Block diagram of the system of the present invention.
FIG. 2. Diagrama esquemático de los módulos que conforman el sistema de la presente invención. FIG. 2. Schematic diagram of the modules that make up the system of the present invention.
FIG. 3. Diagrama en bloques del módulo de adquisición de datos y ajuste de señal. FIG. 3. Block diagram of the data acquisition and signal adjustment module.
FIG. 4. Diagrama de flujo del método de la presente invención. FIG. 4. Flow diagram of the method of the present invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
En un escenario de entorno laboral donde los sistemas operativos dependen del rendimiento humano, desarrollar tecnologías para aumentar la seguridad, el bienestar y el mejoramiento de las condiciones laborales de los trabajadores es un importante desafío. Los accidentes, muchos de ellos con lamentables causas fatales, a menudo resultan en la suspensión temporal de las operaciones y la pérdida de producción. El costo real de los accidentes va más allá de los pagos de indemnización y seguros, los gastos médicos y los costos de investigación y por tanto, existe una expectativa global para reducir lesiones, eliminar muertes y prevenir incidentes catastróficos, que en definitiva van a disminuir las perdidas y/o aumentar la productividad. índice de Riesgo. In a work environment scenario where operating systems depend on human performance, developing technologies to increase the safety, well-being and improvement of workers' working conditions is a major challenge. Accidents, many with unfortunate fatal causes, often result in the temporary suspension of operations and loss of production. The actual cost of accidents goes beyond indemnity and insurance payments, medical expenses, and investigation costs, and therefore there is a global expectation to reduce injuries, eliminate deaths, and prevent catastrophic incidents, which will ultimately decrease losses and / or increase productivity. Risk index.
El índice de riesgo hace referencia al estado fisiológico y mental de un operador, donde su aptitud laboral disminuye objetivamente, exponiéndolo a un evento que puede desencadenar un accidente. El índice de riesgo al que se enfrentan los trabajadores depende de factores humanos y factores externos. En el caso de los accidentes que implican conducción del 70% - 90% depende de la persona o estado psicofisiológico del conductor y del 10% - 30% de factores externos como las condiciones del vehículo, características físicas de la ruta, condiciones ambientales, jornadas laborales de turno entre otros. The risk index refers to the physiological and mental state of an operator, where his occupational fitness decreases objectively, exposing him to an event that can trigger an accident. The risk index that workers face depends on human factors and external factors. In the case of accidents involving driving, 70% - 90% depends on the person or psychophysiological state of the driver and 10% - 30% on external factors such as vehicle conditions, physical characteristics of the route, environmental conditions, working days. shift workers among others.
Existen sectores económicos en donde el estado psicofisiológico de los trabajadores está condicionado por las demandantes condiciones laborales, este es el caso de la minería en donde: la altura geográfica, específicamente la hipoxia hipobárica intermitente crónica, aumenta el factor de riesgo significativamente para los trabajadores, ya sea porque afecta el estado interno y de salud de los trabajadores, sumada a los efectos que tiene en el organismo las jornadas laborales con sistema turno rotativo. Apuntando a esta problemática la presente invención es capaz de ser un sistema y método que predice el índice de riesgo en condiciones de hipoxia hipobaria intermitente crónica, mediante la medición y registro en tiempo real de parámetros fisiológicos que dan cuenta del estado interno y variables antropométricas que dan cuenta del estado de salud de los operadores. La altura geográfica y su relación con la fatiga y somnolencia. There are economic sectors where the psychophysiological state of the workers is conditioned by the demanding working conditions, this is the case of mining where: the geographical height, specifically the chronic intermittent hypobaric hypoxia, increases the risk factor significantly for the workers, either because it affects the internal and health status of workers, added to the effects that working hours with a rotating shift system have on the body. Aiming at this problem, the present invention is capable of being a system and method that predicts the risk index in conditions of chronic intermittent hypobaric hypoxia, by measuring and recording in real time physiological parameters that account for the internal state and anthropometric variables that give an account of the state of health of the operators. The geographical height and its relationship with fatigue and drowsiness.
Una gran cantidad de actividades laborales asociadas al sector de la minería se realizan sobre 2.500 metros de altura. El incremento de actividades comerciales y de servicios que se realizan en altitud, ha determinado el desplazamiento de muchas personas, lo que plantea un desafío importante en temas de seguridad laboral. A large number of work activities associated with the mining sector are carried out over 2,500 meters in height. The increase in commercial and service activities carried out at altitude has determined the displacement of many people, which poses a major challenge in terms of job security.
Diversos estudios que involucran los cambios intermitentes debido al traslado de personas desde el nivel del mar a alturas donde hay modificaciones importantes de presión, describen el desarrollo de síntomas clínicos. El mal agudo de montaña (MAM), se trata de la falta de adaptación del organismo a las alturas y todos los síntomas secundarios asociados a esto. Various studies involving intermittent changes due to the movement of people from sea level to heights where there are significant changes in pressure, describe the development of clinical symptoms. Acute mountain sickness (MAM) is about the body's lack of adaptation to heights and all the secondary symptoms associated with this.
Por lo general, quienes viven a nivel del mar, comienzan a sentirlo a los 2.500 metros. Conforme aumenta la altitud geográfica, la presión atmosférica decrece puesto que hay menos moléculas de aire ejerciendo presión, en términos globales el valor medio de la presión a nivel del mar es de 760 mmHg ó 1 atm., se puede decir que la presión decrece aproximadamente a un ritmo de 100 mmHg por cada mil metros de altura ascendidos. La menor presión atmosférica supone una menor presión parcial de oxigeno (P02) lo que limita el transporte de oxígeno a los tejidos corporales produciendo el estado conocido como hipoxia, siendo éste el principal factor responsable de los efectos negativos de la altitud sobre la salud humana. Los principales síntomas corresponden a: mareos, cefalea (dolor de cabeza), náuseas y vómitos, falta de apetito, fatiga, nerviosismo, trastornos del sueño, que pueden ser somnolencia o insomnio. También pueden presentarse episodios de disnea súbita nocturna (despertarse bruscamente con sensación de ahogo) debidos a la denominada respiración de Cheyne-Stokes durante el sueño, lo que genera elevación del ritmo cardiaco, disfunciones cognitivas, fatiga, etc. El efecto de la altura geográfica sobre la salud dependerá de los períodos de tiempo al que el trabajador se exponga los que podrían ser: i) Exposición aguda por horas hasta 2-3 días; ii) Exposición crónica de residentes permanentes y nativos de altitud; y iii) Exposición intermitente. Those who live at sea level generally begin to feel it at 2,500 meters. As the geographical altitude increases, the atmospheric pressure decreases since there are fewer air molecules exerting pressure, in global terms the mean value of the pressure at sea level is 760 mmHg or 1 atm., It can be said that the pressure decreases approximately at a rate of 100 mmHg for every thousand meters of height ascended. The lower atmospheric pressure implies a lower partial pressure of oxygen (P02), which limits the transport of oxygen to the body tissues, producing the state known as hypoxia, this being the main factor responsible for the negative effects of altitude on human health. The main symptoms correspond to: dizziness, headache, nausea and vomiting, lack of appetite, fatigue, nervousness, sleep disorders, which can be drowsiness or insomnia. There may also be episodes of sudden nocturnal dyspnea (waking up suddenly with a choking sensation) due to the so-called Cheyne-Stokes breathing during sleep, which causes elevation of the heart rate, cognitive dysfunction, fatigue, etc. The effect of geographic height on health will depend on the periods of time to which the worker is exposed, which could be: i) Acute exposure for hours up to 2-3 days; ii) Chronic exposure of permanent residents and high altitude natives; and iii) Intermittent exposure.
Cuando un trabajador nativo de nivel de mar desempeña actividades laborales productivas a más de 2500 metros de altura se produce el descenso de aporte de oxígeno a los tejidos debido a una caída en la presión parcial de este gas por la exposición a una menor presión barométrica en altitud y luego se produce un aumento de la presión parcial de este gas tras descender al nivel del mar nuevamente en su descanso, lo que se define como hipoxia hipobárica intermitente crónica (HIC). La HIC puede condicionar enfermedades en profesionales que trabajan a gran altura, siendo un factor de riesgo de incidentes/accidentes por el aumento de la fatiga y somnolencia que esta enfermedades generan, debido a la mala calidad de sueño e incrementando la fatiga por reducción de capacidad aeróbica, es decir, la HIC tiene efectos conocidos sobre la salud humana lo que también incide directamente en el desempeño laboral, incrementando la probabilidad de riesgo para los trabajadores, ya que se sabe que la fatiga es una de la principales causas de accidentes en la conducción laboral. i) Respuestas a la exposición aguda y aclimatación a la altitud When a native sea level worker performs productive work activities at more than 2,500 meters above sea level, the oxygen contribution to the tissues decreases due to a drop in the partial pressure of this gas due to exposure to a lower barometric pressure in altitude and then there is an increase in the partial pressure of this gas after descending to sea level again at rest, which is defined as chronic intermittent hypobaric hypoxia (HIC). ICH can condition diseases in professionals who work at high altitudes, being a risk factor for incidents / accidents due to the increased fatigue and drowsiness that these diseases generate, due to poor quality of sleep and increased fatigue due to reduced capacity. aerobic, that is, ICH has known effects on human health, which also directly affects job performance, increasing the probability of risk for workers, since it is known that fatigue is one of the main causes of accidents in the labor driving. i) Responses to acute exposure and acclimatization to altitude
La altura geográfica es un condicionante trascendental en la aptitud laboral de los trabajadores. La hipoxia hipobárica alcanza mayor significado clínico a una altura límite de 2.500 metros de altitud. La exposición aguda a la altitud implica para el ser humano un estrés fisiológico muy marcado que requiere de una serie de respuestas agudas y otras crónicas que permiten una aclimatación a este medio tan adverso. Entre estas respuestas se destacan: • La menor presión barométrica que se encuentra en la altura lleva consigo una disminución de la presión parcial de oxígeno en todos los niveles de la cascada de oxígeno. The geographical height is a transcendental determining factor in the work aptitude of the workers. Hypobaric hypoxia reaches greater clinical significance at a limit height of 2,500 meters. Acute exposure to altitude implies for humans a very marked physiological stress that requires a series of acute and other chronic responses that allow acclimatization to this very adverse environment. These responses include: • The lower barometric pressure found at altitude leads to a decrease in the partial pressure of oxygen at all levels of the oxygen cascade.
• La caída de la presión parcial de oxígeno a nivel arterial estimula, vía quimiorreceptores carotideos y del arco aórtico, al centro respiratorio produciendo hiperventilación. • The drop in the partial pressure of oxygen at the arterial level stimulates the respiratory center, through the carotid chemoreceptors and the aortic arch, producing hyperventilation.
• La hiperventilación tiende a corregir la hipoxemia y también produce una disminución de la presión parcial de C02 arterial, es decir una alcalosis respiratoria. Esta alcalosis respiratoria disminuye la capacidad de respuesta del centro respiratorio a la hipoxemia y desplaza a la izquierda la curva de disociación de la hemoglobina, dificultando el aporte de oxígeno a los tejidos. Para contrarrestarla se produce una mayor excreción renal de bicarbonato, generando una compensación metabólica y así, se restaura el equilibrio ácido- base. Pero esto puede generar un problema, ya que la pérdida de reserva alcalina total disminuye la capacidad sanguínea de tamponar ácidos (como el ácido láctico, por ejemplo). • Hyperventilation tends to correct hypoxemia and also produces a decrease in the arterial C0 2 partial pressure, that is, a respiratory alkalosis. This respiratory alkalosis decreases the responsiveness of the respiratory center to hypoxemia and shifts the dissociation curve of hemoglobin to the left, making it difficult to supply oxygen to the tissues. To counteract it, a greater renal excretion of bicarbonate takes place, generating a metabolic compensation and thus, the acid-base balance is restored. But this can create a problem, since the loss of total alkaline reserve decreases the blood's ability to buffer acids (such as lactic acid, for example).
• Durante el sueño se observan hipoventilación fisiológica, respiraciones periódicas, caída de la Saturación de Oxígeno (Sat 02), aumento del índice de apneas/hiponeas centrales o acentuación de apneas obstructivas, lo que provoca somnolencia, fatiga y deterioro en la concentración. • During sleep, physiological hypoventilation, periodic breaths, drop in Oxygen Saturation (Sat 0 2 ), increase in the apnea / central hiponea index or accentuation of obstructive apneas are observed, causing drowsiness, fatigue and deterioration in concentration.
Las condiciones de baja presión y falta de oxígeno afectan diferenciadamente a cada individuo. Si bien existe el proceso de aclimatación, el cual tiene la finalidad de mitigar el efecto de la caída del aporte de oxígeno a nivel celular y mejorar la capacidad del organismo a tolerar la gran altitud, en el caso de los trabajadores expuestos a turnos que se alternan periódicamente entre altura y nivel del mar, la aclimatación recién se logra aproximadamente entre 12 a 19 meses. ii) Altura geográfica en trabajadores con turnos rotativos La jornada laboral con rotación de turno es una condición laboral de muchos trabajadores a nivel mundial, ya que las empresas mantienen, por diversos motivos, continuidad en sus operaciones durante extensos períodos del día. Esta condición obliga al trabajador a alternar horarios de trabajo, estar despierto de noche y dormir de día, lo que afecta el rendimiento operativo de los trabajadores. Por otra parte, las alteraciones fisiológicas causadas por las diferencias de presión como consecuencia de la altura geográfica, como las variaciones en la oxigenación de la sangre, es otro factor que en jornadas laborales afecta directamente la salud operacional de los trabajadores y por tanto el rendimiento y la seguridad laboral. En este sentido se destacan especialmente las actividades de transporte y minería, donde el sistema de jornadas laborales y la falta de espacios adecuados de descanso producen fatiga, cansancio, somnolencia y falta de atención, que son consideradas las principales causas de accidentes. The conditions of low pressure and lack of oxygen affect each individual differently. Although there is an acclimatization process, which aims to mitigate the effect of the drop in oxygen supply at the cellular level and improve the body's ability to tolerate high altitude, in the case of workers exposed to shifts who Periodically alternate between height and sea level, acclimatization is only achieved approximately between 12 to 19 months. ii) Geographical height in workers with rotating shifts The shift shift workday is a working condition of many workers worldwide, as companies maintain continuity in their operations for various periods of the day for various reasons. This condition forces the worker to alternate work schedules, stay awake at night and sleep during the day, which affects the operational performance of the workers. On the other hand, physiological alterations caused by pressure differences as a consequence of geographic height, such as variations in blood oxygenation, is another factor that directly affects the operational health of workers during working hours and therefore performance. and job security. In this sense, transport and mining activities stand out especially, where the system of working hours and the lack of adequate rest spaces produce fatigue, tiredness, drowsiness and lack of attention, which are considered the main causes of accidents.
En relación a lo antes mencionado, las estadísticas muestran que una de las principales causas de accidentes de tráfico mortales o causantes de lesiones es la disminución del nivel de vigilia. La hipoxia aguda o crónica tiene efectos negativos en el funcionamiento cerebral y afecta el estado de las funciones cognitivas tales como la capacidad de atención, memoria y funciones ejecutivas. Estudios sugieren que los efectos agudos de hipoxia pueden alterar negativamente el procesamiento de la información y a su vez, ello inducir a dificultades en el proceso de toma de decisión lo que afecta directamente la aptitud laboral de los trabajadores. In relation to the aforementioned, statistics show that one of the main causes of fatal traffic accidents or causing injuries is the decrease in the level of wakefulness. Acute or chronic hypoxia has negative effects on brain function and affects the state of cognitive functions such as attention span, memory, and executive functions. Studies suggest that the acute effects of hypoxia can negatively alter information processing and, in turn, induce difficulties in the decision-making process, which directly affects the work ability of workers.
Esta compleja interacción en condiciones de hipoxia hipobárica crónica intermitente de factores fisiológicos, el ritmo circadiano, la presión homeostática por dormir, ciertas predisposiciones genéticas, así como enfermedades incidentes son factores determinantes en el estado psicofisiológico del operador, y por lo tanto, aumentan las probabilidades de accidentabilidad de los trabajadores bajo estas condiciones laborales. This complex interaction in conditions of intermittent chronic hypobaric hypoxia of physiological factors, the circadian rhythm, homeostatic pressure to sleep, certain genetic predispositions, as well as incident diseases are determining factors in the psychophysiological state of the operator, and therefore, increase the chances of accidents of workers under these working conditions.
El sistema de monitoreo de la presente invención considera el efecto de la hipoxia hipobaria intermitente crónica, en los parámetros fisiológicos y la salud de los trabajadores, los cambios sobre los ritmos circadianos (fisiológicos y conductuales entre otros) producto de los turnos rotativos como parte de la predicción del real riesgo al que están expuestos los trabajadores durante su jornada laboral. The monitoring system of the present invention considers the effect of chronic intermittent hypobaric hypoxia, on the physiological parameters and the health of workers, changes on circadian rhythms (physiological and behavioral, among others) as a result of rotating shifts as part of the prediction of the real risk to which workers are exposed during their workday.
Los seres humanos, presentan diferentes variaciones cíclicas en distintos procesos fisiológicos. Por ejemplo, la conducta de sueño y vigilia tiene un ritmo circadiano es decir que tiene un periodo de tiempo de 24hrs. Este ciclo está regulado por distintos factores externos, siendo el más importante la luz solar. La luz, que ingresa a través del ojo a la retina la cual se comunica directamente con una región del cerebro ubicada en el hipotálamo denominada núcleo Supra-quiasmatico. Esta región del cerebro regula el reloj corporal interno estableciendo ritmos conductuales como el ciclo sueño-vigilia, o la secreción de factores neuro-hormonales como la secreción de melatonina, lo cual tiene como consecuencia básicamente estar activos de día y dormir de noche. Cuando se trabaja de noche o en turnos rotativos de trabajo, el sistema circadiano es incapaz de adaptarse rápidamente al nuevo horario y surge una desincronización entre el ritmo de los sistemas fisiológicos internos y las exigencias laborales externas, lo que provoca una serie de alteraciones que afectan directamente a la salud y seguridad de los trabajadores. Es evidente entonces que los efectos directos y principales y del trabajo por turno, se relaciona con la calidad del sueño, la fatiga y la sensación general de malestar, teniendo como consecuencia incluso la aparición de trastornos del sueño. Los trastornos del sueño son principalmente generados por el rompimiento del ciclo sueño-vigilia. Dentro de los trastornos comunes, se presentan casos de somnolencia diurna e insomnio. Otro problema derivado del trastorno del sueño, es la caída en el estado de alerta y los niveles atencionales, incidiendo en los estados de fatiga que es causante en su gran mayoría de accidentes laborales y errores en la ejecución de tareas, incrementando el riesgo y por tanto la probabilidad de sufrir un accidente. Humans present different cyclical variations in different physiological processes. For example, the sleep and wake behavior has a circadian rhythm, that is, it has a time period of 24 hours. This cycle is regulated by different external factors, the most important being sunlight. The light, which enters the retina through the eye, which communicates directly with a region of the brain located in the hypothalamus called the Supra-chiasmatic nucleus. This region of the brain regulates the internal body clock by establishing behavioral rhythms such as the sleep-wake cycle, or the secretion of neuro-hormonal factors such as melatonin secretion, which basically results in being active during the day and sleeping at night. When working at night or on rotating work shifts, the circadian system is unable to quickly adapt to the new schedule and a desynchronization between the rhythm of internal physiological systems and external work demands arises, causing a series of alterations that affect directly to the health and safety of workers. It is evident then that the direct and main effects and of the shift work, is related to the quality of sleep, fatigue and the general feeling of discomfort, resulting in even the appearance of sleep disorders. Sleep disorders are mainly generated by the breakdown of the sleep-wake cycle. Among the common disorders, cases of daytime sleepiness and insomnia. Another problem derived from sleep disorder is the drop in alertness and attention levels, influencing the states of fatigue that is the majority of causes of work accidents and errors in the execution of tasks, increasing the risk and both the probability of having an accident.
