WO2020138313A1 - Composite particle for negative electrode of lithium ion secondary battery - Google Patents

Composite particle for negative electrode of lithium ion secondary battery Download PDF

Info

Publication number
WO2020138313A1
WO2020138313A1 PCT/JP2019/051181 JP2019051181W WO2020138313A1 WO 2020138313 A1 WO2020138313 A1 WO 2020138313A1 JP 2019051181 W JP2019051181 W JP 2019051181W WO 2020138313 A1 WO2020138313 A1 WO 2020138313A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
negative electrode
composite
particle
mass
Prior art date
Application number
PCT/JP2019/051181
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 邦夫
俊哉 川崎
浩文 井上
真澄 栗谷
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020138313A1 publication Critical patent/WO2020138313A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to composite particles for a negative electrode of a lithium ion secondary battery. More specifically, the present invention relates to composite particles for a negative electrode that can obtain a lithium ion secondary battery having excellent cycle characteristics.
  • Patent Document 1 includes Si-polymer carbonized matrix particles formed from a Si-polymer matrix slurry containing a Si slurry, a polymer monomer, and a cross-linking agent, and a first carbon matrix.
  • a carbon-silicon composite wherein molecular carbonized matrix particles are entrapped and dispersed within the first carbon matrix, the polymeric carbonized matrix particles having a higher porosity than the first carbon matrix. ..
  • Patent Document 2 includes an outer shell portion and a core portion, and the outer shell portion and the core portion are formed by binding an electrode active material and a conductive material with a dispersion type binder to form the outer shell portion.
  • Disclosed is a composite particle in which the weight average particle diameter of the electrode active material and the conductive material is smaller than the weight average particle diameter of the electrode active material and the conductive material forming the core.
  • Patent Document 3 discloses a porous silicon particle in which a plurality of silicon fine particles are bonded, and the average particle diameter of the porous silicon particle is 0.1 ⁇ m to 1000 ⁇ m, and the porous silicon particle has continuous voids. Having a three-dimensional network structure, the average porosity of the porous silicon particles is 15 to 93%, the porosity Xs of the surface vicinity region of 50% or more in the radial direction and the particle interior of 50% or less in the radial direction. Disclosed is a porous silicon particle characterized in that a ratio of porosity Xi of a region, Xs/Xi, is 0.5 to 1.5, and contains 80 atomic% or more of silicon in a ratio of elements other than oxygen. ing.
  • Patent Document 4 is a porous silicon particle in which a plurality of silicon particles are joined and have continuous voids, and the particle size of the silicon particles, the pillar diameter or the mean x of the pillar sides is 2 nm to 2 ⁇ m, The particle size of silicon fine particles, the standard diameter ⁇ of the pillar diameter or the pillar side is 1 to 500 nm, and the ratio ( ⁇ /x) between the average x and the standard deviation ⁇ is 0.01 to 0.5.
  • the porous silicon particles are divided into 90% or more of the surface vicinity area S in the radial direction and 90% or less of the particle interior area I in the radial direction, and the average particle size of the silicon fine particles forming the surface vicinity area S is Disclosed is porous silicon particles having Es/Ei of 0.01 to 1.0, where Es is Ei and the average particle diameter of the silicon fine particles forming the particle inner region I is Ei.
  • Patent Document 5 has a three-dimensional network structure in which silicon fine particles are bonded and has continuous voids, and the average particle diameter or average pillar diameter ( ⁇ ) of the silicon fine particles is 2 nm to 2 ⁇ m.
  • the value of ⁇ / ⁇ which is a ratio of the standard deviation ( ⁇ ) of the particle size or the column diameter of the column to the average particle diameter or the average column diameter ( ⁇ ) of the silicon fine particles, is 0.03 to 1.50.
  • a featured porous silicon particle is disclosed.
  • Patent Document 6 contains porous silicon particles as an essential component, and includes graphite, amorphous carbon, a polymer compound fired body (for example, pitch coke, needle coke, petroleum coke), carbon fiber, and a conductive polymer (for example, polyacetylene). , Polypyrrole) or tin as an optional component is disclosed.
  • An object of the present invention is to provide composite particles for a negative electrode that can obtain a lithium ion secondary battery having excellent charge/discharge cycle characteristics.
  • the present invention includes the following aspects.
  • a composite particle containing Si-containing particles and a carbon material The porosity in the range from the center of the composite particle to 80% of the diameter of the composite particle is 30 to 50%, and the porosity outside the range from the center of the composite particle to 80% of the diameter of the composite particle The ratio of the porosity in the range from the surface to 10% of the diameter of the composite particles is 0.5 or less, Composite particles for a negative electrode of a lithium ion secondary battery.
  • the Si-containing particles are porous silicon particles formed by aggregating or bonding a plurality of Si fine particles.
  • a negative electrode material for a lithium ion secondary battery containing the composite particle according to any one of [1] to [5].
  • a negative electrode sheet for a lithium ion secondary battery which has an electrode layer containing the negative electrode material according to [6].
  • a lithium ion secondary battery having the negative electrode sheet according to [7].
  • [10] Mix Si-containing particles and a carbon precursor, Heat treating the resulting mixture to graphitize or carbonize the carbon precursor, The method for producing composite particles according to any one of [1] to [5]. [11] The production method according to [9] or [10], wherein the Si-containing particles are porous silicon particles formed by aggregating or bonding a plurality of Si fine particles.
  • the composite particles of the present invention have high strength against compression and can maintain their shape without being crushed even during the production of the electrode layer.
  • the size of the composite particles themselves does not substantially change even if the volume of the Si fine particles changes due to the insertion and desorption of lithium ions.
  • FIG. 3 is a view showing an SEM image of the composite particles obtained in Example 1.
  • FIG. 3 is a diagram showing an SEM image after compressing the composite particles obtained in Example 1.
  • FIG. 3 is a view showing an SEM image of Si-containing particles used in Example 1.
  • FIG. 3 is a diagram showing an SEM image after compressing the Si-containing particles used in Example 1. It is a figure which shows the concept of the range (outer shell) from the outer surface of a composite particle to 10% of the diameter of a composite particle, and the range (core) from the center of a composite particle to 80% of the diameter of a composite particle.
  • the composite particle of the present invention is for a negative electrode of a lithium ion secondary battery.
  • the composite particles of the present invention include Si-containing particles and a carbon material.
  • the Si-containing particles used in the present invention are preferably porous silicon particles formed by aggregating or bonding a plurality of Si fine particles (see FIG. 3). When the Si-containing particles are compressed at 25 MPa, as shown in FIG. 4, some of the Si fine particles are agglomerated or joined.
  • the surface layer of the Si fine particles preferably contains SiO x (0 ⁇ x ⁇ 2).
  • the portion (core) other than the surface layer may be made of elemental silicon or SiO x (0 ⁇ x ⁇ 2).
  • the average thickness of the surface layer containing SiO x is preferably 0.5 nm or more and 10 nm or less. When the average thickness of the surface layer containing SiO x is 0.5 nm or more, oxidation by air or oxidizing gas can be suppressed. If the average thickness of the surface layer containing SiO x is 10 nm or less, the increase in irreversible capacity can be suppressed. This average thickness can be measured by a TEM photograph.
  • the 90% diameter D 90 of the Si fine particles in the number-based cumulative distribution of the primary particle diameter is preferably 1000 nm or less, more preferably 600 nm or less, still more preferably 400 nm or less.
  • the primary particle size can be measured by observation with a microscope such as SEM or TEM. Further, the primary particle diameter of Si fine particles in the composite material can be calculated by performing image analysis of an image of spherical particles observed with a transmission electron microscope at a magnification of 100,000.
  • the oxygen content of the Si-containing particles is preferably 1% by mass or more and 18% by mass or less, more preferably 2% by mass or more and 10% by mass or less. Within this range, an increase in irreversible capacity can be suppressed.
  • the oxygen content can be quantified by, for example, an oxygen-nitrogen simultaneous analyzer (inert gas melting-infrared absorption method).
  • the Si-containing particles can include an element M selected from other metal elements and metalloid elements in addition to Si.
  • element M for example, Ag, Al, As, Au, B, Ba, Ca, Ce, Co, Cr, Cu, Er, Fe, Ga, Gd, Ge, Hf, In, Ir, Lu, Group consisting of Mg, Mn, Mo, Nb, Nd, Ni, Pd, Pr, Pt, Re, Rh, Ru, Sc, Sm, Sn, Ta, Te, Ti, V, W, Y, Yb, Zn, Zr.
  • At least one selected from The content of the element M is not particularly limited as long as it does not significantly hinder the action of silicon, and is, for example, preferably 2 to 90 atom %, more preferably 50 to 85 atom% in the Si-containing particles.
  • the element M may contribute to the aggregation or bonding of the Si particles.
  • the porous silicon particles as Si-containing particles are not particularly limited by the manufacturing method. For example, it can be manufactured by referring to the methods disclosed in Patent Document 3, Patent Document 4, Patent Document 5, and the like.
  • a commercially available product may be used as the Si-containing particles.
  • ANSY360 and ANSY160 manufactured by AUO Crystal Corp. can be cited.
  • the lower limit is preferably 55% by mass, more preferably 60% by mass, further preferably 65% by mass, and the upper limit is preferable, with respect to the composite particles. Is 95% by mass, more preferably 90% by mass, and even more preferably 85% by mass.
  • the carbon material used in the present invention is a graphitic carbon material or a carbonaceous carbon material, preferably a carbonaceous carbon material.
  • the graphitic carbon material is a carbon material in which crystals formed by carbon atoms are greatly developed.
  • the graphitic carbon material is a carbon material that is more slippery, softer, and has a lower scratch strength than the carbonaceous carbon material.
  • the graphitic carbon material can be produced, for example, by graphitizing a carbon precursor.
  • the graphite carbon material moves flexibly with the pressing at the time of manufacturing the electrode, which may contribute to the improvement of the electrode density.
  • Examples of the graphite carbon material include artificial graphite, pyrolytic graphite, expanded graphite, natural graphite, scaly graphite, and scaly graphite.
  • Carbonaceous carbon material is a carbon material with low growth of crystals formed by carbon atoms.
  • the carbonaceous carbon material can be produced, for example, by carbonizing a carbon precursor.
  • the carbon precursor is not particularly limited, thermal heavy oil, pyrolysis oil, straight asphalt, blown asphalt, petroleum-derived substances such as tar or petroleum pitch by-produced during ethylene production, or coal tar produced during coal carbonization, Heavy components obtained by distilling off low-boiling components of coal tar, coal-derived substances such as coal tar pitch (coal pitch) are preferable, petroleum pitch or coal pitch is more preferable, and coal tar pitch is further preferable.
  • Pitch is a mixture of polycyclic aromatic compounds. When pitch is used, a carbonaceous carbon material having a high carbonization rate and low impurities can be produced. Since the pitch has a low oxygen content, the Si-containing particles are less likely to be oxidized in carbonization or graphitization after being mixed with Si-containing particles.
  • the softening point of pitch as a carbon precursor is preferably 80°C or higher and 300°C or lower.
  • the softening point of the pitch can be measured by the Mettler method described in ASTM-D3104-77.
  • the pitch as the carbon precursor has a residual carbon rate of preferably 20% by mass or more and 85% by mass or less, more preferably 25% by mass or more and 80% by mass or less.
  • the residual coal rate is determined by the following method.
  • the solid pitch is ground in a mortar or the like, and the ground product is subjected to mass thermal analysis under a nitrogen gas flow.
  • the ratio of the mass at 1100° C. to the charged mass is defined as the residual coal rate.
  • the residual coal rate corresponds to the fixed carbon amount measured at a carbonization temperature of 1100° C. according to JIS K2425.
  • the QI (quinoline insoluble matter) content of the pitch used in the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less.
  • the QI content of the pitch is a value corresponding to the amount of free carbon. When the QI content is within the above range, the electrode characteristics will be further improved.
  • the pitch used in the present invention has a TI (toluene insoluble content) content of preferably 10% by mass or more and 70% by mass or less.
  • TI content is within the above range, it is possible to uniformly mix the pitch and the other components, and it is possible to obtain composite particles exhibiting properties suitable as a negative electrode active material for a lithium ion secondary battery.
  • the QI content and TI content of the pitch used in the present invention can be measured by the method described in JIS K2425 or a method equivalent thereto.
  • the lower limit is preferably 5 parts by mass, more preferably 10 parts by mass, further preferably 15 parts by mass, and the upper limit is 100 parts by mass of the composite particles. , Preferably 45 parts by mass, more preferably 40 parts by mass, further preferably 35 parts by mass.
  • the composite particle of the present invention has a porosity of 30 to 50%, preferably 33 to 49% in the range (Core) from the center of the composite particle to 80% of the diameter of the composite particle.
  • the composite particle of the present invention has a porosity in the range from the center of the composite particle to 80% of the diameter of the composite particle (Core) to the outer surface of the composite particle to 10% of the diameter of the composite particle (Outer Shell).
  • the porosity ratio is 0.5 or less, more preferably 0.45 or less.
  • the porosity in the present invention is a value determined by the method described in the section of Examples.
  • the 50% diameter in the volume-based particle size distribution of the composite particles of the present invention is preferably 2 to 50 ⁇ m, more preferably 2 to 30 ⁇ m.
  • the 50% diameter in the volume-based particle size distribution can be measured by a laser diffraction method.
  • the carbon material covers part or all of the outer surface of the porous silicon particles that are Si-containing particles. Further, the carbon material may cover a part or the whole of the surface in the voids of the surface layer portion of the porous silicon particle (for example, the range from the outer surface of the composite particle to 10% of the diameter of the composite particle). ..
  • the Si-containing particles are mixed with the carbon precursor, and the resulting mixture is heat treated to graphitize or carbonize the carbon precursor.
  • the method for producing composite particles for a negative electrode of a lithium ion secondary battery of the present invention is 100 parts by mass of Si-containing particles and preferably 5 to 95 parts by mass, more preferably 20 to 70 parts by mass of carbon precursor. And heat treating the resulting mixture to carbonize the carbon precursor.
  • the temperature is raised from room temperature to a predetermined temperature and then kept at the predetermined temperature for a predetermined time.
  • the heating rate from 100° C. to 350° C. is preferably 110 to 290° C./hour, more preferably 130 to 270° C./hour, and further preferably 140 to 250° C./hour.
  • the heat treatment is preferably performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere include an atmosphere of non-oxidizing gas such as nitrogen gas and argon gas.
  • the predetermined temperature during the heat treatment for carbonizing the carbon precursor is preferably 400°C or higher and lower than 1800°C, more preferably 600°C or higher and 1500°C or lower. Then, in carbonization, it is preferable to hold at a predetermined temperature for 0.5 hours or more and 6 hours or less. Further, it is preferable that the heat treatment is performed at a constant temperature for a predetermined time within the above temperature range. In carbonization, if the holding time at a predetermined temperature is too short, carbonization tends to be insufficient, and if the holding time at a predetermined temperature is too long, it is not economical.
  • the temperature during the heat treatment when graphitizing the carbon precursor is preferably 1800° C. or higher and 3500° C. or lower, and more preferably 2000° C. or higher and 3200° C. or lower. Within this range, graphitization is easy. Further, it is preferable that the heat treatment is performed at a constant temperature for a predetermined time within the above temperature range.
  • the composite particles of the present invention apparently have the same appearance as the Si-containing particles (see FIG. 3), but as shown in FIG. 2, even if compression treatment is performed at 25 MPa. , Si fine particles cannot be aggregated or joined. It is presumed that the lithium-ion secondary battery using the negative electrode material of the present invention is excellent in charge/discharge cycle characteristics because collapse of the electrode layer is prevented.
  • the negative electrode material of the present invention is for a lithium ion secondary battery.
  • the negative electrode material of the present invention contains the composite particles.
  • the negative electrode material of the present invention may contain graphitic carbon material particles and the like in addition to the composite particles.
  • the graphitic carbon material particles can be contained in order to make the ratio of the capacity (Q A ) of the negative electrode sheet to the capacity (Q C ) of the positive electrode sheet a predetermined value.
  • the graphitic carbon material particles are particles made of a graphitic carbon material, and are preferably artificial graphite particles.
  • the graphitic carbon material is a carbon material in which crystals formed by carbon atoms are greatly developed.
  • the graphitic carbon material is a carbon material that is more slippery, softer, and has a lower scratch strength than the carbonaceous carbon material.
  • the graphite carbon material particles move flexibly with the pressing at the time of manufacturing the electrode, which contributes to the improvement of the electrode density.
  • the graphitic carbon material particles are preferably composed of scaly particles.
  • the graphitic carbon material particles have a 50% diameter (also referred to as “D 50 ”) in a volume-based cumulative particle size distribution of preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 35 ⁇ m or less, and further preferably 10 ⁇ m or more and 25 ⁇ m or less. Is. When D 50 is 1 ⁇ m or more, side reactions are less likely to occur during charge and discharge, and when D 50 is 50 ⁇ m or less, diffusion of lithium ions in the negative electrode material tends to be faster, and the charge and discharge rate tends to be improved.
  • D 50 When used for a driving power source of an automobile or the like that requires generation of a large current, D 50 is preferably 25 ⁇ m or less. D 50 is a laser diffraction particle size distribution meter, for example, be measured using a MICROTRAC Co. particle size analyzer MT3300EXII like.
  • the average interplanar spacing d 002 of the 002 planes calculated from the analysis of the X-ray diffraction pattern by CuK ⁇ ray is preferably 0.337 nm or less.
  • d 002 is smaller, the amount of lithium ions inserted and desorbed per mass increases, which contributes to the improvement of the weight energy density.
