WO2020141894A1 - Procédé et appareil d'émission d'une unité de donnes basée sur un indicateur de temps d'exécution dans un système de communications sans fil - Google Patents
Procédé et appareil d'émission d'une unité de donnes basée sur un indicateur de temps d'exécution dans un système de communications sans fil Download PDFInfo
- Publication number
- WO2020141894A1 WO2020141894A1 PCT/KR2020/000040 KR2020000040W WO2020141894A1 WO 2020141894 A1 WO2020141894 A1 WO 2020141894A1 KR 2020000040 W KR2020000040 W KR 2020000040W WO 2020141894 A1 WO2020141894 A1 WO 2020141894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- pdcp
- data unit
- information
- rlc
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/566—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
- H04W72/569—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/08—Upper layer protocols
- H04W80/12—Application layer protocols, e.g. WAP [Wireless Application Protocol]
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method for delivering a data unit based on an execution time indicator in a wireless communication system and an apparatus therefor.
- an object of the present invention is to provide a method for delivering a data unit based on an execution time indicator in a wireless communication system and an apparatus therefor.
- the object of the present invention can be achieved by the method for processing a data unit by a transmitter in a wireless communication system, comprising the steps of receiving a first data unit without a fast transmission indication from an upper layer; receiving a second data unit with the fast transmission indication from the upper layer; and when a transmission opportunity notification is received from a lower layer, submitting, to the lower layer, the first data unit after submitting second data unit.
- a wireless node in a wireless communication system comprising a memory; and at least one processor coupled to the memory. More specifically, the at least one processor is configured to receive a first data unit without a fast transmission indication from an upper layer; receive a second data unit with the fast transmission indication from the upper layer; and when a transmission opportunity notification is received from a lower layer, submit, to the lower layer, the first data unit after submitting second data unit.
- the second data unit is a retransmitted data unit.
- the lower layer may be one of a plurality of lower layers. In this case, information related to the lower layer should be received.
- the lower layer is different from another lower layer to which the second data unit had been submitted initially.
- the first and second data units are Packet Data Convergence Protocol (PDCP) data protocol data units (PDUs).
- PDCP Packet Data Convergence Protocol
- PDUs Packet Data Convergence Protocol data units
- the lower layer is a medium access control (MAC) layer.
- MAC medium access control
- the at least one processor is further configured to implement at least one advanced driver assistance system (ADAS) function based on signals that control the wireless node.
- ADAS advanced driver assistance system
- a plurality of wireless nodes can process data units efficiently since the data units are delivered at a predefined execution time without re-ordering.
- FIG. 1 illustrates an example of a communication system 1 to which implementations of the present disclosure is applied;
- FIG. 2 is a block diagram illustrating examples of communication devices which can perform a method according to the present disclosure
- FIG. 3 illustrates another example of a wireless device which can perform implementations of the present invention
- FIG. 4 illustrates an example of protocol stacks in a third generation partnership project (3GPP) based wireless communication system
- FIG. 5 illustrates an example of a frame structure in a 3GPP based wireless communication system
- FIG. 6 illustrates a data flow example in the 3GPP new radio (NR) system
- FIG. 7 illustrates an example of PDSCH time domain resource allocation by PDCCH, and an example of PUSCH time resource allocation by PDCCH;
- FIG. 8 illustrates an example of physical layer processing at a transmitting side
- FIG. 9 illustrates an example of physical layer processing at a receiving side.
- FIG. 10 illustrates operations of the wireless devices based on the implementations of the present disclosure
- FIG. 11 represents the functional view of the PDCP entity for the PDCP sublayer
- FIG. 12 shows of a procedure at a transmitting side (UE) according to the present disclosure
- FIG. 13 shows an example of procedures when the fast retransmission is indicated per PDCP Data PDU according to the present disclosure
- FIGs 14-17 show examples of fast transmission procedures according to the present disclosure.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- MC-FDMA multicarrier frequency division multiple access
- CDMA may be embodied through radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
- TDMA may be embodied through radio technology such as global system for mobile communications (GSM), general packet radio service (GPRS), or enhanced data rates for GSM evolution (EDGE).
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be embodied through radio technology such as institute of electrical and electronics engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, or evolved UTRA (E-UTRA).
- IEEE institute of electrical and electronics engineers
- Wi-Fi Wi-Fi
- WiMAX IEEE 802.16
- E-UTRA evolved UTRA
- UTRA is a part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA.
- 3GPP LTE employs OFDMA in DL and SC-FDMA in UL.
- LTE-advanced (LTE-A) is an evolved version of 3GPP LTE.
- implementations of the present disclosure are mainly described in regards to a 3GPP based wireless communication system.
- the technical features of the present disclosure are not limited thereto.
- the following detailed description is given based on a mobile communication system corresponding to a 3GPP based wireless communication system, aspects of the present disclosure that are not limited to 3GPP based wireless communication system are applicable to other mobile communication systems.
- the wireless communication standard documents published before the present disclosure may be referenced.
- the following documents may be referenced.
- UE User Equipment
- PDCP Packet Data Convergence Protocol
- RRC Radio Resource Control
- 3GPP NR e.g. 5G
- UE User Equipment
- PDCP Packet Data Convergence Protocol
- RRC Radio Resource Control
- SDAP Service Data Adaptation Protocol
- a user equipment may be a fixed or mobile device.
- the UE include various devices that transmit and receive user data and/or various kinds of control information to and from a base station (BS).
- a BS generally refers to a fixed station that performs communication with a UE and/or another BS, and exchanges various kinds of data and control information with the UE and another BS.
- the BS may be referred to as an advanced base station (ABS), a node-B (NB), an evolved node-B (eNB), a base transceiver system (BTS), an access point (AP), a processing server (PS), etc.
- ABS advanced base station
- NB node-B
- eNB evolved node-B
- BTS base transceiver system
- AP access point
- PS processing server
- a BS of the UMTS is referred to as a NB
- a BS of the enhanced packet core (EPC) / long term evolution (LTE) system is referred to as an eNB
- a BS of the new radio (NR) system is referred to as a gNB.
- a node refers to a point capable of transmitting/receiving a radio signal through communication with a UE.
- Various types of BSs may be used as nodes irrespective of the terms thereof.
- a BS, a node B (NB), an e-node B (eNB), a pico-cell eNB (PeNB), a home eNB (HeNB), a relay, a repeater, etc. may be a node.
- the node may not be a BS.
- the node may be a radio remote head (RRH) or a radio remote unit (RRU).
- the RRH or RRU generally has a lower power level than a power level of a BS.
- RRH/RRU Since the RRH or RRU (hereinafter, RRH/RRU) is generally connected to the BS through a dedicated line such as an optical cable, cooperative communication between RRH/RRU and the BS can be smoothly performed in comparison with cooperative communication between BSs connected by a radio line.
- At least one antenna is installed per node.
- the antenna may include a physical antenna or an antenna port or a virtual antenna.
- the term “cell” may refer to a geographic area to which one or more nodes provide a communication system, or refer to radio resources.
- a "cell” of a geographic area may be understood as coverage within which a node can provide service using a carrier and a "cell” as radio resources (e.g. time-frequency resources) is associated with bandwidth (BW) which is a frequency range configured by the carrier.
- the "cell” associated with the radio resources is defined by a combination of downlink resources and uplink resources, for example, a combination of a downlink (DL) component carrier (CC) and an uplink (UL) CC.
- the cell may be configured by downlink resources only, or may be configured by downlink resources and uplink resources.
- the coverage of the node may be associated with coverage of the "cell" of radio resources used by the node. Accordingly, the term "cell" may be used to represent service coverage of the node sometimes, radio resources at other times, or a range that signals using the radio resources can reach with valid strength at other times.
- a physical downlink control channel (PDCCH), and a physical downlink shared channel (PDSCH) refer to a set of time-frequency resources or resource elements (REs) carrying downlink control information (DCI), and a set of time-frequency resources or REs carrying downlink data, respectively.
- a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH) and a physical random access channel (PRACH) refer to a set of time-frequency resources or REs carrying uplink control information (UCI), a set of time-frequency resources or REs carrying uplink data and a set of time-frequency resources or REs carrying random access signals, respectively.
- CA carrier aggregation
- a UE may simultaneously receive or transmit on one or multiple CCs depending on its capabilities.
- CA is supported for both contiguous and non-contiguous CCs.
- RRC radio resource control
- one serving cell provides the non-access stratum (NAS) mobility information
- NAS non-access stratum
- RRC connection re-establishment/handover one serving cell provides the security input.
- This cell is referred to as the Primary Cell (PCell).
- the PCell is a cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
- SCells can be configured to form together with the PCell a set of serving cells.
- An SCell is a cell providing additional radio resources on top of Special Cell.
- the configured set of serving cells for a UE therefore always consists of one PCell and one or more SCells.
- special Cell refers to the PCell of the master cell group (MCG) or the PSCell of the secondary cell group (SCG), and otherwise the term Special Cell refers to the PCell.
- MCG master cell group
- SCG secondary cell group
- An SpCell supports physical uplink control channel (PUCCH) transmission and contention-based random access, and is always activated.
- PUCCH physical uplink control channel
- the MCG is a group of serving cells associated with a master node, comprising of the SpCell (PCell) and optionally one or more SCells.
- the SCG is the subset of serving cells associated with a secondary node, comprising of the PSCell and zero or more SCells, for a UE configured with DC.
- serving cells is used to denote the set of cells comprising of the SpCell(s) and all SCells.
- the MCG is a group of serving cells associated with a master BS which terminates at least S1-MME
- the SCG is a group of serving cells associated with a secondary BS that is providing additional radio resources for the UE but is not the master BS.
- the SCG includes a primary SCell (PSCell) and optionally one or more SCells.
- PSCell primary SCell
- two MAC entities are configured in the UE: one for the MCG and one for the SCG.
- Each MAC entity is configured by RRC with a serving cell supporting PUCCH transmission and contention based Random Access.
- the term SpCell refers to such cell
- SCell refers to other serving cells.
- the term SpCell either refers to the PCell of the MCG or the PSCell of the SCG depending on if the MAC entity is associated to the MCG or the SCG, respectively.
- monitoring a channel refers to attempting to decode the channel.
- monitoring a physical downlink control channel refers to attempting to decode PDCCH(s) (or PDCCH candidates).
- C-RNTI refers to a cell RNTI
- SI-RNTI refers to a system information RNTI
- P-RNTI refers to a paging RNTI
- RA-RNTI refers to a random access RNTI
- SC-RNTI refers to a single cell RNTI
- SPS C-RNTI refers to a semi-persistent scheduling C-RNTI
- CS-RNTI refers to a configured scheduling RNTI.
- FIG. 1 illustrates an example of a communication system 1 to which implementations of the present disclosure is applied.
- Three main requirement categories for 5G include (1) a category of enhanced mobile broadband (eMBB), (2) a category of massive machine type communication (mMTC), and (3) a category of ultra-reliable and low latency communications (URLLC).
