WO2020142681A1 - Lecture de contenu sur de multiples dispositifs - Google Patents

Lecture de contenu sur de multiples dispositifs Download PDF

Info

Publication number
WO2020142681A1
WO2020142681A1 PCT/US2020/012175 US2020012175W WO2020142681A1 WO 2020142681 A1 WO2020142681 A1 WO 2020142681A1 US 2020012175 W US2020012175 W US 2020012175W WO 2020142681 A1 WO2020142681 A1 WO 2020142681A1
Authority
WO
WIPO (PCT)
Prior art keywords
media
user device
user
secondary user
playback
Prior art date
Application number
PCT/US2020/012175
Other languages
English (en)
Inventor
Bryan Hansen
Vince Lane
Benjamin S. Phipps
Karl Ferdinand Schramm
Andrew J. Sinesio
Jaireh Tecarro
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/367,829 external-priority patent/US11638059B2/en
Application filed by Apple Inc. filed Critical Apple Inc.
Publication of WO2020142681A1 publication Critical patent/WO2020142681A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/43615Interfacing a Home Network, e.g. for connecting the client to a plurality of peripherals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/258Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
    • H04N21/25808Management of client data
    • H04N21/25825Management of client data involving client display capabilities, e.g. screen resolution of a mobile phone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/258Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
    • H04N21/25866Management of end-user data
    • H04N21/25875Management of end-user data involving end-user authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/475End-user interface for inputting end-user data, e.g. personal identification number [PIN], preference data
    • H04N21/4753End-user interface for inputting end-user data, e.g. personal identification number [PIN], preference data for user identification, e.g. by entering a PIN or password
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4131Peripherals receiving signals from specially adapted client devices home appliance, e.g. lighting, air conditioning system, metering devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/485End-user interface for client configuration