  • d 002 is 0.337 nm or less, most of the optical structure observed by the polarization microscope has optical anisotropy.
  • the thickness (Lc) in the crystal C-axis direction of the graphitic carbon material calculated from the analysis of the X-ray diffraction pattern by CuK ⁇ ray is preferably 50 nm or more and 1000 nm or less.
  • a large Lc is advantageous in increasing the energy density per volume of the battery.
  • Lc is preferably 80 nm or more and 300 nm or less, more preferably 100 nm or more and 200 nm or less, still more preferably 100 or more and 150 nm or less.
  • Lc is small, it is advantageous in maintaining the cycle characteristics of the battery.
  • Lc is preferably 50 nm or more and 200 nm or less, more preferably 50 nm or more and 100 nm or less, still more preferably 50 nm or more and 90 nm or less.
  • d 002 and Lc can be measured using a powder X-ray diffraction (XRD) method (Inayoshi Noda, Michio Inagaki, Japan Society for the Promotion of Science, 117th Committee sample, 117-71-A-1 ( 1963), Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee sample, 117-121-C-5 (1972), Michio Inagaki, "Carbon", 1963, No. 36, pp. 25-34).
  • XRD powder X-ray diffraction
  • the G value of the graphitic carbon material particles is preferably 5.2 or more and 100 or less, more preferably 7.0 or more and 80 or less, and further preferably 10 or more and 60 or less.
  • the G value is in the range of 1580 to 1620 cm -1 and the peak area (I D ) in the range of 1300 to 1400 cm -1 in the Raman spectroscopic spectrum observed when the particle end face is measured by the Raman spectroscopic analyzer. It is the ratio I G /I D to the area of the peak (I G ).
  • the G value is within the above numerical range, self-discharge and deterioration of the battery are suppressed. If the G value is too small, side reactions tend to occur during charge and discharge due to the presence of many defects.
  • the Raman spectroscopic spectrum of the particle end surface is, for example, a laser Raman spectrophotometer (NRS-5100, manufactured by JASCO Corporation) and an attached microscope, not the smooth portion (basal surface), but the end surface. It is measured by selectively observing the existing part.
  • the peak in the range of 1300 to 1400 cm ⁇ 1 is the peak derived from sp3 bond
  • the peak in the range of 1580 to 1620 cm ⁇ 1 is the peak derived from sp2 bond. It is suggested that the larger the G value, the higher the proportion of sp2 binding.
  • the BET specific surface area of the graphitic carbon material particles is preferably 0.4 m 2 /g or more and 5 m 2 /g or less, more preferably 0.5 m 2 /g or more and 3.5 m 2 /g or less, still more preferably 0. It is 5 m 2 /g or more and 3.0 m 2 /g or less.
  • the BET specific surface area is calculated from the nitrogen gas adsorption amount. Examples of the measuring device include NOVA-1200 manufactured by Yuasa Ionics Inc.
  • the graphite carbon material particles have a loosened bulk density (0 times tapping) of preferably 0.7 g/cm 3 or more, and a powder density (tapping density) of 400 times tapping, preferably 0. 8 g/cm 3 or more and 1.6 g/cm 3 or less, more preferably 0.9 g/cm 3 or more and 1.6 g/cm 3 or less, and still more preferably 1.1 g/cm 3 or more and 1.6 g/cm 3 or less. ..
  • the loosened bulk density is a density obtained by dropping 100 g of a sample from a height of 20 cm into a graduated cylinder and measuring the volume and mass without applying vibration.
  • the tap density is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a Kantachrome auto tap. These are the measurement methods based on ASTM B527 and JIS K5101-12-2.
  • the drop height of the auto tap in the tap density measurement was set to 5 mm.
  • the electrode density before pressing tends to increase when applied to the electrode. From this value, it is possible to predict whether it is possible to obtain a sufficient electrode density with one roll press. Further, when the tap density is within the above range, it is easy to make the electrode density reached during pressing to a desired height.
  • the graphitic carbon material particles are not particularly limited by the manufacturing method thereof.
  • it can be manufactured by the method disclosed in WO 2014/003135A.
  • coal-based coke and/or petroleum-based coke can be used as a raw material.
  • the graphitic carbon material particles are produced by heat treating coal-based coke and/or petroleum-based coke at a temperature of preferably 2000° C. or higher, more preferably 2500° C. or higher.
  • the upper limit of the heat treatment temperature is not particularly limited, but 3200° C. is preferable.
  • This heat treatment is preferably performed in an inert atmosphere.
  • the heat treatment can be performed using an Acheson type graphitization furnace or the like.
  • the amount of the graphitic carbon material particles that can be contained in the negative electrode material is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, based on the mass of the negative electrode material.
  • the negative electrode material of the present invention may further contain a conductive auxiliary agent.
  • the conductive auxiliary agent can play a role of imparting conductivity to the electrode layer or a buffering effect against a volume change due to insertion/desorption of lithium ions.
  • Examples of the conductive auxiliary agent include carbon materials such as carbon black, graphite, carbon nanotube (CNT), carbon nanofiber, and vapor grown carbon fiber (VGCF (registered trademark)).
  • Examples of carbon black include Ketjen black, acetylene black, channel black, lamp black, oil furnace black, thermal black and the like.
  • the conductive additive may be used alone or in combination of two or more.
  • the amount of the conductive additive that can be contained in the negative electrode material of the present invention is preferably 0.5 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 0. It is 5 to 25% by mass.
  • the conductive additive used when preparing the negative electrode material containing the composite particles and the conductive additive described above is preferably in the form of powder, paste or the like.
  • the negative electrode material of the present invention may further contain a binder.
  • the material used as the binder is not particularly limited, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, acrylic rubber, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene oxide, epichlorohydrin, Examples thereof include polyphosphazene, polyacrylonitrile, polyvinyl acetate, polymethacrylate, polyacrylate, polyvinyl alcohol, carboxymethyl cellulose and the like.
  • the amount of the binder that can be contained in the negative electrode material is preferably 0.5 to 50% by mass, more preferably 0.5 to 30% by mass, still more preferably 0.5 to 20% by mass, still more preferably 0.5. It is up to 10% by mass.
  • the binder used in the preparation of the positive electrode material containing the above-mentioned Prussian blue analog powder and the binder is preferably in the form of powder, solution, emulsion or dispersion.
  • the negative electrode material of the present invention may be a paste that further contains a liquid medium.
  • the pasty negative electrode material is used for manufacturing a lithium ion secondary battery.
  • the liquid medium may be derived from a conductive auxiliary agent in a paste state; a binder in a solution state, an emulsion state, or a dispersion state.
  • the liquid medium is not particularly limited as long as it can uniformly dissolve or disperse the constituent components of the negative electrode material.
  • As the liquid medium for example, water, isopropanol, N-methyl-2-pyrrolidone, dimethylformamide or the like can be used.
  • the amount of the liquid medium may be appropriately adjusted so that the paste has a viscosity such that it can be easily applied to the current collector.
  • the pasty negative electrode material may contain a thickener, a leveling agent, etc., if necessary.
  • the thickener include polycarboxylic acid, polycarboxylic acid salt, carboxymethyl cellulose, carboxymethyl cellulose alkali metal salt and the like.
  • the negative electrode material of the present invention can be obtained by, for example, supplying the above-mentioned composite particle powder and, if necessary, a binder, a conductive additive, and/or other components to the kneading device simultaneously or in any order and kneading.
  • a kneading device such as a rotation/revolution mixer or a planetary mixer can be used.
  • the powder of the composite particles and the conductive auxiliary agent are mixed to obtain a mixed powder, and the mixed powder and, if necessary, a binder and/or other components are simultaneously or in random order placed in a kneading device. It can be supplied and kneaded.
  • the negative electrode sheet of the present invention is for a lithium ion secondary battery.
  • the negative electrode sheet of the present invention has a current collector and an electrode layer that covers the current collector.
  • the electrode layer contains the negative electrode material of the present invention.
  • the negative electrode material of the present invention contained in the electrode layer is usually in the state of a green compact.
  • the current collector in the negative electrode sheet is a conductor and is not particularly limited as long as it can hold the electrode layer, but a metal foil or a metal mesh is preferable, and an aluminum foil, a nickel foil, a copper foil, a nickel mesh or a copper mesh is used. More preferable.
  • the current collector may be a metal foil or a metal mesh on which a functional layer such as a conductive layer is laminated or combined.
  • the electrode layer can be obtained, for example, by applying a paste-like negative electrode material on a current collector and drying it.
  • a coating device such as a doctor blade and a drying device can be used.
  • the electrode layer can also be obtained, for example, by pressure-molding a granular or powdery negative electrode material together with a current collector.
  • the thickness of the electrode layer in the negative electrode sheet is preferably 30 to 200 ⁇ m.
  • the negative electrode sheet can be housed in a standardized battery container.
  • the thickness of the electrode layer can be adjusted by the coating amount of the paste-like negative electrode material and the like. It can also be adjusted by rolling the paste-form negative electrode material after drying.
  • a press machine such as a pressure roll type or a pressure plate type can be used.
  • the pressure applied in the pressure plate type is preferably 100 to 500 MPa.
  • the lithium-ion secondary battery of the present invention includes the above-mentioned negative electrode sheet, electrolyte, and positive electrode sheet.
  • the positive electrode sheet and the negative electrode sheet may be arranged to face each other with the separator interposed therebetween.
  • the positive electrode sheet has a current collector and an electrode layer that covers the current collector.
  • the electrode layer in the positive electrode sheet contains a positive electrode active material capable of inserting and extracting lithium, a binder, and, if necessary, a conductive auxiliary agent.
  • Examples of the current collector in the positive electrode sheet include copper foil and aluminum foil.
  • Examples of the positive electrode active material include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.34 Mn 0.33 Co 0.33 O 2 , and LiFePO 4 .
  • the electrolyte is not particularly limited as long as it contains a lithium salt.
  • the electrolyte may be in the form of a solution, a melt or a solid.
  • a solution containing a potassium salt and a non-aqueous solvent is preferably used as the electrolyte as a solution.
  • the non-aqueous electrolyte solution and the non-aqueous polymer electrolyte used in the lithium ion secondary battery are not particularly limited.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, and CF 3 SO 3 Li are converted into ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, propylene.
  • Organic electrolytes dissolved in non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propyronitrile, dimethoxyethane, tetrahydrofuran, ⁇ -butyrolactone; polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, etc.
  • non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propyronitrile, dimethoxyethane, tetrahydrofuran, ⁇ -butyrolactone
  • polyethylene oxide polyacrylonitrile
  • polyvinylidene fluoride polymethylmethacrylate
  • a small amount of a substance that causes a decomposition reaction when the lithium-ion secondary battery is first charged may be added to the electrolytic solution.
  • the substance include vinylene carbonate (VC), biphenyl, propane sultone (PS), fluoroethylene carbonate (FEC), ethylene sultone (ES) and the like.
  • the addition amount is preferably 0.01% by mass or more and 50% by mass or less.
  • the separator physically separates the positive electrode sheet and the negative electrode sheet to prevent an internal short circuit.
  • the separator include those using a porous material, a non-woven fabric, or the like.
  • the separator may be formed of only a porous membrane layer or a non-woven fabric layer, or may be formed of a laminate of a plurality of layers having different compositions and forms.
  • the laminate include a laminate having a plurality of resin porous layers having different compositions, a laminate having a porous membrane layer and a nonwoven fabric layer, and the like.
  • Examples of the material of the porous film or the nonwoven fabric constituting the separator include polyolefin resins such as polyethylene, polypropylene and ethylene-propylene copolymer; polyphenylene sulfide resins such as polyphenylene sulfide and polyphenylene sulfide ketone; aromatic polyamide resins ( Polyamide resin such as aramid resin); polyimide resin and the like. These resins may be used alone or in combination of two or more. Inorganic fibers such as glass fibers can also be used as the material of the non-woven fabric.
  • the separator may include an inorganic filler.
  • the inorganic filler include ceramics (silica, alumina, zeolite, titania, etc.), talc, mica, wollastonite, and the like.
  • the inorganic filler is preferably particulate or fibrous.
  • the amount of the inorganic filler contained in the separator is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the mass of the separator.
  • the lithium-ion secondary battery of the present invention is a power source for electronic devices such as mobile phones, portable personal computers, and personal digital assistants; power sources for electric motors such as electric drills, vacuum cleaners, and electric vehicles; fuel cells, solar power generation, wind power generation. It can be used for storage of electric power obtained by the above.
  • the volume of the composite particles was added to the kneaded product, and the mixture was further kneaded. Then, it was placed on a hot plate at 110° C. for 20 seconds. Immediately, it was put in a desiccator and depressurized. As a result, the molten resin penetrated into the voids of the composite particles. It was placed on a hot plate at 120° C. for 2 hours and cured to obtain a test piece.
  • test piece was subjected to cross section processing at 5 kV for 8 hours using a cross section polisher SM09010 manufactured by JEOL.
  • the SEM JEOL field emission scanning electron microscope JSM-7000F
  • a large-area SDD detector Oxford Instruments
  • Analysis was performed by the analysis software AZtecEnergy.
  • the palladium concentration was measured at 30 randomly selected points in the range (Outer Shell) from the outer surface of the composite particle to 10% of the diameter of the composite particle.
  • the average value of P sn was defined as the porosity P s in the range from the outer surface of the composite particle to 10% of the diameter of the composite particle.
  • P sn (C sn ⁇ 100/3) 1.5
  • the average value of P cn was defined as the porosity P c in the range from the center of the composite particle to 80% of the diameter of the composite particle.
  • P cn (C cn ⁇ 100/3) 1.5
  • Example 1 Composite particles
  • Si-containing particles ANSY360 manufactured by AUO Crystal Corp., porous silicon particles obtained by bonding Si fine particles, see FIG. 3, porosity 50%
  • coal tar pitch carbonization rate 78%)
  • the mixture was stirred at 100 rpm for 6 hours using a mix rotor (VMR-5R manufactured by AsOne).
  • VMR-5R mix rotor manufactured by AsOne
  • the obtained mixture was placed in an alumina crucible and heat-treated at 1100° C. under an argon atmosphere in a Motoyama atmosphere tubular furnace PCR (heating rate from room temperature to 1100° C. 150° C./h, 1100° C. for 1 hour, 1100° C.
  • composite particles A having a sieve opening of 45 ⁇ m were obtained.
  • the composite particles A had P c of 35%, P s of 13%, P s /P c of 0.37, and D 50 of 10.1 ⁇ m.
  • the paste-like positive electrode material was applied to an aluminum foil having a thickness of 20 ⁇ m using a roll coater, dried, and then compressed to a density of 3.6 g/cm 3 using a roll press to obtain a positive electrode sheet.
  • CMC Carboxymethyl cellulose
  • CNT carbon nanotube
  • VGCF vapor grown carbon fiber
  • the paste-like negative electrode material was applied onto a copper foil having a thickness of 20 ⁇ m using a doctor blade having a gap of 300 ⁇ m, dried on a hot plate, and further vacuum dried. This was passed through a roll press having a roll width of 38 mm at a speed of 2.0 m/min and compressed so that the electrode density was 1.6 ⁇ 0.1 g/cm 3 . The linear pressure between the rolls was adjusted between 150 and 250 MPa so that the target electrode density was obtained.
  • the electrolytic solution was prepared by adding 1% by mass of vinylene carbonate (VC) and 10% by mass of fluoroethylene carbonate (FEC) to a mixed solution of 3 parts by volume of ethylene carbonate, 5 parts by volume of ethylmethyl carbonate and 2 parts by volume of diethyl carbonate, Further, this is a liquid obtained by dissolving electrolyte LiPF 6 in this to a concentration of 1 mol/L.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • Constant current discharge was performed at 0.2 C until the voltage reached 2.7 V. This charging/discharging operation was performed once more. Constant current charging was performed at 0.1 C until the voltage became 4.3 V. After reaching 4.3 V, constant voltage charging was performed until the voltage reached 0.025 C. A constant current discharge was performed at 0.1 C until 2.7 V was reached.
  • Tripolar laminated half cell The following operation was carried out in a glove box kept in a dry argon gas atmosphere with a dew point of ⁇ 80° C. or lower.
  • the negative electrode sheet was punched out to obtain a negative electrode piece with a Cu foil tab having an area of 4 cm 2 .
  • a Ni tab having a width of 5 mm was attached to the Cu foil tab of the negative electrode piece.
  • a counter electrode Li piece having an area of 7.5 cm 2 (3.0 cm ⁇ 2.5 cm) and a reference electrode Li piece having an area of 3.75 cm 2 (1.5 cm ⁇ 2.5 cm) were prepared.
  • a Ni tab having a width of 5 mm was attached at a length of its tip of 5 mm in accordance with a 5 mm width of a 5 mm ⁇ 20 mm Ni mesh.
  • the Ni mesh to which the Ni tab was attached was attached to a corner of the counter electrode Li piece so as to intersect with a 3.0 cm side of the counter electrode Li piece at a right angle.
  • the Ni mesh to which the Ni tab was attached was attached to the center of the 1.5 cm side of the Li piece for reference electrode so as to intersect with the 1.5 cm side of the Li piece for reference electrode at a right angle.
  • a polypropylene microporous membrane was sandwiched between the reference electrode and the working electrode and between the working electrode and the counter electrode, respectively. In that state, it was packed in an aluminum laminate packaging material. Then, an electrolytic solution was injected into it. The opening was sealed by heat fusion to obtain a tripolar laminate type half cell.