- eMBB enhanced mobile broadband
- mMTC massive machine type communication
- URLLC ultra-reliable and low latency communications
- Partial use cases may require a plurality of categories for optimization and other use cases may focus only upon one key performance indicator (KPI).
- KPI key performance indicator
- eMBB far surpasses basic mobile Internet access and covers abundant bidirectional work and media and entertainment applications in cloud and augmented reality.
- Data is one of 5G core motive forces and, in a 5G era, a dedicated voice service may not be provided for the first time.
- voice will be simply processed as an application program using data connection provided by a communication system.
- Main causes for increased traffic volume are due to an increase in the size of content and an increase in the number of applications requiring high data transmission rate.
- a streaming service (of audio and video), conversational video, and mobile Internet access will be more widely used as more devices are connected to the Internet.
- Cloud storage and applications are rapidly increasing in a mobile communication platform and may be applied to both work and entertainment.
- the cloud storage is a special use case which accelerates growth of uplink data transmission rate.
- 5G is also used for remote work of cloud. When a tactile interface is used, 5G demands much lower end-to-end latency to maintain user good experience.
- Entertainment for example, cloud gaming and video streaming, is another core element which increases demand for mobile broadband capability. Entertainment is essential for a smartphone and a tablet in any place including high mobility environments such as a train, a vehicle, and an airplane.
- Other use cases are augmented reality for entertainment and information search. In this case, the augmented reality requires very low latency and instantaneous data volume.
- one of the most expected 5G use cases relates a function capable of smoothly connecting embedded sensors in all fields, i.e., mMTC. It is expected that the number of potential IoT devices will reach 204 hundred million up to the year of 2020.
- An industrial IoT is one of categories of performing a main role enabling a smart city, asset tracking, smart utility, agriculture, and security infrastructure through 5G.
- URLLC includes a new service that will change industry through remote control of main infrastructure and an ultra-reliable/available low-latency link such as a self-driving vehicle.
- a level of reliability and latency is essential to control a smart grid, automatize industry, achieve robotics, and control and adjust a drone.
- 5G is a means of providing streaming evaluated as a few hundred megabits per second to gigabits per second and may complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS). Such fast speed is needed to deliver TV in resolution of 4K or more (6K, 8K, and more), as well as virtual reality and augmented reality.
- Virtual reality (VR) and augmented reality (AR) applications include almost immersive sports games.
- a specific application program may require a special network configuration. For example, for VR games, gaming companies need to incorporate a core server into an edge network server of a network operator in order to minimize latency.
- Automotive is expected to be a new important motivated force in 5G together with many use cases for mobile communication for vehicles. For example, entertainment for passengers requires high simultaneous capacity and mobile broadband with high mobility. This is because future users continue to expect connection of high quality regardless of their locations and speeds.
- Another use case of an automotive field is an AR dashboard.
- the AR dashboard causes a driver to identify an object in the dark in addition to an object seen from a front window and displays a distance from the object and a movement of the object by overlapping information talking to the driver.
- a wireless module enables communication between vehicles, information exchange between a vehicle and supporting infrastructure, and information exchange between a vehicle and other connected devices (e.g., devices accompanied by a pedestrian).
- a safety system guides alternative courses of a behavior so that a driver may drive more safely drive, thereby lowering the danger of an accident.
- the next stage will be a remotely controlled or self-driven vehicle. This requires very high reliability and very fast communication between different self-driven vehicles and between a vehicle and infrastructure. In the future, a self-driven vehicle will perform all driving activities and a driver will focus only upon abnormal traffic that the vehicle cannot identify.
- Technical requirements of a self-driven vehicle demand ultra-low latency and ultra-high reliability so that traffic safety is increased to a level that cannot be achieved by human being.
- a smart city and a smart home/building mentioned as a smart society will be embedded in a high-density wireless sensor network.
- a distributed network of an intelligent sensor will identify conditions for costs and energy-efficient maintenance of a city or a home. Similar configurations may be performed for respective households. All of temperature sensors, window and heating controllers, burglar alarms, and home appliances are wirelessly connected. Many of these sensors are typically low in data transmission rate, power, and cost. However, real-time HD video may be demanded by a specific type of device to perform monitoring.
- the smart grid collects information and connects the sensors to each other using digital information and communication technology so as to act according to the collected information. Since this information may include behaviors of a supply company and a consumer, the smart grid may improve distribution of fuels such as electricity by a method having efficiency, reliability, economic feasibility, production sustainability, and automation.
- the smart grid may also be regarded as another sensor network having low latency.
- Mission critical application is one of 5G use scenarios.
- a health part contains many application programs capable of enjoying benefit of mobile communication.
- a communication system may support remote treatment that provides clinical treatment in a faraway place. Remote treatment may aid in reducing a barrier against distance and improve access to medical services that cannot be continuously available in a faraway rural area. Remote treatment is also used to perform important treatment and save lives in an emergency situation.
- the wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
- Wireless and mobile communication gradually becomes important in the field of an industrial application.
- Wiring is high in installation and maintenance cost. Therefore, a possibility of replacing a cable with reconstructible wireless links is an attractive opportunity in many industrial fields.
- it is necessary for wireless connection to be established with latency, reliability, and capacity similar to those of the cable and management of wireless connection needs to be simplified. Low latency and a very low error probability are new requirements when connection to 5G is needed.
- Logistics and freight tracking are important use cases for mobile communication that enables inventory and package tracking anywhere using a location-based information system.
- the use cases of logistics and freight typically demand low data rate but require location information with a wide range and reliability.
- the communication system 1 includes wireless devices, base stations (BSs), and a network.
- FIG. 1 illustrates a 5G network as an example of the network of the communication system 1, the implementations of the present disclosure are not limited to the 5G system, and can be applied to the future communication system beyond the 5G system.
- the BSs and the network may be implemented as wireless devices and a specific wireless device 200a may operate as a BS/network node with respect to other wireless devices.
- the wireless devices represent devices performing communication using radio access technology (RAT) (e.g., 5G New RAT (NR)) or Long-Term Evolution (LTE)) and may be referred to as communication/radio/5G devices.
- RAT radio access technology
- the wireless devices may include, without being limited to, a robot 100a, vehicles 100b-1 and 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, a home appliance 100e, an Internet of Things (IoT) device 100f, and an Artificial Intelligence (AI) device/server 400.
- the vehicles may include a vehicle having a wireless communication function, an autonomous driving vehicle, and a vehicle capable of performing communication between vehicles.
- the vehicles may include an Unmanned Aerial Vehicle (UAV) (e.g., a drone).
- UAV Unmanned Aerial Vehicle
- the XR device may include an Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) device and may be implemented in the form of a Head-Mounted Device (HMD), a Head-Up Display (HUD) mounted in a vehicle, a television, a smartphone, a computer, a wearable device, a home appliance device, a digital signage, a vehicle, a robot, etc.
- the hand-held device may include a smartphone, a smartpad, a wearable device (e.g., a smartwatch or a smartglasses), and a computer (e.g., a notebook).
- the home appliance may include a TV, a refrigerator, and a washing machine.
- the IoT device may include a sensor and a smartmeter.
- the wireless devices 100a to 100f may be called user equipments (UEs).
- a user equipment (UE) may include, for example, a cellular phone, a smartphone, a laptop computer, a digital broadcast terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation system, a slate personal computer (PC), a tablet PC, an ultrabook, a vehicle, a vehicle having an autonomous traveling function, a connected car, an unmanned aerial vehicle (UAV), an artificial intelligence (AI) module, a robot, an augmented reality (AR) device, a virtual reality (VR) device, a mixed reality (MR) device, a hologram device, a public safety device, an MTC device, an IoT device, a medical device, a FinTech device (or a financial device), a security device, a weather/environment device, a device related to a 5G service, or a device related to a fourth industrial revolution field.
- PDA personal digital assistant
- PMP portable multimedia player
- PC
- the unmanned aerial vehicle may be, for example, an aircraft aviated by a wireless control signal without a human being onboard.
- the VR device may include, for example, a device for implementing an object or a background of the virtual world.
- the AR device may include, for example, a device implemented by connecting an object or a background of the virtual world to an object or a background of the real world.
- the MR device may include, for example, a device implemented by merging an object or a background of the virtual world into an object or a background of the real world.
- the hologram device may include, for example, a device for implementing a stereoscopic image of 360 degrees by recording and reproducing stereoscopic information, using an interference phenomenon of light generated when two laser lights called holography meet.
- the public safety device may include, for example, an image relay device or an image device that is wearable on the body of a user.
- the MTC device and the IoT device may be, for example, devices that do not require direct human intervention or manipulation.
- the MTC device and the IoT device may include smartmeters, vending machines, thermometers, smartbulbs, door locks, or various sensors.
- the medical device may be, for example, a device used for the purpose of diagnosing, treating, relieving, curing, or preventing disease.
- the medical device may be a device used for the purpose of diagnosing, treating, relieving, or correcting injury or impairment.
- the medical device may be a device used for the purpose of inspecting, replacing, or modifying a structure or a function.
- the medical device may be a device used for the purpose of adjusting pregnancy.
- the medical device may include a device for treatment, a device for operation, a device for (in vitro) diagnosis, a hearing aid, or a device for procedure.
- the security device may be, for example, a device installed to prevent a danger that may arise and to maintain safety.
- the security device may be a camera, a CCTV, a recorder, or a black box.
- the FinTech device may be, for example, a device capable of providing a financial service such as mobile payment.
- the FinTech device may include a payment device or a point of sales (POS) system.
- the weather/environment device may include, for example, a device for monitoring or predicting a weather/environment.
- the wireless devices 100a to 100f may be connected to the network 300 via the BSs 200.
- An AI technology may be applied to the wireless devices 100a to 100f and the wireless devices 100a to 100f may be connected to the AI server 400 via the network 300.
- the network 300 may be configured using a 3G network, a 4G (e.g., LTE) network, a 5G (e.g., NR) network, and a beyond-5G network.
- the wireless devices 100a to 100f may communicate with each other through the BSs 200/network 300, the wireless devices 100a to 100f may perform direct communication (e.g., sidelink communication) with each other without passing through the BSs/network.
- the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
- V2V Vehicle-to-Vehicle
- V2X Vehicle-to-everything
- Wireless communication/connections 150a and 150b may be established between the wireless devices 100a to 100f/BS 200-BS 200.
- the wireless communication/connections may be established through various RATs (e.g., 5G NR) such as uplink/downlink communication 150a and sidelink communication 150b (or D2D communication).
- the wireless devices and the BSs/the wireless devices may transmit/receive radio signals to/from each other through the wireless communication/connections 150a and 150b.
- the wireless communication/connections 150a and 150b may transmit/receive signals through various physical channels.
- various configuration information configuring processes various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, and resource mapping/demapping), and resource allocating processes, for transmitting/receiving radio signals, may be performed based on the various proposals of the present disclosure.
- various signal processing processes e.g., channel encoding/decoding, modulation/demodulation, and resource mapping/demapping
- resource allocating processes for transmitting/receiving radio signals
- FIG. 2 is a block diagram illustrating examples of communication devices which can perform a method according to the present disclosure.