Definitions

  • This application relates generally to intelligent automated assistants and, more specifically, to content playback on multiple devices.
  • Intelligent automated assistants can provide a beneficial interface between human users and electronic devices.
  • Digital assistants may be invoked in order to perform various user requests, such as facilitating media playback.
  • conventional digital assistants are not well integrated into systems having multiple user devices capable of playing media, such as home entertainment systems. For instance, a user may wish to play specific media content on a specific device, although the user’s speech request may be provided at a device which is different than the intended playback device.
  • Conventional digital assistants may not be well equipped to handle these requests. Such problems are magnified when more complex or ambiguous requests are issued by a user. For example, a user may wish to transfer playback of currently playing media from a first device to a second device, such as from mobile phone to a television.
  • Systems and processes for operating an intelligent automated assistant are provided.
  • information associated with media playback is received from one or more user devices.
  • a speech request for a media item is received from a user.
  • At least the speech request and the information associated with media playback is transmitted to a second electronic device.
  • Based on at least the speech request and the information associated with media playback an instruction for media playback on a secondary user device is received.
  • At least one task is performed based on the instruction for media playback.
  • FIG. l is a block diagram illustrating a system and environment for implementing a digital assistant, according to various examples.
  • FIG. 2A is a block diagram illustrating a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.
  • FIG. 2B is a block diagram illustrating exemplary components for event handling, according to various examples.
  • FIG. 3 illustrates a portable multifunction device implementing the client-side portion of a digital assistant, according to various examples.
  • FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface, according to various examples.
  • FIG. 5A illustrates an exemplary user interface for a menu of applications on a portable multifunction device, according to various examples.
  • FIG. 5B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display, according to various examples.
  • FIG. 6A illustrates a personal electronic device, according to various examples.
  • FIG. 6B is a block diagram illustrating a personal electronic device, according to various examples.
  • FIG. 7A is a block diagram illustrating a digital assistant system or a server portion thereof, according to various examples.
  • FIG. 7B illustrates the functions of the digital assistant shown in FIG. 7A, according to various examples.
  • FIG. 7C illustrates a portion of an ontology, according to various examples.
  • FIGS. 8A-8G illustrate a system for content playback on multiple devices, according to various examples.
  • FIG. 9 illustrates a process for displaying user interfaces for content playback on multiple devices, according to various examples.
  • FIG. 10 illustrates a process for displaying user interfaces for content playback on multiple devices, according to various examples.
  • FIG. 11 illustrates a process for displaying user interfaces for content playback on multiple devices, according to various examples.
  • FIG. 12 illustrates a process for displaying user interfaces for content playback on multiple devices, according to various examples.
  • FIG. 13 illustrates a process for content playback on multiple devices, according to various examples.
  • FIG. 14 illustrates a process for content playback on multiple devices, according to various examples.
  • Conventional techniques for media playback on multiple devices lack effectiveness. For instance, conventional systems are unable to efficiently handle requests to transfer playback of media content from a first device to a second device, based on natural language input. For example, a user may provide natural language input to a device, such as“Play this on that,” where“this” may refer to media content currently playing on a first device (e.g., a mobile phone) and“that” may refer to a secondary user device that user wishes to transfer playback to.
  • a device such as“Play this on that,” where“this” may refer to media content currently playing on a first device (e.g., a mobile phone) and“that” may refer to a secondary user device that user wishes to transfer playback to.
  • media playback is improved by providing a content playback method on multiple user devices.
  • information associated with media playback is received from one or more user devices.
  • one or more user devices such as a television set top box or a home speaker system, may send information to a first user device, such as a mobile phone.
  • a speech request for a media item is then received at the first user device.
  • At least the speech request and the information associated with media playback may then be transmitted to a second electronic device, such as a digital assistant server.
  • the user device may then receive, based on at least the speech request and the information associated with media playback, an instruction for media playback on a secondary user device, such as a television set top box. At least one task is then performed based on the instruction for media playback, such as playing media content at the secondary user device.
  • the system improves task execution, and specifically with respect to systems for media playback on multiple devices. For example, the system enhances the knowledge used for intent
  • a plurality of media devices may transmit information associated with media playback to a user device, such as a mobile phone or a voice enabled speaker, for example.
  • the information associated with media playback may include, for example, any information to assist the system with intent determination and media playback, such as information related to media ownership, playback capabilities, user interaction history, installed applications, and the like.
  • the system improves natural language processing and task execution, and specifically in the context of content playback on multiple devices.
  • first could be termed a second input
  • first input could be termed a first input
  • second input could be termed a first input
  • the first input and the second input are both inputs and, in some cases, are separate and different inputs.
  • phrase“if it is determined” or“if [a stated condition or event] is detected” may be construed to mean“upon determining” or“in response to determining” or“upon detecting [the stated condition or event]” or“in response to detecting [the stated condition or event],” depending on the context.
  • FIG. 1 illustrates a block diagram of system 100 according to various examples.
  • system 100 implements a digital assistant.
  • digital assistant refers to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent.
  • the system performs one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.
  • audible e.g., speech
  • a digital assistant is capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry.
  • the user request seeks either an informational answer or performance of a task by the digital assistant.
  • a satisfactory response to the user request includes a provision of the requested informational answer, a performance of the requested task, or a combination of the two.
  • a user asks the digital assistant a question, such as“Where am I right now?” Based on the user’s current location, the digital assistant answers,“You are in Central Park near the west gate.”
  • the user also requests the performance of a task, for example,“Please invite my friends to my girlfriend’s birthday party next week.”
  • the digital assistant can acknowledge the request by saying“Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user’s friends listed in the user’s electronic address book.
  • the digital assistant sometimes interacts with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time.
  • the digital assistant also provides responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.
  • a digital assistant is implemented according to a client-server model.
  • the digital assistant includes client-side portion 102 (hereafter“DA client 102”) executed on user device 104 and server-side portion 106 (hereafter“DA server 106”) executed on server system 108.
  • DA client 102 communicates with DA server 106 through one or more networks 110.
  • DA client 102 provides client-side functionalities such as user-facing input and output processing and communication with DA server 106.
  • DA server 106 provides server-side functionalities for any number of DA clients 102 each residing on a respective user device 104.
  • DA server 106 includes client-facing I/O interface 112, one or more processing modules 114, data and models 116, and I/O interface to external services 118.
  • the client-facing I/O interface 112 facilitates the client-facing input and output processing for DA server 106.
  • One or more processing modules 114 utilize data and models 116 to process speech input and determine the user’s intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent.
  • DA server 106 communicates with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 facilitates such communications.
  • User device 104 can be any suitable electronic device.
  • user device 104 is a portable multifunctional device (e.g., device 200, described below with reference to FIG. 2A), a multifunctional device (e.g., device 400, described below with reference to FIG. 4), or a personal electronic device (e.g., device 600, described below with reference to FIG. 6A-B.)
  • a portable multifunctional device is, for example, a mobile telephone that also contains other functions, such as PDA and/or music player functions. Specific examples of portable
  • user device 104 is a non-portable multifunctional device.
  • user device 104 is a desktop computer, a game console, a speaker, a television, or a television set-top box.
  • user device 104 includes a touch-sensitive surface (e.g., touch screen displays and/or touchpads).
  • user device 104 optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.
  • electronic devices such as multifunctional devices, are described below in greater detail.
  • Examples of communication network(s) 110 include local area networks (LAN) and wide area networks (WAN), e.g., the Internet.
  • Communication network(s) 110 is implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile
  • GSM Global System for Mobile communications
  • EDGE Enhanced Data GSM Environment
  • CDMA code division multiple access
  • TDMA time division multiple access
  • Bluetooth Wi-Fi
  • Wi-Fi Wireless Fidelity
  • VoIP voice over Internet Protocol
  • Wi-MAX Wireless Fidelity
  • Server system 108 is implemented on one or more standalone data processing apparatus or a distributed network of computers.
  • server system 108 also employs various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108.
  • third-party service providers e.g., third-party cloud service providers
  • user device 104 communicates with DA server 106 via second user device 122.
  • Second user device 122 is similar or identical to user device 104.
  • second user device 122 is similar to devices 200, 400, or 600 described below with reference to FIGS. 2A, 4, and 6A-B.
  • User device 104 is configured to communicatively couple to second user device 122 via a direct communication connection, such as Bluetooth, NFC, BTLE, or the like, or via a wired or wireless network, such as a local Wi-Fi network.
  • second user device 122 is configured to act as a proxy between user device 104 and DA server 106.
  • DA client 102 of user device 104 is configured to transmit information (e.g., a user request received at user device 104) to DA server 106 via second user device 122.
  • DA server 106 processes the information and returns relevant data (e.g., data content responsive to the user request) to user device 104 via second user device 122.
  • user device 104 is configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104.
  • Second user device 122 is configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106.
  • This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106. While only two user devices 104 and 122 are shown in FIG. 1, it should be appreciated that system 100, in some examples, includes any number and type of user devices configured in this proxy configuration to communicate with DA server system 106.
  • the digital assistant shown in FIG. 1 includes both a client-side portion (e.g., DA client 102) and a server-side portion (e.g., DA server 106), in some examples, the functions of a digital assistant are implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For instance, in some examples, the DA client is a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.
  • FIG. 2A is a block diagram illustrating portable multifunction device 200 with touch-sensitive display system 212 in accordance with some embodiments.
  • Touch-sensitive display 212 is sometimes called a“touch screen” for convenience and is sometimes known as or called a“touch-sensitive display system.”
  • Device 200 includes memory 202 (which optionally includes one or more computer-readable storage mediums), memory controller 222, one or more processing units (CPUs) 220, peripherals interface 218, RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, input/output (I/O) subsystem 206, other input control devices 216, and external port 224.
  • Device 200 optionally includes one or more optical sensors 264.
  • Device 200 optionally includes one or more contact intensity sensors 265 for detecting intensity of contacts on device 200 (e.g., a touch- sensitive surface such as touch-sensitive display system 212 of device 200).
  • Device 200 optionally includes one or more tactile output generators 267 for generating tactile outputs on device 200 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 212 of device 200 or touchpad 455 of device 400).
  • These components optionally communicate over one or more communication buses or signal lines 203.
  • the term“intensity” of a contact on a touch- sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface.
  • the intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors.
  • one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface.
  • force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact.
  • a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface.
  • the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface.
  • the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements).
  • the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure).
  • the intensity threshold is a pressure threshold measured in units of pressure.
  • the term“tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user’s sense of touch.
  • a component e.g., a touch-sensitive surface
  • another component e.g., housing
  • the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device.
  • movement of a touch-sensitive surface is, optionally, interpreted by the user as a“down click” or“up click” of a physical actuator button.
  • a user will feel a tactile sensation such as an“down click” or“up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user’s movements.
  • movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as“roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface.
  • a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an“up click,” a“down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
  • device 200 is only one example of a portable
  • device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components.
  • the various components shown in FIG. 2A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.
  • Memory 202 includes one or more computer-readable storage mediums.
  • the computer-readable storage mediums are, for example, tangible and non-transitory.
  • Memory 202 includes high-speed random access memory and also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • Memory controller 222 controls access to memory 202 by other components of device 200.
  • a non-transitory computer-readable storage medium of memory 202 is used to store instructions (e.g., for performing aspects of processes described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
  • the instructions e.g., for performing aspects of the processes described below
  • Peripherals interface 218 is used to couple input and output peripherals of the device to CPU 220 and memory 202.
  • the one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data.
  • peripherals interface 218, CPU 220, and memory controller 222 are implemented on a single chip, such as chip 204. In some other embodiments, they are implemented on separate chips.
  • RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals.
  • RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals.
  • RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth.
  • an antenna system an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth.
  • SIM subscriber identity module
  • RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication.
  • the RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio.
  • the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data GSM Environment
  • HSDPA high-speed downlink packet access
  • HSUPA high-speed uplink packet access
  • Evolution, Data-Only (EV- DO) HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.
  • VoIP voice over Internet Protocol
  • Wi-MAX a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant
  • SMS Short Message Service
  • Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between a user and device 200.
  • Audio circuitry 210 receives audio data from peripherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211.
  • Speaker 211 converts the electrical signal to human-audible sound waves.
  • Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves.
  • Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data are retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218.
  • audio circuitry 210 also includes a headset jack (e.g., 312, FIG. 3).
  • the headset jack provides an interface between audio circuitry 210 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
  • removable audio input/output peripherals such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
  • I/O subsystem 206 couples input/output peripherals on device 200, such as touch screen 212 and other input control devices 216, to peripherals interface 218.
  • I/O subsystem 206 optionally includes display controller 256, optical sensor controller 258, intensity sensor controller 259, haptic feedback controller 261, and one or more input controllers 260 for other input or control devices.
  • the one or more input controllers 260 receive/send electrical signals from/to other input control devices 216.
  • the other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth.
  • input controlled s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse.
  • the one or more buttons e.g., 308, FIG. 3 optionally include an up/down button for volume control of speaker 211 and/or microphone 213.
  • the one or more buttons optionally include a push button (e.g., 306, FIG. 3).
  • a quick press of the push button disengages a lock of touch screen 212 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. Patent Application 11/322,549,“Unlocking a Device by Performing Gestures on an Unlock Image,” filed December 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety.
  • a longer press of the push button (e.g., 306) turns power to device 200 on or off.
  • Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.
  • Touch-sensitive display 212 provides an input interface and an output interface between the device and a user.
  • Display controller 256 receives and/or sends electrical signals from/to touch screen 212.
  • Touch screen 212 displays visual output to the user.
  • the visual output includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output correspond to user-interface objects.
  • Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact.
  • Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212.
  • user-interface objects e.g., one or more soft keys, icons, web pages, or images
  • a point of contact between touch screen 212 and the user corresponds to a finger of the user.
  • Touch screen 212 uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies may be used in other embodiments.
  • Touch screen 212 and display controller 256 detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212.
  • touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212.
  • projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, California.
  • a touch-sensitive display in some embodiments of touch screen 212 is analogous to the multi-touch sensitive touchpads described in the following U.S. Patents: 6,323,846
  • touch screen 212 displays visual output from device 200, whereas touch- sensitive touchpads do not provide visual output.
  • a touch-sensitive display in some embodiments of touch screen 212 is as described in the following applications: (1) U.S. Patent Application No. 11/381,313,“Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. Patent Application No. 10/840,862,“Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. Patent Application No. 10/903,964,“Gestures For Touch Sensitive Input Devices,” filed July 30, 2004; (4) U.S. Patent Application No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed January 31, 2005; (5) U.S. Patent
  • Touch screen 212 has, for example, a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi.
  • the user makes contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth.
  • the user interface is designed to work primarily with finger- based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen.
  • the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
  • device 200 in addition to the touch screen, device 200 includes a touchpad (not shown) for activating or deactivating particular functions.
  • the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output.
  • the touchpad is a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.
  • Device 200 also includes power system 262 for powering the various components.
  • Power system 262 includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
  • Power system 262 includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
  • Device 200 also includes one or more optical sensors 264.
  • FIG. 2A shows an optical sensor coupled to optical sensor controller 258 in I/O subsystem 206
  • Optical sensor 264 receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 243 (also called a camera module), optical sensor 264 captures still images or video. In some embodiments, an optical sensor is located on the back of device 200, opposite touch screen display 212 on the front of the device so that the touch screen display is used as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user’s image is obtained for video conferencing while the user views the other video conference participants on the touch screen display.
  • the position of optical sensor 264 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 264 is used along with the touch screen display for both video conferencing and still and/or video image acquisition.
  • Device 200 optionally also includes one or more contact intensity sensors 265.
  • FIG. 2A shows a contact intensity sensor coupled to intensity sensor controller 259 in I/O subsystem 206.
  • Contact intensity sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface).
  • Contact intensity sensor 265 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment.
  • At least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212). In some embodiments, at least one contact intensity sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.
  • a touch-sensitive surface e.g., touch-sensitive display system 2112.
  • at least one contact intensity sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.
  • Device 200 also includes one or more proximity sensors 266.
  • FIG. 2A shows proximity sensor 266 coupled to peripherals interface 218. Alternately, proximity sensor 266 is coupled to input controller 260 in I/O subsystem 206. Proximity sensor 266 is performed as described in U.S. Patent Application Nos.
  • the proximity sensor turns off and disables touch screen 212 when the multifunction device is placed near the user’s ear (e.g., when the user is making a phone call).
  • Device 200 optionally also includes one or more tactile output generators 267.
  • FIG. 2A shows a tactile output generator coupled to haptic feedback controller 261 in I/O subsystem 206.
  • Tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device).
  • Contact intensity sensor 265 receives tactile feedback generation instructions from haptic feedback module 233 and generates tactile outputs on device 200 that are capable of being sensed by a user of device 200.
  • At least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200) or laterally (e.g., back and forth in the same plane as a surface of device 200).
  • a touch-sensitive surface e.g., touch-sensitive display system 212
  • a tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200) or laterally (e.g., back and forth in the same plane as a surface of device 200).
  • At least one tactile output generator sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.