  • the electrolytic solution was prepared by adding 1% by mass of vinylene carbonate (VC) and 10% by mass of fluoroethylene carbonate (FEC) to a mixed solution of 3 parts by volume of ethylene carbonate, 5 parts by volume of ethyl methyl carbonate and 2 parts by volume of diethyl carbonate, and further adding It is a liquid obtained by dissolving the electrolyte LiPF 6 in the solution to a concentration of 1 mol/L.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • Constant current discharge was performed until it became Li/Li + . 0.005V vs. After reaching Li/Li + , constant voltage discharge was performed until the temperature reached 0.025C. 1.5V vs. 1C. Constant current charging was performed until it became Li/Li + (first cycle). This charging/discharging operation was further performed 19 times (second cycle to 20th cycle). 0.005 V vs. 0.1 C Constant current discharge was performed until it became Li/Li + . 0.005V vs. After reaching Li/Li + , constant voltage discharge was performed until the temperature reached 0.025C. 1.5 V vs.
  • Example 2 Composite particles B were obtained in the same manner as in Example 1 except that the amount of coal tar pitch was changed to 25 g.
  • the composite particles B had P c of 45%, P s of 20%, Ps/Pc of 0.44, and D 50 of 9.6 ⁇ m.
  • the full-cell 200-cycle discharge capacity retention rate was 63.6%, and the half-cell 60-cycle charge capacity retention rate was 89.4%.
  • Example 3 Composite particles C were obtained in the same manner as in Example 1 except that the temperature rising rate was changed to 200° C./h.
  • the composite particles C had P c of 48%, P s of 8%, Ps/Pc of 0.17, and D 50 of 10.0 ⁇ m.
  • the full-cell 200-cycle discharge capacity retention rate was 63.5%, and the half-cell 60-cycle charge capacity retention rate was 89.2%.
  • Comparative Example 1 Composite particles D were obtained in the same manner as in Example 1 except that the temperature rising rate was changed to 300° C./h.
  • the composite particles D had P c of 55%, P s of 7%, Ps/Pc of 0.13, and D 50 of 9.9 ⁇ m.
  • the full-cell 200-cycle discharge capacity retention rate was 60.9%, and the half-cell 60-cycle charge capacity retention rate was 87.5%.
  • Comparative example 2 Composite particles E were obtained in the same manner as in Example 1 except that the temperature rising rate was changed to 100° C./h.
  • the composite particles E had P c of 38%, P s of 21%, Ps/Pc of 0.55, and D 50 of 9.5 ⁇ m.
  • the full-cell 200-cycle discharge capacity retention rate was 60.3%, and the half-cell 60-cycle charge capacity retention rate was 88.5%.
  • Comparative Example 3 Composite particles F were obtained in the same manner as in Example 1 except that the amount of coal tar pitch was changed to 100 g.
  • the composite particles F had P c of 28%, P s of 18%, Ps/Pc of 0.64, and D 50 of 10.3 ⁇ m.
  • the full-cell 200-cycle discharge capacity retention rate was 61.5%, and the half-cell 60-cycle charge capacity retention rate was 87.9%.
  • Comparative Example 4 Si-containing particles (porous silicon particles formed by joining Si particles, see FIG. 3) were directly used as composite particles G.
  • the composite particles G had P c of 55%, P s of 48%, P s /P c of 0.87, and D 50 of 9.4 ⁇ m.
  • the full-cell 200-cycle discharge capacity retention rate was 60.7%, and the half-cell 60-cycle charge capacity retention rate was 86.2%.
  • Comparative Example 5 50 g of solid Si particles (ANI720 manufactured by AUO Crystal Corp.) and 90 g of coal tar pitch (carbonization rate 78%) were added to a container, and the mixture was stirred at 100 rpm for 6 hours using a mix rotor (VMR-5R manufactured by AsOne). The obtained mixture was placed in an alumina crucible and heat-treated at 1100° C. under an argon atmosphere (rate of temperature increase from room temperature to 1100° C. 150° C./h), then crushed in a mortar, and composite particles under sieve of 45 ⁇ m sieve. H was obtained. The composite particles H had P c of 3%, P s of 3%, Ps/Pc of 1.00, and D 50 of 16.2 ⁇ m. The full-cell 200-cycle discharge capacity retention rate was 54.8% and the half-cell 60-cycle charge capacity retention rate was 87.5%.
  • VMR-5R coal tar pitch
  • the porosity in the range from the center of the composite particle to 80% of the diameter of the composite particle is 30 to 50%, and the porosity in the range of from the center of the composite particle to 80% of the diameter of the composite particle.
  • a composite particle containing Si-containing particles and a carbon material having a porosity ratio of 0.5 or less in the range from the outer surface of the composite particle to 10% of the diameter of the composite particle is used for the negative electrode, a charge-discharge cycle A lithium ion secondary battery having excellent characteristics can be obtained.

Abstract

In this invention, through a method including mixing together porous silicon particles and a carbon precursor, and heat processing the obtained mixture to graphitize or carbonize the carbon precursor, composite particles containing a carbon material and Si-containing particles are obtained, wherein the porosity is 30 to 50% in a range from the complex particle center to 80% of the complex particle diameter, and the ratio, of the porosity in the range from the complex particle external surface to 10% of the complex particle diameter with respect to the porosity in the range from the complex particle center to 80% of the complex particle diameter, is 0.5 or lower.

Description

リチウムイオン二次電池の負極用の複合粒子Composite particles for negative electrode of lithium-ion secondary battery
 本発明は、リチウムイオン二次電池の負極用の複合粒子に関する。より詳細に、本発明は、サイクル特性に優れるリチウムイオン二次電池を得ることができる負極用の複合粒子に関する。 The present invention relates to composite particles for a negative electrode of a lithium ion secondary battery. More specifically, the present invention relates to composite particles for a negative electrode that can obtain a lithium ion secondary battery having excellent cycle characteristics.
 リチウムイオン二次電池用の負極材料が種々提案されている。例えば、特許文献1は、Siスラリー、高分子モノマー、および架橋剤を含むSi‐高分子マトリックススラリーから形成されたSi‐高分子炭化マトリックス粒子と、第1炭素マトリックスとを含み、前記Si‐高分子炭化マトリックス粒子は前記第1炭素マトリックス内に捕捉されて分散され、前記高分子炭化マトリックス粒子が前記第1炭素マトリックスより高い空隙率(porosity)を有する、炭素‐シリコン複合体を開示している。 Various negative electrode materials for lithium-ion secondary batteries have been proposed. For example, Patent Document 1 includes Si-polymer carbonized matrix particles formed from a Si-polymer matrix slurry containing a Si slurry, a polymer monomer, and a cross-linking agent, and a first carbon matrix. Disclosed is a carbon-silicon composite wherein molecular carbonized matrix particles are entrapped and dispersed within the first carbon matrix, the polymeric carbonized matrix particles having a higher porosity than the first carbon matrix. ..
 特許文献2は、外殻部と芯部とからなり、外殻部及び芯部が電極活物質及び導電材を分散型結着剤によって結着されてなるもので構成され、外殻部を形成する電極活物質及び導電材の重量平均粒子径が、芯部を形成する電極活物質及び導電材の重量平均粒子径よりも小さい、複合粒子を開示している。 Patent Document 2 includes an outer shell portion and a core portion, and the outer shell portion and the core portion are formed by binding an electrode active material and a conductive material with a dispersion type binder to form the outer shell portion. Disclosed is a composite particle in which the weight average particle diameter of the electrode active material and the conductive material is smaller than the weight average particle diameter of the electrode active material and the conductive material forming the core.
 特許文献3は、複数のシリコン微粒子が接合してなる多孔質シリコン粒子であって、前記多孔質シリコン粒子の平均粒径が0.1μm~1000μmであり、前記多孔質シリコン粒子は連続した空隙を有する三次元網目構造を有し、前記多孔質シリコン粒子の平均空隙率が15~93%であり、半径方向で50%以上の表面近傍領域の空隙率Xsと半径方向で50%以内の粒子内部領域の空隙率Xiの比であるXs/Xiが、0.5~1.5であり、酸素を除く元素の比率でシリコンを80原子%以上含むことを特徴とする多孔質シリコン粒子を開示している。 Patent Document 3 discloses a porous silicon particle in which a plurality of silicon fine particles are bonded, and the average particle diameter of the porous silicon particle is 0.1 μm to 1000 μm, and the porous silicon particle has continuous voids. Having a three-dimensional network structure, the average porosity of the porous silicon particles is 15 to 93%, the porosity Xs of the surface vicinity region of 50% or more in the radial direction and the particle interior of 50% or less in the radial direction. Disclosed is a porous silicon particle characterized in that a ratio of porosity Xi of a region, Xs/Xi, is 0.5 to 1.5, and contains 80 atomic% or more of silicon in a ratio of elements other than oxygen. ing.
 特許文献4は、複数のシリコン微粒子が接合して連続的な空隙を有する多孔質シリコン粒子であって、前記シリコン微粒子の粒径、支柱径または支柱辺の平均xが2nm~2μmであり、前記シリコン微粒子の粒径、支柱径または支柱辺の標準偏差σが1~500nmであり、前記平均xと前記標準偏差σとの比(σ/x)が0.01~0.5であり、前記多孔質シリコン粒子を、半径方向で90%以上の表面近傍領域Sと、半径方向で90%以下の粒子内部領域Iとに分け、前記表面近傍領域Sを構成する前記シリコン微粒子の平均粒径をEsとし、前記粒子内部領域Iを構成する前記シリコン微粒子の平均粒径をEiとするとき、Es/Eiが0.01~1.0である、多孔質シリコン粒子を開示している。 Patent Document 4 is a porous silicon particle in which a plurality of silicon particles are joined and have continuous voids, and the particle size of the silicon particles, the pillar diameter or the mean x of the pillar sides is 2 nm to 2 μm, The particle size of silicon fine particles, the standard diameter σ of the pillar diameter or the pillar side is 1 to 500 nm, and the ratio (σ/x) between the average x and the standard deviation σ is 0.01 to 0.5. The porous silicon particles are divided into 90% or more of the surface vicinity area S in the radial direction and 90% or less of the particle interior area I in the radial direction, and the average particle size of the silicon fine particles forming the surface vicinity area S is Disclosed is porous silicon particles having Es/Ei of 0.01 to 1.0, where Es is Ei and the average particle diameter of the silicon fine particles forming the particle inner region I is Ei.
 特許文献5は、シリコン微粒子が接合してなり、連続した空隙を有する三次元網目構造を有し、前記シリコン微粒子の平均粒径または平均支柱径(μ)が2nm~2μmであり、前記シリコン微粒子の粒径または支柱径の標準偏差(σ)と、前記シリコン微粒子の平均粒径または平均支柱径(μ)の比である、σ/μの値が0.03~1.50であることを特徴とする多孔質シリコン粒子を開示している。 Patent Document 5 has a three-dimensional network structure in which silicon fine particles are bonded and has continuous voids, and the average particle diameter or average pillar diameter (μ) of the silicon fine particles is 2 nm to 2 μm. The value of σ/μ, which is a ratio of the standard deviation (σ) of the particle size or the column diameter of the column to the average particle diameter or the average column diameter (μ) of the silicon fine particles, is 0.03 to 1.50. A featured porous silicon particle is disclosed.
 特許文献6は、多孔質シリコン粒子を必須成分として含有し、黒鉛、アモルファス炭素、高分子化合物焼成体(例えば、ピッチコークス、ニードルコークス、石油コークス)、炭素繊維、導電性高分子(例えば、ポリアセチレン、ポリピロール)、またはスズを任意成分として含有する負極用活物質を開示している。 Patent Document 6 contains porous silicon particles as an essential component, and includes graphite, amorphous carbon, a polymer compound fired body (for example, pitch coke, needle coke, petroleum coke), carbon fiber, and a conductive polymer (for example, polyacetylene). , Polypyrrole) or tin as an optional component is disclosed.
特開2016-13967号公報JP, 2016-13967, A WO2006/118235AWO2006/118235A 特開2012-82125号公報JP2012-82125A 特開2013-193933号公報JP, 2013-193933, A 特開2013-203626号公報JP, 2013-203626, A 特開2016-51622号公報JP, 2016-51622, A
 本発明の課題は、充放電サイクル特性に優れるリチウムイオン二次電池を得ることができる負極用の複合粒子を提供することである。 An object of the present invention is to provide composite particles for a negative electrode that can obtain a lithium ion secondary battery having excellent charge/discharge cycle characteristics.
 本発明は以下の態様を包含する。
〔1〕 Si含有粒子と炭素材料とを含む複合粒子であって、
 複合粒子の中心から複合粒子の直径の80%までの範囲の空隙率が30~50%であり、且つ
 複合粒子の中心から複合粒子の直径の80%までの範囲の空隙率に対する複合粒子の外表面から複合粒子の直径の10%までの範囲の空隙率の比が0.5以下である、
リチウムイオン二次電池の負極用の複合粒子。
The present invention includes the following aspects.
[1] A composite particle containing Si-containing particles and a carbon material,
The porosity in the range from the center of the composite particle to 80% of the diameter of the composite particle is 30 to 50%, and the porosity outside the range from the center of the composite particle to 80% of the diameter of the composite particle The ratio of the porosity in the range from the surface to 10% of the diameter of the composite particles is 0.5 or less,
Composite particles for a negative electrode of a lithium ion secondary battery.
〔2〕 体積基準粒度分布における50%径が2~50μmである、〔1〕に記載の複合粒子
〔3〕 Si含有粒子が、複数のSi微粒子が凝集または接合してなる多孔質シリコン粒子である、〔1〕または〔2〕に記載の複合粒子。
〔4〕 多孔質シリコン粒子の外表面の一部または全部を炭素材料が覆っている、〔3〕に記載の複合粒子。
〔5〕 炭素材料が、炭素質炭素材料である、〔1〕~〔4〕のいずれか一つに記載の複合粒子。
[2] The composite particles according to [1], wherein the 50% diameter in the volume-based particle size distribution is 2 to 50 μm. [3] The Si-containing particles are porous silicon particles formed by aggregating or bonding a plurality of Si fine particles. The composite particle according to [1] or [2].
[4] The composite particle according to [3], wherein the carbon material covers a part or all of the outer surface of the porous silicon particle.
[5] The composite particle according to any one of [1] to [4], wherein the carbon material is a carbonaceous carbon material.
〔6〕 〔1〕~〔5〕のいずれか一つに記載の複合粒子を含有する、リチウムイオン二次電池用の負極材。
〔7〕 〔6〕に記載の負極材を含有する電極層を有する、リチウムイオン二次電池の負極シート。
〔8〕 〔7〕に記載の負極シートを有する、リチウムイオン二次電池。
[6] A negative electrode material for a lithium ion secondary battery, containing the composite particle according to any one of [1] to [5].
[7] A negative electrode sheet for a lithium ion secondary battery, which has an electrode layer containing the negative electrode material according to [6].
[8] A lithium ion secondary battery having the negative electrode sheet according to [7].
〔9〕 Si含有粒子100質量部と炭素前駆体5~95質量部とを混ぜ合わせ、
 得られた混合物を、100℃から350℃までを110~290℃/時間にて昇温させ、所定温度に達した後、前記所定温度にて0.5時間以上6時間以下保持することを含む、熱処理によって、炭素前駆体を炭素化することを含み、
 前記所定温度が400℃以上1800℃未満である、
 リチウムイオン二次電池の負極用の複合粒子の製造方法。
[9] 100 parts by mass of Si-containing particles and 5 to 95 parts by mass of carbon precursor are mixed,
Heating the obtained mixture from 100° C. to 350° C. at 110 to 290° C./hour, reaching a predetermined temperature, and then maintaining at the predetermined temperature for 0.5 hours or more and 6 hours or less. , Including carbonizing the carbon precursor by heat treatment,
The predetermined temperature is 400° C. or higher and lower than 1800° C.,
A method for producing composite particles for a negative electrode of a lithium ion secondary battery.
〔10〕 Si含有粒子と炭素前駆体とを混ぜ合わせ、
 得られた混合物を熱処理して炭素前駆体を黒鉛化または炭素化することを含む、
 〔1〕~〔5〕のいずれか一つに記載の複合粒子の製造方法。
〔11〕 Si含有粒子が、複数のSi微粒子が凝集または接合してなる多孔質シリコン粒子である、〔9〕または〔10〕に記載の製造方法。
[10] Mix Si-containing particles and a carbon precursor,
Heat treating the resulting mixture to graphitize or carbonize the carbon precursor,
The method for producing composite particles according to any one of [1] to [5].
[11] The production method according to [9] or [10], wherein the Si-containing particles are porous silicon particles formed by aggregating or bonding a plurality of Si fine particles.
 本発明の複合粒子は、圧縮に対する強度が高く、電極層製造時においても砕けずにその形を維持できる。本発明の複合粒子は、リチウムイオンの挿入および脱離に伴うSi微粒子の体積変化があっても、複合粒子自体の大きさがほとんど変わらない。本発明の負極材を用いると、充放電サイクル特性に優れるリチウムイオン二次電池を得ることができる。 The composite particles of the present invention have high strength against compression and can maintain their shape without being crushed even during the production of the electrode layer. In the composite particles of the present invention, the size of the composite particles themselves does not substantially change even if the volume of the Si fine particles changes due to the insertion and desorption of lithium ions. By using the negative electrode material of the present invention, a lithium ion secondary battery having excellent charge/discharge cycle characteristics can be obtained.