- a first wireless device 100 and a second wireless device 200 may transmit/receive radio signals to/from an external device through a variety of RATs (e.g., LTE and NR).
- RATs e.g., LTE and NR
- ⁇ the first wireless device 100 and the second wireless device 200 ⁇ may correspond to ⁇ the wireless device 100a to 100f and the BS 200 ⁇ and/or ⁇ the wireless device 100a to 100f and the wireless device 100a to 100f ⁇ of FIG. 1.
- the first wireless device 100 may include one or more processors 102 and one or more memories 104 and additionally further include one or more transceivers 106 and/or one or more antennas 108.
- the processor(s) 102 may control the memory(s) 104 and/or the transceiver(s) 106 and may be configured to implement the functions, procedures, and/or methods described in the present disclosure.
- the processor(s) 102 may process information within the memory(s) 104 to generate first information/signals and then transmit radio signals including the first information/signals through the transceiver(s) 106.
- the processor(s) 102 may receive radio signals including second information/signals through the transceiver 106 and then store information obtained by processing the second information/signals in the memory(s) 104.
- the memory(s) 104 may be connected to the processor(s) 102 and may store a variety of information related to operations of the processor(s) 102.
- the memory(s) 104 may store software code including commands for performing a part or the entirety of processes controlled by the processor(s) 102 or for performing the procedures and/or methods described in the present disclosure.
- the processor(s) 102 and the memory(s) 104 may be a part of a communication modem/circuit/chip designed to implement RAT (e.g., LTE or NR).
- RAT e.g., LTE or NR
- the transceiver(s) 106 may be connected to the processor(s) 102 and transmit and/or receive radio signals through one or more antennas 108. Each of the transceiver(s) 106 may include a transmitter and/or a receiver. The transceiver(s) 106 may be interchangeably used with radio frequency (RF) unit(s). In the present invention, the wireless device may represent a communication modem/circuit/chip.
- RF radio frequency
- the second wireless device 200 may include one or more processors 202 and one or more memories 204 and additionally further include one or more transceivers 206 and/or one or more antennas 208.
- the processor(s) 202 may control the memory(s) 204 and/or the transceiver(s) 206 and may be configured to implement the functions, procedures, and/or methods described in the present disclosure.
- the processor(s) 202 may process information within the memory(s) 204 to generate third information/signals and then transmit radio signals including the third information/signals through the transceiver(s) 206.
- the processor(s) 202 may receive radio signals including fourth information/signals through the transceiver(s) 106 and then store information obtained by processing the fourth information/signals in the memory(s) 204.
- the memory(s) 204 may be connected to the processor(s) 202 and may store a variety of information related to operations of the processor(s) 202.
- the memory(s) 204 may store software code including commands for performing a part or the entirety of processes controlled by the processor(s) 202 or for performing the procedures and/or methods described in the present disclosure.
- the processor(s) 202 and the memory(s) 204 may be a part of a communication modem/circuit/chip designed to implement RAT (e.g., LTE or NR).
- RAT e.g., LTE or NR
- the transceiver(s) 206 may be connected to the processor(s) 202 and transmit and/or receive radio signals through one or more antennas 208. Each of the transceiver(s) 206 may include a transmitter and/or a receiver. The transceiver(s) 206 may be interchangeably used with RF unit(s). In the present invention, the wireless device may represent a communication modem/circuit/chip.
- One or more protocol layers may be implemented by, without being limited to, one or more processors 102 and 202.
- the one or more processors 102 and 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP).
- the one or more processors 102 and 202 may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Unit (SDUs) according to the functions, procedures, proposals, and/or methods disclosed in the present disclosure.
- PDUs Protocol Data Units
- SDUs Service Data Unit
- the one or more processors 102 and 202 may generate messages, control information, data, or information according to the functions, procedures, proposals, and/or methods disclosed in the present disclosure.
- the one or more processors 102 and 202 may generate signals (e.g., baseband signals) including PDUs, SDUs, messages, control information, data, or information according to the functions, procedures, proposals, and/or methods disclosed in the present disclosure and provide the generated signals to the one or more transceivers 106 and 206.
- the one or more processors 102 and 202 may receive the signals (e.g., baseband signals) from the one or more transceivers 106 and 206 and acquire the PDUs, SDUs, messages, control information, data, or information according to the functions, procedures, proposals, and/or methods disclosed in the present disclosure.
- signals e.g., baseband signals
- the one or more processors 102 and 202 may be referred to as controllers, microcontrollers, microprocessors, or microcomputers.
- the one or more processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- the functions, procedures, proposals, and/or methods disclosed in the present disclosure may be implemented using firmware or software and the firmware or software may be configured to include the modules, procedures, or functions.
- Firmware or software configured to perform the functions, procedures, proposals, and/or methods disclosed in the present disclosure may be included in the one or more processors 102 and 202 or stored in the one or more memories 104 and 204 so as to be driven by the one or more processors 102 and 202.
- the functions, procedures, proposals, and/or methods disclosed in the present disclosure may be implemented using firmware or software in the form of code, commands, and/or a set of commands.
- the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 and store various types of data, signals, messages, information, programs, code, instructions, and/or commands.
- the one or more memories 104 and 204 may be configured by Read-Only Memories (ROMs), Random Access Memories (RAMs), Electrically Erasable Programmable Read-Only Memories (EPROMs), flash memories, hard drives, registers, cash memories, computer-readable storage media, and/or combinations thereof.
- the one or more memories 104 and 204 may be located at the interior and/or exterior of the one or more processors 102 and 202.
- the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as wired or wireless connection.
- the one or more transceivers 106 and 206 may transmit user data, control information, and/or radio signals/channels, mentioned in the methods and/or operational flowcharts of the present disclosure, to one or more other devices.
- the one or more transceivers 106 and 206 may receive user data, control information, and/or radio signals/channels, mentioned in the functions, procedures, proposals, methods, and/or operational flowcharts disclosed in the present disclosure, from one or more other devices.
- the one or more transceivers 106 and 206 may be connected to the one or more processors 102 and 202 and transmit and receive radio signals.
- the one or more processors 102 and 202 may perform control so that the one or more transceivers 106 and 206 may transmit user data, control information, or radio signals to one or more other devices.
- the one or more processors 102 and 202 may perform control so that the one or more transceivers 106 and 206 may receive user data, control information, or radio signals from one or more other devices.
- the one or more transceivers 106 and 206 may be connected to the one or more antennas 108 and 208 and the one or more transceivers 106 and 206 may be configured to transmit and receive user data, control information, and/or radio signals/channels, mentioned in the functions, procedures, proposals, methods, and/or operational flowcharts disclosed in the present disclosure, through the one or more antennas 108 and 208.
- the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (e.g., antenna ports).
- the one or more transceivers 106 and 206 may convert received radio signals/channels etc.
- the one or more transceivers 106 and 206 may convert the user data, control information, radio signals/channels, etc. processed using the one or more processors 102 and 202 from the base band signals into the RF band signals.
- the one or more transceivers 106 and 206 may include (analog) oscillators and/or filters.
- the transceivers 106 and 206 can up-convert OFDM baseband signals to a carrier frequency by their (analog) oscillators and/or filters under the control of the processors 102 and 202 and transmit the up-converted OFDM signals at the carrier frequency.
- the transceivers 106 and 206 may receive OFDM signals at a carrier frequency and down-convert the OFDM signals into OFDM baseband signals by their (analog) oscillators and/or filters under the control of the transceivers 102 and 202.
- a UE may operate as a transmitting device in uplink (UL) and as a receiving device in downlink (DL).
- a BS may operate as a receiving device in UL and as a transmitting device in DL.
- the processor(s) 102 connected to, mounted on or launched in the first wireless device 100 may be configured to perform the UE behaviour according to an implementation of the present disclosure or control the transceiver(s) 106 to perform the UE behaviour according to an implementation of the present disclosure.
- the processor(s) 202 connected to, mounted on or launched in the second wireless device 200 may be configured to perform the BS behaviour according to an implementation of the present disclosure or control the transceiver(s) 206 to perform the BS behaviour according to an implementation of the present disclosure.
- FIG. 3 illustrates another example of a wireless device which can perform implementations of the present invention.
- the wireless device may be implemented in various forms according to a use-case/service (refer to FIG. 1).
- wireless devices 100 and 200 may correspond to the wireless devices 100 and 200 of FIG. 2 and may be configured by various elements, components, units/portions, and/or modules.
- each of the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional components 140.
- the communication unit may include a communication circuit 112 and transceiver(s) 114.
- the communication circuit 112 may include the one or more processors 102 and 202 of FIG. 2 and/or the one or more memories 104 and 204 of FIG. 2.
- the transceiver(s) 114 may include the one or more transceivers 106 and 206 of FIG.
- the control unit 120 is electrically connected to the communication unit 110, the memory 130, and the additional components 140 and controls overall operation of the wireless devices. For example, the control unit 120 may control an electric/mechanical operation of the wireless device based on programs/code/commands/information stored in the memory unit 130.
- the control unit 120 may transmit the information stored in the memory unit 130 to the exterior (e.g., other communication devices) via the communication unit 110 through a wireless/wired interface or store, in the memory unit 130, information received through the wireless/wired interface from the exterior (e.g., other communication devices) via the communication unit 110.
- the additional components 140 may be variously configured according to types of wireless devices.
- the additional components 140 may include at least one of a power unit/battery, input/output (I/O) unit (e.g. audio I/O port, video I/O port), a driving unit, and a computing unit.
- I/O input/output
- the wireless device may be implemented in the form of, without being limited to, the robot (100a of FIG. 1), the vehicles (100b-1 and 100b-2 of FIG. 1), the XR device (100c of FIG. 1), the hand-held device (100d of FIG. 1), the home appliance (100e of FIG. 1), the IoT device (100f of FIG.
- the wireless device may be used in a mobile or fixed place according to a use-example/service.
- the entirety of the various elements, components, units/portions, and/or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface or at least a part thereof may be wirelessly connected through the communication unit 110.
- the control unit 120 and the communication unit 110 may be connected by wire and the control unit 120 and first units (e.g., 130 and 140) may be wirelessly connected through the communication unit 110.
- Each element, component, unit/portion, and/or module within the wireless devices 100 and 200 may further include one or more elements.
- the control unit 120 may be configured by a set of one or more processors.
- control unit 120 may be configured by a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphical processing unit, and a memory control processor.
- memory 130 may be configured by a random access memory (RAM), a dynamic RAM (DRAM), a read only memory (ROM)), a flash memory, a volatile memory, a non-volatile memory, and/or a combination thereof.
- FIG. 4 illustrates an example of protocol stacks in a 3GPP based wireless communication system.
- FIG. 4(a) illustrates an example of a radio interface user plane protocol stack between a UE and a base station (BS)
- FIG. 4(b) illustrates an example of a radio interface control plane protocol stack between a UE and a BS.
- the control plane refers to a path through which control messages used to manage call by a UE and a network are transported.
- the user plane refers to a path through which data generated in an application layer, for example, voice data or Internet packet data are transported.
- the user plane protocol stack may be divided into a first layer (Layer 1) (i.e., a physical (PHY) layer) and a second layer (Layer 2).
- Layer 1 i.e., a physical (PHY) layer
- the control plane protocol stack may be divided into Layer 1 (i.e., a PHY layer), Layer 2, Layer 3 (e.g., a radio resource control (RRC) layer), and a non-access stratum (NAS) layer.
- Layer 1 i.e., a PHY layer
- Layer 2 e.g., a radio resource control (RRC) layer
- NAS non-access stratum
- Layer 1 and Layer 3 are referred to as an access stratum (AS).
- the NAS control protocol is terminated in an access management function (AMF) on the network side, and performs functions such as authentication, mobility management, security control and etc.
- AMF access management function
- the layer 2 is split into the following sublayers: medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP).
- MAC medium access control
- RLC radio link control
- PDCP packet data convergence protocol
- the layer 2 is split into the following sublayers: MAC, RLC, PDCP and SDAP.
- the PHY layer offers to the MAC sublayer transport channels, the MAC sublayer offers to the RLC sublayer logical channels, the RLC sublayer offers to the PDCP sublayer RLC channels, the PDCP sublayer offers to the SDAP sublayer radio bearers.
- the SDAP sublayer offers to 5G Core Network quality of service (QoS) flows.
- QoS 5G Core Network quality of service
- the main services and functions of SDAP include: mapping between a QoS flow and a data radio bearer; marking QoS flow ID (QFI) in both DL and UL packets.
- QFI QoS flow ID
- a single protocol entity of SDAP is configured for each individual PDU session.
- the main services and functions of the RRC sublayer include: broadcast of system information related to AS and NAS; paging initiated by 5G core (5GC) or NG-RAN; establishment, maintenance and release of an RRC connection between the UE and NG-RAN; security functions including key management; establishment, configuration, maintenance and release of signalling radio bearers (SRBs) and data radio bearers (DRBs); mobility functions (including: handover and context transfer; UE cell selection and reselection and control of cell selection and reselection; Inter-RAT mobility); QoS management functions; UE measurement reporting and control of the reporting; detection of and recovery from radio link failure; NAS message transfer to/from NAS from/to UE.
- 5GC 5G core
- NG-RAN paging initiated by 5G core
- NG-RAN paging initiated by 5G core
- security functions including key management
- SRBs signalling radio bearers
- DRBs data radio bearers
- mobility functions including: handover and context transfer; UE cell selection and res
- the main services and functions of the PDCP sublayer for the user plane include: sequence numbering; header compression and decompression: ROHC only; transfer of user data; reordering and duplicate detection; in-order delivery; PDCP PDU routing (in case of split bearers); retransmission of PDCP SDUs; ciphering, deciphering and integrity protection; PDCP SDU discard; PDCP re-establishment and data recovery for RLC AM; PDCP status reporting for RLC AM; duplication of PDCP PDUs and duplicate discard indication to lower layers.
- the main services and functions of the PDCP sublayer for the control plane include: sequence numbering; ciphering, deciphering and integrity protection; transfer of control plane data; reordering and duplicate detection; in-order delivery; duplication of PDCP PDUs and duplicate discard indication to lower layers.
- the RLC sublayer supports three transmission modes: Transparent Mode (TM); Unacknowledged Mode (UM); and Acknowledged Mode (AM).
- the RLC configuration is per logical channel with no dependency on numerologies and/or transmission durations.
- the main services and functions of the RLC sublayer depend on the transmission mode and include: Transfer of upper layer PDUs; sequence numbering independent of the one in PDCP (UM and AM); error correction through ARQ (AM only); segmentation (AM and UM) and re-segmentation (AM only) of RLC SDUs; reassembly of SDU (AM and UM); duplicate detection (AM only); RLC SDU discard (AM and UM); RLC re-establishment; protocol error detection (AM only).
- the main services and functions of the MAC sublayer include: mapping between logical channels and transport channels; multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels; scheduling information reporting; error correction through HARQ (one HARQ entity per cell in case of carrier aggregation (CA)); priority handling between UEs by means of dynamic scheduling; priority handling between logical channels of one UE by means of logical channel prioritization; padding.
- a single MAC entity may support multiple numerologies, transmission timings and cells. Mapping restrictions in logical channel prioritization control which numerology(ies), cell(s), and transmission timing(s) a logical channel can use.
- MAC Different kinds of data transfer services are offered by MAC.
- multiple types of logical channels are defined i.e. each supporting transfer of a particular type of information.
- Each logical channel type is defined by what type of information is transferred.
- Logical channels are classified into two groups: Control Channels and Traffic Channels. Control channels are used for the transfer of control plane information only, and traffic channels are used for the transfer of user plane information only.
- Broadcast Control Channel is a downlink logical channel for broadcasting system control information
- PCCH paging Control Channel
- PCCH is a downlink logical channel that transfers paging information
- Common Control Channel is a logical channel for transmitting control information between UEs and network and used for UEs having no RRC connection with the network
- DCCH Dedicated Control Channel
- DTCH Dedicated Traffic Channel
- a DTCH can exist in both uplink and downlink.
- BCCH can be mapped to BCH; BCCH can be mapped to downlink shared channel (DL-SCH); PCCH can be mapped to PCH; CCCH can be mapped to DL-SCH; DCCH can be mapped to DL-SCH; and DTCH can be mapped to DL-SCH.
- CCCH can be mapped to uplink shared channel (UL-SCH); DCCH can be mapped to UL-SCH; and DTCH can be mapped to UL-SCH.
- FIG. 5 illustrates an example of a frame structure in a 3GPP based wireless communication system.
- OFDM numerologies e.g., subcarrier spacing (SCS), transmission time interval (TTI) duration
- SCCS subcarrier spacing
- TTI transmission time interval
- symbols may include OFDM symbols (or CP-OFDM symbols), SC-FDMA symbols (or discrete Fourier transform-spread-OFDM (DFT-s-OFDM) symbols).
- Each frame is divided into two half-frames, where each of the half-frames has 5 ms duration.
- Each half-frame consists of 5 subframes, where the duration T sf per subframe is 1 ms.
- Each subframe is divided into slots and the number of slots in a subframe depends on a subcarrier spacing.
- Each slot includes 14 or 12 OFDM symbols based on a cyclic prefix (CP). In a normal CP, each slot includes 14 OFDM symbols and, in an extended CP, each slot includes 12 OFDM symbols.
- a slot includes plural symbols (e.g., 14 or 12 symbols) in the time domain.
- a resource grid of N size,u grid,x *N RB sc subcarriers and N subframe,u symb OFDM symbols is defined, starting at common resource block (CRB) N start,u grid indicated by higher-layer signaling (e.g. radio resource control (RRC) signaling), where N size,u grid,x is the number of resource blocks in the resource grid and the subscript x is DL for downlink and UL for uplink.
- RRC radio resource control
- N RB sc is the number of subcarriers per resource blocks. In the 3GPP based wireless communication system, N RB sc is 12 generally.
- Each element in the resource grid for the antenna port p and the subcarrier spacing configuration u is referred to as a resource element (RE) and one complex symbol may be mapped to each RE.
- Each RE in the resource grid is uniquely identified by an index k in the frequency domain and an index l representing a symbol location relative to a reference point in the time domain.
- a resource block is defined by 12 consecutive subcarriers in the frequency domain.
- resource blocks are classified into CRBs and physical resource blocks (PRBs).
- CRBs are numbered from 0 and upwards in the frequency domain for subcarrier spacing configuration u.
- the center of subcarrier 0 of CRB 0 for subcarrier spacing configuration u coincides with 'point A' which serves as a common reference point for resource block grids.
- PRBs are defined within a bandwidth part (BWP) and numbered from 0 to N sizeBWP,i -1, where i is the number of the bandwidth part.
- n PRB n CRB + N size BWP,i , where N size BWP,i is the common resource block where bandwidth part starts relative to CRB 0.
- the BWP includes a plurality of consecutive resource blocks.
- a carrier may include a maximum of N (e.g., 5) BWPs.
- a UE may be configured with one or more BWPs on a given component carrier. Only one BWP among BWPs configured to the UE can active at a time. The active BWP defines the UE’s operating bandwidth within the cell’s operating bandwidth.
- NR frequency bands are defined as 2 types of frequency range, FR1 and FR2.
- FR2 is may also called millimeter wave(mmW).
- mmW millimeter wave
- FIG. 6 illustrates a data flow example in the 3GPP NR system.
- Radio bearers are categorized into two groups: data radio bearers (DRB) for user plane data and signalling radio bearers (SRB) for control plane data.
- DRB data radio bearers
- SRB signalling radio bearers
- the MAC PDU is transmitted/received using radio resources through the PHY layer to/from an external device.
- the MAC PDU arrives to the PHY layer in the form of a transport block.
- the uplink transport channels UL-SCH and RACH are mapped to physical uplink shared channel (PUSCH) and physical random access channel (PRACH), respectively, and the downlink transport channels DL-SCH, BCH and PCH are mapped to physical downlink shared channel (PDSCH), physical broad cast channel (PBCH) and PDSCH, respectively.
- uplink control information (UCI) is mapped to PUCCH
- downlink control information (DCI) is mapped to PDCCH.
- a MAC PDU related to UL-SCH is transmitted by a UE via a PUSCH based on an UL grant
- a MAC PDU related to DL-SCH is transmitted by a BS via a PDSCH based on a DL assignment.
- a UE In order to transmit data unit(s) of the present disclosure on UL-SCH, a UE shall have uplink resources available to the UE. In order to receive data unit(s) of the present disclosure on DL-SCH, a UE shall have downlink resources available to the UE.
- the resource allocation includes time domain resource allocation and frequency domain resource allocation.
- uplink resource allocation is also referred to as uplink grant, and downlink resource allocation is also referred to as downlink assignment.
- An uplink grant is either received by the UE dynamically on PDCCH, in a Random Access Response, or configured to the UE semi-persistently by RRC.
- Downlink assignment is either received by the UE dynamically on the PDCCH, or configured to the UE semi-persistently by RRC signaling from the BS.
- the BS can dynamically allocate resources to UEs via the Cell Radio Network Temporary Identifier (C-RNTI) on PDCCH(s).
- C-RNTI Cell Radio Network Temporary Identifier
- a UE always monitors the PDCCH(s) in order to find possible grants for uplink transmission when its downlink reception is enabled (activity governed by discontinuous reception (DRX) when configured).
- DRX discontinuous reception
- the BS can allocate uplink resources for the initial HARQ transmissions to UEs.
- Two types of configured uplink grants are defined: Type 1 and Type 2. With Type 1, RRC directly provides the configured uplink grant (including the periodicity).
- RRC defines the periodicity of the configured uplink grant while PDCCH addressed to Configured Scheduling RNTI (CS-RNTI) can either signal and activate the configured uplink grant, or deactivate it; i.e. a PDCCH addressed to CS-RNTI indicates that the uplink grant can be implicitly reused according to the periodicity defined by RRC, until deactivated.
- CS-RNTI Configured Scheduling RNTI
- the BS can dynamically allocate resources to UEs via the C-RNTI on PDCCH(s).
- a UE always monitors the PDCCH(s) in order to find possible assignments when its downlink reception is enabled (activity governed by DRX when configured).
- the BS can allocate downlink resources for the initial HARQ transmissions to UEs: RRC defines the periodicity of the configured downlink assignments while PDCCH addressed to CS-RNTI can either signal and activate the configured downlink assignment, or deactivate it.
- a PDCCH addressed to CS-RNTI indicates that the downlink assignment can be implicitly reused according to the periodicity defined by RRC, until deactivated.
- PDCCH can be used to schedule DL transmissions on PDSCH and UL transmissions on PUSCH, where the downlink control information (DCI) on PDCCH includes: downlink assignments containing at least modulation and coding format (e.g., modulation and coding scheme (MCS) index IMCS), resource allocation, and hybrid-ARQ information related to DL-SCH; or uplink scheduling grants containing at least modulation and coding format, resource allocation, and hybrid-ARQ information related to UL-SCH.
- MCS modulation and coding scheme
- uplink scheduling grants containing at least modulation and coding format, resource allocation, and hybrid-ARQ information related to UL-SCH.
- the size and usage of the DCI carried by one PDCCH are varied depending on DCI formats.
- DCI format 0_0 or DCI format 0_1 is used for scheduling of PUSCH in one cell
- DCI format 1_0 or DCI format 1_1 is used for scheduling of PDSCH in one cell.
- FIG. 7 illustrates an example of PDSCH time domain resource allocation by PDCCH, and an example of PUSCH time resource allocation by PDCCH.
- Downlink control information (DCI) carried by a PDCCH for scheduling PDSCH or PUSCH includes a value m for a row index m+1 to an allocation table for PDSCH or PUSCH.
- DCI Downlink control information
- Either a predefined default PDSCH time domain allocation A, B or C is applied as the allocation table for PDSCH, or RRC configured pdsch-TimeDomainAllocationList is applied as the allocation table for PDSCH.
- Either a predefined default PUSCH time domain allocation A is applied as the allocation table for PUSCH, or the RRC configured pusch-TimeDomainAllocationList is applied as the allocation table for PUSCH.
- Which PDSCH time domain resource allocation configuration to apply and which PUSCH time domain resource allocation table to apply are determined according to a fixed/predefined rule (e.g. Table 5.1.2.1.1-1 in 3GPP TS 38.214 v15.3.0, Table 6.1.2.1.1-1 in 3GPP TS 38.214 v15.3.0).
- a fixed/predefined rule e.g. Table 5.1.2.1.1-1 in 3GPP TS 38.214 v15.3.0, Table 6.1.2.1.1-1 in 3GPP TS 38.214 v15.3.0.
- Each indexed row in PDSCH time domain allocation configurations defines the slot offset K0, the start and length indicator SLIV, or directly the start symbol S and the allocation length L, and the PDSCH mapping type to be assumed in the PDSCH reception.
- Each indexed row in PUSCH time domain allocation configurations defines the slot offset K2, the start and length indicator SLIV, or directly the start symbol S and the allocation length L, and the PUSCH mapping type to be assumed in the PUSCH reception.
- K0 for PDSCH, or K2 for PUSCH is the timing difference between a slot with a PDCCH and a slot with PDSCH or PUSCH corresponding to the PDCCH.
- SLIV is a joint indication of starting symbol S relative to the start of the slot with PDSCH or PUSCH, and the number L of consecutive symbols counting from the symbol S.
- mapping Type A where demodulation reference signal (DMRS) is positioned in 3rd or 4th symbol of a slot depending on the RRC signaling
- Mapping Type B where DMRS is positioned in the first allocated symbol.
- the scheduling DCI includes the Frequency domain resource assignment field which provides assignment information on resource blocks used for PDSCH or PUSCH.
- the Frequency domain resource assignment field may provide a UE with information on a cell for PDSCH or PUSCH transmission, information on a bandwidth part for PDSCH or PUSCH transmission, information on resource blocks for PDSCH or PUSCH transmission.
- configured grant Type 1 where an uplink grant is provided by RRC, and stored as configured grant
- configured grant Type 2 where an uplink grant is provided by PDCCH, and stored or cleared as configured uplink grant based on L1 signaling indicating configured uplink grant activation or deactivation.
- Type 1 and Type 2 are configured by RRC per serving cell and per BWP. Multiple configurations can be active simultaneously only on different serving cells. For Type 2, activation and deactivation are independent among the serving cells. For the same serving cell, the MAC entity is configured with either Type 1 or Type 2.
- a UE is provided with at least the following parameters via RRC signaling from a BS when the configured grant type 1 is configured:
- timeDomainAllocation value m which provides a row index m+1 pointing to an allocation table, indicating a combination of a start symbol S and length L and PUSCH mapping type
- the UE Upon configuration of a configured grant Type 1 for a serving cell by RRC, the UE stores the uplink grant provided by RRC as a configured uplink grant for the indicated serving cell, and initialise or re-initialise the configured uplink grant to start in the symbol according to timeDomainOffset and S (derived from SLIV), and to reoccur with periodicity.
- timeDomainOffset and S derived from SLIV
- a UE is provided with at least the following parameters via RRC signaling from a BS when the configured gran Type 2 is configured:
- - cs-RNTI which is CS-RNTI for activation, deactivation, and retransmission
- the actual uplink grant is provided to the UE by the PDCCH (addressed to CS-RNTI).
- the HARQ Process ID associated with the first symbol of a UL transmission is derived from the following equation:
- HARQ Process ID [floor(CURRENT_symbol/periodicity)] modulo nrofHARQ-Processes
- CURRENT_symbol (SFN ⁇ numberOfSlotsPerFrame ⁇ numberOfSymbolsPerSlot + slot number in the frame ⁇ numberOfSymbolsPerSlot + symbol number in the slot), and numberOfSlotsPerFrame and numberOfSymbolsPerSlot refer to the number of consecutive slots per frame and the number of consecutive symbols per slot, respectively as specified in TS 38.211.
- CURRENT_symbol refers to the symbol index of the first transmission occasion of a repetition bundle that takes place.
- a HARQ process is configured for a configured uplink grant if the configured uplink grant is activated and the associated HARQ process ID is less than nrofHARQ-Processes.
- a UE may be configured with semi-persistent scheduling (SPS) per serving cell and per BWP by RRC signaling from a BS. Multiple configurations can be active simultaneously only on different serving cells. Activation and deactivation of the DL SPS are independent among the serving cells.
- SPS semi-persistent scheduling
- a DL assignment is provided to the UE by PDCCH, and stored or cleared based on L1 signaling indicating SPS activation or deactivation.
- a UE is provided with the following parameters via RRC signaling from a BS when SPS is configured:
- - cs-RNTI which is CS-RNTI for activation, deactivation, and retransmission
- the HARQ Process ID associated with the slot where the DL transmission starts is derived from the following equation:
- HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (numberOfSlotsPerFrame ⁇ periodicity))] modulo nrofHARQ-Processes
- CURRENT_slot [(SFN ⁇ numberOfSlotsPerFrame) + slot number in the frame] and numberOfSlotsPerFrame refers to the number of consecutive slots per frame as specified in TS 38.211.
- a UE validates, for scheduling activation or scheduling release, a DL SPS assignment PDCCH or configured UL grant type 2 PDCCH if the cyclic redundancy check (CRC) of a corresponding DCI format is scrambled with CS-RNTI provided by the RRC parameter cs-RNTI and the new data indicator field for the enabled transport block is set to 0.
- CRC cyclic redundancy check
- Validation of the DCI format is achieved if all fields for the DCI format are set according to Table 4 or Table 5.
- Table 4 shows special fields for DL SPS and UL grant Type 2 scheduling activation PDCCH validation
- Table 5 shows special fields for DL SPS and UL grant Type 2 scheduling release PDCCH validation.
- the resource assignment fields e.g. time domain resource assignment field which provides Time domain resource assignment value m, frequency domain resource assignment field which provides the frequency resource block allocation, modulation and coding scheme field
- the UE considers the information in the DCI format as valid activation or valid release of DL SPS or configured UL grant Type 2.
- the processor(s) 102 of the present disclosure may transmit (or control the transceiver(s) 106 to transmit) the data unit of the present disclosure based on the UL grant available to the UE.
- the processor(s) 202 of the present disclosure may receive (or control the transceiver(s) 206 to receive) the data unit of the present disclosure based on the UL grant available to the UE.
- the processor(s) 102 of the present disclosure may receive (or control the transceiver(s) 106 to receive) DL data of the present disclosure based on the DL assignment available to the UE.
- the processor(s) 202 of the present disclosure may transmit (or control the transceiver(s) 206 to transmit) DL data of the present disclosure based on the DL assignment available to the UE.
- the data unit(s) of the present disclosure is(are) subject to the physical layer processing at a transmitting side before transmission via radio interface, and the radio signals carrying the data unit(s) of the present disclosure are subject to the physical layer processing at a receiving side.
- a MAC PDU including the PDCP PDU according to the present disclosure may be subject to the physical layer processing as follows.
- FIG. 8 illustrates an example of physical layer processing at a transmitting side.
- Table 6 specifies the mapping of the uplink transport channels to their corresponding physical channels
- Table 7 specifies the mapping of the uplink control channel information to its corresponding physical channel
- Table 8 specifies the mapping of the downlink transport channels to their corresponding physical channels
- Table 9 specifies the mapping of the downlink control channel information to its corresponding physical channel.
- Data and control streams from/to MAC layer are encoded to offer transport and control services over the radio transmission link in the PHY layer.
- a transport block from MAC layer is encoded into a codeword at a transmitting side.
- Channel coding scheme is a combination of error detection, error correcting, rate matching, interleaving and transport channel or control information mapping onto/splitting from physical channels.
- a transport block CRC sequence is attached to provide error detection for a receiving side.
- the communication device uses low density parity check (LDPC) codes in encoding/decoding UL-SCH and DL-SCH.
- LDPC base graphs i.e. two LDPC base matrixes
- LDPC base graph 1 optimized for small transport blocks
- LDPC base graph 2 for larger transport blocks. Either LDPC base graph 1 or 2 is selected based on the size of the transport block and coding rate R.
- the coding rate R is indicated by the modulation coding scheme (MCS) index IMCS.
- MCS index is dynamically provided to a UE by PDCCH scheduling PUSCH or PDSCH, provided to a UE by PDCCH activating or (re-)initializing the UL configured grant 2 or DL SPS, or provided to a UE by RRC signaling related to the UL configured grant Type 1. If the CRC attached transport block is larger than the maximum code block size for the selected LDPC base graph, the CRC attached transport block may be segmented into code blocks, and an additional CRC sequence is attached to each code block.
- the maximum code block sizes for the LDPC base graph 1 and the LDPC base graph 2 are 8448 bits and 3480 bits, respectively.
- the CRC attached transport block is encoded with the selected LDPC base graph.
- Each code block of the transport block is encoded with the selected LDPC base graph.
- the LDPC coded blocks are then individually rat matched. Code block concatenation is performed to create a codeword for transmission on PDSCH or PUSCH.
- up to 2 codewords i.e. up to 2 transport blocks
- PUSCH can be used for transmission of UL-SCH data and layer 1/2 control information.
- the layer 1/2 control information may be multiplexed with the codeword for UL-SCH data.
- the bits of the codeword are scrambled and modulated to generate a block of complex-valued modulation symbols.
- the complex-valued modulation symbols of the codeword are mapped to one or more multiple input multiple output (MIMO) layers.
- a codeword can be mapped to up to 4 layers.
- a PDSCH can carry two codewords, and thus a PDSCH can support up to 8-layer transmission.
- a PUSCH supports a single codeword, and thus a PUSCH can support up to 4-layer transmission.
- the DL transmission waveform is conventional OFDM using a cyclic prefix (CP).
- CP cyclic prefix
- transform precoding in other words, discrete Fourier transform (DFT) is not applied.
- the UL transmission waveform is conventional OFDM using a CP with a transform precoding function performing DFT spreading that can be disabled or enabled.
- the transform precoding can be optionally applied if enabled.
- the transform precoding is to spread UL data in a special way to reduce peak-to-average power ratio (PAPR) of the waveform.
- the transform precoding is a form of DFT.
- the 3GPP NR system supports two options for UL waveform: one is CP-OFDM (same as DL waveform) and the other one is DFT-s-OFDM. Whether a UE has to use CP-OFDM or DFT-s-OFDM is configured by a BS via RRC parameters.
- the layers are mapped to antenna ports.
- DL for the layers to antenna ports mapping, a transparent manner (non-codebook based) mapping is supported and how beamforming or MIMO precoding is performed is transparent to the UE.
- UL for the layers to antenna ports mapping, both the non-codebook based mapping and a codebook based mapping are supported.
- the complex-valued modulation symbols are mapped to subcarriers in resource blocks allocated to the physical channel.
- the communication device at the transmitting side generates a time-continuous OFDM baseband signal on antenna port p and subcarrier spacing configuration u for OFDM symbol l in a TTI for a physical channel by adding a cyclic prefix (CP) and performing IFFT.
- the communication device at the transmitting side may perform inverse fast Fourier transform (IFFT) on the complex-valued modulation symbols mapped to resource blocks in the corresponding OFDM symbol and add a CP to the IFFT-ed signal to generate the OFDM baseband signal.
- IFFT inverse fast Fourier transform
- the communication device at the transmitting side up-convers the OFDM baseband signal for antenna port p, subcarrier spacing configuration u and OFDM symbol l to a carrier frequency f0 of a cell to which the physical channel is assigned.
- the processors 102 and 202 in FIG. 2 may be configured to perform encoding, schrambling, modulation, layer mapping, transform precoding (for UL), subcarrier mapping, and OFDM modulation.
- the processors 102 and 202 may control the transceivers 106 and 206 connected to the processors 102 and 202 to up-convert the OFDM baseband signal onto the carrier frequency to generate radio frequency (RF) signals.
- RF radio frequency
- FIG. 9 illustrates an example of physical layer processing at a receiving side.
- the physical layer processing at the receiving side is basically the inverse processing of the physical layer processing at the transmitting side.
- the communication device at a receiving side receives RF signals at a carrier frequency through antennas.
- the transceivers 106 and 206 receiving the RF signals at the carrier frequency down-converts the carrier frequency of the RF signals into the baseband in order to obtain OFDM baseband signals.
- the communication device at the receiving side obtains complex-valued modulation symbols via CP detachment and FFT. For example, for each OFDM symbol, the communication device at the receiving side removes a CP from the OFDM baseband signals and performs FFT on the CP-removed OFDM baseband signals to obtain complex-valued modulation symbols for antenna port p, subcarrier spacing u and OFDM symbol l.
- the subcarrier demapping is performed on the complex-valued modulation symbols to obtain complex-valued modulation symbols of a corresponding physical channel.
- the processor(s) 102 may obtain complex-valued modulation symbols mapped to subcarriers belong to PDSCH from among complex-valued modulation symbols received in a bandwidth part.
- the processor(s) 202 may obtain complex-valued modulation symbols mapped to subcarriers belong to PUSCH from among complex-valued modulation symbols received in a bandwidth part.
- Transform de-precoding (e.g. IDFT) is performed on the complex-valued modulation symbols of the uplink physical channel if the transform precoding has been enabled for the uplink physical channel. For the downlink physical channel and for the uplink physical channel for which the transform precoding has been disabled, the transform de-precoding is not performed.
- the complex-valued modulation symbols are de-mapped into one or two codewords.
- the complex-valued modulation symbols of a codeword are demodulated and descrambled into bits of the codeword.
- the codeword is decoded into a transport block.
- either LDPC base graph 1 or 2 is selected based on the size of the transport block and coding rate R.
- the codeword may include one or multiple coded blocks.
- Each coded block is decoded with the selected LDPC base graph into a CRC-attached code block or CRC-attached transport block. If code block segmentation was performed on a CRC-attached transport block at the transmitting side, a CRC sequence is removed from each of CRC-attached code blocks, whereby code blocks are obtained.
- the code blocks are concatenated into a CRC-attached transport block.
- the transport block CRC sequence is removed from the CRC-attached transport block, whereby the transport block is obtained.
- the transport block is delivered to the MAC layer.
- the time and frequency domain resources e.g. OFDM symbol, subcarriers, carrier frequency
- OFDM modulation and frequency up/down conversion can be determined based on the resource allocation (e.g., UL grant, DL assignment).
- the processor(s) 102 of the present disclosure may apply (or control the transceiver(s) 106 to apply) the above described physical layer processing of the transmitting side to the data unit of the present disclosure to transmit the data unit wirelessly.
- the processor(s) 102 of the present disclosure may apply (or control the transceiver(s) 106 to apply) the above described physical layer processing of the receiving side to received radio signals to obtain the data unit of the present disclosure.
- the processor(s) 202 of the present disclosure may apply (or control the transceiver(s) 206 to apply) the above described physical layer processing of the transmitting side to the data unit of the present disclosure to transmit the data unit wirelessly.
- the processor(s) 202 of the present disclosure may apply (or control the transceiver(s) 206 to apply) the above described physical layer processing of the receiving side to received radio signals to obtain the data unit of the present disclosure.
- FIG. 10 illustrates operations of the wireless devices based on the implementations of the present disclosure.
- the first wireless device 100 of FIG. 2 may generate first information/signals according to the functions, procedures, and/or methods described in the present disclosure, and then transmit radio signals including the first information/signals wirelessly to the second wireless device 200 of FIG. 2 (S10).
- the first information/signals may include the data unit(s) (e.g. PDU, SDU, RRC message) of the present disclosure.
- the first wireless device 100 may receive radio signals including second information/signals from the second wireless device 200 (S30), and then perform operations based on or according to the second information/signals (S50).
- the second information/signals may be transmitted by the second wireless device 200 to the first wireless device 100 in response to the first information/signals.
- the second information/signals may include the data unit(s) (e.g.
- the first information/signals may include contents request information
- the second information/signals may include contents specific to the usage of the first wireless device 100.
- the first wireless device 100 may be a hand-held device 100d of FIG 1, which performs the functions, procedures, and/or methods described in the present disclosure.
- the hand-held device 100d may acquire information/signals (e.g., touch, text, voice, images, or video) input by a user, and convert the acquired information/signals into the first information/signals.
- the hand-held devices 100d may transmit the first information/signals to the second wireless device 200 (S10).
- the second wireless device 200 may be any one of the wireless devices 100a to 100f in FIG. 1 or a BS.
- the hand-held device 100d may receive the second information/signals from the second wireless device 200 (S30), and perform operations based on the second information/signals (S50). For example, the hand-held device 100d may output the contents of the second information/signals to the user (e.g. in the form of text, voice, images, video, or haptic) through the I/O unit of the hand-held device 100d.
- the first wireless device 100 may be a vehicle or an autonomous driving vehicle 100b, which performs the functions, procedures, and/or methods described in the present disclosure.
- the vehicle 100b may transmit (S10) and receive (S30) signals (e.g. data and control signals) to and from external devices such as other vehicles, BSs (e.g. gNBs and road side units), and servers, through its communication unit (e.g. communication unit 110 of FIG. 1C).
- the vehicle 100b may include a driving unit, and the driving unit may cause the vehicle 100b to drive on a road.
- the driving unit of the vehicle 100b may include an engine, a motor, a powertrain, a wheel, a brake, a steering device, etc.
- the vehicle 100b may include a sensor unit for acquiring a vehicle state, ambient environment information, user information, etc.
- the vehicle 100b may generate and transmit the first information/signals to the second wireless device 200 (S10).
- the first information/signals may include vehicle state information, ambient environment information, user information, and etc.
- the vehicle 100b may receive the second information/signals from the second wireless device 200 (S30).
- the second information/signals may include vehicle state information, ambient environment information, user information, and etc.
- the vehicle 100b may drive on a road, stop, or adjust speed, based on the second information/signals (S50).
- the vehicle 100b may receive map the second information/signals including data, traffic information data, etc. from an external server (S30).
- the vehicle 100b may generate an autonomous driving path and a driving plan based on the second information/signals, and may move along the autonomous driving path according to the driving plan (e.g., speed/direction control) (S50).
- the control unit or processor(s) of the vehicle 100b may generate a virtual object based on the map information, traffic information, and vehicle position information obtained through a GPS sensor of the vehicle 100b and an I/O unit 140 of the vehicle 100b may display the generated virtual object in a window in the vehicle 100b (S50).
- the first wireless device 100 may be an XR device 100c of FIG. 1, which performs the functions, procedures, and/or methods described in the present disclosure.
- the XR device 100c may transmit (S10) and receive (S30) signals (e.g., media data and control signals) to and from external devices such as other wireless devices, hand-held devices, or media servers, through its communication unit (e.g. communication unit 110 of FIG. 1C).
- the XR device 100c transmits content request information to another device or media server (S10), and download/stream contents such as films or news from another device or the media server (S30), and generate, output or display an XR object (e.g. an AR/VR/MR object), based on the second information/signals received wirelessly, through an I/O unit of the XR device (S50).
- S10 content request information
- S30 download/stream contents
- an XR object e.g. an AR/VR/MR object
- the first wireless device 100 may be a robot 100a of FIG. 1, which performs the functions, procedures, and/or methods described in the present disclosure.
- the robot 100a may be categorized into an industrial robot, a medical robot, a household robot, a military robot, etc., according to a used purpose or field.
- the robot 100a may transmit (S10) and receive (S30) signals (e.g., driving information and control signals) to and from external devices such as other wireless devices, other robots, or control servers, through its communication unit (e.g. communication unit 110 of FIG. 1C).
- the second information/signals may include driving information and control signals for the robot 100a.
- the control unit or processor(s) of the robot 100a may control the movement of the robot 100a based on the second information/signals.
- the first wireless device 100 may be an AI device 400 of FIG. 1.
- the AI device may be implemented by a fixed device or a mobile device, such as a TV, a projector, a smartphone, a PC, a notebook, a digital broadcast terminal, a tablet PC, a wearable device, a Set Top Box (STB), a radio, a washing machine, a refrigerator, a digital signage, a robot, a vehicle, etc.
- the AI device 400 may transmit (S10) and receive (S30) wired/radio signals (e.g., sensor information, user input, learning models, or control signals) to and from external devices such as other AI devices (e.g., 100a, ..., 100f, 200, or 400 of FIG.
- the control unit or processor(s) of the AI device 400 may determine at least one feasible operation of the AI device 400, based on information which is determined or generated using a data analysis algorithm or a machine learning algorithm.
- the AI device 400 may request that external devices such as other AI devices or AI server provide the AI device 400 with sensor information, user input, learning models, control signals and etc. (S10).
- the AI device 400 may receive second information/signals (e.g., sensor information, user input, learning models, or control signals) (S30), and the AI device 400 may perform a predicted operation or an operation determined to be preferred among at least one feasible operation based on the second information/signals (S50).
- ROHC Robust Header Compression
- the ROHC compressor in the transmitting PDCP entity sends a Full Header packet to a ROHC decompressor in the receiving PDCP entity to establish a header context in the ROHC decompressor.
- the ROHC compressor compresses IP headers based on the header context by transmitting only varying fields of the header.
- the ROHC decompressor when it receives a compressed packet, it decompresses the compressed header based on the established header context.
- the PDCP entities are located in the PDCP sublayer. Several PDCP entities may be defined for a UE. Each PDCP entity is carrying the data of one radio bearer.
- a PDCP entity is associated either to the control plane or the user plane depending on which radio bearer it is carrying data for.
- FIG. 11 represents the functional view of the PDCP entity for the PDCP sublayer. For split bearers, routing is performed in the transmitting PDCP entity.
- the header compression protocol is based on the ROHC framework.
- Each profile is specific to the particular network layer, transport layer or upper layer protocol combination e.g., TCP/IP and RTP/UDP/IP.
- PDCP entities associated with DRBs can be configured by upper layers to use header compression.
- Each PDCP entity carrying user plane data may be configured to use header compression.
- ROHC header compression protocol
- Every PDCP entity uses at most one ROHC compressor instance and at most one ROHC decompressor instance.
- header compression protocol If header compression is configured, the header compression protocol generates two types of output packets. Firstly, compressed packets, each associated with one PDCP SDU, are generated. Further, standalone packets not associated with a PDCP SDU (i.e., interspersed ROHC feedback) are also generated.
- a compressed packet is associated with the same PDCP SN and COUNT value as the related PDCP SDU.
- the header compression is not applicable to the SDAP header and the SDAP Control PDU if included in the PDCP SDU.
- Interspersed ROHC feedback are not associated with a PDCP SDU. They are not associated with a PDCP SN and are not ciphered.
- the PDCP Data PDUs are decompressed by the header compression protocol after performing deciphering.
- the header decompression is not applicable to the SDAP header and the SDAP Control PDU if included in the PDCP Data PDU.
- the ultra-high reliability and the ultra-low latency are required.
- the packets could be lost in the air.
- the packets could be discarded due to integrity verification failure, ROHC decompression failure, etc.
- a network can request the retransmission of the lost/discarded packet using Layer-2 signalling or RRC message. After that, a UE retransmits the lost/discarded packets. In this case, those packets should be transmitted to the network prior to other packets stored in the UE layer 2 buffer. This is because the packets for retransmission should be transmitted to satisfy the ultra-low latency requirement. However, there is no mechanism to schedule the packets for retransmission before the stored packets in the UE layer 2 buffer.
- the present disclosure suggests that the transmitting PDCP entity should indicate the fast retransmission to the transmitting RLC entity when the PDCP Data PDU (i.e., RLC SDU) for retransmission is submitted. After that, the transmitting RLC entity schedules the RLC SDU indicated for fast retransmission prior to other RLC SDUs stored in the transmitting RLC buffer.
- the PDCP Data PDU i.e., RLC SDU
- a PDCP, RLC or MAC entity related to a UE behavior refers to the UE itself or the PDCP, RLC and/or MAC entity configured in a processor installed or mounted on the UE.
- FIG. 12 shows of a procedure at a transmitting side (UE) according to the present disclosure.
- a UE processor may determine whether fast transmission for a layer-2 (L2) data unit is needed. If fast transmission for the L2 data unit is needed (S1001, Yes), the UE processor may transmit or control the UE transceiver to transmit the L2 data unit prior to other L2 data units (S1002a).
- L2 layer-2
- the UE processor may transmit or control the UE transceiver to transmit the L2 data unit based on its normal transmission order (S1002b). For example, the UE processor may determine when to transmit the L2 data unit based on sequence number (SN) of the L2 data unit.
- the L2 data unit may be a PDCP data PDU or RLC SDU.
- a UE processor transmits certain L2 data units prior to other L2 data units.
- an RLC entity configured in the UE processor submits the certain L2 data units to MAC layer for transmission in the transmission opportunity prior to the other L2 data paths.
- PDCP Downlink Control Protocol
- RLC and MAC entities configured in the UE processor, the following operations may be performed.
- the transmitting PDCP entity indicates a fast retransmission of a PDCP Data PDU that needs to be retransmitted.
- the transmitting PDCP entity indicates that a PDCP Data PDU is for fast retransmission or not when submitting to a lower layer (e.g., RLC, MAC). If the lower layer (e.g., RLC or MAC) receives a PDCP Data PDU for fast retransmission from the transmitting PDCP entity, the lower layer processes and transmits the received PDCP Data PDU, i.e., RLC SDU, prior to any other RLC SDUs which are not for fast retransmission.
- a lower layer e.g., RLC or MAC
- the transmitting PDCP entity can perform the fast retransmission of the PDCP Data PDUs as follows:
- the transmitting PDCP entity performs fast retransmission of PDCP Data PDUs as follows
- the transmitting PDCP entity retransmits the PDCP Data PDU that successful delivery confirmation has not been received.
- an upper layer e.g. RRC, SDAP
- the transmitting PDCP entity If the transmitting PDCP entity receives the PDCP Status Report from its peer PDCP entity, the transmitting PDCP entity selectively retransmits the PDCP Data PDU based on information of PDCP Status Report.
- the transmitting PDCP entity When the transmitting PDCP entity receives a PDCP Control PDU requesting a retransmission of the PDCP Data PDU, the transmitting PDCP entity performs fast retransmission of PDCP Data PDU as follows.
- the transmitting PDCP entity retransmits the PDCP Data PDU to the network according to information of the PDCP Control PDU. According to PDCP Control PDU information, the transmitting PDCP entity can retransmit the PDCP Data PDU regardless of whether that the successful delivery confirmation has been received or not.
- the PDCP Control PDU e.g., PDCP Status Report or new PDCP Control PDU
- the type of PDCP Control PDU for requesting of the retransmission can be PDCP Status Report or new PDCP Control PDU.
- the transmitting PDCP entity is associated with multiple lower entities, e.g., RLC entities
- one of the multiple lower entities can be configured as a primary path.
- a communication device may be configured with a PDCP entity and multiple lower entities associated with the PDCP entity for a radio bearer.
- the PDCP entity has multiple paths via which the PDCP entity can transfer/receive PDCP PDU(s).
- the network e.g. BS
- the UE informs the UE of a primary path (i.e. primary lower layer entity) by RRC signalling.
- the BS may inform the UE of the primary lower layer entity by signalling a cell group ID and/or logical channel ID of the primary lower layer entity.
- the transmitting PDCP entity performs fast retransmission of PDCP Data PDU as follows.
- the indication for changing of the primary path can be indicated by the network.
- the transmitting PDCP entity If the transmitting PDCP entity receives the indication for changing of the primary path, the transmitting PDCP entity retransmits the PDCP Data PDU, which was already submitted to the previous primary path but successful delivery confirmation has not been received, to the changed primary path.
- implementations of the present disclosure can be applied to all cases where the transmitting PDCP entity performs the retransmission of the PDCP Data PDUs.
- the PDCP entity When the transmitting PDCP entity submits a PDCP Data PDU for the retransmission to the lower layer, the PDCP entity indicates the fast retransmission for the PDCP Data PDU.
- the fast retransmission is applied per the PDCP Data PDU. For this, fast retransmission indication is indicated for every PDCP Data PDU.
- FIG. 13 shows an example of procedures when the fast retransmission is indicated per PDCP Data PDU according to the present disclosure.
- the transmitting PDCP entity submits the PDCP Data PDU
- the transmitting PDCP entity indicates the fast retransmission of the PDCP Data PDU to the lower layer (S1002). Then, the transmitting PDCP entity submits the PDCP Data PDU to the lower layer. (S1003)
- the network may configure that only a certain transmitting PDCP entity performs fast retransmission. For this, the network transmits a radio bearer (RB) ID for which fast retransmission is to be applied.
- the network may configure that a transmitting PDCP entity performs fast retransmission only for a certain PDCP procedure, PDCP re-establishment or PDCP Data Recovery procedure.
- RB radio bearer
- the transmitting RLC entity When the transmitting RLC entity receives an RLC SDU from upper layer, i.e., transmitting PDCP entity, the RLC entity determines whether the received RLC SDU is for fast retransmission or not based on the fast retransmission indication.
- the transmitting RLC entity When the transmitting RLC entity receives the RLC SDU for the fast retransmission from the upper layer, the transmitting RLC entity stores the RLC SDU for fast retransmission in the transmitting RLC buffer and performs fast retransmission as follows.
- the transmitting RLC entity stores the RLC SDU for fast retransmission in a transmitting RLC buffer and schedules the RLC SDU, i.e., processes and submits to lower layers, before submitting any other RLC SDUs which are not for fast retransmission.
- the transmitting RLC entity may manage two separate transmitting RLC buffers, one for storing RLC SDUs for fast retransmission and the other for storing RLC SDUs not for fast retransmission.
- the transmitting RLC entity If the transmitting RLC entity receives multiple RLC SDUs for fast retransmission, the transmitting RLC entity stores the RLC SDU for fast retransmission in the order they are received from upper layer, i.e., transmitting PDCP entity.
- the transmitting RLC entity submits RLC SDUs not for fast retransmission in the transmitting RLC buffer only after submitting all the RLC SDUs for fast retransmission.
- the transmitting RLC entity For each RLC SDU received from the PDCP entity, the transmitting RLC entity associates a SN with the RLC SDU and constructs an RLC PDU which contains the SN of the RLC SDU, and the RLC SDU or a segment of the RLC SDU.
- the RLC entity submits some or all the constructed RLC PDU(s). If the total size of RLC PDUs to be transmitted in the transmission opportunity is not sufficient to accommodate all the RLC PDU(s) in the RLC entity or if there is RLC PDU(s) whose SN falls outside of a transmitting window of the RLC entity, only some of the RLC PDU(s) may be submitted to MAC for transmission.
- the RLC entity may associate SN(s) with RLC SDU(s) for fast retransmission prior to other RLC SDU(s) such that the RLC SDU(s) have lower SN(s) than those of the other RLC SDU(s).
- the RLC entity may submit RLC PDU(s) containing the RLC SDU(s) for fast retransmission prior to other RLC PDUs containing RLC SDUs not for fast retransmission regardless of their SN.
- the MAC entity configured in the UE processor may generate a MAC PDU containing the RLC PDU(s) received from the RLC entity, and submit it to PHY layer.
- the UE processor transmits (or control the UE transceiver to transmit) the MAC PDU in the transmission opportunity.
- a network can request the retransmission of the PDCP Data PDU as follows.
- the network can request the retransmission of the PDCP Data PDU using the Layer 2 signaling (i.e., MAC CE or PDCP Control PDU) or RRC message.
- Layer 2 signaling i.e., MAC CE or PDCP Control PDU
- RRC message i.e., RRC message
- FIGs 14-17 show examples of fast transmission procedures according to the present disclosure.
- the time flow is represented by T0 to T5.
- T0 Since a network detects the loss of the packets, the network requests the retransmission of the packet using a PDCP Control PDU, i.e., PDCP Data PDU with 10 and PDCP Data PDU with 11.
- T1 Referring to FIG. 14, when a transmitting PDCP entity in UE side receives the PDCP Control PDU, the UE submits the PDCP Data PDU with 10 and 11 and indicates the fast retransmission for those PDCP Data PDUs. Additionally, the transmitting PDCP entity submits the PDCP Data PDU with 22 without the fast retransmission indication since the PDCP Data PDU with 22 is not a retransmission. At this time, the transmitting RLC entity in UE side has the RLC SDUs, i.e., PDCP Data PDU with PDCP SN 20 and PDCP Data PDU with PDCP SN 21.
- T2 Referring to FIG. 15, when the transmitting RLC entity receives the fast retransmission indication of the PDCP Data PDU with 10 and 11, the transmitting RLC entity stores the indicated RLC SDUs to schedule the indicated RLC SDUs, i.e., PDCP Data PDU with 10 and 11, than the stored RLC SDUs, i.e., PDCP Data PDU with 20 and 21. In addition, the transmitting RLC entity stores the RLC SDU, i.e., PDCP Data PDU with 22 in the transmitting RLC buffer.
- T3 Referring to FIG. 16, the transmitting RLC entity firstly processes the indicated RLC SDUs to RLC PDUs and submits those RLC PDUs to the lower layer.
- T4 Referring to FIG. 17, after submitting the indicated RLC SDUs, the transmitting RLC entity processes the not indicated RLC SDUs to RLC PDUs and submits those RLC PDUs to the lower layer.
- T5 The MAC entity generates the MAC PDU including the indicated RLC SDUs and transmits the MAC PDU to the network.
- the UE can transmit the packet for retransmission than other packets stored in the RLC buffer.
- Embodiments recited in the present disclosure are beneficial in that it can reduce the delay of the packet for retransmission by scheduling the retransmission of the packet before the packets stored in UE layer 2 buffer.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
La présente invention concerne un procédé d'émission d'une unité de données par un émetteur dans un système de communication sans fil. En particulier, le procédé comprend les étapes consistant à : recevoir une première unité de données sans indication de transmission rapide provenant d'une couche supérieure ; recevoir une seconde unité de données avec l'indication de transmission rapide à partir de la couche supérieure ; et lorsqu'une notification d'opportunité de transmission est reçue d'une couche inférieure, soumettre, à la couche inférieure, la première unité de données après la soumission de la seconde unité de données.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0001334 | 2019-01-04 | ||
KR10-2019-0001341 | 2019-01-04 | ||
KR20190001341 | 2019-01-04 | ||
KR20190001334 | 2019-01-04 | ||
KR10-2019-0001347 | 2019-01-04 | ||
KR20190001347 | 2019-01-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020141894A1 true WO2020141894A1 (fr) | 2020-07-09 |
Family
ID=71406571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/000040 WO2020141894A1 (fr) | 2019-01-04 | 2020-01-02 | Procédé et appareil d'émission d'une unité de donnes basée sur un indicateur de temps d'exécution dans un système de communications sans fil |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020141894A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024065477A1 (fr) * | 2022-09-29 | 2024-04-04 | Shenzhen Tcl New Technology Co., Ltd. | Procédé et dispositif de communication sans fil |
CN117858157A (zh) * | 2024-03-06 | 2024-04-09 | 芯昇科技有限公司 | 一种5g通信数据处理系统和方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120093022A1 (en) * | 2009-06-25 | 2012-04-19 | Zte Corporation | Fast Retransmission Method and Device in Radio Link Control Layer Acknowledged Mode |
US20160081115A1 (en) * | 2013-05-23 | 2016-03-17 | Huawei Technologies Co., Ltd. | Data transmission method, apparatus, and system |
WO2017222299A1 (fr) * | 2016-06-23 | 2017-12-28 | Lg Electronics Inc. | Dispositif de commande de véhicule monté sur un véhicule et procédé de commande du véhicule |
-
2020
- 2020-01-02 WO PCT/KR2020/000040 patent/WO2020141894A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120093022A1 (en) * | 2009-06-25 | 2012-04-19 | Zte Corporation | Fast Retransmission Method and Device in Radio Link Control Layer Acknowledged Mode |
US20160081115A1 (en) * | 2013-05-23 | 2016-03-17 | Huawei Technologies Co., Ltd. | Data transmission method, apparatus, and system |
WO2017222299A1 (fr) * | 2016-06-23 | 2017-12-28 | Lg Electronics Inc. | Dispositif de commande de véhicule monté sur un véhicule et procédé de commande du véhicule |
Non-Patent Citations (2)
Title |
---|
HUAWEI, HISILICON: "L2 Reordering and Retransmission Functions", 3GPP DRAFT; R2-166195, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Kaohsiung; 20161010 - 20161014, R2-166195, 1 October 2016 (2016-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051162066 * |
LG ELECTRONICS INC.: "Fast re-transmission of lost RLC PDUs", 3GPP DRAFT; R3-171450 FAST RE-TRANSMISSION OF LOST RLC PDUS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Hangzhou, China; 20170515 - 20170519, R3-171450 Fast re-transmission of lost RLC PDUs, 6 May 2017 (2017-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051265478 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024065477A1 (fr) * | 2022-09-29 | 2024-04-04 | Shenzhen Tcl New Technology Co., Ltd. | Procédé et dispositif de communication sans fil |
CN117858157A (zh) * | 2024-03-06 | 2024-04-09 | 芯昇科技有限公司 | 一种5g通信数据处理系统和方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020222486A1 (fr) | Procédé et appareil permettant d'arrêter un temporisateur d'autorisation configuré avant expiration dans un système de communication sans fil | |
WO2020130380A1 (fr) | Procédé et appareil d'émission d'unité de données utilisant un algorithme de compression d'en-tête double dans un système de communication sans fil | |
WO2020141897A1 (fr) | Procédé et appareil de distribution d'unité de données sur la base d'un indicateur de temps d'exécution dans un système de communication sans fil | |
WO2022014822A1 (fr) | Procédé et appareil de réalisation d'un routage sur la base d'informations en retour de commande de flux par un nœud iab dans un système de communication sans fil | |
WO2021145681A1 (fr) | Procédé et appareil permettant de transmettre une unité de données utilisant des ressources de liaison montante préconfigurées dans un système de communication sans fil | |
WO2021002593A1 (fr) | Procédé et appareil de transmission de rapport d'état de mémoire tampon pour des groupes de canaux logiques multiples dans un système de communication sans fil | |
WO2020231040A1 (fr) | Procédé et appareil permettant de transmettre un rapport d'état au moyen d'un équipement utilisateur dans un système de communication sans fil | |
WO2020141894A1 (fr) | Procédé et appareil d'émission d'une unité de donnes basée sur un indicateur de temps d'exécution dans un système de communications sans fil | |
WO2023080484A1 (fr) | Procédé et appareil pour transmettre des unités de données dupliquées en tenant compte d'un intervalle de mesurage dans un système de communication sans fil | |
WO2023033439A1 (fr) | Procédé et appareil de mise en œuvre de retransmission de niveau de trame par un équipement utilisateur dans un système de communication sans fil | |
WO2023003245A1 (fr) | Procédé et appareil de transmission d'unité de données sur la base d'une autorisation configurée par un ue dans un système de communication sans fil | |
WO2022025454A1 (fr) | Procédé et appareil pour transmettre un rapport de minuterie d'alignement temporel dans un système de communication sans fil | |
WO2021145683A1 (fr) | Procédé et appareil de transmission d'unité de données utilisant un processus d'accès aléatoire dans un système de communication sans fil | |
WO2021066307A1 (fr) | Procédé et appareil d'application de configuration de réseau de destination par un équipement d'utilisateur dans un système de communication sans fil | |
WO2021015557A1 (fr) | Procédé et appareil de prévention d'une transmission de données vers un réseau source après réception d'une autorisation de liaison montante (ul) d'un réseau cible d'un système de communication sans fil | |
WO2020145578A1 (fr) | Procédé et appareil de traitement d'une unité de données sur la base d'un algorithme de compression de données dans un système de communication sans fil | |
WO2020204382A1 (fr) | Procédé et appareil permettant de gérer un problème de rlc bloquée dans un système de communication sans fil | |
WO2021015376A1 (fr) | Procédé et appareil de réalisation de mesure par un équipement utilisateur dans un système de communication sans fil | |
WO2023146182A1 (fr) | Procédé et appareil permettant d'effectuer des transmissions sur la base d'une compression de données de liaison montante par un équipement utilisateur dans un système de communication sans fil | |
WO2023146183A1 (fr) | Procédé et appareil de réception de données de multidiffusion/diffusion dans un système de communication sans fil | |
WO2023204400A1 (fr) | Procédé et appareil de transmission d'unités de données pour un service en temps réel dans un système de communication sans fil | |
WO2023038352A1 (fr) | Procédé et appareil pour réaliser une protection d'intégrité de plan utilisateur d'après un volume de données au moyen d'un équipement utilisateur dans un système de communication sans fil | |
WO2021162255A1 (fr) | Procédé et appareil pour traiter des paquets dupliqués pendant une procédure de transfert intercellulaire dans un système de communication sans fil | |
WO2022265465A1 (fr) | Procédé et appareil de transmission d'unités de données sur la base d'informations temporelles par un groupe d'ue dans un système de communication sans fil | |
WO2021054598A1 (fr) | Procédé et appareil de transmission d'une unité de données sur la base d'un état de duplication pdcp dans un système de communication sans fil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20736166 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20736166 Country of ref document: EP Kind code of ref document: A1 |