WO2020138482A1 - Microneedle array for bcg vaccine - Google Patents

Microneedle array for bcg vaccine Download PDF

Info

Publication number
WO2020138482A1
WO2020138482A1 PCT/JP2019/051571 JP2019051571W WO2020138482A1 WO 2020138482 A1 WO2020138482 A1 WO 2020138482A1 JP 2019051571 W JP2019051571 W JP 2019051571W WO 2020138482 A1 WO2020138482 A1 WO 2020138482A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
microneedle
tube
substrate
vaccine
Prior art date
Application number
PCT/JP2019/051571
Other languages
French (fr)
Japanese (ja)
Inventor
英淑 権
健次 梶山
裕史 山下
文男 神山
Original Assignee
コスメディ製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コスメディ製薬株式会社 filed Critical コスメディ製薬株式会社
Priority to CN201980081656.1A priority Critical patent/CN113164727A/en
Priority to KR1020217019430A priority patent/KR20210106451A/en
Publication of WO2020138482A1 publication Critical patent/WO2020138482A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/20Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/20Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
    • A61B17/205Vaccinating by means of needles or other puncturing devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0069Devices for implanting pellets, e.g. markers or solid medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0061Methods for using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/30Vaccines

Definitions

  • the present invention relates to a transdermal vaccine inoculation technique, and more particularly to a BCG vaccine administration technique.
  • the BCG inoculation needle To use the BCG inoculation needle, hold the needle and apply the inoculum to the skin evenly on the wing. Then, squeeze the tube so that the opposite side of the needle touches the palm of the hand, and inoculate the needle against the skin of the inoculated child by pressing strongly against the skin until the pterygium contacts the skin.
  • the BCG inoculation tube needle has the same length as the tube and does not protrude from the tube, so strong pressure is required to insert the needle into the skin during inoculation. 2. Because strong force is required, the inoculated child will experience more pain in pressing the tube strongly than slight pain in the needle. 3. Since the force is required, the force is not evenly applied to the 9 needles, and the inoculation is likely to be uneven, resulting in a technical difference in the inoculation. 4. Because it requires a strong force, the doctor will hurt the palm with the needle. Some doctors use protective methods such as boards and cloths on their hands. 5. Because the inoculum must be evenly applied to the skin beforehand, it may flow over the skin.
  • Patent Document 1 In order to reduce the defects of the BCG inoculation tube needle, the technology of a BCG inoculation tube needle with a longer needle tip has been published (Patent Document 1).
  • the conventional BCG inoculation tube needle requires force and technology because the needle tip does not come out of the tube, and it is difficult to evenly and reliably inject the needle to inoculate it. There was a problem in that the number could not be obtained, and the inoculated child had great pain and pain.
  • the base of the microneedle is selected from the group consisting of polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyglycolic acid and mixtures thereof, [1] to [4] Needle.
  • a support film wherein the support film is larger than the area of the substrate of the microneedle, and the microneedle patch in which the microneedle array is adhesively fixed to one surface of the support film, and It consists of a circular microneedle patch case made of thermoplastic polymer,
  • the support film is made of a material that can be heat-sealed with the thermoplastic polymer,
  • the patch case holds the microneedle array in a ring by heat-sealing with the support film,
  • a tube needle for transdermal vaccination wherein the width of the skin contact surface of the patch case is 2 mm or more.
  • the microneedle base is selected from the group consisting of polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyglycolic acid, and mixtures thereof, in any one of [6] to [9].
  • Tube needle. [11] The tubular needle according to any of [6] to [10], wherein the material for the support film is a thermoplastic polymer film or a nonwoven fabric.
  • the percutaneous vaccination tube needle of the present invention By inserting the percutaneous vaccination tube needle of the present invention into the skin by using a general microneedle patch applicator, it is possible to perform vaccination by simply bringing the patch case into light contact with the skin. Does not require power. 2. The inoculated child does not have to feel the pain of pressing the needle strongly with only slight pain of the needle. 3. The doctor can inoculate the palm of the tube without hurting the palm, and is free from heavy labor. 4. Can be inoculated evenly and accurately. 5, the difference in inoculation technology will disappear.
  • FIG. 1 is a diagram showing an embodiment of a microneedle patch case usable in the present invention.
  • FIG. 2 is a plan view showing an embodiment of a BCG vaccination tube needle and a patch holder.
  • FIG. 3 is a diagram showing a state before attachment of the BCG vaccination tube needle and the applicator.
  • FIG. 4 shows one embodiment of a BCG vaccination tube needle attached to an applicator.
  • FIG. 5 is a photograph of a conventional BCG tube needle.
  • FIG. 6 is a diagram showing an outline of a test using a parafilm laminate as a skin model.
  • the percutaneous vaccination needle of the present invention comprises a particular microneedle array.
  • the BCG vaccine corresponds to the transdermal vaccine, but any inoculation method in which the surface of the skin is scratched with a needle or the like and the vaccine is absorbed from the scratch can be used without being limited to BCG.
  • the needle length of the microneedle used in the needle for transdermal vaccination of the present invention is 0.2 to 1.0 mm, and may be 0.4 to 1.0 mm.
  • the needle density is 20 to 400 needles/cm 2 .
  • the microneedles stand on the substrate, the density thereof may be uniform over the entire surface of the substrate, or may be sparse in the central portion of the substrate and dense in the peripheral portion. Further, donut-shaped needles may be present in which the microneedles do not exist in the central portion of the substrate.
  • the central part of the substrate is inside the circumference of 8/10 to 3/10 of the radius from the center of the circle, and the peripheral part of the substrate is outside the central part. It is preferable.
  • the central portion of the substrate is inside the four sides connecting the four points from the center of the quadrangle to the points 8/10 to 3/10 of the diagonal line, and the peripheral portion of the substrate is the central portion. It is preferably outside the part.
  • triangles and polygons of pentagons or more they are set according to quadrangles.
  • the microneedles form a microneedle array together with the substrate, and the area of the substrate is 0.6 to 2.0 cm 2 .
  • the shape of the substrate is usually circular or rectangular.
  • the needle length is preferably 0.5 to 0.8 mm.
  • the needle length may be uniform, or may be high in the central portion and low in the peripheral portion.
  • the configuration may be 0.8 mm at the central portion and 0.6 mm at the peripheral portion.
  • the needle density is preferably 40 to 200 needles/cm 2 .
  • the area of the substrate is preferably 0.8 to 1.5 cm 2 .
  • the diameter of the apex of the needle tip is about 20 ⁇ m or more and about 50 ⁇ m or less.
  • the needle is inserted from the surface of the skin, and it is preferable that the volume of the skin is 0.2 mm 3 or more on the assumption that the volume of the needle inside the skin at the time of insertion remains within the skin (depth is within 200 ⁇ m).
  • a material that can be used for conventional microneedles can be used, but a thermoplastic polymer is preferable from the viewpoint of mass production possibility, and further biosafety is ensured.
  • Materials are preferred. Examples thereof include polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyglycolic acid, polyethylene terephthalate, nylon, polycarbonate, COP (cyclic olefin polymer) and mixtures thereof, and more preferred are polylactic acid and poly(lactic acid). -Glycolic acid) copolymers, polyglycolic acid and mixtures thereof.
  • the base of the microneedle is hyaluronic acid, dextran, polyvinylpyrrolidone, sodium chondroitin sulfate, hydroxypropylcellulose, polyvinyl, as long as it has the property of not being completely dissolved for at least 15 minutes after being molded into microneedles and piercing the skin. It may be alcohol or a mixture thereof.
  • the needle for transdermal vaccination of the present invention comprises the above microneedle array.
  • an adhesive tape may be attached to the back surface of the microneedle array, that is, a microneedle patch.
  • the microneedle patch may be a backside adhesive tape to which a support film is further adhered. The support film will be described later.
  • the needle for transdermal vaccination can be manufactured using a mold (mold). Although press molding and injection molding are possible, injection molding is preferable from the viewpoint of mass molding.
  • a needle for percutaneous vaccination based on an injection-moldable thermoplastic polymer may be manufactured by injection-molding the base using a mold (for example, Japanese Patent Laid-Open No. 2003-238347, [0017]. , [0018]).
  • a mold for example, Japanese Patent Laid-Open No. 2003-238347, [0017]. , [0018]).
  • As the injection molding die stainless steel, heat resistant steel, superalloy, or the like can be used.
  • a typical mold has notches corresponding to 20 to 400 microneedles per square cm to create the shape of microneedles.
  • a fine processing means such as a grinder can be used to make the cut portion.
  • the percutaneous vaccination tube needle of the present invention comprises a microneedle patch and a microneedle patch case.
  • the microneedle array includes the microneedle array, that is, the transdermal vaccination needle of the present invention, and a support film.
  • the support film supports the microneedle array and is larger than the substrate area of the microneedle.
  • the microneedle array is adhesively fixed to one side of the support film. Adhesion between the microneedle array and the support film can be performed via an adhesive or an adhesive tape.
  • the surface is defined as the surface of the support film and the opposite surface is defined as the back surface.
  • the peripheral portion of the back surface of the support is heat-sealed to the patch case.
  • the microneedle patch case is made of thermoplastic polymer.
  • thermoplastic polymer a polyolefin resin, polyvinyl chloride, polycarbonate, nylon resin, polyethylene terephthalate (PET) or the like can be used, but a polyolefin resin is preferable for one having a low heat molding temperature because molding is easy.
  • PET polyethylene terephthalate
  • polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and the like are preferable.
  • the accommodating portion is larger than the area (0.6 to 2.0 cm 2 ) of the substrate of the microneedle and can accommodate the substrate of the microneedle.
  • the microneedle patch case is annular as shown in FIG.
  • the support film thermally fused to the microneedle patch case is located at a predetermined distance from the skin contact surface.
  • the distance from the support film to the skin adhesive surface is 2 mm or more, preferably 2 mm or more and 20 mm or less.
  • the distance between the support film and the skin adhesive surface is indicated by the distance B in FIG. 1, and it is possible to reliably puncture the skin with the microneedles by adjusting this distance appropriately.
  • the support film is made of a material that can be heat-sealed with the thermoplastic polymer that is the material of the microneedle patch case.
  • a thermoplastic resin or a non-woven fabric is preferable, but the same material as the support film and the material of the patch case are desirable because the heat fusion is easy when the same type of resin is used.
  • the support film is, like the case, a polyolefin resin (polyethylene: melting point 140°C, polypropylene: melting point 180°C), polyvinyl chloride (melting point 280°C), nylon resin (melting point largely depends on the composition. , Polyethylene terephthalate (PET) (melting point: 270° C.), and the like.
  • the support film and the support non-woven fabric may use a single thermoplastic resin, but may be a laminate film which is a resin having different heat-sealing surfaces and adhesive surfaces.
  • the support film is a laminate film and the patch case is made of polyolefin, the back side of the support film is fused to the patch case, so the melting point in the support film is relatively low (preferably the melting point is 200°C or less. ), for example, polyolefins such as polyethylene and polypropylene are preferable, and the surface of the support film is preferably a thermoplastic polymer having a high melting point (preferably having a melting point of 200° C. or higher), for example, polyethylene terephthalate.
  • the heat fusion property is more suitable for the polyolefin, and it is clear that polyethylene terephthalate is more preferable than the polyolefin for applying the pressure-sensitive adhesive and holding it stably, due to the difference in polarities of the two polymers.
  • the tip of the sharp metal rod may be heated above the melting point of the thermoplastic polymer and pressed against the heat-sealing portion.
  • heat fusion to the melting point of the thermoplastic polymer or higher, heat fusion by high frequency heating, heat fusion by laser heating, and the like are also possible.
  • the microneedle patch case holds the microneedle patch inside the ring by heat fusion with the support film.
  • the ring of the microneedle patch case serves as the skin contact surface, and its width is 2 mm or more. More preferably, it is 3 mm or more and 10 mm or less.
  • the structure of a BCG vaccination needle is composed of 40 to 200 needles/cm 2 needle and a patch supporting the needle as shown in FIG.
  • the patch diameter is 1 cm.
  • the BCG vaccination needle is held in the patch case by the protective adhesive tape on the back surface, and becomes the BCG vaccination tube needle of the present invention.
  • the microneedle patch is held by the protective adhesive tape in the central portion of the patch case.
  • the above-mentioned needle for transdermal vaccination may be further stored in a holder.
  • the holder can protect the microneedles during transportation and storage.
  • the material of the holder may be the same as that of the patch case body, but a polyolefin resin is desirable for a material having a low heat molding temperature because molding is easy. Specifically, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and the like are preferable.
  • One embodiment of the holder is shown in FIG.
  • the needle for transdermal vaccination is sterilized and packaged as it is or in the holder.
  • Dermal needles for vaccination should be taken out from the sterile packaging and used in the microneedle patch applicator at the clinical site of vaccination.
  • An example of a microneedle applicator equipped with a BCG vaccination tube needle is shown in FIG.
  • the microneedle applicator suitable for transdermal vaccination is preferably driven by the impact force of a spring, an example of which is shown in FIG.
  • the microneedle applicator of FIG. 3 is composed of an applicator piston portion 6 and an applicator holding portion 7.
  • the applicator piston portion 6 has a BCG vaccination tube needle 5 attached to its tip. ..
  • the BCG vaccination needle is inserted into the skin by the compression/release mechanism of the spring in the applicator holding part 7.
  • the inoculator (doctor) holds the applicator holding part 7 with one hand and vertically presses the tip of the ring of the BCG vaccination tube needle 5 against the skin to which the BCG drug solution is applied to push the applicator holding part 7.
  • the spring is compressed and locked by the latch.
  • the applicator piston part 6 pushes the microneedle patch from the back side by the impact force of the spring, peeling off the fusion between the support film and the patch case, and the BCG vaccination needle ( Microneedles) reach inside the skin.
  • the impact force of the applicator is set so that the spring constant is optimized so that it is suitable for infants and children, and that it does not cause excessive pain.
  • the BCG drug solution is inoculated into the skin, but according to the present invention, a strong force is not required, and the inoculation can be performed easily, surely, and evenly inoculating.
  • the BCG vaccine is applied to the skin in advance, but an appropriate amount may be included in the microneedle array set in the applicator.
  • the microneedle array which is a BCG vaccination needle, may be immediately removed after being inserted into the skin, or the microneedle may be retained in the skin for a suitable time with a protective adhesive tape and then removed.
  • the number of inoculations is usually 2, and inoculate so that the circular marks on the patch case touch each other. When immunization against tuberculosis is induced by one inoculation, the number of one inoculation may be sufficient.
  • Example 1 BCG vaccination tube needle A microneedle array formed by injection-molding a needle having a needle length of 400 ⁇ m and made of 110 polyglycolic acid on a disk-shaped substrate having a diameter of 10 mm is used as a protective adhesive tape (adhesive is HiPAS( Acrylic type) adhesive, made by Cosmedy Pharmaceutical Co., Ltd.), and the support sheet on the back side of the protective adhesive tape is fused and fixed to the patch case shown in FIG. 1 to form a BCG vaccination tube needle.
  • the manufactured BCG vaccination tube needle was fixed to the applicator shown in FIG.
  • the applicator was a spring type, the spring constant was 0.427 N/mm, and the compression length was 40 mm.
  • Comparative Example 1 Conventional BCG tube needle
  • a plastic cylinder with a diameter of 2 cm at intervals of 4.5 mm, and the needle tip is almost at the same height as the edge of the cylinder. The photograph is shown in FIG.
  • the BCG vaccination tube needle of Example 1 was set in an applicator, pressed against the parafilm laminate, and shock-administered (FIG. 6).
  • the number of puncture marks from the top was observed and used as the puncture depth. If only the first sheet is inserted, the insertion is determined to be 130 ⁇ m, the second sheet up to 260 ⁇ m, and the third sheet is inserted up to 390 ⁇ m.
  • the administration was performed 3 times, and the penetration depth was 390 ⁇ m in each case. It was found that a stable compressive force was always obtained by using the applicator, and the penetration depth became stable depending on the microneedle length.

Abstract

Because the needle tips do not come out of the tube in a conventional BCG vaccine tube needle, strength and technique were necessary and it was difficult to easily, evenly and reliably insert needles and perform a vaccination, which resulted in the problems that it was not possible to achieve the sufficient number of needle marks that shows the inoculation effect and that the child being vaccinated experienced pain and distress. These problems are solved by adopting a microneedle patch case of a thermoplastic plastic as the BCG vaccination tube needle, and setting the needle length to 0.2-1.0 mm.

Description

BCG接種用マイクロニードルアレイMicroneedle array for BCG inoculation
 本発明は、経皮ワクチンの接種技術に関し、詳しくはBCGワクチンの投与技術に関する。 The present invention relates to a transdermal vaccine inoculation technique, and more particularly to a BCG vaccine administration technique.
 BCG接種管針を使用するには、管針をもって、翼状部で接種液を皮膚に均等に塗る。次に、針の部分の反対側が手のひらに当たるように管を握り、針を被接種児の皮膚に、翼状部が皮膚に接するまで力強く押し付けて接種する。 To use the BCG inoculation needle, hold the needle and apply the inoculum to the skin evenly on the wing. Then, squeeze the tube so that the opposite side of the needle touches the palm of the hand, and inoculate the needle against the skin of the inoculated child by pressing strongly against the skin until the pterygium contacts the skin.
 BCG接種管針は、1、針が管と同じ長さで、管から突出していないため、接種時に針を皮内に刺入させるには、強力な圧力を必要とする。2、強力な力が必要なため、被接種児は針のわずかな痛みよりも、管を強く押し付ける大きな痛みを味わうこととなる。3、力を要するために、9本の針に均等に力が加わらず、接種にムラを生じ易いという欠点があり、接種に技術差を生じる。4、強力な力を必要とするため、医師は接種管針をもつ手のひらを痛めるほどである。なかには、手に板、布などの防護法を使用している医師もある。5、接種液を皮膚に均等に事前に塗る必要があるため、それが皮膚上を流れかぶれることもある。 The BCG inoculation tube needle has the same length as the tube and does not protrude from the tube, so strong pressure is required to insert the needle into the skin during inoculation. 2. Because strong force is required, the inoculated child will experience more pain in pressing the tube strongly than slight pain in the needle. 3. Since the force is required, the force is not evenly applied to the 9 needles, and the inoculation is likely to be uneven, resulting in a technical difference in the inoculation. 4. Because it requires a strong force, the doctor will hurt the palm with the needle. Some doctors use protective methods such as boards and cloths on their hands. 5. Because the inoculum must be evenly applied to the skin beforehand, it may flow over the skin.
 BCG接種管針の欠点を低減するため、針先を長くしたBCG接種管針の技術が公表されている(特許文献1)。  In order to reduce the defects of the BCG inoculation tube needle, the technology of a BCG inoculation tube needle with a longer needle tip has been published (Patent Document 1). 
特開2003-144545号公報JP-A-2003-144545
 従来のBCG接種管針は、管から針先が出ていないため、力と技術が必要で、均等に確実に針を刺入し接種することが困難であり、接種効果を示す十分な針痕数を得られない点、及び被接種児の痛み、苦痛が大きい点の課題があった。 The conventional BCG inoculation tube needle requires force and technology because the needle tip does not come out of the tube, and it is difficult to evenly and reliably inject the needle to inoculate it. There was a problem in that the number could not be obtained, and the inoculated child had great pain and pain.
 上記課題を解決するため、本発明者らは、経皮吸収製剤として有望なマイクロニードルアレイの特性をBCG接種管針に応用すべく鋭意検討した結果、本発明を完成するに至った。
 本発明は、以下に示す通りである。
〔1〕 マイクロニードルの針長さは0.2~1.0mmであり、針密度は20~400本/cmであり、基板の面積は0.6~2.0cmであるマイクロニードルアレイを含む、経皮ワクチン接種用針。
〔2〕 前記針密度が前記基板の中央部において前記基板の周辺部よりも小さい、〔1〕に記載の針。
〔3〕 経皮ワクチンがBCGワクチンである、〔1〕又は〔2〕に記載の針。
〔4〕 経皮ワクチンがBCGワクチンであり、皮膚内挿入時の針体積が0.2mm以上である、〔3〕に記載の針。
〔5〕 マイクロニードルの基剤が、ポリ乳酸、ポリ(乳酸-グリコール酸)共重合体、ポリグリコール酸及びそれらの混合物からなる群より選ばれる、〔1〕~〔4〕のいずれかに記載の針。
〔6〕 マイクロニードルの針長さは0.2~1.0mmであり、針密度は20~400本/cmであり、基板の面積は0.6~2.0cmであるマイクロニードルアレイ及び支持体フィルムを含み、該支持体フィルムは該マイクロニードルの基板の面積よりも広く、該支持体フィルムの片面に該マイクロニードルアレイが接着固定されているマイクロニードルパッチ、ならびに、
 熱可塑性高分子を素材とする環状のマイクロニードルパッチケースからなり、
 該支持体フィルムは該熱可塑性高分子と熱融着可能な素材からなり、
 該パッチケースは該支持体フィルムと熱融着していることによって該マイクロニードルアレイを環内に保持しており、
 該パッチケースの皮膚接触面の幅は2mm以上である、経皮ワクチン接種用管針。
〔7〕 前記針密度が前記基板の中央部において前記基板の周辺部よりも小さい、〔6〕に記載の管針。
〔8〕 経皮ワクチンがBCGワクチンである、〔6〕又は〔7〕に記載の管針。
〔9〕 前記支持体フィルムから皮膚接触面の距離が1mm以上である、〔6〕~〔8〕のいずれかに記載の管針。
〔10〕 マイクロニードルの基剤が、ポリ乳酸、ポリ(乳酸-グリコール酸)共重合体、ポリグリコール酸及びそれらの混合物からなる群より選ばれる、〔6〕~〔9〕のいずれかに記載の管針。
〔11〕 前記支持体フィルムの素材が熱可塑性高分子フィルム又は不織布である、〔6〕~〔10〕のいずれかに記載の管針。
〔12〕 アプリケータにセットしたマイクロニードルアレイに適量の経皮ワクチンを含ませて接種するための経皮ワクチン接種用管針。
〔13〕 経皮ワクチンがBCGワクチンである、〔12〕に記載の管針。
In order to solve the above-mentioned problems, the present inventors have conducted extensive studies to apply the characteristics of a microneedle array, which is promising as a percutaneous absorption preparation, to a BCG inoculation tube needle, and have completed the present invention.
The present invention is as described below.
[1] A microneedle array in which the needle length of the microneedle is 0.2 to 1.0 mm, the needle density is 20 to 400 needles/cm 2 , and the area of the substrate is 0.6 to 2.0 cm 2. A needle for transdermal vaccination, comprising:
[2] The needle according to [1], wherein the needle density is smaller in the central portion of the substrate than in the peripheral portion of the substrate.
[3] The needle according to [1] or [2], wherein the transdermal vaccine is a BCG vaccine.
[4] The needle according to [3], wherein the transdermal vaccine is a BCG vaccine and the needle volume when inserted into the skin is 0.2 mm 3 or more.
[5] The base of the microneedle is selected from the group consisting of polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyglycolic acid and mixtures thereof, [1] to [4] Needle.
[6] A microneedle array in which the needle length of the microneedle is 0.2 to 1.0 mm, the needle density is 20 to 400 needles/cm 2 , and the area of the substrate is 0.6 to 2.0 cm 2. And a support film, wherein the support film is larger than the area of the substrate of the microneedle, and the microneedle patch in which the microneedle array is adhesively fixed to one surface of the support film, and
It consists of a circular microneedle patch case made of thermoplastic polymer,
The support film is made of a material that can be heat-sealed with the thermoplastic polymer,
The patch case holds the microneedle array in a ring by heat-sealing with the support film,
A tube needle for transdermal vaccination, wherein the width of the skin contact surface of the patch case is 2 mm or more.
[7] The tube needle according to [6], wherein the needle density is smaller in the central portion of the substrate than in the peripheral portion of the substrate.
[8] The tube needle according to [6] or [7], wherein the transdermal vaccine is a BCG vaccine.
[9] The tubular needle according to any one of [6] to [8], wherein the distance from the support film to the skin contact surface is 1 mm or more.
[10] The microneedle base is selected from the group consisting of polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyglycolic acid, and mixtures thereof, in any one of [6] to [9]. Tube needle.
[11] The tubular needle according to any of [6] to [10], wherein the material for the support film is a thermoplastic polymer film or a nonwoven fabric.
[12] A tube needle for percutaneous vaccination for inoculating a microneedle array set in an applicator with an appropriate amount of percutaneous vaccine.
[13] The tube needle according to [12], wherein the transdermal vaccine is a BCG vaccine.
 本発明の経皮ワクチン接種用管針を、一般的なマイクロニードルパッチアプリケータを用いて皮膚に刺し入れすることにより、1、パッチケースを軽く皮膚に接触させるだけでワクチン接種ができ、強力な力を必要としない。2、被接種児は針の僅かな痛みだけで、強力に管針を押し付ける痛みを感じなくてよい。3、医師は管で手掌を痛めず接種でき、重労働から解放される。4、均等に正確に接種できる。5、接種技術の差がなくなる。 By inserting the percutaneous vaccination tube needle of the present invention into the skin by using a general microneedle patch applicator, it is possible to perform vaccination by simply bringing the patch case into light contact with the skin. Does not require power. 2. The inoculated child does not have to feel the pain of pressing the needle strongly with only slight pain of the needle. 3. The doctor can inoculate the palm of the tube without hurting the palm, and is free from heavy labor. 4. Can be inoculated evenly and accurately. 5, the difference in inoculation technology will disappear.
図1は、本発明で使用可能なマイクロニードルパッチケースの一実施形態を示す図である。FIG. 1 is a diagram showing an embodiment of a microneedle patch case usable in the present invention. 図2は、BCGワクチン接種用管針とパッチホルダーの一実施形態を示す平面図である。FIG. 2 is a plan view showing an embodiment of a BCG vaccination tube needle and a patch holder. 図3は、BCGワクチン接種用管針とアプリケータとの取り付け前の状態を示す図である。FIG. 3 is a diagram showing a state before attachment of the BCG vaccination tube needle and the applicator. 図4は、アプリケータに取り付けられたBCGワクチン接種用管針の一実施形態を示す図である。FIG. 4 shows one embodiment of a BCG vaccination tube needle attached to an applicator. 図5は、従来のBCG管針の写真である。FIG. 5 is a photograph of a conventional BCG tube needle. 図6は、パラフィルム積層物を皮膚モデルとして用いた試験の概略を示す図である。FIG. 6 is a diagram showing an outline of a test using a parafilm laminate as a skin model.
 経皮ワクチン接種用針
 本発明の経皮ワクチン接種用針は、特定のマイクロニードルアレイを含む。経皮ワクチンは、BCGワクチンが該当するが、皮膚の表面に針などで傷をつけて、そこからワクチンを吸収させる接種方法であれば、BCGに限らず使用することができる。
Percutaneous Vaccination Needle The percutaneous vaccination needle of the present invention comprises a particular microneedle array. The BCG vaccine corresponds to the transdermal vaccine, but any inoculation method in which the surface of the skin is scratched with a needle or the like and the vaccine is absorbed from the scratch can be used without being limited to BCG.
 本発明の経皮ワクチン接種用針に使用されるマイクロニードルの針長さは0.2~1.0mmであり、0.4~1.0mmであってもよい。針密度は20~400本/cmである。マイクロニードルは基板の上に立っているが、その密度は、基板の全面において均一であっても、基板の中央部が疎であり周辺部が密な構成であってもよい。さらには、基板の中央部にはマイクロニードルが存在しないドーナッツ型に針が存在するものであってもよい。
 基板の面が円形の場合、該基板の中央部は、該円形の中心から半径の8/10乃至3/10の円周の内部であり、該基板の周辺部は該中央部の外側であることが好ましい。楕円の場合は、円に準じて設定される。
 基板の面が四角形の場合、該基板の中央部は、該四角形の中心から対角線の8/10乃至3/10の地点の4点を結ぶ四辺の内部であり、該基板の周辺部は該中央部の外側であることが好ましい。三角形及び、五角形以上の多角形の場合は、四角形に準じて設定される。
 マイクロニードルは、基板とともにマイクロニードルアレイを構成し、基板の面積は0.6~2.0cmである。基板の形状は、通常円形又は矩形である。
 前記針長さは、0.5~0.8mmであることが好ましい。針長さは均一であっても、中央部で高く、周辺部で低い構成であってもよい。例えば、中央部で0.8mm、周辺部で0.6mmである構成でもよい。前記針密度は、40~200本/cmであることが好ましい。前記基板の面積は0.8~1.5cmであることが好ましい。
 前記針先端部の頂点の直径は、約20μm以上約50μm以下である。針は皮膚表面から挿入されるが、挿入時の皮膚内針体積を針が皮内にとどまる(深さが200μm以内)ことを前提として皮膚内体積は0.2mm以上であることが好ましい。
The needle length of the microneedle used in the needle for transdermal vaccination of the present invention is 0.2 to 1.0 mm, and may be 0.4 to 1.0 mm. The needle density is 20 to 400 needles/cm 2 . Although the microneedles stand on the substrate, the density thereof may be uniform over the entire surface of the substrate, or may be sparse in the central portion of the substrate and dense in the peripheral portion. Further, donut-shaped needles may be present in which the microneedles do not exist in the central portion of the substrate.
When the surface of the substrate is circular, the central part of the substrate is inside the circumference of 8/10 to 3/10 of the radius from the center of the circle, and the peripheral part of the substrate is outside the central part. It is preferable. In the case of an ellipse, it is set according to a circle.
When the surface of the substrate is a quadrangle, the central portion of the substrate is inside the four sides connecting the four points from the center of the quadrangle to the points 8/10 to 3/10 of the diagonal line, and the peripheral portion of the substrate is the central portion. It is preferably outside the part. In the case of triangles and polygons of pentagons or more, they are set according to quadrangles.
The microneedles form a microneedle array together with the substrate, and the area of the substrate is 0.6 to 2.0 cm 2 . The shape of the substrate is usually circular or rectangular.
The needle length is preferably 0.5 to 0.8 mm. The needle length may be uniform, or may be high in the central portion and low in the peripheral portion. For example, the configuration may be 0.8 mm at the central portion and 0.6 mm at the peripheral portion. The needle density is preferably 40 to 200 needles/cm 2 . The area of the substrate is preferably 0.8 to 1.5 cm 2 .
The diameter of the apex of the needle tip is about 20 μm or more and about 50 μm or less. The needle is inserted from the surface of the skin, and it is preferable that the volume of the skin is 0.2 mm 3 or more on the assumption that the volume of the needle inside the skin at the time of insertion remains within the skin (depth is within 200 μm).
 マイクロニードルの基剤は、基本的には、従来のマイクロニードルに使用可能な材料を用いることができるが、大量生産可能性の観点から熱可塑性高分子が好ましく、さらに生体安全性が確保された材料が好ましい。ポリ乳酸、ポリ(乳酸-グリコール酸)共重合体、ポリグリコール酸、ポリエチレンテレフタレート、ナイロン、ポリカーボネート、COP(サイクリックオレフィンポリマー)及びそれらの混合物が挙げられ、より好ましくは、ポリ乳酸、ポリ(乳酸-グリコール酸)共重合体、ポリグリコール酸及びそれらの混合物である。
 あるいは、マイクロニードルの基剤は、マイクロニードルに成型し皮膚に刺し入れした後に少なくとも15分間は完全溶解しない性質を有する限りは、ヒアルロン酸、デキストラン、ポリビニルピロリドン、コンドロイチン硫酸ナトリウム、ヒドロキシプロピルセルロース、ポリビニルアルコール、又はそれらの混合物であってもよい。
As a base for the microneedles, basically, a material that can be used for conventional microneedles can be used, but a thermoplastic polymer is preferable from the viewpoint of mass production possibility, and further biosafety is ensured. Materials are preferred. Examples thereof include polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyglycolic acid, polyethylene terephthalate, nylon, polycarbonate, COP (cyclic olefin polymer) and mixtures thereof, and more preferred are polylactic acid and poly(lactic acid). -Glycolic acid) copolymers, polyglycolic acid and mixtures thereof.
Alternatively, the base of the microneedle is hyaluronic acid, dextran, polyvinylpyrrolidone, sodium chondroitin sulfate, hydroxypropylcellulose, polyvinyl, as long as it has the property of not being completely dissolved for at least 15 minutes after being molded into microneedles and piercing the skin. It may be alcohol or a mixture thereof.
 本発明の経皮ワクチン接種用針は、上記マイクロニードルアレイからなる。取り扱い易さの観点から、上記マイクロニードルアレイの背面に粘着テープが取り付けられたものであってもよく、すなわち、マイクロニードルパッチであってもよい。マイクロニードルパッチは、背面の粘着テープにさらに支持体フィルムが接着したものであってもよい。支持体フィルムについては、後述する。 The needle for transdermal vaccination of the present invention comprises the above microneedle array. From the viewpoint of ease of handling, an adhesive tape may be attached to the back surface of the microneedle array, that is, a microneedle patch. The microneedle patch may be a backside adhesive tape to which a support film is further adhered. The support film will be described later.
 経皮ワクチン接種用針の製法
 経皮ワクチン接種用針は、鋳型(金型)を用いて製造することができる。プレス成形、射出成形などが可能であるが、射出成形が大量成形の観点からは望ましい。射出成形可能な熱可塑性高分子を基剤とする経皮ワクチン接種用針は、基剤を金型を用いて射出成形し製造すればよい(例えば、特開2003-238347号公報、[0017]、[0018]に記載の方法)。射出成型用金型は、ステンレス鋼、耐熱鋼、超合金等を用いることができる。典型的な金型はマイクロニードルの形状を作るため1平方cm当たり20個~400個のマイクロニードルに対応する切り込み部分を有する。切り込み部分を作るにはグラインダー等の微細加工手段を使用できる。
Method for manufacturing needle for transdermal vaccination The needle for transdermal vaccination can be manufactured using a mold (mold). Although press molding and injection molding are possible, injection molding is preferable from the viewpoint of mass molding. A needle for percutaneous vaccination based on an injection-moldable thermoplastic polymer may be manufactured by injection-molding the base using a mold (for example, Japanese Patent Laid-Open No. 2003-238347, [0017]. , [0018]). As the injection molding die, stainless steel, heat resistant steel, superalloy, or the like can be used. A typical mold has notches corresponding to 20 to 400 microneedles per square cm to create the shape of microneedles. A fine processing means such as a grinder can be used to make the cut portion.
 経皮ワクチン接種用管針
 本発明の経皮ワクチン接種用管針は、マイクロニードルパッチならびにマイクロニードルパッチケースからなる。
Percutaneous Vaccination Tube Needle The percutaneous vaccination tube needle of the present invention comprises a microneedle patch and a microneedle patch case.
 1)マイクロニードルパッチ
 前記マイクロニードルアレイ、すなわち、本発明の経皮ワクチン接種用針、及び支持体フィルムを含む。支持体フィルムはマイクロニードルアレイを支持し、マイクロニードルの基板の面積よりも広い。マイクロニードルアレイは、支持体フィルムの片面に接着固定されている。マイクロニードルアレイと支持体フィルムとの接着は、粘着剤又は粘着テープを介して行うことができる。
 本明細書において、支持体フィルムにマイクロニードルアレイを接着固定したとき、その面を支持体フィルムの表面と、その逆の面を背面と定義する。本発明においては、支持体の背面の周囲部分はパッチケースに熱融着される。
1) Microneedle patch The microneedle array includes the microneedle array, that is, the transdermal vaccination needle of the present invention, and a support film. The support film supports the microneedle array and is larger than the substrate area of the microneedle. The microneedle array is adhesively fixed to one side of the support film. Adhesion between the microneedle array and the support film can be performed via an adhesive or an adhesive tape.
In the present specification, when the microneedle array is adhesively fixed to the support film, the surface is defined as the surface of the support film and the opposite surface is defined as the back surface. In the present invention, the peripheral portion of the back surface of the support is heat-sealed to the patch case.
 2)マイクロニードルパッチケース
 マイクロニードルパッチケースは、熱可塑性高分子を素材とする。熱可塑性高分子としては、ポリオレフィン系樹脂、ポリ塩化ビニル、ポリカーボネート、ナイロン系樹脂、ポリエチレンテレフタレート(PET)等を用いうるが、加熱成形温度が低いものは成形が容易なので、ポリオレフィン系樹脂が望ましい。具体的にはポリエチレン、ポリプロピレン、エチレン‐プロピレン共重合体、エチレン‐酢ビ共重合体、等が好適である。
 マイクロニードルパッチケースは、マイクロニードルパッチをケース内に収納し保持するため、収納部はマイクロニードルの基板の面積(0.6~2.0cm)よりも大きく、マイクロニードルの基板を収納可能な形状である。典型的には、マイクロニードルパッチケースは、図1に示すように環状である。
2) Microneedle patch case The microneedle patch case is made of thermoplastic polymer. As the thermoplastic polymer, a polyolefin resin, polyvinyl chloride, polycarbonate, nylon resin, polyethylene terephthalate (PET) or the like can be used, but a polyolefin resin is preferable for one having a low heat molding temperature because molding is easy. Specifically, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and the like are preferable.
Since the microneedle patch case accommodates and holds the microneedle patch in the case, the accommodating portion is larger than the area (0.6 to 2.0 cm 2 ) of the substrate of the microneedle and can accommodate the substrate of the microneedle. The shape. Typically, the microneedle patch case is annular as shown in FIG.
 3)マイクロニードルパッチとマイクロニードルパッチケースとの熱融着
 マイクロニードルパッチケースに熱融着される支持体フィルムは、皮膚接触面から所定の距離の位置にある。支持体フィルムから皮膚接着面の距離は、2mm以上であり、好ましくは2mm以上20mm以下である。支持体フィルムと皮膚接着面との距離は、図1においてBの距離で示され、この距離を適切に調節することにより、マイクロニードルを確実に皮膚に穿刺することが可能である。
3) Thermal fusion of microneedle patch and microneedle patch case The support film thermally fused to the microneedle patch case is located at a predetermined distance from the skin contact surface. The distance from the support film to the skin adhesive surface is 2 mm or more, preferably 2 mm or more and 20 mm or less. The distance between the support film and the skin adhesive surface is indicated by the distance B in FIG. 1, and it is possible to reliably puncture the skin with the microneedles by adjusting this distance appropriately.
 支持体フィルムは、マイクロニードルパッチケースの素材である熱可塑性高分子と熱融着可能な素材からなる。熱可塑性樹脂又は不織布が好ましいが、熱融着は同一系統の樹脂であると融着が容易であるので、支持体フィルムの素材とパッチケースの素材と同一のものが望ましい。支持体フィルムは、具体的には、ケースと同様に、ポリオレフィン系樹脂(ポリエチレン:融点140℃、ポリプロピレン:融点180℃)、ポリ塩化ビニル(融点280℃)、ナイロン系樹脂(融点は組成により大幅に変動)、ポリエチレンテレフタレート(PET)(融点:270℃)、等を用いうる。支持体フィルム、支持体不織布は単独の熱可塑性樹脂を用いてもよいが、ラミネートフィルムであって熱融着面と粘着面が異なる樹脂であってもよい。支持体フィルムがラミネートフィルムであってパッチケースをポリオレフィンで作製する場合、支持体フィルムの背面側はパッチケースに融着されるので支持体フィルムにおける融点が比較的低い(好ましくは融点が200℃以下)、例えばポリエチレン、ポリプロピレンなどのポリオレフィンが好ましく、支持体フィルムの表面は融点が高い熱可塑性高分子(好ましくは融点が200℃以上)、例えばポリエチレンテレフタレートが好ましい。
 この場合、熱融着性はポリオレフィンにより好適となり、粘着剤を塗布して安定に保持するためにはポリオレフィンよりもポリエチレンテレフタレートがより好ましいことは、両高分子の極性の異なりにより明らかである。
The support film is made of a material that can be heat-sealed with the thermoplastic polymer that is the material of the microneedle patch case. A thermoplastic resin or a non-woven fabric is preferable, but the same material as the support film and the material of the patch case are desirable because the heat fusion is easy when the same type of resin is used. Specifically, the support film is, like the case, a polyolefin resin (polyethylene: melting point 140°C, polypropylene: melting point 180°C), polyvinyl chloride (melting point 280°C), nylon resin (melting point largely depends on the composition. , Polyethylene terephthalate (PET) (melting point: 270° C.), and the like. The support film and the support non-woven fabric may use a single thermoplastic resin, but may be a laminate film which is a resin having different heat-sealing surfaces and adhesive surfaces. When the support film is a laminate film and the patch case is made of polyolefin, the back side of the support film is fused to the patch case, so the melting point in the support film is relatively low (preferably the melting point is 200°C or less. ), for example, polyolefins such as polyethylene and polypropylene are preferable, and the surface of the support film is preferably a thermoplastic polymer having a high melting point (preferably having a melting point of 200° C. or higher), for example, polyethylene terephthalate.
In this case, the heat fusion property is more suitable for the polyolefin, and it is clear that polyethylene terephthalate is more preferable than the polyolefin for applying the pressure-sensitive adhesive and holding it stably, due to the difference in polarities of the two polymers.
 マイクロニードルパッチとパッチケースとの熱融着は特別な方法が必要ではなく、とがった金属棒の先端を熱可塑性高分子の融点以上に加熱して熱融着部へ押し付ければよい。熱可塑性高分子の融点以上への加熱融着に関してはその他、高周波加熱による熱融着、レーザー加熱による熱融着等も可能である。 No special method is required for heat-sealing the microneedle patch and the patch case, and the tip of the sharp metal rod may be heated above the melting point of the thermoplastic polymer and pressed against the heat-sealing portion. Regarding heat fusion to the melting point of the thermoplastic polymer or higher, heat fusion by high frequency heating, heat fusion by laser heating, and the like are also possible.
 マイクロニードルパッチケースは、図2に示すように、支持体フィルムと熱融着することによってマイクロニードルパッチを環内部に保持する。 As shown in FIG. 2, the microneedle patch case holds the microneedle patch inside the ring by heat fusion with the support film.
 このようにして製造された経皮ワクチン接種用管針において、マイクロニードルパッチケースの環が皮膚接触面となり、その幅は2mm以上である。より好ましくは、3mm以上10mm以下である。 In the thus manufactured tube needle for transdermal vaccination, the ring of the microneedle patch case serves as the skin contact surface, and its width is 2 mm or more. More preferably, it is 3 mm or more and 10 mm or less.
 本発明の実施の形態の一例について説明すると、BCGワクチン接種用針の構造は図3のごとく、40~200本/cmの針とそれを支えるパッチとからなる。パッチ直径は1cmである。BCGワクチン接種用針は背面の保護粘着テープによりパッチケースに保持され、本発明のBCGワクチン接種用管針となる。図3においては、パッチケースの中央部にマイクロニードルパッチが保護粘着テープにより保持されている。 Explaining an example of the embodiment of the present invention, the structure of a BCG vaccination needle is composed of 40 to 200 needles/cm 2 needle and a patch supporting the needle as shown in FIG. The patch diameter is 1 cm. The BCG vaccination needle is held in the patch case by the protective adhesive tape on the back surface, and becomes the BCG vaccination tube needle of the present invention. In FIG. 3, the microneedle patch is held by the protective adhesive tape in the central portion of the patch case.
 前記経皮ワクチン接種用管針は、さらにホルダーに収納されていてもよい。ホルダーは、運送、保管の際にマイクロニードルを保護することができる。ホルダーの材料は、パッチケース本体と同様の材料を用いうるが、加熱成形温度が低いものは成形が容易なので、ポリオレフィン系樹脂が望ましい。具体的にはポリエチレン、ポリプロピレン、エチレン‐プロピレン共重合体、エチレン‐酢ビ共重合体、等が好適である。ホルダーの一実施形態を図3に示す。 The above-mentioned needle for transdermal vaccination may be further stored in a holder. The holder can protect the microneedles during transportation and storage. The material of the holder may be the same as that of the patch case body, but a polyolefin resin is desirable for a material having a low heat molding temperature because molding is easy. Specifically, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and the like are preferable. One embodiment of the holder is shown in FIG.
 経皮ワクチン接種用管針は、そのままで、あるいはホルダーに収納した状態で滅菌包装される。 The needle for transdermal vaccination is sterilized and packaged as it is or in the holder.
 経皮ワクチン接種用管針は、ワクチン接種の臨床現場で、滅菌包装から取り出し、マイクロニードルパッチアプリケータに装着して使用する。BCGワクチン接種用管針が装着されたマイクロニードルアプリケータの一例を図4に示す。経皮ワクチン接種に適するマイクロニードルアプリケータは、バネの衝撃力によって駆動するものが好ましく、図3に一例を示す。図3のマイクロニードルアプリケータは、アプリケータピストン部6とアプリケータ保持部7から構成され、図4では、アプリケータピストン部6は、その先端にBCGワクチン接種用管針5を装着している。 Dermal needles for vaccination should be taken out from the sterile packaging and used in the microneedle patch applicator at the clinical site of vaccination. An example of a microneedle applicator equipped with a BCG vaccination tube needle is shown in FIG. The microneedle applicator suitable for transdermal vaccination is preferably driven by the impact force of a spring, an example of which is shown in FIG. The microneedle applicator of FIG. 3 is composed of an applicator piston portion 6 and an applicator holding portion 7. In FIG. 4, the applicator piston portion 6 has a BCG vaccination tube needle 5 attached to its tip. ..
 図4において、アプリケータ保持部7内のバネの圧縮・解放機構でBCGワクチン接種用針を皮膚に刺し入れる。接種者(医師)は、アプリケータ保持部7を片手で握り、BCGワクチン接種用管針5の環の先端をBCG薬液が塗布された皮膚に垂直に押し当ててアプリケータ保持部7を押していくと、バネが圧縮されてラッチで係止する。トリガー等でラッチの係止を解除することで、バネの衝撃力によりアプリケータピストン部6がマイクロニードルパッチを背面から押して支持体フィルムとパッチケースの融着を引き剥がし、BCGワクチン接種用針(マイクロニードル)を皮内に到達させる。アプリケータの衝撃力は、乳幼児に適当なようにバネ定数を最適化し、過度の痛みを与えないように設定する。本操作によりBCG薬液が皮内に接種されるが、本発明によれば、強力な力を必要とせず、接種行為を容易に、確実に、均等接種可能にする。 In FIG. 4, the BCG vaccination needle is inserted into the skin by the compression/release mechanism of the spring in the applicator holding part 7. The inoculator (doctor) holds the applicator holding part 7 with one hand and vertically presses the tip of the ring of the BCG vaccination tube needle 5 against the skin to which the BCG drug solution is applied to push the applicator holding part 7. Then, the spring is compressed and locked by the latch. By unlocking the latch with a trigger or the like, the applicator piston part 6 pushes the microneedle patch from the back side by the impact force of the spring, peeling off the fusion between the support film and the patch case, and the BCG vaccination needle ( Microneedles) reach inside the skin. The impact force of the applicator is set so that the spring constant is optimized so that it is suitable for infants and children, and that it does not cause excessive pain. By this operation, the BCG drug solution is inoculated into the skin, but according to the present invention, a strong force is not required, and the inoculation can be performed easily, surely, and evenly inoculating.
 BCGワクチンは、事前に皮膚に塗布されるが、アプリケータにセットしたマイクロニードルアレイに適量を含ませてもよい。BCGワクチン接種用針であるマイクロニードルアレイを皮膚に刺し入れ後、すぐに取り除いてもよく、保護粘着テープでマイクロニードルを適当な時間皮膚内に留め、その後剥がしてもよい。接種数は通常2箇であり、パッチケースの円跡が相互に接するように接種する。1箇の接種で結核に対する免疫が誘導される場合は、1箇の接種数でもよい。 The BCG vaccine is applied to the skin in advance, but an appropriate amount may be included in the microneedle array set in the applicator. The microneedle array, which is a BCG vaccination needle, may be immediately removed after being inserted into the skin, or the microneedle may be retained in the skin for a suitable time with a protective adhesive tape and then removed. The number of inoculations is usually 2, and inoculate so that the circular marks on the patch case touch each other. When immunization against tuberculosis is induced by one inoculation, the number of one inoculation may be sufficient.
 本発明の実施例を以下に示すが、本発明は実施例に限定されるわけではない。 Examples of the present invention are shown below, but the present invention is not limited to the examples.
 実施例1
 BCGワクチン接種用管針
 針長さ400μmであり110本のポリグリコール酸からなる針を直径10mmの円板状基板に射出成形により形成させたマイクロニードルアレイを、保護粘着テープ(粘着剤はHiPAS(アクリル系)粘着剤、コスメディ製薬製)上に粘着固定し、さらに保護粘着テープの背面にある支持体シートを、図1に示すパッチケースに融着固定して、BCGワクチン接種用管針を製造した。
 製造したBCGワクチン接種用管針を、図3に示すアプリケータに固定した。アプリケータはバネ式であり、バネ定数は0.427N/mm、圧縮長さは40mmであった。
Example 1
BCG vaccination tube needle A microneedle array formed by injection-molding a needle having a needle length of 400 μm and made of 110 polyglycolic acid on a disk-shaped substrate having a diameter of 10 mm is used as a protective adhesive tape (adhesive is HiPAS( Acrylic type) adhesive, made by Cosmedy Pharmaceutical Co., Ltd.), and the support sheet on the back side of the protective adhesive tape is fused and fixed to the patch case shown in FIG. 1 to form a BCG vaccination tube needle. Manufactured.
The manufactured BCG vaccination tube needle was fixed to the applicator shown in FIG. The applicator was a spring type, the spring constant was 0.427 N/mm, and the compression length was 40 mm.
 比較例1
 従来のBCG管針
 9本の細い針が直径2cmのプラスチック製円筒の中に4.5mm間隔で固定されており、針先は、円筒の縁とほぼ同じ高さになっている。写真を図5に示す。
Comparative Example 1
Conventional BCG tube needle Nine thin needles are fixed in a plastic cylinder with a diameter of 2 cm at intervals of 4.5 mm, and the needle tip is almost at the same height as the edge of the cylinder. The photograph is shown in FIG.
 パラフィルム積層物を皮膚モデルとして用いた試験
 押しつけ力の強弱による接種管針の皮膚内挿入深さに関して考察するために、モデル実験を行った。試料として、比較例1のBCG接種管針及び実施例1のBCGワクチン接種用管針(コスメディ製薬製マイクロニードルアレイを搭載)を用いた。モデル皮膚としてパラフィルム(厚さ:130μm)の積層物(8枚)を用いた。パラフィルムが皮膚モデルとして使用可能であることは以下の文献(9)によった。
(9) E. Larranneta, et al., A proposed model membrane and test method for microneedle insertion studies,Int. J. Pharmaceutics, 472,65-73(2014)
Test Using Parafilm Laminate as Skin Model A model experiment was conducted in order to discuss the depth of insertion of the inoculation needle into the skin depending on the strength of the pressing force. As a sample, the BCG inoculation tube needle of Comparative Example 1 and the BCG vaccination tube needle of Example 1 (having a microneedle array manufactured by Cosmedy Pharmaceutical Co., Ltd.) were used. As a model skin, a laminate (8 sheets) of parafilm (thickness: 130 μm) was used. Parafilm can be used as a skin model according to the following reference (9).
(9) E. Larranneta, et al., A proposed model membrane and test method for microneedle insertion studies, Int. J. Pharmaceutics, 472,65-73 (2014).
 実施例1のBCGワクチン接種用管針をアプリケータにセットし、パラフィルム積層物上に押し付けて衝撃投与した(図6)。投与後のパラフィルム積層物において、上から何枚まで刺入跡があるかを観察し、刺入深さとした。1枚目のみにあれば130μm、2枚目まであれば260μm、3枚目まであれば390μmの刺入と判断される。3回の投与を行ったが、いずれにおいても刺入深さは390μmであった。アプリケータを使用することによって安定な圧縮力が常に得られ、刺入深さはマイクロニードル長さに依存して安定した深さとなることがわかった。 The BCG vaccination tube needle of Example 1 was set in an applicator, pressed against the parafilm laminate, and shock-administered (FIG. 6). In the parafilm laminate after administration, the number of puncture marks from the top was observed and used as the puncture depth. If only the first sheet is inserted, the insertion is determined to be 130 μm, the second sheet up to 260 μm, and the third sheet is inserted up to 390 μm. The administration was performed 3 times, and the penetration depth was 390 μm in each case. It was found that a stable compressive force was always obtained by using the applicator, and the penetration depth became stable depending on the microneedle length.
 別途、BCG接種管針を島津製作所製引っ張り圧縮試験機を用いて図6と同様に設置し、押し付け力を変化させてモデル皮膚(パラフィルム/1枚厚さ=130μm)内に刺入される深さを測定した。
圧縮強さと針刺入深さを表1に示す。
Separately, a BCG inoculation tube needle is installed by using a tensile compression tester manufactured by Shimadzu Corporation in the same manner as in FIG. 6, and the pressing force is changed to be inserted into the model skin (parafilm/thickness=130 μm). The depth was measured.
Table 1 shows the compression strength and the needle penetration depth.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、BCG接種管針を押してのパラフィルムへの刺入挙動の結果は押し付け力の増大とともに皮膚刺入深さが増大することは明らかである。新生児の接種において皮内に針をとどめるためには刺入深さを1,000μm以下にする必要があり、接種管針の皮膚適用にあたり、医師の技術が必要であることが納得される。
 アプリケータを用いてマイクロニードルを皮膚投与することは、熟練度に左右されない新しいBCG接種法につながるものであり、医師、新生児、双方においてその恩恵を受けることができる。
From Table 1, it is clear that as a result of the behavior of inserting into the parafilm by pressing the BCG inoculation tube needle, the skin penetration depth increases as the pressing force increases. In order to keep the needle in the skin when inoculating a newborn baby, it is necessary to set the penetration depth to 1,000 μm or less, and it is understandable that a doctor's technique is necessary for applying the inoculation tube needle to the skin.
Skin administration of microneedles using an applicator leads to a new BCG inoculation method that is not dependent on skill, and both doctors and newborns can benefit from it.
 1 マイクロニードルパッチ
 2 保護粘着テープ
 3 パッチケース
 4 ホルダー
 5 BCGワクチン接種用管針
 6 アプリケータピストン部
 7 アプリケータ保持部
 
1 Microneedle patch 2 Protective adhesive tape 3 Patch case 4 Holder 5 BCG vaccination tube needle 6 Applicator piston part 7 Applicator holding part

Claims (13)

  1.  マイクロニードルの針長さは0.2~1.0mmであり、針密度は20~400本/cmであり、基板の面積は0.6~2.0cmであるマイクロニードルアレイを含む、経皮ワクチン接種用針。 The microneedle includes a microneedle array having a needle length of 0.2 to 1.0 mm, a needle density of 20 to 400 needles/cm 2 , and a substrate area of 0.6 to 2.0 cm 2 . Needle for transdermal vaccination.
  2.  前記針密度が前記基板の中央部において前記基板の周辺部よりも小さい、請求項1に記載の針。 The needle according to claim 1, wherein the needle density is smaller in the central portion of the substrate than in the peripheral portion of the substrate.
  3.  経皮ワクチンがBCGワクチンである、請求項1又は2に記載の針。 The needle according to claim 1 or 2, wherein the transdermal vaccine is a BCG vaccine.
  4.  経皮ワクチンがBCGワクチンであり、皮膚内挿入時の針体積が0.2mm以上である、請求項3に記載の針。 The needle according to claim 3, wherein the transdermal vaccine is a BCG vaccine, and the needle volume when inserted into the skin is 0.2 mm 3 or more.
  5.  マイクロニードルの基剤が、ポリ乳酸、ポリ(乳酸-グリコール酸)共重合体、ポリグリコール酸及びそれらの混合物からなる群より選ばれる、請求項1~4のいずれか1項に記載の針。 The needle according to any one of claims 1 to 4, wherein the base of the microneedle is selected from the group consisting of polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyglycolic acid and a mixture thereof.
  6.  マイクロニードルの針長さは0.2~1.0mmであり、針密度は20~400本/cmであり、基板の面積は0.6~2.0cmであるマイクロニードルアレイ及び支持体フィルムを含み、該支持体フィルムは該マイクロニードルの基板の面積よりも広く、該支持体フィルムの片面に該マイクロニードルアレイが接着固定されているマイクロニードルパッチ、ならびに、
     熱可塑性高分子を素材とする環状のマイクロニードルパッチケースからなり、
     該支持体フィルムは該熱可塑性高分子と熱融着可能な素材からなり、
     該パッチケースは該支持体フィルムと熱融着していることによって該マイクロニードルアレイを環内に保持しており、
     該パッチケースの皮膚接触面の幅は2mm以上である、経皮ワクチン接種用管針。
    Microneedle array having a needle length of 0.2 to 1.0 mm, a needle density of 20 to 400 needles/cm 2 , and a substrate area of 0.6 to 2.0 cm 2 , and a support. A microneedle patch including a film, wherein the support film is larger than the area of the substrate of the microneedle, and the microneedle array is adhesively fixed to one surface of the support film; and
    It consists of a circular microneedle patch case made of thermoplastic polymer,
    The support film is made of a material that can be heat-sealed with the thermoplastic polymer,
    The patch case holds the microneedle array in a ring by heat-sealing with the support film,
    A tube needle for transdermal vaccination, wherein the width of the skin contact surface of the patch case is 2 mm or more.
  7.  前記針密度が前記基板の中央部において前記基板の周辺部よりも小さい、請求項6に記載の管針。 The tube needle according to claim 6, wherein the needle density is smaller in a central portion of the substrate than in a peripheral portion of the substrate.
  8.  経皮ワクチンがBCGワクチンである、請求項6又は7に記載の管針。 The tube needle according to claim 6 or 7, wherein the transdermal vaccine is a BCG vaccine.
  9.  前記支持体フィルムから皮膚接触面の距離が1mm以上である、請求項6~8のいずれか1項に記載の管針。 The tube needle according to any one of claims 6 to 8, wherein the distance from the support film to the skin contact surface is 1 mm or more.
  10.  マイクロニードルの基剤が、ポリ乳酸、ポリ(乳酸-グリコール酸)共重合体、ポリグリコール酸及びそれらの混合物からなる群より選ばれる、請求項6~9のいずれか1項に記載の管針。 The needle according to any one of claims 6 to 9, wherein the base of the microneedle is selected from the group consisting of polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyglycolic acid and mixtures thereof. ..
  11.  前記支持体フィルムの素材が熱可塑性高分子フィルム又は不織布である、請求項6~10のいずれか1項に記載の管針。 The tube needle according to any one of claims 6 to 10, wherein the material of the support film is a thermoplastic polymer film or a non-woven fabric.
  12.  アプリケータにセットしたマイクロニードルアレイに適量の経皮ワクチンを含ませて接種するための経皮ワクチン接種用管針。 A percutaneous vaccination tube needle for inoculating the microneedle array set in the applicator with an appropriate amount of percutaneous vaccine.
  13.  経皮ワクチンがBCGワクチンである、請求項12に記載の管針。 The tube needle according to claim 12, wherein the transdermal vaccine is a BCG vaccine.
PCT/JP2019/051571 2018-12-28 2019-12-27 Microneedle array for bcg vaccine WO2020138482A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980081656.1A CN113164727A (en) 2018-12-28 2019-12-27 Microneedle array for BCG vaccination
KR1020217019430A KR20210106451A (en) 2018-12-28 2019-12-27 Microneedle array for BCG inoculation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-248270 2018-12-28
JP2018248270 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138482A1 true WO2020138482A1 (en) 2020-07-02

Family

ID=71125762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051571 WO2020138482A1 (en) 2018-12-28 2019-12-27 Microneedle array for bcg vaccine

Country Status (4)

Country Link
JP (1) JP2020108781A (en)
KR (1) KR20210106451A (en)
CN (1) CN113164727A (en)
WO (1) WO2020138482A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079557A (en) * 2012-09-28 2014-05-08 Kosumedei Seiyaku Kk Microneedle holding medicament in step
WO2015068702A1 (en) * 2013-11-05 2015-05-14 久光製薬株式会社 Applicator
WO2017159779A1 (en) * 2016-03-16 2017-09-21 コスメディ製薬株式会社 Microneedle patch case
WO2018047596A1 (en) * 2016-09-06 2018-03-15 富士フイルム株式会社 Microneedle array imaging device and method, and microneedle array inspection device and method
JP2018118049A (en) * 2017-01-25 2018-08-02 コスメディ製薬株式会社 Microneedle patch applying device
WO2018155431A1 (en) * 2017-02-24 2018-08-30 久光製薬株式会社 Microneedle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144545A (en) 2001-11-12 2003-05-20 Tamotsu Nishizaki Bcg vaccination tube needle having elongated needle point
JP2007152073A (en) * 2005-11-30 2007-06-21 Michiyo Sagawa Stand for setting up plural bcg vaccination tube needle, and box enabling sterilization and housing stand set up with plural bcg vaccination tube needle
CN104661695B (en) * 2012-09-13 2019-02-15 亚夫拉罕·阿米尔 The delivery apparatus and method improved for skin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079557A (en) * 2012-09-28 2014-05-08 Kosumedei Seiyaku Kk Microneedle holding medicament in step
WO2015068702A1 (en) * 2013-11-05 2015-05-14 久光製薬株式会社 Applicator
WO2017159779A1 (en) * 2016-03-16 2017-09-21 コスメディ製薬株式会社 Microneedle patch case
WO2018047596A1 (en) * 2016-09-06 2018-03-15 富士フイルム株式会社 Microneedle array imaging device and method, and microneedle array inspection device and method
JP2018118049A (en) * 2017-01-25 2018-08-02 コスメディ製薬株式会社 Microneedle patch applying device
WO2018155431A1 (en) * 2017-02-24 2018-08-30 久光製薬株式会社 Microneedle device

Also Published As

Publication number Publication date
JP2020108781A (en) 2020-07-16
CN113164727A (en) 2021-07-23
KR20210106451A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
JP6736337B2 (en) Micro needle array
JP5663792B2 (en) Kenzan microneedle applicator device
JP6726512B2 (en) Micro needle applicator
JP5050130B2 (en) Micro needle
JP6402714B2 (en) Microneedle unit
JP5721142B2 (en) Microneedle patch application aid
JP6020771B2 (en) Transdermal administration device and method for producing transdermal administration device
JP2008029710A (en) Microneedle type patch and its manufacturing method
US10300261B2 (en) Needle-shaped body and method for producing needle-shaped body
JP2020179168A (en) Applicator 2 for water soluble sheet-like preparation
AU2017279297B2 (en) Microneedle array
KR102377747B1 (en) microneedle patch case
WO2020138482A1 (en) Microneedle array for bcg vaccine
JP2012024240A (en) Pasting aid of plaster for microneedle
US20200164192A1 (en) Water-soluble cosmetic sheet retaining film
US20180200495A1 (en) Administration device
JP6651717B2 (en) Method for manufacturing needle-like body
WO2024078319A1 (en) Microneedle formulation and preparation method for microneedle patch
WO2022014695A1 (en) Preventive agent for japanese encephalitis and japanese encephalitis vaccine
JP2020189038A (en) Poliomyelitis vaccine-containing microneedle array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902021

Country of ref document: EP

Kind code of ref document: A1