実施例1で得られた複合粒子のSEM像を示す図である。FIG. 3 is a view showing an SEM image of the composite particles obtained in Example 1. 実施例1で得られた複合粒子を圧縮した後のSEM像を示す図である。FIG. 3 is a diagram showing an SEM image after compressing the composite particles obtained in Example 1. 実施例1で使用したSi含有粒子のSEM像を示す図である。FIG. 3 is a view showing an SEM image of Si-containing particles used in Example 1. 実施例1で使用したSi含有粒子を圧縮した後のSEM像を示す図である。FIG. 3 is a diagram showing an SEM image after compressing the Si-containing particles used in Example 1. 複合粒子の外表面から複合粒子の直径の10%までの範囲(outer shell)と、複合粒子の中心から複合粒子の直径の80%までの範囲(core)の概念を示す図である。It is a figure which shows the concept of the range (outer shell) from the outer surface of a composite particle to 10% of the diameter of a composite particle, and the range (core) from the center of a composite particle to 80% of the diameter of a composite particle.
 本発明の複合粒子は、リチウムイオン二次電池の負極用である。また、本発明の複合粒子は、Si含有粒子と炭素材料とを含むものである。 The composite particle of the present invention is for a negative electrode of a lithium ion secondary battery. The composite particles of the present invention include Si-containing particles and a carbon material.
 本発明に用いられるSi含有粒子は、複数のSi微粒子が凝集または接合してなる多孔質シリコン粒子であることが好ましい(図3参照)。このSi含有粒子は、25MPaで圧縮処理を施すと、図4に示すように、Si微粒子の凝集または接合が一部解ける。 The Si-containing particles used in the present invention are preferably porous silicon particles formed by aggregating or bonding a plurality of Si fine particles (see FIG. 3). When the Si-containing particles are compressed at 25 MPa, as shown in FIG. 4, some of the Si fine particles are agglomerated or joined.
 Si微粒子の表層はSiOx(0<x≦2)を含有するものであることが好ましい。表層以外の部分(コア)は、元素状珪素からなっていてもよいし、SiOx(0<x≦2)からなっていてもよい。SiOxを含有する表層の平均厚さは0.5nm以上10nm以下が好ましい。SiOxを含有する表層の平均厚さが0.5nm以上であると、空気や酸化性ガスによる酸化を抑制することができる。また、SiOxを含有する表層の平均厚さが10nm以下であると、不可逆容量の増加を抑制することができる。この平均厚さはTEM写真により測定することができる。 The surface layer of the Si fine particles preferably contains SiO x (0<x≦2). The portion (core) other than the surface layer may be made of elemental silicon or SiO x (0<x≦2). The average thickness of the surface layer containing SiO x is preferably 0.5 nm or more and 10 nm or less. When the average thickness of the surface layer containing SiO x is 0.5 nm or more, oxidation by air or oxidizing gas can be suppressed. If the average thickness of the surface layer containing SiO x is 10 nm or less, the increase in irreversible capacity can be suppressed. This average thickness can be measured by a TEM photograph.
 Si微粒子は、一次粒子径の数基準累積分布において90%径D90が好ましくは1000nm以下、より好ましくは600nm以下、さらに好ましくは400nm以下であることが好ましい。一次粒子径はSEMやTEM等の顕微鏡による観察で測定することができる。また、複合材料中のSi微粒子の一次粒子径は、複合粒子を倍率10万倍の透過電子顕微鏡にて観察される球状粒子の像を画像解析することによって算出できる。 The 90% diameter D 90 of the Si fine particles in the number-based cumulative distribution of the primary particle diameter is preferably 1000 nm or less, more preferably 600 nm or less, still more preferably 400 nm or less. The primary particle size can be measured by observation with a microscope such as SEM or TEM. Further, the primary particle diameter of Si fine particles in the composite material can be calculated by performing image analysis of an image of spherical particles observed with a transmission electron microscope at a magnification of 100,000.
 Si含有粒子は、酸素含有率が、好ましくは1質量%以上18質量%以下、より好ましくは2質量%以上10質量%以下である。この範囲内であると、不可逆容量の増加を抑制することができる。酸素含有率は、例えば、酸素窒素同時分析装置(不活性ガス融解―赤外線吸収法)により定量することができる。 The oxygen content of the Si-containing particles is preferably 1% by mass or more and 18% by mass or less, more preferably 2% by mass or more and 10% by mass or less. Within this range, an increase in irreversible capacity can be suppressed. The oxygen content can be quantified by, for example, an oxygen-nitrogen simultaneous analyzer (inert gas melting-infrared absorption method).
 Si含有粒子は、Si以外に、他の金属元素および半金属元素から選択される元素Mを粒子中に含むことができる。具体的に元素Mとしては、例えば、Ag、Al、As、Au、B、Ba、Ca、Ce、Co、Cr、Cu、Er、Fe、Ga、Gd、Ge、Hf、In、Ir、Lu、Mg、Mn、Mo、Nb、Nd、Ni、Pd、Pr、Pt、Re、Rh、Ru、Sc、Sm、Sn、Ta、Te、Ti、V、W、Y、Yb、Zn、Zrからなる群から選ばれる少なくとも一つが挙げられる。元素Mの含有量は、珪素の作用を大きく阻害しない範囲であれば特に制限はなく、例えば、Si含有粒子中に好ましくは2~90原子%、より好ましくは50~85原子%である。元素MはSi微粒子の凝集または接合に寄与するものであってもよい。 The Si-containing particles can include an element M selected from other metal elements and metalloid elements in addition to Si. Specifically, as the element M, for example, Ag, Al, As, Au, B, Ba, Ca, Ce, Co, Cr, Cu, Er, Fe, Ga, Gd, Ge, Hf, In, Ir, Lu, Group consisting of Mg, Mn, Mo, Nb, Nd, Ni, Pd, Pr, Pt, Re, Rh, Ru, Sc, Sm, Sn, Ta, Te, Ti, V, W, Y, Yb, Zn, Zr. At least one selected from The content of the element M is not particularly limited as long as it does not significantly hinder the action of silicon, and is, for example, preferably 2 to 90 atom %, more preferably 50 to 85 atom% in the Si-containing particles. The element M may contribute to the aggregation or bonding of the Si particles.
 Si含有粒子としての多孔質シリコン粒子は、その製法によって特に制限されない。例えば、特許文献3、特許文献4、特許文献5などに開示されている方法を参照して製造することができる。また、Si含有粒子は、市販品を用いてもよい。例えば、AUO Crystal Corp.製の ANSY360、ANSY160などを挙げることができる。 The porous silicon particles as Si-containing particles are not particularly limited by the manufacturing method. For example, it can be manufactured by referring to the methods disclosed in Patent Document 3, Patent Document 4, Patent Document 5, and the like. A commercially available product may be used as the Si-containing particles. For example, ANSY360 and ANSY160 manufactured by AUO Crystal Corp. can be cited.
 本発明の複合粒子に含まれるSi含有粒子の量は、複合粒子に対して、下限が、好ましくは55質量%、より好ましくは60質量%、さらに好ましくは65質量%であり、上限が、好ましくは95質量%、より好ましくは90質量%、さらに好ましくは85質量%である。 Regarding the amount of Si-containing particles contained in the composite particles of the present invention, the lower limit is preferably 55% by mass, more preferably 60% by mass, further preferably 65% by mass, and the upper limit is preferable, with respect to the composite particles. Is 95% by mass, more preferably 90% by mass, and even more preferably 85% by mass.
 本発明に用いられる炭素材料は、黒鉛質炭素材料または炭素質炭素材料、好ましくは炭素質炭素材料である。 The carbon material used in the present invention is a graphitic carbon material or a carbonaceous carbon material, preferably a carbonaceous carbon material.
 黒鉛質炭素材料は、炭素原子により形成される結晶が大きく発達した炭素材料である。黒鉛質炭素材料は、炭素質炭素材料に比べて、滑りやすく、柔らかく、引っ掻き強度が低い炭素材料である。黒鉛質炭素材料は、例えば、炭素前駆体を黒鉛化することによって製造することができる。電極作製時のプレスに伴って、黒鉛質炭素材料は、柔軟に移動するので電極密度の向上に寄与することがある。黒鉛質炭素材料として、人造黒鉛、熱分解黒鉛、膨張黒鉛、天然黒鉛、鱗状黒鉛、鱗片状黒鉛などが挙げられる。 The graphitic carbon material is a carbon material in which crystals formed by carbon atoms are greatly developed. The graphitic carbon material is a carbon material that is more slippery, softer, and has a lower scratch strength than the carbonaceous carbon material. The graphitic carbon material can be produced, for example, by graphitizing a carbon precursor. The graphite carbon material moves flexibly with the pressing at the time of manufacturing the electrode, which may contribute to the improvement of the electrode density. Examples of the graphite carbon material include artificial graphite, pyrolytic graphite, expanded graphite, natural graphite, scaly graphite, and scaly graphite.
 炭素質炭素材料は、炭素原子により形成される結晶の発達が低い炭素材料である。炭素質炭素材料は、例えば、炭素前駆体を炭素化することによって製造することができる。 ≪Carbonaceous carbon material is a carbon material with low growth of crystals formed by carbon atoms. The carbonaceous carbon material can be produced, for example, by carbonizing a carbon precursor.
 炭素前駆体は、特に限定されないが、熱重質油、熱分解油、ストレートアスファルト、ブローンアスファルト、エチレン製造時に副生するタールまたは石油ピッチなどの石油由来物質、または石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分、コールタールピッチ(石炭ピッチ)などの石炭由来物質が好ましく、石油ピッチまたは石炭ピッチがより好ましく、コールタールピッチがさらに好ましい。ピッチは複数の多環芳香族化合物の混合物である。ピッチを用いると、高い炭素化率で、不純物の少ない炭素質炭素材料を製造できる。ピッチは酸素含有率が少ないので、Si含有粒子と混ぜ合わせたのちの炭素化または黒鉛化において、Si含有粒子が酸化されにくい。 The carbon precursor is not particularly limited, thermal heavy oil, pyrolysis oil, straight asphalt, blown asphalt, petroleum-derived substances such as tar or petroleum pitch by-produced during ethylene production, or coal tar produced during coal carbonization, Heavy components obtained by distilling off low-boiling components of coal tar, coal-derived substances such as coal tar pitch (coal pitch) are preferable, petroleum pitch or coal pitch is more preferable, and coal tar pitch is further preferable. Pitch is a mixture of polycyclic aromatic compounds. When pitch is used, a carbonaceous carbon material having a high carbonization rate and low impurities can be produced. Since the pitch has a low oxygen content, the Si-containing particles are less likely to be oxidized in carbonization or graphitization after being mixed with Si-containing particles.
 炭素前駆体としてのピッチは、軟化点が、好ましくは80℃以上300℃以下である。ピッチの軟化点はASTM-D3104-77に記載のメトラー法で測定することができる。 The softening point of pitch as a carbon precursor is preferably 80°C or higher and 300°C or lower. The softening point of the pitch can be measured by the Mettler method described in ASTM-D3104-77.
 炭素前駆体としてのピッチは、残炭率が、好ましくは20質量%以上85質量%以下、より好ましくは25質量%以上80質量%以下である。
 残炭率は以下の方法で決定される。固体状のピッチを乳鉢等で粉砕し、粉砕物を窒素ガス流通下で質量熱分析する。仕込み質量に対する1100℃における質量の割合を残炭率と定義する。残炭率はJIS K2425において炭化温度1100℃にて測定される固定炭素量に相当する。
The pitch as the carbon precursor has a residual carbon rate of preferably 20% by mass or more and 85% by mass or less, more preferably 25% by mass or more and 80% by mass or less.
The residual coal rate is determined by the following method. The solid pitch is ground in a mortar or the like, and the ground product is subjected to mass thermal analysis under a nitrogen gas flow. The ratio of the mass at 1100° C. to the charged mass is defined as the residual coal rate. The residual coal rate corresponds to the fixed carbon amount measured at a carbonization temperature of 1100° C. according to JIS K2425.
 本発明に用いられるピッチは、QI(キノリン不溶分)含量が、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは2質量%以下である。ピッチのQI含量はフリーカーボン量に対応する値である。QI含量が上記の範囲にあることにより、電極特性が一層良好になる。 The QI (quinoline insoluble matter) content of the pitch used in the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less. The QI content of the pitch is a value corresponding to the amount of free carbon. When the QI content is within the above range, the electrode characteristics will be further improved.
 また、本発明に用いられるピッチは、TI(トルエン不溶分)含量が、好ましくは10質量%以上70質量%以下である。TI含量が上記範囲にあることによりピッチとその他の成分とを均一に混合でき、かつ、リチウムイオン二次電池用負極活物質として好適な特性を示す複合粒子を得ることができる。 Further, the pitch used in the present invention has a TI (toluene insoluble content) content of preferably 10% by mass or more and 70% by mass or less. When the TI content is within the above range, it is possible to uniformly mix the pitch and the other components, and it is possible to obtain composite particles exhibiting properties suitable as a negative electrode active material for a lithium ion secondary battery.
 本発明に用いられるピッチのQI含量及びTI含量はJIS K2425に記載されている方法またはそれに準じた方法により測定することができる。 The QI content and TI content of the pitch used in the present invention can be measured by the method described in JIS K2425 or a method equivalent thereto.
 本発明の複合粒子に含まれる炭素材料の量は、複合粒子100質量部に対して、下限が、好ましくは5質量部、より好ましくは10質量部、さらに好ましくは15質量部であり、上限が、好ましくは45質量部、より好ましくは40質量部、さらに好ましくは35質量部である。 Regarding the amount of the carbon material contained in the composite particles of the present invention, the lower limit is preferably 5 parts by mass, more preferably 10 parts by mass, further preferably 15 parts by mass, and the upper limit is 100 parts by mass of the composite particles. , Preferably 45 parts by mass, more preferably 40 parts by mass, further preferably 35 parts by mass.
 本発明の複合粒子は、複合粒子の中心から複合粒子の直径の80%までの範囲(Core)の空隙率が30~50%、好ましくは33~49%である。
 本発明の複合粒子は、複合粒子の中心から複合粒子の直径の80%までの範囲(Core)の空隙率に対する複合粒子の外表面から複合粒子の直径の10%までの範囲(Outer Shell)の空隙率の比が0.5以下、より好ましくは0.45以下である。
 なお、本発明における空隙率は、実施例の欄において説明する方法で決定される値である。
The composite particle of the present invention has a porosity of 30 to 50%, preferably 33 to 49% in the range (Core) from the center of the composite particle to 80% of the diameter of the composite particle.
The composite particle of the present invention has a porosity in the range from the center of the composite particle to 80% of the diameter of the composite particle (Core) to the outer surface of the composite particle to 10% of the diameter of the composite particle (Outer Shell). The porosity ratio is 0.5 or less, more preferably 0.45 or less.
The porosity in the present invention is a value determined by the method described in the section of Examples.
 本発明の複合粒子は、体積基準粒度分布における50%径が、好ましくは2~50μm、より好ましくは2~30μmである。体積基準粒度分布における50%径はレーザー回折法で測定することができる。
 本発明の複合粒子は、Si含有粒子である多孔質シリコン粒子の外表面の一部または全部を炭素材料が覆っていることが好ましい。また、炭素材料は、多孔質シリコン粒子の表層部(例えば、複合粒子の外表面から複合粒子の直径の10%までの範囲)の空隙内にある表面の一部または全部を覆っていてもよい。
The 50% diameter in the volume-based particle size distribution of the composite particles of the present invention is preferably 2 to 50 μm, more preferably 2 to 30 μm. The 50% diameter in the volume-based particle size distribution can be measured by a laser diffraction method.
In the composite particles of the present invention, it is preferable that the carbon material covers part or all of the outer surface of the porous silicon particles that are Si-containing particles. Further, the carbon material may cover a part or the whole of the surface in the voids of the surface layer portion of the porous silicon particle (for example, the range from the outer surface of the composite particle to 10% of the diameter of the composite particle). ..
 前記のような空隙率などを有する本発明の複合粒子の製造方法は、Si含有粒子と炭素前駆体とを混ぜ合わせ、得られた混合物を熱処理して炭素前駆体を黒鉛化または炭素化することを含む。 In the method for producing composite particles of the present invention having the porosity as described above, the Si-containing particles are mixed with the carbon precursor, and the resulting mixture is heat treated to graphitize or carbonize the carbon precursor. including.
 また、本発明のリチウムイオン二次電池の負極用の複合粒子の製造方法は、100質量部のSi含有粒子と、好ましくは5~95質量部、より好ましくは20~70質量部の炭素前駆体とを混ぜ合わせ、得られた混合物を熱処理して炭素前駆体を炭素化することを含む。 Further, the method for producing composite particles for a negative electrode of a lithium ion secondary battery of the present invention is 100 parts by mass of Si-containing particles and preferably 5 to 95 parts by mass, more preferably 20 to 70 parts by mass of carbon precursor. And heat treating the resulting mixture to carbonize the carbon precursor.
 熱処理は、室温から所定温度まで昇温させ、次いで所定温度で所定の時間保持する。100℃から350℃までの昇温速度は、好ましくは110~290℃/時間、より好ましくは130~270℃/時間、さらに好ましくは140~250℃/時間である。
 熱処理は、非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、窒素ガス、アルゴンガスなどの非酸化性ガスの雰囲気を挙げることができる。
In the heat treatment, the temperature is raised from room temperature to a predetermined temperature and then kept at the predetermined temperature for a predetermined time. The heating rate from 100° C. to 350° C. is preferably 110 to 290° C./hour, more preferably 130 to 270° C./hour, and further preferably 140 to 250° C./hour.
The heat treatment is preferably performed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include an atmosphere of non-oxidizing gas such as nitrogen gas and argon gas.
