WO2020138467A1 - Travel path diagnostic system - Google Patents

Travel path diagnostic system Download PDF

Info

Publication number
WO2020138467A1
WO2020138467A1 PCT/JP2019/051542 JP2019051542W WO2020138467A1 WO 2020138467 A1 WO2020138467 A1 WO 2020138467A1 JP 2019051542 W JP2019051542 W JP 2019051542W WO 2020138467 A1 WO2020138467 A1 WO 2020138467A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
information
vehicle
unit
diagnostic
Prior art date
Application number
PCT/JP2019/051542
Other languages
French (fr)
Japanese (ja)
Inventor
道治 山本
知彦 長尾
均 青山
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to JP2020562529A priority Critical patent/JP7389360B2/en
Publication of WO2020138467A1 publication Critical patent/WO2020138467A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • the present invention relates to a travel road diagnosis system for diagnosing the condition of a travel road.
  • Unevenness may occur on roads such as general roads and highways where vehicles run, and areas where work vehicles run in airports, due to ground subsidence due to repeated running of vehicles or cavities created under the road surface. There is. If such irregularities occur on the surface of the road (road surface), the running of the vehicle is hindered.
  • a diagnostic vehicle for measuring unevenness while traveling on a traveling road such as a highway has been proposed (for example, refer to Patent Document 1).
  • This diagnostic vehicle detects unevenness based on a projection pattern when the inspection light is projected on the road surface. Further, when the diagnostic vehicle detects an irregularity having a size exceeding a threshold value, it records the positional information by GPS (Global Positioning System) or the like on the measurement data or the like corresponding to the irregularity.
  • GPS Global Positioning System
  • the position information attached to the measurement data is useful for specifying the repaired position in a location when the road surface is repaired later.
  • the positional information associated with the measurement data representing the unevenness is the positioning information by the GPS, so the positional accuracy is not sufficient, and there is a possibility that the repair work thereafter will be hindered. is there.
  • the present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a traveling road diagnostic system that generates diagnostic data capable of accurately specifying the position of a portion requiring repair work.
  • the present invention provides a vehicle including a data acquisition unit that acquires diagnostic data that represents a state of a road, and a marker detection unit that detects a marker laid on the road, A data recording unit for recording the diagnostic data acquired by the data acquisition unit by attaching marker reference information including at least positional information based on any of the markers or information based on the positional information. It is in the roadway diagnosis system including.
  • the traveling road diagnosis system of the present invention links marker reference information to diagnostic data. Since the marker is laid on the road, the position of the marker is unlikely to change. If the marker reference information including the positional information based on the marker is attached, the accuracy of specifying the position where the diagnostic data is obtained can be improved.
  • the marker reference information is attached to the diagnosis data, it is possible to accurately specify the portion requiring repair work.
  • FIG. 3 is an explanatory diagram showing a system configuration of a diagnostic vehicle in Embodiment 1.
  • FIG. 3 is a perspective view of a magnetic marker in Example 1.
  • FIG. 3 is a front view of the RF-ID tag according to the first embodiment.
  • 3 is a block diagram showing an electrical configuration of a diagnostic vehicle in Embodiment 1.
  • FIG. 5 is an explanatory diagram illustrating a change in a magnetic measurement value in a traveling direction when passing through a magnetic marker in the first embodiment.
  • FIG. 5 is an explanatory diagram illustrating a distribution curve of magnetic measurement values in the vehicle width direction by the magnetic sensors Cn arranged in the vehicle width direction in the first embodiment.
  • 7 is a flowchart showing the flow of marker reference data generation processing in the first embodiment.
  • FIG. 5 is a flowchart showing a flow of diagnostic data generation processing in the first embodiment.
  • 6A and 6B are explanatory diagrams of a method of generating diagnostic data according to the first embodiment.
  • 5 is a flowchart showing a flow of diagnostic data recording processing in the first embodiment.
  • FIG. 3 is a diagram for explaining the content of diagnostic data in the first embodiment.
  • the traveling road diagnosis system 1 is a system for generating diagnostic data representing a state of a road (an example of a traveling road) on which markers are laid.
  • the magnetic marker 10 which is a magnetic generation source is adopted as an example of the marker.
  • the traveling road diagnosis system 1 includes a data acquisition unit that measures unevenness of the road surface 11S to generate and acquire diagnostic data, and a diagnostic vehicle 5 that includes a marker detection unit that detects the magnetic marker 10, and data that records diagnostic data. And a recording unit.
  • the data recording unit is incorporated in the diagnostic vehicle 5.
  • the diagnostic vehicle 5 will be simply referred to as the vehicle 5 below.
  • the magnetic marker 10 is a road marker laid on the road surface 11S of the road 11 as shown in FIGS.
  • the magnetic markers 10 are arranged at intervals of, for example, 10 m along the center of the lane divided by the left and right lane marks.
  • the magnetic marker 10 is a columnar magnet having a diameter of 20 mm and a height of 28 mm, and is laid in a state of being housed in a hole provided on the road surface 11S.
  • the magnetic marker 10 is a marker for a road, which does not have a case made of metal or resin and is made of a magnet itself. Layers such as a resin coating layer and a resin mold layer are appropriately provided on the outer circumference of the magnet.
  • an RF-ID (Radio Frequency IDentification) tag 15 which is a wireless tag that outputs information wirelessly, is attached to the surface on the road surface 11S side.
  • the RF-ID tag 15 operates by external power feeding by radio and transmits a tag ID which is unique information (identification information).
  • the tag ID is exemplified as the marker specifying information that can uniquely specify the magnetic marker 10.
  • the magnet used in the magnetic marker 10 of this example is made by dispersing iron oxide magnetic powder in a polymer material. This magnet has low conductivity, and eddy current or the like is unlikely to occur during wireless power feeding. Therefore, the RF-ID tag 15 attached to the magnetic marker 10 can efficiently receive the wirelessly transmitted power.
  • the RF-ID tag 15 is a sheet-shaped electronic component in which an IC chip 157 is mounted on the surface of a tag sheet 150 (FIG. 3) cut out from a PET (Polyethylene terephthalate) film, for example.
  • a printed pattern of the loop coil 151 and the antenna 153 is provided on the surface of the tag sheet 150.
  • the loop coil 151 is a power receiving coil in which an exciting current is generated by electromagnetic induction from the outside.
  • the antenna 153 is a transmission antenna for wirelessly transmitting position data and the like.
  • the vehicle 5 (FIG. 1) is a work vehicle that diagnoses the road 11 while driving while being driven by a worker.
  • the vehicle 5 includes a control unit 13 (an example of a data acquisition unit and a control unit), a diagnostic unit 3, a sensor unit 2 (an example of a marker detection unit), a tag reader (an example of an information reading unit) 34, and the like.
  • the sensor unit 2 is a unit in which a sensor array 21 and an IMU (Inertial Measurement Unit) 22 are integrated as shown in FIGS. 1 and 4.
  • the sensor unit 2 has, for example, a rod shape that is long in the vehicle width direction.
  • the sensor unit 2 is mounted, for example, inside the front bumper so as to face the road surface 11S. In the case of the vehicle 5 of this example, the mounting height of the sensor unit 2 based on the road surface 11S is 200 mm.
  • the sensor array 21 includes 15 magnetic sensors Cn (n is an integer of 1 to 15) arranged in a straight line along the vehicle width direction, and a detection processing circuit 212 including a CPU (not shown) and the like. (See Figure 4). In the sensor array 21, 15 magnetic sensors Cn are arranged at equal intervals of 10 cm.
  • the magnetic sensor Cn is a sensor that detects magnetism by using the well-known MI effect (Magnet Impedance Effect) that the impedance of a magnetic sensitive body such as an amorphous wire changes sensitively according to an external magnetic field.
  • a magnetism-sensitive body (not shown) such as an amorphous wire is arranged along the biaxial directions that are orthogonal to each other, whereby the magnetism acting in the biaxial directions that are orthogonal can be detected.
  • the magnetic sensor Cn is incorporated in the sensor array 21 so as to detect the magnetic components in the traveling direction and the vehicle width direction.
  • the detection processing circuit 212 of the sensor array 21 is an arithmetic circuit that executes marker detection processing for detecting the magnetic marker 10.
  • the detection processing circuit 212 is configured using a CPU (central processing unit) that executes various calculations, memory elements such as a ROM (read only memory) and a RAM (random access memory), and the like.
  • the detection processing circuit 212 acquires the sensor signal output from each magnetic sensor Cn at, for example, a 3 kHz cycle, and executes marker detection processing. For example, if magnetic measurement is performed by the magnetic sensor Cn at a cycle of 3 kHz, diagnostic data can be generated while the vehicle 5 is traveling.
  • the detection processing circuit 212 inputs the detection result of the marker detection processing to the control unit 13.
  • the lateral displacement amount of the vehicle 5 with respect to the detected magnetic marker 10 is measured.
  • the detection processing circuit 212 measures the lateral deviation amount, for example, by specifying the position in the vehicle width direction of the peak value in the distribution of the magnetic measurement values of the magnetic sensors arranged in the vehicle width direction.
  • the IMU 22 (FIG. 4) incorporated in the sensor unit 2 is an inertial navigation unit that estimates the relative position of the vehicle 5 by inertial navigation.
  • the IMU 22 includes a biaxial magnetic sensor 221 that is an electronic compass that measures the azimuth, a biaxial acceleration sensor 222 that measures acceleration, and a biaxial gyro sensor 223 that measures angular velocity.
  • the IMU 22 calculates the displacement amount by the second-order integration of the acceleration, and executes the calculation of integrating the displacement amount along the traveling direction of the vehicle 5 measured by the biaxial gyro sensor 223. Thereby, the relative position of the vehicle 5 with respect to the reference position is calculated. If the relative position estimated by the IMU 22 is used, the own vehicle position can be specified even when the vehicle 5 is located in the middle of the adjacent magnetic markers 10.
  • the tag reader 34 (FIG. 4) is a communication unit that wirelessly communicates with the RF-ID tag 15 attached to the magnetic marker 10.
  • the sensor unit 2 is arranged in the front part of the vehicle body, while the tag reader 34 is arranged in the rear part of the vehicle body which is separated in the longitudinal direction of the vehicle (FIG. 1).
  • the control unit 13 can predict the timing at which the magnetic marker 10 detected by the sensor unit 2 approaches the tag reader 34. Specifically, the control unit 13 predicts the timing when the magnetic marker 10 approaches the tag reader 34 by dividing the distance (separation distance) between the sensor unit 2 and the tag reader 34 by the vehicle speed. Then, the control unit 13 controls the tag reader 34 so as to execute wireless communication at the predicted timing.
  • the tag reader 34 wirelessly transmits electric power required for the operation of the RF-ID tag 15, and receives the tag ID transmitted by the RF-ID tag 15.
  • the diagnostic unit 3 includes a projector 35 that projects slit light toward the road surface 11S, a camera 33 that captures a projection pattern of the slit light on the road surface 11S, and diagnostic data that represents unevenness of the road surface 11S from a captured image of the projection pattern. And a diagnostic data generation circuit 31 for generating the diagnostic data.
  • the light projector 35 (FIG. 1) is an optical device that projects a linear (slit-shaped) inspection light of a single wavelength toward the road surface 11S.
  • the projector 35 includes a laser light source 351 and a cylindrical lens 353.
  • the highly straight-forward laser light of the laser light source 351 passes through the cylindrical lens 353 and is expanded in one direction to be converted into slit light.
  • the light projector 35 projects the slit light along the vehicle width direction on the road surface 11S as inspection light.
  • the inspection light is referred to as slit light.
  • the camera 33 is attached so that the projection area of the slit light is included in the imaging area 330.
  • the camera 33 photographs the projection pattern of the slit light on the road surface 11S.
  • a captured image of the projection pattern captured by the camera 33 is converted into a video signal and input to the diagnostic data generation circuit 31.
  • the camera 33 includes an optical filter that selectively transmits the wavelength region of the slit light.
  • the diagnostic data generation circuit 31 is a circuit that processes the video signal of the camera 33 and generates diagnostic data.
  • the diagnostic data generation circuit 31 performs a process of detecting irregularities on the road surface 11S from the projection pattern of the slit light, a process of generating diagnostic data indicating the size of the irregularities, the position in the vehicle width direction, and the like.
  • the position data in the diagnostic data is relative position data in the vehicle width direction with respect to the magnetic marker 10.
  • the control unit 13 (FIG. 4) is a unit that has a function as a data recording unit 130 that records diagnostic data in addition to a function as a control unit that controls the sensor unit 2, the tag reader 34, and the diagnostic unit 3.
  • the control unit 13 includes an electronic board (not shown) on which a CPU that executes various calculations and memory elements such as ROM and RAM are mounted.
  • a storage device such as a hard disk drive is connected to the control unit 13.
  • a diagnostic database (diagnostic DB) 133 is provided in the storage area of the storage device.
  • the data recording unit 130 stores diagnostic data in this diagnostic DB 133.
  • the sensor array 21 (FIG. 4) of the sensor unit 2 repeatedly executes the marker detection processing for detecting the magnetic markers 10.
  • the magnetic sensor Cn can measure the magnetic components in the traveling direction and the vehicle width direction of the vehicle 5. For example, when the magnetic sensor Cn moves in the traveling direction and passes directly above the magnetic marker 10, the magnetic measurement value in the traveling direction is inverted in polarity between before and after the magnetic marker 10 as shown in FIG. Change to cross zero at a position just above 10.
  • the detection processing circuit 212 determines that the magnetic marker 10 is detected when the sensor unit 2 is positioned directly above the magnetic marker 10 and the zero cross Zc of the magnetic measurement value in the traveling direction occurs in this way.
  • the magnetic measurement values in the vehicle width direction sandwich the magnetic marker 10.
  • the positive and negative signs are inverted on both sides, and at the position directly above the magnetic marker 10, the value changes so as to cross zero.
  • the vehicle width of the magnetic marker 10 using the zero cross Zc in which the positive/negative of the magnetism in the vehicle width direction is reversed is reversed.
  • the position in the direction can be specified.
  • the zero cross Zc is located in the middle of the two adjacent magnetic sensors Cn (not necessarily in the center)
  • the middle position of the two adjacent magnetic sensors Cn sandwiching the zero cross Zc is located in the magnetic marker 10. Position in the vehicle width direction.
  • the zero-cross Zc coincides with the position of one of the magnetic sensors Cn, that is, the magnetic measurement value in the vehicle width direction is zero, and the positive and negative magnetic measurement values of the magnetic sensors Cn on both outer sides are reversed.
  • the position immediately below the magnetic sensor Cn is the position of the magnetic marker 10 in the vehicle width direction.
  • the detection processing circuit 212 measures the deviation of the position of the magnetic marker 10 in the vehicle width direction from the central position of the sensor unit 2 (the position of the magnetic sensor C8) as the lateral deviation amount of the vehicle 5 with respect to the magnetic marker 10.
  • the position of the zero cross Zc is a position corresponding to C9.5, which is around the middle of C9 and C10.
  • marker reference data is an example of marker reference information including relative position information that is positional information based on any of the markers.
  • the above-described marker detection process P1 is periodically executed under the control of the control unit 13.
  • the control unit 13 controls the sensor array 21 so that the marker detection process P1 is executed at a cycle of 3 kHz so that the diagnostic data can be generated while the vehicle 5 is traveling.
  • the lateral shift amount of the vehicle 5 with respect to the detected magnetic marker 10 is measured.
  • the tag reader 34 executes the tag ID reading process P2 under the control of the control unit 13.
  • the control unit 13 generates the marker reference data including the tag ID read by the tag ID reading process P2 and the lateral deviation amount (an example of relative position information based on the magnetic marker) measured by the marker detection process P1 (S102). ..
  • the tag ID read in the tag ID reading process P2 is retained as it is until it is overwritten by the new tag ID reading process P2.
  • the control unit 13 uses the measurement value of the IMU 22 and executes the relative position estimation process with the magnetic marker detected immediately before as the reference ( S112). In this step S112, the control unit 13 combines the relative position of the vehicle estimated by the IMU 22 after the detection of the immediately preceding magnetic marker with the lateral deviation amount measured for the magnetic marker, so that the vehicle based on the magnetic marker is used as a reference. Estimate the relative position of 5 (relative position information).
  • the reference position when the IMU 22 estimates the relative position as described above is the vehicle position when the magnetic marker was detected immediately before. The position of the vehicle and the corresponding magnetic marker are displaced by the amount of lateral displacement.
  • the relative position estimated in step S112 is the relative position of the vehicle based on the position of the magnetic marker detected immediately before.
  • the relative position of the vehicle 5 with respect to the magnetic marker detected immediately before can be estimated by combining the relative position estimated by the IMU 22 after the detection of the previous magnetic marker with the lateral deviation amount measured at the time of detection of the immediately previous magnetic marker. ..
  • the control unit 13 includes the lateral displacement amount data (relative position information) for the magnetic marker detected immediately before with respect to the relative position estimated in step S112, and the tag ID read in the immediately preceding tag ID reading process P2.
  • Marker reference data is generated (S102).
  • the generated marker reference data is written in a predetermined writing area and rewritten to the latest one at any time (S103).
  • the flow of the diagnostic data generation process will be described with reference to the flowchart of FIG. 8 and the schematic diagram of FIG. 9.
  • the diagnostic unit 3 controls the light projector 35 (FIG. 9) to project slit light toward the road surface 11S (S202).
  • the diagnostic unit 3 controls the camera 33 (FIG. 9) while projecting the slit light, and images the projection pattern of the slit light on the road surface 11S (S203). Then, image processing is performed on the captured image to extract the projection pattern 355 (FIG. 9) (S204).
  • the diagnostic unit 3 generates diagnostic data by analyzing the shape of the projection pattern 355 (FIG. 9) (S205). For example, if the road surface 11S is flat, the projection pattern is a straight line pattern. On the other hand, for example, as shown in FIG. 9, when the road surface 11S has the depression 110, the projection pattern 355 becomes a pattern including a convex curved portion 355A in the traveling direction of the vehicle 5.
  • the diagnostic unit 3 calculates the size and depth of the recess 110 for the curved portion 355A from the formation range in the vehicle width direction, the height of the curved portion 355A, and the like. Then, the diagnostic unit 3 outputs diagnostic data including data on the calculated size and depth of the depression 110 (S206).
  • the control unit 13 outputs a diagnostic data request signal to the diagnostic unit 3 every time the moving distance of the vehicle 5 reaches a predetermined amount (S301: YES) (S302).
  • a predetermined amount S301: YES
  • diagnostic data can be acquired for each fixed distance.
  • the diagnostic data request signal may be output every time a certain period of time elapses, or the diagnostic data request signal may be output each time the magnetic marker 10 is detected.
  • the control unit 13 When the control unit 13 acquires the diagnostic data (S303), it reads the marker reference data (S304).
  • the marker detection process P1 for generating the marker reference data is executed at a cycle of 3 kHz. This 3 kHz cycle is sufficiently faster than the cycle for acquiring diagnostic data. Therefore, the generation time of the marker reference data read in step S304 can be considered to be the same as the generation time of the diagnostic data acquired in step S303.
  • the control unit 13 executes a process of tying the marker reference data read in step S304 to the diagnostic data acquired in step S303 (S305). Then, the diagnostic data is recorded in the diagnostic DB 133 (S306).
  • the marker reference data attached to the diagnostic data includes at least the tag ID (marker identification information) of the magnetic marker 10 detected most recently and the data of the relative position with respect to the magnetic marker 10. ..
  • the traveling road diagnosis system 1 When recording the diagnostic data representing the state of the road surface 11S, the traveling road diagnosis system 1 configured as described above links the marker reference data including the data of the relative position with the position of the magnetic marker 10 as the reference (FIG. See 11.). According to the marker reference data, the position of the vehicle 5 at the time when the diagnostic data is acquired can be specified with high accuracy, so that the repaired portion can be easily specified when performing the repair work.
  • the marker reference data attached to the diagnostic data includes the tag ID that is the marker specifying information of the magnetic marker 10 serving as the reference.
  • the absolute position of the reference magnetic marker 10 can be acquired.
  • the marker reference data includes data on the relative position with respect to the reference magnetic marker 10. If the absolute position of the magnetic marker 10 is used as a reference, the position (absolute position) where the diagnostic data is acquired can be specified with high accuracy by using the data of the relative position in the marker reference data.
  • the marker reference data includes the tag ID that is the marker specifying information.
  • the laying position of the magnetic marker 10 may be included in the marker reference data.
  • the information indicating the installation position of the magnetic marker 10 is an example of the marker specifying information.
  • the control unit 13 of the vehicle 5 can refer to the marker DB similar to the above, the installation position of the corresponding magnetic marker 10 can be acquired using the tag ID.
  • an RF-ID tag that transmits position data indicating the laid position of the magnetic marker 10 may be adopted.
  • the vehicle position data and information specified with the magnetic marker 10 can be used as a reference as marker reference information and attach it to the diagnostic data.
  • the vehicle position can be specified as a position displaced from the laying position of the reference magnetic marker 10 by the relative position such as the lateral shift amount.
  • the vehicle position is processing information obtained by performing arithmetic processing on data of the relative position with respect to the magnetic marker 10. This vehicle position information can be said to be information based on relative position information, which is positional information based on the magnetic marker.
  • the diagnostic data data representing the unevenness of the road surface 11S is shown.
  • the configuration in which the slit light is projected onto the road surface 11S to generate the diagnostic data has been illustrated, it is possible to obtain the data representing the unevenness of the road surface 11S by distance measurement using laser light, ultrasonic waves, or millimeter waves. ..
  • a technique of irradiating ultrasonic waves, millimeter waves, X-rays, or the like on the road surface 11S to detect an internal cavity may be used to acquire diagnostic data representing the internal structure of the road.
  • the magnetic marker 10 is exemplified as the marker, but it can be replaced with various markers laid on the road 11.
  • it may be a marker printed on the road surface 11S or a marker such as a cat's eye.
  • the diagnostic data can be sequentially acquired while the vehicle 5 travels on the road 11.
  • the traveling road diagnosis system 1 it is possible to acquire diagnostic data without restricting the traveling of a general vehicle. Then, highly accurate position information based on the laid position of the magnetic marker 10 is attached to the diagnostic data acquired by the vehicle 5. Therefore, when performing the repair work at a later date, it is not necessary to specify the repair location, and the repair work can be efficiently performed.
  • Driving road diagnostic system 10 Magnetic marker (marker) 11 roads 11S Road surface 13 Control unit (data acquisition unit, control unit) 130 data recording unit 133 diagnosis DB 15 RF-ID tag (wireless tag) 2 Sensor unit (marker detector) 21 sensor array 22 IMU 3 Diagnostic Unit 31 Diagnostic Data Generation Circuit 33 Camera 34 Tag Reader (Information Reader) 35 Projector 351 Laser light source 353 Cylindrical lens 355 Projection pattern 355A Curved part 5 Diagnostic vehicle (vehicle)

Abstract

A travel path diagnostic system (1) includes: a diagnostic vehicle (5) equipped with a data obtaining unit (3) that obtains diagnostic data indicating the state of a road (11) which is a path of travel for a vehicle, and a marker detector (2) that detects magnetic markers (10) laid along the path of travel; and a data recording unit (130) that records, in association with marker-related information obtained as a result of detection of the magnetic markers (10) by the marker detector (2), diagnostic data obtained by the data obtaining unit (3). The travel path diagnostic system can generate diagnostic data that makes it possible to identify, with a high degree of accuracy, the positions of locations on the road (11) that are in need of repair work.

Description

走行路診断システムRoad diagnostic system
 本発明は、走行路の状態を診断する走行路診断システムに関する。 The present invention relates to a travel road diagnosis system for diagnosing the condition of a travel road.
 車両が走行する一般道路や高速道路、空港内での作業車両の走行エリアなどの走行路には、車両の繰り返し走行による地盤沈下や、路面下に生じた空洞などが原因で凹凸が発生することがある。このような凹凸が走行路の表面(路面)に発生すれば、車両の走行に支障を来す。 Unevenness may occur on roads such as general roads and highways where vehicles run, and areas where work vehicles run in airports, due to ground subsidence due to repeated running of vehicles or cavities created under the road surface. There is. If such irregularities occur on the surface of the road (road surface), the running of the vehicle is hindered.
 そこで、高速道路などの走行路を走行しながら凹凸を計測するための診断車両が提案されている(例えば特許文献1参照。)。この診断車両は、路面に検査光を投射したときの投影パターンに基づいて凹凸を検出する。さらに、この診断車両は、閾値を超える大きさの凹凸を検出したとき、その凹凸に対応する計測データ等に例えばGPS(Global Positioning System)等による位置情報をひも付けて記録する。計測データにひも付けられた位置情報は、後日、路面の補修作業を実施する際、補修箇所を位置的に特定するために有用である。 Therefore, a diagnostic vehicle for measuring unevenness while traveling on a traveling road such as a highway has been proposed (for example, refer to Patent Document 1). This diagnostic vehicle detects unevenness based on a projection pattern when the inspection light is projected on the road surface. Further, when the diagnostic vehicle detects an irregularity having a size exceeding a threshold value, it records the positional information by GPS (Global Positioning System) or the like on the measurement data or the like corresponding to the irregularity. The position information attached to the measurement data is useful for specifying the repaired position in a location when the road surface is repaired later.
特開2004-219214号公報Japanese Patent Laid-Open No. 2004-219214
 しかしながら、従来の路面の検査方法の場合、凹凸等を表す計測データにひも付ける位置情報がGPSによる測位情報であるため、位置的な精度が十分ではなく、その後の補修作業に支障が出るおそれがある。 However, in the case of the conventional road surface inspection method, the positional information associated with the measurement data representing the unevenness is the positioning information by the GPS, so the positional accuracy is not sufficient, and there is a possibility that the repair work thereafter will be hindered. is there.
 本発明は、前記従来の問題点に鑑みてなされたものであり、補修作業を要する箇所の位置を精度高く特定可能な診断データを生成する走行路診断システムを提供しようとするものである。 The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a traveling road diagnostic system that generates diagnostic data capable of accurately specifying the position of a portion requiring repair work.
 本発明は、走行路の状態を表す診断データを取得するデータ取得部、及び走行路に敷設されたマーカを検出するマーカ検出部を備える車両と、
 いずれかのマーカを基準とした位置的な情報あるいは該位置的な情報に基づく情報を少なくとも含むマーカ基準情報をひも付けて、前記データ取得部が取得した診断データを記録するデータ記録部と、を含む走行路診断システムにある。
The present invention provides a vehicle including a data acquisition unit that acquires diagnostic data that represents a state of a road, and a marker detection unit that detects a marker laid on the road,
A data recording unit for recording the diagnostic data acquired by the data acquisition unit by attaching marker reference information including at least positional information based on any of the markers or information based on the positional information. It is in the roadway diagnosis system including.
 本発明の走行路診断システムは、マーカ基準情報を診断データにひも付ける。マーカは、走行路に敷設されているため、その位置が変動するおそれは少ない。マーカを基準とした位置的な情報等を含むマーカ基準情報をひも付ければ、診断データが得られた位置の特定精度の向上を図ることが可能である。 The traveling road diagnosis system of the present invention links marker reference information to diagnostic data. Since the marker is laid on the road, the position of the marker is unlikely to change. If the marker reference information including the positional information based on the marker is attached, the accuracy of specifying the position where the diagnostic data is obtained can be improved.
 本発明の走行路診断システムでは、診断データにマーカ基準情報がひも付けてあるので、補修作業を要する箇所を精度高く特定可能である。 In the roadway diagnosis system of the present invention, since the marker reference information is attached to the diagnosis data, it is possible to accurately specify the portion requiring repair work.
実施例1における、診断車両のシステム構成を示す説明図。3 is an explanatory diagram showing a system configuration of a diagnostic vehicle in Embodiment 1. FIG. 実施例1における、磁気マーカの斜視図。3 is a perspective view of a magnetic marker in Example 1. FIG. 実施例1における、RF-IDタグの正面図。FIG. 3 is a front view of the RF-ID tag according to the first embodiment. 実施例1における、診断車両の電気的な構成を示すブロック図。3 is a block diagram showing an electrical configuration of a diagnostic vehicle in Embodiment 1. FIG. 実施例1における、磁気マーカを通過する際の進行方向の磁気計測値の変化を例示する説明図。FIG. 5 is an explanatory diagram illustrating a change in a magnetic measurement value in a traveling direction when passing through a magnetic marker in the first embodiment. 実施例1における、車幅方向に配列された磁気センサCnによる車幅方向の磁気計測値の分布曲線を例示する説明図。FIG. 5 is an explanatory diagram illustrating a distribution curve of magnetic measurement values in the vehicle width direction by the magnetic sensors Cn arranged in the vehicle width direction in the first embodiment. 実施例1における、マーカ基準データ生成処理の流れを示すフロー図。7 is a flowchart showing the flow of marker reference data generation processing in the first embodiment. 実施例1における、診断データ生成処理の流れを示すフロー図。5 is a flowchart showing a flow of diagnostic data generation processing in the first embodiment. 実施例1における、診断データの生成方法の説明図。6A and 6B are explanatory diagrams of a method of generating diagnostic data according to the first embodiment. 実施例1における、診断データ記録処理の流れを示すフロー図。5 is a flowchart showing a flow of diagnostic data recording processing in the first embodiment. 実施例1における、診断データの内容を説明するための図。FIG. 3 is a diagram for explaining the content of diagnostic data in the first embodiment.
 本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
 本例は、路面11Sの凹凸など走行路の状態を表す診断データを生成する走行路診断システム1に関する例である。この内容について、図1~図11を参照して説明する。
 この走行路診断システム1は、マーカが敷設された道路(走行路の一例)の状態を表す診断データを生成するためのシステムである。本例では、マーカの一例として、磁気発生源である磁気マーカ10を採用している。
 走行路診断システム1は、路面11Sの凹凸を計測して診断データを生成して取得するデータ取得部、及び磁気マーカ10を検出するマーカ検出部を備える診断車両5と、診断データを記録するデータ記録部と、を含むシステムである。本例は、データ記録部を診断車両5に組み込んだ例である。なお、以下、診断車両5を、単に車両5という。
Embodiments of the present invention will be specifically described with reference to the following examples.
(Example 1)
This example is an example regarding the traveling road diagnostic system 1 that generates diagnostic data representing the condition of the traveling road such as the unevenness of the road surface 11S. The contents will be described with reference to FIGS. 1 to 11.
The traveling road diagnosis system 1 is a system for generating diagnostic data representing a state of a road (an example of a traveling road) on which markers are laid. In this example, the magnetic marker 10 which is a magnetic generation source is adopted as an example of the marker.
The traveling road diagnosis system 1 includes a data acquisition unit that measures unevenness of the road surface 11S to generate and acquire diagnostic data, and a diagnostic vehicle 5 that includes a marker detection unit that detects the magnetic marker 10, and data that records diagnostic data. And a recording unit. In this example, the data recording unit is incorporated in the diagnostic vehicle 5. The diagnostic vehicle 5 will be simply referred to as the vehicle 5 below.
 まず、本例の磁気マーカ10について説明する。磁気マーカ10は、図1及び図2のごとく、道路11の路面11Sに敷設される道路マーカである。磁気マーカ10は、左右のレーンマークで区分された車線の中央に沿って例えば10mなどの間隔を空けて配置されている。磁気マーカ10は、図2のごとく、直径20mm、高さ28mmの柱状をなす磁石であり、路面11Sに設けた孔に収容された状態で敷設される。この磁気マーカ10は、金属製や樹脂製のケースを持たず、磁石そのものからなる道路用のマーカである。磁石の外周には、適宜、樹脂コーティング層や樹脂モールド層などの層が設けられる。 First, the magnetic marker 10 of this example will be described. The magnetic marker 10 is a road marker laid on the road surface 11S of the road 11 as shown in FIGS. The magnetic markers 10 are arranged at intervals of, for example, 10 m along the center of the lane divided by the left and right lane marks. As shown in FIG. 2, the magnetic marker 10 is a columnar magnet having a diameter of 20 mm and a height of 28 mm, and is laid in a state of being housed in a hole provided on the road surface 11S. The magnetic marker 10 is a marker for a road, which does not have a case made of metal or resin and is made of a magnet itself. Layers such as a resin coating layer and a resin mold layer are appropriately provided on the outer circumference of the magnet.
 磁気マーカ10では、図2及び図3のごとく、無線により情報を出力する無線タグであるRF-ID(Radio Frequency IDentification)タグ15が、路面11S側の表面に取り付けられている。RF-IDタグ15は、無線による外部給電により動作し、固有情報(識別情報)であるタグIDを送信する。本例では、磁気マーカ10を一意に特定可能なマーカ特定情報として、このタグIDを例示する。 In the magnetic marker 10, as shown in FIGS. 2 and 3, an RF-ID (Radio Frequency IDentification) tag 15, which is a wireless tag that outputs information wirelessly, is attached to the surface on the road surface 11S side. The RF-ID tag 15 operates by external power feeding by radio and transmits a tag ID which is unique information (identification information). In this example, the tag ID is exemplified as the marker specifying information that can uniquely specify the magnetic marker 10.
 なお、本例の磁気マーカ10が採用する磁石は、酸化鉄の磁粉を高分子材料中に分散させたものである。この磁石は、導電性が低く無線給電時に渦電流等が生じ難い。それ故、磁気マーカ10に付設されたRF-IDタグ15は、無線伝送された電力を効率良く受電できる。 Note that the magnet used in the magnetic marker 10 of this example is made by dispersing iron oxide magnetic powder in a polymer material. This magnet has low conductivity, and eddy current or the like is unlikely to occur during wireless power feeding. Therefore, the RF-ID tag 15 attached to the magnetic marker 10 can efficiently receive the wirelessly transmitted power.
 RF-IDタグ15は、例えばPET(Polyethylene terephthalate)フィルムから切り出したタグシート150(図3)の表面にICチップ157を実装したシート状の電子部品である。タグシート150の表面には、ループコイル151及びアンテナ153の印刷パターンが設けられている。ループコイル151は、外部からの電磁誘導によって励磁電流が発生する受電コイルである。アンテナ153は、位置データ等を無線送信するための送信アンテナである。 The RF-ID tag 15 is a sheet-shaped electronic component in which an IC chip 157 is mounted on the surface of a tag sheet 150 (FIG. 3) cut out from a PET (Polyethylene terephthalate) film, for example. A printed pattern of the loop coil 151 and the antenna 153 is provided on the surface of the tag sheet 150. The loop coil 151 is a power receiving coil in which an exciting current is generated by electromagnetic induction from the outside. The antenna 153 is a transmission antenna for wirelessly transmitting position data and the like.
 車両5(図1)は、作業者の運転によって走行しながら道路11の診断を行う作業車両である。車両5は、制御ユニット13(データ取得部及び制御部の一例)、診断ユニット3、センサユニット2(マーカ検出部の一例)、タグリーダ(情報読取部の一例)34、などを備えている。 The vehicle 5 (FIG. 1) is a work vehicle that diagnoses the road 11 while driving while being driven by a worker. The vehicle 5 includes a control unit 13 (an example of a data acquisition unit and a control unit), a diagnostic unit 3, a sensor unit 2 (an example of a marker detection unit), a tag reader (an example of an information reading unit) 34, and the like.
 センサユニット2は、図1及び図4のごとく、センサアレイ21とIMU(Inertial Measurement Unit)22とが一体化されたユニットである。センサユニット2は、例えば車幅方向に長い棒状を呈している。このセンサユニット2は、例えばフロントバンパーの内側において、路面11Sと対面する状態で取り付けられる。本例の車両5の場合、路面11Sを基準としたセンサユニット2の取付け高さが200mmとなっている。 The sensor unit 2 is a unit in which a sensor array 21 and an IMU (Inertial Measurement Unit) 22 are integrated as shown in FIGS. 1 and 4. The sensor unit 2 has, for example, a rod shape that is long in the vehicle width direction. The sensor unit 2 is mounted, for example, inside the front bumper so as to face the road surface 11S. In the case of the vehicle 5 of this example, the mounting height of the sensor unit 2 based on the road surface 11S is 200 mm.
 センサアレイ21は、車幅方向に沿って一直線上に配列された15個の磁気センサCn(nは1~15の整数)と、図示しないCPU等を内蔵した検出処理回路212と、を備えている(図4参照。)。センサアレイ21では、15個の磁気センサCnが10cmの等間隔で配置されている。 The sensor array 21 includes 15 magnetic sensors Cn (n is an integer of 1 to 15) arranged in a straight line along the vehicle width direction, and a detection processing circuit 212 including a CPU (not shown) and the like. (See Figure 4). In the sensor array 21, 15 magnetic sensors Cn are arranged at equal intervals of 10 cm.
 磁気センサCnは、アモルファスワイヤなどの感磁体のインピーダンスが外部磁界に応じて敏感に変化するという公知のMI効果(Magnet Impedance Effect)を利用して磁気を検出するセンサである。磁気センサCnでは、アモルファスワイヤなどの図示しない感磁体が直交する2軸方向に沿って配置され、これにより直交する2軸方向に作用する磁気の検出が可能となっている。本例では、進行方向及び車幅方向の磁気成分を検出できるように磁気センサCnがセンサアレイ21に組み込まれている。 The magnetic sensor Cn is a sensor that detects magnetism by using the well-known MI effect (Magnet Impedance Effect) that the impedance of a magnetic sensitive body such as an amorphous wire changes sensitively according to an external magnetic field. In the magnetic sensor Cn, a magnetism-sensitive body (not shown) such as an amorphous wire is arranged along the biaxial directions that are orthogonal to each other, whereby the magnetism acting in the biaxial directions that are orthogonal can be detected. In this example, the magnetic sensor Cn is incorporated in the sensor array 21 so as to detect the magnetic components in the traveling direction and the vehicle width direction.
 センサアレイ21の検出処理回路212は、磁気マーカ10を検出するためのマーカ検出処理などを実行する演算回路である。この検出処理回路212は、各種の演算を実行するCPU(central processing unit)、ROM(read only memory)やRAM(random access memory)などのメモリ素子等を利用して構成されている。 The detection processing circuit 212 of the sensor array 21 is an arithmetic circuit that executes marker detection processing for detecting the magnetic marker 10. The detection processing circuit 212 is configured using a CPU (central processing unit) that executes various calculations, memory elements such as a ROM (read only memory) and a RAM (random access memory), and the like.
 検出処理回路212は、各磁気センサCnが出力するセンサ信号を、例えば3kHz周期で取得してマーカ検出処理を実行する。例えば3kHzの周期で磁気センサCnによる磁気計測を実施すれば、車両5の走行中に診断データを生成できる。検出処理回路212は、マーカ検出処理の検出結果を制御ユニット13に入力する。マーカ検出処理では、磁気マーカ10の検出に加えて、検出した磁気マーカ10に対する車両5の横ずれ量の計測が行われる。検出処理回路212は、例えば、車幅方向に配列された磁気センサの磁気計測値の分布のうちのピーク値の車幅方向の位置を特定することで横ずれ量を計測する。 The detection processing circuit 212 acquires the sensor signal output from each magnetic sensor Cn at, for example, a 3 kHz cycle, and executes marker detection processing. For example, if magnetic measurement is performed by the magnetic sensor Cn at a cycle of 3 kHz, diagnostic data can be generated while the vehicle 5 is traveling. The detection processing circuit 212 inputs the detection result of the marker detection processing to the control unit 13. In the marker detection process, in addition to the detection of the magnetic marker 10, the lateral displacement amount of the vehicle 5 with respect to the detected magnetic marker 10 is measured. The detection processing circuit 212 measures the lateral deviation amount, for example, by specifying the position in the vehicle width direction of the peak value in the distribution of the magnetic measurement values of the magnetic sensors arranged in the vehicle width direction.
 センサユニット2に組み込まれたIMU22(図4)は、慣性航法により車両5の相対位置を推定する慣性航法ユニットである。IMU22は、方位を計測する電子コンパスである2軸磁気センサ221と、加速度を計測する2軸加速度センサ222と、角速度を計測する2軸ジャイロセンサ223と、を備えている。IMU22は、加速度の二階積分により変位量を演算し、2軸ジャイロセンサ223が計測する車両5の進行方位に沿って変位量を積算する演算を実行する。これにより、基準位置に対する車両5の相対位置を演算する。IMU22が推定する相対位置を利用すれば、隣り合う磁気マーカ10の中間に車両5が位置するときにも自車位置の特定が可能になる。 The IMU 22 (FIG. 4) incorporated in the sensor unit 2 is an inertial navigation unit that estimates the relative position of the vehicle 5 by inertial navigation. The IMU 22 includes a biaxial magnetic sensor 221 that is an electronic compass that measures the azimuth, a biaxial acceleration sensor 222 that measures acceleration, and a biaxial gyro sensor 223 that measures angular velocity. The IMU 22 calculates the displacement amount by the second-order integration of the acceleration, and executes the calculation of integrating the displacement amount along the traveling direction of the vehicle 5 measured by the biaxial gyro sensor 223. Thereby, the relative position of the vehicle 5 with respect to the reference position is calculated. If the relative position estimated by the IMU 22 is used, the own vehicle position can be specified even when the vehicle 5 is located in the middle of the adjacent magnetic markers 10.
 タグリーダ34(図4)は、磁気マーカ10に付設されたRF-IDタグ15と無線で通信する通信ユニットである。センサユニット2が車体の前部に配置されている一方、タグリーダ34は車両の前後方向に離間する車体の後部に配置されている(図1)。このようなセンサユニット2及びタグリーダ34の離間距離等の位置関係を利用すれば、制御ユニット13が、センサユニット2により検出された磁気マーカ10がタグリーダ34に接近するタイミングを予測可能である。具体的には、制御ユニット13は、センサユニット2とタグリーダ34との間隔(離間距離)を車速で除算することで磁気マーカ10がタグリーダ34に接近するタイミングを予測する。そして、制御ユニット13は、予測したタイミングで無線通信を実行するようにタグリーダ34を制御する。タグリーダ34は、RF-IDタグ15の動作に必要な電力を無線で送電し、RF-IDタグ15が送信するタグIDを受信する。 The tag reader 34 (FIG. 4) is a communication unit that wirelessly communicates with the RF-ID tag 15 attached to the magnetic marker 10. The sensor unit 2 is arranged in the front part of the vehicle body, while the tag reader 34 is arranged in the rear part of the vehicle body which is separated in the longitudinal direction of the vehicle (FIG. 1). By using the positional relationship such as the distance between the sensor unit 2 and the tag reader 34, the control unit 13 can predict the timing at which the magnetic marker 10 detected by the sensor unit 2 approaches the tag reader 34. Specifically, the control unit 13 predicts the timing when the magnetic marker 10 approaches the tag reader 34 by dividing the distance (separation distance) between the sensor unit 2 and the tag reader 34 by the vehicle speed. Then, the control unit 13 controls the tag reader 34 so as to execute wireless communication at the predicted timing. The tag reader 34 wirelessly transmits electric power required for the operation of the RF-ID tag 15, and receives the tag ID transmitted by the RF-ID tag 15.
 診断ユニット3は、路面11Sに向けてスリット光を投射する投光器35と、路面11Sでのスリット光の投影パターンを撮影するカメラ33と、投影パターンの撮像画像から路面11Sの凹凸を表す診断データを生成する診断データ生成回路31と、を含むユニットである。 The diagnostic unit 3 includes a projector 35 that projects slit light toward the road surface 11S, a camera 33 that captures a projection pattern of the slit light on the road surface 11S, and diagnostic data that represents unevenness of the road surface 11S from a captured image of the projection pattern. And a diagnostic data generation circuit 31 for generating the diagnostic data.
 投光器35(図1)は、単一波長の線状(スリット状)の検査光を路面11Sに向けて投射する光学装置である。投光器35は、レーザー光源351と、シリンドリカルレンズ353と、を含めて構成されている。投光器35では、レーザー光源351の高直進性のレーザー光がシリンドリカルレンズ353を通って一方向に拡大されてスリット光に変換される。投光器35は、車幅方向に沿うスリット光を検査光として路面11Sに投射する。なお、以下の説明では、検査光をスリット光という。 The light projector 35 (FIG. 1) is an optical device that projects a linear (slit-shaped) inspection light of a single wavelength toward the road surface 11S. The projector 35 includes a laser light source 351 and a cylindrical lens 353. In the projector 35, the highly straight-forward laser light of the laser light source 351 passes through the cylindrical lens 353 and is expanded in one direction to be converted into slit light. The light projector 35 projects the slit light along the vehicle width direction on the road surface 11S as inspection light. In addition, in the following description, the inspection light is referred to as slit light.
 カメラ33は、スリット光の投射領域が撮像領域330に含まれるように取り付けられている。カメラ33は、路面11S上のスリット光の投影パターンを撮影する。カメラ33による投影パターンの撮像画像は映像信号に変換され、診断データ生成回路31に入力される。なお、カメラ33は、スリット光の波長領域を選択的に透過させる光学フィルタを備えている。 The camera 33 is attached so that the projection area of the slit light is included in the imaging area 330. The camera 33 photographs the projection pattern of the slit light on the road surface 11S. A captured image of the projection pattern captured by the camera 33 is converted into a video signal and input to the diagnostic data generation circuit 31. The camera 33 includes an optical filter that selectively transmits the wavelength region of the slit light.
 診断データ生成回路31は、カメラ33の映像信号を処理して診断データを生成する回路である。診断データ生成回路31は、スリット光の投影パターンから路面11Sの凹凸を検出する処理、凹凸の大きさ及び車幅方向の位置等を表す診断データを生成する処理などを実行する。なお、診断データにおける位置のデータは、磁気マーカ10を基準とした車幅方向の相対位置のデータである。 The diagnostic data generation circuit 31 is a circuit that processes the video signal of the camera 33 and generates diagnostic data. The diagnostic data generation circuit 31 performs a process of detecting irregularities on the road surface 11S from the projection pattern of the slit light, a process of generating diagnostic data indicating the size of the irregularities, the position in the vehicle width direction, and the like. The position data in the diagnostic data is relative position data in the vehicle width direction with respect to the magnetic marker 10.
 制御ユニット13(図4)は、センサユニット2やタグリーダ34や診断ユニット3を制御する制御部としての機能に加えて、診断データを記録するデータ記録部130としての機能を備えるユニットである。制御ユニット13は、各種の演算を実行するCPU、ROMやRAMなどのメモリ素子等が実装された電子基板(図示略)を備えている。制御ユニット13には、ハードディスクドライブなどの記憶デバイスが接続されている。記憶デバイスの記憶領域には、診断データベース(診断DB)133が設けられている。データ記録部130は、この診断DB133に診断データを格納する。 The control unit 13 (FIG. 4) is a unit that has a function as a data recording unit 130 that records diagnostic data in addition to a function as a control unit that controls the sensor unit 2, the tag reader 34, and the diagnostic unit 3. The control unit 13 includes an electronic board (not shown) on which a CPU that executes various calculations and memory elements such as ROM and RAM are mounted. A storage device such as a hard disk drive is connected to the control unit 13. A diagnostic database (diagnostic DB) 133 is provided in the storage area of the storage device. The data recording unit 130 stores diagnostic data in this diagnostic DB 133.
 次に、本例の走行路診断システム1の動作の流れについて説明する。以下、(1)マーカ検出処理、(2)マーカ基準データ生成処理、(3)診断データ生成処理、(4)診断データ記録処理、の流れについて、順番に説明する。 Next, the flow of operation of the traveling road diagnosis system 1 of this example will be described. Hereinafter, the flows of (1) marker detection processing, (2) marker reference data generation processing, (3) diagnostic data generation processing, and (4) diagnostic data recording processing will be described in order.
(1)マーカ検出処理
 車両5が道路11を走行している間、センサユニット2のセンサアレイ21(図4)が、磁気マーカ10を検出するためのマーカ検出処理を繰り返し実行する。
 上記のごとく、磁気センサCnは、車両5の進行方向及び車幅方向の磁気成分を計測可能である。例えばこの磁気センサCnが、進行方向に移動して磁気マーカ10の真上を通過するとき、進行方向の磁気計測値は、図5のごとく磁気マーカ10の前後で正負が反転すると共に、磁気マーカ10の真上の位置でゼロを交差するように変化する。したがって、車両5の走行中では、いずれかの磁気センサCnが検出する進行方向の磁気について、その正負が反転するゼロクロスZcが生じたとき、センサユニット2が磁気マーカ10の真上に位置すると判断できる。検出処理回路212(図4)は、このようにセンサユニット2が磁気マーカ10の真上に位置し進行方向の磁気計測値のゼロクロスZcが生じたときに磁気マーカ10を検出したと判断する。
(1) Marker Detection Processing While the vehicle 5 is traveling on the road 11, the sensor array 21 (FIG. 4) of the sensor unit 2 repeatedly executes the marker detection processing for detecting the magnetic markers 10.
As described above, the magnetic sensor Cn can measure the magnetic components in the traveling direction and the vehicle width direction of the vehicle 5. For example, when the magnetic sensor Cn moves in the traveling direction and passes directly above the magnetic marker 10, the magnetic measurement value in the traveling direction is inverted in polarity between before and after the magnetic marker 10 as shown in FIG. Change to cross zero at a position just above 10. Therefore, when the vehicle 5 is traveling, when the zero cross Zc in which the positive/negative of the magnetism in the traveling direction detected by any of the magnetic sensors Cn is reversed occurs, it is determined that the sensor unit 2 is located directly above the magnetic marker 10. it can. The detection processing circuit 212 (FIG. 4) determines that the magnetic marker 10 is detected when the sensor unit 2 is positioned directly above the magnetic marker 10 and the zero cross Zc of the magnetic measurement value in the traveling direction occurs in this way.
 また例えば、磁気センサCnと同じ仕様の磁気センサについて、磁気マーカ10の真上を通過する車幅方向の仮想線に沿う移動を想定すると、車幅方向の磁気計測値は、磁気マーカ10を挟んだ両側で正負が反転すると共に、磁気マーカ10の真上の位置でゼロを交差するように変化する。15個の磁気センサCnを車幅方向に配列したセンサユニット2の場合には、図6の例の通り、磁気マーカ10を介してどちらの側にあるかによって磁気センサCnが検出する車幅方向の磁気の正負が異なってくる。 Further, for example, assuming that a magnetic sensor having the same specifications as the magnetic sensor Cn moves along an imaginary line in the vehicle width direction passing directly above the magnetic marker 10, the magnetic measurement values in the vehicle width direction sandwich the magnetic marker 10. However, the positive and negative signs are inverted on both sides, and at the position directly above the magnetic marker 10, the value changes so as to cross zero. In the case of the sensor unit 2 in which fifteen magnetic sensors Cn are arranged in the vehicle width direction, the vehicle width direction detected by the magnetic sensor Cn depending on which side the magnetic marker 10 is located as in the example of FIG. The positive and negative of the magnetism are different.
 センサユニット2の各磁気センサCnの車幅方向の磁気計測値を例示する図6の分布曲線に基づけば、車幅方向の磁気の正負が反転するゼロクロスZcを利用して磁気マーカ10の車幅方向の位置を特定可能である。隣り合う2つの磁気センサCnの中間(中央とは限らない)にゼロクロスZcが位置している場合には、ゼロクロスZcを挟んで隣り合う2つの磁気センサCnの中間の位置が、磁気マーカ10の車幅方向の位置となる。あるいはいずれかの磁気センサCnの位置にゼロクロスZcが一致している場合、すなわち車幅方向の磁気計測値がゼロであって両外側の磁気センサCnの磁気計測値の正負が反転している磁気センサCnが存在する場合には、その磁気センサCnの直下の位置が、磁気マーカ10の車幅方向の位置となる。検出処理回路212は、センサユニット2の中央の位置(磁気センサC8の位置)に対する磁気マーカ10の車幅方向の位置の偏差を、磁気マーカ10に対する車両5の横ずれ量として計測する。例えば、図6の場合であれば、ゼロクロスZcの位置がC9とC10との中間辺りのC9.5に相当する位置となっている。上記のように磁気センサC9とC10の間隔は10cmであるから、磁気マーカ10に対する車両5の横ずれ量は、車幅方向においてセンサユニット2の中央に位置するC8を基準として(9.5-8)×10=15cmとなる。 Based on the distribution curve of FIG. 6 exemplifying the magnetic measurement value of each magnetic sensor Cn of the sensor unit 2 in the vehicle width direction, the vehicle width of the magnetic marker 10 using the zero cross Zc in which the positive/negative of the magnetism in the vehicle width direction is reversed. The position in the direction can be specified. When the zero cross Zc is located in the middle of the two adjacent magnetic sensors Cn (not necessarily in the center), the middle position of the two adjacent magnetic sensors Cn sandwiching the zero cross Zc is located in the magnetic marker 10. Position in the vehicle width direction. Alternatively, when the zero-cross Zc coincides with the position of one of the magnetic sensors Cn, that is, the magnetic measurement value in the vehicle width direction is zero, and the positive and negative magnetic measurement values of the magnetic sensors Cn on both outer sides are reversed. When the sensor Cn is present, the position immediately below the magnetic sensor Cn is the position of the magnetic marker 10 in the vehicle width direction. The detection processing circuit 212 measures the deviation of the position of the magnetic marker 10 in the vehicle width direction from the central position of the sensor unit 2 (the position of the magnetic sensor C8) as the lateral deviation amount of the vehicle 5 with respect to the magnetic marker 10. For example, in the case of FIG. 6, the position of the zero cross Zc is a position corresponding to C9.5, which is around the middle of C9 and C10. Since the distance between the magnetic sensors C9 and C10 is 10 cm as described above, the lateral deviation amount of the vehicle 5 with respect to the magnetic marker 10 is based on C8 located at the center of the sensor unit 2 in the vehicle width direction (9.5-8). )×10=15 cm.
(2)マーカ基準データ生成処理
 マーカ基準データを生成する処理の内容について、図7を参照して説明する。なお、マーカ基準データは、いずれかのマーカを基準とした位置的な情報である相対位置情報を含むマーカ基準情報の一例である。
(2) Marker Reference Data Generation Process The contents of the process of generating marker reference data will be described with reference to FIG. 7. Note that the marker reference data is an example of marker reference information including relative position information that is positional information based on any of the markers.
 マーカ基準データ生成処理では、制御ユニット13による制御により、上記のマーカ検出処理P1が周期的に実行される。上記の通り車両5が走行中に診断データを生成できるよう、制御ユニット13は、3kHzの周期でマーカ検出処理P1が実行されるようにセンサアレイ21を制御する。なお、上記の通り、このマーカ検出処理P1では、検出された磁気マーカ10に対する車両5の横ずれ量が計測される。 In the marker reference data generation process, the above-described marker detection process P1 is periodically executed under the control of the control unit 13. As described above, the control unit 13 controls the sensor array 21 so that the marker detection process P1 is executed at a cycle of 3 kHz so that the diagnostic data can be generated while the vehicle 5 is traveling. As described above, in the marker detection process P1, the lateral shift amount of the vehicle 5 with respect to the detected magnetic marker 10 is measured.
 磁気マーカ10が検出された場合(S101:YES)、制御ユニット13による制御によりタグリーダ34がタグID読取処理P2を実行する。制御ユニット13は、タグID読取処理P2によって読み取ったタグID、マーカ検出処理P1で計測された横ずれ量(磁気マーカを基準とした相対位置情報の一例)を含むマーカ基準データを生成する(S102)。なお、タグID読取処理P2で読み取られたタグIDは、新たなタグID読取処理P2の実行により上書きされるまで、そのまま保持される。 When the magnetic marker 10 is detected (S101: YES), the tag reader 34 executes the tag ID reading process P2 under the control of the control unit 13. The control unit 13 generates the marker reference data including the tag ID read by the tag ID reading process P2 and the lateral deviation amount (an example of relative position information based on the magnetic marker) measured by the marker detection process P1 (S102). .. The tag ID read in the tag ID reading process P2 is retained as it is until it is overwritten by the new tag ID reading process P2.
 一方、磁気マーカ10が未検出の場合は(S101:NO)、制御ユニット13は、IMU22の計測値を利用し、直前に検出された磁気マーカを基準とした相対位置の推定処理を実行する(S112)。制御ユニット13は、このステップS112では、直前の磁気マーカの検出後にIMU22が推定する車両の相対位置に、その磁気マーカに対して計測された横ずれ量を組み合わせることで、磁気マーカを基準とした車両5の相対位置(相対位置情報)を推定する。IMU22が上記のような相対位置を推定する際の基準となる位置は、直前の磁気マーカ検出時の車両位置である。この車両位置と、対応する磁気マーカとは、横ずれ量の分だけ位置がずれている。一方、ステップS112で推定した相対位置は、直前に検出された磁気マーカの位置を基準とした車両の相対位置である。直前の磁気マーカの検出後にIMU22が推定した相対位置に対して、直前の磁気マーカの検出時に計測された横ずれ量を組み合わせれば、直前に検出された磁気マーカに対する車両5の相対位置を推定できる。 On the other hand, when the magnetic marker 10 is not detected (S101: NO), the control unit 13 uses the measurement value of the IMU 22 and executes the relative position estimation process with the magnetic marker detected immediately before as the reference ( S112). In this step S112, the control unit 13 combines the relative position of the vehicle estimated by the IMU 22 after the detection of the immediately preceding magnetic marker with the lateral deviation amount measured for the magnetic marker, so that the vehicle based on the magnetic marker is used as a reference. Estimate the relative position of 5 (relative position information). The reference position when the IMU 22 estimates the relative position as described above is the vehicle position when the magnetic marker was detected immediately before. The position of the vehicle and the corresponding magnetic marker are displaced by the amount of lateral displacement. On the other hand, the relative position estimated in step S112 is the relative position of the vehicle based on the position of the magnetic marker detected immediately before. The relative position of the vehicle 5 with respect to the magnetic marker detected immediately before can be estimated by combining the relative position estimated by the IMU 22 after the detection of the previous magnetic marker with the lateral deviation amount measured at the time of detection of the immediately previous magnetic marker. ..
 制御ユニット13は、ステップS112において推定した相対位置に対して、直前に検出された磁気マーカに対する横ずれ量のデータ(相対位置情報)、及び直前のタグID読取処理P2で読み取られたタグIDを含むマーカ基準データを生成する(S102)。生成されたマーカ基準データは、所定の書込エリアに書き込みされて、随時、最新のものに書き換えられる(S103)。 The control unit 13 includes the lateral displacement amount data (relative position information) for the magnetic marker detected immediately before with respect to the relative position estimated in step S112, and the tag ID read in the immediately preceding tag ID reading process P2. Marker reference data is generated (S102). The generated marker reference data is written in a predetermined writing area and rewritten to the latest one at any time (S103).
(3)診断データ生成処理
 診断データ生成処理の流れについて図8のフロー図、及び図9の模式図を参照して説明する。診断ユニット3は、制御ユニット13からデータ要求信号を受信すると(S201:YES)、投光器35(図9)を制御し、路面11Sに向けてスリット光を投射する(S202)。診断ユニット3は、スリット光を投射している最中に、カメラ33(図9)を制御し、路面11S上でのスリット光の投影パターンを撮像する(S203)。そして、撮像画像に対して画像処理を施し、投影パターン355(図9)を抽出する(S204)。
(3) Diagnostic Data Generation Process The flow of the diagnostic data generation process will be described with reference to the flowchart of FIG. 8 and the schematic diagram of FIG. 9. When the diagnostic unit 3 receives the data request signal from the control unit 13 (S201: YES), the diagnostic unit 3 controls the light projector 35 (FIG. 9) to project slit light toward the road surface 11S (S202). The diagnostic unit 3 controls the camera 33 (FIG. 9) while projecting the slit light, and images the projection pattern of the slit light on the road surface 11S (S203). Then, image processing is performed on the captured image to extract the projection pattern 355 (FIG. 9) (S204).
 診断ユニット3は、投影パターン355(図9)の形状を解析等することで診断データを生成する(S205)。例えば、路面11Sが平らであれば、投影パターンは直線のパターンになる。一方、例えば図9のごとく、路面11Sに凹み110があると、投影パターン355は、車両5の進行方向に向かって凸状の湾曲部355Aを含むパターンになる。診断ユニット3は、この湾曲部355Aについて、車幅方向の形成範囲、湾曲部355Aの高さなどから、凹み110の大きさや深さを算出する。そして、診断ユニット3は、算出した凹み110の大きさや深さのデータを含む診断データを出力する(S206)。 The diagnostic unit 3 generates diagnostic data by analyzing the shape of the projection pattern 355 (FIG. 9) (S205). For example, if the road surface 11S is flat, the projection pattern is a straight line pattern. On the other hand, for example, as shown in FIG. 9, when the road surface 11S has the depression 110, the projection pattern 355 becomes a pattern including a convex curved portion 355A in the traveling direction of the vehicle 5. The diagnostic unit 3 calculates the size and depth of the recess 110 for the curved portion 355A from the formation range in the vehicle width direction, the height of the curved portion 355A, and the like. Then, the diagnostic unit 3 outputs diagnostic data including data on the calculated size and depth of the depression 110 (S206).
(4)診断データ記録処理
 診断データ記録処理の内容について、図10のフロー図を参照して説明する。制御ユニット13は、車両5の移動距離が所定量に到達する毎に(S301:YES)、診断ユニット3に対して診断データ要求信号を出力する(S302)。上記のステップS301の判断によれば、一定距離毎の診断データを取得できる。なお、この判断に代えて、一定時間が経過する毎に診断データ要求信号を出力することも良いし、磁気マーカ10を検出する毎に診断データ要求信号を出力することも良い。
(4) Diagnostic Data Recording Process The contents of the diagnostic data recording process will be described with reference to the flowchart of FIG. The control unit 13 outputs a diagnostic data request signal to the diagnostic unit 3 every time the moving distance of the vehicle 5 reaches a predetermined amount (S301: YES) (S302). According to the determination in step S301 described above, diagnostic data can be acquired for each fixed distance. Instead of this determination, the diagnostic data request signal may be output every time a certain period of time elapses, or the diagnostic data request signal may be output each time the magnetic marker 10 is detected.
 制御ユニット13は、診断データを取得すると(S303)、上記のマーカ基準データの読出を実行する(S304)。ここで、上記のごとく、マーカ基準データを生成するマーカ検出処理P1は3kHzの周期で実行される。この3kHzの周期は、診断データを取得する周期に対して十分に速い。したがって、上記のステップS304で読み出されたマーカ基準データの生成時点は、ステップS303で取得された診断データの生成時点と同時とみなすことができる。 When the control unit 13 acquires the diagnostic data (S303), it reads the marker reference data (S304). Here, as described above, the marker detection process P1 for generating the marker reference data is executed at a cycle of 3 kHz. This 3 kHz cycle is sufficiently faster than the cycle for acquiring diagnostic data. Therefore, the generation time of the marker reference data read in step S304 can be considered to be the same as the generation time of the diagnostic data acquired in step S303.
 制御ユニット13は、ステップS303で取得した診断データに対して、ステップS304で読み出したマーカ基準データをひも付ける処理を実行する(S305)。そして、その診断データを診断DB133に記録する(S306)。なお、診断データに対してひも付けられるマーカ基準データには、少なくとも、直近で検出された磁気マーカ10のタグID(マーカ特定情報)、その磁気マーカ10に対する相対位置のデータ、が含まれている。 The control unit 13 executes a process of tying the marker reference data read in step S304 to the diagnostic data acquired in step S303 (S305). Then, the diagnostic data is recorded in the diagnostic DB 133 (S306). The marker reference data attached to the diagnostic data includes at least the tag ID (marker identification information) of the magnetic marker 10 detected most recently and the data of the relative position with respect to the magnetic marker 10. ..
 以上のように構成された走行路診断システム1は、路面11Sの状態を表す診断データを記録するに当たって、磁気マーカ10の位置を基準とした相対位置のデータを含むマーカ基準データをひも付ける(図11参照。)。このマーカ基準データによれば、診断データが取得されたときの車両5の位置を精度高く特定できるので、補修作業を実施する際の補修箇所の特定が容易である。 When recording the diagnostic data representing the state of the road surface 11S, the traveling road diagnosis system 1 configured as described above links the marker reference data including the data of the relative position with the position of the magnetic marker 10 as the reference (FIG. See 11.). According to the marker reference data, the position of the vehicle 5 at the time when the diagnostic data is acquired can be specified with high accuracy, so that the repaired portion can be easily specified when performing the repair work.
 なお、補修箇所を特定する際、マーカ特定情報であるタグIDと、対応する磁気マーカ10の敷設位置(絶対位置)のデータと、がひも付けられたマーカデータベース(マーカDB)を利用すると良い。診断データにひも付けられたマーカ基準データには、基準となる磁気マーカ10のマーカ特定情報であるタグIDが含まれている。このタグIDを利用して上記のマーカDBを参照すれば、基準となる磁気マーカ10の絶対位置を取得できる。さらに、マーカ基準データには、基準となる磁気マーカ10に対する相対位置のデータが含まれている。磁気マーカ10の絶対位置を基準とすれば、マーカ基準データ中の相対位置のデータを利用して、診断データが取得された位置(絶対位置)を精度高く特定可能である。 When specifying the repaired portion, it is advisable to use a marker database (marker DB) in which the tag ID that is the marker specifying information and the data of the laid position (absolute position) of the corresponding magnetic marker 10 are linked. The marker reference data attached to the diagnostic data includes the tag ID that is the marker specifying information of the magnetic marker 10 serving as the reference. By referring to the above marker DB using this tag ID, the absolute position of the reference magnetic marker 10 can be acquired. Furthermore, the marker reference data includes data on the relative position with respect to the reference magnetic marker 10. If the absolute position of the magnetic marker 10 is used as a reference, the position (absolute position) where the diagnostic data is acquired can be specified with high accuracy by using the data of the relative position in the marker reference data.
 なお、本例では、マーカ基準データに、マーカ特定情報であるタグIDを含める構成を例示している。磁気マーカ10の敷設位置をマーカ基準データに含めることも良い。この場合には、磁気マーカ10の敷設位置を表す情報がマーカ特定情報の一例となる。このとき、磁気マーカ10の敷設位置と相対位置のデータとの組合せによるマーカ基準データとすると良い。例えば、車両5の制御ユニット13が上記と同様のマーカDBを参照可能であれば、タグIDを利用して対応する磁気マーカ10の敷設位置を取得可能である。あるいは、磁気マーカ10の敷設位置を表す位置データを送信するRF-IDタグを採用しても良い。 In this example, the marker reference data includes the tag ID that is the marker specifying information. The laying position of the magnetic marker 10 may be included in the marker reference data. In this case, the information indicating the installation position of the magnetic marker 10 is an example of the marker specifying information. At this time, it is preferable to use the marker reference data that is a combination of the laid position of the magnetic marker 10 and the relative position data. For example, if the control unit 13 of the vehicle 5 can refer to the marker DB similar to the above, the installation position of the corresponding magnetic marker 10 can be acquired using the tag ID. Alternatively, an RF-ID tag that transmits position data indicating the laid position of the magnetic marker 10 may be adopted.
 磁気マーカ10を基準として特定された車両位置のデータや情報をマーカ基準情報として採用し、診断データにひも付けることも良い。車両位置は、横ずれ量などの相対位置の分だけ、基準となる磁気マーカ10の敷設位置からずらした位置として特定できる。この車両位置は、磁気マーカ10を基準とした相対位置のデータに演算処理を施した加工情報である。この車両位置の情報は、磁気マーカを基準とした位置的な情報である相対位置情報に基づく情報と言える。 It is also possible to use the vehicle position data and information specified with the magnetic marker 10 as a reference as marker reference information and attach it to the diagnostic data. The vehicle position can be specified as a position displaced from the laying position of the reference magnetic marker 10 by the relative position such as the lateral shift amount. The vehicle position is processing information obtained by performing arithmetic processing on data of the relative position with respect to the magnetic marker 10. This vehicle position information can be said to be information based on relative position information, which is positional information based on the magnetic marker.
 本例では、診断データの一例として、路面11Sの凹凸を表すデータを示している。スリット光を路面11Sに投射して診断データを生成する構成を例示したが、例えばレーザー光や超音波やミリ波を利用する測距により路面11Sの凹凸を表すデータを取得することも可能である。例えば超音波やミリ波やX線などを路面11Sに照射して内部の空洞を検出する技術を利用し、道路の内部構造を表す診断データを取得することも良い。
 本例では、マーカとして磁気マーカ10を例示したが、道路11に敷設された各種のマーカに代えることができる。例えば、路面11Sに印刷されたマーカであっても良く、キャッツアイのようなマーカであっても良い。
In this example, as an example of the diagnostic data, data representing the unevenness of the road surface 11S is shown. Although the configuration in which the slit light is projected onto the road surface 11S to generate the diagnostic data has been illustrated, it is possible to obtain the data representing the unevenness of the road surface 11S by distance measurement using laser light, ultrasonic waves, or millimeter waves. .. For example, a technique of irradiating ultrasonic waves, millimeter waves, X-rays, or the like on the road surface 11S to detect an internal cavity may be used to acquire diagnostic data representing the internal structure of the road.
In this example, the magnetic marker 10 is exemplified as the marker, but it can be replaced with various markers laid on the road 11. For example, it may be a marker printed on the road surface 11S or a marker such as a cat's eye.
 以上のように構成された本例の走行路診断システム1によれば、車両5が道路11を走行しながら、診断データを順次取得できる。この走行路診断システム1によれば、一般の車両の走行を規制することなく診断データの取得が可能である。そして、車両5が取得した診断データには、磁気マーカ10の敷設位置に基づく精度の高い位置情報がひも付けられる。そのため、後日の補修作業の実施に当たって、補修箇所を特定する手間がかからず、効率良く補修作業を実施できる。 According to the traveling road diagnosis system 1 of the present example configured as described above, the diagnostic data can be sequentially acquired while the vehicle 5 travels on the road 11. According to the traveling road diagnosis system 1, it is possible to acquire diagnostic data without restricting the traveling of a general vehicle. Then, highly accurate position information based on the laid position of the magnetic marker 10 is attached to the diagnostic data acquired by the vehicle 5. Therefore, when performing the repair work at a later date, it is not necessary to specify the repair location, and the repair work can be efficiently performed.
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。 Although specific examples of the present invention have been described in detail as in the above examples, these specific examples only disclose examples of the technology included in the scope of the claims. Needless to say, the scope of claims should not be limitedly interpreted by the configuration and numerical values of the specific examples. The scope of the claims includes a technology in which the specific examples described above are variously modified, changed or appropriately combined by utilizing known technology and knowledge of those skilled in the art.
 1 走行路診断システム
 10 磁気マーカ(マーカ)
 11 道路(走行路)
 11S 路面
 13 制御ユニット(データ取得部、制御部)
 130 データ記録部
 133 診断DB
 15 RF-IDタグ(無線タグ)
 2 センサユニット(マーカ検出部)
 21 センサアレイ
 22 IMU
 3 診断ユニット
 31 診断データ生成回路
 33 カメラ
 34 タグリーダ(情報読取部)
 35 投光器
 351 レーザー光源
 353 シリンドリカルレンズ
 355 投影パターン
 355A 湾曲部
 5 診断車両(車両)
1 Driving road diagnostic system 10 Magnetic marker (marker)
11 roads
11S Road surface 13 Control unit (data acquisition unit, control unit)
130 data recording unit 133 diagnosis DB
15 RF-ID tag (wireless tag)
2 Sensor unit (marker detector)
21 sensor array 22 IMU
3 Diagnostic Unit 31 Diagnostic Data Generation Circuit 33 Camera 34 Tag Reader (Information Reader)
35 Projector 351 Laser light source 353 Cylindrical lens 355 Projection pattern 355A Curved part 5 Diagnostic vehicle (vehicle)

Claims (10)

  1.  走行路の状態を表す診断データを取得するデータ取得部、及び走行路に間隔を空けて敷設されたマーカを検出するマーカ検出部を備える車両と、
     いずれかのマーカを基準とした位置的な情報あるいは該位置的な情報に基づく情報を少なくとも含むマーカ基準情報をひも付けて、前記データ取得部が取得した診断データを記録するデータ記録部と、を含む走行路診断システム。
    A vehicle that includes a data acquisition unit that acquires diagnostic data that represents the state of the traveling road, and a marker detection unit that detects markers that are laid at intervals on the traveling road,
    A data recording unit for recording the diagnostic data acquired by the data acquisition unit by attaching marker reference information including at least positional information based on any marker or information based on the positional information. Driving road diagnostic system including.
  2.  請求項1において、前記マーカを基準とした位置的な情報に基づく情報は、前記マーカを基準として特定された車両位置の情報である走行路診断システム。 The traveling road diagnosis system according to claim 1, wherein the information based on the positional information based on the marker is information on the vehicle position specified based on the marker.
  3.  請求項1において、前記車両は、慣性航法により前記車両の相対位置を推定する慣性航法ユニットを有し、
     前記マーカ検出部は、前記マーカに対する車両の車幅方向の位置の偏差である横ずれ量を計測可能であって、
     前記マーカを基準とした位置的な情報は、前記マーカを基準とした相対位置情報であり、
     前記マーカ検出部が前記マーカを検出したときの前記相対位置情報は、前記マーカ検出部によって計測された横ずれ量であり、
     前記マーカ検出部がいずれかのマーカを検出した後、新たなマーカを検出するまでの間における前記相対位置情報は、前記慣性航法ユニットが推定する相対位置に、前記いずれかのマーカを検出したときに計測された前記横ずれ量を組み合わせた位置情報である走行路診断システム。
    The vehicle according to claim 1, further comprising an inertial navigation unit that estimates the relative position of the vehicle by inertial navigation.
    The marker detection unit is capable of measuring a lateral deviation amount that is a deviation of a position of the vehicle in the vehicle width direction with respect to the marker,
    The positional information based on the marker is relative position information based on the marker,
    The relative position information when the marker detection unit detects the marker is a lateral shift amount measured by the marker detection unit,
    When the marker detection unit detects any of the markers and then detects a new marker, the relative position information is the relative position information at the relative position estimated by the inertial navigation unit when the one of the markers is detected. A travel path diagnosis system that is position information that is a combination of the lateral deviation amounts measured in step S6.
  4.  請求項1において、前記マーカ基準情報には、対応するマーカに対する相対位置を表す相対位置情報が含まれている走行路診断システム。 In claim 1, the roadside diagnosis system in which the marker reference information includes relative position information indicating a relative position with respect to a corresponding marker.
  5.  請求項1~4のいずれか1項において、前記マーカ基準情報には、対応するマーカを一意に特定可能なマーカ特定情報が含まれている走行路診断システム。 The roadway diagnosis system according to any one of claims 1 to 4, wherein the marker reference information includes marker identification information capable of uniquely identifying a corresponding marker.
  6.  請求項5において、前記マーカ特定情報は、マーカの敷設位置を表す位置情報である走行路診断システム。 The traveling path diagnosis system according to claim 5, wherein the marker specifying information is position information indicating a laying position of the marker.
  7.  請求項5または6において、前記マーカには、前記マーカ特定情報として利用される固有情報を出力する無線タグが取り付けられ、
     前記車両は、前記無線タグが出力する前記固有情報を読み取る情報読取部を備えている走行路診断システム。
    The wireless tag according to claim 5 or 6, wherein a wireless tag that outputs unique information used as the marker specifying information is attached to the marker.
    The vehicle is a traveling road diagnosis system including an information reading unit that reads the unique information output from the wireless tag.
  8.  請求項7において、前記車両は、前記マーカ検出部を前側として前後方向に離間して配置されている前記マーカ検出部及び前記情報読取部の動作を制御する制御部を有し、
     該制御部は、前記マーカ検出部によりマーカが検出されたとき、該マーカ検出部と前記情報読取部との位置関係に基づいて前記マーカが前記情報読取部が接近するタイミングを予測し、当該予測したタイミングで該情報読取部を動作させる走行路診断システム。
    In Claim 7, The vehicle has a control part which controls operation of the above-mentioned marker detection part and the above-mentioned information reading part which are arranged at a distance in the front-back direction with the marker detection part as the front side,
    When the marker is detected by the marker detection unit, the control unit predicts a timing at which the information reading unit approaches the marker based on a positional relationship between the marker detection unit and the information reading unit, and performs the prediction. A traveling road diagnostic system that operates the information reading unit at the specified timing.
  9.  請求項7または8において、前記無線タグは、シート状をなし、前記マーカの表面に取り付けられている走行路診断システム。 The traveling path diagnosis system according to claim 7 or 8, wherein the wireless tag has a sheet shape and is attached to the surface of the marker.
  10.  請求項1~9のいずれか1項において、前記マーカは、磁粉を高分子材料中に分散させた磁石である走行路診断システム。
     