  • Device 200 also includes one or more accelerometers 268.
  • FIG. 2A shows accelerometer 268 coupled to peripherals interface 218. Alternately, accelerometer 268 is coupled to an input controller 260 in I/O subsystem 206. Accelerometer 268 performs, for example, as described in U.S. Patent Publication No. 20050190059,“Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No.
  • Device 200 optionally includes, in addition to accelerometer(s) 268, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 200.
  • the software components stored in memory 202 include operating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, Digital Assistant Client Module 229, and applications (or sets of instructions) 236. Further, memory 202 stores data and models, such as user data and models 231.
  • memory 202 (FIG. 2A) or 470 (FIG. 4) stores device/global internal state 257, as shown in FIGS. 2A and 4.
  • Device/global internal state 257 includes one or more of: active application state, indicating which applications, if any, are currently active;
  • display state indicating what applications, views or other information occupy various regions of touch screen display 212; sensor state, including information obtained from the device’s various sensors and input control devices 216; and location information concerning the device’s location and/or attitude.
  • Operating system 226 e.g, Darwin, RTXC, LINUX, UNIX, OS X, iOS,
  • WINDOWS or an embedded operating system such as VxWorks
  • VxWorks includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
  • general system tasks e.g., memory management, storage device control, power management, etc.
  • Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224.
  • External port 224 e.g., Universal Serial Bus (USB), FIREWIRE, etc.
  • USB Universal Serial Bus
  • FIREWIRE FireWire
  • the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
  • Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel).
  • Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch- sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact).
  • Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.
  • contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has“clicked” on an icon).
  • at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200).
  • a mouse“click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware.
  • a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
  • Contact/motion module 230 optionally detects a gesture input by a user.
  • Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts).
  • a gesture is, optionally, detected by detecting a particular contact pattern.
  • detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon).
  • detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
  • Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed.
  • the term“graphics” includes any object that can be displayed to a user, including , without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
  • graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 256.
  • Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200.
  • Text input module 23 which is, in some examples, a component of graphics module 232, provides soft keyboards for entering text in various applications (e.g., contacts 237, email 240, IM 241, browser 247, and any other application that needs text input).
  • applications e.g., contacts 237, email 240, IM 241, browser 247, and any other application that needs text input.
  • GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
  • Digital assistant client module 229 includes various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant.
  • digital assistant client module 229 is capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 264, other input control devices 216, etc.) of portable multifunction device 200.
  • Digital assistant client module 229 is also capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portable multifunction device 200.
  • output is provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above.
  • digital assistant client module 229 communicates with DA server 106 using RF circuitry 208.
  • User data and models 231 include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user’s electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 include various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.
  • models e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.
  • digital assistant client module 229 utilizes the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input.
  • digital assistant client module 229 provides the contextual information or a subset thereof with the user input to DA server 106 to help infer the user’s intent.
  • the digital assistant also uses the contextual information to determine how to prepare and deliver outputs to the user. Contextual information is referred to as context data.
  • the contextual information that accompanies the user input includes sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc.
  • the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc.
  • information related to the software state of DA server 106 e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 is provided to DA server 106 as contextual information associated with a user input.
  • the digital assistant client module 229 selectively provides information (e.g., user data 231) stored on the portable multifunction device 200 in response to requests from DA server 106. In some examples, digital assistant client module 229 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106. Digital assistant client module 229 passes the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user’s intent expressed in the user request.
  • information e.g., user data 231
  • digital assistant client module 229 also elicits additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106.
  • Digital assistant client module 229 passes the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user’s intent expressed in the user request.
  • digital assistant client module 229 can include any number of the sub-modules of digital assistant module 726 described below.
  • Applications 236 include the following modules (or sets of instructions), or a subset or superset thereof:
  • Contacts module 237 (sometimes called an address book or contact list);
  • Video conference module 239 • Video conference module 239;
  • IM Instant messaging
  • Workout support module 242 • Camera module 243 for still and/or video images;
  • Image management module 244 • Image management module 244;
  • Calendar module 248 • Calendar module 248;
  • Widget modules 249 which includes, in some examples, one or more of: weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, dictionary widget 249-5, and other widgets obtained by the user, as well as user-created widgets 249-6;
  • Widget creator module 250 for making user-created widgets 249-6;
  • Video and music player module 252 which merges video player module and music player module
  • Map module 254 • Map module 254; and/or
  • Examples of other applications 236 that are stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
  • contacts module 237 are used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 238, video conference module 239, e-mail 240, or IM 241; and so forth.
  • telephone module 238 are used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed.
  • the wireless communication uses any of a plurality of communications standards, protocols, and technologies.
  • video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
  • e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions.
  • e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken with camera module 243.
  • the instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony -based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages.
  • SMS Short Message Service
  • MMS Multimedia Message Service
  • XMPP extensible Markup Language
  • SIMPLE Session Initation Protocol
  • IMPS Internet Messaging Protocol
  • transmitted and/or received instant messages include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS).
  • EMS Enhanced Messaging Service
  • instant messaging refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet- based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
  • workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals);
  • workout sensors sports devices
  • receive workout sensor data calibrate sensors used to monitor a workout
  • select and play music for a workout and display, store, and transmit workout data.
  • camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202, modify
  • image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
  • browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
  • calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to- do lists, etc.) in accordance with user instructions.
  • widget modules 249 are mini-applications that can be downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6).
  • a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file.
  • a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
  • the widget creator module 250 are used by a user to create widgets (e.g., turning a user- specified portion of a web page into a widget).
  • search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
  • search criteria e.g., one or more user-specified search terms
  • video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224).
  • device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
  • notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
  • map module 254 are used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.
  • maps e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data
  • online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264.
  • instant messaging module 241 rather than e-mail client module 240, is used to send a link to a particular online video.
  • Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein).
  • These modules e.g., sets of instructions
  • video player module can be combined with music player module into a single module (e.g., video and music player module 252, FIG. 2A).
  • memory 202 stores a subset of the modules and data structures identified above. Furthermore, memory 202 stores additional modules and data structures not described above.
  • device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad.
  • a touch screen and/or a touchpad as the primary input control device for operation of device 200, the number of physical input control devices (such as push buttons, dials, and the like) on device 200 is reduced.
  • the predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces.
  • the touchpad when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200.
  • a“menu button” is implemented using a touchpad.
  • the menu button is a physical push button or other physical input control device instead of a touchpad.
  • FIG. 2B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments.
  • memory 202 (FIG. 2A) or 470 (FIG. 4) includes event sorter 270 (e.g., in operating system 226) and a respective application 236-1 (e.g., any of the aforementioned applications 237-251, 255, 480-490).
  • Event sorter 270 receives event information and determines the application 236-1 and application view 291 of application 236-1 to which to deliver the event information.
  • Event sorter 270 includes event monitor 271 and event dispatcher module 274.
  • application 236-1 includes application internal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing.
  • device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.
  • application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user.
  • Event monitor 271 receives event information from peripherals interface 218.
  • Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi -touch gesture).
  • Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210).
  • Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.
  • event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
  • event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273.
  • Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
  • FIG. 1 Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur.
  • the application views (of a respective application) in which a touch is detected correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is called the hit view, and the set of events that are recognized as proper inputs is determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
  • Hit view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
  • Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some
  • active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
  • Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active event recognizer determination module 273, event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273. In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.
  • an event recognizer e.g., event recognizer 280.
  • event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273.
  • event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.
  • operating system 226 includes event sorter 270.
  • application 236-1 includes event sorter 270.
  • event sorter 270 is a stand-alone module, or a part of another module stored in memory 202, such as contact/motion module 230.
  • application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application’s user interface.
  • Each application view 291 of the application 236-1 includes one or more event recognizers 280.
  • a respective application view 291 includes a plurality of event recognizers 280.
  • one or more of event recognizers 280 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 236-1 inherits methods and other properties.
  • a respective event handler 290 includes one or more of: data updater 276, object updater 277, GUI updater 278, and/or event data 279 received from event sorter 270.
  • Event handler 290 utilizes or calls data updater 276, object updater 277, or GUI updater 278 to update the application internal state 292.
  • one or more of the application views 291 include one or more respective event handlers 290.
  • one or more of data updater 276, object updater 277, and GUI updater 278 are included in a respective application view 291.
  • a respective event recognizer 280 receives event information (e.g., event data 279) from event sorter 270 and identifies an event from the event information.
  • Event recognizer 280 includes event receiver 282 and event comparator 284.
  • event recognizer 280 also includes at least a subset of: metadata 283, and event delivery instructions 288 (which include sub-event delivery instructions).
  • Event receiver 282 receives event information from event sorter 270.
  • the event information includes information about a sub-event, for example, a touch or a touch movement.
  • the event information also includes additional information, such as location of the sub-event.
  • the event information also includes speed and direction of the sub-event.
  • events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
  • Event comparator 284 compares the event information to predefined event or sub event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event.
  • event comparator 284 includes event definitions 286.
  • Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others.
  • sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching.
  • the definition for event 1 (287-1) is a double tap on a displayed object.
  • the double tap for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase.
  • the definition for event 2 (287-2) is a dragging on a displayed object.
  • the dragging for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end).
  • the event also includes information for one or more associated event handlers 290.
  • event definition 287 includes a definition of an event for a respective user-interface object.
  • event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub event). If each displayed object is associated with a respective event handler 290, the event comparator uses the result of the hit test to determine which event handler 290 should be activated.
  • event comparator 284 selects an event handler associated with the sub event and the object triggering the hit test.
  • the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer’s event type.
  • a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286, the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
  • a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers.
  • metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another.
  • metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub events are delivered to varying levels in the view or programmatic hierarchy.
  • a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized.
  • a respective event recognizer 280 delivers event information associated with the event to event handler 290. Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view.
  • event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.
  • event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
  • data updater 276 creates and updates data used in application 236-1. For example, data updater 276 updates the telephone number used in contacts module 237, or stores a video file used in video player module.
  • object updater 277 creates and updates objects used in application 236-1.
  • object updater 277 creates a new user-interface object or updates the position of a user-interface object.
  • GUI updater 278 updates the GUI.
  • GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.
  • event handler(s) 290 includes or has access to data updater 276, object updater 277, and GUI updater 278.
  • data updater 276, object updater 277, and GUI updater 278 are included in a single module of a respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.
  • event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens.
  • mouse movement and mouse button presses optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye
  • FIG. 3 illustrates a portable multifunction device 200 having a touch screen 212 in accordance with some embodiments.
  • the touch screen optionally displays one or more graphics within user interface (UI) 300.
  • UI user interface
  • a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figure) or one or more styluses 303 (not drawn to scale in the figure).
  • selection of one or more graphics occurs when the user breaks contact with the one or more graphics.
  • the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward), and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 200.
  • inadvertent contact with a graphic does not select the graphic.
  • a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.
  • Device 200 also includes one or more physical buttons, such as“home” or menu button 304.
  • menu button 304 is used to navigate to any application 236 in a set of applications that is executed on device 200.
  • the menu button is implemented as a soft key in a GUI displayed on touch screen 212.
  • device 200 includes touch screen 212, menu button 304, push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM) card slot 310, headset jack 312, and docking/charging external port 224.
  • Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process.
  • device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213.
  • Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200.
  • FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments.
  • Device 400 need not be portable.
  • device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child’s learning toy), a gaming system, or a control device (e.g., a home or industrial controller).
  • Device 400 typically includes one or more processing units (CPUs) 410, one or more network or other communications interfaces 460, memory 470, and one or more communication buses 420 for interconnecting these components.
  • CPUs processing units
  • Communication buses 420 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components.
  • Device 400 includes input/output (I/O) interface 430 comprising display 440, which is typically a touch screen display.
  • I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 and touchpad 455, tactile output generator 457 for generating tactile outputs on device 400 (e.g., similar to tactile output generator(s) 267 described above with reference to FIG. 2A), sensors 459 (e.g., optical, acceleration, proximity, touch- sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2A).
  • sensors 459 e.g., optical, acceleration, proximity, touch- sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2A).
  • Memory 470 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 470 optionally includes one or more storage devices remotely located from CPU(s) 410. In some embodiments, memory 470 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 202 of portable multifunction device 200 (FIG. 2A), or a subset thereof. Furthermore, memory 470 optionally stores additional programs, modules, and data structures not present in memory 202 of portable multifunction device 200.
  • memory 470 of device 400 optionally stores drawing module 480, presentation module 482, word processing module 484, website creation module 486, disk authoring module 488, and/or spreadsheet module 490, while memory 202 of portable multifunction device 200 (FIG. 2A) optionally does not store these modules.
  • Each of the above-identified elements in FIG. 4 is, in some examples, stored in one or more of the previously mentioned memory devices.
  • Each of the above-identified modules corresponds to a set of instructions for performing a function described above.
  • the above- identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are combined or otherwise rearranged in various embodiments.
  • memory 470 stores a subset of the modules and data structures identified above. Furthermore, memory 470 stores additional modules and data structures not described above.
  • FIG. 5A illustrates an exemplary user interface for a menu of applications on portable multifunction device 200 in accordance with some embodiments. Similar user interfaces are implemented on device 400.
  • user interface 500 includes the following elements, or a subset or superset thereof: [0136] Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;
  • Icon 518 for e-mail client module 240 labeled“Mail,” which optionally includes an indicator 510 of the number of unread e-mails;
  • icon 522 for video and music player module 252 is optionally labeled“Music” or “Music Player.”
  • Other labels are, optionally, used for various application icons.
  • a label for a respective application icon includes a name of an application corresponding to the respective application icon.
  • a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.
  • FIG. 5B illustrates an exemplary user interface on a device (e.g., device 400, FIG. 4) with a touch-sensitive surface 551 (e.g., a tablet or touchpad 455, FIG. 4) that is separate from the display 550 (e.g., touch screen display 212).
  • Device 400 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 457) for detecting intensity of contacts on touch-sensitive surface 551 and/or one or more tactile output generators 459 for generating tactile outputs for a user of device 400.
  • the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 5B.
  • the touch-sensitive surface e.g., 551 in FIG. 5B
  • the touch-sensitive surface has a primary axis (e.g., 552 in FIG. 5B) that corresponds to a primary axis (e.g., 553 in FIG. 5B) on the display (e.g., 550).
  • the device detects contacts (e.g., 560 and 562 in FIG.
  • finger inputs e.g., finger contacts, finger tap gestures, finger swipe gestures
  • one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input).
  • a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact).
  • a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact).
  • a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact).
  • multiple user inputs it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
  • FIG. 6A illustrates exemplary personal electronic device 600.
  • Device 600 includes body 602.
  • device 600 includes some or all of the features described with respect to devices 200 and 400 (e.g., FIGS. 2A-4).
  • device 600 has touch- sensitive display screen 604, hereafter touch screen 604.
  • touch screen 604 has one or more intensity sensors for detecting intensity of contacts (e.g., touches) being applied.
  • the one or more intensity sensors of touch screen 604 (or the touch-sensitive surface) provide output data that represents the intensity of touches.
  • the user interface of device 600 responds to touches based on their intensity, meaning that touches of different intensities can invoke different user interface operations on device 600.
  • device 600 has one or more input mechanisms 606 and 608.
  • Input mechanisms 606 and 608, if included, are physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms.
  • device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 600 to be worn by a user.
  • FIG. 6B depicts exemplary personal electronic device 600.
  • device 600 includes some or all of the components described with respect to FIGS. 2A, 2B, and 4.
  • Device 600 has bus 612 that operatively couples I/O section 614 with one or more computer processors 616 and memory 618.
  • I/O section 614 is connected to display 604, which can have touch-sensitive component 622 and, optionally, touch-intensity sensitive component 624.
  • I/O section 614 is connected with communication unit 630 for receiving application and operating system data, using Wi-Fi, Bluetooth, near field communication (NFC), cellular, and/or other wireless communication techniques.
  • Device 600 includes input mechanisms 606 and/or 608.