 炭素前駆体を炭素化するときの熱処理時の所定温度は、好ましくは400℃以上1800℃未満、より好ましくは600℃以上1500℃以下である。そして、炭素化においては、所定温度にて0.5時間以上6時間以下保持することが好ましい。さらに前記の温度範囲において所定時間一定温度にして熱処理することが好ましい。炭素化において、所定温度での保持時間が短かすぎると炭素化が不十分となり易く、所定温度での保持時間が長すぎると、経済的ではない。 The predetermined temperature during the heat treatment for carbonizing the carbon precursor is preferably 400°C or higher and lower than 1800°C, more preferably 600°C or higher and 1500°C or lower. Then, in carbonization, it is preferable to hold at a predetermined temperature for 0.5 hours or more and 6 hours or less. Further, it is preferable that the heat treatment is performed at a constant temperature for a predetermined time within the above temperature range. In carbonization, if the holding time at a predetermined temperature is too short, carbonization tends to be insufficient, and if the holding time at a predetermined temperature is too long, it is not economical.
 炭素前駆体を黒鉛化するときの熱処理時の温度は、好ましくは1800℃以上3500℃以下、より好ましくは2000℃以上3200℃以下である。この範囲であれば黒鉛化がしやすい。さらに前記の温度範囲において所定時間一定温度にして熱処理することが好ましい。 The temperature during the heat treatment when graphitizing the carbon precursor is preferably 1800° C. or higher and 3500° C. or lower, and more preferably 2000° C. or higher and 3200° C. or lower. Within this range, graphitization is easy. Further, it is preferable that the heat treatment is performed at a constant temperature for a predetermined time within the above temperature range.
 黒鉛化または炭素化した後、篩にかけて、粗粒を取り除くことが好ましい。 After graphitizing or carbonizing, it is preferable to remove coarse particles by sieving.
 本発明の複合粒子は、図1に示すように、見かけ上はSi含有粒子(図3参照)と同じ外観を成しているが、図2に示すように、25MPaで圧縮処理を施しても、Si微粒子の凝集または接合が解けない。本発明の負極材を用いたリチウムイオン二次電池が充放電サイクル特性に優れるのは、電極層の崩壊が防止されるからであると推定される。 As shown in FIG. 1, the composite particles of the present invention apparently have the same appearance as the Si-containing particles (see FIG. 3), but as shown in FIG. 2, even if compression treatment is performed at 25 MPa. , Si fine particles cannot be aggregated or joined. It is presumed that the lithium-ion secondary battery using the negative electrode material of the present invention is excellent in charge/discharge cycle characteristics because collapse of the electrode layer is prevented.
 本発明の負極材は、リチウムイオン二次電池用である。本発明の負極材は、前記複合粒子を含有する。本発明の負極材は、前記複合粒子以外に、黒鉛質炭素材料粒子などを含有していてもよい。黒鉛質炭素材料粒子は、正極シートの容量(QC)に対する負極シートの容量(QA)の比を所定の値にするなどのために含有させることができる。 The negative electrode material of the present invention is for a lithium ion secondary battery. The negative electrode material of the present invention contains the composite particles. The negative electrode material of the present invention may contain graphitic carbon material particles and the like in addition to the composite particles. The graphitic carbon material particles can be contained in order to make the ratio of the capacity (Q A ) of the negative electrode sheet to the capacity (Q C ) of the positive electrode sheet a predetermined value.
 黒鉛質炭素材料粒子は、黒鉛質炭素材料からなる粒子であり、人造黒鉛粒子であることが好ましい。黒鉛質炭素材料は、炭素原子により形成される結晶が大きく発達した炭素材料である。黒鉛質炭素材料は、炭素質炭素材料に比べて、滑りやすく、柔らかく、引っ掻き強度が低い炭素材料である。電極作製時のプレスに伴って、黒鉛質炭素材料粒子は、柔軟に移動するので電極密度の向上に寄与する。 The graphitic carbon material particles are particles made of a graphitic carbon material, and are preferably artificial graphite particles. The graphitic carbon material is a carbon material in which crystals formed by carbon atoms are greatly developed. The graphitic carbon material is a carbon material that is more slippery, softer, and has a lower scratch strength than the carbonaceous carbon material. The graphite carbon material particles move flexibly with the pressing at the time of manufacturing the electrode, which contributes to the improvement of the electrode density.
 黒鉛質炭素材料粒子は、鱗片状粒子から成ることが好ましい。係る黒鉛質炭素材料粒子は、体積基準累積粒度分布における50%径(「D50」ともいう。)が、好ましくは1μm以上50μm以下、より好ましくは5μm以上35μm以下、さらに好ましくは10μm以上25μm以下である。D50が1μm以上であると、充放電時に副反応が生じにくく、D50が50μm以下であると、負極材中でのリチウムイオンの拡散が早くなり、充放電速度が向上する傾向がある。大電流発生が求められる自動車等の駆動電源の用途に用いる場合にはD50は25μm以下であることが好ましい。D50は、レーザー回折式粒度分布計、例えば、MICROTRAC社製粒度分析計MT3300EXII等を使用して測定する。 The graphitic carbon material particles are preferably composed of scaly particles. The graphitic carbon material particles have a 50% diameter (also referred to as “D 50 ”) in a volume-based cumulative particle size distribution of preferably 1 μm or more and 50 μm or less, more preferably 5 μm or more and 35 μm or less, and further preferably 10 μm or more and 25 μm or less. Is. When D 50 is 1 μm or more, side reactions are less likely to occur during charge and discharge, and when D 50 is 50 μm or less, diffusion of lithium ions in the negative electrode material tends to be faster, and the charge and discharge rate tends to be improved. When used for a driving power source of an automobile or the like that requires generation of a large current, D 50 is preferably 25 μm or less. D 50 is a laser diffraction particle size distribution meter, for example, be measured using a MICROTRAC Co. particle size analyzer MT3300EXII like.
 黒鉛質炭素材料粒子は、CuKα線によるX線回折パターンの解析から算出される、002面の平均面間隔d002が、好ましくは0.337nm以下である。d002が小さいほど、リチウムイオンの質量当たりの挿入および脱離量が増えるので、重量エネルギー密度の向上に寄与する。なお、d002が0.337nm以下であると、偏光顕微鏡にて観察される光学組織の大部分が光学異方性の組織となる。 In the graphitic carbon material particles, the average interplanar spacing d 002 of the 002 planes calculated from the analysis of the X-ray diffraction pattern by CuKα ray is preferably 0.337 nm or less. As d 002 is smaller, the amount of lithium ions inserted and desorbed per mass increases, which contributes to the improvement of the weight energy density. When d 002 is 0.337 nm or less, most of the optical structure observed by the polarization microscope has optical anisotropy.
 また、黒鉛質炭素材料粒子は、CuKα線によるX線回折パターンの解析から算出される、黒鉛質炭素材料の結晶C軸方向の厚さ(Lc)が、好ましくは50nm以上1000nm以下である。Lcが大きい場合には、電池の体積当たりエネルギー密度を高くする点で有利である。体積当たりエネルギー密度を高くする観点から、Lcは、好ましくは80nm以上300nm以下、より好ましくは100nm以上200nm以下、更に好ましくは100以上150nm以下である。Lcが小さい場合には、電池のサイクル特性を維持する点で有利である。電池のサイクル特性を維持する観点から、Lcは、好ましくは50nm以上200nm以下、より好ましくは50nm以上100nm以下、更に好ましくは50nm以上90nm以下である。 In the graphitic carbon material particles, the thickness (Lc) in the crystal C-axis direction of the graphitic carbon material calculated from the analysis of the X-ray diffraction pattern by CuKα ray is preferably 50 nm or more and 1000 nm or less. A large Lc is advantageous in increasing the energy density per volume of the battery. From the viewpoint of increasing the energy density per volume, Lc is preferably 80 nm or more and 300 nm or less, more preferably 100 nm or more and 200 nm or less, still more preferably 100 or more and 150 nm or less. When Lc is small, it is advantageous in maintaining the cycle characteristics of the battery. From the viewpoint of maintaining the cycle characteristics of the battery, Lc is preferably 50 nm or more and 200 nm or less, more preferably 50 nm or more and 100 nm or less, still more preferably 50 nm or more and 90 nm or less.
 なお、d002及びLcは、粉末X線回折(XRD)法を用いて測定することができる(野田稲吉、稲垣道夫、日本学術振興会、第117委員会試料、117-71-A-1(1963)、稲垣道夫他、日本学術振興会、第117委員会試料、117-121-C-5(1972)、稲垣道夫、「炭素」、1963、No.36、25-34頁参照)。 Note that d 002 and Lc can be measured using a powder X-ray diffraction (XRD) method (Inayoshi Noda, Michio Inagaki, Japan Society for the Promotion of Science, 117th Committee sample, 117-71-A-1 ( 1963), Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee sample, 117-121-C-5 (1972), Michio Inagaki, "Carbon", 1963, No. 36, pp. 25-34).
 黒鉛質炭素材料粒子は、G値が、好ましくは5.2以上100以下、より好ましくは7.0以上80以下、さらに好ましくは10以上60以下である。G値は、顕微ラマン分光測定器で粒子端面を測定した際に観測されるラマン分光スペクトルにおける1300~1400cm-1の範囲にあるピークの面積(ID)と1580~1620cm-1の範囲にあるピークの面積(IG)との比IG/IDである。G値が上記数値範囲にあると、電池の自己放電ならびに劣化が抑制される。なお、G値が小さすぎると、多くの欠陥の存在により充放電時に副反応が生じる傾向がある。 The G value of the graphitic carbon material particles is preferably 5.2 or more and 100 or less, more preferably 7.0 or more and 80 or less, and further preferably 10 or more and 60 or less. The G value is in the range of 1580 to 1620 cm -1 and the peak area (I D ) in the range of 1300 to 1400 cm -1 in the Raman spectroscopic spectrum observed when the particle end face is measured by the Raman spectroscopic analyzer. It is the ratio I G /I D to the area of the peak (I G ). When the G value is within the above numerical range, self-discharge and deterioration of the battery are suppressed. If the G value is too small, side reactions tend to occur during charge and discharge due to the presence of many defects.
 なお、粒子端面のラマン分光スペクトルは、例えば、レーザーラマン分光光度計(NRS-5100、日本分光社製)と、付属の顕微鏡とを用いて、平滑部(ベイサル面)ではなく、端面となっている部分を選択的に観察することによって、測定する。粒子端面のラマン分光スペクトルにおいて、1300~1400cm-1の範囲にあるピークはsp3結合に由来するピークであり、1580~1620cm-1の範囲にあるピークはsp2結合に由来するピークである。G値が大きいほどsp2結合の割合が多いことを示唆する。 The Raman spectroscopic spectrum of the particle end surface is, for example, a laser Raman spectrophotometer (NRS-5100, manufactured by JASCO Corporation) and an attached microscope, not the smooth portion (basal surface), but the end surface. It is measured by selectively observing the existing part. In the Raman spectroscopic spectrum of the particle end face, the peak in the range of 1300 to 1400 cm −1 is the peak derived from sp3 bond, and the peak in the range of 1580 to 1620 cm −1 is the peak derived from sp2 bond. It is suggested that the larger the G value, the higher the proportion of sp2 binding.
 黒鉛質炭素材料粒子は、BET比表面積が、好ましくは0.4m2/g以上5m2/g以下、より好ましくは0.5m2/g以上3.5m2/g以下、さらに好ましくは0.5m2/g以上3.0m2/g以下である。BET比表面積がこの範囲にあることにより、バインダを過剰に使用することなく、かつ電解液と接触する面積を大きく確保でき、リチウムイオンが円滑に挿入脱離され、電池の反応抵抗を小さくすることができる。なお、BET比表面積は窒素ガス吸着量から算出する。測定装置としては、例えば、ユアサアイオニクス社製NOVA-1200などが挙げられる。 The BET specific surface area of the graphitic carbon material particles is preferably 0.4 m 2 /g or more and 5 m 2 /g or less, more preferably 0.5 m 2 /g or more and 3.5 m 2 /g or less, still more preferably 0. It is 5 m 2 /g or more and 3.0 m 2 /g or less. When the BET specific surface area is within this range, it is possible to secure a large area in contact with the electrolytic solution without using the binder excessively, and to smoothly insert and desorb lithium ions to reduce the reaction resistance of the battery. You can The BET specific surface area is calculated from the nitrogen gas adsorption amount. Examples of the measuring device include NOVA-1200 manufactured by Yuasa Ionics Inc.
 黒鉛質炭素材料粒子は、ゆるめ嵩密度(0回タッピング)が、好ましくは0.7g/cm3以上であり、400回タッピングを行った際の粉体密度(タップ密度)が、好ましくは0.8g/cm3以上1.6g/cm3以下、より好ましくは0.9g/cm3以上1.6g/cm3以下、さらに好ましくは1.1g/cm3以上1.6g/cm3以下である。
 ゆるめ嵩密度は、高さ20cmから試料100gをメスシリンダーに落下させ、振動を加えずに体積と質量を測定して得られる密度である。タップ密度は、カンタクローム製オートタップを使用して400回タッピングした100gの粉の体積と質量を測定して得られる密度である。これらはASTM B527及びJIS K5101-12-2に準拠した測定方法である。タップ密度測定におけるオートタップの落下高さは5mmとした。
 ゆるめ嵩密度が0.7g/cm3以上であると、電極へ塗工した際の、プレス前の電極密度を高める傾向がある。この値により、ロールプレス一回で十分な電極密度を得ることが可能かどうかを予測できる。また、タップ密度が上記範囲内にあることによりプレス時に到達する電極密度を所望の高さにし易い。
The graphite carbon material particles have a loosened bulk density (0 times tapping) of preferably 0.7 g/cm 3 or more, and a powder density (tapping density) of 400 times tapping, preferably 0. 8 g/cm 3 or more and 1.6 g/cm 3 or less, more preferably 0.9 g/cm 3 or more and 1.6 g/cm 3 or less, and still more preferably 1.1 g/cm 3 or more and 1.6 g/cm 3 or less. ..
The loosened bulk density is a density obtained by dropping 100 g of a sample from a height of 20 cm into a graduated cylinder and measuring the volume and mass without applying vibration. The tap density is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a Kantachrome auto tap. These are the measurement methods based on ASTM B527 and JIS K5101-12-2. The drop height of the auto tap in the tap density measurement was set to 5 mm.
When the loosened bulk density is 0.7 g/cm 3 or more, the electrode density before pressing tends to increase when applied to the electrode. From this value, it is possible to predict whether it is possible to obtain a sufficient electrode density with one roll press. Further, when the tap density is within the above range, it is easy to make the electrode density reached during pressing to a desired height.
 黒鉛質炭素材料粒子は、それの製法によって特に制限されない。例えば、WO 2014/003135 Aに開示されている方法などによって製造することができる。 The graphitic carbon material particles are not particularly limited by the manufacturing method thereof. For example, it can be manufactured by the method disclosed in WO 2014/003135A.
 黒鉛質炭素材料粒子は、原料として石炭系コークスおよび/または石油系コークスを用いることができる。黒鉛質炭素材料粒子は、石炭系コークスおよび/または石油系コークスを好ましくは2000℃以上、より好ましくは2500℃以上の温度で熱処理することにより製造される。熱処理温度の上限は特に限定されないが、3200℃が好ましい。この熱処理は不活性雰囲気下で行うことが好ましい。熱処理はアチソン式黒鉛化炉などを用いて行うことができる。 For the graphitic carbon material particles, coal-based coke and/or petroleum-based coke can be used as a raw material. The graphitic carbon material particles are produced by heat treating coal-based coke and/or petroleum-based coke at a temperature of preferably 2000° C. or higher, more preferably 2500° C. or higher. The upper limit of the heat treatment temperature is not particularly limited, but 3200° C. is preferable. This heat treatment is preferably performed in an inert atmosphere. The heat treatment can be performed using an Acheson type graphitization furnace or the like.
 負極材に含ませ得る黒鉛質炭素材料粒子の量は、負極材の質量に対して、好ましくは10~95質量%、より好ましくは20~90質量%である。 The amount of the graphitic carbon material particles that can be contained in the negative electrode material is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, based on the mass of the negative electrode material.
 本発明の負極材は、導電助剤をさらに含んでいてもよい。
 導電助剤は、電極層に対し導電性またはリチウムイオンの挿入・脱離における体積変化に対する緩衝作用を付与する役目を果たすことができる。導電助剤としては、カーボンブラック、黒鉛、カーボンナノチューブ(CNT)、カーボンナノファイバー、気相成長炭素繊維(VGCF(登録商標))等の炭素材料を挙げることができる。カーボンブラックとしては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等を挙げることができる。導電助剤は1種単独でまたは2種以上を組合せて使用してもよい。
The negative electrode material of the present invention may further contain a conductive auxiliary agent.
The conductive auxiliary agent can play a role of imparting conductivity to the electrode layer or a buffering effect against a volume change due to insertion/desorption of lithium ions. Examples of the conductive auxiliary agent include carbon materials such as carbon black, graphite, carbon nanotube (CNT), carbon nanofiber, and vapor grown carbon fiber (VGCF (registered trademark)). Examples of carbon black include Ketjen black, acetylene black, channel black, lamp black, oil furnace black, thermal black and the like. The conductive additive may be used alone or in combination of two or more.
 本発明の負極材に含ませ得る導電助剤の量は、負極材の質量に対して、好ましくは0.5~50質量%、より好ましくは0.5~30質量%、さらに好ましくは0.5~25質量%である。前述の複合粒子と導電助剤とを含有する負極材の調製の際に使用する導電助剤は、粉末、ペーストなどの状態のものが好ましく用いられる。 The amount of the conductive additive that can be contained in the negative electrode material of the present invention is preferably 0.5 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 0. It is 5 to 25% by mass. The conductive additive used when preparing the negative electrode material containing the composite particles and the conductive additive described above is preferably in the form of powder, paste or the like.
