WO2020140869A1 - 一种扰动源多维空间定位系统和方法 - Google Patents
一种扰动源多维空间定位系统和方法 Download PDFInfo
- Publication number
- WO2020140869A1 WO2020140869A1 PCT/CN2019/129929 CN2019129929W WO2020140869A1 WO 2020140869 A1 WO2020140869 A1 WO 2020140869A1 CN 2019129929 W CN2019129929 W CN 2019129929W WO 2020140869 A1 WO2020140869 A1 WO 2020140869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- fiber
- sound field
- signal group
- optical fiber
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000013307 optical fiber Substances 0.000 claims abstract description 115
- 238000012544 monitoring process Methods 0.000 claims abstract description 13
- 238000003672 processing method Methods 0.000 claims abstract description 10
- 239000000835 fiber Substances 0.000 claims description 114
- 230000003287 optical effect Effects 0.000 claims description 70
- 238000012545 processing Methods 0.000 claims description 35
- 238000001514 detection method Methods 0.000 claims description 31
- 238000005070 sampling Methods 0.000 claims description 20
- 239000013598 vector Substances 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 15
- 230000001427 coherent effect Effects 0.000 claims description 11
- 238000005315 distribution function Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 239000000523 sample Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 206010070834 Sensitisation Diseases 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000002168 optical frequency-domain reflectometry Methods 0.000 description 1
- 238000000253 optical time-domain reflectometry Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
- G01S5/22—Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35325—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in reflection, e.g. Mickelson interferometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35338—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
- G01D5/35354—Sensor working in reflection
- G01D5/35358—Sensor working in reflection using backscattering to detect the measured quantity
- G01D5/35364—Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
Definitions
- the invention relates to the field of disturbance source monitoring, in particular to a disturbance source multi-dimensional space positioning system and method based on distributed optical fiber acoustic sensors.
- Distributed optical fiber acoustic sensors are widely used in railway safety, oil and gas pipeline monitoring, and perimeter security.
- Existing distributed acoustic sensors only have one-dimensional detection capability, and abnormal signals can only be located in the one-dimensional axial space along the sensing fiber, and the abnormal sound signals generated from and away from the sensing fiber cannot be accurately known for the source of the disturbance 2D or 3D spatial location information.
- optical frequency domain reflectometer with zero interference fading noise can quantitatively monitor the sound field signal along the sensing fiber, and can realize the sensing bandwidth of the kilohertz level and the sensing distance of the kilometer level.
- Consensus by point microphone Array using the direction-of-arrival estimation algorithm, can achieve three-dimensional localization of sound sources in a small range, but this method is difficult to achieve continuous positioning in the range of 100 meters or even kilometers, and the microphone spacing cannot be flexibly adjusted according to the characteristics of the signal.
- the present invention proposes a multi-dimensional space positioning system and method for a disturbance source based on a distributed optical fiber acoustic sensor, which realizes the function of real-time monitoring of the multi-dimensional space position information of the disturbance source in both long and short distances.
- the advantages of simplicity, low cost, large range, and high precision not only greatly improve the accuracy of distributed fiber acoustic sensors in the detection of abnormal signals in the fields of railway safety, oil and gas pipeline monitoring, and perimeter security, but also broaden the traditional distribution.
- the application of distributed optical fiber acoustic sensors, such as positioning and monitoring of drones has revolutionary significance in the field of distributed optical fiber sensing.
- An aspect of the present invention provides a multi-dimensional space positioning system for disturbance sources.
- the positioning system includes at least a distributed optical fiber acoustic sensor, a sensing fiber, a disturbance source to be monitored, and a coordinate system.
- the distributed optical fiber acoustic sensor and the sensing fiber Connected, the distributed optical fiber acoustic sensor emits detection light pulses to the sensing fiber to obtain the sound field distribution signal, and processes the sound field distribution signal and the sensing fiber laying method to obtain the key of the disturbance source to be monitored relative to the sensing fiber Parameters, calculate the spatial position coordinates of the disturbance source;
- the key parameters at least include one or more of azimuth, pitch, lateral distance, linear distance, speed of sound, and frequency;
- the laying method of the sensing optical fiber includes one or more of a two-dimensional space laying method and a three-dimensional space laying method.
- the disturbance source includes at least objects that generate sound waves, seismic waves, and water waves through vibration.
- the distributed optical fiber acoustic sensor includes a phase sensitive optical time domain reflectometer for coherent detection, a phase sensitive optical time domain reflectometer for direct detection, an optical frequency domain reflectometer, and a distributed optical fiber based on the principle of Brillouin scattering One or more of the sensors.
- the distributed optical fiber acoustic sensor includes a phase sensitive optical time domain reflectometer based on coherent detection, a phase sensitive optical time domain reflectometer directly detected, an optical frequency domain reflectometer or a distributed based on the principle of Brillouin scattering
- the optical fiber sensor is optimized and upgraded with high spatial resolution, high response bandwidth and high sensitivity.
- the two-dimensional space laying method includes one of a double parallel optical fiber laying structure and an S-like bent optical fiber laying structure.
- the double-parallel optical fiber laying structure is a mandrel-shaped special-sensitized double-parallel optical fiber laying structure or a non-mandrel-shaped special-sensitized double-parallel optical fiber laying structure.
- the three-dimensional space laying method is a double-layer double parallel optical fiber laying structure.
- the double-layer dual-parallel optical fiber laying structure is a mandrel-shaped special-sensitized double-layer dual-parallel optical fiber laying structure or a mandrel-free shaped-sensitized double-layer dual-parallel optical fiber laying structure.
- the two-dimensional space laying method and the three-dimensional space laying method are helpful for further processing of sound field distribution signals.
- the laying method needs to be specially set according to the application scenario, and each bending of the sensing fiber must be within the allowable loss range.
- the invention uses a distributed optical fiber sensor and a multi-dimensional laying method of the sensing optical fiber, obtains real-time sound field distribution signals through the flexible selection of sensing units distributed along the sensing optical fiber, and obtains the disturbance source to be monitored relative to the sensing optical fiber after processing key parameter.
- Another aspect of the present invention provides a method for multi-dimensional spatial positioning of disturbance sources, which can be used for single disturbance sources or three-dimensional positioning of multiple disturbance sources.
- the number of disturbance sources to be monitored is m (m ⁇ 1 ), characterized in that the method includes the following three steps:
- the data processing unit sets the sound field intensity threshold E according to each disturbance source to be monitored, and searches for the sound field signal distribution S d (l,t) whose sound field intensity is greater than the threshold E
- X 1 (x,y,z,t) [S d (x 1 ,y 1 ,z 1 ,t) S d (x 2 ,y 2 ,z 2 ,t)... S d (x n ,y n ,z n ,t)] T
- the horizontal dimensions of the space occupied by the adjacent n sound field sampling signals of the first signal group are L, the n>m, that is, when there are multiple disturbance sources, it is necessary to ensure the sound field sampling signal of each signal group
- the number is more than the number of disturbance sources to avoid signal interference between different disturbance sources and improve monitoring accuracy
- Array signal processing method is applied to the signal group described in step 2) to calculate the spatial position coordinates of the disturbance source to be monitored.
- the step 2) further includes the selection of other signal groups.
- the specific steps are as follows:
- an area signal with a spatial distance (L 1 ) greater than L from the first signal group within the area to be detected ⁇ (x, y, z) is selected as the second signal group.
- the e-th signal group For the selection of the e-th signal group, select the spatial distances (L 1 , L 2 ,...L e-1 ) from the first to e-1 signal groups in the area to be detected ⁇ (x,y,z)
- the area signal greater than L is regarded as the e-th signal group.
- the e-th signal group is expressed as follows:
- the selection of the number of signal groups depends on the distance range of the disturbance source to be monitored and the subsequent signal processing method, or there may be only a single signal group; when the range of the disturbance source to be monitored is large and the distance is far, the signal group is reasonably increased. The number of selections helps to improve the accuracy of the three-dimensional positioning of the disturbance source to be monitored.
- the array signal processing method in step 3) is one of a beamforming algorithm, a spatial spectrum estimation algorithm, and a direction of arrival estimation algorithm.
- the spatial spectrum calculation method in step 3 is as follows:
- N represents the number of repetitions of the distributed optical fiber acoustic sensor transmitting detection light pulses to the sensing optical fiber through the optical port;
- a covariance matrix R eigenvalue decomposition noise subspace E n in accordance with the embodiment of the sensing fiber laying T [x, y, z] , we calculate the signal corresponding to the signal subspace group E s ( ⁇ i, r i ), where ⁇ i represents the azimuth of the i-th disturbance source, r i represents the straight-line distance from the i-th disturbance source to the center position of the signal group, and the loss function is calculated according to the following equation,
- H represents a conjugate transpose
- the azimuth vector ( ⁇ i , r i ) of the disturbance source relative to the first signal group can be calculated by performing a maximum value search on the loss function
- the array signal processing method in step 3 uses a beamforming algorithm, and the specific steps are as follows:
- N represents the number of repetitions of the distributed optical fiber acoustic sensor emitting probe light pulses to the sensing optical fiber
- phase delay vector corresponding to the first signal group Represent the azimuth of the i-th disturbance source and the first and second signal groups, Represent the pitch angle between the first signal group and the second signal group and the i-th signal group respectively, and calculate the spatial energy distribution function of the disturbance source according to the following equation
- H represents the conjugate transpose and the azimuth vector of the i-th disturbance source relative to the first signal group And the azimuth vector of the i-th disturbance source relative to the second signal group
- the maximum value search can be calculated
- the three-dimensional space coordinates of the i-th disturbance source can be obtained by calculating the direction vectors corresponding to the first signal group and the second signal group according to the following formula,
- L1 is the spatial distance corresponding to the first signal group and the second signal group.
- the present invention is simple to implement.
- the two-dimensional space laying method and three-dimensional space laying method of the sensing optical fiber make the arrangement of the sensing units more three-dimensional, the signals obtained are more accurate and rich, and belong to passive distributed sensing, and the laying method It is simple and easy to implement, and has the advantages of low cost, high reliability and high precision.
- the present invention acquires multiple sound field sampling signals and multiple signal groups through a large number of flexible and real-time sensing units on the sensing optical fiber.
- the selection of multiple sound field sampling signals helps to realize the three-dimensional space when multiple disturbance sources exist at the same time.
- the accuracy of the position and the selection of multiple signal groups help to improve the monitoring range and distance of the disturbance source. Therefore, the invention has the advantages of large monitoring range, long distance, high accuracy, real-time monitoring, etc., which can not only greatly improve the accuracy of the detection of abnormal signals of distributed optical fiber sensors in the fields of railway safety, oil and gas pipeline monitoring, and perimeter security, but also Realizing the application of traditional distributed optical fiber acoustic sensors in new fields such as UAV positioning monitoring is of revolutionary significance.
- Figure 1 is a schematic diagram of a three-dimensional space positioning system of a single disturbance source
- Figure 2 is a schematic diagram of the structure of the distributed optical fiber acoustic sensing system of the optical frequency domain reflectometer of the Michelson interferometer structure
- Figure 3 is a schematic diagram of the structure of a two-dimensional spatial positioning system with multiple disturbance sources
- FIG. 4 is a schematic diagram of the structure of a distributed optical fiber acoustic sensing system for coherent detection of phase sensitive optical time domain reflectometer
- FIG. 5 is a schematic diagram of a distributed optical fiber acoustic sensing system for directly detecting a phase-sensitive optical time domain reflectometer
- FIG. 6 is a schematic diagram of the structure of a distributed optical fiber acoustic sensing system for coherent detection of phase sensitive optical time domain reflectometer with high spatial resolution
- FIG. 7 is a schematic diagram of a distributed optical fiber acoustic sensing system of a Brillouin optical time domain reflectometer with a heterodyne detection structure
- Figure 8 shows the laying structure of dual parallel optical fibers
- Figure 9 shows the laying structure of S-like fiber
- Figure 10 shows the laying structure of non-mandrel shaped double-parallel optical fiber with enhanced sensitivity
- Fig. 11 is the laying structure of dual parallel optical fiber with mandrel shaped sensitization
- Figure 12 shows the double-layer double parallel fiber laying structure
- Figure 13 shows the laying structure of double-parallel double-sided optical fiber with mandrel profiled sensitization
- Example 1 Three-dimensional spatial positioning of a single disturbance source
- the sensing fiber is laid in a double parallel structure, the schematic diagram is shown in Figure 1, including optical frequency domain reflectometer distributed optical fiber acoustic sensor system using Michelson interferometer structure1, double parallel structure Laying method Sensing fiber 2 (as shown in Figure 8), coordinate system 3, disturbance source to be monitored 4, first signal group 5-1, second signal group 5-2, optical frequency domain reflectometer 1 and sensing fiber 2 Connected, the space height of the disturbance source to be monitored and the sensing fiber are not the same.
- the structure of the optical frequency domain reflectometer distributed optical fiber acoustic sensing system 1 of the Michelson interferometer structure is shown in FIG. 2, which includes a frequency tunable laser 11-1, a fiber coupler 11-2, and a fiber reflection end surface 11-3, Photodetector 11-4, data processing unit 11-5,
- the frequency tunable laser 11-1 outputs a chirped laser, which is output to the second port 202 and the fourth port 204 of the fiber coupler 11-2 through the first port 201 of the fiber coupler 11-2,
- the second port 202 of the optical fiber coupler 11-2 is connected to the optical fiber reflection end surface 11-3, the fourth port 204 of the optical fiber coupler 11-2 is connected to the optical port 101, the optical fiber
- the third port 203 of the coupler 11-2 is connected to the photodetector 11-4, and the signal output by the photodetector is connected to the data processing unit 11-5.
- the three-dimensional spatial positioning method of a single disturbance source mainly includes three steps:
- the optical frequency domain reflectometer 1 emits detection light pulses to the sensing optical fiber 2, quantitatively detects the sound field sensed along the sensing fiber, and obtains a signal S(l, t).
- X 1 (x,y,z,t) [S d (x 1 ,y 1 ,z 1 ,t) S d (x 2 ,y 2 ,z 2 ,t)... S d (x n ,y n ,z n ,t)] T
- the signal group is processed according to the beamforming algorithm, the following equation calculates the covariance matrix of the first signal group and the second signal group,
- N represents the number of repetitions of the distributed optical fiber acoustic sensor 1 (optical frequency domain reflectometer) emitting detection light pulses to the sensing optical fiber 2,
- H represents the conjugate transpose, the orientation vector of the disturbance source relative to the first signal group And the vector of the disturbance source relative to the second signal group Through the spatial energy distribution function
- the maximum value search can be calculated
- the three-dimensional space coordinates of the disturbance source can be obtained by calculating the direction vectors corresponding to the first signal group and the second signal group according to the following formula,
- L1 represents the spatial distance corresponding to the first signal group and the second signal group.
- Example 2 Two-dimensional spatial positioning of multiple disturbance sources
- the sensing fibers are laid out in the shape of "one", the schematic diagram of the principle is shown in Figure 3, the distributed optical fiber acoustic sensing system containing the phase sensitive optical time domain reflectometer 1, the word "one" -Type structure laying method Sensing fiber 2, coordinate system 3, disturbance sources to be monitored 4-1, 4-2, signal group 5, distributed optical fiber acoustic sensing system 1 with phase sensitive optical time domain reflectometer and sensing fiber 2 Connected, the disturbance source to be monitored and the sensing fiber are in the same plane.
- the distributed optical fiber acoustic sensor system 1 of the phase sensitive optical time domain reflectometer can be coherent detection or direct detection.
- FIG. 4 The structure of the distributed optical fiber acoustic sensing system 1 for coherent detection and phase sensitive optical time domain reflectometer is shown in FIG. 4, which includes a laser 12-1, a first optical fiber coupler 12-2, a second optical fiber coupler 12-6, and a pulse Modulator 12-3, optical amplifier 12-4, optical fiber circulator 12-5, double balanced photodetector 12-7, electrical amplifier 12-8, data processing unit 12-9.
- the laser output of the laser 12-1 is connected to the first fiber coupler 12-2, and the first port 201 and the second port 202 of the first fiber coupler 12-2 are respectively connected to the second fiber coupling
- the first port 601 of the modulator 12-6 and the pulse modulator 12-3, the output of the pulse modulator 12-3 is connected to the optical amplifier 12-4, and the output of the optical amplifier 12-4 is connected to the
- the first port 501 of the optical fiber circulator 12-5 is output through the third port 503 and connected to the optical port 101, and the second port 502 of the optical fiber circulator 12-5 is connected to the second optical fiber coupler 12- 6 of the second port 602, the output of the second fiber coupler 12-6 is connected to a double-balanced photodetector 12-7, and the output signal of the double-balanced detector 12-7 is connected to an electrical amplifier 12- 8 Enlarge, and then input into the number processing unit 12-8 for processing.
- FIG. 5 The structure of the distributed optical fiber acoustic sensing system 1 for directly detecting the phase-sensitive optical time domain reflectometer is shown in FIG. 5, which includes a laser 13-1, a pulse modulator 13-2, an optical amplifier 13-3, and an optical fiber circulator 13-4 , Photodetector 13-5, data processing unit 13-6.
- the laser output of the laser 13-1 is connected to the pulse modulator 13-2, the output of the pulse modulator 13-2 is connected to the optical amplifier 13-3, and the output of the optical amplifier 13-3 is connected to
- the first port 401 of the fiber circulator 13-4 is output through the third port 403 and connected to the optical port 101, and the second port 402 of the fiber circulator 13-4 is connected to the photodetector 13-5.
- the output signal of 13-5 is connected to the data processing unit 13-6.
- the laser output of the laser 15-1 is connected to the first optical fiber coupler 15-2, and the first port 201 and the second port 202 of the first optical fiber coupler 15-2 are respectively connected to the second optical fiber coupler
- the first port 701 of 15-7 and the frequency tuner 15-3, the output of the frequency tuner 15-3 is connected to the pulse modulator 15-4, and the output of the pulse modulator 15-4 is connected to the optical Amplifier 15-5
- the output of the optical amplifier 15-5 is connected to the first port 601 of the optical fiber circulator 15-6, and then output through the third port 603 and connected to the optical port 101
- the second port 602 of the circulator 15-6 is connected to the second port 702 of the second fiber coupler 15-7, and the output of the second fiber coupler 15-7 is connected to the double balanced photodetector 15-8,
- the output signal of the double-balanced detector 15-8 is input into the digital processing unit 15-9 for processing.
- the multi-dimensional disturbance source two-dimensional positioning method mainly includes three steps:
- the distributed optical fiber acoustic sensing system 1 including a phase sensitive optical time domain reflectometer emits probe light pulses to the sensing optical fiber 2 to quantitatively detect the sound field sensed along the sensing optical fiber, And obtain the signal S(l,t) of the sound field distributed along the fiber.
- phase-sensitive optical time domain reflectometer 1 preprocesses the obtained sound field signal:
- the sound field time domain signal matrix composed of adjacent sound field sampling signals of /2f 0 is used as a signal group, the number of disturbance sources is 2, and the relationship of n>2 should be satisfied,
- X(x,y,z,t) [S d (x 1 ,y 1 ,z 1 ,t) S d (x 2 ,y 2 ,z 2 ,t)... S d (x n ,y n , z n ,t)] T
- N the number of repetitions of the phase-sensitive optical time domain reflectometer transmitting probe light pulses to the sensing fiber through the optical port
- a covariance matrix R eigenvalue decomposition noise subspace E n in accordance with the embodiment of the sensing fiber laying T [x, y, z] , we calculate the signal corresponding to the signal subspace group E s ( ⁇ i, r i ), where ⁇ i represents the azimuth of the i-th disturbance source, r i represents the straight-line distance from the i-th disturbance source to the center position of the signal group, and the loss function is calculated according to the following equation,
- H represents a conjugate transpose
- the azimuth vector ( ⁇ i , r i ) of the disturbance source relative to the first signal group can be calculated by performing a maximum value search on the loss function
- Example 3 Other types of distributed acoustic sensor systems
- a distributed optical fiber acoustic sensing system 1 using a Brillouin optical time domain reflectometer with a heterodyne detection structure as shown in FIG. 7.
- the laser output of the laser 14-1 is connected to the first fiber coupler 14-2, and the first port 201 and the second port 202 of the first fiber coupler 14-2 are respectively connected to the broadband Frequency unit 14-6 and pulse modulator 14-3, the output of the pulse modulator 14-3 is connected to the optical amplifier 14-4, and the output of the optical amplifier 14-4 is connected to the
- the first port 501 of the fiber circulator 14-5 is output through the third port 503 and connected to the optical port 101, and the second port 502 of the fiber circulator 14-5 is connected to the second fiber coupler 14-7
- the first port 701, the output of the broadband frequency shift unit 14-6 is connected to the second port 702 of the second fiber coupler 14-7, and the output of the second fiber coupler 14-7 is connected
- the output signal of the double-balanced detector 14-8 is connected to the electrical amplifier 14-9 for amplification, and then input into the data processing unit 14- 10 treatment.
- Embodiment 4 Two-dimensional space laying method of sensing optical fiber
- a S-like fiber laying structure is formed, in which the bending radius and the number of bending of each part are specifically set according to the application scenario.
- the sensing optical fiber is spirally wound into a cylindrical body within a loss allowable range, and the cylindrical body is bent once to form a double parallel optical fiber laying structure.
- the sensing optical fiber becomes a cylindrical body through the spirally wound sensitizing mandrel 2-1 within the allowable range of primary loss, and the cylindrical body is bent to form a double parallel optical fiber laying structure.
- Embodiment 5 Three-dimensional space laying method of sensing optical fiber
- a double-layer double-parallel fiber laying structure is formed, similar to a rectangular parallelepiped.
- the horizontal and vertical spacings of the rectangular fiber are specifically set according to the application scenario.
- the sensing fiber becomes a cylinder after the spirally wound sensitizing mandrel 2-1 within the allowable loss range, and the cylindrical body is bent to form a double-layer double-parallel fiber laying structure, similar to a rectangular parallelepiped.
- the horizontal spacing and vertical spacing are specifically set according to the application scenario.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种扰动源多维空间定位系统和方法,该系统包含分布式光纤传感器(1)、传感光纤(2)、坐标系(3)、待监测扰动源(4)、第一信号组(5-1)、第二信号组(5-2)。将阵列信号处理方法与分布式光纤传感器(1)相结合,利用传感光纤(2)不同的铺设方式,以及沿线分布的一定数量、一定间距的可灵活选取的传感单元,结合特殊信号处理办法进行扰动源(4)定位,实现长、短距离均可实时监测扰动源(4)的多维空间位置信息的功能。
Description
本发明涉及扰动源监测领域,具体为一种基于分布式光纤声传感器的扰动源多维空间定位系统和方法。
分布式光纤声传感器被广泛运用在铁路安全,油气管道监测,周界安防等领域。现有的分布式声传感器只具备一维探测能力,异常信号只能被定位在传感光纤沿线的一维轴向空间内,而对与远离传感光纤产生的异常声音信号无法准确获知扰动源的二维或者三维的空间位置信息。
现有技术一【Wang Z,Pan Z,Ye Q,et al.Novel distributed passive vehicle tracking technology using phase sensitive optical time domain reflectometer.Chinese Optics Letters,2015,13(10).】通过构建一套相位敏感光时域反射计,可以对光纤沿线因车辆行驶而产生的声场进行连续定量监测,但对扰动源信号的定位范围局限在传感光纤的一维轴向空间内。
现有技术二【Chen D,Liu Q,He Z.Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR.Optics Express,2017,25(7):8315.】通过构建零干涉衰落噪声的光频域反射计,可以对传感光纤沿线声场信号进行定量化监测,可实现千赫兹量级的传感带宽以及公里量级的传感距离。
现有技术三【Pan Z,Cai H,Qu R,et al.Phase-sensitive OTDR system based on digital coherent detection.Asia Communications&Photonics Conference&Exhibition.IEEE,2012.】提出了基于数字相干解调的相位敏感光时域反射计定量化测量系统及幅度、相位信息的解调公式,但并未进一步将定量化的声场测量能力运用到扰动源的三维定位。
现有技术四【Bergman A,Langer T,Tur M.Phase-based,high spatial resolution and distributed,static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers.Optics Express,2017,25(5):5376.】通过图像处理技术对基于布里渊散射原理的分布式光纤传感器进行有效的降噪处理,能在长距离范围实现高信噪比的应力测量,但信号质量的优化本质上属于单点测量性能的优化,仍然不具备二维甚至三维定位能力。
现有技术五【Dmochowski J P,Benesty J,Affes,Sofiène.Broadband music:Opportunities and challenges for multiple source localization.IEEE Workshop on Applications of Signal Processing to Audio&Acoustics.IEEE,2007.】通过点式的麦克风构成传感阵列,利用波达方向估计算法,能够实现小范围的声源三维定位,但该方法难以实现百米甚至千米范围内的连续定位能力,其麦克风间距也无法根据信号特点灵活调整。
发明内容
为了克服上述在先技术的不足,本发明提出一种基于分布式光纤声传感器的扰动源多维空间定位系统和方法,实现了长短距离均可实时监测扰动源的多维空间位置信息的功能,具有实施简单、成本低廉、大范围、高精度的优点,不仅极大的提高了分布式光纤声传感器在铁路安全、油气管道监测、周界安防等领域异常信号探测的准确率,而且扩宽了传统分布式光纤声传感器的应用,比如可实现对无人机的定位监控等,在分布式光纤传感领域具有革命性意义。
为了实现上述目的,本发明采取了如下的技术方案:
本发明的一个方面,提供一种扰动源多维空间定位系统,定位系统至少包括分布式光纤声传感器、传感光纤、待监测扰动源和坐标系,所述的分布式光纤声传感器与传感光纤相连,分布式光纤声传感器向传感光纤发射探测光脉冲,获取声场分布信号,并对声场分布信号和所述传感光纤铺设方式进行处理,获得待监测扰动源相对所述传感光纤的关键参数,计算出扰动源的空间位置坐标;
所述的关键参数至少包括方位角、俯仰角、横向距离、直线距离、声速、频率中的一种或多种;
所述的传感光纤铺设方式包括二维空间铺设方式、三维空间铺设方式中的一种或多种。
所述的扰动源至少包括经过振动而产生声波、地震波、水波的物体。
优选的,所述的分布式光纤声传感器包括相干探测的相位敏感光时域反射计、直接探测的相位敏感光时域反射计、光频域反射计、基于布里渊散射原理的分布式光纤传感器中的一种或多种。
优选的,所述的分布式光纤声传感器包括基于相干探测的相位敏感光时域反射计、直接探测的相位敏感光时域反射计、光频域反射计或基于布里渊散射原理的分布式光纤传感器的高空间分辨率、高响应带宽、高灵敏度等性能优化升级系统。
优选的,所述的二维空间铺设方式包括双平行光纤铺设结构、类S形弯曲光纤铺设结构中的一种。
优选的,所述的双平行光纤铺设结构为芯轴异形增敏双平行光纤铺设结构或无芯轴异形增敏双平行光纤铺设结构。
优选的,所述的三维空间铺设方式为双层双平行光纤铺设结构。
优选的,所述的双层双平行光纤铺设结构为芯轴异形增敏双层双平行光纤铺设结构或无芯轴异形增敏双层双平行光纤铺设结构。
所述的二维空间铺设方式和三维空间铺设方式有助于声场分布信号的进一步处理,其铺设方式需根据应用场景专门设置,传感光纤的每次弯曲均需在损耗允许范围内。
本发明利用分布式光纤传感器和传感光纤多维铺设方式,通过传感光纤上沿线分布的可灵活选取的传感单元,获取实时声场分布信号,经过处理后得到待监测扰动源相对传感光纤的关键参数。
本发明的另外一个方面,提供了一种扰动源多维空间定位的方法,该方法即可用于单扰动源,也可用于多扰动源的三维定位,待监测扰动源个数为m(m≥1),其特征在于,所述方法包含以下3个步骤:
1)在三维空间内设立一个坐标系(x,y,z),铺设传感光纤,铺设方式记为T[x,y,z],分布式光纤声传感器向所述的传感光纤发射探测光脉冲,对所述的传感光纤沿线感知的声场进行定量化检测,获得声场沿光纤分布的信号S(l,t),其中t表示时间,l表示传感光纤的一维轴向空间坐标;
2)对获得声场沿光纤分布的信号S(l,t)进行预处理:
首先,对声场沿光纤分布的信号S(l,t)进行坐标系转换,得到声场分布信号在所述的传感光纤构成的空间内的分布S
d(x,y,z,t)=T(S(l,t)),
其次,确定所述待监测扰动源的中心频率f
0,数据处理单元根据各个待监测的扰动源设定声场强度阈值E,搜寻声场信号分布S
d(l,t)中声场强度大于阈值E的待检测区域Ω(x,y,z),并在待监测区域Ω(x,y,z)内,选择相邻n个所述声场采样信号构成的声场时域信号矩阵作为第一信号组,声场采样信号直接间距尽量接近d=v/2f
0的(v为声波在介质中的传播速率),第一信号组表达如下:
X
1(x,y,z,t)=[S
d(x
1,y
1,z
1,t) S
d(x
2,y
2,z
2,t) … S
d(x
n,y
n,z
n,t)]
T
第一信号组的相邻n个所述声场采样信号所占据的空间横向尺寸共为L,所述的n>m,即当存在多个扰动源时,需保证每个信号组的声场采样信号数多于扰动源数量,以避免不同扰动源之间的信号干扰,提高监测准确度;
3)对步骤2)所述的信号组运用阵列信号处理方法,计算待监测扰动源的空间位置坐标。
优选的,所述步骤2)中还包括其它信号组的选取,具体步骤如下:
第二信号组的选取,在待检测区域Ω(x,y,z)内选择与所述第一信号组空间距离(L
1)大于L的区域信号作为第二信号组,第二信号组内包含n个声场采样信号,
间距尽量接近d=v/2f
0,第二信号组表达如下:
……
第e信号组的选取,在待检测区域Ω(x,y,z)内选择与所述第1至第e-1信号组空间距离(L
1、L
2、……L
e-1)均大于L的区域信号作为第e信号组,第e信号组内包含n个声场采样信号,间距尽量接近d=v/2f
0,第e信号组表达如下:
所述信号组数量的选取根据待监测扰动源的距离范围和后续信号处理方法而定,也可以只有单一信号组;当待监测扰动源据范围较大,距离较远时,合理的增加信号组的选取数量,有助于提高待监测扰动源三维定位的精准度。
优选的,所述步骤3)中阵列信号处理方法为波束形成算法,空间谱估计算法,波达方向估计算法中的一种。
优选的,所述的步骤3)中空间谱计算法具体如下:
首先,计算第一信号组的协方差矩阵,
其中N表示所述的分布式光纤声传感器通过光学端口向所述传感光纤发射探测光脉冲的重复次数;
其次,对协方差矩阵R进行特征值分解得到噪声子空间E
n,按照所述传感光纤铺设方式T[x,y,z],计算信号组对应的信号子空间E
s(θ
i,r
i),其中θ
i表示第i个扰动源的方位角,r
i表示第i个扰动源到信号组中心位置的直线距离,并按下列方程计算损失函数,
其中,H表示共轭转置,扰动源相对所述第一信号组的方位向量(θ
i,r
i)通过对所述损失函数进行极大值搜索可以计算而得;
最后,第i个扰动源的二维空间坐标按下列方程计算,
(x
i=r
isinθ
i,y
i=r
icosθ
i)
当待监测扰动源范围较大、距离较长时,所述的e选取2时,优选的所述的步骤3)中阵列信号处理方法采用波束形成算法,具体步骤如下:
首先,按照下述公式分别计算第一信号组和第二信号组的协方差矩阵,
其中N表示所述的分布式光纤声传感器向所述传感光纤发射探测光脉冲的重复次数;
其次,按照所述的传感光纤铺设方式T[x,y,z],分别计算第一信号组对应的相位延迟向量
和第二信号组对应的相位延迟向量
其中
分别表示第i个扰动源与第一信号组和第二信号组的方位角,
分别表示第一信号组和第二信号组与第i信号组之间的俯仰角,并按下列方程计算扰动源空间能量分布函数
最后,通过对所述第一信号组和所述第二信号组对应的方向向量按照以下公式计算即可得出第i扰动源的三维空间坐标,
其中L1为所述第一信号组和所述第二信号组对应的空间距离。
本发明的优点和技术效果如下:
1)本发明实施简单,传感光纤的二维空间铺设方式和三维空间铺设方式使得传感单元排布更加立体,所获取的信号更加准确、丰富,属于无源分布式传感,并且铺设方式简单易实现,具有成本低、可靠性高、精度高的优点。
2)本发明通过传感光纤上大量可灵活实时选取的传感单元获取多个声场采样信号和多个信号组,多个声场采样信号的选取有助于实现多个扰动源同时存在时三 维空间位置的精准性,多个信号组的选取有助于提高扰动源的监测范围和距离。因此本发明具备可监测范围大、距离长、精度高、实时监测等优点,不仅可以大幅提高分布式光纤传感器在铁路安全、油气管道监测、周界安防等领域异常信号探测的准确率,还能实现传统分布式光纤声传感器在无人机定位监控等新型领域的应用,具有革命性意义。
图1为单扰动源三维空间定位系统示意图
图2为迈克尔逊干涉仪结构的光频域反射计分布式光纤声传感系统结构示意图
图3为多扰动源二维空间定位系统结构示意图
图4为相干探测相位敏感光时域反射计的分布式光纤声传感系统结构示意图
图5为直接探测相位敏感光时域反射计的分布式光纤声传感系统结构示意图
图6为高空间分辨率相干探测相位敏感光时域反射计的分布式光纤声传感系统结构示意图
图7为外差探测结构的布里渊光时域反射计的分布式光纤声传感系统结构示意图
图8为双平行光纤铺设结构
图9为类S形光纤铺设结构
图10为无芯轴异形增敏双平行光纤铺设结构
图11为芯轴异形增敏双平行光纤铺设结构
图12为双层双平行光纤铺设结构
图13为芯轴异形增敏双层双平行光纤铺设结构
为便于对本发明实施例的理解,下面将结合附图以几个具体实施例做进一步的解释说明,且各个实施例并不构成对本发明实施例的限定。此外,附图为示意图,因此本发明装置和设备并不受所述示意图的尺寸或比例限制。
需要说明的是,在本专利的权利要求和说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有 更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
实施例1:单扰动源三维空间定位
单扰动源三维空间定位系统,传感光纤按双平行结构铺设,原理示意图如图1所示,包含采用迈克尔逊干涉仪结构的光频域反射计分布式光纤声传感系统1、双平行结构铺设方式传感光纤2(如图8所示)、坐标系3、待监测扰动源4、第一信号组5-1、第二信号组5-2,光频域反射计1与传感光纤2相连,待监测扰动源与传感光纤处于的空间高度不相同。其中迈克尔逊干涉仪结构的光频域反射计分布式光纤声传感系统1结构如图2所示,包括频率可调谐激光器11-1,光纤耦合器11-2,光纤反射端面11-3,光电探测器11-4,数据处理单元11-5,
所述的频率可调谐激光器11-1输出线性调频激光,经过所述的光纤耦合器11-2的第一端口201分别输出到光纤耦合器11-2的第二端口202及第四端口204,所述的光纤耦合器11-2的第二端口202连接至所述的光纤反射端面11-3,所述的光纤耦合器11-2的第四端口204连接至光学端口101,所述的光纤耦合器11-2的第三端口203连接至所述的光电探测器11-4,光电探测器输出的信号连接至数据处理单元11-5。
单扰动源三维空间定位方法主要包含3个步骤:
1)所述的光频域反射计1向所述传感光纤2发射探测光脉冲,对所述传感光纤沿线感知的声场进行定量化检测,并获得声场沿光纤分布的信号S(l,t)。
2)所述的光频域反射计1对获得的声场信号进行预处理:
首先,按传感光纤的铺设形式T[x,y,z],对声场信号S(l,t)进行坐标系变换,得到声场信号在光纤构成的空间内的分布S
d(x,y,z,t)=T[S(l,t)]。所述的数据处理单元需要提前根据待监测的扰动源设定声场强度阈值E,搜寻声场信号分布S
d(l,t)中声场强度大于阈值E的待监测区域Ω(x,y,z)。
其次,所述的数据处理单元需要提前确定待监测扰动源的中心频率f
0,所述的数据处理单元在待监测区域Ω(x,y,z)内,选择间距尽量接近d=v/2f
0的相邻n个所述声场采样信号构成的声场时域信号矩阵作为第一信号组,
X
1(x,y,z,t)=[S
d(x
1,y
1,z
1,t) S
d(x
2,y
2,z
2,t) … S
d(x
n,y
n,z
n,t)]
T
再在待检测区域内尽量选择远离所述第一信号组的间距尽量接近d=v/2f
0的相邻n个所述声场采样信号构成的声场时域信号矩阵作为第二信号组。
3)对信号组按波束形成算法进行处理,下列方程计算第一信号组和第二信号 组的协方差矩阵,
其中N表示所述的分布式光纤声传感器1(光频域反射计)向所述传感光纤2发射探测光脉冲的重复次数,
其次,按照所述的传感光纤铺设方式T[x,y,z],分别计算第一信号组对应的相位延迟向量
和第二信号组对应的延迟向量
其中
分别表示扰动源与第一信号组和第二信号组的方位角,
分别表示第一信号组和第二信号组与扰动源之间的俯仰角,并按下列方程计算扰动源空间能量分布函数
最后,通过对所述第一信号组和所述第二信号组对应的方向向量按照以下公式计算即可得出扰动源的三维空间坐标,
其中,L1表示所述第一信号组和第二信号组对应的空间距离。
实施例2:多扰动源二维空间定位
多扰动源二维空间定位系统,传感光纤按“一”字型铺设,原理示意图如图3所示,包含相位敏感光时域反射计的分布式光纤声传感系统1、“一”字型结构铺设方式传感光纤2、坐标系3、待监测扰动源4-1、4-2、信号组5,含相位敏感光时域反射计的分布式光纤声传感系统1与传感光纤2相连,待监测扰动源与传感光纤处于同一平面。其中相位敏感光时域反射计的分布式光纤声传感系统1可以为相干探测或者是直接探测。
相干探测相位敏感光时域反射计的分布式光纤声传感系统1结构如图4所示,包括激光器12-1、第一光纤耦合器12-2、第二光纤耦合器12-6、脉冲调制器12-3、光放大器12-4、光纤环形器12-5、双平衡光电探测器12-7、电学放大器12-8、数据 处理单元12-9。
所述的激光器12-1的激光输出-连接到第一光纤耦合器12-2,所述的第一光纤耦合器12-2的第一端口201、第二端口202分别连接到第二光纤耦合器12-6的第一端口601和脉冲调制器12-3,所述的脉冲调制器12-3的输出连接到光放大器12-4,所述的光放大器12-4的输出连接到所述的光纤环形器12-5的第一端口501,再经第三端口503输出并连接到光学端口101,所述的光纤环形器12-5的第二端口502连接至第二光纤耦合器12-6的第二端口602,所述的第二光纤耦合器12-6的输出连接至双平衡光电探测器12-7,所述的双平衡探测器12-7的输出信号连接至电学放大器12-8进行放大,后输入进数处理单元12-8处理。
直接探测相位敏感光时域反射计的分布式光纤声传感系统1结构如图5所示,包括激光器13-1、脉冲调制器13-2、光放大器13-3、光纤环形器13-4、光电探测器13-5、数据处理单元13-6。
所述的激光器13-1的激光输出连接到脉冲调制器13-2,所述的脉冲调制器13-2的输出连接到光放大器13-3,所述的光放大器13-3的输出连接到光纤环形器13-4的第一端口401,经过第三端口403输出并连接到光学端口101,所述的光纤环形器13-4的第二端口402连接光电探测器13-5,光电探测器13-5的输出信号连接至数据处理单元13-6。
采用高空间分辨率相干探测相位敏感光时域反射计的分布式光纤声传感系统1,如图6所示。包括激光器15-1、第一光纤耦合器15-2、第二光纤耦合器15-7、频率调谐器15-3、脉冲调制器15-4、光放大器15-5、光纤环形器15-6、双平衡光电探测器15-8、数据处理单元15-9。
所述的激光器15-1的激光输出连接到第一光纤耦合器15-2,所述的第一光纤耦合器15-2的第一端口201、第二端口202分别连接到第二光纤耦合器15-7的第一端口701和频率调谐器15-3,所述的频率调谐器15-3的输出连接到脉冲调制器15-4,所述的脉冲调制器15-4的输出连接到光放大器15-5,所述的光放大器15-5的输出连接到所述的光纤环形器15-6的第一端口601,再经第三端口603输出并连接到光学端口101,所述的光纤环形器15-6的第二端口602连接至第二光纤耦合器15-7的第二端口702,所述的第二光纤耦合器15-7的输出连接至双平衡光电探测器15-8,所述的双平衡探测器15-8的输出信号输入进数处理单元15-9处理。
多维扰动源二维定位的方法主要包含3个步骤:
1)所述的含相位敏感光时域反射计的分布式光纤声传感系统1向所述传感光纤2发射探测光脉冲,对所述的传感光纤沿线感知的声场进行定量化检测,并获得声场沿光纤分布的信号S(l,t)。
2)所述的相位敏感光时域反射计1对获得的声场信号进行预处理:
首先,按传感光纤的铺设形式T[x,y,z],对声场信号S(l,t)进行坐标系变换,得到声场信号在光纤构成的空间内的分布S
d(x,y,z,t)=T(S(l,t))。所述的数据处理单元需要提前根据待监测的扰动源设定声场强度阈值E,搜寻声场信号分布S
d(l,t)中声场强度大于阈值E的待监测区域Ω(x,y,z)。
其次,所述的分布式光纤声传感器需要提前确定待监测扰动源的中心频率f
0,所述的数据处理单元在待监测区域Ω(x,y,z)内,选择间距尽量接近d=v/2f
0的相邻n个所述声场采样信号构成的声场时域信号矩阵作为信号组,扰动源个数为2个,应满足n>2的关系,
X(x,y,z,t)=[S
d(x
1,y
1,z
1,t) S
d(x
2,y
2,z
2,t) … S
d(x
n,y
n,z
n,t)]
T
3)所述的信号组按空间谱估计算法进行处理,下列方程计算信号组的协方差矩阵,
其中N表示所述的相位敏感光时域反射计通过光学端口向所述传感光纤发射探测光脉冲的重复次数,
其次,对协方差矩阵R进行特征值分解得到噪声子空间E
n,按照所述传感光纤铺设方式T[x,y,z],计算信号组对应的信号子空间E
s(θ
i,r
i),其中θ
i表示第i个扰动源的方位角,r
i表示第i个扰动源到信号组中心位置的直线距离,并按下列方程计算损失函数,
其中,H表示共轭转置,扰动源相对所述第一信号组的方位向量(θ
i,r
i)通过对所述损失函数进行极大值搜索可以计算而得;
最后,第i个扰动源的二维空间坐标按下列方程计算,
(x
i=r
isinθ
i,y
i=r
icosθ
i)
实施例3:其他分布式声传感器系统类型
采用外差探测结构的布里渊光时域反射计的分布式光纤声传感系统1,如图7所示。包括激光器14-1、第一光纤耦合器14-2、第二光纤耦合器14-7、脉冲调制器14-3、光放大器14-4、光纤环形器14-5、宽带移频单元14-6、双平衡光电探测器14-8、电学放大14-9、数据处理单元14-10,
所述的激光器14-1的激光输出连接到所述的第一光纤耦合器14-2,所述的第一光纤耦合器14-2的第一端口201、第二端口202分别连接到宽带移频单元14-6和脉冲调制器14-3,所述的脉冲调制器14-3的输出连接到所述的光放大器14-4,所述的光放大器14-4的输出连接到所述的光纤环形器14-5的第一端口501再经过第三端口503输出并连接到光学端口101,所述的光纤环形器14-5的第二端口502连接至第二光纤耦合器14-7的第一端口701,所述的宽带移频单元14-6的输出连接至所述的第二光纤耦合器14-7的第二端口702,所述的第二光纤耦合器14-7的输出连接至所述的双平衡光电探测器14-8,所述的双平衡探测器14-8的输出信号连接至所述的电学放大器14-9进行放大,后输入进所述的数据处理单元14-10处理。
实施例4:传感光纤二维空间铺设方式
如图8所示,传感光纤经过一次损耗允许范围内的弯曲后,构成双平行光纤铺设结构。
如图9所示,传感光纤经过多次损耗允许范围内的弯曲后,构成类S形光纤铺设结构,其中各部分弯曲半径及弯曲次数根据应用场景需要专门设置。
如图10所示,传感光纤经过一次损耗允许范围内的螺旋缠绕为圆柱体,圆柱体经过一次弯曲后,构成双平行光纤铺设结构。
如图11所示,传感光纤经过一次损耗允许范围内的螺旋缠绕增敏芯轴2-1成为圆柱体,圆柱体经过弯曲后,构成双平行光纤铺设结构。
实施例5:传感光纤三维空间铺设方式
如图12所示,传感光纤经过三次损耗允许范围内的弯曲后,构成双层双平行光纤铺设结构,类似于长方体,长方体光纤的横向间距和纵向间距根据应用场景专门设置。
如图13所示,传感光纤经过一次损耗允许范围内的螺旋缠绕增敏芯轴2-1成为圆柱体,圆柱体弯曲后,构成双层双平行光纤铺设结构,类似于长方体,长方体光纤的横向间距和纵向间距根据应用场景专门设置。
Claims (15)
- 一种扰动源多维空间定位系统,其特征在于,定位系统至少包括分布式光纤声传感器、传感光纤、待监测扰动源和坐标系,所述的分布式光纤声传感器与传感光纤相连,分布式光纤声传感器向传感光纤发射探测光脉冲,获取声场分布信号,并对声场分布信号和所述传感光纤铺设方式进行处理,获得待监测扰动源相对所述传感光纤的关键参数,计算出扰动源的空间位置坐标;所述的关键参数至少包括方位角、俯仰角、横向距离、径向距离、声速、频率中的一种或多种;所述的传感光纤铺设方式包括二维空间铺设方式、三维空间铺设方式中的一种或多种。
- 如权利要求1所述的一种扰动源多维空间定位系统,其特征在于,所述的分布式光纤声传感器包括相干探测的相位敏感光时域反射计、直接探测的相位敏感光时域反射计、光频域反射计、基于布里渊散射原理的分布式光纤传感器中的一种或多种。
- 如权利要求1所述的一种扰动源多维空间定位系统,其特征在于,所述的二维空间铺设方式包括双平行光纤铺设结构、类S形弯曲光纤铺设结构中的一种。
- 如权利要求1所述的一种扰动源多维空间定位系统,其特征在于,所述的三维空间铺设方式为双层双平行光纤铺设结构。
- 如权利要求1所述的一种扰动源多维空间定位系统,其特征在于,所述的扰动源至少包括经过振动而产生声波、地震波、水波的物体。
- 如权利要求2所述的一种扰动源多维空间定位系统,其特征在于,所述的光频域反射计结构采用迈克尔逊干涉仪结构,包括频率可调谐激光器(11-1),光纤耦合器(11-2),光纤反射端面(11-3),光电探测器(11-4),数据处理单元(11-5);所述的频率可调谐激光器(11-1)输出线性调频激光,经过所述的光纤耦合器(11-2)的第一端口(201)分别输出到光纤耦合器(11-2)的第二端口(202)及第四端口(204),所述的光纤耦合器(11-2)的第二端口(202)连接至所述的光纤反射端面(11-3),所述的光纤耦合器(11-2)的第四端口(204)连接至光学端口(101),所述的光纤耦合器(11-2)的第三端口(203)连接至所述的光电探测器(11-4),光电探测器输出的信号连接至数据处理单元(11-5)。
- 如权利要求2所述的一种扰动源多维空间定位系统,其特征在于,所述的 相干探测的相位敏感光时域反射计结构包括激光器(12-1),第一光纤耦合器(12-2),第二光纤耦合器(12-6),脉冲调制器(12-3),光放大器(12-4),光纤环形器(12-5),双平衡光电探测器(12-7),电学放大器(12-8),数据处理单元(12-9);所述的激光器(12-1)的激光输出经第一光纤耦合器(12-2),分别连接到脉冲调制器(12-3)和第二光纤耦合器(12-6)的第一端口(601),所述的脉冲调制器(12-3)的输出连接到光放大器(12-4),所述的光放大器(12-4)的输出连接到所述的光纤环形器(12-5)的第一端口(501),再经第三端口(503)输出并连接到光学端口(101),所述的光纤环形器(12-5)的第二端口(502)连接至第二光纤耦合器(12-6)的第二端口(602),所述的第二光纤耦合器(12-6)的输出连接至双平衡光电探测器(12-7),所述的双平衡探测器(12-7)的输出信号连接至电学放大器(12-8)进行放大,后输入进数处理单元(12-8)处理。
- 如权利要求2所述的一种扰动源多维空间定位系统,其特征在于,所述的直接探测的相位敏感光时域反射计结构包括激光器(13-1),脉冲调制器(13-2),光放大器(13-3),光纤环形器(13-4),光电探测器(13-5),数据处理单元(13-6);所述的激光器(13-1)的激光输出连接到脉冲调制器(13-2),所述的脉冲调制器(13-2)的输出连接到光放大器(13-3),所述的光放大器(13-3)的输出连接到光纤环形器(13-4)的第一端口(401),经过第三端口(403)输出并连接到光学端口(101),所述的光纤环形器(13-4)的第二端口(402)连接光电探测器(13-5),光电探测器(13-5)的输出信号连接至数据处理单元(13-6)。
- 如权利要求2所述的一种扰动源多维空间定位系统,其特征在于,所述的基于布里渊散射原理的分布式光纤传感器采用外差探测结构,包括激光器(14-1),第一光纤耦合器(14-2),第二光纤耦合器(14-7),脉冲调制器(14-3),光放大器(14-4),光纤环形器(14-5),宽带移频单元(14-6),双平衡光电探测器(14-8),电学放大(14-9),数据处理单元(14-10);所述的激光器(14-1)的激光输出经所述的第一光纤耦合器(14-2)分别连接到脉冲调制器(14-3)和宽带移频单元(14-6),所述的脉冲调制器(14-3)的输出连接到所述的光放大器(14-4),所述的光放大器(14-4)的输出连接到所述的光纤环形器(14-5)的第一端口(501)再经过第三端口(503)输出并连接到光学端口(101),所述的光纤环形器(14-5)的(502)连接至第二光纤耦合器(14-7)的第一端口(701),所述的宽带移频单元(14-6)的输出连接至所述的第二光纤耦合器(14-7)的第二端口(702),所述的第二光纤耦合器(14-7)的输出连接至所述的双平衡光电探测器(14-8),所述的双平衡探测器 (14-8)的输出信号连接至所述的电学放大器(14-9)进行放大,后输入进所述的数据处理单元(14-10)处理。
- 如权利要求1所述的一种扰动源多维空间定位系统,其特征在于,所述的定位系统获取声场分布信号和处理声场分布信号的具体步骤如下:1)在三维空间内设立一个坐标系(x,y,z),铺设传感光纤,铺设方式记为T[x,y,z],分布式光纤声传感器向所述的传感光纤发射探测光脉冲,对所述的传感光纤沿线感知的声场进行定量化检测,获得声场沿光纤分布的信号S(l,t),其中t表示时间,l表示传感光纤的一维轴向空间坐标;2)对获得声场沿光纤分布的信号S(l,t)进行预处理:首先,对声场沿光纤分布的信号S(l,t)进行坐标系转换,得到声场分布信号在所述的传感光纤构成的空间内的分布S d(x,y,z,t)=T[S(l,t)],其次,确定所述待监测扰动源的中心频率f 0,数据处理单元根据各个待监测的扰动源设定声场强度阈值E,搜寻声场信号分布S d(l,t)中声场强度大于阈值E的待检测区域Ω(x,y,z),并在待监测区域Ω(x,y,z)内,选择相邻n个所述声场采样信号构成的声场时域信号矩阵作为第一信号组,声场采样信号直接间距尽量接近 的(v为声波在介质中的传播速率),第一信号组表达如下:X 1(x,y,z,t)=[S d(x 1,y 1,z 1,t) S d(x 2,y 2,z 2,t) … S d(x n,y n,z n,t)] T第一信号组的相邻n个所述声场采样信号所占据的空间横向尺寸共为L,所述的n>m,即当存在多个扰动源时,需保证每个信号组的声场采样信号数多于扰动源数量,以避免不同扰动源之间的信号干扰,提高监测准确度;3)对步骤2)所述的信号组运用阵列信号处理方法,计算待监测扰动源的空间位置坐标。
- 一种扰动源多维空间定位方法,待监测扰动源个数为m(m≥1),其特征在于,所述方法包含以下3个步骤:1)在三维空间内设立坐标系(x,y,z),铺设传感光纤,铺设方式记为T[x,y,z],分布式光纤声传感器向所述的传感光纤发射探测光脉冲,对所述的传感光纤沿线感知的声场进行定量化检测,获得声场沿光纤分布的一维信号S(l,t),其中,t表示时间,l表示传感光纤的一维轴向空间坐标;2)对获得声场沿光纤分布的信号S(l,t)进行预处理:首先,对声场沿光纤分布的信号S(l,t)进行坐标系转换,得到声场分布信号在所述的传感光纤构成的空间内的分布S d(x,y,z,t)=T[S(l,t)],其次,确定所述待监测扰动源的中心频率f 0,数据处理单元根据待监测的扰动源设定声场强度阈值E,搜寻声场信号分布S d(l,t)中声场强度大于阈值E的待检测区域Ω(x,y,z),并在待监测区域Ω(x,y,z)内,选择相邻n个所述声场采样信号构成的声场时域信号矩阵作为第一信号组,声场采样信号直接间距接近 的(v为声波在介质中的传播速率),第一信号组表达如下:X 1(x,y,z,t)=[S d(x 1,y 1,z 1,t) S d(x 2,y 2,z 2,t) … S d(x n,y n,z n,t)] T第一信号组的相邻n个所述声场采样信号所占据的空间横向尺寸共为L,所述的n>m;3)对步骤2)所述的信号组运用阵列信号处理方法,计算待监测扰动源的空间位置坐标。
- 如权利要求11所述的一种扰动源多维空间定位方法,其特征在于,所述步骤3)中阵列信号处理方法包括波束形成算法,空间谱估计算法,波达方向估计算法中的一种。
- 如权利要求13所述的一种扰动源多维空间定位方法,其特征在于,所述的步骤3)中空间谱计算法具体如下:首先,计算第一信号组的协方差矩阵,其中N表示所述的分布式光纤声传感器通过光学端口向所述传感光纤发射探测光脉冲的重复次数;其次,对协方差矩阵R进行特征值分解得到噪声子空间E n,按照所述传感光纤铺设方式T[x,y,z],计算信号组对应的信号子空间E s(θ i,r i),其中θ i表示第i个扰动源的方位角,r i表示第i个扰动源到信号组中心位置的直线距离,并按下列方程计算损失函数,其中,H表示共轭转置,扰动源相对所述第一信号组的方位向量(θ i,r i)通过对所述损失函数进行极大值搜索可以计算而得;最后,第i个扰动源的二维空间坐标按下列方程计算,(x i=r isinθ i,y i=r icosθ i)
- 如权利要求12所述的一种扰动源多维空间定位方法,其特征在于,所述的e为2时,所述的步骤3)中阵列信号处理方法采用波束形成算法,具体步骤如下:首先,按照下述公式分别计算第一信号组和第二信号组的协方差矩阵,其中N表示所述的分布式光纤声传感器向所述传感光纤发射探测光脉冲的重复次数;其次,按照所述的传感光纤铺设方式T[x,y,z],分别计算第一信号组对应的相位延迟向量 和第二信号组对应的相位延迟向量 其中 分别表示第i个扰动源与第一信号组和第二信号组的方位角, 分别表示第一信号组和第二信号组与第i信号组之间的俯仰角,并按下列方程计算扰动源空间能量分布函数最后,通过对所述第一信号组和所述第二信号组对应的方向向量按照以下公式计算即可得出第i扰动源的三维空间坐标,其中L 1为所述第一信号组和所述第二信号组对应的空间距离。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/420,578 US12007259B2 (en) | 2019-01-03 | 2019-12-30 | Multi-dimensional spatial positioning system and method for disturbance source |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910005067.7 | 2019-01-03 | ||
CN201910005067.7A CN111398901B (zh) | 2019-01-03 | 2019-01-03 | 一种扰动源多维空间定位系统和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020140869A1 true WO2020140869A1 (zh) | 2020-07-09 |
Family
ID=71406981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/129929 WO2020140869A1 (zh) | 2019-01-03 | 2019-12-30 | 一种扰动源多维空间定位系统和方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12007259B2 (zh) |
CN (1) | CN111398901B (zh) |
WO (1) | WO2020140869A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117590300A (zh) * | 2023-11-21 | 2024-02-23 | 兰州大学 | 基于分布式光纤声波传感的超导磁体失超检测系统及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112484837B (zh) * | 2020-11-24 | 2021-12-28 | 电子科技大学 | 光纤空间定位系统及其实现方法 |
CN112683383B (zh) * | 2020-12-31 | 2023-06-20 | 广东瀚天融创科技有限公司 | 一种基于分布式传感器的噪声监测方法、存储介质及系统 |
US20230370171A1 (en) * | 2022-05-13 | 2023-11-16 | Nec Laboratories America, Inc. | Spatially multiplexed acoustic modem |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102628698A (zh) * | 2012-04-06 | 2012-08-08 | 中国科学院上海光学精密机械研究所 | 分布式光纤传感器及信息解调方法 |
CN102997945A (zh) * | 2011-09-16 | 2013-03-27 | 北京航空航天大学 | 光纤分布式扰动传感器的多点扰动定位方法 |
CN103411660A (zh) * | 2013-08-29 | 2013-11-27 | 山东省科学院激光研究所 | 光纤分布式声波监测系统 |
CN103954311A (zh) * | 2014-03-11 | 2014-07-30 | 中国科学院上海光学精密机械研究所 | 基于布里渊放大的相位敏感光时域反射计 |
CN105389917A (zh) * | 2015-09-18 | 2016-03-09 | 南京派光信息技术有限公司 | 一种基于相位敏感光时域反射计的快速预警方法 |
CN105466548A (zh) * | 2015-12-16 | 2016-04-06 | 上海大学 | 相位敏感光时域反射光纤传感系统定位方法 |
US20160216136A1 (en) * | 2015-01-26 | 2016-07-28 | Ofs Fitel, Llc | Distributed Environmental Fiber Optic Sensor And System |
WO2017105426A1 (en) * | 2015-12-16 | 2017-06-22 | Halliburton Energy Services, Inc. | Real-time bottom-hole flow measurements for hydraulic fracturing with a doppler sensor in bridge plug using das communication |
CN107167168A (zh) * | 2017-05-24 | 2017-09-15 | 上海大学 | 相位敏感光时域反射分布式光纤传感系统精确定位方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1635339A (zh) * | 2005-01-01 | 2005-07-06 | 复旦大学 | 全光纤定位监测方法及其系统 |
US7136765B2 (en) * | 2005-02-09 | 2006-11-14 | Deepsea Power & Light, Inc. | Buried object locating and tracing method and system employing principal components analysis for blind signal detection |
GB0820658D0 (en) * | 2008-11-12 | 2008-12-17 | Rogers Alan J | Directionality for distributed event location (del) |
GB2517322B (en) * | 2009-05-27 | 2016-02-24 | Silixa Ltd | Apparatus for optical sensing |
US8345229B2 (en) * | 2009-09-28 | 2013-01-01 | At&T Intellectual Property I, L.P. | Long distance optical fiber sensing system and method |
GB201020359D0 (en) * | 2010-12-01 | 2011-01-12 | Qinetiq Ltd | Selsmic surveying |
GB201109372D0 (en) * | 2011-06-06 | 2011-07-20 | Silixa Ltd | Method for locating an acoustic source |
CN103196465B (zh) * | 2013-04-11 | 2015-07-08 | 电子科技大学 | 一种相敏光时域反射仪传感信号噪声分离及信号提取方法 |
CN104833378B (zh) * | 2015-03-06 | 2017-05-17 | 苏州光格设备有限公司 | 光纤周界系统干扰信号识别方法 |
CN105509868B (zh) * | 2015-12-16 | 2019-06-04 | 上海大学 | 相位敏感光时域反射光纤分布式传感系统相位计算方法 |
GB201808366D0 (en) * | 2018-05-22 | 2018-07-11 | Fotech Solutions Ltd | Distributed optical fibre vibration sensor |
US10634553B1 (en) * | 2019-01-30 | 2020-04-28 | Saudi Arabian Oil Company | Hybrid distributed acoustic testing |
US11846541B2 (en) * | 2019-01-31 | 2023-12-19 | Nec Corporation | Optical fiber sensing system with improved state detection |
-
2019
- 2019-01-03 CN CN201910005067.7A patent/CN111398901B/zh active Active
- 2019-12-30 WO PCT/CN2019/129929 patent/WO2020140869A1/zh active Application Filing
- 2019-12-30 US US17/420,578 patent/US12007259B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102997945A (zh) * | 2011-09-16 | 2013-03-27 | 北京航空航天大学 | 光纤分布式扰动传感器的多点扰动定位方法 |
CN102628698A (zh) * | 2012-04-06 | 2012-08-08 | 中国科学院上海光学精密机械研究所 | 分布式光纤传感器及信息解调方法 |
CN103411660A (zh) * | 2013-08-29 | 2013-11-27 | 山东省科学院激光研究所 | 光纤分布式声波监测系统 |
CN103954311A (zh) * | 2014-03-11 | 2014-07-30 | 中国科学院上海光学精密机械研究所 | 基于布里渊放大的相位敏感光时域反射计 |
US20160216136A1 (en) * | 2015-01-26 | 2016-07-28 | Ofs Fitel, Llc | Distributed Environmental Fiber Optic Sensor And System |
CN105389917A (zh) * | 2015-09-18 | 2016-03-09 | 南京派光信息技术有限公司 | 一种基于相位敏感光时域反射计的快速预警方法 |
CN105466548A (zh) * | 2015-12-16 | 2016-04-06 | 上海大学 | 相位敏感光时域反射光纤传感系统定位方法 |
WO2017105426A1 (en) * | 2015-12-16 | 2017-06-22 | Halliburton Energy Services, Inc. | Real-time bottom-hole flow measurements for hydraulic fracturing with a doppler sensor in bridge plug using das communication |
CN107167168A (zh) * | 2017-05-24 | 2017-09-15 | 上海大学 | 相位敏感光时域反射分布式光纤传感系统精确定位方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117590300A (zh) * | 2023-11-21 | 2024-02-23 | 兰州大学 | 基于分布式光纤声波传感的超导磁体失超检测系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111398901A (zh) | 2020-07-10 |
CN111398901B (zh) | 2023-01-20 |
US12007259B2 (en) | 2024-06-11 |
US20220107209A1 (en) | 2022-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020140869A1 (zh) | 一种扰动源多维空间定位系统和方法 | |
US11946799B2 (en) | Distributed fiber-optic acoustic sensing system and signal processing method using the same | |
AU2010336498B2 (en) | Detecting broadside and directional acoustic signals with a fiber optical distributed acoustic sensing (DAS) assembly | |
US20160223695A1 (en) | Producing a hydrocarbon fluid wherein using a fiber optical distributed acoustic sensing (das) assembly | |
US20220065977A1 (en) | City-scale acoustic impulse detection and localization | |
CN107907202B (zh) | 一种实现共模噪声自抑制的光纤矢量水听器及其传感方法 | |
CN101969344B (zh) | 基于光纤光弹效应的大区域声音监听系统 | |
CN103017887A (zh) | 一种光纤振动传感系统及其检测方法 | |
CN105277272A (zh) | 分布式光纤振动传感多点扰动定位算法 | |
CN106813766B (zh) | 声磁同测的分布式光纤传感系统 | |
CN105973450A (zh) | 光纤Fizeau干涉阵列分布式振动传感系统及方法 | |
Hwang et al. | Position estimation of sound source using three optical Mach-Zehnder acoustic sensor array | |
Dean et al. | Distributed vibration sensing for seismic acquisition | |
CN110161458A (zh) | 一种基于光纤迈克尔逊干涉仪的声源定位系统 | |
Wang et al. | All-fiber-optic acoustic sensor array for real-time sound source localization | |
Yan et al. | High-performance towing cable hydrophone array with an improved ultra-sensitive fiber-optic distributed acoustic sensing system | |
CN104180832A (zh) | 基于四芯光纤的分布式正交矢量扰动传感系统 | |
CN107014409B (zh) | 一种长距离光频域反射光纤分布式多点扰动传感方法 | |
US20230314605A1 (en) | Multimode transmission distributed optical fiber sensor | |
CN112484837B (zh) | 光纤空间定位系统及其实现方法 | |
WO2021260757A1 (ja) | 歪変化計測装置及び歪変化計測方法 | |
Yetik et al. | Earthquake epicenter localization using fiber optic distributed acoustic sensing | |
Gubareva et al. | Algorithms for determining the location of an intruder using DAS in space | |
CN102721983B (zh) | 光纤阵列海底浅部地质结构探测系统 | |
CN117607801A (zh) | 大范围高精度多维定位与姿态感知系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19906734 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19906734 Country of ref document: EP Kind code of ref document: A1 |