  • Input mechanism 606 is a rotatable input device or a depressible and rotatable input device, for example.
  • Input mechanism 608 is a button, in some examples.
  • Input mechanism 608 is a microphone, in some examples.
  • Personal electronic device 600 includes, for example, various sensors, such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which are operatively connected to I/O section 614.
  • sensors such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which are operatively connected to I/O section 614.
  • Memory 618 of personal electronic device 600 is a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 616, for example, cause the computer processors to perform the techniques and processes described below.
  • the computer-executable instructions for example, are also stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
  • Personal electronic device 600 is not limited to the components and configuration of FIG. 6B, but can include other or additional components in multiple configurations.
  • the term“affordance” refers to a user-interactive graphical user interface object that is, for example, displayed on the display screen of devices 200, 400, and/or 600 (FIGS. 2A, 4, and 6A-B).
  • an image e.g., icon
  • a button e.g., button
  • text e.g., hyperlink
  • the term“focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting.
  • the cursor acts as a“focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in FIG. 4 or touch-sensitive surface 551 in FIG. 5B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input.
  • a touch-sensitive surface e.g., touchpad 455 in FIG. 4 or touch-sensitive surface 551 in FIG. 5B
  • a particular user interface element e.g., a button, window, slider or other user interface element
  • a detected contact on the touch screen acts as a“focus selector” so that when an input (e.g., a press input by the contact) is detected on the touch screen display at a location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input.
  • a particular user interface element e.g., a button, window, slider, or other user interface element
  • focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface.
  • the focus selector is generally the user interface element (or contact on a touch screen display) that is controlled by the user so as to communicate the user’s intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact).
  • a focus selector e.g., a cursor, a contact, or a selection box
  • a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).
  • the term“characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact.
  • the characteristic intensity is based on multiple intensity samples.
  • the characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2,
  • a characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like.
  • the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user.
  • the set of one or more intensity thresholds includes a first intensity threshold and a second intensity threshold.
  • a contact with a characteristic intensity that does not exceed the first threshold results in a first operation
  • a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation
  • a contact with a characteristic intensity that exceeds the second threshold results in a third operation.
  • a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.
  • a portion of a gesture is identified for purposes of determining a characteristic intensity.
  • a touch-sensitive surface receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases.
  • the characteristic intensity of the contact at the end location is based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location).
  • a smoothing algorithm is applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact.
  • the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm.
  • these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
  • the intensity of a contact on the touch-sensitive surface is characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds.
  • the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad.
  • the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad.
  • the device when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold.
  • a characteristic intensity below the light press intensity threshold e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected
  • intensity thresholds are consistent between different sets of user interface figures.
  • An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a“light press” input.
  • An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a“deep press” input.
  • An increase of characteristic intensity of the contact from an intensity below the contact- detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch- surface.
  • a decrease of characteristic intensity of the contact from an intensity above the contact- detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface.
  • the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
  • one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold.
  • the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a“down stroke” of the respective press input).
  • the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an“up stroke” of the respective press input).
  • the device employs intensity hysteresis to avoid accidental inputs sometimes termed“jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold).
  • the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold.
  • the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an“up stroke” of the respective press input).
  • the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
  • the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold.
  • the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
  • FIG. 7A illustrates a block diagram of digital assistant system 700 in accordance with various examples.
  • digital assistant system 700 is implemented on a standalone computer system.
  • digital assistant system 700 is distributed across multiple computers.
  • some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104, 122, 200, 400, or 600) and communicates with the server portion (e.g., server system 108) through one or more networks, e.g., as shown in FIG. 1.
  • digital assistant system 700 is an implementation of server system 108 (and/or DA server 106) shown in FIG. 1.
  • digital assistant system 700 is only one example of a digital assistant system, and that digital assistant system 700 can have more or fewer components than shown, can combine two or more components, or can have a different configuration or arrangement of the components.
  • the various components shown in FIG. 7A are implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination thereof.
  • Digital assistant system 700 includes memory 702, one or more processors 704, input/output (I/O) interface 706, and network communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710.
  • memory 702 includes a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).
  • a non-transitory computer-readable medium such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).
  • I/O interface 706 couples input/output devices 716 of digital assistant system 700, such as displays, keyboards, touch screens, and microphones, to user interface module 722.
  • digital assistant system 700 when the digital assistant is implemented on a standalone user device, digital assistant system 700 includes any of the components and I/O communication interfaces described with respect to devices 200, 400, or 600 in FIGs. 2A, 4, 6A-B, respectively.
  • digital assistant system 700 represents the server portion of a digital assistant implementation, and can interact with the user through a client-side portion residing on a user device (e.g., devices 104, 200, 400, or 600).
  • the network communications interface 708 includes wired communication port(s) 712 and/or wireless transmission and reception circuitry 714.
  • the wired communication port(s) receives and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc.
  • the wireless circuitry 714 receives and sends RF signals and/or optical signals from/to communications networks and other communications devices.
  • the wireless communications use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol.
  • Network communications interface 708 enables communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.
  • memory 702, or the computer-readable storage media of memory 702 stores programs, modules, instructions, and data structures including all or a subset of: operating system 718, communications module 720, user interface module 722, one or more applications 724, and digital assistant module 726.
  • memory 702, or the computer- readable storage media of memory 702 stores instructions for performing the processes described below.
  • One or more processors 704 execute these programs, modules, and
  • Operating system 718 e g., Darwin, RTXC, LINUX, UNIX, iOS, OS X,
  • WINDOWS or an embedded operating system such as VxWorks
  • VxWorks includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.
  • Communications module 720 facilitates communications between digital assistant system 700 with other devices over network communications interface 708. For example, communications module 720 communicates with RF circuitry 208 of electronic devices such as devices 200, 400, and 600 shown in FIGS. 2A, 4, 6A-B, respectively. Communications module 720 also includes various components for handling data received by wireless circuitry 714 and/or wired communications port 712.
  • User interface module 722 receives commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or
  • User interface module 722 also prepares and delivers outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).
  • outputs e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.
  • Applications 724 include programs and/or modules that are configured to be executed by one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, applications 724 include user applications, such as games, a calendar application, a navigation application, or an email application. If digital assistant system 700 is implemented on a server, applications 724 include resource management applications, diagnostic applications, or scheduling applications, for example.
  • Memory 702 also stores digital assistant module 726 (or the server portion of a digital assistant).
  • digital assistant module 726 includes the following sub-modules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT) processing module 730, natural language processing module 732, dialogue flow processing module 734, task flow processing module 736, service processing module 738, and speech synthesis processing module 740.
  • STT speech-to-text
  • Each of these modules has access to one or more of the following systems or data and models of the digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow models 754, service models 756, and ASR systems 758.
  • the digital assistant can perform at least some of the following: converting speech input into text; identifying a user’s intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user’s intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.
  • EO processing module 728 interacts with the user through EO devices 716 in FIG. 7A or with a user device (e.g., devices 104, 200, 400, or 600) through network communications interface 708 in FIG. 7A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input.
  • EO processing module 728 optionally obtains contextual information associated with the user input from the user device, along with or shortly after the receipt of the user input.
  • the contextual information includes user-specific data, vocabulary, and/or preferences relevant to the user input.
  • the contextual information also includes software and hardware states of the user device at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received.
  • I/O processing module 728 also sends follow-up questions to, and receive answers from, the user regarding the user request.
  • I/O processing module 728 forwards the speech input to STT processing module 730 (or speech recognizer) for speech-to-text conversions.
  • STT processing module 730 includes one or more ASR systems 758. The one or more ASR systems 758 can process the speech input that is received through I/O processing module 728 to produce a recognition result.
  • Each ASR system 758 includes a front-end speech pre-processor.
  • the front-end speech pre-processor extracts representative features from the speech input. For example, the front-end speech pre-processor performs a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors.
  • each ASR system 758 includes one or more speech recognition models (e.g., acoustic models and/or language models) and implements one or more speech recognition engines. Examples of speech recognition models include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models.
  • speech recognition engines include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines.
  • the one or more speech recognition models and the one or more speech recognition engines are used to process the extracted representative features of the front-end speech pre processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens).
  • the speech input is processed at least partially by a third-party service or on the user’s device (e.g., device 104, 200, 400, or 600) to produce the recognition result.
  • STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result is passed to natural language processing module 732 for intent deduction.
  • STT processing module 730 produces multiple candidate text representations of the speech input. Each candidate text representation is a sequence of words or tokens corresponding to the speech input.
  • STT processing module 730 includes and/or accesses a vocabulary of recognizable words via phonetic alphabet conversion module 731.
  • Each vocabulary word is associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet.
  • the vocabulary of recognizable words includes a word that is associated with a plurality of candidate pronunciations.
  • the vocabulary includes the word“tomato” that is associated with the candidate pronunciations of /to'meirou/ and /to'matou/.
  • vocabulary words are associated with custom candidate pronunciations that are based on previous speech inputs from the user.
  • Such custom candidate pronunciations are stored in STT processing module 730 and are associated with a particular user via the user’s profile on the device.
  • the candidate pronunciations for words are determined based on the spelling of the word and one or more linguistic and/or phonetic rules.
  • the candidate pronunciations are manually generated, e.g., based on known canonical pronunciations.
  • the candidate pronunciations are ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation /to'meirou/ is ranked higher than /to'matou/, because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users).
  • candidate pronunciations are ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations are ranked higher than canonical candidate pronunciations.
  • candidate pronunciations are associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity.
  • the candidate pronunciation /to'meirou/ is associated with the United States
  • the candidate pronunciation /to'matou/ is associated with Great Britain.
  • the rank of the candidate pronunciation is based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user’s profile on the device. For example, it can be determined from the user’s profile that the user is associated with the United States.
  • the candidate pronunciation Based on the user being associated with the United States, the candidate pronunciation
  • /to'meirou/ (associated with the United States) is ranked higher than the candidate pronunciation /to'matou/ (associated with Great Britain).
  • one of the ranked candidate pronunciations is selected as a predicted pronunciation (e.g., the most likely pronunciation).
  • STT processing module 730 is used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 first identifies the sequence of phonemes /to'meirou/ corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744, that this sequence corresponds to the word“tomato.”
  • STT processing module 730 uses approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 730 determines that the sequence of phonemes /to'meirou/ corresponds to the word“tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.
  • Natural language processing module 732 (“natural language processor”) of the digital assistant takes the n-best candidate text representation(s) (“word sequence(s)” or“token sequence(s)”) generated by STT processing module 730, and attempts to associate each of the candidate text representations with one or more“actionable intents” recognized by the digital assistant.
  • An“actionable intent” (or“user intent”) represents a task that can be performed by the digital assistant, and can have an associated task flow implemented in task flow models 754.
  • the associated task flow is a series of programmed actions and steps that the digital assistant takes in order to perform the task.
  • the scope of a digital assistant’s capabilities is dependent on the number and variety of task flows that have been implemented and stored in task flow models 754, or in other words, on the number and variety of“actionable intents” that the digital assistant recognizes.
  • the effectiveness of the digital assistant however, also dependents on the assistant’s ability to infer the correct“actionable intent(s)” from the user request expressed in natural language.
  • natural language processing module 732 in addition to the sequence of words or tokens obtained from STT processing module 730, natural language processing module 732 also receives contextual information associated with the user request, e.g., from I/O processing module 728.
  • the natural language processing module 732 optionally uses the contextual information to clarify, supplement, and/or further define the information contained in the candidate text representations received from STT processing module 730.
  • the contextual information includes, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like.
  • contextual information is, in some examples, dynamic, and changes with time, location, content of the dialogue, and other factors.
  • the natural language processing is based on, e.g., ontology 760.
  • Ontology 760 is a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a“property” relevant to one or more of the“actionable intents” or other “properties.”
  • an“actionable intent” represents a task that the digital assistant is capable of performing, i.e., it is“actionable” or can be acted on.
  • A“property” represents a parameter associated with an actionable intent or a sub-aspect of another property.
  • a linkage between an actionable intent node and a property node in ontology 760 defines how a parameter represented by the property node pertains to the task represented by the actionable intent node.
  • ontology 760 is made up of actionable intent nodes and property nodes.
  • each actionable intent node is linked to one or more property nodes either directly or through one or more intermediate property nodes.
  • each property node is linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes.
  • ontology 760 includes a “restaurant reservation” node (i.e., an actionable intent node).
  • Property nodes“restaurant,” “date/time” (for the reservation), and“party size” are each directly linked to the actionable intent node (i.e., the“restaurant reservation” node).
  • property nodes“cuisine,”“price range,”“phone number,” and“location” are sub-nodes of the property node“restaurant,” and are each linked to the“restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.”
  • ontology 760 also includes a“set reminder” node (i.e., another actionable intent node).
  • Property nodes“date/time” (for setting the reminder) and“subject” (for the reminder) are each linked to the“set reminder” node.
  • the property node“date/time” is linked to both the“restaurant reservation” node and the“set reminder” node in ontology 760.
  • An actionable intent node along with its linked property nodes, is described as a “domain.”
  • each domain is associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent.
  • ontology 760 shown in FIG. 7C includes an example of restaurant reservation domain 762 and an example of reminder domain 764 within ontology 760.
  • the restaurant reservation domain includes the actionable intent node“restaurant reservation,” property nodes“restaurant,”“date/time,” and“party size,” and sub-property nodes “cuisine,”“price range,”“phone number,” and“location.”
  • Reminder domain 764 includes the actionable intent node“set reminder,” and property nodes“subject” and“date/time.”
  • ontology 760 is made up of many domains. Each domain shares one or more property nodes with one or more other domains.
  • the“date/time” property node is associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to restaurant reservation domain 762 and reminder domain 764.
  • FIG. 7C illustrates two example domains within ontology 760
  • other domains include, for example,“find a movie,”“initiate a phone call,”“find directions,”“schedule a meeting,”“send a message,” and“provide an answer to a question,”“read a list,”“providing navigation instructions,”“provide instructions for a task” and so on.
  • A“send a message” domain is associated with a“send a message” actionable intent node, and further includes property nodes such as“recipient(s),”“message type,” and“message body.”
  • the property node “recipient” is further defined, for example, by the sub-property nodes such as“recipient name” and“message address.”
  • ontology 760 includes all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon.
  • ontology 760 is modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760.
  • nodes associated with multiple related actionable intents are clustered under a“super domain” in ontology 760.
  • a“travel” super-domain includes a cluster of property nodes and actionable intent nodes related to travel.
  • the actionable intent nodes related to travel includes“airline reservation,”“hotel reservation,”“car rental,”“get directions,”“find points of interest,” and so on.
  • the actionable intent nodes under the same super domain (e.g., the“travel” super domain) have many property nodes in common.
  • the actionable intent nodes for“airline reservation,”“hotel reservation,”“car rental,” “get directions,” and“find points of interest” share one or more of the property nodes“start location,”“destination,”“departure date/time,”“arrival date/time,” and“party size.”
  • each node in ontology 760 is associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node.
  • the respective set of words and/or phrases associated with each node are the so-called“vocabulary” associated with the node.
  • the respective set of words and/or phrases associated with each node are stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to FIG. 7B, the vocabulary associated with the node for the property of“restaurant” includes words such as“food,”“drinks,”“cuisine,” “hungry,”“eat,”“pizza,”“fast food,”“meal,” and so on.
  • the vocabulary associated with the node for the actionable intent of“initiate a phone call” includes words and phrases such as“call,”“phone,”“dial,”“ring,”“call this number,”“make a call to,” and so on.
  • the vocabulary index 744 optionally includes words and phrases in different languages.
  • Natural language processing module 732 receives the candidate text representations (e.g., text string(s) or token sequence(s)) from STT processing module 730, and for each candidate representation, determines what nodes are implicated by the words in the candidate text representation. In some examples, if a word or phrase in the candidate text representation is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase“triggers” or“activates” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 selects one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most“triggered” nodes is selected.
  • the candidate text representations e.g., text string(s) or token sequence(s)
  • the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) is selected. In some examples, the domain is selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.
  • User data 748 includes user-specific information, such as user-specific vocabulary, user preferences, user address, user’s default and secondary languages, user’s contact list, and other short-term or long-term information for each user.
  • natural language processing module 732 uses the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 is able to access user data 748 to determine who the“friends” are and when and where the“birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.
  • natural language processing module 732 is implemented using one or more machine learning mechanisms (e.g., neural networks).
  • the one or more machine learning mechanisms are configured to receive a candidate text representation and contextual information associated with the candidate text representation. Based on the candidate text representation and the associated contextual information, the one or more machine learning mechanisms are configured to determine intent confidence scores over a set of candidate actionable intents.
  • Natural language processing module 732 can select one or more candidate actionable intents from the set of candidate actionable intents based on the determined intent confidence scores.
  • an ontology e.g., ontology 760 is also used to select the one or more candidate actionable intents from the set of candidate actionable intents.
  • natural language processing module 732 identifies an actionable intent (or domain) based on the user request
  • natural language processing module 732 generates a structured query to represent the identified actionable intent.
  • the structured query includes parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user says“Make me a dinner reservation at a sushi place at 7.” In this case, natural language processing module 732 is able to correctly identify the actionable intent to be“restaurant reservation” based on the user input.
  • a structured query for a“restaurant reservation” domain includes parameters such as ⁇ Cuisine ⁇ , ⁇ Time ⁇ , ⁇ Date ⁇ , ⁇ Party Size ⁇ , and the like.
  • the user’s utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as ⁇ Party Size ⁇ and ⁇ Date ⁇ are not specified in the structured query based on the information currently available.
  • natural language processing module 732 populates some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant“near me,” natural language processing module 732 populates a ⁇ location ⁇ parameter in the structured query with GPS coordinates from the user device.
  • natural language processing module 732 identifies multiple candidate actionable intents for each candidate text representation received from STT processing module 730. Further, in some examples, a respective structured query (partial or complete) is generated for each identified candidate actionable intent. Natural language processing module 732 determines an intent confidence score for each candidate actionable intent and ranks the candidate actionable intents based on the intent confidence scores. In some examples, natural language processing module 732 passes the generated structured query (or queries), including any completed parameters, to task flow processing module 736 (“task flow processor”). In some examples, the structured query (or queries) for the m-best (e.g., m highest ranked) candidate actionable intents are provided to task flow processing module 736, where m is a predetermined integer greater than zero. In some examples, the structured query (or queries) for the m-best candidate actionable intents are provided to task flow processing module 736 with the corresponding candidate text representation(s).
  • Task flow processing module 736 is configured to receive the structured query (or queries) from natural language processing module 732, complete the structured query, if necessary, and perform the actions required to“complete” the user’s ultimate request.
  • the various procedures necessary to complete these tasks are provided in task flow models 754.
  • task flow models 754 include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.
  • task flow processing module 736 needs to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances.
  • task flow processing module 736 invokes dialogue flow processing module 734 to engage in a dialogue with the user.
  • dialogue flow processing module 734 determines how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions are provided to and answers are received from the users through I/O processing module 728.
  • dialogue flow processing module 734 presents dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses.
  • dialogue flow processing module 734 when task flow processing module 736 invokes dialogue flow processing module 734 to determine the“party size” and“date” information for the structured query associated with the domain“restaurant reservation,” dialogue flow processing module 734 generates questions such as“For how many people?” and“On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 then populates the structured query with the missing information, or pass the information to task flow processing module 736 to complete the missing information from the structured query.
  • task flow processing module 736 proceeds to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 executes the steps and instructions in the task flow model according to the specific parameters contained in the structured query.
  • the task flow model for the actionable intent of“restaurant reservation” includes steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time.
  • task flow processing module 736 performs the steps of: (1) logging onto a server of the ABC cafe or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user’s calendar.
  • task flow processing module 736 employs the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input.
  • service processing module 738 acts on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.).
  • the protocols and application programming interfaces (API) required by each service are specified by a respective service model among service models 756.
  • Service processing module 738 accesses the appropriate service model for a service and generates requests for the service in accordance with the protocols and APIs required by the service according to the service model.
  • service processing module 738 establishes a network connection with the online reservation service using the web address stored in the service model, and sends the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.
  • natural language processing module 732, dialogue flow processing module 734, and task flow processing module 736 are used collectively and iteratively to infer and define the user’s intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user’s intent.
  • the generated response is a dialogue response to the speech input that at least partially fulfills the user’s intent. Further, in some examples, the generated response is output as a speech output.
  • the generated response is sent to speech synthesis processing module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form.
  • the generated response is data content relevant to satisfying a user request in the speech input.
  • task flow processing module 736 receives multiple structured queries from natural language processing module 732, task flow processing module 736 initially processes the first structured query of the received structured queries to attempt to complete the first structured query and/or execute one or more tasks or actions represented by the first structured query.
  • the first structured query corresponds to the highest ranked actionable intent.
  • the first structured query is selected from the received structured queries based on a combination of the corresponding speech recognition confidence scores and the corresponding intent confidence scores.
  • the task flow processing module 736 can proceed to select and process a second structured query of the received structured queries that corresponds to a lower ranked actionable intent.
  • the second structured query is selected, for example, based on the speech recognition confidence score of the corresponding candidate text representation, the intent confidence score of the corresponding candidate actionable intent, a missing necessary parameter in the first structured query, or any combination thereof.
  • Speech synthesis processing module 740 is configured to synthesize speech outputs for presentation to the user. Speech synthesis processing module 740 synthesizes speech outputs based on text provided by the digital assistant.
  • the generated dialogue response is in the form of a text string.
  • Speech synthesis processing module 740 converts the text string to an audible speech output.
  • Speech synthesis processing module 740 uses any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis.
  • speech synthesis processing module 740 is configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string is associated with a word in the generated dialogue response. The phonemic string is stored in metadata associated with the word. Speech synthesis processing module 740 is configured to directly process the phonemic string in the metadata to synthesize the word in speech form.
  • speech synthesis is performed on a remote device (e.g., the server system 108), and the synthesized speech is sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it is possible to obtain higher quality speech outputs than would be practical with client-side synthesis.
  • FIGS. 8A-8G illustrate a system 800 for facilitating content playback on multiple devices.
  • system 800 may include any device described herein, including but not limited to devices 104, 200, 400, and 600 (FIGS. 1, 2A, 4, and 6A-B).
  • the electronic devices depicted in FIGS. 8A-8G such as devices 802, 804, 808, and 810, may be a device of any type, such as a phone, laptop computer, desktop computer, tablet, wearable device (e.g., smart watch), set-top box, television, voice-enabled speaker, home automation device (e.g., thermostat), digital assistant server, media server, or any combination or subcombination thereof.
  • the processes described herein may be performed by a server with information delivered to and from the device, performed on the device, or a combination thereof.
  • FIG. 8A illustrates a system 800 for facilitating content playback on multiple devices.
  • system 800 includes a user device 802, such as a mobile phone.
  • User device 802 may, for example, be associated with a user.
  • system 800 includes one or more secondary user devices 804, such as a television, set-top-box, voice-enabled speaker, tablet computer, laptop computer, and the like.
  • At least the user device 802 and the one or more secondary user devices 804 may be capable of communicating with one or more servers, such as a digital assistant server 808 and a media server 810.
  • user device 802 may receive, from one or more secondary user devices 804, information 806 associated with media playback.
  • the information 806 associated with media playback may include, for example, at least one identifier associated with a secondary user device 804, such as a device serial number, a network identifier, and the like.
  • the information 806 associated with media playback may further include, for example, media information corresponding to a secondary user device 804, such as applications installed on a device, one or more owners of a device, one or more authorized users of a device, media content downloaded or stored at a device, media content owned by an owner of a device (e.g., content the user may own which is not stored on a device).
  • the information including media content owned by an owner includes media content previously purchased by a user of a device (e.g., purchased using an application on the device).
  • the information may include a viewing history of media content on a device.
  • viewing history may include identification of a plurality of viewed media items, a time and date for which the user viewed the media items, a number of times the user viewed the media items.
  • the information may include media rendering capabilities of a candidate secondary user device.
  • the secondary user devices 804 may include a voice-enabled speaker, such that the media rendering capabilities for the voice-enabled speaker include information regarding audio rendering capabilities, and further include an indication that the speaker is not capable of rendering video.
  • the secondary user device 804 may include a set-top box or a television, such that the media rendering capabilities indicate video resolution capabilities (e.g., 1280 x 720 pixels, 3840 x 2160 pixels, etc.) or aspect ratio capabilities (e.g., 16:9, 4:3, etc.).
  • video resolution capabilities e.g., 1280 x 720 pixels, 3840 x 2160 pixels, etc.
  • aspect ratio capabilities e.g., 16:9, 4:3, etc.
  • the information may include a name of a device, such as“Living Room TV,”“Bedroom TV,”“Basement Speaker,” and the like.
  • the information may include a location parameter, such as“ground floor,”“main floor,”“upstairs,” “outside the home,” or other precise location information (e.g., GPS coordinates or other spatial information).
  • the information may include information from a user profile including devices associated with the user’s home. For example, a plurality of media devices may be included in a profile which facilitates communication among the devices within the user’s home, such as a television, set-top-box, speaker, home automation equipment, and other devices.
  • the profile may include data used as the information for media playback, such as device names, device locations, device capabilities, user permissions, device owners, authorized users, usage history, and the like.
  • the information 806 associated with media playback may be received periodically by user device 802.
  • secondary user device 804 may periodically send the information to user device 802, such as daily, weekly, monthly, etc.
  • the information may be sent during periods when devices 802 and/or 804 are idle, such as overnight.
  • the information may be sent during period when a user is in proximity of the device or connected to the same network as the device.
  • a user may interact periodically with a television at a work location of the user, such as an office.
  • information associated with an office television may be sent to the user device when the user device is in proximity of the office television, such as within a
  • information associated with the office television may be sent to the user device when the user device is connected to the same network as the office television, such as a Wi-Fi network.
  • user device 802 may receive a speech input 812 from a user.
  • a user may utter natural language speech associated with playing media content on a secondary device, such as“Play Star Wars on the TV,” or“Play this on the speaker,” or“Play this on that.”
  • User input 812 may, for example, include a reference to a user device from user devices 804, such as user devices within the user’s home.
  • user input 812 may include a reference to a user device not within the user’s home, and/or a device that the user has not yet interacted with. For example, if the user visits an office building having a conference room TV, the user may refer to the TV as“that TV,”“the conference room TV,”“this TV,” and the like.
  • transmission 814 may include at least the speech request and the information associated with media playback.
  • the user may utter“Play Star Wars on the TV.”
  • User devices 804 may be associated with devices in the user’s home, and may additionally include other devices that the user has interacted with, such as an office television, and a voice- enabled speaker owned by another user, for example.
  • the transmission 814 may include the speech request“Play Star Wars on the TV,” and may further include the information associated with media playback received from the user devices 804, including the devices in the user’s home, the office television, and the speaker owned by another user, for example.
  • the digital assistant server 808 may determine whether the speech request corresponds to a user intent to play media content on a secondary user device. Determining user intent of the speech request may include, for example, performing natural language processing on the speech request, as described herein.
  • one or more processing modules may utilize data and models to process natural language input received by the digital assistant server 808 to determine the user’s intent.
  • determining whether the speech request corresponds to a user intent to play media content on a secondary user device may include determining that the speech request include at least one reference to a playing media item, at least one reference to a media item, and/or at least one reference to a secondary user device.
  • at least one reference to playing a media item may include terms such as“play,”“broadcast,”“start,”“replay,” and the like.
  • at least one reference to a media item may include a specific reference to media, such as a movie title, a TV show series, a live broadcast title, a sports game, a song, an album, an artist, and the like.
  • At least one reference to a media item may only include a general reference, such as“this” or“that.” For example, if the user is currently viewing media on a first device (e.g., a mobile phone), the user may refer to the media playing on the first device as“this” or“that.”
  • at least one reference to a secondary user device may include a specific reference to a device, such as television, set-top box, speaker, tablet computer, laptop computer, mobile phone, and the like.
  • the speech request may include references such as “Living Room TV,”“Basement Speaker,”“the conference room TV,” and the like.
  • At least one reference to a secondary user device may include a general reference to a secondary user device, such as“that TV,”“this speaker,”“that tablet,” and the like. In some examples, at least one reference to a secondary user device may only include a general reference, such as“this” or“that.” For example, if the user is currently located in a living room of the user’s home, the user may utter“that” in order to refer to a device named“Living Room TV.”
  • a requested media item is determined based on the speech request.
  • digital assistant server 808 may determine a requested media item based on the speech request included in transmission 814. As an example, the speech request may include“Play Star Wars Episode One on that,” such that the requested media item is determined to be associated with the movie series“Star Wars,” and is determined to correspond to the movie title“Episode One” of the“Star Wars” series.
  • digital assistant server 808 may determine an identifier associated with the secondary user device. For example, digital assistant server 808 may determine a device identifier corresponding to a device referenced by the user in the speech request.
  • the speech request may include, for example, a reference to“Living Room TV,” and the information associated with media playback may include a plurality of device identifiers.
  • the plurality of device identifiers may be associated with a profile for devices in the user’s home, including, for example“Living Room TV,” “Basement TV,”“Bedroom Speaker,” and the like.
  • Digital assistant server may determine that the reference“Living Room TV” included in the speech input corresponds to the device named “Living Room TV” included in the information associated with media playback, for example.
  • the determined identifier corresponding to“Living Room TV” may correspond to a device serial number, network identifier, and the like.
  • one or more candidate user devices are determined based on the speech request and the information associated with media playback. For example, the user may utter“Play Star Wars Episode One on that.”
  • the reference to“that” may be ambiguous, for example, such that a plurality of candidate secondary devices are determined as possibly corresponding to“that.”
  • the user may be located the user’s home, and the user’s home may have multiple media devices, such as multiple televisions and multiple speakers.
  • a plurality of candidate secondary user devices are determined as possibly corresponding to“that,” such as“Living Room TV,” “Basement TV,”“Bedroom Speaker,” and“Bathroom Speaker,” for example.
  • an identifier associated with the secondary user device is determined based on at least the determined media item requested by the user and a plurality of candidate secondary user devices determined as possibly corresponding to a user referenced device. For example, a user may have two media devices in the user’s home, including a television and a speaker. Upon determination that the user intends to view“Star Wars Episode One,” and that the candidate secondary user devices include a television and a speaker, for example, determination is made with sufficient confidence that the secondary user device to which the user intends to view content is the television, rather than the speaker. As an example, in the case where the user intends to view video content, candidate secondary user devices including speakers may be eliminated from further consideration as potential devices to at which content should be played.
  • determining an identifier associated with a secondary user device includes determining a confidence level for each candidate user device of a plurality of candidate user devices. For example, the determined confidence level may indicate a suitability for playing a requested media item at a respective candidate secondary user device.
  • the confidence level for each candidate secondary user device is determined at least in part based on the information associated with media playback.
  • the requested media item may include video content
  • the candidate secondary user devices may include multiple televisions, such as a living room television and a bedroom television.
  • the information associated with media playback may include, for example, usage history information indicating that the user always requests playback at bedroom television for video content, and has never requested playback at the living room television.
  • the bedroom television may be associated with a higher confidence level than the living room television for playing the video content, for example.
  • the information associated with media playback may include information corresponding to media content owned by an owner of a respective device or media content stored on a respective device.
  • the requested media item may include, for example, reference to a specific media item, such as“Star Wars Episode One,” for example.
  • devices having access to the specific media item such as based on user ownership of the media item or the media item being stored on the device, for example, may be associated with higher confidence levels than devices that do not have access to the media item.
  • the user may have purchased and downloaded the movie“Star Wars Episode One” using a television located in the living room, such that the movie is stored on the user’s living room television or a set-top box associated with the living room television.
  • the user’s bedroom television may not include the movie in storage and may not otherwise have access to the movie, for example.
  • the living room television may be associated with a higher confidence level than the bedroom television.
  • an identifier associated with the candidate secondary user device having the highest confidence level is selected for media playback.
  • a plurality of candidate user devices may be associated with a plurality of confidence levels, such as a first television associated with a 90% confidence level, a second television associated with a 85% confidence level, and a tablet computer associated with a 50% confidence level.
  • the predetermined threshold may correspond to an 80% confidence threshold, such that the first television associated with a 90% confidence level and a second television associated with a 85% confidence level are considered, and an identifier associated with the first television is used for media playback based on the highest confidence level.
  • the predetermined threshold may further be dynamically adjusted based on one or more conditions, or may be set by a user, for example.
  • user device 902 includes a display of a plurality of affordances corresponding to a plurality of candidate secondary user devices.
  • identifiers are transmitted to the user device, wherein the identifiers are associated with a plurality of candidate secondary user devices. For example, based on a speech request 904, a plurality of affordances 906 may be displayed on user device 902.
  • a speech request 904 may include the speech“Play Star Wars on the TV.”
  • a plurality of candidate user devices may be determined, which may each be associated with a plurality of confidence levels, such as a first television associated with a 60% confidence level, a second television associated with a 50% confidence level, a third television associated with a 40% confidence level, and a fourth television associated with a 30% confidence level.
  • the predetermined threshold may correspond to an 80% confidence threshold, such that none of the first, second, third, or fourth televisions exceeds the 80% confidence threshold.
  • user device 802 may receive information 816 from digital assistant server 808, where information 816 includes identifiers corresponding to the first, second, third, and fourth televisions.
  • the user may activate one of the affordances 906.
  • the user may activate affordance 906 corresponding to “Basement TV” resulting in a selection of an identifier corresponding to a television located in the basement of the user’s home.
  • the selected identifier is sent from user device 802 to digital assistant server 808 via transmission 818.
  • the identifier associated with the secondary user device is determined based on the selected identifier, such as an identifier associated with the a television located in the basement of the user’s home, for example.
  • an instruction for initiating a standby state is transmitted to the secondary user device.
  • digital assistant server 808 may determine a device having a highest confidence level, or the user device may provide a selection of an intended device to the digital assistant server 808.
  • an instruction for initiating a standby state is sent to the secondary user device in order to prepare the secondary user device for receiving further instructions regarding media playback.
  • the instruction for initiating a standby state may cause the device to power on, may cause the device to exit an idle state and enter a playback state, and/or may otherwise cause the device to prepare for media playback.
  • the information associated with media playback is at least removed from digital assistant server 808.
  • the information associated with media playback may be used in order to determine the user device to which the user intends to playback media content, and once the device is determined, the information is removed from digital assistant server 808, such as erasing the information from memory.
  • a process 1000 for displaying user interfaces for content playback on multiple devices is depicted. For example, based on a speech request 1004, a determination is made that the speech request corresponds to a plurality of candidate media items. As a result, plurality of affordances 1006 may be displayed on user device 1002 corresponding to the plurality of media items. As an example, a speech request 1004 may include the speech“Play Star Wars on the TV.” As a result, a plurality of candidate media items may be determined, and each candidate media item may be associated with a plurality of confidence levels.
  • the speech request includes reference to media corresponding to“Star Wars”
  • the plurality of media items corresponding to the various movie titles in the “Star Wars” series are each associated with a confidence level that does not exceed a predetermined confidence level for media playback.
  • the plurality of displayed affordances 1006 may then correspond to the plurality of media items based on the speech request, for example.
  • a selection of an affordance of the plurality of affordances is received from the user.
  • the user may activate an affordance via a touch input on the display screen of device 1002.
  • the user may provide a speech input to refer to and select the affordance.
  • the user may utter the phrase“Star Wars, Episode II,” corresponding to one of the displayed affordances 1006.
  • the user may utter an ambiguous phrase such as“the second one” or“the last one,” for example.
  • determination may be made that“the second one” refers to a second item in a list of displayed items, such as“Star Wars, Episode II” corresponding to one of the displayed affordances 1006.
  • a media identifier corresponding to the user selection of a displayed affordance is transmitted, for example, to the digital assistant server 808.
  • each of the plurality of displayed affordances 1006 is associated with a brief description, including, for example, information corresponding to the respective media item, such as a brief plot summary, rating information, actor information, album information, artist information, and the like.
  • each of the plurality of displayed affordances 1006 is associated with a respective indicator 1008.
  • a user interface may be displayed corresponding to a respective media item.
  • the user interface may include additional information corresponding to a respective media item, such as a full description of the media item, and additional affordances to view further content associated with the media item, such as media previews (e.g., movie trailers or song clips), actor interviews, director’s cuts, related media content, and the like.
  • the user interface may be displayed on a secondary user device.
  • the user may select an indicator 1008 displayed on user device 1002, such that the user interface including additional information is displayed on a previously identified secondary user device to which the user intends to play the requested media item (e.g., a living room TV).
  • the user may further interact with the user interface displayed on the secondary user device by manipulating one or more controls (not depicted) displayed on user device 1002.
  • a first media request and a second media request may be transmitted.
  • the first and second media requests may be transmitted upon determining the identifier associated with a secondary user device, such as television 804a.
  • a first media request 820 may include a sender identifier corresponding to the user device, such as user device 802.
  • the second media request 822 may include a sender identifier corresponding to the identifier associated with the secondary user device, such as television 804a.
  • the first media request 820 and the second media request 822 may be transmitted from the digital assistant server 808 to the media server 810.
  • the first media request 820 and the second media request 822 may be transmitted simultaneously, and each request may include the same requested media item based on the speech request.
  • the first and second media requests may include parallel requests to media server 810, such that the requests emulate requests originating from the user device 802 and the secondary user device 804a, for example.
  • results based on at least the first media request and the second media request are received.
  • results 824 may be received by digital assistant server 808 from media server 810.
  • the results include one or more parameters which indicate suitability for playing the requested media item at a secondary user device, such as secondary user device 804a.
  • the results may include a parameter indicating whether the requested media item is suitable to be played on either the user device and/or the secondary user device. For example, if the user device corresponds to a mobile phone, the parameter may indicate that video content is capable of being played on the mobile phone.
  • the parameters may indicate further details regarding video playback capabilities, for example, whether the video content would be reduced in quality when being played back on either the mobile phone or a secondary user device (e.g., a television or a tablet computer).
  • a secondary user device e.g., a television or a tablet computer.
  • the parameter may indicate that video content is not capable of being played on the voice-enabled speaker, but audio is capable of being played back on the speaker.
  • the parameters may indicate further details regarding audio playback capabilities, for example, whether the audio quality would be reduced when being played back on the voice-enabled speaker.
  • the results may include a parameter indicating whether the requested media item is owned on either the user device and/or the secondary user device.
  • a user may own a media item based on a previous purchase of the media item or a transfer of the media item from another device, for example.
  • the media item may be created by the user, such that the user owns the media item (e.g., a video created on the user’s mobile phone). Ownership of a media item may include storage of the media item on a user device, for example.
  • ownership of a media item may include the capability of the media item to be accessed by the user device from another source, such as a media server, without requiring the user to purchase the media item.
  • the results may include a parameter indicating whether the requested media item is currently playing on the user device.
  • a requested media item currently being played on the user device may include, for example, video content or audio content corresponding to the requested media item and currently being played back on a mobile device.
  • the user may be currently listening to a song from an album stored on the mobile device.
  • the user may be currently watching a movie using a third party application on a mobile device. For example, the user may provide a speech request at a mobile phone to play media content, such as“Play this on the TV.” The ambiguous term“this” may have been resolved by the digital assistant server to the movie“Star Wars Episode One,” based on context information on the mobile device, for example.
  • the results 824 returned from the media server 810 may indicate that the user is currently watching the requested media item on the mobile phone, such as the movie“Star Wars Episode One.”
  • the user may provide a speech request at a mobile phone to play media content, such as“Play this on the speaker.”
  • the ambiguous term“this” may have been resolved by the digital assistant server to a song by the artist“Dave Matthews Band,” based on context information on the mobile device, for example.
  • the results 824 returned from the media server 810 may indicate that the user is not currently playing any media content on the mobile device, such as the requested media item, for example.
  • the parameter may indicate that the requested media item is not currently playing on the mobile device, although a reference to the requested media item is being displayed at the mobile device.
  • the results 824 may further indicate that the user is currently viewing a list of songs included in an album, such as an album by the artist“Dave Matthews Band.”
  • the results may include a parameter indicating a viewing history of the requested media item.
  • the user may provide a speech request at the user device 802 to play media content, such as“Play this on the TV.”
  • the ambiguous term“this” may have been resolved by the digital assistant server 808 to a requested media item corresponding to a specific movie.
  • the results may include a parameter indicating that the user typically views the requested media item on the identified secondary user device, such as a living room television.
  • the results may include a parameter indicating that the user typically views the requested media item, and similar media items (e.g., video content), by first watching the media item on the user device (e.g., mobile phone), and then transferring the playback of the media item to the identified secondary user device (e.g., the living room television).
  • the results may include a parameter indicating that the user always views content directly on the identified secondary user device, and never transfers playback of media items to the identified secondary user device.
  • an instruction for media playback on the secondary user device 804a is determined, which includes comparing the parameters indicating suitability for playing the requested media item at the secondary user device 804a.
  • the parameters included in the results 824 returned from media server 810 may, for example, be associated with different weights or other factors which assist in the determination of the instruction for media playback on the secondary user device 804a.
  • a parameter indicating whether a requested media item is currently playing on user device 802 may be associated with a higher weight than a parameter indicating whether the requested media item is owned on either the user device 802 or the secondary user device 804a.
  • a parameter indicating that a requested media item is not capable of being played by transferring playback from user device 802 to the secondary user device 804a may be associated with a higher weight than a parameter indicating whether a requested media item is currently playing on user device 802.
  • an instruction for media playback may include a command to play the requested media item currently playing on the user device.
  • the command to play the requested media item currently playing on the user device 802 may include a command to stream audio or video content currently playing at user device 802 to secondary user device 804.
  • the command to stream the currently playing content may include, for example, one or more identifiers corresponding to information about the content currently playing at the user device 802.
  • the one or more identifiers may correspond to information such as universal resource locators, timestamp information, media type information, and the like.
  • the command to play the requested media item currently playing on user device 802 may include any other information necessary in order to enable a secondary user device, such as secondary user device 804a, to stream audio or video content currently playing at user device 802.
  • an instruction for media playback may include a command to obtain the requested media item for playback at the secondary user device.
  • the command to obtain the requested media item for playback at the secondary user device may include a command to obtain the requested media item from a media server, such as media server 810 or another media server.
  • the speech request at user device 802 may include the command“Play Star Wars Episode One on the TV.”
  • the command to obtain the requested media item for playback at the secondary user device may include a command to obtain a media item corresponding to“Star Wars Episode One” from a media server which has access to the media item.
  • the user may have previously purchased a media item corresponding to“Star Wars Episode One,” such that the media item is stored on the user’s television or a set- top-box associated with the television.
  • the command to obtain the requested media item for playback at the secondary user device may include a command to obtain the requested media item from a storage on the user’s television or the set-top-box associated with the television.
  • the instruction for media playback on a secondary user device is received at the user device, and a task is performed based on the instruction.
  • user device 802 may receive instruction 826 for media playback from digital assistant server 808.
  • at least one task is performed based on the instruction for media playback.
  • the at least one task may include transmitting command 828 from user device 802 to secondary user device 804a.
  • the at least one task may include generating and/or forwarding the command 828.
  • the command 828 may be generated by user device 802 based on the instruction 826 for media playback.
  • the command 828 may be included in the instruction for media playback and forwarded to secondary user device 804a.
  • instruction 826 for media playback includes an instruction to output a requested media item currently playing on the user device 802
  • user device 802 may transmit, to secondary user device 804a, a command 828 to play the requested media item currently playing on the user device 802.
  • instruction 826 for media playback includes an instruction to output a requested media item not currently playing on the user device 802
  • user device 802 may transmit, to secondary user device 804a, a command 828 to play the requested media item at secondary user device 804a.
  • the command to obtain the requested media item for playback at the secondary user device may include a command to obtain a media item from a media server which has access to the media item.
  • the command to obtain the requested media item for playback at the secondary user device may include a command to obtain the requested media item from a storage on the user’s television or the set-top-box associated with the television, for example.
  • performing least one task based on the instruction for media playback includes determining whether the user is authorized to establish a connection with a secondary user device.
  • authorization to establish a connection with a secondary user device may be based on user permissions set by an owner of the secondary user device. For example, if an owner of the secondary user device 804a sets a parameter to indicate that the user device 802 corresponds to an authorized user of the secondary user device 804a, then determination is made that the user of user device 802 is authorized to establish a connection with the secondary user device 804a.
  • authorization to establish a connection with a secondary user device may be required if a user has not yet interacted with a secondary user device, or if the user has interacted with the secondary user device below a threshold number of times. For example, if the user device 802 has not yet interacted with secondary user device 804a, or if the user device 802 has interacted with the secondary user device 804 below a threshold number of times, then determination is made that the user device 802 is not authorized to establish a connection to the secondary user device 804a. [0235] In some examples, referring now to FIG. 11, a process 1100 for displaying user interfaces for content playback on multiple devices is depicted.
  • a first passcode is generated at the secondary user device.
  • the secondary user device 1104 may, for example, display passcode 1106.
  • the passcode may be randomly generated, for example.
  • a user interface is generated at user device 1102, including user interface elements 1108 corresponding to a passcode entry area.
  • the user interface may include affordances 1110 representing numerical characters, such that the user may activate the affordances to cause a user-entered passcode to be generated and displayed via user interface elements 1108 corresponding to passcode entry area.
  • an input representing a passcode may be received from the user via affordances 1110.
  • at least one command based on the instruction for media playback is transmitted from user device 1102 to secondary user device 1104, for example.
  • performing at least one task based on the instruction for media playback includes determining whether user authorization is required to view a requested media item associated with the media identifier.
  • a user may have set parental controls, such that authentication is required in order to view specific media items.
  • a requested media item may correspond to media containing one or more indications of subject matter not suitable for children, such as violence.
  • a prompt for authentication information is displayed on a user device.
  • the prompt may include a request to provide authentication credentials, such as a passcode, a fingerprint identification, a facial recognition identification, a voiceprint identification, and the like.
  • authorization information may be received from the user, such that playback of the requested media item commences at the secondary user device as a result of validating the authorization information.
  • a command corresponding to the instruction for media playback is transmitted to the secondary electronic device.
  • performing at least one task based on the instruction for media playback includes determining whether a user is required to purchase a requested media item in order to commence playback of the media item. For example, certain media items may be played on various user devices without requiring the user to purchase the media item, such as content from the internet, free content from various online media stores, or user created content on a user device, for example. Certain media items may be required to be purchased by the user prior to viewing the media item, for example, such as specific movies, songs, albums, and the like. In accordance with a determination that the user is required to purchase a requested media item in order to commence playback of the media item, the user may be prompted for authorization information in order to commence playback of the media.
  • prompting the user for authorization information may include displaying a user interface on the user device, such as a media details page with information about the requested media item, including a detailed description, ratings information, media previews, and the like.
  • the user interface may further include an option to purchase the media item, such that activating the option to purchase the media item may cause a payment user interface to be displayed.
  • the payment user interface may further permit a user to enter payment information (e.g., credit/debit card details) in order to authorize a purchase of the media item.
  • the various user interfaces to facilitate payment for a media item may be displayed on the user device, on the secondary user device, or may be displayed on both the user device and secondary user device.
  • a user interface may be displayed on the user device (e.g., mobile phone) including affordances to permit a user to enter payment information, wherein a user interface is displayed on the secondary user device (e.g., television) to display media item details and display the entry of payment information corresponding to the entry of payment information at the user device.
  • the user device e.g., mobile phone
  • the secondary user device e.g., television
  • a process 1200 for displaying user interfaces for content playback on multiple devices is depicted. For example, at least one task is performed based on the instruction for media playback, including displaying a plurality of affordances based on information corresponding to media currently playing at the secondary user device. For example, a user may provide a speech request to user device 1202, such as“Play the Comedy Show on the TV.” In response to transmitting a command to secondary user device 1204 to play the requested media item as described herein, playback of the requested media item may commence in accordance with the command.
  • the command may cause the secondary electronic device 1204 to play media content currently playing on user device 1202, or may cause secondary electronic device 1204 to obtain the media content from another source.
  • information corresponding to media currently playing at secondary user device 1204 is transmitted to user device 1202.
  • a plurality of affordances may be displayed at user device 1202 based on the received information.
  • a media details affordance 1206 may be displayed, including information regarding the media content currently playing on secondary user device 1204.
  • the media details affordance 1206 may include, for example, one or more media items (e.g., photos) corresponding to the currently playing media, such as a movie poster, album cover, and the like.
  • the media details affordance 1206 may further be activated by the user to cause additional information to be displayed related to the currently playing media.
  • a time affordance 1208 may be provided to indicate a current playback time of the media item.
  • the time affordance 1208 may include, for example, a start time, current time, and end time of the media content.
  • a user may interact with time affordance 1208 in order to adjust the currently playback position of the media item on secondary user device 1204, for example, by touching and/or dragging on current time affordance 1210.
  • time adjustment affordances 1212 may be displayed. Activation by a user of time adjustment affordances 1212 may, for example, cause the playback position of media content being played on secondary user device 1204 to rewind, fast forward, and/or pause. In some examples, activation of time adjustment affordances 1212 may cause the playback position to rewind or fast forward a predetermined amount (e.g., 15 seconds).
  • a remote control affordance 1214 may cause a remote control user interface to be displayed (not depicted). For example, the remote control user interface may include additional affordances for adjusting media playback, viewing media information, navigating additional interfaces on the secondary user device 1204, and the like.
  • performing at least one task based on the instruction for media playback includes adjusting one or more parameters associated with one or more additional devices.
  • a brightness level of at least one light source associated with the secondary user device may be adjusted.
  • a user’s home may include, for example, one or more light sources which are identified in a user profile for the user’s home.
  • Adjustment of a brightness level of a light source may include dimming the light source prior to or at the same time as the media playback commences at a secondary user device. For example, the lights within the living room of a user’s home may be dimmed when playback begins at the secondary user device.
  • the audio level of devices located in a same room as the secondary user device may be reduced prior to or at the same time as the media playback commences at a secondary user device.
  • the volume level associated with one or more speakers in the living room of the user’s home may be reduced when playback begins at the secondary device.
  • audio corresponding to the media being played at the secondary user device may be transmitted to speakers in a same room as the secondary user device.
  • FIG. 13 illustrates process 1300 for content playback on multiple devices, according to various examples.
  • Process 1300 is performed, for example, using one or more electronic devices implementing a digital assistant.
  • process 1300 is performed using a client-server system (e.g., system 100), and the blocks of process 1300 are divided up in any manner between the server (e.g., DA server 106) and a client device.
  • the blocks of process 1300 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch).
  • client devices e.g., a mobile phone and a smart watch
  • process 1300 is performed using only a client device (e.g., user device 104) or only multiple client devices.
  • some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted.
  • additional steps may be performed in combination with the process 1300.
  • the electronic device receives, from one or more user devices, information associated with media playback.
  • the information associated with media playback includes at least one identifier associated with at least one candidate secondary user device of the one or more user devices and media information corresponding to the at least one candidate secondary user device.
  • the media information corresponding to the at least one candidate secondary user device includes at least one of an identification of an owner of a candidate secondary user device, an identification of media content owned by an owner of a candidate secondary device, an identification of one or more authorized users of a candidate secondary user device, a viewing history of media content on a candidate secondary user device, and media rendering capabilities of a candidate secondary user device.
  • the system optimizes playback of media content on a secondary device by ensuring that requisite information regarding secondary devices is received by a first device.
  • the system leverages existing networks, such as a home WiFi network, in order to determine possible devices to which a user may choose to play content to.
  • the system ensures that information regarding such devices (e.g., a television set-top box) is received at a potential initiating device (e.g., a mobile phone) prior to reception of any playback commands at the initiating device. This improves system efficiency and user experience by ensuring that necessary information for potential playback commands is ready to be utilized once a playback command is received.
  • the electronic device receives, from a user, a speech input for a media item.
  • the electronic devices transmits, to a second electronic device, at least the speech request and the information associated with media playback.
  • the electronic device receives, from the second electronic device, a plurality of device identifiers corresponding to a plurality of candidate secondary user devices, wherein the electronic device displays a plurality of affordances corresponding to the plurality of candidate secondary user devices.
  • the electronic device receives, from the user, a selection of an affordance from the plurality of affordances, wherein the electronic device transmits, to the second electronic device, a device identifier corresponding to the selected affordance.
  • the electronic device in accordance with transmitting, to the second electronic device, at least the speech request and the information associated with media playback, receives, from the second electronic device, a plurality of media identifiers corresponding to a plurality of media items, wherein the electronic device displays a plurality of affordances corresponding to the plurality of media items.
  • the electronic device receives, from the user, a selection of an affordance from the plurality of affordances corresponding to the plurality of media items, wherein the electronic device transmits, to the second electronic device, a media identifier corresponding to the selected affordance.
  • each of the displayed affordances include an indicator
  • the electronic device receives, from the user, a selection of an indicator corresponding to a displayed affordance, wherein in accordance with receiving the selection of the indicator corresponding to the displayed affordance, the electronic device displays a user interface associated with a media item corresponding to the selected indicator.
  • the system provides the user with additional options to view details about each specific media item (e.g., a plot summary for a specific episode).
  • the electronic device receives, based on at least the speech request and the information associated with media playback, an instruction for media playback on a secondary user device.
  • the electronic device determines whether the instruction for media playback includes an instruction to output, at the secondary user device, a requested media item currently playing on the electronic device, wherein in accordance with a determination that the instruction for media playback includes an instruction to output, at the secondary user device, a requested media item currently playing on the electronic device, the electronic device transmits to the secondary user device, a command to play the requested media item currently playing on the electronic device.
  • the electronic device determines whether the instruction for media playback includes an instruction to output, at the secondary user device, a requested media item not currently playing on the electronic device, wherein in accordance with a determination that the instruction for media playback includes an instruction to output, at the secondary user device, a requested media item not currently playing on the electronic device, the electronic device transmits, to the secondary user device, a command to play the requested media item at the secondary user device.
  • the command to play the requested media item at the secondary user device includes a command to obtain the requested media item from a media server.
  • the command to play the requested media item at the secondary user device includes a command to obtain the requested media item from a storage on the secondary user device.
  • the system intelligently handles media playback based on various scenarios. For example, if the user is currently watching the requested media on a first device (e.g., mobile phone), the system may determine that the user desires to continue watching such media content on a secondary device (e.g., television). As another example, if the user is not currently watching the requested media on a first device, the system may determine that the user desires to begin watching such media content on a secondary device, and thus facilitates obtaining the media for playback on the secondary device (e.g., purchasing the media content, obtaining the content from storage, etc.). These features improve user experience and system efficiency by intelligently obtaining media from various sources depending on the state of multiple devices.
  • a first device e.g., mobile phone
  • the system may determine that the user desires to continue watching such media content on a secondary device (e.g., television).
  • the system may determine that the user desires to begin watching such media content on a secondary device, and thus facilitates obtaining the media for playback on the secondary device (e.g
  • the electronic device performs at least one task based on the instruction for media playback.
  • performing at least one task based on the instruction for media playback comprises determining whether the user is authorized to establish a connection with the secondary user device, wherein in accordance with a determination that the user is not authorized to establish a connection to the secondary user device, the electronic device causes a first passcode to be generated at the secondary user device.
  • the electronic device receives, from the user, an input corresponding to a second passcode, wherein in accordance with a determination that the first passcode and the second passcode are the same, the electronic devices transmits, to the secondary user device, at least one command based on the instruction for media playback.
  • the system By determining whether a user entered passcode is the same as a passcode displayed on a secondary device, the system provides verification that the user attempting to play content on the secondary media device is a user who is able to view the secondary user device. For example, the system eliminates the possibility of a user who is not able to view the device (e.g., a user in another room or another home) being able to control playback on such device. In turn, the system improves user experience by ensuring that certain users are not able to remotely control a secondary device.
  • the instruction for media playback on a secondary user device includes a media identifier
  • performing at least one task based on the instruction for media playback comprises determining whether user authorization is required to view a requested media item associated with the media identifier, wherein in accordance with a determination that user authorization is required to view a requested media item associated with the media identifier, the electronic device prompts the user for authentication information.
  • the electronic device receives, from the user, authorization information in order to commence media playback of the requested media item, wherein the electronic device causes playback of the requested media item to commence at the secondary user device based on the authorization information.
  • the system improves user experience by ensuring that only authorized users can facilitate playback on media content on a secondary device.
  • the features may permit certain users to enter parameters, such as parental controls, in order to prohibit other users, such as children, from accessing inappropriate content.
  • the instruction for media playback on a secondary user device includes a media identifier, wherein performing at least one task based on the instruction for media playback comprises transmitting, to the secondary user device, the media identifier, wherein the electronic device receives, from the secondary user device, information
  • the media currently playing at the secondary user device corresponds to the media identifier
  • the electronic device displays a plurality of affordances based on the information corresponding to media currently playing at the secondary user device.
  • the system provides the user with the ability to control and view information about media playing at a secondary user device.
  • the plurality of affordances allow the user to control playback of the media currently playing at the secondary user device, such as pausing, rewinding, or fast forwarding. User experience is thus improved by providing additional options to interact with the media content playing on a secondary device.
  • the instruction for media playback on a secondary user device includes a media identifier, wherein performing at least one task based on the instruction for media playback comprises determining, based on the media identifier, whether the user is required to obtain a requested media item in order to commence playback of the requested media item.
  • the electronic devices receives, from the user, authorization information in order to commence media playback of the requested media item, wherein the electronic device causes playback of the requested media item to commence at the secondary user device based on the authorization information.
  • receiving, from the user, authorization information in order to commence media playback of the requested media item further comprises displaying a user interface associated with obtaining the requested media item, wherein the electronic devices receives, from a user, a plurality of inputs including the authorization information.
  • receiving, from the user, authorization information in order to commence media playback of the requested media item comprises causing display, on the secondary user device, of a user interface associated with obtaining the requested media item, wherein the electronic device receives, from a user, a plurality of inputs including the authorization information, wherein the electronic device causes display, on the secondary user device, of at least a portion of the plurality of inputs.
  • performing at least one task based on the instruction for media playback comprises adjusting a brightness level of at least one light source associated with the secondary user device.
  • the user may enter payment information on a first device (e.g., mobile phone), where a user interface associated with the transaction is displayed on a second device (e.g., television display).
  • a first device e.g., mobile phone
  • a second device e.g., television display
  • These features improve user experience by intuitively facilitating entry of payment information on a device the user is currently interacting with, while displaying information on the device that media will ultimately be played on.
  • FIGS. 1-4, 6A-B, and 7A-C The operations described above with reference to FIG. 13 are optionally implemented by components depicted in FIGS. 1-4, 6A-B, and 7A-C.
  • the operations of process 1300 may be implemented by one or more of operating system 718, applications module 724,
  • I/O processing module 728 STT processing module 730, natural language processing module 732, vocabulary index 744, task flow processing module 736, service processing module 738, media service(s) 120-1, or processor(s) 220, 410, 704. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-B, and 7A-C.
  • FIG. 14 illustrates process 1400 for content playback on multiple devices, according to various examples.
  • Process 1400 is performed, for example, using one or more electronic devices implementing a digital assistant.
  • process 1400 is performed using a client-server system (e.g., system 100), and the blocks of process 1400 are divided up in any manner between the server (e.g., DA server 106) and a client device.
  • the blocks of process 1400 are divided up between the server and multiple client devices (e.g., a mobile phone and a smart watch).
  • client devices e.g., a mobile phone and a smart watch
  • process 1400 is performed using only a client device (e.g., user device 104) or only multiple client devices.
  • some blocks are, optionally, combined, the order of some blocks is, optionally, changed, and some blocks are, optionally, omitted.
  • additional steps may be performed in combination with the process 1400.
  • the electronic device receives from a user device, at least a speech request and information associated with media playback. In some examples, the electronic device determines, based on the speech request, a requested media item. In some examples, the electronic device determines, based on the speech request and the information associated with media playback, one or more candidate secondary user devices, wherein the electronic device determines the identifier associated with the secondary user device based on at least the requested media item and the one or more candidate secondary user devices. In some examples, determining the identifier associated with the secondary user device further comprises determining a confidence level for each candidate secondary user device of the one or more candidate secondary user devices, wherein each confidence level indicates a suitability for playing the requested media item at each candidate secondary user device.
  • the system improves accuracy for selecting a device to which the user intends to play media content. For example, if the user frequently plays media content to a specific television, the system may determine that the specific television is very suitable for playing a requested media item, and thus is associated with a high confidence. As another example, if a user rarely plays media content to a different device, the system may determine that the specific television is not very suitable for playing a requested media item, and thus is associated with a low confidence. Thus, the system improves efficiency in selecting candidate user devices by considering relevant information to determine device playback suitability.
  • the electronic device determines whether at least one of the confidence levels exceeds a predetermined threshold, wherein in accordance with determination that at least one of the determined the confidence levels exceeds the predetermined threshold, the electronic device selects a candidate secondary user device having a highest confidence level and determines the identifier associated with the secondary user device based on the selected candidate secondary user device, and wherein in accordance with a determination that at least one of the determined the confidence levels does not exceed the predetermined threshold, the electronic device transmits, to the user device, a plurality of identifiers associated with candidate secondary user devices.
  • the electronic device receives, from the user device, a selection of an identifier from the plurality of identifiers and determines the identifier associated with the secondary user device based on the selected identifier.
  • the system improves efficiency and user experience by accurately selecting the correct secondary user device with user assistance when necessary. For example, in the case where a user frequently plays content on two different televisions, such as a living room television and a bedroom television, resulting in a difficult determination for which device content should be played on.
  • verifying the correct device with the user avoids the scenario where media playback commences on a device the user does not intend to interact with.
  • the electronic device determines whether the speech request corresponds to a user intent to play media content on a secondary user device. In some examples, in accordance with a determination that the speech request corresponds to a user intent to play media content on a secondary user device, the electronic device determines whether the speech request corresponds to a plurality of candidate media items, and in accordance with a determination that the speech request corresponds to a plurality of candidate media items, the electronic device transmits, to the user device, a plurality of identifiers associated with at least a portion of the plurality of candidate media items.
  • the electronic device receives, from the user device, a selection of an identifier from the plurality of identifiers, wherein the electronic device determines a referenced media item based on the selected identifier.
  • the system improves efficiency and user experience by accurately selecting the correct media item to playback when necessary. If the user provides an ambiguous request to play media, for example, by only referring to a series title, the system may efficiently narrow the playback options for the user such as by presenting specific episodes of the series to the user.
  • verifying the media item with the user improves efficiency and user experience by permitting a user to select a specific media item from a narrowed list of options.
  • the electronic device determines an identifier associated with the secondary user device. In some examples, in accordance with determining the identifier associated with the secondary user device, the electronic device transmits an instruction for initiating a standby state on the secondary user device. In some examples, in accordance with determining an identifier associated with the secondary user device, the electronic device removes, from the device, the information associated with media playback. By initiating a standby state on the secondary user device, the system improves efficiency and user experience by preparing a device to play media content upon reception of a command to commence playback. For example, the device may be turned on and entered into an idle state, such that media plays immediately upon receiving a command. Furthermore, by removing the information associated with media playback from the electronic device, such as the digital assistant server, the system improves user experience by protecting user information and thus enhancing user privacy.
  • the electronic device transmits, to a media server, a first media request including a sender identifier corresponding to the user device.
  • the electronic device transmits, to the media server, a second media request including a sender identifier corresponding to the identifier associated with the secondary user device.
  • the first media request includes a requested media item and the second media request includes the requested media item.
  • the first media request and the second media request are transmitted simultaneously.
  • the electronic device receives, from the media server, results based on at least the first media request and second media request.
  • the received results comprise one or more parameters indicating suitability for playing the requested media item at the secondary user device, the one or more parameters including at least one of a first parameter indicating whether the requested media item is capable of being played on at least one of the user device and the secondary user device, a second parameter indicating whether the requested media item is owned on at least one of the user device and the secondary user device, a third parameter indicating whether the requested media item is currently playing on the user device, a fourth parameter indicating a viewing history of the requested media item.
  • the electronic device determines the instruction for media playback on the secondary user device based on a comparison of at least two of the parameters indicating suitability for playing the requested media item at the secondary user device.
  • the system improves efficiency for media playback by determining the optimal procedure for performing media playback across multiple user devices. For example, the system takes into consideration many factors regarding how the user has previously interacted with the media, and device playback capabilities for playing such media. In turn, these features improve user experience and system efficiency by providing a consistent user experience and selecting appropriate devices for playing desired media.
  • the electronic device determines whether the received results include an indication that the requested media item is currently playing on the user device, wherein in accordance with a determination that the received results include an indication that the requested media item is currently playing on the user device, the electronic device transmits, as the instruction for media playback on the secondary device, a command to play the requested media item currently playing on the user device. In some examples, the electronic device determines whether the received results include an indication that the requested media item is currently playing on the user device, wherein in accordance with a determination that the received results include an indication that the requested media item is not currently playing on the user device, the electronic device transmits, as the instruction for media playback on the secondary device, a command to obtain the requested media item for playback at the secondary user device.
  • the command to obtain the requested media item for playback at the secondary user device includes a command to obtain the requested media item from a media server. In some examples, the command to obtain the requested media item for playback at the secondary user device includes a command to obtain the requested media item from a storage on the secondary user device.
  • the electronic device transmits, to the user device, an instruction for media playback on the secondary user device based on the results.
  • the system improves user experience by proving seamless transitions when transferring playback of media to a different device. These features further improve system efficiency by obtaining media from other sources, such as a media server or device storage, when necessary.
  • I/O processing module 728 STT processing module 730, natural language processing module 732, vocabulary index 744, task flow processing module 736, service processing module 738, media service(s) 120-1, or processor(s) 220, 410, 704. It would be clear to a person having ordinary skill in the art how other processes are implemented based on the components depicted in FIGS. 1-4, 6A-B, and 7A-C.
  • a computer-readable storage medium e.g., a non-transitory computer readable storage medium
  • the computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods or processes described herein.
  • an electronic device e.g., a portable electronic device
  • an electronic device e.g., a portable electronic device
  • a processing unit configured to perform any of the methods or processes described herein.
  • an electronic device e.g., a portable electronic device
  • this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person.
  • personal information data can include demographic data, location- based data, telephone numbers, email addresses, twitter IDs, home addresses, data or records relating to a user’s health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal
  • the present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users.
  • the personal information data can be used to identify different devices that the user has previously interacted with, such as televisions, set top boxes, or voice activated speaker systems. Accordingly, use of such personal information data enables delivery of content to devices that the user frequently engages with.
  • other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user’s general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.
  • the present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices.
  • such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure.
  • Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes.
  • Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users.
  • policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and
  • the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data.
  • the present technology can be configured to allow users to select to“opt in” or“opt out” of participation in the collection of personal information data during registration for services or anytime thereafter.
  • users can select not to provide information regarding secondary user devices on which to play content.
  • users can select to only“opt in” for certain secondary user devices, and“opt out” of other secondary devices for playing media content.
  • the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon providing a request for playing media content on a secondary device, where the notification indicates that personal information will be accessed. The user may be reminded again just before personal information data is accessed by the app.
  • personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed.
  • data de-identification can be used to protect a user’s privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data at a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.
  • the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data.
  • secondary user devices may be identified based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the media playback system, or publicly available information.

Abstract

L'invention concerne des systèmes et des procédés permettant de faire fonctionner un assistant automatisé intelligent. Dans un procédé donné à titre d'exemple, des informations associées à une lecture multimédia sont reçues en provenance d'un ou plusieurs dispositifs utilisateurs. Une demande vocale pour un élément multimédia est reçue en provenance d'un utilisateur. Au moins la demande vocale et les informations associées à la lecture multimédia sont transmises à un second dispositif électronique. Sur la base d'au moins la demande vocale et des informations associées à la lecture multimédia, une instruction de lecture multimédia sur un dispositif utilisateur secondaire est reçue. Au moins une tâche est exécutée sur la base de l'instruction de lecture multimédia.
PCT/US2020/012175 2019-01-04 2020-01-03 Lecture de contenu sur de multiples dispositifs WO2020142681A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962788655P 2019-01-04 2019-01-04
US62/788,655 2019-01-04
US16/367,829 2019-03-28
US16/367,829 US11638059B2 (en) 2019-01-04 2019-03-28 Content playback on multiple devices
DKPA201970526 2019-08-22
DKPA201970526 2019-08-22

Publications (1)

Publication Number Publication Date
WO2020142681A1 true WO2020142681A1 (fr) 2020-07-09

Family

ID=71406933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/012175 WO2020142681A1 (fr) 2019-01-04 2020-01-03 Lecture de contenu sur de multiples dispositifs

Country Status (1)

Country Link
WO (1) WO2020142681A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112911350A (zh) * 2021-01-19 2021-06-04 珠海海奇半导体有限公司 一种多媒体播控方法及系统
US20220100961A1 (en) * 2020-09-30 2022-03-31 Oracle International Corporation Automatic out of scope transition for chatbot

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859005A (en) 1973-08-13 1975-01-07 Albert L Huebner Erosion reduction in wet turbines
US4826405A (en) 1985-10-15 1989-05-02 Aeroquip Corporation Fan blade fabrication system
US6323846B1 (en) 1998-01-26 2001-11-27 University Of Delaware Method and apparatus for integrating manual input
US6570557B1 (en) 2001-02-10 2003-05-27 Finger Works, Inc. Multi-touch system and method for emulating modifier keys via fingertip chords
US6677932B1 (en) 2001-01-28 2004-01-13 Finger Works, Inc. System and method for recognizing touch typing under limited tactile feedback conditions
US20050190059A1 (en) 2004-03-01 2005-09-01 Apple Computer, Inc. Acceleration-based theft detection system for portable electronic devices
US20060017692A1 (en) 2000-10-02 2006-01-26 Wehrenberg Paul J Methods and apparatuses for operating a portable device based on an accelerometer
US7657849B2 (en) 2005-12-23 2010-02-02 Apple Inc. Unlocking a device by performing gestures on an unlock image
US9443527B1 (en) * 2013-09-27 2016-09-13 Amazon Technologies, Inc. Speech recognition capability generation and control
EP3115905A1 (fr) * 2014-03-03 2017-01-11 Sony Corporation Appareil de traitement d'informations, procédé de traitement d'informations et programme associé
US20170068423A1 (en) * 2015-09-08 2017-03-09 Apple Inc. Intelligent automated assistant in a media environment
WO2018213401A1 (fr) * 2017-05-16 2018-11-22 Apple Inc. Procédés et interfaces de commande de contenu multimédia domestique

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859005A (en) 1973-08-13 1975-01-07 Albert L Huebner Erosion reduction in wet turbines
US4826405A (en) 1985-10-15 1989-05-02 Aeroquip Corporation Fan blade fabrication system
US6323846B1 (en) 1998-01-26 2001-11-27 University Of Delaware Method and apparatus for integrating manual input
US20020015024A1 (en) 1998-01-26 2002-02-07 University Of Delaware Method and apparatus for integrating manual input
US20060017692A1 (en) 2000-10-02 2006-01-26 Wehrenberg Paul J Methods and apparatuses for operating a portable device based on an accelerometer
US6677932B1 (en) 2001-01-28 2004-01-13 Finger Works, Inc. System and method for recognizing touch typing under limited tactile feedback conditions
US6570557B1 (en) 2001-02-10 2003-05-27 Finger Works, Inc. Multi-touch system and method for emulating modifier keys via fingertip chords
US20050190059A1 (en) 2004-03-01 2005-09-01 Apple Computer, Inc. Acceleration-based theft detection system for portable electronic devices
US7657849B2 (en) 2005-12-23 2010-02-02 Apple Inc. Unlocking a device by performing gestures on an unlock image
US9443527B1 (en) * 2013-09-27 2016-09-13 Amazon Technologies, Inc. Speech recognition capability generation and control
EP3115905A1 (fr) * 2014-03-03 2017-01-11 Sony Corporation Appareil de traitement d'informations, procédé de traitement d'informations et programme associé
US20170068423A1 (en) * 2015-09-08 2017-03-09 Apple Inc. Intelligent automated assistant in a media environment
WO2018213401A1 (fr) * 2017-05-16 2018-11-22 Apple Inc. Procédés et interfaces de commande de contenu multimédia domestique

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220100961A1 (en) * 2020-09-30 2022-03-31 Oracle International Corporation Automatic out of scope transition for chatbot
US11922123B2 (en) * 2020-09-30 2024-03-05 Oracle International Corporation Automatic out of scope transition for chatbot
CN112911350A (zh) * 2021-01-19 2021-06-04 珠海海奇半导体有限公司 一种多媒体播控方法及系统
CN112911350B (zh) * 2021-01-19 2022-06-28 珠海海奇半导体有限公司 一种多媒体播控方法及系统

Similar Documents

Publication Publication Date Title
US11638059B2 (en) Content playback on multiple devices
AU2021203518B2 (en) User activity shortcut suggestions
US11893992B2 (en) Multi-modal inputs for voice commands
US11657813B2 (en) Voice identification in digital assistant systems
US11924254B2 (en) Digital assistant hardware abstraction
US11442607B2 (en) Task shortcut user interface
US10733375B2 (en) Knowledge-based framework for improving natural language understanding
AU2016409886B2 (en) Intelligent list reading
US20220374727A1 (en) Intelligent device selection using historical interactions
US20220383872A1 (en) Client device based digital assistant request disambiguation
WO2020242595A1 (fr) Identification vocale dans des systèmes d'assistant numérique
EP3745242A1 (fr) Suggestions de raccourcis d'activité d'utilisateur
WO2020142681A1 (fr) Lecture de contenu sur de multiples dispositifs
EP3959714B1 (fr) Identification vocale dans des systèmes d'assistant numérique
US20230344537A1 (en) Methods and systems for language processing with radio devices
US20230393872A1 (en) Digital assistant integration with system interface
US20230367795A1 (en) Navigating and performing device tasks using search interface
US20240146776A1 (en) Digital assistant hardware abstraction
EP3910467A1 (fr) Abstraction matérielle d'assistant numérique
WO2023219844A1 (fr) Navigation et exécution de tâches de dispositif à l'aide d'une interface de recherche
WO2023235231A1 (fr) Exécution de tâche sur la base d'un contexte
WO2021231197A1 (fr) Réduction de la longueur de description basée sur la confiance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20702539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20702539

Country of ref document: EP

Kind code of ref document: A1