 本発明の負極材は、バインダをさらに含んでいてもよい。バインダとして用いられる材料には、特に制限はなく、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、アクリルゴム、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、エピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリビニルアセテート、ポリメタクリレート、ポリアクリレート、ポリビニルアルコール、カルボキシメチルセルロース等を挙げることができる。 The negative electrode material of the present invention may further contain a binder. The material used as the binder is not particularly limited, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, acrylic rubber, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene oxide, epichlorohydrin, Examples thereof include polyphosphazene, polyacrylonitrile, polyvinyl acetate, polymethacrylate, polyacrylate, polyvinyl alcohol, carboxymethyl cellulose and the like.
 負極材に含ませ得るバインダの量は、好ましくは0.5~50質量%、より好ましくは0.5~30質量%、さらに好ましくは0.5~20質量%、よりさらに好ましくは0.5~10質量%である。前述のプルシアンブルー類似体の粉末とバインダとを含有する正極材料の調製の際に使用するバインダは、粉末、溶液、エマルジョンまたはディスパージョンの状態のものが好ましく用いられる。 The amount of the binder that can be contained in the negative electrode material is preferably 0.5 to 50% by mass, more preferably 0.5 to 30% by mass, still more preferably 0.5 to 20% by mass, still more preferably 0.5. It is up to 10% by mass. The binder used in the preparation of the positive electrode material containing the above-mentioned Prussian blue analog powder and the binder is preferably in the form of powder, solution, emulsion or dispersion.
 本発明の負極材は、液媒体をさらに含んでペーストに成っていてもよい。ペースト状負極材は、リチウムイオン二次電池の製造に用いられる。液媒体は、ペースト状態の導電助剤;溶液、エマルジョンまたはディスパージョンの状態のバインダなどに由来するものであってもよい。液媒体は、負極材の構成成分を均一に溶解または分散できるものであれば特に制限はない。液媒体としては、例えば、水、イソプロパノール、N-メチル-2-ピロリドン、ジメチルホルムアミド等が使用できる。液媒体の量は、ペーストを集電体に塗工しやすいような粘度となるように適宜調整すればよい。ペースト状負極材は、必要に応じて、増粘剤、レベリング剤等を含んでいてもよい。増粘剤としては、ポリカルボン酸、ポリカルボン酸塩、カルボキシメチルセルロース、カルボキシメチルセルロースアルカリ金属塩などを挙げることができる。 The negative electrode material of the present invention may be a paste that further contains a liquid medium. The pasty negative electrode material is used for manufacturing a lithium ion secondary battery. The liquid medium may be derived from a conductive auxiliary agent in a paste state; a binder in a solution state, an emulsion state, or a dispersion state. The liquid medium is not particularly limited as long as it can uniformly dissolve or disperse the constituent components of the negative electrode material. As the liquid medium, for example, water, isopropanol, N-methyl-2-pyrrolidone, dimethylformamide or the like can be used. The amount of the liquid medium may be appropriately adjusted so that the paste has a viscosity such that it can be easily applied to the current collector. The pasty negative electrode material may contain a thickener, a leveling agent, etc., if necessary. Examples of the thickener include polycarboxylic acid, polycarboxylic acid salt, carboxymethyl cellulose, carboxymethyl cellulose alkali metal salt and the like.
 本発明の負極材は、例えば、前記複合粒子の粉末と必要に応じてバインダ、導電助剤および/または他の成分などとを同時に若しくは順不同に混練装置に供給し混練することによって得られる。混練においては、例えば、自転公転ミキサーやプラネタリミキサー等の混練装置を用いることができる。導電助剤を用いる場合は、複合粒子の粉末と導電助剤とを混ぜ合わせて混合粉を得、該混合粉と必要に応じてバインダおよび/または他の成分とを同時に若しくは順不同に混練装置に供給し混練することができる。 The negative electrode material of the present invention can be obtained by, for example, supplying the above-mentioned composite particle powder and, if necessary, a binder, a conductive additive, and/or other components to the kneading device simultaneously or in any order and kneading. In the kneading, for example, a kneading device such as a rotation/revolution mixer or a planetary mixer can be used. In the case of using a conductive auxiliary agent, the powder of the composite particles and the conductive auxiliary agent are mixed to obtain a mixed powder, and the mixed powder and, if necessary, a binder and/or other components are simultaneously or in random order placed in a kneading device. It can be supplied and kneaded.
 本発明の負極シートは、リチウムイオン二次電池用である。本発明の負極シートは、集電体と、該集電体を被覆する電極層とを有する。電極層は本発明の負極材を含む。電極層に含まれる本発明の負極材は、通常、圧粉体の状態に成っている。 The negative electrode sheet of the present invention is for a lithium ion secondary battery. The negative electrode sheet of the present invention has a current collector and an electrode layer that covers the current collector. The electrode layer contains the negative electrode material of the present invention. The negative electrode material of the present invention contained in the electrode layer is usually in the state of a green compact.
 負極シートにおける集電体は、導電体で、電極層を保持できるものであれば特に限定はされないが、金属箔または金属メッシュが好ましく、アルミニウム箔、ニッケル箔、銅箔、ニッケルメッシュまたは銅メッシュがより好ましい。集電体は、金属箔または金属メッシュに導電性層などの機能性層が積層若しくは複合化されたものなどであってもよい。 The current collector in the negative electrode sheet is a conductor and is not particularly limited as long as it can hold the electrode layer, but a metal foil or a metal mesh is preferable, and an aluminum foil, a nickel foil, a copper foil, a nickel mesh or a copper mesh is used. More preferable. The current collector may be a metal foil or a metal mesh on which a functional layer such as a conductive layer is laminated or combined.
 電極層は、例えば、ペースト状負極材を集電体上に塗布し、乾燥させることによって得ることができる。集電体にペースト状負極材を塗布・乾燥する際には、ドクターブレード等などの塗布装置、及び乾燥装置を用いることができる。
 また、電極層は、例えば、顆粒または粉末状の負極材を集電体とともに加圧成形することによっても、得ることができる。
The electrode layer can be obtained, for example, by applying a paste-like negative electrode material on a current collector and drying it. When applying and drying the paste negative electrode material on the current collector, a coating device such as a doctor blade and a drying device can be used.
The electrode layer can also be obtained, for example, by pressure-molding a granular or powdery negative electrode material together with a current collector.
 負極シートにおける電極層の厚さは、好ましくは30~200μmである。電極層の厚さが200μm以下であれば、規格化された電池容器に負極シートを収容することができる。電極層の厚さは、ペースト状負極材の塗布量などによって調整できる。また、ペースト状負極材を乾燥させた後、圧延することによっても調整することができる。加圧成形または圧延においては、加圧ロール式、加圧プレート式などのプレス機を用いることができる。加圧プレート式において加える圧力は、好ましくは100~500MPaである。 The thickness of the electrode layer in the negative electrode sheet is preferably 30 to 200 μm. When the thickness of the electrode layer is 200 μm or less, the negative electrode sheet can be housed in a standardized battery container. The thickness of the electrode layer can be adjusted by the coating amount of the paste-like negative electrode material and the like. It can also be adjusted by rolling the paste-form negative electrode material after drying. In the pressure forming or rolling, a press machine such as a pressure roll type or a pressure plate type can be used. The pressure applied in the pressure plate type is preferably 100 to 500 MPa.
 本発明のリチウムイオン二次電池は、上記の負極シート、電解質、及び正極シートを含む。正極シートと負極シートはセパレータを挟んで対向して配置してもよい。 The lithium-ion secondary battery of the present invention includes the above-mentioned negative electrode sheet, electrolyte, and positive electrode sheet. The positive electrode sheet and the negative electrode sheet may be arranged to face each other with the separator interposed therebetween.
 正極シートは、集電体と、該集電体を被覆する電極層とを有するものである。正極シートにおける電極層はリチウムを吸蔵及び放出することが可能な正極活物質とバインダと必要に応じて導電助剤などとを含む。正極シートにおける集電体としては、例えば、銅箔、アルミニウム箔等が挙げられる。正極活物質としては、例えば、LiNiO2、LiCoO2、LiMn24、LiNi0.34Mn0.33Co0.332、LiFePO4などが挙げられる。 The positive electrode sheet has a current collector and an electrode layer that covers the current collector. The electrode layer in the positive electrode sheet contains a positive electrode active material capable of inserting and extracting lithium, a binder, and, if necessary, a conductive auxiliary agent. Examples of the current collector in the positive electrode sheet include copper foil and aluminum foil. Examples of the positive electrode active material include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.34 Mn 0.33 Co 0.33 O 2 , and LiFePO 4 .
 電解質は、リチウム塩を含有するものであれば特に限定されない。電解質は、溶液、溶融体、固体のいずれの形態であってもよい。溶液としての電解質として、カリウム塩と非水系溶媒とを含む溶液が好ましく用いられる。  The electrolyte is not particularly limited as long as it contains a lithium salt. The electrolyte may be in the form of a solution, a melt or a solid. As the electrolyte as a solution, a solution containing a potassium salt and a non-aqueous solvent is preferably used. 
 リチウムイオン二次電池に用いられる非水系電解液及び非水系ポリマー電解質は特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Liなどのリチウム塩を、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピロニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒に溶かしてなる有機電解液や;ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビリニデン、及びポリメチルメタクリレートなどを含有するゲル状のポリマー電解質や;エチレンオキシド結合を有するポリマーなどを含有する固体状のポリマー電解質が挙げられる。 The non-aqueous electrolyte solution and the non-aqueous polymer electrolyte used in the lithium ion secondary battery are not particularly limited. For example, lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, and CF 3 SO 3 Li are converted into ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, propylene. Organic electrolytes dissolved in non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propyronitrile, dimethoxyethane, tetrahydrofuran, γ-butyrolactone; polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, etc. Examples thereof include gel polymer electrolytes contained therein; and solid polymer electrolytes containing a polymer having an ethylene oxide bond.
 また、電解液には、リチウムイオン二次電池の初回充電時に分解反応が起きる物質を少量添加してもよい。該物質としては、例えば、ビニレンカーボネート(VC)、ビフェニール、プロパンスルトン(PS)、フルオロエチレンカーボネート(FEC)、エチレンサルトン(ES)などが挙げられる。添加量としては0.01質量%以上50質量%以下が好ましい。 Also, a small amount of a substance that causes a decomposition reaction when the lithium-ion secondary battery is first charged may be added to the electrolytic solution. Examples of the substance include vinylene carbonate (VC), biphenyl, propane sultone (PS), fluoroethylene carbonate (FEC), ethylene sultone (ES) and the like. The addition amount is preferably 0.01% by mass or more and 50% by mass or less.
 セパレータは、正極シートと負極シートとを物理的に隔絶して、内部短絡を防止する役割を果たす。セパレータとしては、例えば、多孔質材料、不織布等を用いたものが挙げられる。セパレータは、多孔膜の層または不織布の層だけで形成されたものであってもよいし、組成や形態の異なる複数の層の積層体で形成されたものであってもよい。積層体としては、組成の異なる複数の樹脂多孔層を有する積層体、多孔膜の層と不織布の層とを有する積層体などが例示できる。 The separator physically separates the positive electrode sheet and the negative electrode sheet to prevent an internal short circuit. Examples of the separator include those using a porous material, a non-woven fabric, or the like. The separator may be formed of only a porous membrane layer or a non-woven fabric layer, or may be formed of a laminate of a plurality of layers having different compositions and forms. Examples of the laminate include a laminate having a plurality of resin porous layers having different compositions, a laminate having a porous membrane layer and a nonwoven fabric layer, and the like.
 セパレータを構成する多孔膜または不織布の材料としては、例えば、ポリエチレン、ポ リプロピレン、エチレン-プロピレン共重合体などのポリオレフィン樹脂;ポリフェニレ ンサルファイド、ポリフェニレンサルファイドケトンなどのポリフェニレンサルファイド 樹脂;芳香族ポリアミド樹脂(アラミド樹脂など)などのポリアミド樹脂;ポリイミド樹 脂などが挙げることができる。これらの樹脂は、一種単独でまたは二種以上を組み合わせて使用してもよい。また、不織布の材料として、ガラス繊維などの無機繊維を用いることもできる。 Examples of the material of the porous film or the nonwoven fabric constituting the separator include polyolefin resins such as polyethylene, polypropylene and ethylene-propylene copolymer; polyphenylene sulfide resins such as polyphenylene sulfide and polyphenylene sulfide ketone; aromatic polyamide resins ( Polyamide resin such as aramid resin); polyimide resin and the like. These resins may be used alone or in combination of two or more. Inorganic fibers such as glass fibers can also be used as the material of the non-woven fabric.
 セパレータは、無機フィラーを含んでいてもよい。無機フィラーとしては、セラミックス(シリカ、アルミナ、ゼオライト、チタニアなど)、タルク、マイカ、ウォラストナイトなどを挙げることができる。無機フィラーは、粒子状または繊維状が好ましい。セパレータに含まれる無機フィラーの量は、セパレータの質量に対して、好ましくは10~90質量%、より好ましくは20~80質量%である。 The separator may include an inorganic filler. Examples of the inorganic filler include ceramics (silica, alumina, zeolite, titania, etc.), talc, mica, wollastonite, and the like. The inorganic filler is preferably particulate or fibrous. The amount of the inorganic filler contained in the separator is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the mass of the separator.
 本発明のリチウムイオン二次電池は、携帯電話、携帯パソコン、携帯情報端末などの電子機器の電源;電動ドリル、電気掃除機、電気自動車などの電動機の電源;燃料電池、太陽光発電、風力発電などによって得られた電力の貯蔵などに用いることができる。 The lithium-ion secondary battery of the present invention is a power source for electronic devices such as mobile phones, portable personal computers, and personal digital assistants; power sources for electric motors such as electric drills, vacuum cleaners, and electric vehicles; fuel cells, solar power generation, wind power generation. It can be used for storage of electric power obtained by the above.
 以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何等制限されるものではない。 The examples of the present invention will be shown below to explain the present invention more specifically. Note that these are merely examples for description, and the present invention is not limited to these.
<空隙率の測定>
 エポキシ樹脂(GATAN社製Resin G-2)97質量部および酢酸パラジウム(東京化成工業製)3質量部をトルエン(富士フィルム和光純薬製)1000部に溶解させ、次いでトルエンを減圧留去して、Pdラベルエポキシ樹脂を得た。
 フッ素樹脂製粘着テープを貼り付けたスライドグラス上で、Pdラベルエポキシ樹脂100質量部と、硬化剤(GATAN社製Hardener G-2)10質量部を混練した。該混練物に、混練物の体積に対して約2倍の体積の複合粒子を添加しさらに混練した。
 次いで、110℃のホットプレートに20秒間載せた。直ぐにデシケーターに入れ、減圧した。これにより溶融した樹脂が複合粒子の空隙に浸み込んだ。
 120℃のホットプレートに2時間載せ、硬化させて、試験片を得た。
<Measurement of porosity>
97 parts by mass of epoxy resin (Resin G-2 manufactured by GATAN Co., Ltd.) and 3 parts by mass of palladium acetate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were dissolved in 1000 parts of toluene (manufactured by Fuji Film Wako Pure Chemical Industries), and toluene was distilled off under reduced pressure. , Pd-labeled epoxy resin was obtained.
100 parts by mass of the Pd label epoxy resin and 10 parts by mass of a curing agent (Hardener G-2 manufactured by GATAN Co.) were kneaded on a slide glass to which an adhesive tape made of fluororesin was attached. About 2 times the volume of the composite particles was added to the kneaded product, and the mixture was further kneaded.
Then, it was placed on a hot plate at 110° C. for 20 seconds. Immediately, it was put in a desiccator and depressurized. As a result, the molten resin penetrated into the voids of the composite particles.
It was placed on a hot plate at 120° C. for 2 hours and cured to obtain a test piece.
 試験片に、日本電子製クロスセクションポリッシャーSM09010を用いて5kVで8時間断面加工を施した。 The test piece was subjected to cross section processing at 5 kV for 8 hours using a cross section polisher SM09010 manufactured by JEOL.

 大面積SDD検出器(オックスフォード・インスツルメンツ製)を搭載したSEM (日本電子製電界放出型走査電子顕微鏡JSM-7000F)を用いて断面加工された試験片を観察し、オクスフォード・インスツルメンツ社が提供するEDS分析ソフトウェアAZtecEnergyによって分析した。
 ポイント分析モードで、複合粒子の外表面から複合粒子の直径の10%までの範囲(Outer Shell)において、ランダムに30カ所を選んでパラジウム濃度を測定した。それぞれの濃度Csn(n=1~30)について空隙率Psnを下記式にて算出した。Psnの平均値を複合粒子の外表面から複合粒子の直径の10%までの範囲の空隙率Psとした。
 Psn=(Csn×100/3)1.5
 ポイント分析モードで、複合粒子の中心から複合粒子の直径の80%までの範囲(Core)において、ランダムに30カ所を選んでパラジウム濃度を測定した。それぞれの濃度Ccn(n=1~30)について空隙率Pcnを下記式にて算出した。Pcnの平均値を複合粒子の中心から複合粒子の直径の80%までの範囲の空隙率Pcとした。
 Pcn=(Ccn×100/3)1.5
)
The SEM (JEOL field emission scanning electron microscope JSM-7000F) equipped with a large-area SDD detector (Oxford Instruments) was used to observe the cross-section processed test piece, and the EDS provided by Oxford Instruments was used. Analysis was performed by the analysis software AZtecEnergy.