La industria minera presenta características que la hacen particularmente distinta de otros sectores económicos, como por ejemplo los turnos rotativos, extensas jornadas laborales, conducción en rutas peligrosas, entre otras que la convierten en una actividad altamente riesgosa. Además, se opera a gran altura geográfica con equipos muy precisos de alta especialización, y por tanto cada operador no puede perder la concentración de la tarea que está realizando, teniendo que tomar las decisiones adecuadas ya que de su función depende la vida de otros. Sin embargo, lo extenso de la jornada laboral reduce la capacidad de concentración en los trabajadores, sus efectos se detectan principalmente durante el período final de la jornada de trabajo y durante los turnos de noche; la mayoría de los operadores manifiestan durante estas fases padecer de una saturación mental, lo que favorece las conductas erráticas durante la operación, haciendo más factible que se produzcan accidentes. Por otra parte, las alteraciones fisiológicas causadas por las diferencias de presión, consecuencia de la altura geográfica, es otro factor que afecta directamente la salud operacional de los trabajadores y por tanto el rendimiento y la seguridad laboral. iii) Consecuencias de la altitud geográfica en la salud de los trabajadores que afecta la aptitud laboral. The mining industry has characteristics that make it particularly different from other economic sectors, such as rotating shifts, long working hours, driving on dangerous routes, among others, which make it a highly risky activity. In addition, it operates at a great geographical height with highly precise and highly specialized equipment, and therefore each operator cannot lose concentration on the task they are performing, having to make the appropriate decisions since the life of others depends on their function. However, the length of the working day reduces the concentration capacity of workers, its effects are mainly detected during the final period of the working day and during night shifts; Most operators manifest during these phases suffering from mental saturation, which favors erratic behaviors during the operation, making accidents more feasible. On the other hand, the physiological alterations caused by the pressure differences, consequence of the geographical height, is another factor that directly affects the operational health of the workers and therefore the performance and job security. iii) Consequences of geographic altitude on the health of workers that affect work ability.
El cuerpo humano reacciona con resistencia al fenómeno de la altura lo cual tiene diferentes efectos. Los relacionados con la fatiga, el deterioro de la atención, la somnolencia y el estrés y ansiedad, adquieren mayor relevancia en el trabajo ya que es el estado psicofisiológico del conductor el causante del 70%-90% de los accidentes automovilísticos laborales. Entonces, la baja presión atmosférica e hipoxia tisular ejercen efectos perjudiciales en la fisiología humana. A grandes alturas geográficas se observan trastornos del sueño y otras enfermedades incidentes, como síndrome metabólico, apnea obstructiva, apnea central entre otras que aumentan los eventos de fatiga y somnolencia, lo que condiciona aún más la aptitud laboral de los trabajadores, es por esto que todas estas condiciones se deben de tener en cuenta al momento de determinar el real índice de riesgo al que están sometidos los trabajadores en condiciones de hipoxia hipobárica intermitente crónica. The human body reacts with resistance to the phenomenon of height, which has different effects. Those related to fatigue, deterioration of attention, drowsiness, and stress and anxiety, acquire greater relevance at work, since the psychophysiological state of the driver is the cause of the 70% -90% of automobile accidents at work. So low atmospheric pressure and tissue hypoxia exert detrimental effects on human physiology. At great geographical heights sleep disorders and other incident diseases are observed, such as metabolic syndrome, obstructive apnea, central apnea among others that increase the events of fatigue and drowsiness, which further conditions the work aptitude of workers, which is why All these conditions must be taken into account when determining the real risk index to which workers are subjected in conditions of chronic intermittent hypobaric hypoxia.
Trastornos del sueño Sleep disorders
Se presenta con mayor intensidad las primeras noches de exposición a la altura geográfica. La mala calidad del sueño, en particular antes de haberse completado la aclimatación, es un factor que afecta al rendimiento profesional. Debido a las repetidas ocasiones en que el sujeto se despierta, la calidad del sueño es deficiente, por lo que, aunque el tiempo total de sueño haya sido el normal, la persona se levanta con la sensación de haber pasado una noche inquieta o de no haber dormido. La calidad de sueño está muy relacionada con el nivel de Saturación de O2 (SatC>2) durante el sueño, que siempre es menor que estando despierto. A cada altitud el cerebro debe construir la arquitectura del sueño, pero con menos oxígeno. A esta menor SatC>2 se añaden las Respiraciones Periódicas, RP, que es un rasgo biológico propio del dormir en hipoxia hipobárica. En general se describe que los nativos de altura tienen una arquitectura del sueño comparable a la de nivel de mar, pero con RP. The first nights of exposure to the geographical altitude appear with greater intensity. Poor sleep quality, particularly before acclimatization is complete, is a factor affecting professional performance. Due to the repeated occasions when the subject wakes up, the quality of sleep is poor, so that, although the total sleep time has been normal, the person gets up with the feeling of having spent a restless night or not. to have slept. Sleep quality is closely related to the O2 Saturation level (SatC> 2) during sleep, which is always lower than when awake. At each altitude the brain must build the sleep architecture, but with less oxygen. To this lower SatC> 2 are added the Periodic Breaths, RP, which is a biological characteristic of sleeping in hypobaric hypoxia. In general it is described that the natives of height have a dream architecture comparable to that of sea level, but with RP.
Respiraciones Periódicas en altura Periodic breaths at height
Cuando cae el O2 sanguíneo se estimula el centro respiratorio para una hiperventilación, este mecanismo hace aumentar el O2, pero a su vez produce una acentuada pérdida de CO2 (ácido) provocando una alcalosis hipocápnica y aumento del pH. Frente a esto el cerebro responde con una apnea central para retener C02 y bajar el pH. Durante esta apnea el pH se normaliza, pero con una caída del 02. Esta nueva hipoxia vuelve a estimular una hiperventilación compensadora, y a su vez ésta una subsiguiente apnea compensadora generándose ciclos de respiración tipo Cheyne-Stock. Cuando la hiperventilación reactiva es muy enérgica el sujeto se despierta, fragmentando el sueño. When blood O2 falls, the respiratory center is stimulated for hyperventilation, this mechanism increases O2, but in turn produces a marked loss of CO2 (acid) causing a hypocapnic alkalosis and pH increase. Against this the brain responds with a central apnea to retain C0 2 and lower the pH. During this apnea the pH normalizes, but with a drop of 0 2 . This new hypoxia again stimulates compensatory hyperventilation, and in turn this a subsequent compensatory apnea, generating Cheyne-Stock type respiration cycles. When reactive hyperventilation is very energetic, the subject wakes up, fragmenting the dream.
Efectos de la hipoxia hipobárica sobre la calidad de sueño. Effects of hypobaric hypoxia on sleep quality.
Los principales efectos de la hipoxia hipobárica sobre la calidad de sueño, por una aclimatación inadecuada corresponden a: The main effects of hypobaric hypoxia on sleep quality due to inadequate acclimatization correspond to:
- índice de Apneas/Hipopneas centrales aumentadas, por RP de acuerdo a la altitud - Index of apneas / central hypopneas increased, by RP according to altitude
- Disminución de las horas totales, por insomnio, o por despertares - Decrease in total hours, insomnia, or awakenings
- Fragmentación del sueño por despertares - Sleep fragmentation due to awakenings
- Agravación de Apneas Obstructivas - Aggravation of Obstructive Apneas
- Desaturación 02 acentuada durante el sueño - Desaturation 0 2 accentuated during sleep
Es claro señalar que el sueño tiene efectos significativos en la función fisiológica y psicológica. La mala calidad del sueño caracterizada por la fragmentación del sueño y el sueño insuficiente se asocian con un aumento de trastornos neuro-cognitivos, somnolencia diurna, insomnio, fatiga, deterioro de la atención y otras enfermedades crónicas, lo que conlleva a un mayor riesgo de accidentes y bajo rendimiento laboral. It is clear to note that sleep has significant effects on physiological and psychological function. Poor sleep quality characterized by sleep fragmentation and insufficient sleep are associated with an increase in neuro-cognitive disorders, daytime sleepiness, insomnia, fatigue, impaired attention, and other chronic diseases, leading to an increased risk of accidents and low work performance.
Síndrome de apnea obstructiva Obstructive apnea syndrome
Los procesos digestivos en altura geográfica se tornan más lentos, por tanto, provocan mayor absorción de grasas, propiciando la aparición del síndrome metabólico con diagnósticos de hígado graso, alteración del perfil lipídico y resistencia a la insulina, los cuales son los principales generadores de la obesidad y por otra parte los trastornos del sueño, también aumentan el riesgo de padecer obesidad, ya que afectan la regulación endocrina del hambre. La obesidad originada en estas condiciones, provoca y favorece alteraciones como apneas del sueño, tanto centrales como obstructivas y mixtas lo que es riesgoso debido a que los síntomas que conllevan estas patologías; somnolencia, fatiga física y fatiga mental afectan directamente la aptitud laboral de los trabajadores En altura geográfica existe una gran incidencia de estos cuadros apneicos asociados a la obesidad. The digestive processes in geographic height become slower, therefore, they cause greater absorption of fats, favoring the appearance of the metabolic syndrome with diagnoses of fatty liver, alteration of the lipid profile and insulin resistance, which are the main generators of obesity and, on the other hand, sleep disorders, also increase the risk of obesity, since they affect the endocrine regulation of hunger. Obesity originated in these conditions, causes and favors alterations such as sleep apneas, both central, obstructive and mixed, which is risky due to the symptoms that these pathologies entail; drowsiness, physical fatigue and mental fatigue directly affect the work aptitude of workers. At geographic height there is a high incidence of these apneic symptoms associated with obesity.
Los pacientes con síndrome de apnea del sueño a menudo tienen sobrepeso y con frecuencia tienen una mayor incidencia de hipertensión arterial, enfermedad coronaria y enfermedad cerebrovascular. Es por esto que en condiciones de hipoxia intermitentes se da con mayor incidencia esta enfermedad. El síndrome de apnea obstructiva del sueño (SAOS) es una enfermedad frecuente en la población adulta. Se caracteriza por episodios recurrentes de colapso parcial o total de la vía aérea superior durante el sueño, como consecuencia de los cuales se produce un aumento del esfuerzo tóraco- abdominal y caída de saturación arterial de oxígeno, que conducen a una reacción de microdespertar que reanuda la respiración. Esta reacción de despertar provoca fragmentación y alteración de la arquitectura del sueño, con deterioro de la calidad del sueño, trayendo consigo la somnolencia diurna excesiva y aumento de eventos de fatiga. La somnolencia diurna excesiva es el síntoma cardinal del SAHOS y se entiende por la dificultad para mantenerse despierto durante el día. Es una somnolencia“pasiva”, ya que se presenta en situaciones monótonas. Como síntoma único presenta sensibilidad y especificidad baja, cercana al 60%, pero es indispensable su adecuada atención. El ronquido, con sensibilidad y especificidad similares, también es de ayuda, especialmente si es frecuente, intenso e irregular, sumado al síntoma con mayor valor diagnostico como las apneas presenciadas, es un indicador que mejora el diagnostico, mediante la encuesta STOP-BANG. Del examen físico, el hallazgo que mejor predice la presencia de SAOS es la circunferencia cervical (CC) más de 43 cm en hombre o talla 17 de camisa y 40 en mujeres, hasta el momento uno de los datos antropométricos más predictores de esta enfermedad. Esta patología está claramente infra-diagnosticada, tanto en la población laboral como en la no laboral, y constituye un factor de riesgo importante en los conductores profesionales y en cualquier trabajador cuando se desplaza a su centro de trabajo o al realizar desplazamientos en misión de trabajo. Por lo tanto, existe la necesidad del reconocimiento temprano, ya que hay una incidencia importante del 50% entre accidentes automovilísticos y síndrome de apnea obstructiva sin tratamiento. Estudios muestran que los pacientes con síndrome de apnea e hipopnea obstructiva del sueño tienen un riesgo de 2 a 7 veces mayor de accidentes de tráfico que los sujetos control por un deterioro de estado de alerta, principalmente a eventos asociado a fatiga y somnolencia. Sumado a esto, la falta de oxigenación causa depresión de las funciones neuropsicológicas, con disminución de la memoria, atención y coordinación visual motora. Este último factor contribuye a una mayor frecuencia de accidentes automovilísticos y laborales, es por eso que se considera también como un factor de riesgo importantísimo a considerar bajo condiciones de hipoxia hipobárica intermitente crónica para los trabajadores de altura geográfica. Patients with sleep apnea syndrome are often overweight and often have a higher incidence of high blood pressure, coronary heart disease, and cerebrovascular disease. This is why in intermittent hypoxic conditions this disease occurs with greater incidence. Obstructive sleep apnea syndrome (OSA) is a common disease in the adult population. It is characterized by recurrent episodes of partial or total collapse of the upper airway during sleep, as a consequence of which there is an increase in chest-abdominal effort and a fall in arterial oxygen saturation, which leads to a micro-awakening reaction that resumes the breathing. This awakening reaction causes fragmentation and alteration of the sleep architecture, with deterioration in the quality of sleep, bringing with it excessive daytime sleepiness and increased fatigue events. Excessive daytime sleepiness is the cardinal symptom of OSAHS and is understood by difficulty staying awake during the day. It is a "passive" drowsiness, since it occurs in monotonous situations. As the only symptom, it presents low sensitivity and specificity, close to 60%, but its proper care is essential. Snoring, with similar sensitivity and specificity, is also helpful, especially if it is frequent, intense and irregular, added to the symptom with higher diagnostic value such as witnessed apneas, is an indicator that improves diagnosis, through the STOP-BANG survey. From the physical examination, the finding that best predicts the presence of OSAS is the cervical circumference (CC) more than 43 cm in men or shirt size 17 and 40 in women, so far one of the most predictive anthropometric data of this disease. This pathology is clearly under-diagnosed, both in the working population and in the non-working population, and constitutes an important risk factor in professional drivers and in any worker when traveling to their workplace or when traveling on a mission to work. . Therefore, there is a need for early recognition, as there is a significant 50% incidence between car accidents and obstructive apnea syndrome without treatment. Studies show that patients with obstructive sleep apnea and hypopnea syndrome have a 2 to 7 times greater risk of traffic accidents than control subjects due to a deterioration of alertness, mainly to events associated with fatigue and drowsiness. In addition to this, lack of oxygenation causes depression of neuropsychological functions, with decreased memory, attention, and visual motor coordination. This last factor contributes to a higher frequency of automobile and occupational accidents, which is why it is also considered as a very important risk factor to be considered under conditions of chronic intermittent hypobaric hypoxia for workers of geographic height.
Apnea central del sueño Central sleep apnea
La apnea central del sueño puede ocurrir como resultado de otros trastornos como insuficiencia cardiaca, accidente cerebrovascular y también por la exposición a altura geográfica. Es evidente señalar que más de un factor podría presentarse en los trabajadores. La apnea central del sueño ocurre como consecuencia de la ausencia de la actividad neural adecuada que controla los músculos involucrados en la respiración. Este trastorno generalmente se debe a una inestabilidad en los mecanismos de retroalimentación del cuerpo que controlan la respiración. Se caracteriza por la falta de impulso para respirar durante el sueño (10-30 segundos intermitentemente o por ciclo respiratorio) y generalmente se asocia a una reducción en la saturación de oxígeno en la sangre. Este trastorno es diferente a la apnea obstructiva del sueño, en la que no es posible respirar de forma normal debido a una obstrucción en la vía aérea superior. Los despertares recurrentes asociados con apnea del sueño hacen que se dificulte un sueño normal y reparador. A menudo, las personas con apnea central del sueño experimentan fatiga extrema, somnolencia durante el día lo que incide directamente en el índice de riesgo y en la aptitud laboral del trabajador, ya que estas personas pueden quedarse dormidas con mayor facilidad durante la conducción y es por esto que la información que se obtiene a partir de la saturación sanguínea es tan relevante para determinar eventos de fatiga y somnolencia en condiciones de hipoxia hipobárica intermitente crónica. Central sleep apnea can occur as a result of other disorders such as heart failure, stroke, and also due to exposure at geographic height. It is evident to point out that more than one factor could appear in the workers. Central sleep apnea occurs as a consequence of the absence of adequate neural activity that controls the muscles involved in breathing. This disorder is usually due to an instability in the body's feedback mechanisms that control breathing. It is characterized by a lack of impulse to breathe during sleep (10-30 seconds intermittently or per respiratory cycle) and is generally associated with a reduction in blood oxygen saturation. This disorder is different from obstructive sleep apnea, in which it is not possible to breathe normally due to an obstruction in the upper airway. Recurring awakenings associated with sleep apnea make normal, restful sleep difficult. Often, people with central sleep apnea experience extreme fatigue, drowsiness during the day, which directly affects the risk index and work fitness of the worker, since these people can fall asleep more easily while driving and are This is why the information obtained from blood saturation is so relevant to determine events of fatigue and drowsiness in conditions of chronic intermittent hypobaric hypoxia.
Las respuestas fisiológicas que se generan en condiciones de altura geográfica, varían según una serie de rasgos objetivos como: la altitud alcanzada, la humedad ambiental, la temperatura y la velocidad de ascenso entre otros. Pero también influyen rasgos propios del individuo. La tolerancia a la altura depende en gran medida de cada persona y suele ser difícil predecir como la altura afecta a cada individuo si el sistema no considera las diferencias ínter-personales que influyen en altura geográfica. Es por esto que medir y analizar parámetros fisiológicos en concordancia a los datos antropométricos, los cuales nos dan cuenta del estado de salud del individuo, es fundamental para la determinación y monitoreo del índice de riesgo real. The physiological responses that are generated in conditions of geographic altitude, vary according to a series of objective characteristics such as: the altitude reached, the environmental humidity, the temperature and the rate of ascent, among others. But they also influence individual characteristics. Height tolerance is highly dependent on each person and it is often difficult to predict how height affects each individual if the system does not consider inter-personal differences that influence geographic height. For this reason, measuring and analyzing physiological parameters in accordance with anthropometric data, which give us an account of the individual's state of health, is essential for determining and monitoring the real risk index.
El sistema de la presente invención es capaz de recolectar la información del sujeto en observación y mediante un método asociado a un algoritmo personalizado, que considera las diferencias interpersonales de los trabajadores en altura, considerando el estado de salud y la respuesta fisiológica en condiciones de hipoxia hipobárica intermitente crónica, permitiendo determinar el real índice de riesgo que padece cada trabajador bajo cierta condiciones. SISTEMA PARA LA DETERMINACIÓN DEL INDICE DE RIESGO EN TIEMPO REAL. The system of the present invention is capable of collecting information from the subject under observation and through a method associated with a personalized algorithm, which considers the interpersonal differences of workers at height, considering the state of health and the response Physiological in conditions of chronic intermittent hypobaric hypoxia, allowing to determine the real risk index that each worker suffers under certain conditions. SYSTEM FOR DETERMINING THE RISK INDEX IN REAL TIME.
La figura 1 muestra un diagrama general de los distintos elementos o partes que conforman el sistema para la determinación en tiempo real del índice de riesgo. Figure 1 shows a general diagram of the different elements or parts that make up the system for determining the risk index in real time.
MÓDULOS DEL SISTEMA SYSTEM MODULES
La figura 2 describe la estructura de los distintos módulos que conforman el sistema para predecir en tiempo real el estado fisiológico y mental de un sujeto bajo condiciones de hipoxia hipobárica intermitente crónica de la presente invención, el cual consite en: i) Módulo de adquisición de datos Figure 2 describes the structure of the different modules that make up the system to predict in real time the physiological and mental state of a subject under conditions of chronic intermittent hypobaric hypoxia of the present invention, which consists of: i) Module of acquisition of data
ii) Módulo de control ii) Control module
iii) Módulo de Transmisión de datos iii) Data Transmission Module
iv) Módulo de visualización de datos iv) Data display module
vi) Modulo para la generación de acciones vi) Module for the generation of shares
v) Módulo de plataforma y reporte inteligente i) Módulo de adquisición de datos v) Platform module and smart reporting i) Data acquisition module
Datos antropométricos. Anthropometric data.
Para generar una base de datos adecuada que permita que el sistema de monitoreo de índice de riesgo sea capaz de reconocer las diferencias inter individuo, se consideran datos personales como edad y sexo los cuales serán registrados en conjunto con los datos antropométricos que predicen con mayor exactitud alteraciones fisiológicas que tienen mayor incidencia en condiciones de altura geográfica, como: peso, talla y circunvalación cervical, que dan cuenta de presencia de síndrome metabólico y apneas del sueño. To generate an adequate database that allows the risk index monitoring system to be able to recognize inter-individual differences, personal data such as age and sex are considered, which will be recorded in conjunction with anthropometric data that more accurately predict physiological changes that have a greater incidence in conditions of geographical height, such as: weight, height and cervical girth, which account for the presence of metabolic syndrome and sleep apneas.
El actual modelo predictivo puede determinar el índice de riesgo de manera personalizada de la siguiente manera. El software actualiza de manera remota datos de edad, sexo del trabajador y datos antropométricos entre los que se encuentran peso, talla y circunvalación cervical, estos datos se deben de actualizar cada cierto tiempo en conjunto con exámenes médicos específicos para el diagnóstico de enfermedades incidentes en altura geográfica con el apoyo de la encuesta STOP-BANG. El algoritmo desarrollado arroja el factor de salud, el cual es parte del índice de riesgo de los trabajadores en condiciones de hipobaria crónica intermitente ya que condiciona tanto la aclimatación como el estado psicofisiológico de los trabajadores expuestos a altura geográfica. Estos datos en conjunto permiten detectar o predecir enfermedades que dificultan el proceso de aclimatación en altura geográfica, lo que afecta directamente el estado fisiológico y mental de un operador y por tanto su aptitud laboral, exponiéndolo a un evento que puede desencadenar un accidente. The current predictive model can determine the risk index in a personalized way in the following way. The software remotely updates data on the age, sex of the worker and anthropometric data, including weight, height and cervical girth, these data must be updated from time to time in conjunction with specific medical examinations to diagnose incident diseases in geographical height with the support of the STOP-BANG survey. The algorithm developed yields the health factor, which is part of the risk index of workers in conditions of chronic intermittent hypobaria, since it conditions both acclimatization and the psychophysiological state of workers exposed to geographic altitude. Taken together, these data allow the detection or prediction of diseases that hinder the acclimatization process at a geographic height, which directly affects the physiological and mental state of an operator and, therefore, his work ability, exposing him to an event that may trigger an accident.
El sistema permite predecir el factor de riesgo al que están expuestos los trabajadores a través de un método que comprende un modelo predictivo de riesgo que a través del registro de variables fisiológicas y antropométricas representa directamente el estado de funciones neuro-cognoscitivas, respiratorias, metabólicas y conductuales y como el deterioro de estas van aumentando la probabilidad de exponerse a una situación de riesgo al trabajador. Parámetros fisiológicos: Nuestro cuerpo genera diferentes tipos de señales de acuerdo a funciones o estados específicos en el que se encuentra el organismo. Un dispositivo de detección en base a un sistema de biosensores permite registrar variables fisiológicas del sistema nervioso central, sistema nervioso periférico somático y autonómico. Estas variables fisiológicas dan cuenta en tiempo real del estado interno del operador, parámetros que son alterados cuando existe una disminución del nivel de vigilia . The system allows predicting the risk factor to which workers are exposed through a method that includes a predictive model of risk that through the recording of physiological and anthropometric variables directly represents the state of neuro-cognitive, respiratory, metabolic and behavioral and as the deterioration of these are increasing the probability of exposing themselves to a situation of risk to the worker. Physiological parameters: Our body generates different types of signals according to specific functions or states in which the body is found. A detection device based on a biosensors system allows registering physiological variables of the central nervous system, the somatic and autonomic peripheral nervous system. These physiological variables account in real time for the internal state of the operator, parameters that are altered when there is a decrease in the level of wakefulness.
El sistema de biosensores obtiene información de la actividad eléctrica cerebral, saturación de oxígeno en la sangre y conductancia galvánica de la piel de operador. Estas variables fisiológicas están estrechamente relacionadas con el estado de la persona en condiciones de altura geográfica y/o turnos rotativos, dando cuenta al sistema acerca del estado de estrés, somnolencia, fatiga o reacciones emocionales como también enfermedades incidentes que influyen en la toma de decisiones, conductas erráticas, velocidad de reacción, atención y por consiguiente permiten tener una base de datos importante para la determinación del índice de riesgo en tiempo real de él o los operadores. The biosensors system obtains information on brain electrical activity, oxygen saturation in the blood and galvanic conductance of the operator's skin. These physiological variables are closely related to the state of the person in conditions of geographical height and / or rotating shifts, accounting to the system about the state of stress, drowsiness, fatigue or emotional reactions as well as incident diseases that influence decision-making , erratic behaviors, reaction speed, attention and therefore allow to have an important database for the determination of the risk index in real time of him or the operators.
Las variables que considera el modelo predictivo de factor de riesgo corresponden a: A) variable neurofisiológica: electro-encefalograma; B) variable respiratoria, saturación de oxígeno; C) Variable metabólica, datos antropométricos como peso, talla y circunferencia cervical; D) variable conductual, conductividad galvánica de la piel. Variable neurofisiológica: Electro-Encefalograma (EEG). The variables considered by the predictive model of risk factor correspond to: A) neurophysiological variable: electroencephalogram; B) respiratory variable, oxygen saturation; C) Metabolic variable, anthropometric data such as weight, height and cervical circumference; D) behavioral variable, galvanic conductivity of the skin. Neurophysiological variable: Electro-Encephalogram (EEG).
La fatiga se muestra como un indicador de un problema implícito: la pérdida de recursos básicos de un individuo tales como reaccionar en forma oportuna y apropiadamente ante un imprevisto, incrementando significativamente la tasa accidentabilidad del trabajador. Por otra parte la hipoxia produce vasodilatación cerebral, mientras que la reducida presión parcial de C02 en las arterias causa vasoconstricción. Los dos factores se ven en conflicto como consecuencia de la altitud geográfica y alteran funciones neuropsicológicas necesarias para tareas cognitivas complejas como se da en la minería, es decir, el continuo desgaste físico y mental de estas operaciones más las jornadas laborales rotativas (alteración ciclos circadianos), deterioran el estado psicofisiológico del conductor, observándose en los síntomas: fatiga, somnolencia, deterioro de la atención, estrés, ansiedad entre otros. Fatigue is shown as an indicator of an implicit problem: the loss of an individual's basic resources such as reacting in a timely and appropriate manner to the unforeseen, significantly increasing the worker's accident rate. On the other hand, hypoxia produces cerebral vasodilation, while the reduced partial pressure of C0 2 in the arteries causes vasoconstriction. The two factors are in conflict as a consequence of geographic altitude and alter neuropsychological functions necessary for complex cognitive tasks such as occurs in mining, that is, the continuous physical and mental wear and tear of these operations plus rotating working hours (circadian cycle alteration ), deteriorate the psychophysiological state of the driver, observing the symptoms: fatigue, drowsiness, impaired attention, stress, anxiety, among others.
De estos síntomas el que se vincula a la mayor tasa de accidentabilidad durante la conducción es la fatiga. Esta se define como un cambio en los estados fisiológicos y psicológicos que experimenta una persona durante la realización de una actividad cognitiva de alta demanda por un período prolongado de tiempo. Este cambio se ve reflejado como una baja en el desempeño en la ejecución de dicha actividad generando una sensación de agotamiento, cansancio o falta de energía y motivación, que se presenta como un mecanismo regulador, de alarma, que indica al organismo la pérdida de recursos por debajo de un umbral y la necesidad de recuperarlos mediante el descanso. Of these symptoms the one that is linked to the highest accident rate during driving is fatigue. This is defined as a change in the physiological and psychological states that a person experiences during the performance of a high-demand cognitive activity for an extended period of time. This change is reflected as a decrease in performance in the execution of said activity, generating a feeling of exhaustion, tiredness or lack of energy and motivation, which appears as a regulatory, alarm mechanism that indicates the organism the loss of resources below a threshold and the need to recover them through rest.
Utilizando las ondas EEG se puede dar una respuesta a la detección anticipada de este estado, incluso antes que la persona presente un síntoma visible de fatiga, lo cual disminuye la probabilidad de un accidente. El EEG tiene el potencial de ser una herramienta precisa y con alta especificidad para detectar las primeras etapas de fatiga en los operadores (por ejemplo conductores) y minimizar la probabilidad de accidentes. Variable respiratoria: Saturación de oxígeno Using EEG waves, an answer can be given to the early detection of this state, even before the person presents a visible symptom of fatigue, which reduces the probability of an accident. The EEG has the potential to be an accurate and highly specific tool to detect the early stages of fatigue in operators (eg drivers) and minimize the likelihood of accidents. Respiratory variable: oxygen saturation
A medida que se asciende en altura geográfica la presión barométrica se reduce, disminuyendo también la concentración de oxígeno disponible para los tejidos, lo que se conoce como hipoxia. Esta última es la causa de una serie de modificaciones fisiológicas que se producen en el organismo, que permiten mantener los niveles de oxígeno adecuados para las funciones cognitivas y motoras adecuadas. As the geographical altitude is increased, the barometric pressure decreases, also decreasing the concentration of oxygen available to the tissues, which is known as hypoxia. The latter is the cause of a series of physiological changes that occur in the body, which allow maintaining adequate oxygen levels for proper cognitive and motor functions.
La hipoxia hipobárica ocurre como consecuencia de la presión parcial baja de oxígeno (PO2) en el aire inspirado, que resulta de la baja presión barométrica encontrada en altitudes elevadas. Una PO2 arterial inferior a su vez inicia una respuesta fisiológica que intenta mantener la oxigenación tisular. Un parámetro utilizado para determinar la respuesta respiratoria y el transporte de oxígeno en la sangre a los tejidos es el porcentaje de saturación de hemoglobina (% de SaC>2), que se estima a través de la oximetría de pulso. A nivel del mar, los valores fluctúan entre el 95 y el 97%. Valores por debajo del 90% de SaC>2 se asocian con situaciones patológicas tales como insuficiencia respiratoria. Un efecto producido por la exposición a la hipoxia hipobárica es la bien conocida enfermedad de montaña aguda (AMS), cuyos síntomas incluyen dolores de cabeza, vómitos, fatiga, pérdida de apetito y trastornos del sueño. Hypobaric hypoxia occurs as a consequence of the low partial pressure of oxygen (PO2) in the inspired air, which results from the low barometric pressure found at high altitudes. A lower arterial PO2 in turn initiates a physiological response that attempts to maintain tissue oxygenation. A parameter used to determine the respiratory response and the transport of oxygen in the blood to the tissues is the percentage of hemoglobin saturation (% of SaC> 2), which is estimated through pulse oximetry. At sea level, the values fluctuate between 95 and 97%. Values below 90% SaC> 2 are associated with pathological situations such as respiratory failure. One effect produced by exposure to hypobaric hypoxia is the well-known acute mountain sickness (AMS), the symptoms of which include headaches, vomiting, fatigue, loss of appetite, and sleep disturbances.
La respuesta aguda a la hipoxia depende principalmente de 4 factores: la altitud alcanzada, es decir, el grado de hipoxia hipobárica, la tasa de ascenso, la susceptibilidad individual, y los requisitos físicos y ambientales en el ascenso y la llegada. The acute response to hypoxia depends mainly on 4 factors: the altitude reached, that is, the degree of hypobaric hypoxia, the rate of ascent, the individual susceptibility, and the physical and environmental requirements on the ascent and arrival.
Las susceptibilidades personales a la hipoxia tienen que ver con la presencia de sensores de oxígeno y las adaptaciones fisiológicas efectivas. Según la susceptibilidad a la hipoxia, los individuos expuestos pueden clasificarse como buenos respondedores, que toleran y se aclimatan sin síntomas; un grupo con una respuesta baja y síntomas menores temporales que pueden limitar el rendimiento; y respondedores pobres, que muestran baja sensibilidad a la hipoxia y respuestas fisiológicas compensadoras ineficaces. Medir este parámetro mediante oximetría de pulso, alerta sobre el efecto de la altura geográfica en el organismo de los trabajadores, lo que aporta información sobre el estado interno del trabajador y por tanto sí se encuentra en condiciones óptimas para desarrollar sus funciones laborales. La hipoxia aguda o crónica tiene efectos negativos en el funcionamiento cerebral y afecta el estado de las funciones cognitivas tales como la capacidad de atención, memoria y funciones ejecutivas. Los efectos agudos de hipoxia pueden alterar negativamente el procesamiento de la información, y a su vez, ello inducir a dificultades en el proceso de toma de decisión lo que afecta negativamente la aptitud laboral de los trabajadores. Personal susceptibilities to hypoxia have to do with the presence of oxygen sensors and effective physiological adaptations. Depending on the susceptibility to hypoxia, exposed individuals can be classified as good responders, who tolerate and acclimatize without symptoms; a group with a low response and temporary minor symptoms that can limit performance; and poor responders, showing low sensitivity to hypoxia and ineffective compensatory physiological responses. Measuring this parameter using pulse oximetry, alerts about the effect of geographic height on the body of the workers, which provides information on the internal state of the worker and therefore is in optimal conditions to carry out their job functions. Acute or chronic hypoxia has negative effects on brain function and affects the state of cognitive functions such as attention span, memory, and executive functions. The acute effects of hypoxia can negatively alter the processing of information, and in turn, induce difficulties in the decision-making process, which negatively affects the work ability of workers.
Variable conductual: conductancia galvánica de la piel Behavioral variable: galvanic skin conductance
Las mediciones de resistencia y conductividad eléctrica caracterizan el estado funcional de la piel y permiten estimar la actividad del sistema nervioso autonómico, simpático y parasimpático, debido a que en la capa granular de la epidermis se producen los procesos de regulación de los terminales nerviosos que reflejan el estado emocional humano. El valor de esta impedancia depende de la sudoración, la secreción de grasa y la concentración de sales minerales, gases y fluidos extracelulares. La sudoración del cuerpo humano está regulada por el Sistema Nervioso Autónomo (SNA). Las glándulas sudoríparas son excitadas o inhibidas por el sistema nervioso simpático. En particular, si la actividad simpática (SNS) del SNA incrementa, la actividad de la glándula sudorípara también aumenta, lo que a su vez aumenta la conductancia de la piel, y viceversa. Los estados de ansiedad y estrés, que se originan por las extensas jornadas laborales y las exigentes condiciones laborales en altura, modifican y perturban el desempeño de distintas tareas cognitivas dirigidas a una meta. La cantidad de funciones cognitivas que pueden verse afectadas por el estrés es importante: atención, aprendizaje, memoria, toma de decisiones y razonamiento. La intensidad del estrés y las diferencias individuales, determinan en qué grado influirá el estrés en la respuesta de cada función. Measurements of resistance and electrical conductivity characterize the functional state of the skin and allow us to estimate the activity of the autonomic, sympathetic, and parasympathetic nervous system, due to the fact that in the granular layer of the epidermis the regulatory processes of the nerve terminals that reflect the human emotional state. The value of this impedance depends on sweating, fat secretion, and the concentration of mineral salts, gases, and extracellular fluids. Sweating of the human body is regulated by the Autonomous Nervous System (ANS). The sweat glands are excited or inhibited by the sympathetic nervous system. In particular, if the sympathetic activity (SNS) of the ANS increases, the activity of the sweat gland also increases, which in turn increases the skin conductance, and vice versa. The states of anxiety and stress, which originate from the long working hours and the demanding working conditions at height, modify and disturb the performance of different cognitive tasks directed towards a goal. The number of cognitive functions that can be affected by stress is important: attention, learning, memory, decision making, and reasoning. The intensity of stress and individual differences determine to what degree stress will influence the response of each function.
El cambio de emociones, por ejemplo, estados de estrés o ansiedad, generan cambios en la excitación nerviosa incrementando la actividad humectante de las glándulas aumentando las propiedades electroconductivas de la piel y disminuyendo la resistencia óhmica, efecto que se conoce como reflejo sicogalvánico (SGR). Al aumentar el nivel de estrés aumenta la sudoración, dando como resultado una disminución en la resistencia eléctrica de la piel; en caso contrario, si el usuario entra en un estado de relajación, la sudoración disminuirá y la resistencia cutánea aumentará. Mediante esta respuesta fisiológico podremos determinar el efecto del estrés o la ansiedad en la aptitud laboral de los trabajadores. Variables metabólicas: datos antropométricos The change of emotions, for example, states of stress or anxiety, generate changes in nervous excitation, increasing the moisturizing activity of the glands, increasing the electroconductive properties of the skin and decreasing ohmic resistance, an effect known as psychogalvanic reflex (SGR). . As the stress level increases, sweating increases, resulting in a decrease in the electrical resistance of the skin; otherwise, if the user enters a state of relaxation, sweating will decrease and skin resistance will increase. Through this physiological response we will be able to determine the effect of stress or anxiety on the work aptitude of the workers. Metabolic variables: anthropometric data
La obesidad y el sobrepeso son comunes en los trabajadores de la industria minera de gran altitud expuestos a la hipoxia hipobárica intermitente crónica. Obesidad y sobrepeso se asocian con mayores tasas de presión arterial alta, y niveles de colesterol y glucosa, teniendo una importante implicancia en el síndrome de apneas obstructivas, centrales y mixtas. Obesity and overweight are common in high-altitude mining industry workers exposed to chronic intermittent hypobaric hypoxia. Obesity and overweight are associated with higher rates of high blood pressure, and cholesterol and glucose levels, having a significant implication in the syndrome of obstructive, central and mixed apneas.
Estos trastornos inciden con una mayor tasa de accidentabilidad por parte de los trabajadores, debido a que los síntomas que conllevan estas patologías; somnolencia, fatiga física y fatiga mental afectan directamente la aptitud laboral de los trabajadores. Hay evidencia que el valor antropométrico de la circunferencia cervical es un preciso predictor de obesidad y apneas obstructivas, ya que la acumulación de tejido adiposo en la parte superior del cuerpo se ha asociado con la agrupación de trastornos metabólicos y el aumento del riesgo cardiovascular. These disorders have a higher accident rate on the part of workers, due to the symptoms that these pathologies entail; drowsiness, physical fatigue and mental fatigue directly affect the work ability of workers. There is evidence that the anthropometric value of cervical circumference is an accurate predictor of obesity and obstructive apneas, since the accumulation of adipose tissue in the upper body has been associated with the grouping of metabolic disorders and increased cardiovascular risk.
Es por este motivo que la constante evaluación médica y el monitoreo de la circunferencia cervical, talla y peso en conjunto a la encuesta STOP-BANG cada determinado tiempo, son esenciales para aquellos que trabajan y viven en altitudes elevadas, no tan solo para detectar el índice de riesgo al que están expuestos los trabajadores por padecer de estos trastornos, sino también para proporcionar la nutrición correcta, tratamiento adecuado para lograr modificar los factores de riesgo y prevenir los trastornos relacionados. La circunferencia cervical es una medición antropométrica alternativa e innovadora que ahorra tiempo y no es invasiva para ser utilizada en terreno. ii) Módulo de Control It is for this reason that constant medical evaluation and monitoring of cervical circumference, height and weight, together with the STOP-BANG survey from time to time, are essential for those who work and live at high altitudes, not just to detect the risk index to which workers are exposed for suffering from these disorders, but also to provide the correct nutrition, adequate treatment to achieve changes in risk factors and prevent related disorders. Cervical circumference is an innovative and innovative anthropometric measurement that saves time and is non-invasive for use in the field. ii) Control Module
El sistema de la presente invención permite la captura y procesamiento de las variables fisiológicas y de los datos antropométricos, de manera diferencial, permitiendo en tiempo real determinar el índice de riesgo. El sistema consta de un subsistema analógico, que realiza una primera adaptación de la señal, obtenido por el sistema de biosensores de él o los dispositivos, para su posterior adquisición mediante un conversor analógico digital, y de un subsistema digital encargado del filtrado y procesamiento de las señales obtenidas por la etapa analógica (ver Fig. 3). El subsistema digital es el encargado de adquirir las señales del conversor analógico digital para el correcto procesamiento en una tarjeta micro-procesadora, el procesamiento de los parámetros fisiológicos por parte subsistema es capaz de generar por si solo el índice de riesgo cuando el operador no se encuentre expuesto a condiciones de hipoxia hipobárica intermitente crónica. Por otra parte el procesamiento de los datos antropométricos se realiza mediante un algoritmo que genera un factor de salud, que indica el estado de salud del operador. El sistema permite la transmisión tanto de factor de salud y de aclimatación a través de una red de comunicación, que puede ser al menos internet móvil, Wifi, Bluetooth, infrarrojo, ultrasonido, radio frecuencia, Antena Satelital, Ethernet y Comunicación serial, cuando el operador se encuentra expuesto a condiciones de hipoxia hipobárca intermitente crónica. El modelo predictivo puede generar índice de riesgo y las acciones de salida considerando al menos uno de los tres factores que considera el actual método, para cada trabajador bajo las distintas condiciones laborales. iii) Módulo de transmisión de datos The system of the present invention allows the capture and processing of physiological variables and anthropometric data, in a differential way, allowing the risk index to be determined in real time. The system consists of an analog subsystem, which performs a first adaptation of the signal, obtained by its biosensors system or devices, for its subsequent acquisition by means of an analog-digital converter, and a digital subsystem in charge of filtering and processing the signals obtained by the analog stage (see Fig. 3). The digital subsystem is in charge of acquiring the signals from the analog-to-digital converter for correct processing on a microprocessor card, the processing of physiological parameters by the subsystem is capable of generating the risk index by itself when the operator is not find yourself exposed to conditions of chronic intermittent hypobaric hypoxia. On the other hand, the processing of anthropometric data is carried out using an algorithm that generates a health factor, which indicates the health status of the operator. The system allows the transmission of both health factor and acclimatization through a communication network, which can be at least mobile internet, Wifi, Bluetooth, infrared, ultrasound, radio frequency, Satellite Antenna, Ethernet and serial communication, when the operator is exposed to conditions of chronic intermittent hypobaric hypoxia. The predictive model can generate risk index and exit actions considering at least one of the three factors considered by the current method, for each worker under different working conditions. iii) Data transmission module
El módulo de control del sistema posee una red de comunicación. La comunicación de datos puede ser realizada a través de una red privada (Intranet) o vía Internet, mediante al menos un sistema de internet móvil, Wifi, Bluetooth, infrarrojo, ultrasonido, radio frecuencia, Satelital, Ethernet y mediante comunicación serial o paralela, para la transmisión del factor de salud obtenido del procesamiento de los datos antropométricos del operador ingresados a la plataforma, y la transmisión de factor de aclimatación según el nivel de altura geográfica que operan los trabajadores en caso que este bajo condiciones de hipoxia hipobárica intermitente crónica para que se procesen todos los factores anteriormente descritos en la unidad de procesamiento por el modelo predictivo que arrojará tanto el índice de riesgo como la acciones de salida personalizada para cada operador. iv) Modulo del panel de visualización The system control module has a communication network. Data communication can be done through a private network (Intranet) or via the Internet, through at least one mobile internet system, Wifi, Bluetooth, infrared, ultrasound, radio frequency, Satellite, Ethernet and through serial or parallel communication, for the transmission of the health factor obtained from the processing of the anthropometric data of the operator entered into the platform, and the transmission of acclimatization factor according to the level of geographical height that the workers operate in case they are under conditions of chronic intermittent hypobaric hypoxia to that all the factors previously described in the processing unit are processed by the predictive model that will give both the risk index and the customized exit actions for each operator. iv) Display panel module
El sistema incluye una interfaz que permite visualizar el índice de riesgo como resultado del procesamiento de los datos medidos y registrados. El índice de riesgo se muestra en el panel de visualización de manera local para el conductor o trabajador y mediante la señal de internet es transmitido a una plataforma centralizada. The system includes an interface that allows to visualize the risk index as a result of the processing of the measured and recorded data. The risk index is displayed on the display panel locally for the driver or worker and is transmitted via the internet signal to a centralized platform.
Las alertas en la cabina le indican al conductor que acciones debe tomar, considerando el factor de salud y el factor de aclimatación del operador en condiciones de hipoxia hipobarica intermitente crónica. Las alertas de la plataforma centralizada permiten generar un amplio reporte con toda la información asociada a los distintos eventos durante la conducción. La transmisión de datos permite intercambiar información relativa al índice de riesgo por radiocomunicación a cualquier aparto externo como: Smartphone, tablets. Notebook, etc. El panel de visualización cuenta con una memoria que almacena los datos en caso de no contar con una señal de internet adecuada para la transmisión de datos a la base de dato del servidor. v) Modulo de generación de acción. Alerts in the cab tell the driver what actions to take, considering the operator's health factor and acclimatization factor under conditions of chronic intermittent hypobaric hypoxia. Centralized platform alerts allow generating a comprehensive report with all the information associated with different events while driving. The data transmission allows exchanging information related to the risk index by radio communication to any external device such as: Smartphone, tablets. Notebook, etc. The display panel has a memory that stores the data in case of not having an adequate internet signal for the transmission of data to the database of the server. v) Action generation module.
El sistema comprende actuadores que pueden ser accionados local o remotamente para ejecutar alguna acción sobre el trabajador con el fin de mejorar el índice de riesgo. Estas acciones consideran, por ejemplo, el proporcionar O2 al habitáculo donde se encuentra el trabajador, generar cambios en luminosidad, emitir sonidos entre otros. The system includes actuators that can be activated locally or remotely to execute some action on the worker in order to improve the risk index. These actions consider, for example, providing O2 to the cabin where the worker is located, generating changes in luminosity, emitting sounds, among others.
vi) Modulo de plataforma y reportes inteligentes vi) Platform module and smart reports
Todos los datos relativos al índice de riesgo quedan registrados en la base de datos del sistema. Estos datos permiten generar reportes inteligentes con toda la información asociada al evento durante la conducción, identificando en base a esto los focos de riesgo para el trabajador de manera personalizada derivándose a un plan de acción general o específico, dependiendo del riesgo, para cada operador. MÉTODO PARA PREDECIR ÍNDICE DE RIESGO EN TIEMPO REAL All the data related to the risk index are registered in the system database. These data allow the generation of intelligent reports with all the information associated with the event while driving, identifying on the basis to this the focus of risk for the worker in a personalized way, leading to a general or specific action plan, depending on the risk, for each operator. METHOD FOR PREDICTING RISK INDEX IN REAL TIME
El método de la presente invención, representado en el diagrama de flujo de la figura 4, permite predecir el índice predictivo de riesgo en tiempo real considerando al menos el factor psicofisiológico durante la actividad que se esté desarrollando, en caso que se encuentren los operadores en condiciones hipoxia hipobárica intermitente crónica, el método considera el efecto individual de la altura geográfica en la aptitud laboral, mediante el registro de parámetros fisiológicos y variables antropométricas en tiempo real, mediante el modelo predictivo procesando los 3 factores: Factor de salud, Factor de aclimatación y Factor Psicofisiológico. The method of the present invention, represented in the flow diagram of Figure 4, allows predicting the predictive index of risk in real time, considering at least the psychophysiological factor during the activity being carried out, in the event that the operators are in Chronic intermittent hypobaric hypoxia conditions, the method considers the individual effect of geographic height on work ability, by recording physiological parameters and anthropometric variables in real time, using the predictive model processing the 3 factors: Health factor, Acclimatization factor and Psychophysiological Factor.
El método de la presente invención comprende el procesamiento analítico de los datos de manera diferencial en tiempo real, mediante un desarrollo adaptativo, que logra evaluar de manera personalizada la aptitud laboral del trabajador en estas específicas condiciones laborales, en base a información fisiológica en la conducción de cada operador. The method of the present invention comprises the analytical processing of the data in a differential way in real time, by means of an adaptive development, which manages to evaluate in a personalized way the worker's work ability in these specific working conditions, based on physiological information on driving of each operator.
El método permite predecir un cambio en el índice de riesgo pronosticado, que excede la referencia predeterminada en base a la actividad del sistema nervioso central, sistema nervioso autónomo, y/o datos antropométricos del operador, emitiéndose una señal de alerta que se muestra en un panel de visualización, poniendo al tanto al usuario como a la persona a cargo de supervisar las operaciones, información acerca del índice de riesgo del operador y por otra parte el método permite corregir y prevenir un cambio en el índice de riesgo pronosticado mediante las acciones que ordena para lograr re- establecer los niveles fisiológicos adecuados para disminuir el índice de riesgo en los trabajadores. The method allows predicting a change in the predicted risk index, which exceeds the predetermined reference based on the activity of the central nervous system, autonomic nervous system, and / or anthropometric data of the operator, emitting an alert signal that is displayed in a display panel, providing both the user and the person in charge of supervising operations, information about the operator's risk index and, on the other hand, the method allows correcting and preventing a change in the risk index predicted by the actions that orders to achieve re- establish adequate physiological levels to decrease the risk index in workers.
Este sistema y método mediante el procesamiento diferencial de los datos permite determinar un índice de riesgo en operadores considerando distintos factores que afectan su aptitud laboral. El procesamiento paralelo del método permite detectar el índice de riesgo al que están expuestos los operadores en tiempo real al menos considerando parámetros fisiológicos, los cuales son procesados en tiempo real. El método es capaz de monitorear el índice de riesgo al que están expuestas los operadores considerando también el efecto de la hipoxia intermitente crónica en caso que sea necesario, considerando el efecto de esta condición en la salud y en la aclimatación, en la aptitud laboral ya sea para generar un índice de riesgo y las acciones de salida adecuadas según estas condiciones de operabilidad. This system and method through differential data processing allows determining a risk index in operators considering different factors that affect their work ability. The parallel processing of the method allows detecting the risk index to which operators are exposed in real time, at least considering physiological parameters, which are processed in real time. The method is capable of monitoring the risk index to which operators are exposed, also considering the effect of chronic intermittent hypoxia if necessary, considering the effect of this condition on health and acclimatization, on work ability and either to generate a risk index and the appropriate exit actions according to these operability conditions.
El método de la presente invención ha sido implementado en un microprocesador del módulo de control para llevar a cabo las siguientes etapas en tiempo real: The method of the present invention has been implemented in a microprocessor of the control module to carry out the following steps in real time:
1) Adquisición de las señales procedentes de los sensores. 1) Acquisition of signals from sensors.
2) Filtrado de las señales. 2) Filtering the signals.
3) Ajuste de las señales. 3) Adjustment of signals.
4) Adquisición de datos antropométricos 4) Acquisition of anthropometric data
5) Procesamiento de los parámetros fisiológicos, registrados en tiempo real, de forma conjunta con los datos antropométricos para detectar de manera temprana el índice de riesgo de los trabajadores en condición de hipoxia hipobárica intermitente crónica. 5) Processing of the physiological parameters, recorded in real time, together with anthropometric data to detect early the risk index of workers in chronic intermittent hypobaric hypoxia.
El presente método en condiciones de hipoxia hipobárica intermitente crónica parte con una evaluación de salud, este está dirigido a detectar tempranamente enfermedades que afectaran la aclimatación del organismo y por tanto el estado psicofiológico del operador, es decir patologías que alteran aún más los parámetros fisiológicos que condicionarán la conducta del individuo en altura geográfica, afectando la aptitud laboral lo que significa un mayor índice de riesgo para el trabajador. i) Factor de salud The present method in conditions of chronic intermittent hypobaric hypoxia starts with a health assessment, this is aimed at early detection of diseases that affect the acclimatization of the organism and therefore the psycho-physiological state of the operator, that is, pathologies that further alter the physiological parameters that will condition the behavior of the individual in geographic height, affecting work ability, which means a higher risk index for the worker. i) Health factor
El modelo predictivo determina el índice de riesgo de manera personalizada de la siguiente manera. El sistema permite actualizar de manera remota datos de edad, sexo del trabajador y datos antropométricos entre los que se encuentran peso, talla y circunvalación cervical. Estos datos en conjunto mediante un algoritmo permiten predecir y/o detectar enfermedades que dificultan el proceso de aclimatación en altura geográfica, lo que deteriora aún más el estado psicofisiológico de los trabajadores, es decir, afecta directamente el estado fisiológico y mental de un operador y por tanto su aptitud laboral, exponiéndolo a un evento que puede desencadenar un accidente. The predictive model determines the risk index in a personalized way as follows. The system allows to remotely update data on the age, sex of the worker and anthropometric data, including weight, height and cervical girth. These data together by means of an algorithm allow predicting and / or detecting diseases that hinder the acclimatization process at geographic height, which further deteriorates the psychophysiological state of workers, that is, directly affects the physiological and mental state of an operator and therefore his work aptitude, exposing him to an event that can trigger an accident.
La evaluación de salud arroja el factor de salud, el cual es parte del índice de riesgo de los trabajadores en condiciones de hipobaria crónica intermitente ya que condiciona tanto la aclimatación como el estado psicofisiológico de los trabajadores expuestos a altura geográfica. The health assessment shows the health factor, which is part of the risk index of workers in conditions of intermittent chronic hypobaria, since it conditions both acclimatization and the psychophysiological state of workers exposed to geographic altitude.
La evaluación de salud busca detectar de manera fácil, predictiva y rápida, según los valores que tengan de la circunferencia cervical, peso y talla, la presencia de enfermedades como apnea obstructiva del sueño y obesidad, es relevante detectar estas patologías ya que estas afectan de manera significativa la aclimatación y la aptitud laboral de los trabajadores, debido a los síntomas que estas conllevan; somnolencia, fatiga física y fatiga mental, mediante este factor de salud se predice en una primera instancia, el riesgo al que están expuesto los operadores en condiciones de altura geográfica padeciendo estas patologías. Estas evaluaciones de salud se realizan cada cierto período de tiempo en conjunto con exámenes de diagnóstico específicos para estas enfermedades incidentes y la encuesta STOP-BANG, ya que en condiciones de hipobaria crónica intermitente existe un riesgo mayor de padecer Obesidad y Apnea obstructiva, lo que permite al sistema precisar el índice de riesgo y las acciones de salida. No detectar estas enfermedades a tiempo es riesgoso, debido a que afectan negativamente el estado psicofisiológico del operador y a la aclimatación, condicionando aún más aptitud laboral. De esta manera se mantiene actualizado el historial de cada operador y el sistema puede arrojar el real índice riesgo al que están expuestos los trabajadores en estas condiciones laborales. The health evaluation seeks to detect easily, predictively and quickly, according to the values of the cervical circumference, weight and height, the presence of diseases such as obstructive sleep apnea and obesity, it is relevant to detect these pathologies since they affect Acclimatization and the work aptitude of the workers significantly, due to the symptoms that these entail; drowsiness, physical fatigue and mental fatigue, by means of this health factor, the risk to which operators are exposed in conditions of high altitude suffering from these pathologies is predicted in the first instance. These health evaluations are carried out every certain period of time in conjunction with specific diagnostic tests for these incident diseases and the STOP-BANG survey, since in conditions of intermittent chronic hypobaria there is an increased risk of Obesity and obstructive Apnea, which it allows the system to specify the risk index and the exit actions. Failure to detect these diseases in time is risky, since they negatively affect the operator's psychophysiological state and acclimatization, further conditioning occupational fitness. In this way, the history of each operator is kept updated and the system can give the real risk index to which workers are exposed in these working conditions.
Una de las principales ventajas comparativas del método de la presente invención, es que considera enfermedades claves que predisponen el estado psicofisiológico del trabajador en condiciones de altura geográfica, para predecir índice de riesgo en la jornada laboral de manera personalizada. ii) Factor de aclimatación One of the main comparative advantages of the method of the present invention is that it considers key diseases that predispose the psychophysiological state of the worker in conditions of geographical height, to predict the risk index in the workday in a personalized way. ii) Acclimatization factor
La aclimatación corresponde al conjunto de procesos fisiológicos adaptativos que se inician cuando el organismo se expone a una disminución de la presión atmosférica, cuya principal acción es la disminución de la disponibilidad de oxígeno inspirado, estos tienen la finalidad de mitigar el efecto de la caída del aporte del oxígeno a nivel celular y mejorar la capacidad del organismo a tolerar la gran altitud. Acclimatization corresponds to the set of adaptive physiological processes that start when the organism is exposed to a decrease in atmospheric pressure, the main action of which is to decrease the availability of inspired oxygen. These are intended to mitigate the effect of the drop in supply of oxygen at the cellular level and improve the body's ability to tolerate high altitude.
Durante este proceso se reconocen dos categorías de respuestas fisiológicas, la fase aguda y la fase crónica. Durante la fase aguda se observan un conjunto de respuestas iniciales respiratorias, cardiovasculares, renales, hormonales desencadenadas frente al estrés hipóxico, por menor disponibilidad de moléculas de O2 en un ambiente hipobárico. Esta reacción se expresa rápidamente por síntomas y signos percibidos, que con el correr de las horas, a no mediar buena oxigenación, puede dar lugar a los síntomas de Mal Agudo de Montaña. Esta fase tiene una duración de 48 a 72 y la fase crónica corresponde a procesos fisiológicos para atenuar y compensar hipoxia hipobárica, produciéndose cambios internos un poco más lentos, que ayudan a lograr la aclimatación del trabajador, permitiéndole desempeñarse en su jornada laboral libre de síntomas. Por otra parte, el nivel de altura alcanzado es determinante en el período de tiempo que el organismo tarda en lograr la aclimatación completa. Pero en el caso de los trabajadores expuestos a hipobaria crónica intermitente, estos cambios se revierten una vez que descienden a nivel del mar por más de 48-72 horas. Este sistema de turnos que alterna periódicamente a los trabajadores entre altura y nivel del mar, permite la absoluta aclimatación aproximadamente a los 18 de meses de exposición a estas condiciones. During this process, two categories of physiological responses are recognized, the acute phase and the chronic phase. During the acute phase, a set of initial respiratory, cardiovascular, renal, and hormonal responses to hypoxic stress are observed, due to less availability of O2 molecules in a hypobaric environment. This reaction is quickly expressed by perceived symptoms and signs, which over the course of hours, unless good oxygenation occurs, can give rise to the symptoms of Acute Mountain Sickness. This phase lasts from 48 to 72 and the chronic phase corresponds to physiological processes to attenuate and compensate hypobaric hypoxia, producing slightly slower internal changes, which help to achieve the acclimatization of the worker, allowing him to perform in his work day free of symptoms . On the other hand, the height level reached is decisive in the period of time that the body takes to achieve full acclimatization. But in the case of workers exposed to intermittent chronic hypobaria, these changes are reversed once they descend to sea level for more than 48-72 hours. This shift system that periodically alternates workers between height and sea level, allows absolute acclimatization at approximately 18 months of exposure to these conditions.
Teniendo en consideración lo anteriormente mencionado el modelo predictivo señala el índice de riesgo considerando la aclimatación de los trabajadores, de acuerdo al nivel de altura geográfica en el que trabaja el operador, información que actualiza remotamente en el sistema. Es mediante una comparación de los parámetros fisiológicos esperados en los distintos niveles de altura geográfica que considera el sistema, con los parámetros fisiológicos monitoreados por el dispositivo de detección, específicamente los valores registrados de la saturación sanguínea, durante las fases de aclimatación. Taking into account the aforementioned, the predictive model indicates the risk index considering the acclimatization of the workers, according to the level of geographic height at which the operator works, information that is updated remotely in the system. It is through a comparison of the physiological parameters expected at the different levels of geographic altitude considered by the system, with the physiological parameters monitored by the detection device, specifically the values recorded for blood saturation, during the acclimatization phases.
Mediante la actualización de la información sobre el nivel de altura geográfica, el sistema reconoce de manera distinta el tiempo de aclimatación en los diferentes rangos de altura alcanzada, el rango entre los 2.000-3.000 metros sobre el nivel del mar demora un tiempo de 5 días, el rango entre 3.000-4.000 sobre el nivel del mar demora un tiempo de 10 días y el rango entre 4.000- 5.000 metros sobre el nivel del mar demora un tiempo de 15 días. By updating the information on the geographical height level, the system recognizes the acclimatization time in the different ranges of height reached differently, the range between 2,000-3,000 meters above sea level takes 5 days , the range between 3,000-4,000 above sea level it takes 10 days and the range between 4,000-5,000 meters above sea level takes 15 days.
De esta manera el método establece de manera diferenciada el factor de aclimatación según el nivel de altura alcanzada y el tiempo que individuo está expuesto a esta condición, considerando las diferencias en los parámetros fisiológico durante la fase aguda y la fase crónica, es decir los valores de los parámetros fisiológicos que indiquen que un individuo está en sus óptimas condiciones para ejercer sus funciones laborales, será diferenciado tanto para la fase aguda como para la fase crónica durante el tiempo de aclimatación establecido por el sistema. De esta manera el sistema es capaz de reconocer mediante la saturación de oxígeno en la sangre, si el organismo está presentando problemas de aclimatación y predecir el índice de riesgo al que está expuesto el trabajador durante la jornada laboral. In this way, the method establishes the acclimatization factor in a differentiated way according to the level of height reached and the time that the individual is exposed to this condition, considering the differences in the physiological parameters during the acute phase and the chronic phase, that is, the values of the physiological parameters that indicate that an individual is in his optimal conditions to carry out his work functions, he will be differentiated for both the acute phase and the chronic phase during the acclimatization time established by the system. In this way, the system is able to recognize, by saturating oxygen in the blood, if the organism is presenting acclimatization problems and to predict the risk index to which the worker is exposed during the workday.
En caso que el trabajador padezca de obesidad o apneas obstructivas del sueño, enfermedades detectadas mediante la evaluación de salud, el modelo predictivo determina un índice de riesgo que considera el efecto de estas patologías en el proceso de aclimatación alertando tempranamente el riesgo al que está expuesto este trabajador. En altura geográfica se ha visto que la obesidad y la apnea obstructiva del sueño pueden condicionar mayor riesgo de mal agudo de montaña y empeorar la aclimatación, lo que afecta directamente al índice de riesgo de los trabajadores. El método permite monitorear en tiempo real el estado psicofisiológico, considerando el proceso de la aclimatación y las enfermedades que afectan este proceso, mediante el registro y análisis de variables fisiológicas y variables antropométricas, detectando tempranamente estados de fatiga, somnolencia, deterioro de la atención y el estrés, indicándole al trabajador el índice de riesgo al que está expuesto durante su jornada laboral y las acciones de salidas para la adecuada gestión del índice de riesgo. iii) Factor del estado psicofisiológico; registro de parámetros fisiológicos en tiempo real. In the event that the worker suffers from obesity or obstructive sleep apneas, diseases detected through the health assessment, the predictive model determines a risk index that considers the effect of these pathologies on the acclimatization process, warning early on the risk to which it is exposed. this worker. At geographic height, it has been seen that obesity and obstructive sleep apnea can condition an increased risk of acute mountain sickness and worsen acclimatization, which directly affects the risk index of workers. The method allows real-time monitoring of the psychophysiological state, considering the acclimatization process and the diseases that affect this process, by registering and analyzing physiological and anthropometric variables, detecting early states of fatigue, drowsiness, deterioration of attention and stress, indicating to the worker the risk index to which you are exposed during your working day and the exit actions for the proper management of the risk index. iii) Factor of the psychophysiological state; recording of physiological parameters in real time.
El cuerpo humano genera diferentes tipos de señales de acuerdo a funciones o estados específicos en el que se encuentre el organismo. The human body generates different types of signals according to specific functions or states in which the organism is found.
Siguiendo esta misma línea el sistema comprende al menos de un dispositivo de detección en base a biosensores que es capaz de registrar las variables fisiológicas que experimentan una mayor alteración, dando cuenta del estado fisiológico y mental del operador, bajo condiciones de al menos exposición a la altura geográfica, extensas jornadas laborales y sistema de turnos rotativos. A través de un modelo predictivo, el sistema es capaz de predecir el índice de riesgo al que está sometido el trabajador, según el deterioro de las funciones fisiológicas registradas por el dispositivo de detección bajo estas condiciones laborales en tiempo real y por otra parte el método permite corregir y prevenir un cambio en el índice de riesgo pronosticado mediante las acciones que ordena para lograr re-establecer los niveles fisiológicos adecuados para disminuir el índice de riesgo en los trabajadores. Following this same line, the system comprises at least one detection device based on biosensors that is capable of registering the physiological variables that undergo the greatest alteration, accounting for the operator's physiological and mental state, under conditions of at least exposure to geographic height, long working hours and rotating shift system. Through a predictive model, the system is able to predict the risk index to which the worker is subjected, according to the deterioration of the physiological functions recorded by the detection device under these working conditions in real time and, on the other hand, the method it allows correcting and preventing a change in the forecasted risk index through the actions it orders to re-establish the appropriate physiological levels to decrease the risk index in the workers.
Este dispositivo de detección consta de un sistema de biosensores que obtienen información de la actividad eléctrica cerebral, saturación de oxígeno y conductancia galvánica de la piel de operador. Estas variables fisiológicas están estrechamente relacionadas con el estado psicofisiológico del trabajador, detectando a través de estas tempranamente la presencia de estrés, somnolencia, fatiga y deterioro de la atención, lo cual influye significativamente en el índice de riesgo de los trabajadores. A) Saturación de oxígeno This detection device consists of a system of biosensors that obtain information on brain electrical activity, oxygen saturation and galvanic conductance from the operator's skin. These physiological variables are closely related to the psychophysiological state of the worker, detecting through them early the presence of stress, drowsiness, fatigue and deterioration of attention, which significantly influences the risk index of the workers. A) Oxygen saturation
A medida que se asciende en altura geográfica la presión barométrica se reduce, disminuyendo también la concentración de oxígeno disponible para los tejidos, lo que se conoce como hipoxia. Esta última es la causa de una serie de modificaciones fisiológicas que se producen en el organismo, que permiten mantener los niveles de oxígeno para las funciones cognitivas y motoras de manera adecuadas. As the geographical altitude is increased, the barometric pressure decreases, also decreasing the concentration of oxygen available to the tissues, which is known as hypoxia. The latter is the cause of a series of physiological changes that occur in the body, which allow oxygen levels to be maintained properly for cognitive and motor functions.
El esfuerzo que hace el organismo para llegar a los niveles de oxígeno que permiten un rendimiento óptimo y desarrollar las funciones laborales sin problemas, depende principalmente de la aclimatación, del nivel de altitud alcanzado y la susceptibilidad de cada individuo a someterse a estas condiciones. Mediante un oxímetro de pulso se determina el porcentaje de saturación de hemoglobina (% de SatC>2). El oxímetro de pulso mide la absorción de luz de longitudes de onda específicas que dependerá de la proporción existente entre la hemoglobina oxigenada u oxihemoglobina y la hemoglobina desoxigenada. De esta manera el dispositivo de detección estará registrando en tiempo real la respuesta respiratoria y el transporte de oxígeno en la sangre, entregando información acerca del estado de salud de salud del operador, con respecto a alteraciones respiratorias, independiente del proceso de aclimatación, que también es considerado por el índice de riesgo y las respectivas acciones de salida. The effort that the organism makes to reach the oxygen levels that allow optimal performance and develop work functions without problems, depends mainly on acclimatization, the altitude level reached and the susceptibility of each individual to submit to these conditions. Using a pulse oximeter, the percentage of hemoglobin saturation (% SatC> 2) is determined. The pulse oximeter measures the absorption of light of specific wavelengths that will depend on the ratio of oxygenated hemoglobin or oxyhemoglobin to deoxygenated hemoglobin. In this way, the detection device will be recording the respiratory response and oxygen transport in the blood in real time, providing information about the operator's state of health, regarding respiratory disorders, independent of the acclimatization process, which will also It is considered by the risk index and the respective exit actions.
El modelo predictivo de la invención se basa en diferentes rangos de altura geográfica, The predictive model of the invention is based on different ranges of geographic height,
y a la respectiva saturación sanguínea de oxígeno esperable a estos niveles de altura, información que se actualiza según los niveles de altura geográfica que opere el trabajador. Se tiene esto en consideración para determinar el índice de riesgo ya sea en la fase aguda como en la fase crónica, indicando mediante el monitoreo de saturación de oxígeno en la sangre, si el trabajador ya está aclimatado y por tanto si se encuentra en óptimos condiciones para desarrollar sus funciones laborales, o en caso contrario el factor de aclimatación corroborará si el valor de la saturación de oxígeno en la sangre se encuentra fuera de lo normal, indicando que el individuo se encuentra desaclimatado el trabajador, por tanto el índice de riesgo es mayor. Los rangos que maneja el modelo predictivo corresponde a los siguientes: and the respective blood oxygen saturation expected at these height levels, information that is updated according to the geographic height levels that the worker operates. This is taken into account to determine the risk index either in the acute phase or in the chronic phase, indicating by monitoring oxygen saturation in the blood, if the worker is already acclimatized and therefore if he is in optimal conditions to carry out his job functions, or in Otherwise, the acclimatization factor will corroborate if the value of the oxygen saturation in the blood is out of the normal, indicating that the individual is acclimatized to the worker, therefore the risk index is higher. The ranges that the predictive model manages correspond to the following:
trabajadores expuestos a menos de 2.400 metros sobre el nivel del mar, las SatC>2 será mayor al 96%; workers exposed to less than 2,400 meters above sea level, SatC> 2 will be greater than 96%;
trabajadores expuestos a altitudes entre 2.500 y 3.900 metros sobre nivel del mar, la SatC>2 se encuentra entre 91- 95%; y workers exposed to altitudes between 2,500 and 3,900 meters above sea level, SatC> 2 is between 91-95%; and
trabajadores expuestas a alturas mayores de 3900 metros sobre el nivel del mar, la SatC>2 están en el rango de 90%-85%. workers exposed to heights greater than 3900 meters above sea level, SatC> 2 are in the range of 90% -85%.
Como se señaló anteriormente una de principales ventajas comparativas del sistema, es que es el único que considera enfermedades claves que predisponen el estado psicofisiológico del trabajador en condiciones de altura geográfica, enfermedades que poseen una mayor incidencia, como la apnea obstructiva y central del sueño, ya que estas patologías pueden llegar bajo el 90% de saturación de oxígeno en la sangre a nivel del mar, haciendo más compleja la aclimatación y por tanto predisponiendo negativamente el estado psicofisiológico del trabajador, ya que los síntomas asociados a este rango de saturación sanguínea, propician estados de fatiga, somnolencia, saturación física y mental, trastornos de sueños entre otros, exponiendo al individuo a una mayor tasa de accidentabilidad. As previously noted, one of the main comparative advantages of the system is that it is the only one that considers key diseases that predispose the worker's psychophysiological state in conditions of geographic altitude, diseases that have a higher incidence, such as obstructive and central sleep apnea, since these pathologies can reach under 90% of oxygen saturation in the blood at sea level, making acclimatization more complex and therefore negatively predisposing the psychophysiological state of the worker, since the symptoms associated with this range of blood saturation, They promote states of fatigue, drowsiness, physical and mental saturation, sleep disorders, among others, exposing the individual to a higher accident rate.
El modelo predictivo, mediante el análisis del factor de salud, condiciona el índice de riesgo del individuo ya que predice lo complejo que será la aclimatación y por tanto el mayor deterioro del estado psicofisiológico durante la jornada laboral de un individuo expuesto a condiciones de altura geográfica. En base a esta información el método es capaz de monitorear la aclimatación, considerando nivel de altura, las diferentes susceptibilidades a la hipoxia, durante la fase aguda y la fase crónica y enfermedades que afectan una adecuada aclimatación. The predictive model, through the analysis of the health factor, determines the individual's risk index since it predicts how complex the acclimatization will be and therefore the greatest deterioration of the psychophysiological state during the working day of an individual exposed to conditions of geographical height. Based on this information, the method is capable of monitoring acclimatization, considering height level, the different susceptibilities to hypoxia, during the acute phase and the chronic phase, and diseases that affect adequate acclimatization.
B) Actividad cerebral B) Brain activity
El cerebro humano produce impulsos eléctricos, llamados potenciales de acción que viajan a través de nuestras neuronas. Estos impulsos eléctricos producen ritmos que son conocidos como ondas cerebrales. Los impulsos eléctricos son información que viaja de neurona a neurona haciendo uso de cientos de miles de ellas para lograr transportarse y ejecutar una función determinada. La actividad de las ondas cerebrales puede ser registrada a través de un electroencefalograma o EEG. Se Sabe que los diferentes patrones de ondas cerebrales se relacionan biyectivamente con diferentes estados de consciencia, tales como concentración intensa, estado de alerta, somnolencia, fatiga entre otros. Las principales ondas cerebrales que se relacionan con estos estados son las ondas beta, alfa, theta y delta. Ondas Beta. Se producen cuando el cerebro está despierto e implicado en actividades mentales. Son ondas amplias y las de mayor velocidad de transmisión de las cuatro. Su frecuencia oscila entre 13-30 Hertz denotan una actividad mental intensa. Ondas Alfa. Alfa representa un estado de escasa actividad cerebral y relajación. Estas ondas son más lentas y de mayor amplitud que las betas. Su frecuencia oscila entre 8 y 12 Hertz. The human brain produces electrical impulses, called action potentials, that travel through our neurons. These electrical impulses produce rhythms that are known as brain waves. Electrical impulses are information that travels from neuron to neuron using hundreds of thousands of them to transport and perform a certain function. Brain wave activity can be recorded through an electroencephalogram or EEG. It is known that different brain wave patterns are bijectively related to different states of consciousness, such as intense concentration, alertness, drowsiness, fatigue, among others. The main brain waves that are related to these states are beta, alpha, theta, and delta waves. Beta waves. They occur when the brain is awake and involved in mental activities. They are broad waves and the ones with the highest transmission speed of the four. Their frequency ranges from 13-30 Hertz denoting intense mental activity. Alpha waves. Alpha represents a state of poor brain activity and relaxation. These waves are slower and wider than the betas. Its frequency ranges between 8 and 12 Hertz.
Ondas Theta. Son ondas de mayor amplitud y menor frecuencia entre 4 y 8 Hertz. Estudios muestran que la actividad de Teta generalmente aumenta durante el tiempo en la tarea y fatiga mental. Este aumento a menudo va acompañado de una menor capacidad cognitiva y motora, observándose una disminución de la velocidad en los tiempos de reacción y un deterioro en la atención. Se trata de un estado en el que las tareas realizadas se han automatizado, ya no se necesita tener un control atencional y consciente de su ejecución. Theta waves. They are waves of greater amplitude and lower frequency between 4 and 8 Hertz. Studies show that Teta activity generally increases during homework time and mental fatigue. This increase is often accompanied by a lower cognitive and motor capacity, with a decrease in speed in reaction times and a deterioration in attention. It is a state in which the tasks carried out have been automated, you no longer need to have attentive and conscious control of their execution.
Ondas Delta. Son las ondas de mayor amplitud y menor frecuencia 1- 4 Hertz. Normalmente están asociadas con etapas de sueño profundo. En la actividad cerebral, estas ondas se presentan en las etapas tres y cuatro, en casos de daño cerebral y coma. Las ondas delta se presentan en sueño profundo sin soñar y no están presentes en las otras etapas del sueño (1 ,2 y de movimiento rápido de ojos). Cuando nos vamos a dormir, las ondas cerebrales van pasando sucesivamente de beta a alfa, theta y finalmente, delta. Durante el sueño se producen ciclos que duran unos 90 minutos. Delta waves. They are the waves with the greatest amplitude and lowest frequency 1-4 Hertz. They are normally associated with stages of deep sleep. In brain activity, these waves occur in stages three and four, in cases of brain damage and coma. Delta waves occur in deep dreamless sleep and are not present in the other stages of sleep (1, 2, and rapid eye movement). When we go to sleep, the brain waves go successively from beta to alpha, theta and finally, delta. During sleep cycles that last about 90 minutes occur.
Es a través del registro de estas ondas cerebrales que se reconocen patrones cerebrales que predicen tempranamente estados de fatiga, somnolencia y deterioro de la atención, lo que da cuenta al sistema sobre el estado psicofisiológico del trabajador y de aptitud laboral para enfrentar la actividades de alta complejidad . El sistema es capaz de detectar el deterioro en tiempo real del estado psicofisiológico, mediante el registro de la actividad cerebral a través de un sistema de electrodos. El algoritmo reconoce patrones cerebrales, a través de cuales determina de manera temprana la presencia de fatiga, somnolencia y/o deterioro de atención durante la actividad laboral. Según la presencia de estos estados, el modelo predictivo indica el índice de riesgo, considerando el deterioro real del estado psicofisiológico del conductor y por tanto lo expuesto que se encuentra a ser parte de una situación de riesgo. C) Conductancia galvánica de la piel It is through the recording of these brain waves that brain patterns are recognized that early predict states of fatigue, drowsiness and deterioration of attention, which tells the system about the psychophysiological state of the worker and work aptitude to face the activities of high complexity. The system is capable of detecting the deterioration of the psychophysiological state in real time, by recording brain activity through an electrode system. The algorithm recognizes brain patterns, through which it early determines the presence of fatigue, drowsiness and / or attention impairment during work activity. According to the presence of these states, the predictive model indicates the risk index, considering the actual deterioration of the driver's psychophysiological state and, therefore, the exposure that is found to be part of a risk situation. C) Galvanic skin conductance
El estrés puede ser definido como una amenaza real o supuesta a la integridad fisiológica o psicológica de un individuo que resulta en una respuesta fisiológica y/o conductual. El estrés físico y mental provoca respuestas fisiológicas que están mediadas por el sistema nervioso autónomo. Los ajustes fisiológicos que hace el organismo en respuesta al evento estresante se ven reflejados en la modulación de las señales asociadas al estrés por el sistema simpático. Este mecanismo fisiológico capacita al organismo para responder a una emergencia, ya sea luchando o huyendo de ella, lo prepara para enfrentar una situación estresante con enfoque, fuerza y alerta. Stress can be defined as a real or supposed threat to an individual's physiological or psychological integrity that results in a physiological and / or behavioral response. Physical and mental stress elicits physiological responses that are mediated by the autonomic nervous system. The physiological adjustments that the body makes in response to the stressful event are reflected in the modulation of the signals associated with stress by the sympathetic system. This physiological mechanism enables the body to respond to an emergency, whether fighting or fleeing it, prepares it to face a stressful situation with focus, strength and alertness.
Existen tres tipos de estrés. There are three types of stress.
1) Agudo: estrés causado por un factor de estrés agudo a corto plazo, dependiendo del nivel puede tener que ver con una mejora en la tarea, ya que se asocian a una mayor motivación y compromiso. 1) Acute: stress caused by an acute short-term stress factor, depending on the level, may have to do with an improvement in the task, since they are associated with greater motivation and commitment.
2) Agudo episódico: estrés agudo que ocurre con mayor frecuencia y / o periódicamente 2) Episodic acute: acute stress that occurs more frequently and / or periodically
3) Crónico: estrés causado por factores de estrés sostenido en el tiempo, es dañino a largo plazo. 3) Chronic: stress caused by stress factors sustained over time, is harmful in the long term.
El estado de estrés crónico, que se origina por las extensas jornadas laborales y las exigentes condiciones laborales, que modifican y perturban el desempeño de distintas tareas cognitivas dirigidas a una meta. La cantidad de funciones cognitivas que pueden verse afectadas por el estrés es importante: atención, aprendizaje, memoria, toma de decisiones y razonamiento. La intensidad del estrés y las diferencias individuales, determinan en qué grado influirá el estrés en la respuesta de cada función. Los síntomas que se observan en estados de estrés crónicos se asocian a fatiga, somnolencia, trastornos del sueño entre otros. El sistema de detección posee un ohmiómetro que es capaz de obtener mediciones de resistencia eléctrica de la piel, que nos permiten estimar la actividad del sistema nervioso autonómico específicamente el sistema nervioso simpático. Este sistema, reconoce en tiempo real estados de estrés, mediante la respuesta galvánica de la piel. Estas señales son procesadas por el dispositivo de detección, el algoritmo a través de estas señales determina la presencia de estrés o ansiedad durante la actividad laboral, al detectar un aumento en la respuesta galvánica de la piel. Según la presencia de estrés agudo o crónico, el modelo predictivo indica índice de riesgo diferenciados, considerando el efecto negativo que tiene el estrés agudo en la aclimatación y el estrés crónico en el desempeño de distintas tareas cognitivas dirigidas a una meta, independiente de las condiciones geográficas, aumentando el riesgo que el operador ejecute de manera ineficaz sus funciones o que afecte la correcta toma de decisiones, lo que trae como consecuencia una mayor exposición al riesgo para él y el de los demás operadores durante la jornada laboral. iv) Modelo predictivo de índice de riesgo The state of chronic stress, which originates from the long working hours and the demanding working conditions, that modify and disturb the performance of different cognitive tasks aimed at a goal. The number of cognitive functions that can be affected by stress is important: attention, learning, memory, decision making, and reasoning. The intensity of stress and individual differences determine to what degree stress will influence the response of each function. The symptoms that are observed in chronic stress states are associated with fatigue, drowsiness, sleep disorders among others. The detection system has an ohmmeter that is capable of obtaining measurements of the electrical resistance of the skin, which allow us to estimate the activity of the autonomic nervous system, specifically the sympathetic nervous system. This system recognizes stress states in real time, through the galvanic response of the skin. These signals are processed by the detection device, the algorithm through these signals determines the presence of stress or anxiety during work activity, by detecting an increase in the galvanic response of the skin. Depending on the presence of acute or chronic stress, the predictive model indicates differentiated risk index, considering the negative effect that acute stress has on acclimatization and chronic stress on the performance of different cognitive tasks aimed at a goal, regardless of the conditions. geographic, increasing the risk that the operator ineffectively executes its functions or that affects the correct decision-making, resulting in greater exposure to risk for him and that of the other operators during the working day. iv) Predictive risk index model
El procesamiento analítico de los datos de manera diferencial en tiempo real, permite evaluar de manera personalizada la aptitud laboral en base a información fisiológica en la conducción de cada operador. En condiciones de hipoxia hipobárica intermitente crónica se consideran los datos antropométrico ingresados al sistema de manera remota al igual que el nivel de altura geográfica en la que opera el trabajador. El sistema y método permite predecir un índice predictivo de riesgo en tiempo real considerando al menos el factor psicofisiológico durante la actividad que se esté desarrollando. En caso que se encuentren los operadores en condiciones hipoxia hipobárica intermitente crónica, el método considera el efecto individual de la altura geográfica en la aptitud laboral, mediante el registro de parámetros fisiológicos y variables antropométricas en tiempo real, mediante el modelo predictivo procesando los 3 factores: Factor de salud, Factor de aclimatación y Factor Psicofisiológico. The analytical processing of the data in a differential way in real time, allows to assess in a personalized way the work aptitude based on physiological information in the driving of each operator. In conditions of chronic intermittent hypobaric hypoxia, the anthropometric data entered into the system remotely are considered, as well as the geographical height level at which the worker operates. The system and method allow predicting a predictive risk index in real time, considering at least the psychophysiological factor during the activity being carried out. If the operators are in chronic intermittent hypobaric hypoxia conditions, the method considers the individual effect of geographic height on work ability, by recording physiological parameters and anthropometric variables in real time, using the model predictive processing the 3 factors: Health factor, Acclimatization factor and Psychophysiological Factor.
El método y sistema también es capaz de generar el índice de riesgo considerando al menos uno de los tres factores que predicen el índice de riesgo: El factor de salud, Factor de aclimatación y Factor de estado psicofisiológico. Estas entradas son procesadas por el modelo predictivo para obtener 3 niveles de índice de riesgo: leve, moderado y severo. Por otra parte mediante el procesamiento de estos datos, el sistema es capaz de arrojar acciones de salida, en concordancia con el factor de salud y/o factor de aclimatación en tiempo real, frente a la detección del índice de riesgo, con el objetivo de mejorar la aptitud laboral de los trabajadores durante la jornada laboral en condiciones de hipoxia hipobárica intermitente crónica. De esta manera se logra alertar tempranamente y de manera diferenciada el índice de riesgo, según el estado de salud del trabajador y el monitoreo de las variables fisiológicos, siendo esto crítico en situaciones que el operador presenta alteraciones respiratorias, ya que permite mediante el índice de riesgo generar la alerta y la acción de salida adecuada para este tipo de eventos. The method and system is also capable of generating the risk index considering at least one of the three factors that predict the risk index: the health factor, the acclimatization factor and the psychophysiological state factor. These inputs are processed by the predictive model to obtain 3 levels of risk index: mild, moderate and severe. On the other hand, through the processing of these data, the system is capable of throwing out actions, in accordance with the health factor and / or acclimatization factor in real time, against the detection of the risk index, with the aim of improve the work ability of workers during the working day in conditions of chronic intermittent hypobaric hypoxia. In this way, it is possible to alert the risk index early and in a differentiated way, according to the health status of the worker and the monitoring of physiological variables, this being critical in situations where the operator presents respiratory alterations, since it allows by means of the index of risk generating the appropriate alert and exit action for this type of event.
ACCIONES DE SALIDA DEL SISTEMA FRENTE AL MONITOREO DE ÍNDICE DE RIESGO EN TIEMPO REAL EXIT ACTIONS OF THE SYSTEM AGAINST MONITORING OF RISK INDEX IN REAL TIME
Cuando un trabajador nativo de nivel de mar desempeña actividades laborales productivas a más de 2.000 mts. de altura o en instalaciones subterráneas como minas, túneles entre otros, se produce el descenso del aporte de oxígeno a los tejidos debido a una caída en la presión parcial de este gas por la exposición a una menor presión barométrica y luego se produce un aumento de la presión parcial de este gas tras llegar nuevamente al nivel del mar en su descanso, esto se define como hipoxia hipobárica intermitente crónica. Debido a la gran participación de trabajadores nativos de nivel de mar que ascienden a sus trabajos situados a una altura geográfica mayor o trabajan en minas subterráneas, la hipoxia hipobárica intermitente crónica (HIC) se vuelve un antecedente relevante a considerar cuando observamos los efectos que tiene sobre la aptitud laboral de los trabajadores. When a native sea level worker performs productive work activities at more than 2,000 meters. high or in underground facilities such as mines, tunnels, among others, there is a decrease in the contribution of oxygen to the tissues due to a drop in the partial pressure of this gas due to exposure to a lower barometric pressure and then an increase in the partial pressure of this gas after reaching sea level again at rest, this is defined as chronic intermittent hypobaric hypoxia. Due Due to the large participation of native sea level workers who ascend to their jobs located at a greater geographical height or work in underground mines, chronic intermittent hypobaric hypoxia (HIC) becomes a relevant antecedent to consider when we observe the effects it has on the work aptitude of the workers.
La HIC tiene efectos largo plazo lo que favorece la presencia de enfermedades incidentes en estas condiciones, así como efectos en el corto plazo como las consecuencias que tiene en la fatiga y la somnolencia de los trabajadores, que son un factor de riesgo de incidentes/accidentes por somnolencia y fatiga, debido a la mala calidad de sueño y la reducción de capacidad aeróbica durante las jornadas laborales, estado del cual se sabe es una de las principales causas de accidentes en la conducción laboral. Es decir que la HIC tiene efectos conocidos sobre la salud humana que inciden directamente en el desempeño laboral, incrementando la probabilidad de riesgo para los trabajadores debido a que los síntomas de estas enfermedades se asocian a insomnio, fatiga y somnolencia. ICH has long-term effects which favor the presence of incident diseases in these conditions, as well as short-term effects such as the consequences it has on fatigue and drowsiness of workers, which are a risk factor for incidents / accidents due to drowsiness and fatigue, due to poor quality of sleep and reduced aerobic capacity during working hours, a condition which is known to be one of the main causes of accidents at work driving. In other words, ICH has known effects on human health that directly affect job performance, increasing the probability of risk for workers because the symptoms of these diseases are associated with insomnia, fatigue and drowsiness.
Importante es también señalar que las condiciones de baja presión y falta de oxígeno afectan diferenciadamente a cada individuo. Si bien existe el proceso de aclimatación, que disminuye en parte las consecuencias de la caída del aporte de oxígeno a nivel celular, mejorando la capacidad del organismo a tolerar la gran altitud, en el caso de los trabajadores expuestos a turnos que se alternan periódicamente entre altura y nivel del mar, la aclimatación recién se logra aproximadamente entre 12 a 19 meses. El actual sistema, mediante la detección y manejo de fatiga y somnolencia, reduce el índice de riesgo, mejorando la aptitud laboral de los trabajadores en condiciones de hipoxia hipobárica intermitente crónica disminuyendo así la tasa de accidentabilidad. Sumado a lo anteriormente descrito, el índice de riesgo depende del estado psicofisiológico del conductor. Ya que el estado psicofisiológico tiene relación con parámetros fisiológicos que condicionan la conducta del individuo. El índice de riesgo hace referencia al estado fisiológico y mental de un operador, donde su aptitud laboral disminuye, exponiéndolo a un evento que puede desencadenar un accidente. Es por esto que, mediante el registro de las variables fisiológicas en tiempo real, monitoreamos el estado psicofisiológico del conductor, en tanto la aptitud laboral, considerando el efecto que tiene sobre este estado el proceso de aclimatación y la salud de los operadores durante su jornada laboral. Estas variables fisiológicas están estrechamente relacionadas con el estado de la persona en condiciones de HCI, dando cuenta del estado de fatiga y somnolencia que afecta e impacta a los trabajadores, influyendo negativamente en la toma de decisiones, conductas erráticas, velocidad de reacción, atención y exponen al trabajador a eventos riesgosos por tanto a una mayor tasa de accidentes. i) Evaluación de fatiga y somnolencia It is also important to note that the conditions of low pressure and lack of oxygen affect each individual differently. Although there is the acclimatization process, which partially reduces the consequences of the drop in oxygen supply at the cellular level, improving the body's ability to tolerate high altitude, in the case of workers exposed to shifts that periodically alternate between height and sea level, acclimatization is only recently achieved between 12 to 19 months. The current system, by detecting and managing fatigue and drowsiness, reduces the risk index, improving the work ability of workers in conditions of chronic intermittent hypobaric hypoxia, thus reducing the accident rate. In addition to the previously described, the risk index depends on the psychophysiological state of the driver. Since the psychophysiological state is related to physiological parameters that determine the behavior of the individual. The risk index refers to the physiological and mental state of an operator, where his occupational fitness decreases, exposing him to an event that can trigger an accident. This is why, by recording the physiological variables in real time, we monitor the psychophysiological state of the driver, as well as the work aptitude, considering the effect that the acclimatization process and the health of the operators have on this state during their working day. labor. These physiological variables are closely related to the state of the person in HCI conditions, accounting for the state of fatigue and drowsiness that affects and impacts workers, negatively influencing decision making, erratic behaviors, reaction speed, attention and they expose the worker to risky events, therefore a higher accident rate. i) Assessment of fatigue and drowsiness
El actual sistema es capaz de reconocer mediante el monitoreo de parámetros fisiológicos si es el efecto de la HIC, el complejo proceso de aclimatación al que están sometidos los trabajadores y/o el continuo desgaste físico y mental de estas operaciones en condiciones laborales que exigen una alta demanda cognitiva, sumado a las jornadas laborales rotativas, las cuales alteran la fisiología de los ritmos circadianos, y que son responsables del deterioro del estado psicofisiológico desencadenando cambios en el nivel de alerta del conductor y cuyos efectos se observan en los síntomas como fatiga, somnolencia, deterioro de la atención, entre otros, viéndose afectada la aptitud laboral y por tanto incrementa el riesgo de verse involucrado en un evento riesgoso. El sistema es capaz de identificar sí el condicionante fisiológico que está gatillando un aumento del índice de riesgo durante la conducción corresponde a una disminución de la saturación de oxígeno o determinados patrones cerebrales los que favorecen eventos de fatiga y somnolencia. The current system is capable of recognizing by monitoring physiological parameters whether it is the effect of ICH, the complex acclimatization process to which workers are subjected and / or the continuous physical and mental wear and tear of these operations in working conditions that require a high cognitive demand, added to the rotating working hours, which alter the physiology of circadian rhythms, and which are responsible for the deterioration of the psychophysiological state, triggering changes in the driver's alert level and whose effects are observed in symptoms such as fatigue, drowsiness, deterioration of attention, among others, work aptitude is affected and therefore increases the risk of being involved in a risky event. The system is able to identify if the physiological conditioner that is triggering an increase in the risk index while driving it corresponds to a decrease in oxygen saturation or certain brain patterns that favor events of fatigue and drowsiness.
El sistema es capaz de identificar a través del monitoreo del índice de riesgo, mediante el registro de los sensores biométricos, los parámetros fisiológicos que se encuentren fuera del rango establecido y que están afectando la aptitud laboral de los trabajadores. Por lo tanto, las acciones de salida que determina el sistema en tiempo real, posterior al proceso de evaluación de fatiga y somnolencia, estarán enfocadas en re-establecer los parámetros fisiológicos, hasta valores establecidos, para lograr así recuperar el estado de alerta y vigilia de los operadores, disminuyendo con esto el índice de riesgo. The system is capable of identifying, by monitoring the risk index, by registering biometric sensors, the physiological parameters that are outside the established range and that are affecting the work ability of the workers. Therefore, the output actions determined by the system in real time, after the fatigue and drowsiness evaluation process, will be focused on re-establishing the physiological parameters, up to established values, in order to thus recover the state of alertness and wakefulness. of operators, thereby reducing the risk index.
El sistema a través de la evaluación de fatiga y somnolencia, permite identificar si el aumento del índice de riesgo en un tiempo establecido se debe a una disminución de la saturación de oxígeno en la sangre lo que favorece la somnolencia, debido a la mala calidad de sueño de los trabajadores e incrementa la fatiga por reducción de capacidad aeróbica durante las jornadas laborales o por efecto de una actividad cognitiva que demanda alta concentración durante un prolongado período de tiempo, lo cual provoca una baja en el desempeño cognitivo y psicomotor, disminuyendo el rendimiento durante la realización de una tarea. Es según esta información que se obtiene, mediante el procesamiento de datos, las acciones de salida que se generan para la adecuada gestión del índice de riesgo. ii) Gestión de índice de riesgo The system through the evaluation of fatigue and drowsiness, allows to identify if the increase in the risk index in an established time is due to a decrease in the oxygen saturation in the blood, which favors drowsiness, due to the poor quality of workers sleep and increases fatigue due to reduced aerobic capacity during working hours or due to a cognitive activity that requires high concentration for a long period of time, which causes a drop in cognitive and psychomotor performance, decreasing performance while performing a task. According to this information, the output actions generated for the proper management of the risk index are obtained through data processing. ii) Risk index management
Mediante el procesamiento de los datos obtenidos de los biosensores, el sistema es capaz de detectar el aumento del índice de riesgo cuando al menos un parámetro fisiológico que se está registrando excede o está por debajo de los rangos fisiológicos pre-establecido que subyacen una aptitud laboral óptima. Basándose en estas comparaciones, el controlador puede entonces determinar el nivel de índice de riesgo, arrojando la correspondiente acción de salida en forma de alarma visual, auditiva y/o vibratoria, mediante la interfaz o panel de visualización del sistema informando acerca del estatus fisiológico del operador y por tanto las instrucciones para lograr re-establecer los parámetros fisiológicos permitiendo con esto recuperar el estado de alerta y el manejo del índice de riesgo en tiempo real. By processing the data obtained from the biosensors, the system is able to detect the increase in the risk index when at least one physiological parameter that is being recorded exceeds or falls below the pre-established physiological ranges that underlie an aptitude for work. optimal. Based on these comparisons, the controller can then determine the level of risk index, giving the corresponding exit action in the form of a visual, audible and / or vibrating alarm, through the interface or display panel of the system informing about the physiological status of the operator and therefore the instructions to achieve re -establish the physiological parameters allowing with this to recover the state of alert and the management of the risk index in real time.
Dentro de estas acciones de salida se generan dos clases de acciones preventivas y correctivas que permitirán la gestión del índice de riesgo, la primera es el suministro en tiempo real de oxígeno a través de un dispositivo durante la conducción. En caso de no contar con este dispositivo en el vehículo, la acción de salida considera diferentes instalaciones que se encuentran en o cercanas al área de trabajo como siestarios, centros médicos, estaciones de suministro de oxígeno entre otros, que deben de contar con las condiciones adecuadas para el correcto suministro de oxígeno y la segunda corresponde a un plan de activación, es una pausa efectiva, la cual requiere o no de instalaciones como siestarios entre otros que permitan un descanso efectivo y/o la reactivación del estado de alerta. A) Suministro de oxígeno Within these exit actions, two classes of preventive and corrective actions are generated that will allow the risk index to be managed. The first is the supply of oxygen in real time through a device while driving. In case of not having this device in the vehicle, the exit action considers different facilities that are in or near the work area such as siestaries, medical centers, oxygen supply stations, among others, which must have the conditions adequate for the correct supply of oxygen and the second corresponds to an activation plan, it is an effective pause, which requires or does not require facilities such as siestaries, among others, that allow effective rest and / or the reactivation of alertness. A) Oxygen supply
El actual sistema es capaz de reconocer que el aumento del índice de riesgo se debe a una disminución en la saturación de oxígeno en la sangre ya que compara los datos de entradas con los umbrales pre-establecidos. Basándose en estas comparaciones, el controlador determina la correspondiente acción de salida en forma de alarma visual, auditiva y/o vibratoria mediante la interfaz del sistema, informando acerca del estatus fisiológico del operador y por tanto las instrucciones para lograr re-establecer los parámetros fisiológicos que se encuentren fuera del rango normal permitiendo con esto el manejo del índice de riesgo en tiempo real. Existe un tiempo determinado para efectuar la gestión de índice de riesgo sugerida por el sistema, el sistema es capaz de activar acciones de salida que permite de la manera más eficiente el suministro de oxígeno, el cual considera la geolocalización y la infraestructura disponible estableciendo rutas inteligentes para el operador que le permitirán realizar en el menor tiempo posible la gestión del índice de riesgo correspondiente, se activa una segunda alarma con una mayor frecuencia de aparición en la interfaz o panel de visualización del sistema cuando existe un atraso por parte del operador en realizar la acción de salida sugeridas por el sistema. En caso que el operador no haga efectivas estas acciones, se activa la transmisión remota (encargado de salud, centro de salud, supervisor, personal a cargo entre otros) el cual hace un llamado, aviso, mensaje al celular, teléfono satelital o a cualquier dispositivo conectado al sistema para informarle sobre la gestión permitente que debe de efectuar con respecto al manejo del índice de riesgo. The current system is able to recognize that the increased risk index is due to a decrease in blood oxygen saturation as it compares the input data with the pre-established thresholds. Based on these comparisons, the controller determines the corresponding output action in the form of a visual, audible and / or vibrating alarm through the system interface, informing about the operator's physiological status and therefore instructions on how to re-establish the physiological parameters. that are outside the normal range, thus allowing the management of the risk index in real time. There is a certain time to carry out the risk index management suggested by the system, the system is capable of activating exit actions that allow oxygen supply in the most efficient way, which considers geolocation and the available infrastructure establishing intelligent routes for the operator, which will allow the corresponding risk index to be managed in the shortest possible time, a second alarm is activated with a higher frequency of appearance in the interface or display panel of the system when there is a delay on the part of the operator in performing the exit action suggested by the system. In the event that the operator does not make these actions effective, the remote transmission is activated (health manager, health center, supervisor, personnel in charge, among others) which makes a call, notice, message to the cell phone, satellite phone or any device Connected to the system to inform you about the permitting management that must be carried out regarding the management of the risk index.
Si el aumento crítico del índice de riesgo que detecta el sistema se debe a una disminución en la saturación de oxígeno, lo que pone en riesgo la vida del operado, ocurren simultáneamente la activación de varias acciones de salida que permitan gestionar este índice de riesgo; la transmisión de los datos hacia una sistema operativo, informático, plataforma, servidor entre otros lo que activa el asistente remoto (centro médico, encargo del personal, supervisor, virtual entre otros), quien mediante un celular, teléfono satelital, unidad de base entre otros se mantiene en contacto con el operador asistiéndolo mientras recibe la asistencia médica adecuada, paralelamente se activará la desaceleración del auto, la reducción de la alimentación del motor, la activación de los dispositivos de frenado entre otras operaciones, mediante la conexión del sistema con el computador del vehículo ya que el operador no se encuentra apto para seguir conduciendo. Los parámetros fisiológicos del operador se transmiten al servidor a través de la red de comunicación, que puede ser al menos internet móvil, Wifi, Bluetooth, infrarrojo, ultrasonido, radio frecuencia, Antena Satelital, Ethernet y Comunicación serial. El servidor puede procesar los parámetros y/o almacenar los datos en la base de datos, que puede ser parte del servidor o un dispositivo separado ubicado cerca o en una ubicación remota (centros de salud, estaciones de suministro de oxígeno, siestarios, entre otras) con la finalidad de actualizar el índice de riesgo, actualizando su historial médico y así que reciba en el menor tiempo posible el suministro de oxígeno y lograr que las acciones de salidas activadas por el sistema sean más personalizadas y eficientes en términos de gestión del índice de riesgo. Es importante tener un registro de la saturación de oxígeno en la sangre de los trabajadores ya que permite ir detectando el temprano tratamiento de enfermedades que afectan la aptitud laboral y por tanto que lo exponen a una mayor tasa de accidentes. If the critical increase in the risk index detected by the system is due to a decrease in oxygen saturation, which puts the life of the operator at risk, the activation of several exit actions that simultaneously manage this risk index occur simultaneously; the transmission of data to an operating system, computer, platform, server, among others, which activates the remote assistant (medical center, personnel, supervisor, virtual, among others), who through a cell phone, satellite phone, base unit between Others remain in contact with the operator, assisting him while receiving adequate medical assistance. In parallel, the deceleration of the car, the reduction of engine power, the activation of braking devices, among other operations, will be activated by connecting the system with the vehicle's computer since the operator is not able to continue driving. The operator's physiological parameters are transmitted to the server through the communication network, which can be at least mobile internet, Wi-Fi, Bluetooth, infrared, ultrasound, radio frequency, Satellite Antenna, Ethernet and serial communication. The server can process the parameters and / or store the data in the database, which can be part of the server or a separate device located near or in a remote location (health centers, oxygen supply stations, siestaries, among others ) in order to update the risk index, updating your medical history and so that you receive the oxygen supply in the shortest possible time and make the actions of outputs activated by the system more personalized and efficient in terms of managing the index risky. It is important to have a record of the oxygen saturation in the blood of workers as it allows the early treatment of diseases that affect work ability to be detected and therefore expose it to a higher accident rate.
B) Plan de activación B) Activation plan
El deterioro del estado psicofisiológico del conductor, se observa conductualmente en la presencia de fatiga, somnolencia, deterioro de la atención, estrés, ansiedad entre otros. De estos síntomas el que se vincula a la mayor tasa de accidentabilidad durante la conducción es la fatiga. Esta se define como un cambio en los estados fisiológicos y psicológicos que experimenta una persona durante la realización de una actividad cognitiva de alta demanda por un período prolongado de tiempo. Este cambio se ve reflejado como una baja en el desempeño en la ejecución de dicha actividad generando una sensación de agotamiento, cansancio o falta de energía y motivación, que se presenta como un mecanismo regulador, de alarma, que indica al organismo la pérdida de recursos por debajo de un umbral y la necesidad de recuperarlos mediante el descanso. La fatiga se muestra como un indicador de un problema implícito: la pérdida de recursos básicos de un individuo tales como reaccionar en forma oportuna y apropiadamente ante un imprevisto, incrementando significativamente la tasa accidentabilidad del trabajador. Registrando la actividad eléctrica cerebral de los trabajadores se puede detectar las etapas más tempranas de este estado, incluso antes que la persona presente un síntoma visible de fatiga, permitiendo al sistema ejecutar acciones de salida que logran eficientemente la disminución del índice de riesgo. The deterioration of the psychophysiological state of the driver is observed behaviorally in the presence of fatigue, drowsiness, impaired attention, stress, anxiety, among others. Of these symptoms the one that is linked to the highest accident rate during driving is fatigue. This is defined as a change in the physiological and psychological states that a person experiences during the performance of a high-demand cognitive activity for an extended period of time. This change is reflected as a decrease in performance in the execution of said activity, generating a feeling of exhaustion, tiredness or lack of energy and motivation, which appears as a regulatory, alarm mechanism that indicates the organism the loss of resources below a threshold and the need to recover them through rest. Fatigue is shown as an indicator of an implicit problem: the loss of an individual's basic resources such as reacting in a timely and appropriate way to a unforeseen, significantly increasing the worker's accident rate. By recording the electrical brain activity of workers, the earliest stages of this state can be detected, even before the person presents a visible symptom of fatigue, allowing the system to execute exit actions that efficiently reduce the risk index.
Es a través del registro de actividad eléctrica cerebral que se reconocen patrones cerebrales que predicen tempranamente estados de fatiga, somnolencia y deterioro de la atención entre otros durante la jornada laboral. El sistema actual es capaz de detectar las primeras etapas de la fatiga y somnolencia, lo que permite generar distintas acciones de salida para la adecuada gestión de los diferentes niveles de índices de riesgos, con el objetivo que el estado de alerta de los trabajadores se mantenga en niveles óptimos para el adecuado desempeño laboral. It is through the recording of brain electrical activity that brain patterns are recognized that early predict states of fatigue, drowsiness and deterioration of attention among others during the workday. The current system is capable of detecting the early stages of fatigue and drowsiness, which allows generating different exit actions for the proper management of the different levels of risk indexes, with the aim that the alert status of the workers is maintained. at optimal levels for proper job performance.
El sistema activa acciones de salida que son específicas para los niveles de índice de riesgo enfocadas en mantener o mejorar el estado de alerta de los trabajadores independiente de las condiciones geográficas a las que esté sometido el operador; en primera instancia existe una autogestión la cual es establecida como acción de salida en las etapas más temprana de la fatiga y somnolencia, posteriormente cuando el índice de riesgo registra una disminución en el estado de alerta significativa y el operador está expuesto a eventos riesgosos por la disminución de su aptitud laboral debido a la disminución significativo del estado de alerta, se moviliza el plan de activación que permite gestionar la fatiga y la somnolencia en estados más tardíos, estas acciones son diferentes para el día y para la noche. La diferencia entre estos planes de activación se debe a que el organismo posee un ritmo biológico característico para el día y para la noche, lo que se debe de considerar en las distintas acciones de salida del sistema. En caso que la gestión del índice de riesgo no sea efectiva y no se logre re establecer el rango establecido de los parámetros fisiológicos con las acciones activadas por el sistema, en un determinado tiempo, se activa la transmisión de datos a un asistente remoto (encargado de salud, supervisor, personal cargo, sistema informático, servicio de monitoreo en línea entre otros) quien se contacta con el operador para poner al tanto el riesgo en el que está. Dependiendo de su localización, estado psicofisiológico y su aptitud laboral se deberán ejecutar distintas acciones de salida; en caso que el operador posea un índice de riesgo a causa del agotamiento, cansancio, indica al organismo la pérdida de recursos por debajo de un umbral y la necesidad de recuperarlos, mediante una siesta, descanso, entre otros, ya sean en el vehículo o instalaciones con las condiciones adecuadas para un sueño reponedor que permita recuperar el estado de alerta del operador. a) Autogestión The system activates exit actions that are specific to the risk index levels focused on maintaining or improving the alert status of workers regardless of the geographical conditions to which the operator is subjected; In the first instance there is self-management which is established as an exit action in the earliest stages of fatigue and drowsiness, later when the risk index registers a significant decrease in alertness and the operator is exposed to risky events by decrease in their work ability due to the significant decrease in alertness, the activation plan is mobilized to manage fatigue and drowsiness in later states, these actions are different for day and night. The difference between these activation plans is due to the fact that the organism has a characteristic biological rhythm during the day and at night, which must be considered in the different exit actions of the system. In case the risk index management is not effective and it is not possible to re-establish the established range of physiological parameters with the actions activated by the system, in a certain time, the transmission of data to a remote assistant (manager health, supervisor, charge staff, computer system, online monitoring service, among others) who contacts the operator to update the risk he is in. Depending on your location, psychophysiological state and your work ability, different exit actions must be carried out; In the event that the operator has a risk index due to exhaustion, fatigue, it indicates to the body the loss of resources below a threshold and the need to recover them, through a nap, rest, among others, whether in the vehicle or facilities with adequate conditions for a restful sleep that allows the operator to be alert. a) Self-management
El sistema detecta a través del registro de patrones cerebrales etapas tempranas de fatiga y somnolencia, esta información procesada activa una alarma que puede ser una advertencia auditiva, visual y/o vibratoria que retroalimenta al operador informándole acerca del nivel de fatiga y somnolencia que posee y que debe de iniciar el proceso de autogestión incluyendo al menos: hidratación, mejorar la postura en el asiento, bajar la ventana, bajar la temperatura de la cabina, poner música entre otros. Cuando tras estas acciones de salida, la autogestión no es suficiente para revocar este estado de fatiga y somnolencia y existe una baja considerable en el desempeño, durante la conducción, tras un tiempo determinado, el sistema genera la segunda alarma al trabajador indicándole que debe ejecutar el plan de activación el cual como se dijo anteriormente obedece a distintos patrones durante el día y la noche. b) Plan de activación durante el día The system detects through the recording of brain patterns early stages of fatigue and drowsiness, this processed information activates an alarm that can be an audible, visual and / or vibratory warning that feeds back to the operator informing him about the level of fatigue and drowsiness that he has and It must start the self-management process including at least: hydration, improve posture in the seat, lower the window, lower the temperature of the cabin, play music, among others. When after these exit actions, self-management is not enough to revoke this state of fatigue and drowsiness and there is a considerable drop in performance, while driving, after a certain time, the system generates the second alarm to the worker indicating that he must execute the activation plan which, as previously stated, obeys different patterns during the day and night. b) Activation plan during the day
La fatiga mental está descrita como un cambio en los estados tanto psicológicos como fisiológicos que un individuo experimenta durante el desarrollo de una actividad cognitiva que demanda alta concentración durante un prolongado período de tiempo. Durante la conducción, por ejemplo, el esfuerzo físico que implica conducir largas distancias, la monotonía de la ruta, la altitud geográfica, jornadas y turnos de trabajo, entre otros, son factores que podrían acelerar la ocurrencia de fatiga mental y somnolencia. Estos cambios principalmente se muestran como una baja en el desempeño cognitivo y psicomotor, disminuyen el rendimiento durante la realización de una tarea. Como resultado de esto, la fatiga mental se vincula a un estado de disminución de alerta, donde gradualmente predomina el cansancio y la falta de energía. Las personas fatigadas ven disminuidas sus capacidades de concentración, sufren alteraciones en las percepciones de distancia y velocidad, y disminuyen sus tiempos de respuesta, su razonamiento matemático, su productividad y sus habilidades comunicativas, la fatiga en estas situaciones se presenta como un mecanismo regulador, de alarma, que indica al organismo la pérdida de recursos por debajo de un umbral y la necesidad de recuperarlos mediante el descanso. Mental fatigue is described as a change in both the psychological and physiological states that an individual experiences during the development of a cognitive activity that demands high concentration over a prolonged period of time. During driving, for example, the physical effort involved in driving long distances, the monotony of the route, the geographical altitude, working hours and shifts, among others, are factors that could accelerate the occurrence of mental fatigue and drowsiness. These changes are mainly shown as a decrease in cognitive and psychomotor performance, they decrease performance during the performance of a task. As a result of this, mental fatigue is linked to a state of decreased alertness, where fatigue and lack of energy gradually predominate. Fatigued people see their concentration abilities diminished, they suffer alterations in distance and speed perceptions, and their response times, their mathematical reasoning, their productivity and their communication skills decrease, fatigue in these situations is presented as a regulatory mechanism, alarm, which indicates to the organism the loss of resources below a threshold and the need to recover them through rest.
El sistema actual es capaz de generar en paralelo distintas acciones que permitan gestionar el índice de riesgo durante el día de la mejor manera; cuando el sistema reconoce mediante la actividad cerebral episodios de fatiga y somnolencia genera una alarma que corresponde a una advertencia auditiva, visual y/o vibratoria que le informa al conductor que la autogestión no fue efectiva y se requiere del plan de activación. The current system is capable of generating different actions in parallel that allow managing the risk index during the day in the best way; When the system recognizes episodes of fatigue and drowsiness through brain activity, it generates an alarm that corresponds to an auditory, visual and / or vibratory warning that informs the driver that self-management was not effective and an activation plan is required.
El sistema es capaz de reconocer mediante el registro de patrones cerebrales, etapas más avanzadas de fatiga y somnolencia, para lo que se establece el descanso, siesta, entre otros, ya que es la manera más eficiente de recuperar el estado de alerta durante el día, sí es que existe una presión homeostática por dormir. Se recomienda altamente tomar una siesta, con una duración no mayor a 30 minutos, entre la 1 :00 y las 4:00 pm. Este descanso proporcionará un impulso rápido de alerta ya que se mitiga el inicio de la inercia del sueño. c) Plan de activación durante la noche The system is able to recognize, through the recording of brain patterns, more advanced stages of fatigue and drowsiness, for which rest, nap, among others, is established, since it is the most efficient way to recover alertness during the day, yes there is a homeostatic pressure to sleep. It is highly recommended to take a nap, lasting no more than 30 minutes, between 1:00 and 4:00 pm. This rest will provide a quick alert boost as the onset of sleep inertia is mitigated. c) Overnight activation plan
Trabajar de noche cuando el cuerpo está biológicamente programado para dormir afecta el funcionamiento del reloj biológico de una persona. Como está programado este reloj biológico para diferentes niveles de vigilia, las personas experimentan diferentes niveles de alerta dependiendo de la hora del día. La disrupción del ritmo circadiano, disminuye el estado de alerta, lo que favorece los estados de fatiga en el trabajador, aumentando el riesgo de cometer errores y por tanto de verse involucrado en un evento riesgoso. El sistema es capaz de identificar los distintos niveles de alerta durante el horario nocturno, por lo que las acciones de salida adecuadas del sistema estarán enfocadas en restaurar los niveles de alerta y atención para retornar a realizar las funciones luego de un episodio somnolencia y/o fatiga durante el horario nocturno. Working at night when the body is biologically programmed to sleep affects the functioning of a person's biological clock. Because this biological clock is programmed for different levels of wakefulness, people experience different levels of alertness depending on the time of day. The disruption of the circadian rhythm reduces the alertness, which favors the states of fatigue in the worker, increasing the risk of making mistakes and therefore of being involved in a risky event. The system is capable of identifying the different alert levels during night time, so the appropriate system exit actions will be focused on restoring the alert and attention levels to return to perform the functions after a drowsiness episode and / or fatigue during the night.
El sistema actual es capaz de generar en paralelo distintas acciones que permitan gestionar el índice de riesgo durante la noche de la mejor manera; cuando el sistema reconoce mediante la actividad cerebral episodios de fatiga y somnolencia genera una alarma que corresponde a una advertencia auditiva, visual y/o vibratoria que le informa al conductor que la autogestión no fue efectiva, en términos de recuperar el estado de alerta, generando una acción de salida que corresponde a una pausa efectiva, la cual hace referencia a una actividad enfocada en recuperar el estado de alerta de los trabajadores, por ejemplo bajarse de la máquina, realizar algún tipo de actividad física, escuchar algún tipo de música, entre otras acompañados de estímulos visuales, auditivos, olfatorios y/o tacto significativos que incrementan su nivel de alerta para retornar de manera óptima a sus funciones laborales. Sistema de pulso de luz. The current system is capable of generating different actions in parallel that allow managing the risk index overnight in the best way; When the system recognizes episodes of fatigue and drowsiness through brain activity, it generates an alarm that corresponds to an auditory, visual and / or vibratory warning that informs the driver that self-management was not effective, in terms of recovering the alert state, generating an exit action that corresponds to an effective pause, which refers to an activity focused on recovering the alertness of workers, for example getting off the machine, performing some type of physical activity, listening to some type of music, among others accompanied by significant visual, auditory, olfactory and / or tactile stimuli that increase their alertness level to optimally return to their job functions. Light pulse system.
Los seres humanos, presentan diferentes variaciones cíclicas en distintos procesos fisiológicos. Por ejemplo, la conducta de sueño y vigilia tiene un ritmo circadiano es decir que tiene un periodo de tiempo de 24hrs. Este ciclo está regulado por distintos factores externos, siendo el más importante la luz. La luz, que ingresa a través del ojo a la retina la cual se comunica directamente con una región del cerebro ubicada en el hipotálamo denominada núcleo Supra- quiasmatico. Esta región del cerebro regula el reloj corporal interno estableciendo ritmos conductuales como el ciclo sueño-vigilia, o la secreción de factores neuro-hormonales como la secreción de melatonina, lo cual tiene como consecuencia básicamente estar activos de día y dormir de noche. Cuando se trabaja de noche o en turnos rotativos de trabajo, el sistema circadiano es incapaz de adaptarse rápidamente al nuevo horario y surge una desincronización entre el ritmo de los sistemas fisiológicos internos y las exigencias laborales externas, lo que provoca una serie de alteraciones que afectan directamente la seguridad de los trabajadores debido a la caída en el estado de alerta y los niveles atencionales, incidiendo en los estados de fatiga que es causante en su gran mayoría de accidentes laborales y errores en la ejecución de tareas, incrementando el riesgo y por tanto la probabilidad de sufrir un accidente. Es por esto que frente a este condicionamiento de la luz sobre el funcionamiento fisiológico del organismo, el sistema genera como acción de salida durante el horario nocturno, la activación de pulsos de luz LED ya sea dentro de la cabinas, por la ruta, siestarios, instalaciones adecuadas entre otras con una intensidad y cada cierto tiempo determinado para tener un efecto regulador directo sobre el reloj biológico y lograr el retraso del ritmo circadiano permitiendo retrasar el sueño y el cansancio máximo en los trabajadores durante los turnos nocturnos mejorando el rendimiento laboral y asegurando en el individuo una mejor calidad de sueño por la mañana. C) Evaluación de salud Humans present different cyclical variations in different physiological processes. For example, the sleep and wake behavior has a circadian rhythm, that is, it has a time period of 24 hours. This cycle is regulated by different external factors, the most important being light. The light, which enters the retina through the eye, which communicates directly with a region of the brain located in the hypothalamus called the Suprachiasmatic nucleus. This region of the brain regulates the internal body clock by establishing behavioral rhythms such as the sleep-wake cycle, or the secretion of neuro-hormonal factors such as melatonin secretion, which basically results in being active during the day and sleeping at night. When working at night or on rotating work shifts, the circadian system is unable to quickly adapt to the new schedule and a desynchronization between the rhythm of internal physiological systems and external work demands arises, causing a series of alterations that affect directly the safety of the workers due to the fall in the state of alert and the attention levels, influencing the states of fatigue that is the majority of causes of work accidents and errors in the execution of tasks, increasing the risk and therefore the probability of having an accident. That is why, in the face of this conditioning of light on the physiological functioning of the organism, the system generates, as an output action during night hours, the activation of LED light pulses either inside the cabins, along the route, siestaries, Adequate facilities, among others, with an intensity and from time to time determined to have a direct regulatory effect on the biological clock and achieve a delay in the circadian rhythm, allowing delayed sleep and maximum fatigue in workers during night shifts, improving work performance and ensuring in the individual a better quality of sleep in the morning. C) Health assessment
Es importante que este sistema y método al ser preventivo y correctivo realice periódicas evaluaciones de salud que permitan conocer el real índice de riesgo al que están expuestos los trabajadores, recordemos que existen enfermedades incidentes en condiciones de hipoxia hipobárica intermitente crónica que condicionan tanto la aclimatación de los trabajadores como su estado psicofisiológico y esto se debe a que las reacciones adaptativas a la hipoxia hipobárica intermitente crónica pueden provocar trastornos de diversa gravedad, ya sea por exceso o por defecto de funcionamiento de los mecanismos fisiológicos implicados en la aclimatación a la hipoxia hipobárica intermitente crónica. Los procesos digestivos se tornan más lentos, por tanto, provocan mayor absorción de grasas, propiciando la aparición del Síndrome Metabólico, con diagnósticos de Hígado Graso, alteración del Perfil Lipídico, principales generadores de la Obesidad. Más aún si no se cuenta con un programa permanente de Alimentación balanceada, que permita compensar con equilibrio las necesidades que se originan en esos ambientes. Esta obesidad originada en estas condiciones, provocan y favorecen además variadas alteraciones, tales como Apneas del Sueño, tanto Centrales como Obstructivas y mixtas, y trastornos vasculares. It is important that this system and method, being preventive and corrective, carry out periodic health evaluations that allow knowing the real risk index to which workers are exposed, remember that there are incident diseases in conditions of chronic intermittent hypobaric hypoxia that condition both the acclimatization of workers as their psychophysiological state and this is because adaptive reactions to chronic intermittent hypobaric hypoxia can cause disorders of varying severity, either due to excess or defective functioning of the physiological mechanisms involved in acclimatization to intermittent hypobaric hypoxia chronicle. The digestive processes become slower, therefore, they cause greater absorption of fats, favoring the appearance of the Metabolic Syndrome, with diagnoses of Fatty Liver, alteration of the Lipid Profile, main generators of Obesity. Even more so if there is no permanent balanced feeding program, which allows balancing the needs that originate in these environments. This obesity originated in these conditions, also causes and favors various disorders, such as Sleep Apnea, both Central and Obstructive and mixed, and vascular disorders.
La obesidad y el sobrepeso son comunes en los trabajadores de la industria minera de gran altitud expuestos a la hipoxia hipobárica intermitente crónica. Obesidad y sobrepeso se asocian con mayores tasas de presión arterial alta, y niveles de colesterol y glucosa, teniendo una importante implicancia en el síndrome de apneas obstructivas, centrales y mixtas. Estos trastornos inciden con una mayor tasa de accidentabilidad por parte de los trabajadores, debido a que los síntomas que conllevan estas patologías; somnolencia, fatiga física y fatiga mental afectan directamente la aptitud laboral de los trabajadores. La detección temprana permite estar al tanto de la influencia de estas enfermedades incidentes en estas condiciones geográfica de hipoxia hipobárica intermitente crónica en la aptitud laboral de los trabajadores. Obesity and overweight are common in high-altitude mining industry workers exposed to chronic intermittent hypobaric hypoxia. Obesity and overweight are associated with higher rates of high blood pressure, and cholesterol and glucose levels, having a significant implication in the syndrome of obstructive, central and mixed apneas. These disorders have a higher accident rate on the part of workers, due to the symptoms that these pathologies entail; drowsiness, physical fatigue and mental fatigue directly affect the work ability of workers. Early detection allows you to be aware of the influence of these Incident diseases in these geographical conditions of chronic intermittent hypobaric hypoxia in the work aptitude of workers.
La evaluación de salud, el diagnóstico médico y el tratamiento que es parte del método como medida de control del índice de riesgo en condiciones de hipoxia hipobárica intermitente crónica, lo que permite monitorear el efecto que poseen estas enfermedades en la aptitud laboral de los operadores para definir con mayor precisión las acciones de salida que debe de indicar el sistema según el procesamiento de los datos en tiempo real y la información que aporte el factor de salud en el sistema de monitoreo. The health assessment, medical diagnosis and treatment that is part of the method as a control measure of the risk index in conditions of chronic intermittent hypobaric hypoxia, which allows monitoring the effect of these diseases on the work ability of operators to define more precisely the output actions that the system must indicate according to the processing of the data in real time and the information provided by the health factor in the monitoring system.

Claims

REIVINDICACIONES
1. Un método para predecir en tiempo real el estado fisiológico y mental de un sujeto u operario que realiza labores complejas y de riesgo bajo condiciones de hipoxia hipobárica intermitente crónica, que permite disminuir la tasa de accidentabilidad, CARACTERIZADO porque comprende: 1. A method to predict in real time the physiological and mental state of a subject or operator who performs complex and risky tasks under conditions of chronic intermittent hypobaric hypoxia, which allows to decrease the accident rate, CHARACTERIZED because it comprises:
determinar un índice de riesgo, que comprende: determine a risk index, which includes:
- determinar un factor de salud, que comprende: - determine a health factor, which includes:
medir variables antropométricas del sujeto; y measure anthropometric variables of the subject; and
analizar las variables antropométricas medidas para predecir posibles enfermedades incidentes en condición de hipoxia hipobárica intermitente crónica; to analyze the anthropometric variables measured to predict possible incident diseases in chronic intermittent hypobaric hypoxia;
- determinar un factor de aclimatación, que comprende: medir la altura geográfica y los días de permanencia del sujeto en dicha altura geográfica; - determine an acclimatization factor, which includes: measuring the geographical height and the days the subject remains in said geographical height;
medir en el sujeto el grado de saturación de oxígeno en la sangre; measure in the subject the degree of oxygen saturation in the blood;
comparar los valores medidos para la altura geográfica y los días de permanencia con los valores esperados para la saturación de la sangre, para determinar si el sujeto se encuentra aclimatado en una condición de fase crónica o en una fase aguda; y compare the measured values for geographic height and days of stay with the expected values for blood saturation, to determine if the subject is acclimatized in a chronic phase condition or in an acute phase; and
- determinar un factor de estado psicofisiológico, que comprende: medir la actividad eléctrica cerebral del sujeto, para determinar un estado de somnolencia, fatiga o alerta; y - determine a factor of psychophysiological state, which includes: measure the subject's electrical brain activity, to determine a state of drowsiness, fatigue or alertness; and
medir la conductancia de la piel del sujeto, para determinar un grado de estrés del sujeto; measuring the conductance of the subject's skin, to determine a degree of stress on the subject;
- analizar y correlacionar el factor de salud, factor de aclimatación y factor de estado psicofisiológico, mediante una red neuronal que realiza un procesamiento de datos predictivo diferencial; y - analyze and correlate the health factor, acclimatization factor and psychophysiological status factor, using a neural network that performs differential predictive data processing; and
generar una acción de salida para mejorar el índice de riesgo, en donde la acción de salida comprende alertar de manera temprana al sujeto cuando al menos un parámetro fisiológico que se está registrando excede o está por debajo de los rangos fisiológicos pre-establecido que subyacen una aptitud laboral óptima. generate an exit action to improve the risk index, where the exit action includes alerting the subject early when at least one physiological parameter being registered exceeds or falls below the pre-established physiological ranges underlying a optimal work aptitude.
2. El método de acuerdo a la reivindicación 1, CARACTERIZADO porque las variables antropométricas a medir son al menos una de: circunferencia del cuello, talla, peso sumado a datos de edad y sexo. 2. The method according to claim 1, CHARACTERIZED because the anthropometric variables to be measured are at least one of: neck circumference, height, weight added to age and sex data.
3. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque determinar un factor de salud además comprende considerar enfermedades incidentes en condiciones de hipoxia hipobárica del sujeto considerando los exámenes específicos para estas enfermedades y la encuesta STOP-BANG. 3. The method according to claim 1, CHARACTERIZED because determining a health factor also includes considering incident diseases in hypobaric hypoxia conditions of the subject considering the specific tests for these diseases and the STOP-BANG survey.
4. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque el método considera de manera diferenciada el factor de aclimatación de acuerdo a rangos de altura geográfica y tiempo de permanencia que se actualizan remotamente según el nivel de altura en que desarrolla sus actividades laborales el trabajador: 4. The method according to claim 1, CHARACTERIZED because the method considers the acclimatization factor differently according to the ranges of geographic height and residence time that are They update remotely according to the level of height in which the worker carries out his work activities:
2000 - 3000 metros sobre el nivel del mar (msnm) - 5 días; 2000 - 3000 meters above sea level (masl) - 5 days;
3000 - 4000 msnm - 10 días; y 3000 - 4000 masl - 10 days; and
4000 - 5000 msnm - 15 días. 4000 - 5000 masl - 15 days.
5. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque los niveles de saturación de la sangre esperados para la altura geográfica son los siguientes: 5. The method according to claim 1, CHARACTERIZED in that the blood saturation levels expected for the geographical height are as follows:
2400 msnm - Saturación de O2 mayor al 96%; 2400 masl - O2 saturation greater than 96%;
2500-3900 msnm - Saturación de O2 entre el 91% - 95%; y 2500-3900 masl - O2 saturation between 91% - 95%; and
3900 msnm o más - Saturación de O2 entre el 90% - 80%. 3900 masl or more - O2 saturation between 90% - 80%.
6. El método de acuerdo a la reivindicación 1 , 4 y 5, CARACTERIZADO porque comprende diferenciar el factor de aclimatación según el nivel de altura alcanzada y el tiempo que el sujeto se encuentra en esta condición para establecer parámetros fisiológicos de fase aguda y fase cónica, en donde la fase aguda tiene una duración de 48 a 72 horas y la fase crónica un tiempo mayor. 6. The method according to claim 1, 4 and 5, CHARACTERIZED because it comprises differentiating the acclimatization factor according to the level of height reached and the time the subject is in this condition to establish physiological parameters of acute phase and conical phase , where the acute phase lasts from 48 to 72 hours and the chronic phase a longer time.
7. El método de acuerdo a la reivindicación 1, CARACTERIZADO porque la acción de salida comprende emitir al menos una advertencia visual, auditiva y/o vibratoria. 7. The method according to claim 1, CHARACTERIZED in that the output action comprises issuing at least one visual, audible and / or vibratory warning.
8. El método de acuerdo a la reivindicación 1 y 7, CARACTERIZADO porque la acción de salida además comprende al menos una de las siguientes: suministrar oxígeno a la cabina donde se encuentra el operador en tiempo real; 8. The method according to claims 1 and 7, CHARACTERIZED in that the exit action further comprises at least one of the following: supply oxygen to the cabin where the operator is located in real time;
generar pulsos de luz; generate light pulses;
generar instrucciones para asistir a un siestario; generate instructions to attend a siestario;
generar instrucciones para asistir a un centro médico; generate instructions to attend a medical center;
comunicación remota entre el sujeto y el supervisor; y remote communication between the subject and the supervisor; and
ejercer una acción sobre los mandos que opera el sujeto. exercise an action on the controls that the subject operates.
9. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque la acción de salida comprende establecer un periodo de tiempo de descanso o siesta para el sujeto. 9. The method according to claim 1, CHARACTERIZED in that the exit action comprises establishing a period of rest or nap time for the subject.
10. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque generar una acción de salida para recuperar la aptitud laboral del sujeto comprende enviarle instrucciones para que detenga la labor que realiza y realice una actividad física, escuche algún tipo de música, reciba estímulos olfativos y/o de tacto 10. The method according to claim 1, CHARACTERIZED because generating an exit action to recover the subject's work ability includes sending instructions to them to stop the work they do and perform physical activity, listen to some type of music, receive olfactory stimuli and / or touch
11. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque además el tipo de acción de salida a generar depende si el sujeto realiza la operación durante un horario diurno o nocturno. 11. The method according to claim 1, CHARACTERIZED because, in addition, the type of output action to be generated depends on whether the subject performs the operation during day or night hours.
12. El método de acuerdo a la reivindicación 11 , CARACTERIZADO porque la acción de salida comprende la generación de pulsos de luz en el lugar donde se encuentra el sujeto durante el horario nocturno, en los siestarios, con una intensidad, y por un determinado periodo de tiempo para tener un efecto regulador directo sobre el reloj biológico del sujeto. 12. The method according to claim 11, CHARACTERIZED in that the output action comprises the generation of light pulses in the place where the subject is during the night, in the siestarios, with an intensity, and for a certain period of time to have a direct regulatory effect on the biological clock of the subject.
13. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque determinar el estado de somnolencia, fatiga o alerta comprende medir las ondas Beta, Alfa, Theta y Delta del cerebro del sujeto. 13. The method according to claim 1, CHARACTERIZED in that determining the state of drowsiness, fatigue or alert comprises measuring the Beta, Alpha, Theta and Delta waves of the subject's brain.
14. Un sistema para predecir en tiempo real el estado fisiológico y mental de un sujeto u operario que realiza labores complejas y de riesgo, que permite disminuir la tasa de accidentabilidad, CARACTERIZADO porque comprende: determinar un índice de riesgo, que comprende: 14. A system to predict in real time the physiological and mental state of a subject or operator who performs complex and risky tasks, which allows to decrease the accident rate, CHARACTERIZED because it includes: determining a risk index, which includes:
- medios para determinar un factor de salud del sujeto en base a la medición de variables antropométricas del sujeto, que comprende: - means to determine a subject's health factor based on the measurement of anthropometric variables of the subject, which includes:
medios para medir variables antropométricas del sujeto; means to measure anthropometric variables of the subject;
- medios para determinar un factor de aclimatación del sujeto, que comprende: - means for determining an acclimatization factor of the subject, comprising:
- medios para determinar altura geográfica y tiempo de permanencia; - means to determine geographic height and residence time;
medios para medir el porcentaje de saturación de oxígeno en la sangre del sujeto; means for measuring the percentage of oxygen saturation in the subject's blood;
- medios para determinar un factor de estado psicofisiológico del sujeto, que comprende: - means for determining a factor of the subject's psychophysiological state, comprising:
medios para medir la actividad eléctrica cerebral; medios para medir la conductancia eléctrica de la piel; medios para medir la saturación sanguínea de oxígeno;means for measuring brain electrical activity; means for measuring the electrical conductance of the skin; means for measuring blood oxygen saturation;
- medios para el procesamiento y análisis de los datos asociados a los factores de salud, aclimatación y psicofisiológicos determinados; - means for the processing and analysis of the data associated with the determined health, acclimatization and psychophysiological factors;
medios para generar una acción de salida para alertar de manera temprana al sujeto cuando el índice de riesgo exceda un valor preestablecido; y medios para la gestión de fatiga. means to generate an exit action to alert the subject early when the risk index exceeds a preset value; and means for fatigue management.
15. El sistema de acuerdo a la reivindicación 14, CARACTARIZADO porque variables antropométricas a medir los al menos una de: circunferencia del cuello, talla, peso sumado a datos de edad y sexo. 15. The system according to claim 14, CHARACTERIZED because anthropometric variables to measure the at least one of: neck circumference, height, weight added to age and sex data.
16. El sistema de cuerdo a la reivindicación 14, CARACTARIZADO porque el medio para la gestión de fatiga comprende: 16. The system according to claim 14, CHARACTERIZED because the means for managing fatigue comprises:
medios para la generación de alarma visual, auditiva y/o vibratoria; means for generating visual, audible and / or vibrating alarm;
medios para el suministro de oxígeno durante la conducción en tiempo real; means for supplying oxygen during driving in real time;
si esta ríos; if it is rivers;
centros médicos; y Medical centers; and
medios de comunicación remota con el supervisor. remote means of communication with the supervisor.
17. El sistema de cuerdo a la reivindicación 14, CARACTARIZADO porque comprende un sistema de procesamiento centralizado en donde son analizados los índices de riesgo múltiples sujetos. 17. The system according to claim 14, CHARACTERIZED because it comprises a centralized processing system where multiple subject risk indices are analyzed.
18. El sistema de acuerdo a la reivindicación 14, CARACTERIZADO porque comprende medios de comunicación de datos entre el sistema de procesamiento centralizado y cada sujeto, de manera inalámbrica, vía Internet o Intranet. 18. The system according to claim 14, CHARACTERIZED in that it comprises data communication means between the centralized processing system and each subject, wirelessly, via the Internet or Intranet.
19. El sistema de acuerdo a la reivindicación 14, CARACTERIZADO porque el sistema de procesamiento centralizado posee medios para generar y transmitir en tiempo real informes periódicos del índice de riesgo de los sujetos. 19. The system according to claim 14, CHARACTERIZED because the centralized processing system has means to generate and transmit periodic reports in real time of the risk index of the subjects.
20. Un método para predecir en tiempo real el estado fisiológico y mental de un sujeto u operario que realiza labores complejas y de riesgo bajo condiciones de hipoxia hipobárica intermitente crónica, que permite disminuir la tasa de accidentabilidad, CARACTERIZADO porque comprende: 20. A method to predict in real time the physiological and mental state of a subject or operator who performs complex and risky tasks under conditions of chronic intermittent hypobaric hypoxia, which allows to decrease the accident rate, CHARACTERIZED because it comprises:
determinar un índice de riesgo, que comprende: determine a risk index, which includes:
- determinar un factor de salud, que comprende: - determine a health factor, which includes:
medir características antropométricas del sujeto, tales como: edad, sexo, circunferencia del cuello, talla y peso; y measure anthropometric characteristics of the subject, such as: age, sex, neck circumference, height and weight; and
analizar las variables antropométricas medidas para predecir posibles enfermedades incidentes en condición de hipoxia hipobárica intermitente crónica; to analyze the anthropometric variables measured to predict possible incident diseases in chronic intermittent hypobaric hypoxia;
- determinar un factor de aclimatación, que comprende: medir la profundidad geográfica y los días de permanencia del sujeto en dicha profundad geográfica; - determine an acclimatization factor, which includes: measuring the geographic depth and the days of permanence of the subject in said geographic depth;
medir en el sujeto el grado de saturación de oxígeno en la sangre; comparar los valores medidos para la profundidad geográfica y los días de permanencia con los valores esperados para la saturación de la sangre, para determinar si el sujeto se encuentra aclimatado en una condición de fase crónica o en una fase aguda; y measure in the subject the degree of oxygen saturation in the blood; compare the measured values for geographic depth and days of stay with the expected values for blood saturation, to determine if the subject is acclimatized in a chronic phase condition or in an acute phase; and
- determinar un factor de estado psicofisiológico, que comprende: medir la actividad eléctrica cerebral del sujeto, para determinar un estado de somnolencia, fatiga o alerta; y - determining a psychophysiological status factor, comprising: measuring the subject's electrical brain activity, to determine a state of drowsiness, fatigue or alertness; and
medir la conductancia de la piel del sujeto, para determinar un grado de estrés del sujeto; measuring the conductance of the subject's skin, to determine a degree of stress on the subject;
- analizar y correlacionar el factor de salud, factor de aclimatación y factor de estado psicofisiológico, mediante una red neuronal que realiza un procesamiento de datos predictivo diferencial; y - analyze and correlate the health factor, acclimatization factor and psychophysiological status factor, using a neural network that performs differential predictive data processing; and
generar una acción de salida para mejorar el índice de riesgo, en donde la acción de salida comprende alertar de manera temprana al sujeto cuando al menos un parámetro fisiológico que se está registrando excede o está por debajo de los rangos fisiológicos pre-establecido que subyacen una aptitud laboral óptima. generate an exit action to improve the risk index, where the exit action includes alerting the subject early when at least one physiological parameter being registered exceeds or falls below the pre-established physiological ranges underlying a optimal work aptitude.
PCT/CL2020/050004 2019-01-08 2020-01-08 System for predicting a risk index in conditions of chronic intermittent hypobaric hypoxia WO2020142858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2019000057A CL2019000057A1 (en) 2019-01-08 2019-01-08 Method and system for predicting risk index in conditions of chronic intermittent hypobaric hypoxia by recording physiological parameters and anthropometric variables in real time.
CL57-2019 2019-01-08

Publications (1)

Publication Number Publication Date
WO2020142858A1 true WO2020142858A1 (en) 2020-07-16

Family

ID=66287079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050004 WO2020142858A1 (en) 2019-01-08 2020-01-08 System for predicting a risk index in conditions of chronic intermittent hypobaric hypoxia

Country Status (2)

Country Link
CL (1) CL2019000057A1 (en)
WO (1) WO2020142858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022017994A1 (en) * 2020-07-20 2022-01-27 Koninklijke Philips N.V. System and method to monitor and titrate treatment for high altitude-induced central sleep apnea (csa)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634468A (en) * 1992-04-03 1997-06-03 Micromedical Industries Limited Sensor patch and system for physiological monitoring
WO2003043494A1 (en) * 2001-11-23 2003-05-30 Medit As A cluster system for remote monitoring and diagnostic support
US20050119833A1 (en) * 1998-03-03 2005-06-02 Reuven Nanikashvili Health monitor system and method for health monitoring
US20080004904A1 (en) * 2006-06-30 2008-01-03 Tran Bao Q Systems and methods for providing interoperability among healthcare devices
US20080146892A1 (en) * 2006-12-19 2008-06-19 Valencell, Inc. Physiological and environmental monitoring systems and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634468A (en) * 1992-04-03 1997-06-03 Micromedical Industries Limited Sensor patch and system for physiological monitoring
US20050119833A1 (en) * 1998-03-03 2005-06-02 Reuven Nanikashvili Health monitor system and method for health monitoring
WO2003043494A1 (en) * 2001-11-23 2003-05-30 Medit As A cluster system for remote monitoring and diagnostic support
US20080004904A1 (en) * 2006-06-30 2008-01-03 Tran Bao Q Systems and methods for providing interoperability among healthcare devices
US20080146892A1 (en) * 2006-12-19 2008-06-19 Valencell, Inc. Physiological and environmental monitoring systems and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022017994A1 (en) * 2020-07-20 2022-01-27 Koninklijke Philips N.V. System and method to monitor and titrate treatment for high altitude-induced central sleep apnea (csa)
US11837106B2 (en) 2020-07-20 2023-12-05 Koninklijke Philips N.V. System and method to monitor and titrate treatment for high altitude-induced central sleep apnea (CSA)

Also Published As

Publication number Publication date
CL2019000057A1 (en) 2019-04-12

Similar Documents

Publication Publication Date Title
US10339781B2 (en) Methods and apparatus for monitoring alterness of an individual utilizing a wearable device and providing notification
US10226220B2 (en) Detecting, assessing and managing a risk of death in epilepsy
US10786209B2 (en) Monitoring system for stroke
Anderson et al. Assessment of drowsiness based on ocular parameters detected by infrared reflectance oculography
US10117616B2 (en) Apnea safety control
TW201528198A (en) Fatigue monitoring and management system and the method thereof
Narciso et al. Effects of shift work on the postural and psychomotor performance of night workers
CN113520395A (en) Real-time mental state assessment system and method
JP2022042008A (en) Medical system and method executing the same
Kandera et al. Consequences of flight crew fatigue on the safety of civil aviation
Pino et al. Noninvasive monitoring device to evaluate sleep quality at mining facilities
WO2020142858A1 (en) System for predicting a risk index in conditions of chronic intermittent hypobaric hypoxia
US11449141B2 (en) Systematic bilateral situational awareness tracking apparatus and method
US20210077010A1 (en) Systems, Devices, And Methods For Tracking Abdominal Orientation And Activity For Prevention Of Poor Respiratory Disease Outcomes
JP6864460B2 (en) Disease prediction device
US20220280105A1 (en) System and method for personalized biofeedback from a wearable device
RU2531443C1 (en) Method for diagnosing stress
US11382563B2 (en) System and method for detecting ventilatory depression and for prompting a patient to breathe
Lee Exploring Fatigue Management of Haul Truck Drivers through a Socio-Technical Perspective
JP3232012U (en) Respiratory monitoring system
Zaiwalla et al. Polysomnography and other investigations for sleep disorders
US20230343451A1 (en) Devices, systems and methods for the early detection of infections and endemic and/or pandemic diseases
JP2022123528A (en) Respiration monitoring system
Schachter Future directions in ambulatory eeg
Kovac A mixed methods investigation into sleep inertia management for emergency service personnel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738312

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/11/2021)