    The traveling path diagnosis system according to any one of claims 1 to 9, wherein the marker is a magnet in which magnetic powder is dispersed in a polymer material.
PCT/JP2019/051542 2018-12-28 2019-12-27 Travel path diagnostic system WO2020138467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562529A JP7389360B2 (en) 2018-12-28 2019-12-27 Driving road diagnosis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018248417 2018-12-28
JP2018-248417 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138467A1 true WO2020138467A1 (en) 2020-07-02

Family

ID=71129190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051542 WO2020138467A1 (en) 2018-12-28 2019-12-27 Travel path diagnostic system

Country Status (2)

Country Link
JP (1) JP7389360B2 (en)
WO (1) WO2020138467A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034850A1 (en) * 2020-08-08 2022-02-17 愛知製鋼株式会社 Work method and work system
US11294090B2 (en) * 2017-03-28 2022-04-05 Aichi Steel Corporation Marker detection system and marker detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109991A (en) * 1999-10-12 2001-04-20 Oki Electric Ind Co Ltd Lane marker system and device for detecting lane marker and controlling travelling of vehicle
US20150012165A1 (en) * 2013-07-03 2015-01-08 Volvo Car Corporation Vehicle system, a vehicle and a method for autonomous road irregularity avoidance
WO2017209112A1 (en) * 2016-06-03 2017-12-07 愛知製鋼株式会社 Position capture method and system
WO2018066117A1 (en) * 2016-10-06 2018-04-12 富士通株式会社 Road condition management program, road condition management device, and road condition management method
WO2018181053A1 (en) * 2017-03-28 2018-10-04 愛知製鋼株式会社 Marker system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001763B2 (en) 2002-03-28 2007-10-31 クラリオン株式会社 In-vehicle travel support device
JP6323246B2 (en) 2014-08-11 2018-05-16 日産自動車株式会社 Vehicle travel control apparatus and method
JP7012421B2 (en) 2016-06-17 2022-01-28 愛知製鋼株式会社 Magnetic marker and marker system
JP6824762B2 (en) 2017-01-26 2021-02-03 西日本高速道路エンジニアリング四国株式会社 Pavement road surface condition survey system and pavement road surface condition survey method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109991A (en) * 1999-10-12 2001-04-20 Oki Electric Ind Co Ltd Lane marker system and device for detecting lane marker and controlling travelling of vehicle
US20150012165A1 (en) * 2013-07-03 2015-01-08 Volvo Car Corporation Vehicle system, a vehicle and a method for autonomous road irregularity avoidance
WO2017209112A1 (en) * 2016-06-03 2017-12-07 愛知製鋼株式会社 Position capture method and system
WO2018066117A1 (en) * 2016-10-06 2018-04-12 富士通株式会社 Road condition management program, road condition management device, and road condition management method
WO2018181053A1 (en) * 2017-03-28 2018-10-04 愛知製鋼株式会社 Marker system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11294090B2 (en) * 2017-03-28 2022-04-05 Aichi Steel Corporation Marker detection system and marker detection method
WO2022034850A1 (en) * 2020-08-08 2022-02-17 愛知製鋼株式会社 Work method and work system

Also Published As

Publication number Publication date
JP7389360B2 (en) 2023-11-30
JPWO2020138467A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
CN110419067B (en) Marker system
JP6766527B2 (en) Vehicle system and course estimation method
CN110402311B (en) Construction method and operation system of magnetic marker
US6753902B1 (en) Image processing apparatus, image processing method, navigation apparatus, program storage device and computer data signal embodied in carrier wave
JP6828643B2 (en) Position acquisition system and position acquisition method
JP7147275B2 (en) How to calibrate the gyro sensor
JP2018169301A (en) Marker system
JP7389359B2 (en) Diagnostic systems for vehicles and vehicles
WO2020138467A1 (en) Travel path diagnostic system
US20220011102A1 (en) Point cloud data acquiring method and point cloud data acquiring system
JP7047506B2 (en) Vehicle system and tag communication method
JP2024020294A (en) Map data recording medium and map data generation method
WO2021033312A1 (en) Information output device, automated driving device, and method for information output
JP7360059B2 (en) Location estimation method and location estimation system
JP7381939B2 (en) 3D structure estimation method and 3D structure estimation system
JP7445139B2 (en) magnetic marker system
JP7151747B2 (en) Vehicle system and route estimation method
WO2022270365A1 (en) Vehicular system
WO2020021596A1 (en) Vehicle position estimation device and vehicle position estimation method
WO2024063078A1 (en) Method and system for generating 3-dimensional map data
WO2022210201A1 (en) Information acquisition method and vehicular system
JP2024030531A (en) Vehicle control device, vehicle control method, and vehicle control computer program
JP2022146655A (en) Vehicle controller, vehicle control method, and vehicle control computer program
CN116783567A (en) Control method and control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562529

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902518

Country of ref document: EP

Kind code of ref document: A1