In the point analysis mode, the palladium concentration was measured at 30 randomly selected points in the range (Outer Shell) from the outer surface of the composite particle to 10% of the diameter of the composite particle. The porosity P sn was calculated for each concentration C sn (n=1 to 30) by the following formula. The average value of P sn was defined as the porosity P s in the range from the outer surface of the composite particle to 10% of the diameter of the composite particle.
P sn =(C sn ×100/3) 1.5
In the point analysis mode, the palladium concentration was measured by randomly selecting 30 points in the range (Core) from the center of the composite particle to 80% of the diameter of the composite particle. The porosity P cn for each concentration C cn (n=1 to 30) was calculated by the following formula. The average value of P cn was defined as the porosity P c in the range from the center of the composite particle to 80% of the diameter of the composite particle.
P cn =(C cn ×100/3) 1.5
<圧縮試験>
 粉体ロードセル(自作、幅50mm、高さ60mm、奥行き50mmのポリアセタール樹脂製ブロックの上から幅10mm、高さ50mm、奥行き5mmの穴をあけたもの)の穴に複合粒子を約0.6g入れ、その上から押し棒(自作、幅10mm、高さ50mm、奥行き5mmのポリアミド樹脂片)を差し、エー・アンド・ディー製テンシロン万能材料試験機RTG-1310にて荷重1.25kN(圧力25MPa)を加えた。圧縮前後の複合粒子をSEM (日本電子製電界放出型走査電子顕微鏡JSM-7000F)により観察することで複合粒子のSi微粒子の凝集または接合が維持されているかを評価した。
<Compression test>
Approximately 0.6 g of composite particles is put into the hole of the powder load cell (self-made, width 50 mm, height 60 mm, depth 50 mm, polyacetal resin block with 10 mm width, 50 mm height and 5 mm depth) Then, insert a push rod (self-made, width 10 mm, height 50 mm, depth 5 mm polyamide resin piece) from above and load 1.25 kN (pressure 25 MPa) with A&D Tensilon Universal Material Testing Machine RTG-1310. Was added. By observing the composite particles before and after compression with an SEM (JSM-7000F, a field emission scanning electron microscope manufactured by JEOL Ltd.), it was evaluated whether the aggregation or bonding of Si particles in the composite particles was maintained.
<粒度分布測定>
 複合粒子1mgを分散媒1mL(1wt%ポリオキシエチレン(10)オクチルフェニルエーテル水溶液)に加えて手撹拌した分散液を、MICROTRAC社製粒度分析計MT3300EXIIにて水を溶媒として用い粒度分布を測定した。
<Measurement of particle size distribution>
1 mg of the composite particles was added to 1 mL of a dispersion medium (1 wt% polyoxyethylene (10) octylphenyl ether aqueous solution), and the dispersion liquid was manually stirred, and the particle size distribution was measured using water as a solvent with a particle size analyzer MT3300EXII manufactured by MICROTRAC. ..
実施例1
(複合粒子)
 容器に、Si含有粒子(AUO Crystal Corp.製ANSY360、Si微粒子が接合されてなる多孔質シリコン粒子、図3参照、空隙率50%)100gとコールタールピッチ(炭素化率78%)50gを加え、ミックスローター(AsOne製VMR-5R)を用いて100rpmで6時間撹拌した。得られた混合物をアルミナるつぼに入れ、モトヤマ製雰囲気管状炉PCRにおいてアルゴン雰囲気下1100℃で熱処理し(室温から1100℃までの昇温速度150℃/h、1100℃で1時間保持、1100℃から室温までの降温速度150℃/h)、次いで目開き45μm篩下の複合粒子Aを得た。複合粒子Aは、Pcが35%、Psが13%、Ps/Pcが0.37であり、D50は10.1μmであった。
Example 1
(Composite particles)
To the container, 100 g of Si-containing particles (ANSY360 manufactured by AUO Crystal Corp., porous silicon particles obtained by bonding Si fine particles, see FIG. 3, porosity 50%) and 50 g of coal tar pitch (carbonization rate 78%) were added. The mixture was stirred at 100 rpm for 6 hours using a mix rotor (VMR-5R manufactured by AsOne). The obtained mixture was placed in an alumina crucible and heat-treated at 1100° C. under an argon atmosphere in a Motoyama atmosphere tubular furnace PCR (heating rate from room temperature to 1100° C. 150° C./h, 1100° C. for 1 hour, 1100° C. A temperature-decreasing rate to room temperature of 150° C./h), and then composite particles A having a sieve opening of 45 μm were obtained. The composite particles A had P c of 35%, P s of 13%, P s /P c of 0.37, and D 50 of 10.1 μm.
(正極シート)
 LiNi0.6Mn0.2Co0.22192g、カーボンブラック4gおよびポリフッ化ビニリデン(PVdF)4gにN-メチルピロリドンを加えながら攪拌・混合し、ペースト状正極材を得た。ペースト状正極材を厚さ20μmのアルミニウム箔にロールコーターを用いて塗布し、乾燥させ、次いでロールプレスを用いて密度3.6g/cm3に圧縮して正極シートを得た。
(Positive electrode sheet)
LiNi 0.6 Mn 0.2 Co 0.2 O 2 192 g, carbon black 4 g and polyvinylidene fluoride (PVdF) 4 g were stirred and mixed while adding N-methylpyrrolidone to obtain a paste-like positive electrode material. The paste-like positive electrode material was applied to an aluminum foil having a thickness of 20 μm using a roll coater, dried, and then compressed to a density of 3.6 g/cm 3 using a roll press to obtain a positive electrode sheet.
(負極シート)
 カルボキシメチルセルロース(CMC;ダイセル製、CMC1300)を水に溶解させて濃度2%のCMC水溶液を得た。
 カーボンブラック3質量部、カーボンナノチューブ(CNT)1質量部、及び気相成長法炭素繊維(VGCF(登録商標)-H,昭和電工株式会社製)1質量部を混ぜ合わせて導電助剤を得た。
 複合粒子と人造黒鉛粒子とを正極シートの容量(QC)に対する負極シートの容量(QA)の比が1.2となる割合で混ぜ合わせて活物質を得た。
 活物質90質量部、導電助剤2質量部およびCMC水溶液400質量部を混ぜ合わせ、次いで自転・公転ミキサーにて混練してペースト状負極材を得た。
 ペースト状負極材を厚さ20μmの銅箔上に300μmギャップのドクターブレードを用いて塗布し、ホットプレートにて乾燥させ、さらに真空乾燥させた。これを、ロール幅38mmのロールプレス機に2.0m/分の速度で通過させ、電極密度が1.6±0.1g/cm3になるように圧縮した。ロール間の線圧は目的の電極密度になるように150~250MPaの間で調整した。
(Negative electrode sheet)
Carboxymethyl cellulose (CMC; manufactured by Daicel, CMC1300) was dissolved in water to obtain a CMC aqueous solution having a concentration of 2%.
3 parts by mass of carbon black, 1 part by mass of carbon nanotube (CNT), and 1 part by mass of vapor grown carbon fiber (VGCF (registered trademark)-H, manufactured by Showa Denko KK) were mixed to obtain a conductive additive. ..
An active material was obtained by mixing the composite particles and the artificial graphite particles in a ratio such that the ratio of the capacity (Q A ) of the negative electrode sheet to the capacity (Q C ) of the positive electrode sheet was 1.2.
90 parts by mass of the active material, 2 parts by mass of the conduction aid and 400 parts by mass of the CMC aqueous solution were mixed and then kneaded by a rotation/revolution mixer to obtain a paste-like negative electrode material.
The paste-like negative electrode material was applied onto a copper foil having a thickness of 20 μm using a doctor blade having a gap of 300 μm, dried on a hot plate, and further vacuum dried. This was passed through a roll press having a roll width of 38 mm at a speed of 2.0 m/min and compressed so that the electrode density was 1.6±0.1 g/cm 3 . The linear pressure between the rolls was adjusted between 150 and 250 MPa so that the target electrode density was obtained.
(二極ラミネート型フルセル)
 露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の操作を実施した。
 負極シート及び正極シートを打ち抜いて面積20cm2の負極片及び正極片を得た。正極片のAl箔にAlタブを、負極片のCu箔にNiタブをそれぞれ取り付けた。ポリプロピレン製フィルム微多孔膜を負極片と正極片との間に挟み入れ、その状態でアルミラミネート包材でパックした。そして、それに電解液を700μL注入した。その後、開口部を熱融着によって封止して二極ラミネート型フルセルを得た。なお、電解液は、エチレンカーボネート3容量部、エチルメチルカーボネート5容量部およびジエチルカーボネート2容量部の混合液にビニレンカーボネート(VC)1質量%およびフルオロエチレンカーボネート(FEC)10質量%を添加し、さらにこれに電解質LiPF6を1mol/Lの濃度になるように溶解させて得られた液である。
(Bipolar laminated full cell)
The following operation was carried out in a glove box kept in a dry argon gas atmosphere with a dew point of −80° C. or lower.
The negative electrode sheet and the positive electrode sheet were punched out to obtain a negative electrode piece and a positive electrode piece having an area of 20 cm 2 . An Al tab was attached to the Al foil of the positive electrode piece, and a Ni tab was attached to the Cu foil of the negative electrode piece. A polypropylene film microporous film was sandwiched between a negative electrode piece and a positive electrode piece, and in that state, it was packed with an aluminum laminate packaging material. Then, 700 μL of the electrolytic solution was injected thereinto. Then, the opening was sealed by heat fusion to obtain a bipolar laminated full cell. The electrolytic solution was prepared by adding 1% by mass of vinylene carbonate (VC) and 10% by mass of fluoroethylene carbonate (FEC) to a mixed solution of 3 parts by volume of ethylene carbonate, 5 parts by volume of ethylmethyl carbonate and 2 parts by volume of diethyl carbonate, Further, this is a liquid obtained by dissolving electrolyte LiPF 6 in this to a concentration of 1 mol/L.
[二極ラミネート型フルセル・充放電サイクル試験]
(エージング)
 二極ラミネート型フルセルに、レストポテンシャルから0.025Cにて6時間45分間定電流充電を行った。12時間休止した。
 4.2Vまで0.05Cで定電流充電を行った。0.05Cにて2.7Vまで定電流放電を行った。
 0.1Cにて4.3Vになるまで定電流充電を行った。4.3Vに達した後、0.025Cになるまで定電圧充電を行った。0.1Cにて2.7Vになるまで定電流放電を行った。
 0.2Cにて4.3Vになるまで定電流充電を行った。4.3Vに達した後、0.025Cになるまで定電圧充電を行った。0.2Cにて2.7Vになるまで定電流放電を行った。この充放電操作をさらに1回行った。
 0.1Cにて4.3Vになるまで定電流充電を行った。4.3Vに達した後、0.025Cになるまで定電圧充電を行った。0.1Cにて2.7Vになるまで定電流放電を行った。
[Bipolar laminated full cell/charge/discharge cycle test]
(aging)
The bipolar laminated full cell was subjected to constant current charging from rest potential at 0.025 C for 6 hours and 45 minutes. I rested for 12 hours.
Constant current charging was performed at 0.05 C up to 4.2V. A constant current discharge was performed at 0.05 C to 2.7 V.
Constant current charging was performed at 0.1 C until the voltage became 4.3 V. After reaching 4.3 V, constant voltage charging was performed until the voltage reached 0.025 C. A constant current discharge was performed at 0.1 C until 2.7 V was reached.
Constant current charging was performed at 0.2 C until the voltage became 4.3 V. After reaching 4.3 V, constant voltage charging was performed until the voltage reached 0.025 C. Constant current discharge was performed at 0.2 C until the voltage reached 2.7 V. This charging/discharging operation was performed once more.
Constant current charging was performed at 0.1 C until the voltage became 4.3 V. After reaching 4.3 V, constant voltage charging was performed until the voltage reached 0.025 C. A constant current discharge was performed at 0.1 C until 2.7 V was reached.
(200サイクル充放電)
 次いで、1Cにて4.3Vになるまで定電流充電を行った。4.3Vに達した後、0.05Cになるまで定電圧充電を行った。1Cにて3.0Vになるまで定電流放電を行った(第1サイクル)。この充放電操作をさらに19回行った(第2サイクル~第20サイクル)。
 続けて、0.1Cにて4.3Vになるまで定電流充電を行った。4.3Vに達した後、0.05Cになるまで定電圧充電を行った。0.1Cにて3.0Vになるまで定電流放電を行った(第21サイクル)。
 第1サイクル~第21サイクルの充放電操作を1セットとして10セット行った。
 下記の式にて定義されるフルセル200サイクル放電容量維持率は64.3%であった。
 フルセル200サイクル放電容量維持率Crr200(%)=
  {第200サイクル放電容量/第1サイクル放電容量}×100
(200 cycles charge/discharge)
Next, constant current charging was performed at 1C until the voltage became 4.3V. After reaching 4.3 V, constant voltage charging was performed until the voltage reached 0.05 C. Constant current discharge was performed until the voltage became 3.0 V at 1 C (first cycle). This charging/discharging operation was further performed 19 times (second cycle to 20th cycle).
Subsequently, constant current charging was performed at 0.1 C until the voltage became 4.3 V. After reaching 4.3 V, constant voltage charging was performed until the voltage reached 0.05 C. Constant-current discharge was performed at 0.1 C until the voltage reached 3.0 V (21st cycle).
Ten sets of charging/discharging operations in the first to 21st cycles were performed as one set.
The full-cell 200-cycle discharge capacity retention rate defined by the following formula was 64.3%.
Full-cell 200-cycle discharge capacity maintenance rate Crr200 (%) =
{200th cycle discharge capacity/first cycle discharge capacity}×100
(三極ラミネート型ハーフセル)
 露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の操作を実施した。
 負極シートを打ち抜いて面積4cm2のCu箔タブ付き負極片を得た。幅5mmのNiタブを負極片のCu箔タブに取り付けた。
 面積7.5cm2(3.0cm×2.5cm)の対極用Li片と、面積3.75cm2(1.5cm×2.5cm)の参照極用Li片を用意した。
 幅5mmのNiタブを、その先端5mmの長さで、5mm×20mmのNiメッシュの5mm幅に合わせて取り付けた。Niタブが取り付けられたNiメッシュを、対極用Li片の角に、対極用Li片の3.0cm辺と直角に交わるように、貼り付けた。
 Niタブが取り付けられたNiメッシュを、参照極用Li片の1.5cm辺の中央に、参照極用Li片の1.5cm辺と直角に交わるように、貼り付けた。
 参照極と作用極との間および作用極と対極との間のそれぞれにポリプロピレン製微多孔膜を挟み込んだ。その状態でアルミラミネート包材にパックした。そして、それに電解液を注入した。開口部を熱融着によって封止して三極ラミネート型ハーフセルを得た。
 電解液は、エチレンカーボネート3容量部、エチルメチルカーボネート5容量部およびジエチルカーボネート2容量部の混合液にビニレンカーボネート(VC)1質量%およびフルオロエチレンカーボネート(FEC)10質量%を添加し、さらにこれに電解質LiPF6を1mol/Lの濃度になるように溶解させて得られた液である。
(Tripolar laminated half cell)
The following operation was carried out in a glove box kept in a dry argon gas atmosphere with a dew point of −80° C. or lower.
The negative electrode sheet was punched out to obtain a negative electrode piece with a Cu foil tab having an area of 4 cm 2 . A Ni tab having a width of 5 mm was attached to the Cu foil tab of the negative electrode piece.
A counter electrode Li piece having an area of 7.5 cm 2 (3.0 cm×2.5 cm) and a reference electrode Li piece having an area of 3.75 cm 2 (1.5 cm×2.5 cm) were prepared.
A Ni tab having a width of 5 mm was attached at a length of its tip of 5 mm in accordance with a 5 mm width of a 5 mm×20 mm Ni mesh. The Ni mesh to which the Ni tab was attached was attached to a corner of the counter electrode Li piece so as to intersect with a 3.0 cm side of the counter electrode Li piece at a right angle.
The Ni mesh to which the Ni tab was attached was attached to the center of the 1.5 cm side of the Li piece for reference electrode so as to intersect with the 1.5 cm side of the Li piece for reference electrode at a right angle.
A polypropylene microporous membrane was sandwiched between the reference electrode and the working electrode and between the working electrode and the counter electrode, respectively. In that state, it was packed in an aluminum laminate packaging material. Then, an electrolytic solution was injected into it. The opening was sealed by heat fusion to obtain a tripolar laminate type half cell.
The electrolytic solution was prepared by adding 1% by mass of vinylene carbonate (VC) and 10% by mass of fluoroethylene carbonate (FEC) to a mixed solution of 3 parts by volume of ethylene carbonate, 5 parts by volume of ethyl methyl carbonate and 2 parts by volume of diethyl carbonate, and further adding It is a liquid obtained by dissolving the electrolyte LiPF 6 in the solution to a concentration of 1 mol/L.
[三極ラミネート型ハーフセル・充放電サイクル試験]
(エージング)
 三極ラミネート型ハーフセルに、レストポテンシャルから0.005V vs.Li/Li+になるまで0.05Cにて定電流放電を行った。0.05Cにて1.5V vs.Li/Li+まになるまで定電流充電を行った。
 続けて、0.005Vvs.Li/Li+になるまで0.2Cにて定電流放電を行った。0.005Vvs.Li/Li+でに達した後、0.025Cになるまで定電圧放電を行った。0.2Cにて1.5V vs.Li/Li+になるまで定電流充電を行った。この充放電操作をさらに5回行った。
[Tripolar laminate type half cell/charge/discharge cycle test]
(aging)
0.005V vs. rest potential in a tripolar laminated half cell. A constant current discharge was performed at 0.05 C until it became Li/Li + . 1.5V vs. 0.05C. Constant current charging was performed until Li/Li + was reached.
