WO2020140669A1 - 处理方法及设备 - Google Patents

处理方法及设备 Download PDF

Info

Publication number
WO2020140669A1
WO2020140669A1 PCT/CN2019/122663 CN2019122663W WO2020140669A1 WO 2020140669 A1 WO2020140669 A1 WO 2020140669A1 CN 2019122663 W CN2019122663 W CN 2019122663W WO 2020140669 A1 WO2020140669 A1 WO 2020140669A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
information related
dci
slot
information
Prior art date
Application number
PCT/CN2019/122663
Other languages
English (en)
French (fr)
Inventor
沈晓冬
潘学明
鲁智
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19907396.6A priority Critical patent/EP3907910A4/en
Priority to KR1020217021399A priority patent/KR20210096674A/ko
Priority to SG11202107380WA priority patent/SG11202107380WA/en
Priority to JP2021539026A priority patent/JP7299986B2/ja
Publication of WO2020140669A1 publication Critical patent/WO2020140669A1/zh
Priority to US17/365,624 priority patent/US20210329610A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a processing method and device.
  • 5G fifth-generation mobile communication technology
  • eMBB Enhanced Mobile Broadband
  • Ultra Reliable & Low Latency Communication URLLC
  • Massive Machine Type Communication massive Machine Type Communication, mMTC
  • An object of the embodiments of the present disclosure is to provide a processing method and device to solve the problem that different services cannot meet different requirements for QoS.
  • a processing method is further provided, and the method includes:
  • the signaling includes one or more of the following: information related to the DCI format of the downlink control information, information related to the identification, information related to the configuration of the control channel, information related to the service priority, and related to the resource indication MCS table of modulation and coding strategies corresponding to the information and DCI.
  • a terminal including:
  • Receiver module for receiving signaling
  • a determining module configured to determine information related to uplink transmission according to the signaling
  • the signaling includes one or more of the following: information related to DCI format, information related to identification, information related to control channel configuration, information related to service priority, information related to resource indication and MCS table corresponding to DCI.
  • a terminal including: a processor, a memory, and a program stored on the memory and executable on the processor, the program being used by the processor When executed, the steps of the processing method described in the first aspect are realized.
  • a computer-readable storage medium having a computer program stored on the computer-readable storage medium, the computer program being implemented by a processor as described in the first aspect Steps of the processing method.
  • the terminal may determine the uplink transmission process according to the received signaling, for example, the time granularity related to the feedback time, the feedback time interval, or the time domain granularity of the HARQ-ACK codebook may be determined.
  • the time granularity related to the feedback time, the feedback time interval, or the time domain granularity of the HARQ-ACK codebook may be determined.
  • Different services have different requirements for QoS.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a processing method according to an embodiment of the present disclosure
  • FIG. 3 is a second flowchart of a processing method according to an embodiment of the present disclosure.
  • FIG. 4 is a third flowchart of a processing method according to an embodiment of the present disclosure.
  • FIG. 5 is a fourth flowchart of a processing method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a second schematic diagram of a terminal according to an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations or explanations. Any embodiment or design described in the embodiments of the present disclosure as “exemplary” or “for example” should not be construed as being more preferred or advantageous than other embodiments or design. Rather, the use of words such as “exemplary” or “for example” is intended to present relevant concepts in a specific manner.
  • URLLC supports low-latency and highly reliable services.
  • CSI Channel State Information
  • the eMBB service supports high throughput requirements, but is not as sensitive to URLLC as delay and reliability.
  • the terminal supports both URLLC low latency and high reliability services, and at the same time supports large capacity and high rate eMBB services.
  • HARQ timing parameters The definition of HARQ timing parameters is as follows:
  • K0 is the delay between the reception of the downlink authorization (Downlink grant, DL grant) and the corresponding DL data (Physical Downlink Shared Channel (Physical Downlink Shared Channel, PDSCH));
  • K1 is the delay between DL (PDSCH) reception and the corresponding acknowledgement (ACKnowledgement, ACK) or negative acknowledgement (Negative-Acknowledgment, NACK) transmission on the uplink (Uplink, UL), and downlink control information (
  • ACKnowledgement, ACK acknowledgement
  • NACK negative acknowledgement
  • the PDSCH-to-HARQ-timing-indicator field carried in Downlink Control (Information, DCI) is used to indicate K1 information;
  • K2 is the delay between UL authorized reception and UL data (Physical Uplink Shared Channel (PUSCH)) transmission in DL;
  • PUSCH Physical Uplink Shared Channel
  • K3 is the delay between the reception of acknowledgement (ACKnowledgement, ACK) or negative acknowledgement (Negative-Acknowledgment, NACK) in UL and the corresponding retransmission of data on DL (PDSCH).
  • the physical uplink control channel Physical Uplink Control Channel, PUCCH
  • the following two position information are needed: (1) relative slot position; (2) symbol position to determine the position of the corresponding PUCCH resource.
  • DCI format 1_0 DCI format 1_0
  • DCI format 1_1 referred to as DL Grant
  • the terminal should transmit the bearer on the slot through the PUCCH HARQ-ACK information.
  • k is the number of slots indicated in the PDSCH-to-HARQ-timing-indicator field carried in the DCI.
  • the value of the PDSCH-to-HARQ-timing-indicator field can be obtained according to the parameters configured by higher layer signaling (DL-data-DL-acknowledgement), and DL-data-DL-acknowledgement is based on higher layer signaling (Slot-timing-value-K1 ) Configuration obtained.
  • Table 1 Mapping relationship between PDSCH and HARQ feedback time indication field value and number of time slots (Mapping PDSCH-to-HARQ_feedback timing information field values to numbers of slots).
  • PUCCH Format 0 is the starting symbol in the time slot The range is 0 to 13, and the number of symbols occupied in a slot is 1 to 2.
  • the starting symbol range of PUCCH Format 1 in the slot is 0 to 10, and the number of symbols occupied in a slot is 1 to 2
  • PUCCH Format 2 has a starting symbol range in the time slot of 0 to 13, and the number of symbols occupied in a time slot is 1 to 2
  • PUCCH Format 3 starts the symbol range in the time slot 0 ⁇ 10, the number of symbols occupied in a slot is 4-14, the starting symbol range of PUCCH Format 4 in the slot is 0 ⁇ 10, the number of symbols occupied in a slot is 4 ⁇ 14.
  • Table 2 PUCCH resource configuration information (part).
  • RRC configures a PUCCH resource set, including multiple PUCCH resources.
  • the PUCCH resource indicator (PUCCH Resource Indicator, PRI) field in the DCI indicates a PUCCH resource in the PUCCH resource set;
  • the PUCCH resource in the PUCCH resource set can also be determined first according to the PRI field in the DCI; and then the symbol position of the PUCCH resource can be determined according to the PUCCH resource configuration information.
  • Hybrid Automatic Repeat ACKnowledgement Hybrid Automatic Repeat ACKnowledgement, HARQ-ACK codebook (codebook).
  • each Transport Block corresponds to a HARQ-ACK bit that is fed back, supporting multiple DL HARQ processes per terminal, It also supports a single DL HARQ process for each terminal.
  • the terminal needs to indicate its minimum HARQ processing time capability (the minimum HARQ processing time means the minimum time required to receive the corresponding HARQ-ACK transmission timing from Downlink data).
  • the minimum HARQ processing time means the minimum time required to receive the corresponding HARQ-ACK transmission timing from Downlink data).
  • HARQ-ACK feedback of multiple PDSCHs can be transmitted in one UL data/control area in time, and a HARQ-ACK codebook is formed on this UL.
  • the timing between PDSCH reception and the corresponding ACK/NACK is specified in DCI (see PDCSCH-to-HARQ timing indicator in DCI 1_0, DCI 1_1).
  • the technology described in this article is not limited to the 5th-generation mobile communication (5G) system and subsequent evolution communication systems, and the LTE-Advanced (LTE-Advanced) system not limited to LTE/LTE, and also It can be used in various wireless communication systems, such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Orthogonal Frequency Division Multiple Access (OFDMA), Single-Carrier Frequency Division Multiple Access (Single-carrier Frequency-Division Multiple Access, SC-FDMA) and other systems.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • CDMA systems can implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA) and so on.
  • UTRA includes Wideband CDMA (Wideband Code Multiple Access (WCDMA) and other CDMA variants.
  • TDMA systems can implement radio technologies such as Global System for Mobile (GSM).
  • OFDMA system can realize such as Ultra Mobile Broadband (Ultra Mobile Broadband, UMB), Evolved UTRA ((Evolution-UTRA, E-UTRA)), IEEE 802.11 ((Wi-Fi)), IEEE802.16 ((WiMAX)), IEEE802.20, Flash-OFDM and other radio technologies.
  • UMB Ultra Mobile Broadband
  • Evolved UTRA (Evolution-UTRA, E-UTRA)
  • IEEE 802.11 (Wi-Fi)
  • IEEE802.16 (WiMAX)
  • IEEE802.20 Flash-OFDM and other radio technologies.
  • UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE are new UMTS versions that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project (3GPP)".
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • the technology described herein can be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the wireless communication system may include: a network device 10 and a terminal.
  • the terminal is referred to as a user equipment (User Equipment, UE) 11, and the UE 11 may communicate with the network device 10 (transmit signaling or transmit data).
  • the connection between the above devices may be a wireless connection.
  • solid lines are used in FIG. 1.
  • the above communication system may include multiple UEs 11 and the network device 10 may communicate with multiple UEs 11.
  • the terminal provided in the embodiments of the present disclosure may be a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (Ultra-Mobile Personal Computer, UMPC), a netbook or a personal digital assistant (Personal Digital Assistant (PDA), a mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or in-vehicle device, etc.
  • the network device 10 provided in the embodiment of the present disclosure may be a base station, which may be a commonly used base station, an evolved base station (evolved node, base station, eNB), or a network device in a 5G system (for example, the following A generation base station (next generation node, base station, gNB) or transmission and reception point (transmission and reception point, TRP) and other equipment.
  • a base station which may be a commonly used base station, an evolved base station (evolved node, base station, eNB), or a network device in a 5G system (for example, the following A generation base station (next generation node, base station, gNB) or transmission and reception point (transmission and reception point, TRP) and other equipment.
  • a generation base station next generation node, base station, gNB
  • TRP transmission and reception point
  • an embodiment of the present disclosure provides a processing method.
  • the method may be executed by a terminal, and specific steps are as follows:
  • Step 201 Receive signaling
  • the terminal receives signaling from the base station.
  • the signaling may be physical layer signaling or higher layer signaling.
  • Step 202 Determine information related to uplink transmission according to signaling
  • signaling includes one or more of the following: information related to Downlink Control Information (DCI) format, information related to identification, information related to control channel configuration, information related to service priority, The information related to the resource indication and the modulation and coding strategy (Modulation and Coding Scheme, MCS) table corresponding to the DCI.
  • DCI Downlink Control Information
  • MCS Modulation and Coding Scheme
  • the information related to the DCI format may be a DCI format.
  • the information related to the identification may include: a radio network temporary identification (Radio Network Temporary Identity, RNTI) corresponding to DCI or scrambling information corresponding to DCI.
  • RNTI Radio Network Temporary Identity
  • the information related to the control channel configuration may include: a control resource set (Control-Resource SET, CORESET) corresponding to DCI or a search space corresponding to DCI.
  • a control resource set Control-Resource SET, CORESET
  • the information related to service priority may include: priority indication information in DCI.
  • the information related to the resource indication may include: indication information in DCI, the indication information is used to indicate time domain resources and/or frequency domain resources for data or control information transmission; or, the indication information is used to indicate data or control information The type of pilot mapping transmitted.
  • the information related to the uplink transmission includes any one of the following:
  • the time granularity of the PDSCH relative to the interval of the physical downlink control channel PDCCH is the time granularity of the PDSCH relative to the interval of the physical downlink control channel PDCCH.
  • time granularity of the interval is an integer multiple of a slot, sub-slot, symbol, or fixed time length.
  • the fixed length of time may be configured by the network or pre-agreed by the protocol.
  • the information related to uplink transmission includes: an interval between downlink transmission and uplink transmission.
  • the interval between the downlink transmission and the uplink transmission includes any one of the following:
  • sub-slot refers to a definition of granularity between the symbol and slot levels. For example, when a slot contains 14 symbols, three symbols can be defined as a sub-slot, and the feedback of HARQ-ACK or other uplink transmission information is determined according to the size of each sub-slot.
  • the terminal may determine the uplink transmission process according to the received signaling, which can meet different requirements of different services for QoS.
  • the terminal can determine the uplink transmission process according to the received signaling, so that different services correspond to different uplink transmission processes.
  • These uplink transmission processes ensure that the physical layer transmission meets the requirements URLLC and eMBB have different requirements for their respective QoS.
  • an embodiment of the present disclosure provides a processing method.
  • the method may be executed by a terminal, and specific steps are as follows:
  • Step 301 Receive signaling
  • the terminal may receive signaling from the base station.
  • the signaling may be physical layer signaling or higher layer signaling.
  • Step 302 According to the signaling, determine one or more of the following relevant information: feedback time K0, feedback time K1, feedback time K2, and feedback timing;
  • signaling includes one or more of the following: information related to DCI format, information related to identification, information related to control channel configuration, information related to service priority, information related to resource indication, and DCI correspondence MCS table.
  • the unit of the time granularity of the feedback time K0, the feedback time K1, and the feedback time K2 determined in step 302 may be a slot, sub-slot, symbol, or an integer with a fixed time length It can be understood that, in the embodiments of the present disclosure, the specific content of a fixed time length and an integer multiple is not limited. Alternatively, the fixed length of time may be configured by the network or pre-agreed by the protocol.
  • the feedback time K1 the feedback time of the physical uplink control channel (Physical Uplink Control Channel, PUCCH) and downlink transmission (Physical Downlink Control Channel (Physical Downlink Control Channel, PDCCH) or physical downlink shared channel (Physical Downlink Channel) Shared (Channel, PDSCH)) the number of slots in the interval, or the number of symbols in the interval, or the number of sub-slots in the interval;
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • Physical Downlink Channel Physical Downlink Shared
  • the feedback timing determined in step 302 is the time interval between uplink transmission (PUCCH or PUSCH) and downlink transmission (PDCCH or PDSCH). specifically,
  • the determination of the feedback time K1 includes:
  • the granularity of the feedback time K1 for example: slot level (slot level), sub-slot level (sub-slot level), symbol level (symbol level) or an integer multiple of a fixed time length.
  • the fixed time length may be configured by the network or pre-agreed by the protocol;
  • the terminal may determine the uplink transmission process according to the received signaling, which can meet different requirements of different services for QoS.
  • an embodiment of the present disclosure provides a processing method.
  • the method may be executed by a terminal, and specific steps are as follows:
  • Step 401 Receive first signaling and second signaling
  • the terminal may receive DCI from the base station, where the DCI includes: first signaling and second signaling; or receive first DCI and second DCI, where the first DCI includes the first signaling ,
  • the second DCI includes second signaling; or, the terminal may receive third signaling from the base station, where the third signaling includes: first signaling and the second signaling.
  • first signaling and the second signaling may be different signalings, or may be information read from different fields in one DCI, or content contained in other signalings.
  • Step 403 Determine a set of PUCCH resource sets from multiple sets of PUCCH resource sets according to the first signaling
  • Step 404 According to the second signaling, determine the PUCCH resource from the PUCCH resource set.
  • PUCCH resources includes:
  • PRI indicates PUCCH resources based on the corresponding PUCCH resource configuration
  • the terminal may determine the uplink transmission process according to the received signaling, which can meet different requirements of different services for QoS.
  • an embodiment of the present disclosure provides a processing method.
  • the method may be executed by a terminal, and specific steps are as follows:
  • Step 501 Receive signaling
  • the terminal may receive signaling from the base station.
  • the signaling may be physical layer signaling or higher layer signaling.
  • Step 502 Determine the time domain granularity of the hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook according to signaling;
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • the time domain granularity of the HARQ-ACK codebook is determined to be a slot, or the HARQ-ACK codebook is determined to be a sub-slot, or the HARQ-ACK codebook is determined to be a symbol.
  • step 503 may be performed.
  • Step 503 Determine the set of HARQ-ACK fed back in the feedback window according to the time-domain granularity of the HARQ-ACK codebook.
  • the determination of the HARQ-ACK codebook includes:
  • the fixed length of time may be configured by the network or pre-agreed by the protocol;
  • the time-domain granularity used to determine the HARQ-ACK codebook may be semi-static or dynamic.
  • the terminal can determine the uplink transmission process according to the received signaling, which can meet different requirements of different services for QoS.
  • An embodiment of the present disclosure also provides a terminal. Since the principle of the terminal to solve the problem is similar to the processing method in the embodiment of the present disclosure, the implementation of the terminal can be referred to the implementation of the method, and repeated descriptions are not repeated.
  • the terminal 600 includes:
  • the receiving module 601 is used to receive signaling
  • the determining module 602 is configured to determine information related to uplink transmission according to the signaling
  • the signaling includes one or more of the following: information related to the DCI format of the downlink control information, information related to the identification, information related to the configuration of the control channel, information related to the service priority, and related to the resource indication MCS table of modulation and coding strategies corresponding to the information and DCI.
  • the information related to the uplink transmission includes any one of the following:
  • the time granularity of the PDSCH relative to the PDCCH interval is the time granularity of the PDSCH relative to the PDCCH interval.
  • the time granularity of the interval is an integer multiple of slot, sub-slot, symbol, or a fixed time length.
  • the information related to uplink transmission includes: an interval between downlink transmission and uplink transmission.
  • the interval between the downlink transmission and the uplink transmission includes any one of the following:
  • the receiving module 601 is further configured to: receive first signaling and second signaling.
  • the determining module 602 is further configured to: according to the first signaling, determine a set of PUCCH resource sets from multiple sets of PUCCH resource sets; according to the second signaling, determine PUCCH resources from the PUCCH resource set .
  • the receiving module 601 is further configured to: receive DCI, the DCI includes: the first signaling and the second signaling; or, receive the first DCI and the second DCI, wherein the first A DCI includes the first signaling, and the second DCI includes the second signaling; or, receives third signaling, the third signaling includes: the first signaling and the first signaling Second signaling.
  • the determining module 602 is further configured to: according to the signaling, determine the time-domain granularity of the hybrid automatic repeat request confirmation acknowledgement HARQ-ACK codebook codebook.
  • the determining module 602 is further configured to: according to the time domain granularity of the HARQ-ACK codebook, determine the set of HARQ-ACK fed back in the feedback window.
  • the time-domain granularity of the HARQ-ACK codebook is any one of the following: slot, sub-slot and symbol, and an integer multiple of a fixed time length.
  • the fixed length of time may be configured by the network or pre-agreed by the protocol.
  • the information related to the DCI format is a DCI format
  • the identification-related information includes: RNTI corresponding to DCI or scrambling information corresponding to DCI; or,
  • the information related to control channel configuration includes: CORESET corresponding to DCI or search space corresponding to DCI; or,
  • the information related to service priority includes: priority indication information in DCI; or,
  • the information related to the resource indication includes: indication information in the DCI, where the indication information is used to indicate time-domain resources and/or frequency-domain resources for data or control information transmission; or, the indication information is used to indicate data or control The type of pilot mapping for information transmission.
  • the terminal provided by the embodiment of the present disclosure can execute the above method embodiments, and its implementation principles and technical effects are similar, and this embodiment will not repeat them here.
  • FIG. 7 is a structural diagram of a communication device applied in an embodiment of the present disclosure.
  • the communication device 700 includes: a processor 701, a transceiver 702, a memory 703, and a bus interface, where:
  • the communication device 700 further includes: a program stored on the memory 703 and executable on the processor 701.
  • the program executes the processor 701 to implement the following steps: receiving signaling; according to the information Order to determine information related to uplink transmission; wherein the signaling includes one or more of the following: information related to DCI format, information related to identification, information related to control channel configuration, and service priority Information, information related to resource indication, and MCS table corresponding to DCI.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be described further herein.
  • the bus interface provides an interface.
  • the transceiver 702 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 may store data used by the processor 701 when performing operations.
  • the communication device provided by the embodiment of the present disclosure can execute the above method embodiments, and its implementation principles and technical effects are similar, and this embodiment will not repeat them here.
  • the steps of the method or algorithm described in conjunction with the disclosure of the present disclosure may be implemented by hardware, or by executing software instructions on a processor.
  • the software instructions may be composed of corresponding software modules, which may be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, mobile hard disk, read-only optical disk, or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • Computer-readable media includes computer storage media and communication media, where communication media includes any medium that facilitates transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present disclosure may take the form of computer program products implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present disclosure are described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present disclosure. It should be understood that each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by computer program instructions. These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device A device for realizing the functions specified in one block or multiple blocks of one flow or multiple blocks of a flowchart.
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Abstract

本公开实施例提供一种处理方法及设备,该方法包括:接收信令;根据信令,确定与上行传输相关的信息;其中,信令包括以下一项或多项:与DCI格式相关的信息、与标识相关的信息、与控制信道配置相关的信息、与业务优先级相关的信息、与资源指示相关的信息和DCI对应的MCS表。

Description

处理方法及设备
相关申请的交叉引用
本申请主张在2019年1月4日在中国提交的中国专利申请号No.201910009378.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,具体涉及一种处理方法及设备。
背景技术
与相关技术中的移动通信系统相比,第五代移动通信技术(Fifth-generation mobile communication technology,5G)系统需要适应更加多样化的场景和业务需求。5G的主要场景包括:增强型移动宽带(Enhance Mobile Broadband,eMBB),超高可靠与低延迟的通信(Ultra Reliable &Low Latency Communication,URLLC),海量机器类通信(massive Machine Type Communication,mMTC),这些场景对系统提出了高可靠,低时延,大带宽,广覆盖等要求。
然而,相关技术中不同业务可能对应相同的上行传输过程,导致无法满足不同业务对服务质量(Quality of Service,QoS)的不同需求。
发明内容
本公开实施例的一个目的在于提供一种处理方法及设备,解决无法满足不同业务对QoS的不同需求的问题。
依据本公开实施例的第一方面,还提供了一种处理方法,所述方法包括:
接收信令;
根据所述信令,确定与上行传输相关的信息;
其中,所述信令包括以下一项或多项:与下行控制信息DCI格式相关的信息、与标识相关的信息、与控制信道配置相关的信息、与业务优先级相关的信息、与资源指示相关的信息和DCI对应的调制与编码策略MCS表。
依据本公开实施例的第二方面,还提供了一种终端,包括:
接收模块,用于接收信令;
确定模块,用于根据所述信令,确定与上行传输相关的信息;
其中,所述信令包括以下一项或多项:与DCI格式相关的信息、与标识相关的信息、与控制信道配置相关的信息、与业务优先级相关的信息、与资源指示相关的信息和DCI对应的MCS表。
依据本公开实施例的第三方面,还提供了一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的处理方法的步骤。
依据本公开实施例的第四方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的处理方法的步骤。
在本公开实施例中,终端可以根据接收的信令确定上行传输过程,例如可以确定与反馈时间相关的时间颗粒度、反馈的时间间隔或者HARQ-ACK码本时域颗粒度等信息,可以满足不同业务对QoS的不同需求。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开实施例的无线通信系统的架构示意图;
图2为本公开实施例的处理方法流程图之一;
图3为本公开实施例的处理方法流程图之二;
图4为本公开实施例的处理方法流程图之三;
图5为本公开实施例的处理方法流程图之四;
图6为本公开实施例的终端的示意图之一;
图7为本公开实施例的终端的示意图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了便于更好地理解本公开实施例,下面先介绍以下技术点。
一、关于新空口(New Radio,NR)中的URLLC和eMMB业务需求。
与以往的移动通信系统相比,5G系统需要适应更加多样化的场景和业务需求。不同的业务有不同的QoS的要求,例如:URLLC支持低时延、高可靠业务。为了达到更高的可靠性,需要使用更低的码率传输数据,同时需要更快、更精确的信道状态信息(Channel State Information,CSI)的反馈。eMBB业务支持高吞吐量的要求,但是对于时延和可靠性不如URLLC那么敏感。另外对于某些终端可能支持不同数值配置(numerology)的业务,终端既支持URLLC低时延高可靠业务,同时支持大容量高速率的eMBB业务。
二、关于混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的时序。
HARQ的时序参数的定义如下:
(1)K0为下行链路授权(Downlink grant,DL grant)和对应的DL数据(物理下行共享信道(Physical Downlink Shared Channel,PDSCH))接收之 间的时延;
(2)K1为DL(PDSCH)接收和上行链路(Uplink,UL)上对应的确认应答(ACKnowledgement,ACK)或否定应答(Negative-Acknowledgment,NACK)传输之间的时延,下行控制信息(Downlink Control Information,DCI)中携带的PDSCH-to-HARQ-timing-indicator字段即是用于指示K1信息;
(3)K2为DL中UL授权接收和UL数据(物理上行共享信道(Physical Uplink Shared Channel,PUSCH))传输之间的时延;
(4)K3为UL中确认应答(ACKnowledgement,ACK)或否定应答(Negative-Acknowledgment,NACK)接收和对应的DL上数据(PDSCH)重传之间的时延。
三、关于物理上行控制信道(Physical Uplink Control Channel,PUCCH)的资源确定。
为了确定PUCCH的时域位置,需要以下两个位置信息:(1)相对时隙位置;(2)符号(symbol)位置,来确定对应的PUCCH资源的位置。
对于PUCCH传输使用的时隙(slot),当终端检测到一个包含PDSCH-to-HARQ-timing-indicator(K1)字段的DCI格式1_0(DCI format 1_0)或者DCI format 1_1(指的是DL Grant),并且该DCI调度的PDSCH或者该这个DCI是DL半静态调度(Semi-Persistent Scheduling,SPS)释放(release)命令对应的最后一个符号所在slot为n-k时,终端应当在slot n上通过PUCCH传输承载HARQ-ACK信息。这里k是在DCI中携带的PDSCH-to-HARQ-timing-indicator字段所指示的slot的数目。PDSCH-to-HARQ-timing-indicator字段的值可以根据高层信令配置的参数(DL-data-DL-acknowledgement)获得,DL-data-DL-acknowledgement根据高层信令(Slot-timing-value-K1)配置获得。
表1:PDSCH到HARQ反馈时间指示域值与时隙数的映射关系(Mapping of PDSCH-to-HARQ_feedback timing indicator field values to numbers of slots)。
Figure PCTCN2019122663-appb-000001
对于PUCCH传输使用的符号,如表2所示,为无线资源控制(Radio Resource Control,RRC)预配置的PUCCH资源符号位置的表格,在表2中,PUCCH Format 0在时隙中的起始符号范围为0~13,其在一个时隙内占用的符号数为1~2个,PUCCH Format 1在时隙中的起始符号范围为0~10,其在一个时隙内占用的符号数为1~2个,PUCCH Format 2在时隙中的起始符号范围为0~13,其在一个时隙内占用的符号数为1~2个,PUCCH Format 3在时隙中的起始符号范围为0~10,其在一个时隙内占用的符号数为4~14个,PUCCH Format 4在时隙中的起始符号范围为0~10,其在一个时隙内占用的符号数为4~14个。
表2:PUCCH资源配置信息(部分)。
Figure PCTCN2019122663-appb-000002
一般RRC配置一个PUCCH的资源集合,包括多个PUCCH资源,其中,DCI中的PUCCH资源指示(PUCCH Resource Indicator,PRI)字段指示PUCCH 资源集合中的某一个PUCCH资源;在确定用于传输与下行授权对应的PUCCH资源的时隙位置之后,还可以首先根据DCI中的PRI字段确定PUCCH资源集合中的PUCCH资源;再根据PUCCH资源配置信息,确定PUCCH资源的符号位置。
四、关于混合自动重传请求确认应答(Hybrid Automatic Repeat reQuest ACKnowledgement,HARQ-ACK)码本(codebook)。
对于支持传输块级别(TB-level)反馈的HARQ-ACK过程,每一个传输块(Transport Block,TB)对应于反馈一个HARQ-ACK比特(bit),支持每个终端的多个DL HARQ进程,也支持每个终端的单个DL HARQ进程,终端需要指示其最小HARQ处理时间的能力(最小HARQ处理时间意味着从Downlink数据接收到相应的HARQ-ACK传输定时所需的最小时间)。对于eMBB和URLLC支持异步和自适应Downlink HARQ。从终端的角度来看,多个PDSCH的HARQ-ACK反馈在时间上可以在一个UL数据/控制区域中传输,在这个UL上构成一个HARQ-ACK codebook。在DCI中指定了PDSCH接收与对应的ACK/NACK之间的定时(可以参见DCI 1_0、DCI 1_1中的PDCSCH-to-HARQ定时指示符)。
本文所描述的技术不限于第五代移动通信(5th-generation mobile communication technology,5G)系统以及后续演进通信系统,以及不限于LTE/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。
术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。 OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA((Evolution-UTRA,E-UTRA))、IEEE 802.11((Wi-Fi))、IEEE802.16((WiMAX))、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。
下面结合附图介绍本公开的实施例。本公开实施例提供的处理方法和设备可以应用于无线通信系统中。参考图1,为本公开实施例提供的一种无线通信系统的架构示意图。如图1所示,该无线通信系统可以包括:网络设备10和终端,终端记做用户设备(User Equipment,UE)11,UE11可以与网络设备10通信(传输信令或传输数据)。在实际应用中上述各个设备之间的连接可以为无线连接,为了方便直观地表示各个设备之间的连接关系,图1中采用实线示意。需要说明的是,上述通信系统可以包括多个UE11,网络设备10可以与多个UE11通信。
本公开实施例提供的终端可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等。
本公开实施例提供的网络设备10可以为基站,该基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的网络设备(例如,下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))等设备。
参见图2,本公开实施例提供一种处理方法,该方法的执行主体可以为终端,具体步骤如下:
步骤201:接收信令;
示例性地,终端从基站接收信令。
可选地,该信令可以是物理层信令,或者高层信令。
步骤202:根据信令,确定与上行传输相关的信息;
其中,信令包括以下一项或多项:与下行控制信息(Downlink Control Information,DCI)格式相关的信息、与标识相关的信息、与控制信道配置相关的信息、与业务优先级相关的信息、与资源指示相关的信息和DCI对应的调制与编码策略(Modulation and Coding Scheme,MCS)表。
可选地,与DCI格式相关的信息可以为DCI格式。
可选地,与标识相关的信息可以包括:DCI对应的无线网络临时标识(Radio Network Temporary Identity,RNTI)或DCI对应的加扰信息。
可选地,与控制信道配置相关的信息可以包括:DCI对应的控制资源集(Control-Resource SET,CORESET)或DCI对应的搜索空间。
可选地,与业务优先级相关的信息可以包括:DCI中优先级指示信息。
可选地,资源指示相关的信息可以包括:DCI中的指示信息,指示信息用于指示数据或者控制信息传输的时域资源和/或频域资源;或者,指示信息用于指示数据或者控制信息传输的导频映射类型。
在本公开实施例中,可选地,与上行传输相关的信息,包括以下任意一项:
PUCCH的反馈时间与下行传输之间的间隔的时间颗粒度;
PUSCH的反馈时间与下行传输之间的间隔的时间颗粒度;
PDSCH相对于物理下行控制信道PDCCH的间隔的时间颗粒度。
进一步地,间隔的时间颗粒度为时隙(slot)、子时隙(sub-slot)、符号(symbol)或者固定时间长度的整数倍。
可选地,固定时间长度可以是网络配置的或者是协议预先约定的。
在本公开实施例中,可选地,所述与上行传输相关的信息,包括:下行传输与上行传输之间的间隔。
在本公开实施例中,可选地,所述下行传输与上行传输之间的间隔,包括以下任意一项:
从所述下行传输slot的边界到所述上行传输的slot边界之间的间隔;
从所述下行传输最后一个符号到所述上行传输第一个符号或者最后一个符号之间的间隔;
从所述下行传输sub-slot的边界到所述上行传输的sub-slot边界之间的间隔。
可以理解的是,上述的sub-slot是指介于symbol和slot级别之间的一种颗粒度的定义。例如,当一个slot包含14个符号的时候,可以定义3个符号为一个sub-slot,根据每个sub-slot的大小来确定反馈HARQ-ACK或者其他上行传输的信息。
在本公开实施例中,终端可以根据接收的信令确定上行传输过程,可以满足不同业务对QoS的不同需求。
例如,为了满足URLLC业务和eMBB业务对于业务的不同的要求,终端可以根据接收的信令确定上行传输过程,使得不同的业务对应不同的上行传输过程,这些上行传输过程保证了物理层传输,满足URLLC和eMBB两种业务对于各自的QoS的不同的需求。
参见图3,本公开实施例提供一种处理方法,该方法的执行主体可以为终端,具体步骤如下:
步骤301:接收信令;
示例性地,终端可以从基站接收信令。可选地,该信令可以是物理层信令,或者高层信令。
步骤302:根据信令,确定以下一项或多项的相关信息:反馈时间K0、反馈时间K1、反馈时间K2和反馈时序;
其中,信令包括以下一项或多项:与DCI格式相关的信息、与标识相关的信息、与控制信道配置相关的信息、与业务优先级相关的信息、与资源指示相关的信息和DCI对应的MCS表。
在步骤302中确定的反馈时间K0、反馈时间K1、反馈时间K2的时间颗粒度的单位可以为时隙(slot)、子时隙(sub-slot)、符号(symbol)或者固定时间长度的整数倍,可以理解的是,在本公开实施例中对固定时间长度以及整数倍的具体内容不做限定。可选地,固定时间长度可以是网络配置的或者是协议预先约定的。
具体地,(1)对于反馈时间K1:物理上行控制信道(Physical Uplink Control Channel,PUCCH)的反馈时间与下行传输(物理下行控制信道(Physical Downlink Control Channel,PDCCH)或者物理下行共享信道(Physical Downlink Shared Channel,PDSCH))之间的间隔的时隙的数目,或者间隔的符号数目,或者间隔的子时隙的数目;
(2)对于反馈时间K2:物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的反馈时间与下行传输(PDCCH或者PDSCH)之间的间隔的时隙的数目,或者间隔的符号数目,或者间隔的子时隙的数目;
(3)对于反馈时间K0:PDSCH相对于PDCCH的间隔的时隙的数目,或者间隔的符号数目,或者间隔的子时隙的数目。
在步骤302中确定的反馈时序为上行传输(PUCCH或PUSCH)与下行传输(PDCCH或PDSCH)之间的时间间隔。具体地,
(1)从下行传输时隙的边界到上行传输的时隙边界(boundary)之间的间隔;
(2)从下行传输最后一个符号到上行传输第一个符号或者最后一个符号之间的间隔;
(3)从下行传输子时隙的边界到上行传输的子时隙边界之间的间隔。
需要说明的是,可选地,反馈时间K1的确定包括:
(1)反馈时间K1的粒度,例如:时隙级(slot level),子时隙级(sub-slot level),符号级(symbol level)或者固定时间长度的整数倍。可选地,固定时间长度可以是网络配置的或者是协议预先约定的;
(2)反馈时间K1的时序关系,例如:相对时隙(relative to slot)、相对子时隙边界(relative sub-slot boundary)、相对于PDSCH的最后一个OFDM符号(relative to last OFDM symbol of PDSCH)。
在本公开实施例中,终端可以根据接收的信令确定上行传输过程,可以满足不同业务对QoS的不同需求。
参见图4,本公开实施例提供一种处理方法,该方法的执行主体可以为终端,具体步骤如下:
步骤401:接收第一信令和第二信令;
示例性地,终端可以从基站接收DCI,该DCI中包括:第一信令和第二信令;或者接收第一DCI和第二DCI,其中,所述第一DCI包括所述第一信令,所述第二DCI包括第二信令;或者,终端可以从基站接收第三信令,第三信令中包括:第一信令和所述第二信令。
需要说明的是,第一信令和第二信令可以是不同的信令,也可以是从一个DCI中不同字段读取的信息,或者其他信令中包含的内容。
步骤403:根据第一信令,从多组PUCCH资源集中确定一组PUCCH资源集合;
步骤404:根据第二信令,从PUCCH资源集合中确定PUCCH资源。
需要说明的是,确定PUCCH资源包括:
(1)多个PUCCH(Multiple PUCCH)资源配置,以及映射到不同的PUCCH资源配置的不同解释,PRI基于对应的PUCCH资源配置指示PUCCH资源;
(2)单个PUCCH(Single PUCCH)资源配置。
在本公开实施例中,终端可以根据接收的信令确定上行传输过程,可以满足不同业务对QoS的不同需求。
参见图5,本公开实施例提供一种处理方法,该方法的执行主体可以为终端,具体步骤如下:
步骤501:接收信令;
示例性地,终端可以从基站接收信令。可选地,该信令可以是物理层信令,或者高层信令。
步骤502:根据信令,确定混合自动重传请求确认应答(HARQ-ACK)码本(codebook)的时域颗粒度;
示例性地,确定HARQ-ACK codebook的时域颗粒度为slot,或者确定HARQ-ACK codebook的时域颗粒度为sub-slot,或者确定HARQ-ACK codebook的时域颗粒度为符号。
可选地,在步骤502之后,可以执行步骤503。
步骤503:根据HARQ-ACK codebook的时域颗粒度,确定反馈窗口内反馈的HARQ-ACK的集合。
需要说明的是,HARQ-ACK码本的确定包括:
(1)用于确定HARQ-ACK码本的时域粒度,例如:子时隙级别(sub-slot level),时隙级别(slot-level),符号级别(symbol-level)(浮动时域窗口)或者某一固定时间长度的整数倍。可选地,固定时间长度可以是网络配置的或者是协议预先约定的;
(2)用于确定HARQ-ACK码本的时域粒度可以是半静态(semi-static)或动态(dynamic)。
在本公开实施例中,终端可以根据接收的信令确定上行传输过程,可以满足不同业务对QoS的不同需求。
本公开实施例中还提供了一种终端,由于终端解决问题的原理与本公开实施例中处理方法相似,因此该终端的实施可以参见方法的实施,重复之处不再敷述。
参见图6,本公开实施例还提供一种终端,该终端600包括:
接收模块601,用于接收信令;
确定模块602,用于根据所述信令,确定与上行传输相关的信息;
其中,所述信令包括以下一项或多项:与下行控制信息DCI格式相关的信息、与标识相关的信息、与控制信道配置相关的信息、与业务优先级相关的信息、与资源指示相关的信息和DCI对应的调制与编码策略MCS表。
可选地,所述与上行传输相关的信息,包括以下任意一项:
PUCCH的反馈时间与下行传输之间的间隔的时间颗粒度;
PUSCH的反馈时间与下行传输之间的间隔的时间颗粒度;
PDSCH相对于PDCCH的间隔的时间颗粒度。
可选地,所述间隔的时间颗粒度为slot、sub-slot、symbol或者某一固定时间长度的整数倍。
可选地,所述与上行传输相关的信息,包括:下行传输与上行传输之间的间隔。
可选地,所述下行传输与上行传输之间的间隔,包括以下任意一项:
从所述下行传输slot的边界到所述上行传输的slot边界之间的间隔;
从所述下行传输最后一个符号到所述上行传输第一个符号或者最后一个 符号之间的间隔;
从所述下行传输sub-slot的边界到所述上行传输的sub-slot边界之间的间隔。
可选地,接收模块601进一步用于:接收第一信令和第二信令。
可选地,确定模块602进一步用于:根据所述第一信令,从多组PUCCH资源集中确定一组PUCCH资源集合;根据所述第二信令,从所述PUCCH资源集合中确定PUCCH资源。
可选地,接收模块601进一步用于:接收DCI,所述DCI中包括:所述第一信令和所述第二信令;或者,接收第一DCI和第二DCI,其中,所述第一DCI包括所述第一信令,所述第二DCI包括所述第二信令;或者,接收第三信令,所述第三信令中包括:所述第一信令和所述第二信令。
可选地,确定模块602进一步用于:根据所述信令,确定混合自动重传请求确认应答HARQ-ACK码本codebook的时域颗粒度。
可选地,确定模块602还用于:根据所述HARQ-ACK codebook的时域颗粒度,确定反馈窗口内反馈的HARQ-ACK的集合。
可选地,所述HARQ-ACK codebook的时域颗粒度为以下任意一项:slot、sub-slot和符号和某一固定时间长度的整数倍。可选地,固定时间长度可以是网络配置的或者是协议预先约定的。
可选地,所述与DCI格式相关的信息为DCI格式;或者
所述与标识相关的信息包括:DCI对应的RNTI或DCI对应的加扰信息;或者,
所述与控制信道配置相关的信息包括:DCI对应的CORESET或DCI对应的搜索空间;或者,
所述与业务优先级相关的信息包括:DCI中优先级指示信息;或者,
所述资源指示相关的信息包括:DCI中的指示信息,所述指示信息用于指示数据或者控制信息传输的时域资源和/或频域资源;或者,所述指示信息用于指示数据或者控制信息传输的导频映射类型。
本公开实施例提供的终端,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
请参阅图7,图7是本公开实施例应用的通信设备的结构图,如图7所示,通信设备700包括:处理器701、收发机702、存储器703和总线接口,其中:
在本公开的一个实施例中,通信设备700还包括:存储在存储器上703并可在处理器701上运行的程序,程序被处理器701执行时实现如下步骤:接收信令;根据所述信令,确定与上行传输相关的信息;其中,所述信令包括以下一项或多项:与DCI格式相关的信息、与标识相关的信息、与控制信道配置相关的信息、与业务优先级相关的信息、与资源指示相关的信息和DCI对应的MCS表。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
本公开实施例提供的通信设备,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以由在处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所 描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种处理方法,包括:
    接收信令;
    根据所述信令,确定与上行传输相关的信息;
    其中,所述信令包括以下一项或多项:与下行控制信息DCI格式相关的信息、与标识相关的信息、与控制信道配置相关的信息、与业务优先级相关的信息、与资源指示相关的信息和DCI对应的调制与编码策略MCS表。
  2. 根据权利要求1所述的方法,其中,所述与上行传输相关的信息,包括以下任意一项:
    物理上行控制信道PUCCH的反馈时间与下行传输之间的间隔的时间颗粒度;
    物理上行共享信道PUSCH的反馈时间与下行传输之间的间隔的时间颗粒度;
    物理下行共享信道PDSCH相对于物理下行控制信道PDCCH的间隔的时间颗粒度。
  3. 根据权利要求2所述的方法,其中,所述间隔的时间颗粒度为时隙slot、子时隙sub-slot、符号symbol或者固定时间长度的整数倍。
  4. 根据权利要求1所述的方法,其中,所述与上行传输相关的信息,包括:下行传输与上行传输之间的间隔。
  5. 根据权利要求4所述的方法,其中,所述下行传输与上行传输之间的间隔,包括以下任意一项:
    从所述下行传输slot的边界到所述上行传输的slot边界之间的间隔;
    从所述下行传输最后一个符号到所述上行传输第一个符号或者最后一个符号之间的间隔;
    从所述下行传输sub-slot的边界到所述上行传输的sub-slot边界之间的间隔。
  6. 根据权利要求1所述的方法,其中,所述接收信令,包括:
    接收第一信令和第二信令。
  7. 根据权利要求6所述的方法,其中,所述根据所述信令,确定与上行传输相关的信息,包括:
    根据所述第一信令,从多组PUCCH资源集中确定一组PUCCH资源集合;
    根据所述第二信令,从所述PUCCH资源集合中确定PUCCH资源。
  8. 根据权利要求6所述的方法,其中,所述接收第一信令和第二信令,包括以下任意一项:
    接收DCI,所述DCI中包括:所述第一信令和所述第二信令;
    接收第一DCI和第二DCI,其中,所述第一DCI包括所述第一信令,所述第二DCI包括所述第二信令;
    接收第三信令,所述第三信令中包括:所述第一信令和所述第二信令。
  9. 根据权利要求1所述的方法,其中,所述根据所述信令,确定与上行传输相关的信息,包括:
    根据所述信令,确定混合自动重传请求确认应答HARQ-ACK码本codebook的时域颗粒度。
  10. 根据权利要求9所述的方法,其中,所述根据所述信令,确定混合自动重传请求确认应答HARQ-ACK码本codebook的时域颗粒度之后,所述方法还包括:
    根据所述HARQ-ACK codebook的时域颗粒度,确定反馈窗口内反馈的HARQ-ACK的集合。
  11. 根据权利要求9或者10所述的方法,其中,所述HARQ-ACK codebook的时域颗粒度为以下任意一项:slot、sub-slot、符号和固定时间长度的整数倍。
  12. 根据权利要求1所述的方法,其中,
    所述与DCI格式相关的信息为DCI格式;或者
    所述与标识相关的信息包括:DCI对应的无线网络临时标识RNTI和/或DCI对应的加扰信息;或者,
    所述与控制信道配置相关的信息包括:DCI对应的控制资源集CORESET和/或DCI对应的搜索空间;或者,
    所述与业务优先级相关的信息包括:DCI中优先级指示信息;或者,
    所述资源指示相关的信息包括:DCI中的指示信息,所述指示信息用于指示数据或者控制信息传输的时域资源和/或频域资源;或者,所述指示信息用于指示数据或者控制信息传输的导频映射类型。
  13. 一种终端,包括:
    接收模块,用于接收信令;
    确定模块,用于根据所述信令,确定与上行传输相关的信息;
    其中,所述信令包括以下一项或多项:与DCI格式相关的信息、与标识相关的信息、与控制信道配置相关的信息、与业务优先级相关的信息、与资源指示相关的信息和DCI对应的MCS表。
  14. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至12中任一项所述的处理方法的步骤。
  15. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的处理方法的步骤。
PCT/CN2019/122663 2019-01-04 2019-12-03 处理方法及设备 WO2020140669A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19907396.6A EP3907910A4 (en) 2019-01-04 2019-12-03 PROCESSING METHOD AND EQUIPMENT
KR1020217021399A KR20210096674A (ko) 2019-01-04 2019-12-03 처리 방법 및 기기
SG11202107380WA SG11202107380WA (en) 2019-01-04 2019-12-03 Processing method and device
JP2021539026A JP7299986B2 (ja) 2019-01-04 2019-12-03 処理方法、及び機器
US17/365,624 US20210329610A1 (en) 2019-01-04 2021-07-01 Processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910009378.0 2019-01-04
CN201910009378.0A CN111277359A (zh) 2019-01-04 2019-01-04 处理方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/365,624 Continuation US20210329610A1 (en) 2019-01-04 2021-07-01 Processing method and device

Publications (1)

Publication Number Publication Date
WO2020140669A1 true WO2020140669A1 (zh) 2020-07-09

Family

ID=71003262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122663 WO2020140669A1 (zh) 2019-01-04 2019-12-03 处理方法及设备

Country Status (7)

Country Link
US (1) US20210329610A1 (zh)
EP (1) EP3907910A4 (zh)
JP (1) JP7299986B2 (zh)
KR (1) KR20210096674A (zh)
CN (2) CN115499101A (zh)
SG (1) SG11202107380WA (zh)
WO (1) WO2020140669A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884762A (zh) * 2020-07-16 2020-11-03 广东今程光一电力科技有限责任公司 一种设备处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238621A (zh) * 2010-04-29 2011-11-09 中兴通讯股份有限公司 基于物理下行共享信道传输公共数据的方法和系统
CN106793097A (zh) * 2016-04-01 2017-05-31 展讯通信(上海)有限公司 用户设备、网络侧设备及用户设备的控制方法
WO2018080629A1 (en) * 2016-10-28 2018-05-03 Intel IP Corporation User equipment (ue), evolved node-b (enb) and methods for multiplexing new radio (nr) physical uplink shared channel (nr pusch) and nr physical uplink control channel (nr pucch)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3251245B1 (en) * 2015-01-28 2023-04-05 InterDigital Patent Holdings, Inc. Uplink feedback methods for operating with a large number of carriers
EP3478011B1 (en) * 2016-06-22 2022-02-09 Datang Mobile Communications Equipment Co., Ltd. Physical uplink shared channel data transmission method and device
CN108400830A (zh) * 2017-02-04 2018-08-14 中兴通讯股份有限公司 一种信息传输方法、装置及系统
CN108631934B (zh) * 2017-03-24 2021-04-09 华为技术有限公司 一种数据传输方法、终端设备及基站系统
CN108809534B (zh) * 2017-05-05 2022-07-01 北京三星通信技术研究有限公司 调度方法、harq-ack反馈方法和相应设备
CN108882382B (zh) * 2017-05-12 2020-04-21 华为技术有限公司 传输方法、终端和网络设备
KR20200064955A (ko) * 2017-06-14 2020-06-08 아이디에이씨 홀딩스, 인크. 신뢰할 수있는 제어 신호
US11621817B2 (en) * 2017-06-14 2023-04-04 Interdigital Patent Holdings, Inc. Methods, apparatus, systems, architectures and interfaces for uplink control information (UCI) transmission via uplink shared data channel
US20190052414A1 (en) * 2017-08-10 2019-02-14 Alireza Babaei Multiplexing mechanism for uplink control information
TWI715044B (zh) * 2018-05-22 2021-01-01 新加坡商 聯發科技(新加坡)私人有限公司 移動通信中對於不同服務類型報告混合自動重複請求-確認資訊的方法和裝置
EP3849260A4 (en) * 2018-09-17 2022-05-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. FEEDBACK TIME DETERMINATION METHOD, TERMINAL DEVICE, AND NETWORK DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238621A (zh) * 2010-04-29 2011-11-09 中兴通讯股份有限公司 基于物理下行共享信道传输公共数据的方法和系统
CN106793097A (zh) * 2016-04-01 2017-05-31 展讯通信(上海)有限公司 用户设备、网络侧设备及用户设备的控制方法
WO2018080629A1 (en) * 2016-10-28 2018-05-03 Intel IP Corporation User equipment (ue), evolved node-b (enb) and methods for multiplexing new radio (nr) physical uplink shared channel (nr pusch) and nr physical uplink control channel (nr pucch)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "3GPP TSG RAN WG1 Meeting NR#3 R1- 1716590", ON PUCCH RESOURCE ALLOCATION AND OTHER OPEN ASPECTS, 21 December 2017 (2017-12-21), XP051340042 *
See also references of EP3907910A4 *

Also Published As

Publication number Publication date
EP3907910A1 (en) 2021-11-10
SG11202107380WA (en) 2021-08-30
US20210329610A1 (en) 2021-10-21
JP2022518891A (ja) 2022-03-17
CN115499101A (zh) 2022-12-20
KR20210096674A (ko) 2021-08-05
JP7299986B2 (ja) 2023-06-28
EP3907910A4 (en) 2022-03-09
CN111277359A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2020134382A1 (zh) 处理上行控制信息的方法及设备
US10003994B2 (en) Techniques for identifying physical hybrid automatic request indicator channel resources
KR101712895B1 (ko) 다운링크 제어 정보 전송 방법 및 장치
US20210314095A1 (en) Method of transmitting hybrid automatic retransmission request acknowledgment codebook and device
KR102195695B1 (ko) Fdd 셀과 tdd 셀의 집성
WO2021004280A1 (zh) 处理harq-ack的方法及设备
TWI492567B (zh) A method and apparatus for determining ACK / NACK feedback bit number
WO2016155305A1 (zh) 用户设备、网络设备和确定物理上行控制信道资源的方法
RU2631660C1 (ru) Распределение и использование ресурсов физического канала управления восходящей линии связи
CN113543321B (zh) Harq-ack反馈时序的确定方法及设备
JP7464708B2 (ja) Pdcchのharq-ackフィードバック方法及び機器
US20180041312A1 (en) Information feedback method, device, and system
WO2019062677A1 (zh) 用于信道传输的方法、终端设备及网络设备
WO2018121150A1 (zh) 一种信息传输方法及装置
CN111277376B (zh) 混合自动重传请求应答传输方法及设备
WO2020140669A1 (zh) 处理方法及设备
JP7334348B2 (ja) 上りリンク伝送方法、上りリンク伝送の指示方法及び機器
CN109275192B (zh) 用于传输信息的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021399

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019907396

Country of ref document: EP

Effective date: 20210804