WO2020139067A1 - New external loop "air-lift" bioreactor for treating liquid effluent - Google Patents

New external loop "air-lift" bioreactor for treating liquid effluent Download PDF

Info

Publication number
WO2020139067A1
WO2020139067A1 PCT/MA2019/000024 MA2019000024W WO2020139067A1 WO 2020139067 A1 WO2020139067 A1 WO 2020139067A1 MA 2019000024 W MA2019000024 W MA 2019000024W WO 2020139067 A1 WO2020139067 A1 WO 2020139067A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
external loop
ventilation
air
bioreactor
Prior art date
Application number
PCT/MA2019/000024
Other languages
French (fr)
Inventor
Reda ELKACMI
Mounir Bennajah
Original Assignee
Université Sultan Moulay Slimane, Béni Mellal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Université Sultan Moulay Slimane, Béni Mellal filed Critical Université Sultan Moulay Slimane, Béni Mellal
Publication of WO2020139067A1 publication Critical patent/WO2020139067A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/22Activated sludge processes using circulation pipes
    • C02F3/223Activated sludge processes using circulation pipes using "air-lift"
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • C02F3/325Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae as symbiotic combination of algae and bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • C02F2103/322Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters from vegetable oil production, e.g. olive oil production
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/063Underpressure, vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/33Wastewater or sewage treatment systems using renewable energies using wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention consists of an industrial device which allows biological degradation of the organic pollutant load of the effluents.
  • the technique has been successfully tested in the case of a liquid discharge with a high biological load.
  • the treatment was carried out in the presence of microalgae.
  • the depollution of discharges in the developed external loop gas siphon bioreactor is carried out by continuous supply of the discharges to be treated and by oxygenation, for the first time in this type of device with ventilation.
  • the invention focuses on the administration of a large amount of ambient air containing oxygen and carbon dioxide necessary for biological treatment in the presence of microalgae. This contribution is ensured for the first time in this type of reactor by the ventilation ticket making it possible to create a vacuum between the outside and the inside of the reactor, which makes it possible to convey a considerable flow of air towards the inside the appliance.
  • the present invention consists of an efficient treatment reactor for organic matter (COD, BOD5, coloring, turbidity, conductivity, salinity, etc.) which does not impose air compression for the treatment.
  • organic matter COD, BOD5, coloring, turbidity, conductivity, salinity, etc.
  • the need for oxygen and carbon dioxide necessary for biological treatment is provided by ventilation.
  • the fan sized according to the reactor capacity makes it possible to create a density difference between the inside and the outside of the reactor, a supply of ambient air is ensured by means of a tube provided with a distributor at the end.
  • the ambient air thus circulates from the outside to the inside of the reactor, the distributor is placed at an optimal height at the bottom of the Riser compartment, the bubbles produced in this compartment make it possible to create a density difference between the Riser and Downcomer compartments. .
  • This difference in density causes an external circulation of the pollutant inside the device which allows an internal agitation highly favorable for the treatment.
  • the supply of ambient air to the interior of the device allows, in addition to the hydrodynamic advantage relating to agitation, a supply of the biological medium with oxygen and carbon dioxide.
  • Oxygen strongly activates the degradation of organic matter by oxidation while the carbon dioxide supplied combines with the fraction resulting from the oxidation of organic matter to activate the in situ development of microalgae.
  • the treatment system being exposed to sunlight, it is therefore biologically effective especially if the process is carried out in an apparatus made of worms or plexiglass, Figure 1. Description of the geometry of the bioreactor:
  • the total volume of the liquid in the reactor depends on the height h of the liquid in the separator, the device can therefore operate with a capacity ranging from 30 to 40 L.
  • Hi 109 cm: height of the straight section.
  • 3 ⁇ 4 25 cm: height of the conical lower part ensuring the junction between the two compartments.
  • H4 60 cm height of the lower part of the Downcomer compartment connecting its straight section to the lower inclined section of the reactor.
  • the two Riser and Downcomer compartments are connected at the bottom by an inclined tube with a diameter of 15.6 cm and a length of 63.6 cm, which constitutes an extension of the Downcomer compartment.
  • the air intake tube is made of stainless steel, length 1 m, thickness 2 mm and diameter 5 cm.
  • the position of the tube inserted in the Riser compartment is variable. In our case, an optimal H2 value is found following an optimization study.
  • Two bubble dispensers are welded to the end of a stainless steel tube, they are connected with a T-tube. Their diameter is 3 mm, they are each fitted with 67 high pressure nozzles.
  • An electric regulator connected to a renewable energy source makes it possible to produce a sufficient amount of energy for the operation of the air extraction fan.
  • the bioreactor is supplied and emptied at the bottom of the reactor at the level of the inclined section by means of a drain valve.
  • the lower part of the Downcomer compartment is connected to a 4 cm diameter pipe, rising to the level of the liquid at the top of the separation chamber.
  • This line is connected to a siphon, in order to maintain a stable level of the effluent in the reactor.
  • the agitation speed is an important parameter to control for the conduct of the treatment process.
  • the turbulence created by the circulation of the liquid must be at its optimal value allowing a maximum of biological yield. Excessive turbulence has been shown to be unfavorable for treatment and may cause degradation of a fraction of the microalgae required for treatment.
  • the speed of circulation of the rejects in the device is directly linked to the difference in density between the two compartments:
  • Liquid Velocity of liquid in the reactor.
  • the circulation speed is linked to the ventilation speed, the size of the fan and its blades and especially the position of the air distributor in the Riser compartment.
  • the use of a fan to provide ambient air to the reactor allows the treatment process to be easily connected to a renewable energy source.
  • the ventilation in our reactor is normalized and the fan is sized in accordance with industrial standards, which is commonly used. This facilitates scaling up and allows ventilation in this process to be independent of the treatment.
  • the speed of circulation therefore only becomes dependent on the position of the ambient air distributor.
  • the position of the distributor is correlated with the speed of circulation of liquid according to the following relationship:
  • hdis P (Hl + h) - H2: Dispersion height corresponds to the height of liquid above the distributors in the Riser compartment.
  • COD organic matter
  • the bioreactor subject of the invention used for the treatment of vegetable water in our case is that represented in FIG. 2.
  • the volume of the rejection tested is 35 1, it circulates between the two compartments of the apparatus conveyed by a difference in density generated by an introduced air flow of about 0.025 m 3 / s. This flow value corresponds to a ventilation speed at 1,500 rpm.
  • This air flow value was adopted to allow on the one hand to create a sufficient density difference between the two reactor compartments and therefore favorable agitation for the treatment (minimize the effect of the external diffusion of O 2). and on the other hand, bring and diffuse oxygen into the solution in order to degrade the organic matter.
  • the treatment medium becomes favorable for the activity of microalgae (Chlorella vulgaris). The latter consume organic matter and release oxygen favorable for the degradation of the organic matter present in the effluent to be treated.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Botany (AREA)
  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

An innovative method for biological treatment has proven to be very effective and less expensive for treating various soluble and colloidal pollutants in agricultural, industrial and urban liquid waste. The present invention relates to an industrial device that allows degradation of the organic pollutant load of effluent by biological processing. The technique has been successfully tested in the case of liquid waste with a high biological load. The treatment was carried out in the presence of microalgae. The depollution of the waste in the external loop air-lift bioreactor that has been developed occurs with a continuous supply of the waste that is to be treated and through the contribution of oxygenation, for the first time using ventilation in this type of apparatus. The invention is focused on administering a significant amount of ambient air containing the oxygen and carbon dioxide that is required for biological treatment in the presence of microalgae. This contribution is provided, for the first time in this type of reactor, through ventilation that allows a pressure differential to be created between the outside and the inside of the reactor, which allows a considerable air flow to be routed towards the inside of the apparatus. Compared to the other treatment techniques that are applied in similar reactors, the present method has proven to be highly advantageous in terms of the effectiveness of the treatment and of energy consumption. For treating agricultural waste tested in a 35 litre capacity apparatus, COD reduction effectiveness of the order of 87.35% and a bleaching ratio of the order of 90.46% were recorded for energy consumption of 0.8 W/kg of COD eliminated over 12 hours of treatment.

Description

NOUVEAU BIOREACTEUR "AIR-LIFT" A BOUCLE EXTERNE POUR LE TRAITEMENT DES EFFLUENTS LIQUIDES NEW AIR-LIFT BIOREACTOR WITH EXTERNAL LOOP FOR THE TREATMENT OF LIQUID EFFLUENTS
Résumé : Summary :
Un procédé innovant de traitement biologique s'est montré très efficace et moins coûteux pour traiter différents polluants solubles et colloïdaux dans les rejets liquides agricoles, industriels et urbains. La présente invention consiste en un dispositif industriel qui permet la dégradation par voie biologique de la charge polluante organique des effluents. La technique a été testée avec succès dans le cas d’un rejet liquide à forte charge biologique. Le traitement a été réalisé en présence des microalgues. La dépollution des rejets dans le bioréacteur gazosiphon à boucle externe développé s'effectue en alimentation continue des rejets à traiter et par apport d’oxygénation, pour la première fois dans ce type d’appareil moyennant une ventilation. L’invention est axée sur l’administration d’une quantité importante de l’air ambiant contenant l’oxygène et le gaz carbonique nécessaires pour le traitement biologique en présence des microalgues. Cet apport est assuré pour la première fois dans ce type de réacteur par le billet d’une ventilation permettant de créer une dépression entre l’extérieur et l’intérieur du réacteur, ce qui permet d’acheminer un débit considérable d’air vers l’intérieur de l’appareil. An innovative biological treatment process has been shown to be very effective and less costly in treating different soluble and colloidal pollutants in agricultural, industrial and urban liquid discharges. The present invention consists of an industrial device which allows biological degradation of the organic pollutant load of the effluents. The technique has been successfully tested in the case of a liquid discharge with a high biological load. The treatment was carried out in the presence of microalgae. The depollution of discharges in the developed external loop gas siphon bioreactor is carried out by continuous supply of the discharges to be treated and by oxygenation, for the first time in this type of device with ventilation. The invention focuses on the administration of a large amount of ambient air containing oxygen and carbon dioxide necessary for biological treatment in the presence of microalgae. This contribution is ensured for the first time in this type of reactor by the ventilation ticket making it possible to create a vacuum between the outside and the inside of the reactor, which makes it possible to convey a considerable flow of air towards the inside the appliance.
Comparativement aux autres techniques de traitements appliqués dans des réacteurs similaires, le présent procédé s’est montré très avantageux en termes d’efficacité de traitement et de consommation énergétique. Pour le traitement du rejet d’origine agricole testé dans un appareil de 35 litres de capacité, une efficacité d’abattement de DCO de l’ordre de 87,35% et un taux de décoloration de l’ordre de 90,46 % ont été enregistré pour une consommation énergétique de 0,8 W/kg DCOéiiminé pendant 12 heures de traitement. Originalité et description détaillée : Compared to other treatment techniques applied in similar reactors, the present process has proved to be very advantageous in terms of treatment efficiency and energy consumption. For the treatment of rejection of agricultural origin tested in a device with a capacity of 35 liters, a COD abatement efficiency of the order of 87.35% and a discoloration rate of the order of 90.46% were was recorded for an energy consumption of 0.8 W / kg COD eliminated during 12 hours of treatment. Originality and detailed description:
Le traitement de la matière organique et son élimination est une discipline importante du traitement des rejets liquides en raison du nombre important des polluants industriels « rejets » chargés en matière organiques. L’étude menée à mis le point sur plusieurs travaux scientifiques concernant le traitement de la matière organique par des procédés physiques, biologiques et chimiques. L’oxydation biologique reste une technique efficace permettant d’atteindre des rendements d’abattement importants compte tenu du faible coût opératoire. Dans la pratique industrielle, l’oxydation par oxygénation reste un moyen rentable pour la réduction de la matière organique en raison du coût relativement faible de l’exploitation des unités de traitement. La disponibilité de l’air et sa teneur en oxygène fait de l’oxygénation moyennant l’apport de l’air comprimé un procédé très répondu en industrie. The treatment of organic matter and its elimination is an important discipline in the treatment of liquid discharges due to the large number of industrial pollutants "discharges" loaded with organic matter. The study conducted shed light on several scientific works concerning the treatment of organic matter by physical, biological and chemical processes. Biological oxidation remains an effective technique to achieve significant abatement yields given the low operating cost. In industrial practice, oxidation by oxygenation remains a cost-effective means of reducing organic matter due to the relatively low cost of operating the processing units. The availability of air and its oxygen content makes oxygenation with the supply of compressed air a process that is very popular in industry.
Dans ce cadre la présente invention consiste en un réacteur de traitement efficace pour la matière organique (DCO, DBO5, coloration, turbidité, conductivité, salinité....) n’imposant pas de compression d’air pour le traitement. In this context, the present invention consists of an efficient treatment reactor for organic matter (COD, BOD5, coloring, turbidity, conductivity, salinity, etc.) which does not impose air compression for the treatment.
Le besoin en oxygène et en gaz carbonique nécessaires au traitement par voie biologique est assuré par ventilation. Le ventilateur dimensionné en fonction de la capacité de réacteur permet de créer une différence de densité entre l’intérieur et l’extérieur du réacteur, une alimentation en air ambiant est assurée moyennant un tube doté d’un distributeur au bout. L’air ambiant circule ainsi de l’extérieur vers l’intérieur du réacteur, le distributeur est placé à une hauteur optimale au fond du compartiment Riser, les bulles produites dans ce compartiment permettent de créer une différence de densité entre le compartiment Riser et Downcomer. Cette différence de densité provoque une circulation externe du polluant à l’intérieur de l’appareil ce qui permet une agitation interne hautement favorable pour le traitement. L’apport en air ambiant vers l’intérieur de l’appareil permet en plus de l’avantage hydrodynamique relatif à l’agitation, une alimentation du milieu biologique en oxygène et en gaz carbonique. L’oxygène active fortement la dégradation de la matière organique par oxydation alors que le gaz carbonique apporté se combine avec la fraction résultante de l’oxydation de la matière organique pour activer le développent in situ des microalgues. Le système de traitement étant exposé à l’ensoleillement, il est donc biologiquement efficace surtout si le procédé est réalisé dans un appareil fabriqué en vers ou en plexiglass, figure 1. Description de la géométrie du bioréacteur : The need for oxygen and carbon dioxide necessary for biological treatment is provided by ventilation. The fan sized according to the reactor capacity makes it possible to create a density difference between the inside and the outside of the reactor, a supply of ambient air is ensured by means of a tube provided with a distributor at the end. The ambient air thus circulates from the outside to the inside of the reactor, the distributor is placed at an optimal height at the bottom of the Riser compartment, the bubbles produced in this compartment make it possible to create a density difference between the Riser and Downcomer compartments. . This difference in density causes an external circulation of the pollutant inside the device which allows an internal agitation highly favorable for the treatment. The supply of ambient air to the interior of the device allows, in addition to the hydrodynamic advantage relating to agitation, a supply of the biological medium with oxygen and carbon dioxide. Oxygen strongly activates the degradation of organic matter by oxidation while the carbon dioxide supplied combines with the fraction resulting from the oxidation of organic matter to activate the in situ development of microalgae. The treatment system being exposed to sunlight, it is therefore biologically effective especially if the process is carried out in an apparatus made of worms or plexiglass, Figure 1. Description of the geometry of the bioreactor:
- Le volume total du liquide dans le réacteur dépend de la hauteur h du liquide dans le séparateur, l’appareil peut donc fonctionner avec une capacité allant de 30 à 40 L. La hauteur du liquide dans cette zone est h=18 cm, hauteur totale est H = 22 cm. - The total volume of the liquid in the reactor depends on the height h of the liquid in the separator, the device can therefore operate with a capacity ranging from 30 to 40 L. The height of the liquid in this area is h = 18 cm, height total is H = 22 cm.
- Le compartiment Riser de diamètre 23,3 cm à une hauteur de 134 cm subdivisé en deux parties : - The 23.3 cm diameter Riser compartment at a height of 134 cm subdivided into two parts:
Hi= 109 cm : hauteur de la section droite. Hi = 109 cm: height of the straight section.
¾= 25 cm : hauteur de la partie inférieure conique assurant la jonction entre les deux compartiments. ¾ = 25 cm: height of the conical lower part ensuring the junction between the two compartments.
- Le compartiment Downcomer a un diamètre de 15,6 cm et une hauteur de l’ordre de HI+H4=469 cm avec : - The Downcomer compartment has a diameter of 15.6 cm and a height of the order of HI + H 4 = 469 cm with:
H4— 60 cm hauteur de la partie inférieure du compartiment Downcomer reliant sa section droite à la section inclinée basse du réacteur. H4— 60 cm height of the lower part of the Downcomer compartment connecting its straight section to the lower inclined section of the reactor.
- Le rapport des sections de ces deux compartiments (ADowncomer/ARiser) est de 0,44. Ce rapport géométrique permet un fonctionnement optimal du bioréacteur pour le cas testé.- The ratio of the sections of these two compartments (A Dow ncomer / ARi ser ) is 0.44. This geometric ratio allows optimal operation of the bioreactor for the case tested.
- La distance entre les axes verticaux des deux compartiments Riser et Downcomer est de 56 cm, cette distance est une valeur limite qui permet de bloquer la recirculation des bulles d’air du Riser vers le Downcomer. - The distance between the vertical axes of the two compartments Riser and Downcomer is 56 cm, this distance is a limit value which makes it possible to block the recirculation of air bubbles from the Riser to the Downcomer.
- Les deux compartiments Riser et Downcomer sont reliés en bas par un tube incliné de diamètre 15,6 cm et de longueur 63,6 cm et qui constitue un prolongement du compartiment Downcomer. - The two Riser and Downcomer compartments are connected at the bottom by an inclined tube with a diameter of 15.6 cm and a length of 63.6 cm, which constitutes an extension of the Downcomer compartment.
- Le tube d’apport d’air est en acier inox de longueur 1 m, épaisseur 2 mm et de diamètre 5 cm. La position du tube introduit dans le compartiment Riser est variable. Dans notre cas, une valeur optimale H2 est trouvée suite à une étude d’optimisation. - The air intake tube is made of stainless steel, length 1 m, thickness 2 mm and diameter 5 cm. The position of the tube inserted in the Riser compartment is variable. In our case, an optimal H2 value is found following an optimization study.
- Deux distributeurs de bulles sont soudés à l'extrémité de tube inox, ils sont reliés avec un tube en T. Leur diamètre est de 3 mm, ils sont dotés chacun de 67 buses hautes pression. - Two bubble dispensers are welded to the end of a stainless steel tube, they are connected with a T-tube. Their diameter is 3 mm, they are each fitted with 67 high pressure nozzles.
- Un ventilateur à 9 pâles tournants à une vitesse de 1500 tr/min, cette vitesse permet de limiter les turbulences et assurer une agitation optimale moyennant un débit d’air de l’ordre de 0,025 m3/s. - Un régulateur électrique raccordé à une source d’énergie renouvelable (panneau solaire ou éolienne) permet de produire une quantité d’énergie suffisante au fonctionnement du ventilateur d’extraction d’air. - A fan with 9 rotating blades at a speed of 1500 rpm, this speed makes it possible to limit turbulence and ensure optimal agitation with an air flow of the order of 0.025 m 3 / s. - An electric regulator connected to a renewable energy source (solar panel or wind turbine) makes it possible to produce a sufficient amount of energy for the operation of the air extraction fan.
- L’alimentation et le vidange du bioréacteur se fait en bas du réacteur au niveau de la section inclinée moyennant un robinet de vidange. - The bioreactor is supplied and emptied at the bottom of the reactor at the level of the inclined section by means of a drain valve.
- La partie inférieure du compartiment Downcomer est reliée à une conduite de 4 cm de diamètre, s’élevant jusqu’au niveau du liquide dans le haut du chambre de séparation. Cette conduite est raccordée à un siphon, afin de maintenir un niveau stable de l’effluant dans le réacteur. - The lower part of the Downcomer compartment is connected to a 4 cm diameter pipe, rising to the level of the liquid at the top of the separation chamber. This line is connected to a siphon, in order to maintain a stable level of the effluent in the reactor.
La vitesse d’agitation est un paramètre important à contrôler pour la conduite du procédé du traitement. La turbulence crée par la circulation du liquide devra être à sa valeur optimale permettant un maximum de rendement biologique. Une turbulence excessive s’est montrée défavorable pour le traitement et peut provoquer la dégradation d’une fraction des microalgues nécessaire au traitement. La vitesse de circulation des rejets dans l’appareil est directement liée à la différence de densité entre les deux compartiments : The agitation speed is an important parameter to control for the conduct of the treatment process. The turbulence created by the circulation of the liquid must be at its optimal value allowing a maximum of biological yield. Excessive turbulence has been shown to be unfavorable for treatment and may cause degradation of a fraction of the microalgae required for treatment. The speed of circulation of the rejects in the device is directly linked to the difference in density between the two compartments:
Figure imgf000006_0001
Figure imgf000006_0001
Uiiquide : Vitesse de liquide dans le réacteur. Liquid: Velocity of liquid in the reactor.
PRiser: Masse volumique de liquide dans le compartiment Riser. P Riser : Density of liquid in the Riser compartment.
p Downcomer : Masse volumique de liquide dans le compartiment Downcomer. p Downcomer: Density of liquid in the Downcomer compartment.
Cette différence est provoquée par l’apport d’air ambiant au niveau de Riser, plus le compartiment Riser est chargé en bulles d’air (taux de vide ou rétention gazeuse) plus la différence de densité est importante et par conséquent la vitesse augmente. This difference is caused by the supply of ambient air to the Riser level, the more the Riser compartment is loaded with air bubbles (vacuum rate or gas retention) the greater the difference in density and therefore the speed increases.
La vitesse de circulation est liée à la vitesse de ventilation, la taille de ventilateur et ses pâlies et surtout la position de distributeur d’air dans le compartiment Riser. L’utilisation d’un ventilateur pour réaliser l’apport en air ambiant dans le réacteur permet au procédé de traitement un raccordement facile à une source d’énergie renouvelable. Dans ce cadre la ventilation dans notre réacteur se montre normalisée et le ventilateur est dimensionné conformément aux standards industriels ce qui est couramment utilisé. Ceci facilite l’augmentation d’échelle et permet à la ventilation dans ce procédé d’être indépendante du traitement. La vitesse de circulation devient donc uniquement en fonction de la position de distributeur d’air ambiant. La position du distributeur est corrélée avec la vitesse de circulation de liquide selon la relation suivante :
Figure imgf000007_0001
The circulation speed is linked to the ventilation speed, the size of the fan and its blades and especially the position of the air distributor in the Riser compartment. The use of a fan to provide ambient air to the reactor allows the treatment process to be easily connected to a renewable energy source. In this context, the ventilation in our reactor is normalized and the fan is sized in accordance with industrial standards, which is commonly used. This facilitates scaling up and allows ventilation in this process to be independent of the treatment. The speed of circulation therefore only becomes dependent on the position of the ambient air distributor. The position of the distributor is correlated with the speed of circulation of liquid according to the following relationship:
Figure imgf000007_0001
Uiiquide, Down : Vitesse de liquide dans le compartiment Downcomer. Uii quide , Down : Speed of liquid in the Downcomer compartment.
hdisP= (Hl+h) - H2 : Hauteur de dispersion correspond à la hauteur de liquide au-dessus des distributeurs dans le compartiment Riser. hdis P = (Hl + h) - H2: Dispersion height corresponds to the height of liquid above the distributors in the Riser compartment.
hmax = Hl+h=127 cm : Hauteur maximum du dispersion correspondant à la position basse des électrodes dans le compartiment Riser. hmax = Hl + h = 127 cm: Maximum height of the dispersion corresponding to the low position of the electrodes in the Riser compartment.
Dans des procédés classiques du traitement utilisant les réacteurs gazosihons [1, 2], l’air ambiant est apporté moyennant un compresseur. Le remplacement du compresseur par un System de ventilation dans notre cas a dévoilé un avantage énergétique majeur. Ce qui a permis une applicabilité combinée du traitement utilisant des sources classiques d’énergie renouvelable, ce qui n’était pas économiquement viable dans le cas d’un système de traitement doté d’un compresseur à air surtout dans le cadre d’une applicabilité industriel. In conventional treatment methods using gas-jet reactors [1, 2], ambient air is supplied by means of a compressor. The replacement of the compressor with a ventilation system in our case revealed a major energy advantage. This allowed a combined applicability of the treatment using conventional renewable energy sources, which was not economically viable in the case of a treatment system equipped with an air compressor especially in the context of applicability. industrial.
Exemple d’application du bioréacteur pour le traitement et la détoxifîcation des margines d’olive. Example of application of the bioreactor for the treatment and detoxification of olive water.
Les margines, ou eaux de végétation issus de l'extraction de l'huile d'olive présentent une nuisance environnementale à savoir l’acidification du milieu naturel, la réduction de la fertilité du sol et la disparition de la vie aquatique. Pour cette raison, ces effluents ont été testés dans notre bioréacteur afin d’étudier l’élimination de la matière organique (DCO) et la coloration. L’échantillon a été prélevé à partir d’un bassin de stockage dans une unité de trituration local fonctionnant en système continu. L’examen des caractéristiques de cet échantillon a montré un DCO initial de l’ordre de 4,68 g O2/I, DBO5 d’environ 10,49 g O2/I et une absorbance (395 nm) correspondant à une coloration initiale de 9,15. The vegetable water, or vegetable water from the extraction of olive oil, presents an environmental nuisance, namely the acidification of the natural environment, the reduction of soil fertility and the disappearance of aquatic life. For this reason, these effluents were tested in our bioreactor in order to study the elimination of organic matter (COD) and the coloring. The sample was taken from a storage tank in a local crushing unit operating in a continuous system. Examination of the characteristics of this sample showed an initial COD of the order of 4.68 g O 2 / I, BOD 5 of approximately 10.49 g O 2 / I and an absorbance (395 nm) corresponding to a initial coloration of 9.15.
Le bioréacteur sujet d’invention utilisé pour le traitement des margines dans notre cas est celui représenté dans la figure 2. Le volume du rejet testé est de 35 1, il circule entre les deux compartiments de l’appareil véhiculé par une différence de densité générée par un débit d’air introduit de l’ordre de 0,025 m3/s. Cette valeur de débit correspond à une vitesse de ventilation de 1500 tr/min. Cette valeur de débit d’air a été adoptée pour permettre d’un côté de créer une différence de densité suffisante entre les deux compartiments du réacteur et donc une agitation favorable pour le traitement (minimiser l’effet de la diffusion externe d’02) et d’un autre côté, apporter et diffuser de l’oxygène dans la solution afin de dégrader la matière organique. En présence de CO2 atmosphérique, l’énergie solaire et les sels dissous, le milieu de traitement devient favorable pour l’activité des microalgues ( Chlorella vulgaris). Ces derniers consomment de la matière organique et libèrent de l’oxygène favorable pour la dégradation de la matière organique présente dans l’effluent à traiter. The bioreactor subject of the invention used for the treatment of vegetable water in our case is that represented in FIG. 2. The volume of the rejection tested is 35 1, it circulates between the two compartments of the apparatus conveyed by a difference in density generated by an introduced air flow of about 0.025 m 3 / s. This flow value corresponds to a ventilation speed at 1,500 rpm. This air flow value was adopted to allow on the one hand to create a sufficient density difference between the two reactor compartments and therefore favorable agitation for the treatment (minimize the effect of the external diffusion of O 2). and on the other hand, bring and diffuse oxygen into the solution in order to degrade the organic matter. In the presence of atmospheric CO2, solar energy and dissolved salts, the treatment medium becomes favorable for the activity of microalgae (Chlorella vulgaris). The latter consume organic matter and release oxygen favorable for the degradation of the organic matter present in the effluent to be treated.
Pour déterminer la vitesse optimale Uiiquide,Down permettant le bon fonctionnement et assurant des meilleurs rendements de détoxification d’effluent, trois vitesses ont été testées corresponds aux trois positions de distributeur H2=84,15 cm, H2’ = 63,5 cm et H2”=39.61 cm équivalents aux hauteurs de dispersions 1¾i=42,85 cm, 1ID2 =63,5 cm et ho3=87,39 cm. To determine the optimal speed Uii quide , Down allowing proper operation and ensuring better effluent detoxification yields, three speeds were tested corresponding to the three distributor positions H2 = 84.15 cm, H2 '= 63.5 cm and H2 ”= 39.61 cm equivalent to the dispersion heights 1¾i = 42.85 cm, 1ID 2 = 63.5 cm and ho 3 = 87.39 cm.
Les tests réalisés sur l’appareil ont montré qu’un abattement efficace de la DCO et de la coloration est trouvé à des vitesses de circulation de liquide comprises dans l’intervalle 2,78 - 5,67 m/s. Tests on the device have shown that effective reduction of COD and staining is found at liquid circulation speeds in the range 2.78 - 5.67 m / s.
Dans ce cadre une hauteur H2=84,15 cm de distributeur a permis une vitesse de circulation interne optimale dans l’appareil permettant (Uiiquide,Down=2,78 m/s) après 12 heures de traitement d’atteindre un taux d’élimination de la coloration de l’ordre de 90,46 % et un abattement de DCO de l’ordre de 87,35 % (figure 3). Ces rendements se sont avérés très satisfaisants compte tenu de la faible consommation électrique de l’appareil. In this context, a height H2 = 84.15 cm of distributor allowed an optimal internal circulation speed in the device allowing (Uii quide , Down = 2.78 m / s) after 12 hours of treatment to reach a rate of elimination of the coloration of the order of 90.46% and a COD reduction of the order of 87.35% (FIG. 3). These yields have proven to be very satisfactory given the low electrical consumption of the device.
Références: References:
1. Chisti, M. Y., & Moo-Young, M. (1987). Airlift reactors: characteristics, applications and design considérations. Chemical Engineering Communications, 60 1 -6), 195-242. 1. Chisti, M. Y., & Moo-Young, M. (1987). Airlift reactors: characteristics, applications and design considerations. Chemical Engineering Communications, 60 1-6), 195-242.
2. Merchuk, J. C., & Gluz, M. (1999). Bioreactors, air-lift reactors. Gas, 1, 2. 2. Merchuk, J. C., & Gluz, M. (1999). Bioreactors, air-lift reactors. Gas, 1, 2.

Claims

Revendications Claims
1) Bioréacteur ventilift à boucle externe pour le traitement des effluents liquides basé sur la circulation d’effluent liquide à travers les deux sections de l’appareil (Riser et Downcomer) par ventilation. Une alimentation en air ambiant est assurée moyennant un tube doté d’un distributeur introduit dans le compartiment Riser à une profondeur optimale assurant une vitesse de circulation adéquate et des taux d’abattements élevés. 1) Ventift external loop bioreactor for the treatment of liquid effluents based on the circulation of liquid effluent through the two sections of the device (Riser and Downcomer) by ventilation. A supply of ambient air is ensured by means of a tube fitted with a distributor inserted into the Riser compartment at an optimal depth ensuring an adequate circulation speed and high reduction rates.
2) Bioréacteur ventilift à boucle externe selon la revendication 1, équipé d’un tube qui permet la génération des bulles d’air qui provoquent une circulation du liquide. L’emplacement du distributeur est corrélé avec la vitesse de circulation ce qui facilite l’augmentation d’échelle et permet à la ventilation dans ce procédé d’être indépendante du traitement. 2) ventilift external loop bioreactor according to claim 1, equipped with a tube which allows the generation of air bubbles which cause a circulation of the liquid. The location of the distributor is correlated with the circulation speed which facilitates the increase in scale and allows the ventilation in this process to be independent of treatment.
3) Bioréacteur ventilift à boucle externe selon les revendications 1 et 2, couplé avec une nouvelle source d’énergie renouvelable, telle qu’une cellule photovoltaïque ou éolienne, pour alimenter le ventilateur d’extraction d’air ambiant de l’extérieur vers l’intérieur de l’appareil. 3) ventilift external loop bioreactor according to claims 1 and 2, coupled with a new renewable energy source, such as a photovoltaic or wind cell, to supply the ambient air extraction fan from the outside to the inside the appliance.
4) Bioréacteur ventilift à boucle externe selon les revendications 1, 2 et 3, capable d’assurer la détoxification et le traitement des effluents liquides en présence des micoalgues. 4) ventilift external loop bioreactor according to claims 1, 2 and 3, capable of ensuring the detoxification and treatment of liquid effluents in the presence of micoalgae.
5) Procédé de traitement des margines d’olive dans le bioréacteur gazosiphon à boucle externe s’effectue selon les étapes suivantes : a- Extraction d’air contenu dans l’appareil par ventilation créant ainsi une dépression permettant de générer in situ des bulles d’air qui provoquent la circulation de l’effluent dans l’appareil. 5) Process for treating olive water in the external loop gazosiphon bioreactor is carried out according to the following steps: a- Extraction of air contained in the device by ventilation thus creating a vacuum allowing bubbles to be generated in situ. which cause the effluent to circulate in the device.
b- L’oxygène apporté sert à la dégradation de la matière organique par oxydation. c- En présence de rayonnement solaire et les nutriments dissous, le gaz carbonique apporté de l’extérieur se combine avec la fraction de COD résultant de l’oxydation de la matière organique. Ce qui conduit à l’activation de développent in situ des microalgues. b- The oxygen supplied is used for the degradation of organic matter by oxidation. c- In the presence of solar radiation and dissolved nutrients, the carbon dioxide brought in from the outside combines with the fraction of DOC resulting from the oxidation of organic matter. This leads to the activation of in situ microalgae development.
d- Les microalgues type ( Chlorella vulgaris), consomment de la matière organique et libèrent l’oxygène favorable pour la dégradation de la charge polluante présente dans les margines. 6) Procédé selon les revendications 1, 2, 3, 4 et 5 est caractérisé pour des effluents à teneur organique importante tels que les eaux usées urbaines, rejets de textiles, eaux usées de tanneries à l’échelle semi-pilote et industrielle. d- Microalgae type (Chlorella vulgaris), consume organic matter and release oxygen favorable for the degradation of the pollutant load present in vegetable water. 6) Method according to claims 1, 2, 3, 4 and 5 is characterized for effluents with a high organic content such as urban waste water, textile waste, waste water from tanneries on a semi-pilot and industrial scale.
PCT/MA2019/000024 2018-12-25 2019-12-05 New external loop "air-lift" bioreactor for treating liquid effluent WO2020139067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA44332A MA44332B1 (en) 2018-12-25 2018-12-25 New design of an external loop bioreactor for the treatment of liquid effluents
MA44332 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020139067A1 true WO2020139067A1 (en) 2020-07-02

Family

ID=69423374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2019/000024 WO2020139067A1 (en) 2018-12-25 2019-12-05 New external loop "air-lift" bioreactor for treating liquid effluent

Country Status (2)

Country Link
MA (1) MA44332B1 (en)
WO (1) WO2020139067A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120376A1 (en) * 2020-12-04 2022-06-09 University Of Massachusetts System and method for hydrodynamic cultivation of seed oxygenic photogranules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305238A1 (en) * 1983-02-16 1984-08-16 Ernst 5300 Bonn Pawlowsky Process and device for purifying water
EP0728122A1 (en) * 1993-11-10 1996-08-28 Ocean Arks International, Inc. System and method for treatment of polluted water
US20180029902A1 (en) * 2016-07-27 2018-02-01 Searen, LLC Vacuum air lift systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305238A1 (en) * 1983-02-16 1984-08-16 Ernst 5300 Bonn Pawlowsky Process and device for purifying water
EP0728122A1 (en) * 1993-11-10 1996-08-28 Ocean Arks International, Inc. System and method for treatment of polluted water
US20180029902A1 (en) * 2016-07-27 2018-02-01 Searen, LLC Vacuum air lift systems and methods

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHISTI, M. Y.MOO-YOUNG, M.: "Airlift reactors: characteristics, applications and design considérations", CHEMICAL ENGINEERING COMMUNICATIONS, vol. 60, no. 1-6), 1987, pages 195 - 242
MAZA-MÁRQUEZ P ET AL: "Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor", ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL, ECOMED, LANDSBERG, DE, vol. 24, no. 1, 12 October 2016 (2016-10-12), pages 527 - 538, XP036128320, ISSN: 0944-1344, [retrieved on 20161012], DOI: 10.1007/S11356-016-7753-3 *
MERCHUK, J. C.GLUZ, M.: "Bioreactors, air-lift reactors", GAS, 1999, pages 1,2

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120376A1 (en) * 2020-12-04 2022-06-09 University Of Massachusetts System and method for hydrodynamic cultivation of seed oxygenic photogranules

Also Published As

Publication number Publication date
MA44332B1 (en) 2020-10-28
MA44332A1 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
EP2139818B1 (en) Method and device for purifying liquid effluents
EP0670816B1 (en) Plant for removing micropollutants from untreated water, particularly drilling water, by means of a combination of ozone and hydrogen peroxide
CH622228A5 (en)
FR2701704A1 (en) Process for the treatment of organic waste by oxidation
FR2942220A1 (en) METHOD AND DEVICE FOR PURIFYING LIQUID EFFLUENTS
EP0577475A1 (en) Ozone purification process, especially for the production of potable water; installation for carrying it out
EP1345680A1 (en) Wet process or ozonizing oxidation method
WO2020139067A1 (en) New external loop "air-lift" bioreactor for treating liquid effluent
CA2931574C (en) Method and device for treating an organic effluent
FR2498589A1 (en) ANAEROBIC FERMENTER WITH GARNISHING
EP0459928B1 (en) Plant for treating a liquid flux in one phase contactor and recirculation de-gassing device
EP3303231A1 (en) Method and device for purifying domestic or industrial water
CA2957364C (en) Sequencing batch facility and method for reducing the nitrogen content in waste water
FR2484447A1 (en) AEROBIC BIOTRANSFORMATION METHOD AND DEVICE
FR2762232A1 (en) METHOD AND DEVICE FOR THE CONTACT OF OZONE IN FLUIDS TO BE TREATED, IN PARTICULAR WATER
FR3045593A1 (en) METHOD FOR BIO-SOLAR PURIFICATION OF WASTEWATER FOR WATER RECYCLING
CA2501387A1 (en) Method for reducing sludge of a biological ozone treatment system
EP3902773A1 (en) Method and device for improving sludge biodegradability
FR2484862A1 (en) Injector for contacting gas with liq. to form emulsion - injects high speed gas co-current at low angle of incidence
CA2935616A1 (en) Method of generating white water for dissolved air flotation
CA2491253A1 (en) Process for reducing sludge from wastewater treatment through oxygenation and mechanical action
CA3119412A1 (en) Improved method and device for anaerobic digestion
FR2953856A1 (en) Making lipid, useful as biofuel comprises growing photosynthetic microalgae, culturing microalgae in stress conditions inducing overproduction of fat by microalgae and extracting lipid by microalgae followed by storing/recovering lipid
FR2901267A1 (en) BACTERIAL COMPOSITION FOR THE TREATMENT OF SLUDGE LOADED WITH ANIMAL FAT, PROCESS FOR TREATMENT OF SUCH SLUDGE AND INSTALLATION FOR IMPLEMENTING SUCH A PROCESS
FR2768718A1 (en) Ultraviolet disinfection of waste waters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845917

Country of ref document: EP

Kind code of ref document: A1