Continuously, 0.005 Vvs. Constant current discharge was performed at 0.2 C until it became Li/Li+. 0.005 Vvs. After reaching Li/Li + , constant voltage discharge was performed until the temperature reached 0.025C. 1.5 V vs. 0.2 C Constant current charging was performed until it became Li/Li + . This charging/discharging operation was further performed 5 times.
(60サイクル充放電)
 次いで、1Cにて0.005V vs.Li/Li+になるまで定電流放電を行った。0.005V vs.Li/Li+に達した後、0.025Cになるまで定電圧放電した。1Cにて1.5V vs.Li/Li+になるまで定電流充電を行った(第1サイクル)。この充放電操作をさらに19回行った(第2サイクル~第20サイクル)。
 0.1Cにて0.005V vs.Li/Li+になるまで定電流放電を行った。0.005V vs.Li/Li+に達した後、0.025Cになるまで定電圧放電した。0.1Cにて1.5V vs.Li/Li+になるまで定電流充電を行った
(第21サイクル)。
 第1サイクル~第21サイクルの充放電操作を1セットとして3セット行った。
 下記の式にて定義されるハーフセル60サイクル充電容量維持率は89.8%であった。
 ハーフセル60サイクル充電容量維持率Crr60(%)=
  {第60サイクルの充電容量/第1サイクルの充電容量}×100
(60 cycles charge/discharge)
Then, 0.005V vs. 1C. Constant current discharge was performed until it became Li/Li + . 0.005V vs. After reaching Li/Li + , constant voltage discharge was performed until the temperature reached 0.025C. 1.5V vs. 1C. Constant current charging was performed until it became Li/Li + (first cycle). This charging/discharging operation was further performed 19 times (second cycle to 20th cycle).
0.005 V vs. 0.1 C Constant current discharge was performed until it became Li/Li + . 0.005V vs. After reaching Li/Li + , constant voltage discharge was performed until the temperature reached 0.025C. 1.5 V vs. 0.1 C Constant current charging was performed until it became Li/Li + (21st cycle).
Three sets of charging/discharging operations in the 1st to 21st cycles were performed as one set.
The half-cell 60-cycle charge capacity retention rate defined by the following formula was 89.8%.
Half-cell 60-cycle charge capacity maintenance rate Crr60 (%) =
{Charge capacity of 60th cycle/Charge capacity of 1st cycle}×100
実施例2
 コールタールピッチの量を25gに変えた以外は、実施例1と同じ方法で複合粒子Bを得た。複合粒子Bは、Pcが45%、Psが20%、Ps/Pcが0.44であり、D50は9.6μmであった。フルセル200サイクル放電容量維持率は63.6%、ハーフセル60サイクル充電容量維持率は89.4%であった。
Example 2
Composite particles B were obtained in the same manner as in Example 1 except that the amount of coal tar pitch was changed to 25 g. The composite particles B had P c of 45%, P s of 20%, Ps/Pc of 0.44, and D 50 of 9.6 μm. The full-cell 200-cycle discharge capacity retention rate was 63.6%, and the half-cell 60-cycle charge capacity retention rate was 89.4%.
実施例3
 昇温速度を200℃/hに変えた以外は、実施例1と同じ方法で複合粒子Cを得た。複合粒子Cは、Pcが48%、Psが8%、Ps/Pcが0.17であり、D50は10.0μmであった。フルセル200サイクル放電容量維持率は63.5%、ハーフセル60サイクル充電容量維持率は89.2%であった。
Example 3
Composite particles C were obtained in the same manner as in Example 1 except that the temperature rising rate was changed to 200° C./h. The composite particles C had P c of 48%, P s of 8%, Ps/Pc of 0.17, and D 50 of 10.0 μm. The full-cell 200-cycle discharge capacity retention rate was 63.5%, and the half-cell 60-cycle charge capacity retention rate was 89.2%.
比較例1
 昇温速度を300℃/hに変えた以外は、実施例1と同じ方法で複合粒子Dを得た。複合粒子Dは、Pcが55%、Psが7%、Ps/Pcが0.13であり、D50は9.9μmであった。フルセル200サイクル放電容量維持率は60.9%、ハーフセル60サイクル充電容量維持率は87.5%であった。
Comparative Example 1
Composite particles D were obtained in the same manner as in Example 1 except that the temperature rising rate was changed to 300° C./h. The composite particles D had P c of 55%, P s of 7%, Ps/Pc of 0.13, and D 50 of 9.9 μm. The full-cell 200-cycle discharge capacity retention rate was 60.9%, and the half-cell 60-cycle charge capacity retention rate was 87.5%.
比較例2
 昇温速度を100℃/hに変えた以外は、実施例1と同じ方法で複合粒子Eを得た。複合粒子Eは、Pcが38%、Psが21%、Ps/Pcが0.55であり、D50は9.5μmであった。フルセル200サイクル放電容量維持率は60.3%、ハーフセル60サイクル充電容量維持率は88.5%であった。
Comparative example 2
Composite particles E were obtained in the same manner as in Example 1 except that the temperature rising rate was changed to 100° C./h. The composite particles E had P c of 38%, P s of 21%, Ps/Pc of 0.55, and D 50 of 9.5 μm. The full-cell 200-cycle discharge capacity retention rate was 60.3%, and the half-cell 60-cycle charge capacity retention rate was 88.5%.
比較例3
 コールタールピッチの量を100gに変えた以外は、実施例1と同じ方法で複合粒子Fを得た。複合粒子Fは、Pcが28%、Psが18%、Ps/Pcが0.64であり、D50は10.3μmであった。フルセル200サイクル放電容量維持率は61.5%、ハーフセル60サイクル充電容量維持率は87.9%であった。
Comparative Example 3
Composite particles F were obtained in the same manner as in Example 1 except that the amount of coal tar pitch was changed to 100 g. The composite particles F had P c of 28%, P s of 18%, Ps/Pc of 0.64, and D 50 of 10.3 μm. The full-cell 200-cycle discharge capacity retention rate was 61.5%, and the half-cell 60-cycle charge capacity retention rate was 87.9%.
比較例4
 Si含有粒子(Si微粒子が接合されてなる多孔質シリコン粒子、図3参照)をそのまま複合粒子Gとした。複合粒子Gは、Pcが55%、Psが48%、Ps/Pcが0.87であり、D50は9.4μmであった。フルセル200サイクル放電容量維持率は60.7%、ハーフセル60サイクル充電容量維持率は86.2%であった。
Comparative Example 4
Si-containing particles (porous silicon particles formed by joining Si particles, see FIG. 3) were directly used as composite particles G. The composite particles G had P c of 55%, P s of 48%, P s /P c of 0.87, and D 50 of 9.4 μm. The full-cell 200-cycle discharge capacity retention rate was 60.7%, and the half-cell 60-cycle charge capacity retention rate was 86.2%.
比較例5
 容器に、中実Si微粒子50g(AUO Crystal Corp.製ANI720)とコールタールピッチ(炭素化率78%)90gを加え、ミックスローター(AsOne製VMR-5R)を用いて100rpmで6時間撹拌した。得られた混合物をアルミナるつぼに入れ、アルゴン雰囲気下1100℃で熱処理し(室温からの1100℃までの昇温速度150℃/h)、次いで、乳鉢で粉砕し、目開き45μm篩下の複合粒子Hを得た。複合粒子Hは、Pcが3%、Psが3%、Ps/Pcが1.00であり、D50は16.2μmであった。フルセル200サイクル放電容量維持率は54.8%、ハーフセル60サイクル充電容量維持率は87.5%であった。
Comparative Example 5
50 g of solid Si particles (ANI720 manufactured by AUO Crystal Corp.) and 90 g of coal tar pitch (carbonization rate 78%) were added to a container, and the mixture was stirred at 100 rpm for 6 hours using a mix rotor (VMR-5R manufactured by AsOne). The obtained mixture was placed in an alumina crucible and heat-treated at 1100° C. under an argon atmosphere (rate of temperature increase from room temperature to 1100° C. 150° C./h), then crushed in a mortar, and composite particles under sieve of 45 μm sieve. H was obtained. The composite particles H had P c of 3%, P s of 3%, Ps/Pc of 1.00, and D 50 of 16.2 μm. The full-cell 200-cycle discharge capacity retention rate was 54.8% and the half-cell 60-cycle charge capacity retention rate was 87.5%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上に示すとおり、複合粒子の中心から複合粒子の直径の80%までの範囲の空隙率が30~50%であり、且つ複合粒子の中心から複合粒子の直径の80%までの範囲の空隙率に対する複合粒子の外表面から複合粒子の直径の10%までの範囲の空隙率の比が0.5以下である、Si含有粒子と炭素材料とを含む複合粒子を負極に使用すると、充放電サイクル特性に優れたリチウムイオン二次電池を得ることができる。 As shown above, the porosity in the range from the center of the composite particle to 80% of the diameter of the composite particle is 30 to 50%, and the porosity in the range of from the center of the composite particle to 80% of the diameter of the composite particle. When a composite particle containing Si-containing particles and a carbon material having a porosity ratio of 0.5 or less in the range from the outer surface of the composite particle to 10% of the diameter of the composite particle is used for the negative electrode, a charge-discharge cycle A lithium ion secondary battery having excellent characteristics can be obtained.

Claims (11)

  1.  Si含有粒子と炭素材料とを含む複合粒子であって、
     複合粒子の中心から複合粒子の直径の80%までの範囲の空隙率が30~50%であり、且つ
     複合粒子の中心から複合粒子の直径の80%までの範囲の空隙率に対する複合粒子の外表面から複合粒子の直径の10%までの範囲の空隙率の比が0.5以下である、
    リチウムイオン二次電池の負極用の複合粒子。
    A composite particle containing Si-containing particles and a carbon material,
    The porosity in the range from the center of the composite particle to 80% of the diameter of the composite particle is 30 to 50%, and the porosity outside the range from the center of the composite particle to 80% of the diameter of the composite particle The ratio of the porosity in the range from the surface to 10% of the diameter of the composite particles is 0.5 or less,
    Composite particles for a negative electrode of a lithium ion secondary battery.
  2.  体積基準粒度分布における50%径が2~50μmである、請求項1に記載の複合粒子。 The composite particle according to claim 1, wherein the 50% diameter in the volume-based particle size distribution is 2 to 50 μm.
  3.  Si含有粒子が、複数のSi微粒子が凝集または接合してなる多孔質シリコン粒子である、請求項1または2に記載の複合粒子。 The composite particle according to claim 1 or 2, wherein the Si-containing particle is a porous silicon particle formed by aggregating or bonding a plurality of Si particles.
  4.  多孔質シリコン粒子の外表面の一部または全部を炭素材料が覆っている、請求項3に記載の複合粒子。 The composite particle according to claim 3, wherein the carbon material covers part or all of the outer surface of the porous silicon particle.
  5.  炭素材料が、炭素質炭素材料である、請求項1~4のいずれか一つに記載の複合粒子。 The composite particles according to any one of claims 1 to 4, wherein the carbon material is a carbonaceous carbon material.
  6.  請求項1~5のいずれか一つに記載の複合粒子を含有する、リチウムイオン二次電池用の負極材。 A negative electrode material for a lithium ion secondary battery, containing the composite particle according to any one of claims 1 to 5.
  7.  請求項6に記載の負極材を含有する電極層を有する、リチウムイオン二次電池の負極シート。 A negative electrode sheet of a lithium ion secondary battery, which has an electrode layer containing the negative electrode material according to claim 6.
  8.  請求項7に記載の負極シートを有する、リチウムイオン二次電池。 A lithium-ion secondary battery having the negative electrode sheet according to claim 7.
  9.  Si含有粒子100質量部と炭素前駆体5~95質量部とを混ぜ合わせ、
     得られた混合物を、100℃から350℃までを110~290℃/時間にて昇温させ、所定温度に達した後、前記所定温度にて0.5時間以上6時間以下保持することを含む、熱処理によって、炭素前駆体を炭素化することを含み、
     前記所定温度が400℃以上1800℃未満である、
     リチウムイオン二次電池の負極用の複合粒子の製造方法。
    100 parts by mass of Si-containing particles and 5 to 95 parts by mass of carbon precursor are mixed,
    Heating the obtained mixture from 100° C. to 350° C. at 110 to 290° C./hour, reaching a predetermined temperature, and then maintaining at the predetermined temperature for 0.5 hours or more and 6 hours or less. , Including carbonizing the carbon precursor by heat treatment,
    The predetermined temperature is 400° C. or higher and lower than 1800° C.,
    A method for producing composite particles for a negative electrode of a lithium ion secondary battery.
  10.  Si含有粒子と炭素前駆体とを混ぜ合わせ、
     得られた混合物を熱処理して炭素前駆体を黒鉛化または炭素化することを含む、
     請求項1~5のいずれか一つに記載の複合粒子の製造方法。
    Mixing the Si-containing particles and the carbon precursor,
    Heat treating the resulting mixture to graphitize or carbonize the carbon precursor,
    The method for producing composite particles according to any one of claims 1 to 5.
  11.  Si含有粒子が、複数のSi微粒子が凝集または接合してなる多孔質シリコン粒子である、請求項9または10に記載の製造方法。 The manufacturing method according to claim 9 or 10, wherein the Si-containing particles are porous silicon particles formed by aggregating or bonding a plurality of Si fine particles.
PCT/JP2019/051181 2018-12-26 2019-12-26 Composite particle for negative electrode of lithium ion secondary battery WO2020138313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-242648 2018-12-26
JP2018242648 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020138313A1 true WO2020138313A1 (en) 2020-07-02

Family

ID=71129548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051181 WO2020138313A1 (en) 2018-12-26 2019-12-26 Composite particle for negative electrode of lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2020138313A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228342A (en) * 2020-12-28 2021-08-06 宁德新能源科技有限公司 Negative pole piece, electrochemical device comprising same and electronic device
WO2023002757A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance and battery
WO2023002756A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029848A (en) * 2012-06-29 2014-02-13 Jfe Chemical Corp Composite particle for lithium ion secondary battery negative electrode, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014119256A1 (en) * 2013-01-29 2014-08-07 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries using said negative electrode active material, and nonaqueous electrolyte secondary battery using said negative electrode
CN104393245A (en) * 2014-12-10 2015-03-04 厦门大学 Preparation method of nano silicon based negative electrode with porous structure for lithium ion battery
JP2015170586A (en) * 2014-03-11 2015-09-28 大阪瓦斯株式会社 Negative electrode material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
KR20160002282A (en) * 2014-06-30 2016-01-07 주식회사 지엘비이 Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon dioxide to be electrochemical activation by reaction with carbon
JP2018006332A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029848A (en) * 2012-06-29 2014-02-13 Jfe Chemical Corp Composite particle for lithium ion secondary battery negative electrode, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014119256A1 (en) * 2013-01-29 2014-08-07 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries using said negative electrode active material, and nonaqueous electrolyte secondary battery using said negative electrode
JP2015170586A (en) * 2014-03-11 2015-09-28 大阪瓦斯株式会社 Negative electrode material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
KR20160002282A (en) * 2014-06-30 2016-01-07 주식회사 지엘비이 Anode material for lithium ion secondary battery which is composed of carbon and nanosilicon dioxide to be electrochemical activation by reaction with carbon
CN104393245A (en) * 2014-12-10 2015-03-04 厦门大学 Preparation method of nano silicon based negative electrode with porous structure for lithium ion battery
JP2018006332A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228342A (en) * 2020-12-28 2021-08-06 宁德新能源科技有限公司 Negative pole piece, electrochemical device comprising same and electronic device
WO2023002757A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance and battery
WO2023002756A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance and battery

Similar Documents

Publication Publication Date Title
JP5956690B2 (en) Negative electrode material for lithium ion battery and its use
JP5270050B1 (en) Composite graphite particles and uses thereof
JP5563578B2 (en) Composite graphite particles and lithium secondary battery using the same
JP6442419B2 (en) Negative electrode active material for lithium ion secondary battery
KR101515464B1 (en) Composite electrode material
KR101522911B1 (en) Negative electrode for lithium secondary battery, method for producing carbon-based negative electrode active material, lithium secondary battery and use thereof
JP5960052B2 (en) Graphite negative electrode active material for lithium secondary battery
WO2018088248A1 (en) Negative electrode material and lithium-ion battery
JPWO2012017677A1 (en) Negative electrode active material for lithium secondary battery
US20190334173A1 (en) Composite graphite particles, method for producing same, and use thereof
WO2020138313A1 (en) Composite particle for negative electrode of lithium ion secondary battery
JP2002348109A (en) Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JPH11199211A (en) Graphite particle, its production, lithium secondary battery and negative pole thereof
KR20200073208A (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, paste for negative electrode, negative electrode sheet and lithium ion secondary battery
JP2007294374A (en) Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
US20230084916A1 (en) Negative electrode material for lithium-ion secondary battery and method of producing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2010267629A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
TW202002370A (en) Negative electrode material for secondary battery, negative electrode for secondary battery, and secondary battery
JP5567232B1 (en) Composite carbon particles and lithium ion secondary battery using the same
JP7009049B2 (en) Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it
Etacheria et al. Fast reversible pseudocapacitance enhanced Na-ion storage on in situ surface functionalized ultrathin carbon nanosheets
JP2013211279A (en) Negative electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP