WO2020138121A1 - Coating film forming composition and substrate manufacturing method - Google Patents

Coating film forming composition and substrate manufacturing method Download PDF

Info

Publication number
WO2020138121A1
WO2020138121A1 PCT/JP2019/050710 JP2019050710W WO2020138121A1 WO 2020138121 A1 WO2020138121 A1 WO 2020138121A1 JP 2019050710 W JP2019050710 W JP 2019050710W WO 2020138121 A1 WO2020138121 A1 WO 2020138121A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
cobalt
film
ligand
solvent
Prior art date
Application number
PCT/JP2019/050710
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 大坪
酒井 達也
一憲 酒井
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020217019485A priority Critical patent/KR20210107688A/en
Priority to JP2020563328A priority patent/JP7363819B2/en
Publication of WO2020138121A1 publication Critical patent/WO2020138121A1/en
Priority to US17/356,582 priority patent/US20210318619A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates

Definitions

  • the present invention relates to a coating film forming composition and a method for producing a substrate.
  • a method of forming a cobalt-containing film on a substrate by chemical vapor deposition (CVD) and atomic layer deposition (ALD) using an organometallic precursor is used (WO 2011/017068). No.).
  • the organometallic precursor used in the above conventional method for forming a cobalt-containing film has insufficient storage stability. Further, it takes a long time to form a cobalt-containing film having a film thickness of several tens of nm by CVD or ALD, and the productivity is low.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a coating film forming composition having excellent storage stability and a method for producing a substrate.
  • the invention made to solve the above problems is a cobalt-containing compound having no cobalt-carbon bond (hereinafter, also referred to as "[A] compound”) and a solvent (hereinafter, also referred to as "[B] solvent”).
  • a coating film-forming composition containing and.
  • Another invention made to solve the above problems comprises a step of directly or indirectly applying a composition to a substrate, wherein the composition comprises a cobalt-containing compound having no cobalt-carbon bond, a solvent, and a solvent.
  • the composition comprises a cobalt-containing compound having no cobalt-carbon bond, a solvent, and a solvent.
  • the coating film forming composition of the present invention has excellent storage stability. According to the method for producing a substrate of the present invention, by using the coating film forming composition, a cobalt-containing film having excellent conductivity and embedding property can be formed. Therefore, these can be suitably used in forming a cobalt-containing film in the fields of semiconductors, battery materials, antistatic fields, touch panel sensors and the like.
  • the coating film forming composition contains the compound [A] and the solvent [B].
  • the coating film forming composition may contain optional components as long as the effects of the present invention are not impaired.
  • the coating film forming composition is used in the pattern forming method described later. Therefore, the coating film forming composition can be suitably used as a pattern forming composition.
  • the coating film forming composition is used in the inversion pattern forming method described later. Therefore, the coating film forming composition can be preferably used as a composition for forming a reverse pattern.
  • the compound [A] is a cobalt-containing compound having no cobalt-carbon bond.
  • the coating film forming composition may contain two or more kinds of [A] compounds.
  • "Cobalt-containing compound” refers to a compound containing a cobalt atom.
  • the “cobalt-carbon bond” refers to a covalent bond or a coordinate bond between a cobalt atom and a carbon atom which a cobalt carbonyl complex, a cobalt cyano complex, a cobalt ene complex, a cobalt-alkyl complex, a cobalt-acyl complex or the like has.
  • the coating film forming composition has excellent storage stability by using a compound having no cobalt-carbon bond as the [A] compound.
  • the compound [A] has one or more cobalt atoms.
  • examples of the valence of the cobalt atom in the compound [A] include 0 valence, 1 valence, 2 valence, and 3 valence. Of these, divalent or trivalent is preferable from the viewpoint of further improving storage stability.
  • Examples of the [A] compound include a cobalt salt, a complex having cobalt and a ligand, a combination thereof, and the like.
  • cobalt salt examples include nitrates, sulfates, phosphates, carboxylates, perchlorates, carbonates, oxoacid salts such as borate, thiocyanates, sulfamate, fluorides, chlorides, Examples thereof include halides such as bromide and iodide, and hydroxides.
  • carboxylate examples include acetate, stearate, naphthenate, citrate, oxalate, succinate and the like. Among these, oxo acid salts are preferable, and nitrates, sulfates or carboxylates are more preferable, from the viewpoint of further improving storage stability.
  • Examples of the ligand that constitutes the complex include a monodentate ligand and a polydentate ligand.
  • Examples of the monodentate ligand include a hydroxo ligand, an amide ligand, a halogen ligand, an alkoxy ligand, an acyloxy ligand, a phosphine ligand, an amine ligand, and an ammonia ligand.
  • amide ligand examples include an unsubstituted amide ligand (NH 2 ), a methylamide ligand (NHCH 3 ), a dimethylamide ligand (N(CH 3 ) 2 ), and a diethylamide ligand (N(C 2 H 5) 2), dipropyl amido ligand (N (C 3 H 7) 2) , and the like.
  • halogen ligand examples include a fluorine ligand, a chlorine ligand, a bromine ligand, an iodine ligand and the like.
  • alkoxy ligand examples include methoxy ligand, ethoxy ligand, propoxy ligand, butoxy ligand and the like.
  • acyloxy ligand examples include acetoxy ligand, ethylyloxy ligand, butyryloxy ligand, t-butyryloxy ligand, t-amylyloxy ligand, n-hexanecarbonyloxy ligand, and n-octane. Carbonyloxy ligands and the like can be mentioned.
  • amine ligands include methylamine ligand, dimethylamine ligand, piperidine ligand, morpholine ligand, pyridine ligand and the like.
  • phosphine ligand examples include trimethylphosphine ligand, triethylphosphine ligand, tributylphosphine ligand, triphenylphosphine ligand and the like.
  • polydentate ligand examples include an oxygen bidentate ligand, a nitrogen bidentate ligand, a nitrogen tridentate ligand, a nitrogen tetradentate ligand, a nitrogen bidentate oxygen bidentate ligand, and a nitrogen bidentate.
  • An oxygen tetradentate ligand, a phosphorus bidentate ligand, etc. are mentioned.
  • oxygen bidentate ligand examples include a dicarboxylic acid-derived ligand, a hydroxy acid ester-derived ligand, a ⁇ -diketone-derived ligand, a ⁇ -ketoester-derived ligand, and a ⁇ -dicarboxylic acid ester.
  • examples thereof include a ligand derived from catechol and a ligand derived from catechol or a substitution product thereof.
  • dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid and the like.
  • hydroxy acid ester examples include glycolic acid ester, lactic acid ester, 2-hydroxycyclohexane-1-carboxylic acid ester, salicylic acid ester and the like.
  • ⁇ -diketones examples include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione and the like.
  • ⁇ -ketoesters examples include acetoacetic acid ester, ⁇ -alkyl-substituted acetoacetic acid ester, ⁇ -ketopentanoic acid ester, benzoylacetic acid ester, and 1,3-acetonedicarboxylic acid ester.
  • ⁇ -dicarboxylic acid ester examples include malonic acid diester, ⁇ -alkyl-substituted malonic acid diester, ⁇ -cycloalkyl-substituted malonic acid diester, ⁇ -aryl-substituted malonic acid diester and the like.
  • nitrogen bidentate ligand for example, a ligand derived from 2,2′-bipyridyl or a substituted product thereof, a ligand derived from 1,8-naphthyridine or a substituted product thereof, 2-(1H-pyrazole-1- Il) pyridine or a ligand derived from a substituted product thereof, 1,10-phenanthroline or a ligand derived from a substituted product thereof, ethylenediamine, propanediamine or butanediamine or a ligand derived from a substituted product thereof.
  • the tridentate nitrogen ligand includes, for example, a ligand derived from 2,6-di(1H-pyrazol-1-yl)pyridine or a substituted product thereof, and a ligand derived from ⁇ , ⁇ ′, ⁇ ′′-tripyridyl or a substituted product thereof. Examples thereof include a ligand, a ligand derived from diethylenetriamine or a substituted product thereof, and a ligand derived from 1,4,7-triazacyclononane or a substituted product thereof.
  • nitrogen tetradentate ligand for example, a ligand derived from phthalocyanine or a substituted product thereof, a ligand derived from naphthalocyanine or a substituted product thereof, a ligand derived from porphyrin or a substituted product thereof, a porphycene or a substituted product thereof , A ligand derived from triethylenetetramine or a substituted derivative thereof, a ligand derived from 1,4,7,10-tetraazacyclododecane or a substituted derivative thereof, 1,4,8,11-tetraaza Examples thereof include a ligand derived from cyclotetradecane or a substituted product thereof, a ligand derived from tris(2-aminoethyl)amine or a substituted product thereof, and the like.
  • nitrogen bidentate oxygen bidentate ligand for example, a ligand derived from N,N′-bis(salicylidene)ethylenediamine or a substitution product thereof, N,N′-bis(3-hydroxy-2-butenylidene)ethylenediamine or Examples include ligands derived from the substitution products.
  • the nitrogen bidentate oxygen tetradentate ligand includes, for example, a ligand derived from ethylenediaminetetraacetic acid.
  • Examples of the phosphorus bidentate ligand include 1,1-bis(diphenylphosphino)methane, 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane, and 2,2′.
  • Examples thereof include diphosphine ligands such as -bis(diphenylphosphino)-1,1'-binaphthyl and 1,1'-bis(diphenylphosphino)ferrocene.
  • the lower limit of the content ratio of the [A] compound is preferably 30% by mass, more preferably 50% by mass, and 60% by mass with respect to all components other than the solvent [B] in the coating film forming composition. More preferable.
  • the content ratio may be 100% by mass.
  • the lower limit of the content ratio of the [A] compound in the coating film forming composition is preferably 1% by mass, more preferably 5% by mass, further preferably 10% by mass, and particularly preferably 15% by mass.
  • the upper limit of the content ratio is preferably 70% by mass, more preferably 50% by mass, further preferably 30% by mass, and particularly preferably 25% by mass.
  • the solvent [B] can be used without particular limitation as long as it can dissolve or disperse the compound [A] and optional components contained as necessary.
  • Examples of the [B] solvent include organic solvents (hereinafter, also referred to as “[b] organic solvent”), water and the like.
  • Organic solvent refers to an organic compound that is liquid at 25°C.
  • the lower limit of the content ratio of the [b] organic solvent in the [B] solvent is preferably 20% by mass, more preferably 50% by mass, and further preferably 70% by mass. 90 mass% is especially preferable.
  • the content ratio of the [b] organic solvent in the [B] solvent may be 100% by mass.
  • organic solvent [b] examples include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents and the like.
  • the organic solvent [b] can be used alone or in combination of two or more.
  • the alcohol solvent examples include monoalcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and n-butyl alcohol, ethylene glycol, 1,2-propanediol, 1,2-butanediol, triethanolamine and diethylene glycol.
  • Polyhydric alcohols such as glycerin, polyhydric alcohol partial ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether, lactate esters such as ethyl lactate and butyl lactate, 2-hydrazinoethanol, 3-hydrazinopropanol And the like, and hydroxyketone hydrazones such as 1-hydroxy-2-propanone hydrazone and 1-hydroxy-2-butanone hydrazone.
  • polyhydric alcohols such as glycerin, polyhydric alcohol partial ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether, lactate esters such as ethyl lactate and butyl lactate, 2-hydrazinoethanol, 3-hydrazinopropanol And the like
  • hydroxyketone hydrazones such as 1-hydroxy-2-propanone hydrazone and 1-hydroxy-2-butanone hydrazone.
  • ketone solvents include chain ketones such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketones such as cyclohexanone.
  • ether solvents include chain ethers such as n-butyl ether and cyclic ethers such as tetrahydrofuran and 1,4-dioxane.
  • ester solvents include carbonates such as diethyl carbonate, acetic acid esters such as methyl acetate and ethyl acetate, lactones such as ⁇ -butyrolactone, and polyhydric alcohol partial ethers such as diethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate. Examples thereof include carboxylates.
  • nitrogen-containing solvent examples include chain nitrogen-containing compounds such as N,N-dimethylacetamide and cyclic nitrogen-containing compounds such as N-methylpyrrolidone.
  • the [b] organic solvent preferably contains an alcohol solvent.
  • the alcohol solvent monoalcohols, polyhydric alcohol partial ethers, lactic acid esters, hydrazide alcohols or hydroxyketone hydrazones are preferable.
  • the organic solvent [b] contains an alcohol solvent, the conductivity and embedding property of the cobalt-containing film formed from the coating film forming composition can be further improved.
  • the organic solvent contains an alcohol-based solvent, the cobalt atom in the coating film is reduced by the alcohol-based solvent in the heating step of the coating film to become zero-valent, and the conductivity of the cobalt-containing film is improved. It is thought that.
  • the lower limit of the content ratio of the alcohol solvent in the [b] organic solvent is preferably 1% by mass, more preferably 10% by mass, further preferably 50% by mass, 80% by weight is particularly preferred.
  • the content ratio of the alcohol solvent in the organic solvent [b] may be 100% by mass.
  • the upper limit of the water content in the [B] solvent is preferably 50% by mass, more preferably 40% by mass, and further preferably 30% by mass.
  • the lower limit of the water content is, for example, 0.01% by mass.
  • the lower limit of the content ratio of the [B] solvent in the coating film forming composition is preferably 30% by mass, more preferably 50% by mass, further preferably 60% by mass, particularly preferably 70% by mass, and 75% by mass. % Is even more particularly preferred.
  • the upper limit of the content is preferably 99% by mass, more preferably 95% by mass, further preferably 90% by mass, and particularly preferably 85% by mass.
  • the lower limit of the content of the [B] solvent is preferably 50 parts by mass, more preferably 100 parts by mass, further preferably 200 parts by mass, and particularly preferably 300 parts by mass with respect to 100 parts by mass of the [A] compound.
  • the upper limit of the content is preferably 10,000 parts by mass, more preferably 2,000 parts by mass, further preferably 1,000 parts by mass, and particularly preferably 500 parts by mass.
  • the storage stability of the coating film forming composition can be further improved.
  • composition for forming a coating film as an optional component, an organic compound other than [B] solvent (hereinafter, also referred to as “[C] other organic compound”), a metal-containing compound other than [A] compound (hereinafter, (Also referred to as "other metal-containing compound”) and the like.
  • organic compound other than [B] solvent hereinafter, also referred to as “[C] other organic compound”
  • metal-containing compound other than [A] compound hereinafter, (Also referred to as "other metal-containing compound”
  • other metal-containing compound hereinafter, (Also referred to as "other metal-containing compound”
  • [C] Other organic compounds include, for example, compounds having an alcoholic hydroxyl group, compounds having a phenolic hydroxyl group, nitrogen-containing compounds, oxalic acid and the like. [C] When the above compound is used as the other organic compound, the conductivity and embedding property of the cobalt-containing film formed from the coating film forming composition can be further improved.
  • Examples of the compound having an alcoholic hydroxyl group include a compound having a plurality of alcoholic hydroxyl groups, a hydroxy acid or a salt thereof, a sugar compound and the like.
  • Examples of the compound having a plurality of alcoholic hydroxyl groups include ascorbic acid or a salt thereof, erythorbic acid or a salt thereof, trimethylolpropane, diethanolamine, pentaerythritol, dipentaerythritol, adamantanediol, adamantanetriol, adamantanetetraol, 1,3 -Dimethyl adamantane-5,7-diol, polyethylene glycol, polyvinyl alcohol and the like can be mentioned.
  • hydroxy acid examples include glycolic acid, lactic acid, 3-hydroxypropionic acid, glyceric acid, tartronic acid, malic acid, tartaric acid, citric acid, 10-hydroxydecanoic acid, tropic acid and benzylic acid.
  • sugar compounds include erythritol, mesoerythritol, ribitol, xylitol, sorbitol, maltitol, glucose, fructose, lactose, arabinose, galactose, sucrose, maltose, trehalose, gluconic acid and glyceraldehyde.
  • Examples of the compound having a phenolic hydroxyl group include gallic acid or its salt or its ester, salicylic acid or its salt or its ester, tocopherol or its derivative, 2,6-di-t-butyl-4-methylphenol, t-butyl- Examples thereof include methoxyphenol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, 1,2,4-trihydroxybenzene, dihydroxynaphthalene, rosmarinic acid, tannic acid, caffeic acid, dihydrocaffeic acid and quercetin.
  • nitrogen-containing compound examples include formic acid hydrazide, acetic acid hydrazide, cyanoacetic acid hydrazide, trifluoroacetic acid hydrazide, propionic acid hydrazide, cyclohexanecarboxylic acid hydrazide, benzoic acid hydrazide, p-toluic acid hydrazide, salicylic acid hydrazide, 3-hydroxy-2-hydroxide.
  • Examples include hydrazones such as 9-fluorenone hydrazone, anthraquinone monohydrazone and salicylaldehyde hydrazone, and hydrazine derivatives such as methyl carbazate, ethyl carbazate, t-butyl carbazate and benzyl carbazate. ..
  • metal-containing compounds As other metal-containing compounds, compounds other than cobalt, such as compounds containing nickel, iron, ruthenium, copper, silver, gold, palladium, platinum, zinc, aluminum, tin, tungsten, zirconium, titanium, tantalum, molybdenum, etc. are listed.
  • the other metal-containing compound may be a metal salt or a complex having a metal and a ligand.
  • the lower limit of the content ratio of the [A] compound in the entire metal containing compound contained in the coating film forming composition is 50 mass. %, more preferably 70% by mass, further preferably 90% by mass, particularly preferably 99% by mass.
  • the content ratio of the [A] compound in the whole metal-containing compound contained in the coating film forming composition may be 100% by mass.
  • the coating film-forming composition is prepared by mixing the [A] compound, the [B] solvent and, if necessary, optional components in a predetermined ratio, and preferably using the obtained mixture with a filter having a pore size of 0.2 ⁇ m or less. It can be prepared by filtration.
  • the method for manufacturing the substrate includes a step of applying the composition directly or indirectly to the substrate (hereinafter, also referred to as “application step”).
  • the composition described above as the composition for forming a coating film hereinafter, also referred to as “composition (I)”.
  • a cobalt-containing film having excellent conductivity and embeddability can be formed by using the coating film forming composition described above.
  • the method for manufacturing the substrate may further include a step of heating the coating film formed by the coating step (hereinafter, also referred to as “heating step”) after the coating step.
  • the composition (I) is applied directly or indirectly to the substrate.
  • the coating film is directly or indirectly formed on the substrate.
  • the above-mentioned coating method is not particularly limited and can be carried out by an appropriate method such as spin coating, cast coating, roll coating and the like.
  • the case where the composition (I) is indirectly applied to the substrate includes, for example, the case where the surface-modified film of the substrate is formed on the substrate.
  • the surface modification film of the substrate is, for example, a film having a contact angle with water different from that of the coating film.
  • the substrate may be, for example, a metal substrate or a silicon wafer.
  • the “metal substrate” refers to a substrate containing metal atoms in at least a part of its surface layer.
  • the metal atom contained in the metal substrate is not particularly limited as long as it is an atom of a metal element. Silicon and boron are not included in the metal atom.
  • Examples of the metal atom include copper, iron, zinc, cobalt, aluminum, tin, tungsten, zirconium, titanium, tantalum, germanium, molybdenum, ruthenium, gold, silver, platinum, palladium, nickel and the like.
  • Examples of the metal substrate include a metal substrate and a metal-coated silicon wafer.
  • a silicon nitride film, an alumina film, a silicon dioxide film, a tantalum nitride film, a titanium nitride film, or the like may be formed on a part of the metal substrate.
  • the substrate may be a substrate on which no pattern is formed or a substrate on which a pattern is formed.
  • the line width of the space portion is 2,000 nm or less, 1,000 nm or less, 500 nm or less, and further a line and space pattern or trench pattern of 50 nm or less, or a diameter of 300 nm or less
  • the hole pattern include 150 nm or less, 100 nm or less, and further 50 nm or less.
  • the dimensions of the pattern formed on the substrate are, for example, height of 100 nm or more, 200 nm or more, further 300 nm or more, width of 50 nm or less, 40 nm or less, further 30 nm or less, aspect ratio (pattern height/pattern width)
  • a fine pattern of 3 or more, 5 or more, and further 10 or more can be used.
  • the coating film formed by applying the composition for forming a coating film on the substrate fills the concave portion of the pattern.
  • the substrate on which the pattern is formed is a substrate on which the pattern of the silicon dioxide film is formed on a part of the metal substrate
  • the coating film fills the concave portion of the pattern to form the conductive circuit. can do.
  • This step is an optional step of heating the coating film formed by the above coating step. It is considered that this step improves the conductivity of the coating film. It is considered that by heating the coating film, the cobalt atoms in the coating film are reduced to zero valence, and the conductivity of the cobalt-containing film is improved.
  • the atmosphere for heating the coating film may be a nitrogen atmosphere, a hydrogen atmosphere, an atmosphere, or the like. It is considered that when the coating film is heated in a hydrogen atmosphere, the reduction of cobalt atoms in the coating film is further promoted and the conductivity of the cobalt-containing film is further improved.
  • the lower limit of the heating temperature is preferably 200°C, more preferably 300°C, and even more preferably 400°C.
  • the upper limit of the temperature is preferably 700°C, more preferably 600°C, and even more preferably 550°C.
  • the lower limit of the heating time is preferably 10 seconds, more preferably 60 seconds, and even more preferably 180 seconds.
  • the upper limit of the above time is preferably 3,000 seconds, more preferably 1,200 seconds, and even more preferably 600 seconds.
  • the coating film Before heating the coating film, it may be preheated at a temperature of 60°C or higher and 150°C or lower.
  • the lower limit of the time for preheating is preferably 10 seconds, more preferably 30 seconds.
  • the upper limit of the time is preferably 300 seconds, more preferably 180 seconds.
  • the radiation used for this exposure is appropriately selected from visible rays, ultraviolet rays, far ultraviolet rays, electromagnetic waves such as X-rays and ⁇ rays, and particle beams such as electron beams, molecular beams and ion beams.
  • the lower limit of the average thickness of the formed cobalt-containing film is preferably 1 nm, more preferably 10 nm, further preferably 30 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 500 nm, even more preferably 300 nm.
  • the pattern forming method includes a step of directly or indirectly coating the composition (I) on a substrate and an organic resist film directly or indirectly on the resist underlayer film formed by the coating film forming composition coating step.
  • a step of applying a forming composition, a step of exposing the organic resist film formed by the organic resist film forming composition applying step to radiation, and a step of developing the exposed organic resist film Using the organic resist pattern formed by the developing step as a mask, a step of contacting chlorine gas with the resist underlayer film, and a step of removing the resist underlayer film in contact with chlorine gas with a removing liquid containing water or an organic solvent are provided. ..
  • the pattern forming method includes a step of applying the composition (I) described above to a substrate (hereinafter, also referred to as “application step (I-1)”), and a coating step (I -1) applying a composition for forming an organic resist film to the resist underlayer film formed (hereinafter, also referred to as “coating step (I-2)”) and the above coating step (I-2 )
  • a step of exposing the organic resist film formed by radiation to radiation hereeinafter, also referred to as “exposure step”
  • a step of developing the exposed organic resist film hereinafter, also referred to as “developing step”
  • a step of bringing chlorine gas into contact with the resist underlayer film hereinafter, also referred to as "chlorine gas contacting step”
  • chlorine gas contacting step a step of bringing chlorine gas into contact with the resist underlayer film
  • chlorine gas contacting step a removing chlorine gas with a removing solution containing water or an organic solvent
  • the pattern forming method includes a step of directly or indirectly forming an organic underlayer film on the substrate (hereinafter, also referred to as “organic underlayer film forming step (I)”) before the coating step (I-1). Further provisions can be made.
  • the pattern forming method optionally includes a step of forming a silicon-containing film on the resist underlayer film formed in the coating step (I-1) before the coating step (I-2). May be.
  • the composition (I) since the composition (I) is used, a good pattern can be formed.
  • Organic Underlayer Film Forming Step (I) In this step, an organic underlayer film is formed on the substrate.
  • the organic underlayer film include the same as the organic underlayer film formed by the inversion pattern forming method described later.
  • the composition (I) is applied directly or indirectly to the substrate.
  • a resist underlayer film is formed.
  • the case where the composition (I) is indirectly applied to the substrate include a case where the composition (I) is applied to the organic underlayer film formed in the above organic underlayer film forming step (I). In this case, the resist underlayer film is formed on the organic underlayer film.
  • This step is the same as the coating step in the above-described substrate manufacturing method.
  • Silicon-containing film forming step In this step, a silicon-containing film is formed on the resist underlayer film formed in the coating step (I-1).
  • the silicon-containing film is usually formed by applying a composition for forming a silicon-containing film to the resist underlayer film, and then curing the coating film by exposing and/or heating.
  • a composition for forming a silicon-containing film for example, "NFC SOG01”, “NFC SOG04”, “NFC SOG080”, etc. of JSR Corporation can be used.
  • Examples of the radiation used for the above-mentioned exposure include electromagnetic waves such as visible light rays, ultraviolet rays, far ultraviolet rays, X-rays and ⁇ rays, and particle beams such as electron beams, molecular beams and ion beams.
  • the lower limit of the temperature for heating the coating film is preferably 90°C, more preferably 150°C, and even more preferably 180°C.
  • As the upper limit of the temperature 550° C. is preferable, 450° C. is more preferable, and 300° C. is further preferable.
  • this step specifically, by coating the composition for forming an organic resist film so that the resulting organic resist film has a predetermined thickness, and then heating to evaporate the solvent in the coating film. Forming an organic resist film.
  • Examples of the organic resist film-forming composition include a positive or negative chemically amplified resist composition containing a radiation-sensitive acid generator, and a positive resist composition containing an alkali-soluble resin and a quinonediazide-based photosensitizer. And a negative resist composition containing an alkali-soluble resin and a crosslinking agent.
  • the composition for forming an organic resist film is generally provided for forming an organic resist film by filtering with a filter having a pore size of 0.2 ⁇ m or less. In this step, a commercially available organic resist composition can be used as it is.
  • the method of applying the composition for forming an organic resist film is not particularly limited, and examples thereof include a spin coating method.
  • the heating temperature is appropriately adjusted depending on the type of the organic resist film forming composition used and the like, but the lower limit of the temperature is preferably 30°C, more preferably 50°C.
  • the upper limit of the temperature is preferably 200°C, more preferably 150°C.
  • the lower limit of the heating time is preferably 10 seconds, more preferably 30 seconds.
  • the upper limit of the time is preferably 600 seconds, more preferably 300 seconds.
  • the radiation used for the exposure depending on the type of radiation-sensitive acid generator, quinonediazide-based photosensitizer and cross-linking agent used in the organic resist film forming composition, visible light, ultraviolet light, far ultraviolet light, X-ray, It is appropriately selected from electromagnetic waves such as ⁇ -rays, electron beams, molecular beams, and particle beams such as ion beams. Of these, far ultraviolet rays are preferable, and KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), F 2 excimer laser light (wavelength 157 nm), Kr 2 excimer laser light (wavelength 147 nm), ArKr excimer laser light.
  • extreme ultraviolet light Wavelength: 13.5 nm etc., EUV
  • KrF excimer laser light, ArF excimer laser light, EUV or extreme ultraviolet light is more preferable, and KrF excimer laser light, ArF excimer laser light, EUV or extreme ultraviolet light is further preferable.
  • heating can be performed to improve resolution, pattern profile, developability, etc.
  • the heating temperature is appropriately adjusted depending on the type of the organic resist film forming composition used and the like, but the lower limit of the temperature is preferably 50°C, more preferably 70°C.
  • the upper limit of the temperature is preferably 200°C, more preferably 150°C.
  • the lower limit of the heating time is preferably 10 seconds, more preferably 30 seconds.
  • the upper limit of the time is preferably 600 seconds, more preferably 300 seconds.
  • the exposed organic resist film is developed.
  • This development may be alkali development or organic solvent development.
  • As the developing solution in the case of alkali development, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyl Diethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5 Examples thereof include basic aqueous solutions of diazabicyclo[4.3.0]-5-nonene and the like.
  • a water-soluble organic solvent such as alcohols such as methanol and ethanol, a surfactant and the like
  • examples of the developing solution include various organic solvents exemplified as the solvent [B] of the above composition (I).
  • a predetermined resist pattern is formed by washing and drying.
  • organic solvent examples include those listed as the organic solvent [b].
  • the removing liquid (I) contains an acid, for example, a liquid containing an acid and water, a liquid obtained by mixing an acid, hydrogen peroxide and water, and the like can be mentioned.
  • the acid include sulfuric acid, hydrofluoric acid, hydrochloric acid, phosphoric acid and the like.
  • the acid-containing removal liquid (I) is, for example, a liquid obtained by mixing hydrofluoric acid and water, a liquid obtained by mixing sulfuric acid, hydrogen peroxide and water, hydrochloric acid, or peroxide. Examples include liquids obtained by mixing hydrogen and water.
  • the removal liquid (I) contains a base
  • examples thereof include a liquid containing a base and water, a liquid obtained by mixing a base, hydrogen peroxide and water, and the like, which is obtained by mixing a base, hydrogen peroxide and water. Liquids are preferred.
  • Examples of the base include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, Triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diazabicyclo[4.3] .0]-5-nonene and the like. Of these, ammonia is preferred.
  • the lower limit of the temperature in the removing step is preferably 20°C, more preferably 40°C, and even more preferably 50°C.
  • the upper limit of the temperature is preferably 300°C, more preferably 100°C.
  • the lower limit of the time in the removing step is preferably 5 seconds, more preferably 30 seconds.
  • the upper limit of the time is preferably 10 minutes, more preferably 180 seconds.
  • the inversion pattern forming method includes a step of directly or indirectly forming an organic underlayer film on a substrate (hereinafter, also referred to as “organic underlayer film forming step (II)”) and a resist pattern directly or indirectly on the organic underlayer film.
  • a step of forming hereinafter, also referred to as “resist pattern forming step (II)”
  • resist pattern forming step (II) a step of forming a reverse pattern forming film on the resist pattern
  • reverse pattern forming film forming step a step of forming a reverse pattern by removing the resist pattern
  • the composition hereinafter, also referred to as “composition (II)”
  • composition (II)) described above as the coating film forming composition is used in the inversion pattern forming film forming step.
  • the composition (II) since the composition (II) is used, a good inversion pattern can be formed.
  • the reversal pattern forming method includes a step of forming a resist intermediate film on the organic underlayer film formed by the organic underlayer film forming step (II) before the resist pattern forming step (hereinafter, referred to as "resist intermediate step", if necessary). (Also referred to as a film forming step)). May be further provided.
  • an organic underlayer film is formed on the substrate.
  • the substrate include the same substrates as those used in the coating step in the above-described method for manufacturing the substrate.
  • the organic underlayer film can be formed of an organic compound.
  • organic compound as a commercially available product, for example, "NFC HM8006" of JSR Corporation can be mentioned.
  • the organic underlayer film can be formed by applying a composition for forming an organic underlayer film by a spin coating method or the like to form a coating film, and then heating.
  • the lower limit of the average thickness of the organic underlayer film formed is preferably 10 nm, more preferably 50 nm, further preferably 100 nm.
  • the upper limit of the average thickness is preferably 1000 nm, more preferably 500 nm.
  • a resist intermediate film is formed on the organic underlayer film formed in the above organic underlayer film forming step (II).
  • the resist intermediate film commercially available products such as “NFC SOG01”, “NFC SOG04”, and “NFC SOG080” (above, JSR Corporation) can be mentioned. Further, polysiloxane, titanium oxide, aluminum oxide, tungsten oxide, or the like formed by a CVD method can be used.
  • the method for forming the resist intermediate film is not particularly limited, but for example, a coating method, a CVD method or the like can be used. Among these, the coating method is preferable. When the coating method is used, the resist intermediate film can be continuously formed after forming the organic underlayer film.
  • resist pattern forming step (II) In this step, a resist pattern is formed directly or indirectly on the organic underlayer film.
  • Examples of the case of indirectly forming a resist pattern on the organic underlayer film include a case of forming a resist pattern on the resist intermediate film formed by the resist intermediate film forming step.
  • Examples of methods for forming the resist pattern include known methods such as a method using a resist composition and a method using a nanoimprint lithography method.
  • a reverse pattern forming film is formed on the resist pattern.
  • the reverse pattern forming film is formed by applying the composition (II) onto the substrate on which the resist pattern is formed.
  • the composition (II) is embedded in the gap between the resist patterns.
  • examples of the method for applying the composition (II) onto the substrate on which the resist pattern is formed include known methods such as spin coating, cast coating, and roll coating.
  • the drying means is not particularly limited, for example, the organic solvent [b] in the composition (II) can be volatilized by firing.
  • the firing conditions are appropriately adjusted depending on the composition of the resin composition, but the firing temperature is usually 80 to 250°C, preferably 80 to 200°C.
  • the firing temperature is 80 to 180° C.
  • the flattening step described later, particularly the flattening process by the wet etch back method can be smoothly performed.
  • the heating time is usually 10 to 300 seconds, preferably 30 to 180 seconds.
  • the thickness of the reverse pattern forming film obtained after drying is not particularly limited, but is usually 10 to 1000 nm, preferably 20 to 500 nm.
  • a flattening process is performed to expose the upper surface of the resist pattern.
  • the resist pattern is removed by dry etching or dissolution removal to obtain a predetermined inversion pattern.
  • an etching method such as dry etch back or wet etch back, or a CMP method can be used.
  • the dry etch back method and the wet etch back method using a fluorine-based gas or the like are preferable at low cost.
  • the processing conditions in the flattening process are not particularly limited and can be adjusted as appropriate.
  • dry etching is preferable for removing the resist pattern, and specifically, oxygen-based gas etching, ozone etching, etc. are preferably used.
  • oxygen-based gas etching, ozone etching, etc. are preferably used.
  • Known devices such as an oxygen plasma ashing device and an ozone ashing device can be used for the dry etching.
  • the etching processing conditions are not particularly limited and can be adjusted appropriately.
  • the inversion pattern formed by the above-described inversion pattern forming method can be used as, for example, a mask when patterning the organic underlayer film.
  • the above-mentioned inversion pattern forming method can be suitably adopted as a pre-process of the organic underlayer film pattern forming method described later.
  • the organic underlayer film pattern forming method includes a step of etching the organic underlayer film using the inversion pattern formed by the above inversion pattern forming method as a mask (hereinafter, also referred to as “organic underlayer film pattern forming step”), After the chlorine gas is brought into contact with the inversion pattern, a step of removing the inversion pattern with a removing liquid containing water or an organic solvent (hereinafter, also referred to as “inversion pattern removing step”) is provided.
  • Organic underlayer film pattern forming step In this step, the organic underlayer film is etched by using the inversion pattern formed by the above inversion pattern forming method as a mask.
  • this etching method include dry etching and wet etching.
  • the dry etching can be performed using a known dry etching apparatus.
  • the source gas during dry etching depends on the elemental composition of the film to be etched, but is, for example, a fluorine-based gas such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 or SF 6 , Cl 2 or the like.
  • Chlorine-based gas such as BCl 3
  • oxygen-based gas such as O 2 and O 3 , H 2 , NH 3 , CO, CO 2 , CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C A reducing gas such as 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 or an inert gas such as He, N 2 or Ar is used. It is also possible to use a mixture of these gases.
  • a fluorine-based gas is used for dry etching of the resist intermediate film when forming the resist intermediate film
  • an oxygen-based gas is preferably used for dry etching of the organic lower layer film.
  • the removing solution used in this step is the same as the removing solution (I) in the removing step of the pattern forming method described above.
  • the cobalt metal layer (wiring layer) is formed.
  • a barrier metal film may be formed before applying the coating film forming composition.
  • CMP chemical polishing
  • Average film thickness The average thickness of the film was measured using an X-ray diffractometer (“SmartLab” manufactured by Rigaku Corporation).
  • B-1 Propylene glycol monoethyl ether
  • B-2 Ethyl lactate
  • B-3 n-Butyl alcohol
  • B-4 Propylene glycol monomethyl ether acetate
  • B-5 Ethylene glycol
  • B-6 1,2-butanediol
  • B- 7 diethylene glycol
  • B-8 triethanolamine
  • B-9 water
  • B-10 2-hydrazinoethanol (compound represented by the following formula (B-10))
  • B-11 1-hydroxy-2-propanone hydrazone (compound represented by the following formula (B-11))
  • C-1 Citric acid (compound represented by the following formula (C-1))
  • C-2 Ascorbic acid (compound represented by the following formula (C-2))
  • C-3 gallic acid (compound represented by the following formula (C-3))
  • C-4 Acetic acid hydrazide (compound represented by the following formula (C-4))
  • C-5 Methylcarbazate (a compound represented by the following formula (C-5))
  • C-6 Cyanoacetic acid hydrazide (compound represented by the following formula (C-6))
  • C-7 Salicylic acid hydrazide (compound represented by the following formula (C-7))
  • Example 1 18 parts by mass of (A-1) as a compound [A] and 2 parts by mass of (A-2) are mixed with 80 parts by mass of (B-1) as a solvent [B], and the resulting solution has a pore size of A 0.2 ⁇ m nylon syringe filter was used for filtration to prepare a coating film forming composition (J-1).
  • Examples 2 to 24 and Comparative Examples 1 to 2 The coating film forming compositions (J-2) to (J-24) and (j-) were operated in the same manner as in Example 1 except that the components and contents shown in Table 1 below were used. 1) to (j-2) were prepared. "-" in Table 1 indicates that the corresponding component was not used.
  • the storage stability of the coating film-forming composition was evaluated by the difference in coating property over time.
  • the obtained coating film was heated at 500° C. for 300 seconds in a nitrogen atmosphere using an RTA furnace (“QHC-P610CP” manufactured by ULVAC, Inc.). A cobalt-containing film was formed.
  • composition for coating film formation immediately after the above preparation was applied onto a silicon substrate by a spin coating method using a spin coater (“MS-B200” manufactured by Mikasa Co., Ltd.).
  • a spin coater (“MS-B200” manufactured by Mikasa Co., Ltd.).
  • RTA furnace (“QHC-P610CP” manufactured by ULVAC, Inc.) in a nitrogen atmosphere, the sample was heated at 500° C. for 300 seconds and then cooled at 23° C. for 60 seconds to give an average thickness of 200 nm.
  • a cobalt-containing film was formed to obtain a silicon substrate with a cobalt-containing film.
  • the resistivity of the cobalt-containing film in the silicon substrate with the cobalt-containing film was measured using a resistivity measuring device (“ ⁇ -5” manufactured by Enpies Co., Ltd.) by the direct current 4-probe method.
  • the electrical conductivity is “S” (extremely good) when the specific resistance is 25.0 ⁇ cm or less and “A” (good) when the specific resistance is more than 25.0 ⁇ cm and 50.0 ⁇ cm or less, When it was larger than 50.0 ⁇ cm, it was evaluated as “B” (poor).
  • a spin coater (“MS-B200” manufactured by Mikasa Co., Ltd.) was applied to the prepared coating film-forming composition on a silicon substrate on which a line-and-space pattern having a depth of 400 nm and a width of 45 nm was formed. It was used and was coated by the spin coating method.
  • an RTA furnace (“QHC-P610CP” manufactured by ULVAC, Inc.) in a nitrogen atmosphere, after heating at 500°C for 300 seconds and then cooling at 23°C for 60 seconds, the line pattern portion A cobalt-containing film having an average thickness of 50 nm was formed to obtain a silicon substrate with a cobalt-containing film.
  • the cross-sectional shape of the silicon substrate with the cobalt-containing film was observed with a scanning electron microscope (“SU8220” manufactured by Hitachi High-Technologies Corporation) to evaluate embeddability.
  • the embeddability was evaluated as "A” (good) when the cobalt-containing film was buried to the bottom of the space pattern and "B” (bad) when the cobalt-containing film was not buried to the bottom of the pattern. ..
  • the coating film forming compositions of the examples are excellent in storage stability and also in conductivity and embedding property of the cobalt-containing film to be formed.
  • the coating film forming composition of the present invention has excellent storage stability. According to the method for producing a substrate of the present invention, by using the coating film forming composition, a cobalt-containing film having excellent conductivity and embedding property can be formed. Therefore, these can be suitably used in forming a cobalt-containing film in the fields of semiconductors, battery materials and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Paints Or Removers (AREA)

Abstract

The purpose of the present invention is to provide a coating film forming composition having excellent storage stability and a method for producing a substrate. The present invention provides a coating film-forming composition including a cobalt-containing compound having no cobalt-carbon bond and a solvent.

Description

塗工膜形成用組成物及び基板の製造方法Coating film forming composition and substrate manufacturing method
 本発明は、塗工膜形成用組成物及び基板の製造方法に関する。 The present invention relates to a coating film forming composition and a method for producing a substrate.
 半導体デバイスの製造においては、有機金属前駆体を用いて化学蒸着(CVD)、原子層堆積(ALD)により、基板上にコバルト含有膜を形成する方法が用いられている(国際公開第2011/017068号参照)。 In the production of semiconductor devices, a method of forming a cobalt-containing film on a substrate by chemical vapor deposition (CVD) and atomic layer deposition (ALD) using an organometallic precursor is used (WO 2011/017068). No.).
国際公開第2011/017068号International Publication No. 2011/017068
 上記従来のコバルト含有膜の形成方法で用いる有機金属前駆体は、保存安定性が不十分である。また、CVDやALDにより、膜厚が数十nmのコバルト含有膜を形成するためには長時間を要し、生産性が低い。 The organometallic precursor used in the above conventional method for forming a cobalt-containing film has insufficient storage stability. Further, it takes a long time to form a cobalt-containing film having a film thickness of several tens of nm by CVD or ALD, and the productivity is low.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、保存安定性に優れる塗工膜形成用組成物及び基板の製造方法を提供することにある。 The present invention has been made based on the above circumstances, and an object thereof is to provide a coating film forming composition having excellent storage stability and a method for producing a substrate.
 上記課題を解決するためになされた発明は、コバルト-炭素結合を有さないコバルト含有化合物(以下、「[A]化合物」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有する塗工膜形成用組成物である。 The invention made to solve the above problems is a cobalt-containing compound having no cobalt-carbon bond (hereinafter, also referred to as "[A] compound") and a solvent (hereinafter, also referred to as "[B] solvent"). A coating film-forming composition containing and.
 上記課題を解決するためになされた別の発明は、基板に直接又は間接に組成物を塗工する工程を備え、上記組成物が、コバルト-炭素結合を有さないコバルト含有化合物と、溶媒とを含有する基板の製造方法である。 Another invention made to solve the above problems comprises a step of directly or indirectly applying a composition to a substrate, wherein the composition comprises a cobalt-containing compound having no cobalt-carbon bond, a solvent, and a solvent. Is a method of manufacturing a substrate containing.
 本発明の塗工膜形成用組成物は、保存安定性に優れている。本発明の基板の製造方法によれば、当該塗工膜形成用組成物を使用することにより、導電性及び埋め込み性に優れるコバルト含有膜を形成することができる。従って、これらは、半導体分野、電池材料分野、帯電防止分野、タッチパネルセンサー分野等におけるコバルト含有膜の形成において好適に用いることができる。 The coating film forming composition of the present invention has excellent storage stability. According to the method for producing a substrate of the present invention, by using the coating film forming composition, a cobalt-containing film having excellent conductivity and embedding property can be formed. Therefore, these can be suitably used in forming a cobalt-containing film in the fields of semiconductors, battery materials, antistatic fields, touch panel sensors and the like.
<塗工膜形成用組成物>
 当該塗工膜形成用組成物は、[A]化合物と、[B]溶媒とを含有する。当該塗工膜形成用組成物は、本発明の効果を損なわない範囲において、任意成分を含有していてもよい。
<Coating film forming composition>
The coating film forming composition contains the compound [A] and the solvent [B]. The coating film forming composition may contain optional components as long as the effects of the present invention are not impaired.
 当該塗工膜形成用組成物は後述する当該パターン形成方法において用いられる。したがって、当該塗工膜形成用組成物はパターン形成用の組成物として好適に用いることができる。 The coating film forming composition is used in the pattern forming method described later. Therefore, the coating film forming composition can be suitably used as a pattern forming composition.
 当該塗工膜形成用組成物は後述する当該反転パターン形成方法において用いられる。したがって、当該塗工膜形成用組成物は反転パターン形成用の組成物として好適に用いることができる。 The coating film forming composition is used in the inversion pattern forming method described later. Therefore, the coating film forming composition can be preferably used as a composition for forming a reverse pattern.
 以下、当該塗工膜形成用組成物が含有する各成分について説明する。 Hereinafter, each component contained in the coating film forming composition will be described.
[[A]化合物]
 [A]化合物は、コバルト-炭素結合を有さないコバルト含有化合物である。当該塗工膜形成用組成物は、2種類以上の[A]化合物を含有していてもよい。「コバルト含有化合物」とは、コバルト原子を含む化合物をいう。「コバルト-炭素結合」とは、例えばコバルトカルボニル錯体、コバルトシアノ錯体、コバルトセン錯体、コバルト-アルキル錯体、コバルト-アシル錯体等が有するコバルト原子-炭素原子間の共有結合又は配位結合をいう。当該塗工膜形成用組成物は、[A]化合物としてコバルト-炭素結合を有さない化合物を用いることにより、保存安定性に優れるものとなる。
[[A] compound]
The compound [A] is a cobalt-containing compound having no cobalt-carbon bond. The coating film forming composition may contain two or more kinds of [A] compounds. "Cobalt-containing compound" refers to a compound containing a cobalt atom. The “cobalt-carbon bond” refers to a covalent bond or a coordinate bond between a cobalt atom and a carbon atom which a cobalt carbonyl complex, a cobalt cyano complex, a cobalt ene complex, a cobalt-alkyl complex, a cobalt-acyl complex or the like has. The coating film forming composition has excellent storage stability by using a compound having no cobalt-carbon bond as the [A] compound.
 [A]化合物は、1個又は複数個のコバルト原子を有する。また、[A]化合物におけるコバルト原子の価数としては、例えば0価、1価、2価、3価等が挙げられる。これらの中で、保存安定性をより向上させる観点から、2価又は3価が好ましい。 The compound [A] has one or more cobalt atoms. In addition, examples of the valence of the cobalt atom in the compound [A] include 0 valence, 1 valence, 2 valence, and 3 valence. Of these, divalent or trivalent is preferable from the viewpoint of further improving storage stability.
 [A]化合物としては、例えばコバルト塩、コバルトと配位子とを有する錯体、これらの組み合わせ等が挙げられる。 Examples of the [A] compound include a cobalt salt, a complex having cobalt and a ligand, a combination thereof, and the like.
 コバルト塩としては、例えば硝酸塩、硫酸塩、リン酸塩、カルボン酸塩、過塩素酸塩、炭酸塩、ホウ酸塩等のオキソ酸塩、チオシアン酸塩、スルファミン酸塩、フッ化物、塩化物、臭化物、ヨウ化物等のハロゲン化物、水酸化物などが挙げられる。カルボン酸塩としては、例えば酢酸塩、ステアリン酸塩、ナフテン酸塩、クエン酸塩、シュウ酸塩、コハク酸塩等が挙げられる。これらの中で、保存安定性をより向上させる観点から、オキソ酸塩が好ましく、硝酸塩、硫酸塩又はカルボン酸塩がより好ましい。 Examples of the cobalt salt include nitrates, sulfates, phosphates, carboxylates, perchlorates, carbonates, oxoacid salts such as borate, thiocyanates, sulfamate, fluorides, chlorides, Examples thereof include halides such as bromide and iodide, and hydroxides. Examples of the carboxylate include acetate, stearate, naphthenate, citrate, oxalate, succinate and the like. Among these, oxo acid salts are preferable, and nitrates, sulfates or carboxylates are more preferable, from the viewpoint of further improving storage stability.
 錯体を構成する配位子としては、例えば単座配位子、多座配位子等が挙げられる。 Examples of the ligand that constitutes the complex include a monodentate ligand and a polydentate ligand.
 単座配位子としては、例えばヒドロキソ配位子、アミド配位子、ハロゲン配位子、アルコキシ配位子、アシロキシ配位子、ホスフィン配位子、アミン配位子、アンモニア配位子等が挙げられる。 Examples of the monodentate ligand include a hydroxo ligand, an amide ligand, a halogen ligand, an alkoxy ligand, an acyloxy ligand, a phosphine ligand, an amine ligand, and an ammonia ligand. To be
 アミド配位子としては、例えば無置換アミド配位子(NH)、メチルアミド配位子(NHCH)、ジメチルアミド配位子(N(CH)、ジエチルアミド配位子(N(C)、ジプロピルアミド配位子(N(C)等が挙げられる。 Examples of the amide ligand include an unsubstituted amide ligand (NH 2 ), a methylamide ligand (NHCH 3 ), a dimethylamide ligand (N(CH 3 ) 2 ), and a diethylamide ligand (N(C 2 H 5) 2), dipropyl amido ligand (N (C 3 H 7) 2) , and the like.
 ハロゲン配位子としては、例えばフッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子等が挙げられる。 Examples of the halogen ligand include a fluorine ligand, a chlorine ligand, a bromine ligand, an iodine ligand and the like.
 アルコキシ配位子としては、例えばメトキシ配位子、エトキシ配位子、プロポキシ配位子、ブトキシ配位子等が挙げられる。 Examples of the alkoxy ligand include methoxy ligand, ethoxy ligand, propoxy ligand, butoxy ligand and the like.
 アシロキシ配位子としては、例えばアセトキシ配位子、エチリルオキシ配位子、ブチリルオキシ配位子、t-ブチリルオキシ配位子、t-アミリルオキシ配位子、n-ヘキサンカルボニロキシ配位子、n-オクタンカルボニロキシ配位子等が挙げられる。 Examples of the acyloxy ligand include acetoxy ligand, ethylyloxy ligand, butyryloxy ligand, t-butyryloxy ligand, t-amylyloxy ligand, n-hexanecarbonyloxy ligand, and n-octane. Carbonyloxy ligands and the like can be mentioned.
 アミン配位子としては、例えばメチルアミン配位子、ジメチルアミン配位子、ピペリジン配位子、モルホリン配位子、ピリジン配位子等が挙げられる。 Examples of amine ligands include methylamine ligand, dimethylamine ligand, piperidine ligand, morpholine ligand, pyridine ligand and the like.
 ホスフィン配位子としては、例えばトリメチルホスフィン配位子、トリエチルホスフィン配位子、トリブチルホスフィン配位子、トリフェニルホスフィン配位子等が挙げられる。 Examples of the phosphine ligand include trimethylphosphine ligand, triethylphosphine ligand, tributylphosphine ligand, triphenylphosphine ligand and the like.
 多座配位子としては、例えば酸素2座配位子、窒素2座配位子、窒素3座配位子、窒素4座配位子、窒素2座酸素2座配位子、窒素2座酸素4座配位子、リン2座配位子等が挙げられる。 Examples of the polydentate ligand include an oxygen bidentate ligand, a nitrogen bidentate ligand, a nitrogen tridentate ligand, a nitrogen tetradentate ligand, a nitrogen bidentate oxygen bidentate ligand, and a nitrogen bidentate. An oxygen tetradentate ligand, a phosphorus bidentate ligand, etc. are mentioned.
 酸素2座配位子としては、例えばジカルボン酸由来の配位子、ヒドロキシ酸エステル由来の配位子、β-ジケトン由来の配位子、β-ケトエステル由来の配位子、β-ジカルボン酸エステル由来の配位子、カテコール又はその置換体由来の配位子等が挙げられる。 Examples of the oxygen bidentate ligand include a dicarboxylic acid-derived ligand, a hydroxy acid ester-derived ligand, a β-diketone-derived ligand, a β-ketoester-derived ligand, and a β-dicarboxylic acid ester. Examples thereof include a ligand derived from catechol and a ligand derived from catechol or a substitution product thereof.
 ジカルボン酸としては、例えばシュウ酸、マロン酸、コハク酸等が挙げられる。 Examples of the dicarboxylic acid include oxalic acid, malonic acid, succinic acid and the like.
 ヒドロキシ酸エステルとしては例えばグリコール酸エステル、乳酸エステル、2-ヒドロキシシクロヘキサン-1-カルボン酸エステル、サリチル酸エステル等が挙げられる。 Examples of the hydroxy acid ester include glycolic acid ester, lactic acid ester, 2-hydroxycyclohexane-1-carboxylic acid ester, salicylic acid ester and the like.
 β-ジケトンとしては、例えば2,4-ペンタンジオン、3-メチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン等が挙げられる。 Examples of β-diketones include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione and the like.
 β-ケトエステルとしては、例えばアセト酢酸エステル、α-アルキル置換アセト酢酸エステル、β-ケトペンタン酸エステル、ベンゾイル酢酸エステル、1,3-アセトンジカルボン酸エステル等が挙げられる。 Examples of β-ketoesters include acetoacetic acid ester, α-alkyl-substituted acetoacetic acid ester, β-ketopentanoic acid ester, benzoylacetic acid ester, and 1,3-acetonedicarboxylic acid ester.
 β-ジカルボン酸エステルとしては、例えばマロン酸ジエステル、α-アルキル置換マロン酸ジエステル、α-シクロアルキル置換マロン酸ジエステル、α-アリール置換マロン酸ジエステル等が挙げられる。 Examples of the β-dicarboxylic acid ester include malonic acid diester, α-alkyl-substituted malonic acid diester, α-cycloalkyl-substituted malonic acid diester, α-aryl-substituted malonic acid diester and the like.
 窒素2座配位子としては、例えば2,2’-ビピリジル又はその置換体由来の配位子、1,8-ナフチリジン又はその置換体由来の配位子、2-(1H-ピラゾール-1-イル)ピリジン又はその置換体由来の配位子、1,10-フェナントロリン又はその置換体由来の配位子、エチレンジアミン、プロパンジアミン若しくはブタンジアミン又はそれらの置換体由来の配位子等が挙げられる。 As the nitrogen bidentate ligand, for example, a ligand derived from 2,2′-bipyridyl or a substituted product thereof, a ligand derived from 1,8-naphthyridine or a substituted product thereof, 2-(1H-pyrazole-1- Il) pyridine or a ligand derived from a substituted product thereof, 1,10-phenanthroline or a ligand derived from a substituted product thereof, ethylenediamine, propanediamine or butanediamine or a ligand derived from a substituted product thereof.
 窒素3座配位子としては、例えば2,6-ジ(1H-ピラゾール-1-イル)ピリジン又はその置換体由来の配位子、α,α’,α”-トリピリジル又はその置換体由来の配位子、ジエチレントリアミン又はその置換体由来の配位子、1,4,7-トリアザシクロノナン又はその置換体由来の配位子等が挙げられる。 The tridentate nitrogen ligand includes, for example, a ligand derived from 2,6-di(1H-pyrazol-1-yl)pyridine or a substituted product thereof, and a ligand derived from α,α′,α″-tripyridyl or a substituted product thereof. Examples thereof include a ligand, a ligand derived from diethylenetriamine or a substituted product thereof, and a ligand derived from 1,4,7-triazacyclononane or a substituted product thereof.
 窒素4座配位子としては、例えばフタロシアニン又はその置換体由来の配位子、ナフタロシアニン又はその置換体由来の配位子、ポルフィリン又はその置換体由来の配位子、ポルフィセン又はその置換体由来の配位子、トリエチレンテトラミン又はその置換体由来の配位子、1,4,7,10-テトラアザシクロドデカン又はその置換体由来の配位子、1,4,8,11-テトラアザシクロテトラデカン又はその置換体由来の配位子、トリス(2-アミノエチル)アミン又はその置換体由来の配位子等が挙げられる。 As the nitrogen tetradentate ligand, for example, a ligand derived from phthalocyanine or a substituted product thereof, a ligand derived from naphthalocyanine or a substituted product thereof, a ligand derived from porphyrin or a substituted product thereof, a porphycene or a substituted product thereof , A ligand derived from triethylenetetramine or a substituted derivative thereof, a ligand derived from 1,4,7,10-tetraazacyclododecane or a substituted derivative thereof, 1,4,8,11-tetraaza Examples thereof include a ligand derived from cyclotetradecane or a substituted product thereof, a ligand derived from tris(2-aminoethyl)amine or a substituted product thereof, and the like.
 窒素2座酸素2座配位子としては、例えばN,N’-ビス(サリチリデン)エチレンジアミン又はその置換体由来の配位子、N、N’-ビス(3-ヒドロキシ-2-ブテニリデン)エチレンジアミン又はその置換体由来の配位子等が挙げられる。 As the nitrogen bidentate oxygen bidentate ligand, for example, a ligand derived from N,N′-bis(salicylidene)ethylenediamine or a substitution product thereof, N,N′-bis(3-hydroxy-2-butenylidene)ethylenediamine or Examples include ligands derived from the substitution products.
 窒素2座酸素4座配位子としては、例えばエチレンジアミン四酢酸由来の配位子等が挙げられる。 The nitrogen bidentate oxygen tetradentate ligand includes, for example, a ligand derived from ethylenediaminetetraacetic acid.
 リン2座配位子としては、例えば1,1-ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン等のジホスフィン配位子などが挙げられる。 Examples of the phosphorus bidentate ligand include 1,1-bis(diphenylphosphino)methane, 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane, and 2,2′. Examples thereof include diphosphine ligands such as -bis(diphenylphosphino)-1,1'-binaphthyl and 1,1'-bis(diphenylphosphino)ferrocene.
 [A]化合物の含有割合の下限としては、当該塗工膜形成用組成物における[B]溶媒以外の全成分に対して、30質量%が好ましく、50質量%がより好ましく、60質量%がさらに好ましい。上記含有割合は、100質量%であってもよい。 The lower limit of the content ratio of the [A] compound is preferably 30% by mass, more preferably 50% by mass, and 60% by mass with respect to all components other than the solvent [B] in the coating film forming composition. More preferable. The content ratio may be 100% by mass.
 当該塗工膜形成用組成物における[A]化合物の含有割合の下限としては、1質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましく、15質量%が特に好ましい。上記含有割合の上限としては、70質量%が好ましく、50質量%がより好ましく、30質量%がさらに好ましく、25質量%が特に好ましい。 The lower limit of the content ratio of the [A] compound in the coating film forming composition is preferably 1% by mass, more preferably 5% by mass, further preferably 10% by mass, and particularly preferably 15% by mass. The upper limit of the content ratio is preferably 70% by mass, more preferably 50% by mass, further preferably 30% by mass, and particularly preferably 25% by mass.
[[B]溶媒]
 [B]溶媒は、[A]化合物及び必要に応じて含有される任意成分を溶解又は分散できるものであれば特に限定されず用いることができる。[B]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。
[[B] solvent]
The solvent [B] can be used without particular limitation as long as it can dissolve or disperse the compound [A] and optional components contained as necessary. As the solvent [B], one type can be used alone, or two or more types can be used in combination.
 [B]溶媒としては、例えば有機溶媒(以下、「[b]有機溶媒」ともいう)、水等が挙げられる。「有機溶媒」とは、25℃で液体である有機化合物をいう。[B]溶媒が[b]有機溶媒を含む場合、[B]溶媒における[b]有機溶媒の含有割合の下限としては、20質量%が好ましく、50質量%がより好ましく、70質量%がさらに好ましく、90質量%が特に好ましい。[B]溶媒における[b]有機溶媒の含有割合は100質量%であってもよい。 Examples of the [B] solvent include organic solvents (hereinafter, also referred to as “[b] organic solvent”), water and the like. "Organic solvent" refers to an organic compound that is liquid at 25°C. When the [B] solvent contains the [b] organic solvent, the lower limit of the content ratio of the [b] organic solvent in the [B] solvent is preferably 20% by mass, more preferably 50% by mass, and further preferably 70% by mass. 90 mass% is especially preferable. The content ratio of the [b] organic solvent in the [B] solvent may be 100% by mass.
 [b]有機溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、含窒素系溶媒等が挙げられる。[b]有機溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。 Examples of the organic solvent [b] include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents and the like. The organic solvent [b] can be used alone or in combination of two or more.
 アルコール系溶媒としては、例えばメチルアルコール、エチルアルコール、n-プロピルアルコール、n-ブチルアルコール等のモノアルコール類、エチレングリコール、1,2-プロパンジオール、1,2-ブタンジオール、トリエタノールアミン、ジエチレングリコール、グリセリン等の多価アルコール類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の多価アルコール部分エーテル類、乳酸エチル、乳酸ブチル等の乳酸エステル類、2-ヒドラジノエタノール、3-ヒドラジノプロパノール等のヒドラジノアルコール類、1-ヒドロキシ-2-プロパノンヒドラゾン、1-ヒドロキシ-2-ブタノンヒドラゾン等のヒドロキシケトンヒドラゾン類などが挙げられる。 Examples of the alcohol solvent include monoalcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and n-butyl alcohol, ethylene glycol, 1,2-propanediol, 1,2-butanediol, triethanolamine and diethylene glycol. , Polyhydric alcohols such as glycerin, polyhydric alcohol partial ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether, lactate esters such as ethyl lactate and butyl lactate, 2-hydrazinoethanol, 3-hydrazinopropanol And the like, and hydroxyketone hydrazones such as 1-hydroxy-2-propanone hydrazone and 1-hydroxy-2-butanone hydrazone.
 ケトン系溶媒としては、例えばメチルエチルケトン、メチルイソブチルケトン等の鎖状ケトン類、シクロヘキサノン等の環状ケトン類などが挙げられる。 Examples of ketone solvents include chain ketones such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketones such as cyclohexanone.
 エーテル系溶媒としては、例えばn-ブチルエーテル等の鎖状エーテル類、テトラヒドロフラン、1,4-ジオキサン等の環状エーテル類などが挙げられる。 Examples of ether solvents include chain ethers such as n-butyl ether and cyclic ethers such as tetrahydrofuran and 1,4-dioxane.
 エステル系溶媒としては、例えばジエチルカーボネート等のカーボネート類、酢酸メチル、酢酸エチル等の酢酸エステル類、γ-ブチロラクトン等のラクトン類、酢酸ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート類などが挙げられる。 Examples of ester solvents include carbonates such as diethyl carbonate, acetic acid esters such as methyl acetate and ethyl acetate, lactones such as γ-butyrolactone, and polyhydric alcohol partial ethers such as diethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate. Examples thereof include carboxylates.
 含窒素系溶媒としては、例えばN,N-ジメチルアセトアミド等の鎖状含窒素化合物類、N-メチルピロリドン等の環状含窒素化合物類などが挙げられる。 Examples of the nitrogen-containing solvent include chain nitrogen-containing compounds such as N,N-dimethylacetamide and cyclic nitrogen-containing compounds such as N-methylpyrrolidone.
 [b]有機溶媒は、アルコール系溶媒を含むことが好ましい。アルコール系溶媒としては、モノアルコール類、多価アルコール部分エーテル類、乳酸エステル類、ヒドラジドアルコール類又はヒドロキシケトンヒドラゾン類が好ましい。[b]有機溶媒がアルコール系溶媒を含むことで、当該塗工膜形成用組成物から形成されるコバルト含有膜の導電性及び埋め込み性をより向上させることができる。[b]有機溶媒がアルコール系溶媒を含むことで、塗工膜の加熱工程で、塗工膜中のコバルト原子はアルコール系溶媒により還元されて、0価となり、コバルト含有膜の導電性が向上すると考えられる。[b]有機溶媒がアルコール系溶媒を含む場合、[b]有機溶媒におけるアルコール系溶媒の含有割合の下限としては、1質量%が好ましく、10質量%がより好ましく、50質量%がさらに好ましく、80質量%が特に好ましい。[b]有機溶媒におけるアルコール系溶媒の含有割合は、100質量%であってもよい。 The [b] organic solvent preferably contains an alcohol solvent. As the alcohol solvent, monoalcohols, polyhydric alcohol partial ethers, lactic acid esters, hydrazide alcohols or hydroxyketone hydrazones are preferable. When the organic solvent [b] contains an alcohol solvent, the conductivity and embedding property of the cobalt-containing film formed from the coating film forming composition can be further improved. [B] When the organic solvent contains an alcohol-based solvent, the cobalt atom in the coating film is reduced by the alcohol-based solvent in the heating step of the coating film to become zero-valent, and the conductivity of the cobalt-containing film is improved. It is thought that. When the [b] organic solvent contains an alcohol solvent, the lower limit of the content ratio of the alcohol solvent in the [b] organic solvent is preferably 1% by mass, more preferably 10% by mass, further preferably 50% by mass, 80% by weight is particularly preferred. The content ratio of the alcohol solvent in the organic solvent [b] may be 100% by mass.
 [B]溶媒が水を含む場合、[B]溶媒における水の含有割合の上限としては、50質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましい。上記水の含有割合の下限としては、例えば0.01質量%である。 When the [B] solvent contains water, the upper limit of the water content in the [B] solvent is preferably 50% by mass, more preferably 40% by mass, and further preferably 30% by mass. The lower limit of the water content is, for example, 0.01% by mass.
 当該塗工膜形成用組成物における[B]溶媒の含有割合の下限としては、30質量%が好ましく、50質量%がより好ましく、60質量%がさらに好ましく、70質量%が特に好ましく、75質量%がさらに特に好ましい。上記含有割合の上限としては、99質量%が好ましく、95質量%がより好ましく、90質量%がさらに好ましく、85質量%が特に好ましい。 The lower limit of the content ratio of the [B] solvent in the coating film forming composition is preferably 30% by mass, more preferably 50% by mass, further preferably 60% by mass, particularly preferably 70% by mass, and 75% by mass. % Is even more particularly preferred. The upper limit of the content is preferably 99% by mass, more preferably 95% by mass, further preferably 90% by mass, and particularly preferably 85% by mass.
 [B]溶媒の含有量の下限としては、[A]化合物100質量部に対して、50質量部が好ましく、100質量部がより好ましく、200質量部がさらに好ましく、300質量部が特に好ましい。上記含有量の上限としては、10,000質量部が好ましく、2,000質量部がより好ましく、1,000質量部がさらに好ましく、500質量部が特に好ましい。 The lower limit of the content of the [B] solvent is preferably 50 parts by mass, more preferably 100 parts by mass, further preferably 200 parts by mass, and particularly preferably 300 parts by mass with respect to 100 parts by mass of the [A] compound. The upper limit of the content is preferably 10,000 parts by mass, more preferably 2,000 parts by mass, further preferably 1,000 parts by mass, and particularly preferably 500 parts by mass.
 [B]溶媒の含有割合又は含有量を上記範囲とすることで、当該塗工膜形成用組成物の保存安定性をより向上させることができる。 By setting the content ratio or content of the solvent [B] within the above range, the storage stability of the coating film forming composition can be further improved.
[任意成分]
 当該塗工膜形成用組成物は、任意成分として、[B]溶媒以外の有機化合物(以下、「[C]他の有機化合物」ともいう)、[A]化合物以外の金属含有化合物(以下、「他の金属含有化合物」ともいう)等を含有していてもよい。これらの任意成分は、1種単独で又は2種以上を組み合わせて用いることができる。
[Arbitrary ingredients]
The composition for forming a coating film, as an optional component, an organic compound other than [B] solvent (hereinafter, also referred to as “[C] other organic compound”), a metal-containing compound other than [A] compound (hereinafter, (Also referred to as "other metal-containing compound") and the like. These optional components may be used alone or in combination of two or more.
([C]他の有機化合物)
 [C]他の有機化合物としては、例えばアルコール性水酸基を有する化合物、フェノール性水酸基を有する化合物、窒素含有化合物、シュウ酸等が挙げられる。[C]他の有機化合物として、上記化合物を用いると、当該塗工膜形成用組成物から形成されるコバルト含有膜の導電性及び埋め込み性をより向上させることができる。
([C] Other organic compound)
[C] Other organic compounds include, for example, compounds having an alcoholic hydroxyl group, compounds having a phenolic hydroxyl group, nitrogen-containing compounds, oxalic acid and the like. [C] When the above compound is used as the other organic compound, the conductivity and embedding property of the cobalt-containing film formed from the coating film forming composition can be further improved.
 アルコール性水酸基を有する化合物としては、例えば複数のアルコール性水酸基を有する化合物、ヒドロキシ酸又はその塩、糖化合物等が挙げられる。 Examples of the compound having an alcoholic hydroxyl group include a compound having a plurality of alcoholic hydroxyl groups, a hydroxy acid or a salt thereof, a sugar compound and the like.
 複数のアルコール性水酸基を有する化合物としては、例えばアスコルビン酸又はその塩、エリソルビン酸又はその塩、トリメチロールプロパン、ジエタノールアミン、ペンタエリスリトール、ジペンタエリスリトール、アダマンタンジオール、アダマンタントリオール、アダマンタンテトラオール、1,3-ジメチルアダマンタン-5,7-ジオール、ポリエチレングリコール、ポリビニルアルコール等が挙げられる。 Examples of the compound having a plurality of alcoholic hydroxyl groups include ascorbic acid or a salt thereof, erythorbic acid or a salt thereof, trimethylolpropane, diethanolamine, pentaerythritol, dipentaerythritol, adamantanediol, adamantanetriol, adamantanetetraol, 1,3 -Dimethyl adamantane-5,7-diol, polyethylene glycol, polyvinyl alcohol and the like can be mentioned.
 ヒドロキシ酸としては、例えばグリコール酸、乳酸、3-ヒドロキシプロピオン酸、グリセリン酸、タルトロン酸、リンゴ酸、酒石酸、クエン酸、10-ヒドロキシデカン酸、トロパ酸、ベンジル酸等が挙げられる。 Examples of the hydroxy acid include glycolic acid, lactic acid, 3-hydroxypropionic acid, glyceric acid, tartronic acid, malic acid, tartaric acid, citric acid, 10-hydroxydecanoic acid, tropic acid and benzylic acid.
 糖化合物としては、例えばエリスリトール、メソエリスリトール、リビトール、キシリトール、ソルビトール、マルチトール、グルコース、フルクトース、ラクトース、アラビノース、ガラクトース、スクロース、マルトース、トレハロース、グルコン酸、グリセルアルデヒド等が挙げられる。 Examples of sugar compounds include erythritol, mesoerythritol, ribitol, xylitol, sorbitol, maltitol, glucose, fructose, lactose, arabinose, galactose, sucrose, maltose, trehalose, gluconic acid and glyceraldehyde.
 フェノール性水酸基を有する化合物としては、例えば没食子酸又はその塩若しくはそのエステル、サリチル酸又はその塩若しくはそのエステル、トコフェロール又はその誘導体、2,6-ジt-ブチル-4-メチルフェノール、t-ブチル-メトキシフェノール、カテコール、レゾルシノール、ヒドロキノン、ピロガロール、フロログルシノール、1,2,4-トリヒドロキシベンゼン、ジヒドロキシナフタレン、ロスマリン酸、タンニン酸、カフェイン酸、ジヒドロカフェイン酸、ケルセチン等が挙げられる。 Examples of the compound having a phenolic hydroxyl group include gallic acid or its salt or its ester, salicylic acid or its salt or its ester, tocopherol or its derivative, 2,6-di-t-butyl-4-methylphenol, t-butyl- Examples thereof include methoxyphenol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, 1,2,4-trihydroxybenzene, dihydroxynaphthalene, rosmarinic acid, tannic acid, caffeic acid, dihydrocaffeic acid and quercetin.
 窒素含有化合物としては、例えばギ酸ヒドラジド、酢酸ヒドラジド、シアノ酢酸ヒドラジド、トリフルオロ酢酸ヒドラジド、プロピオン酸ヒドラジド、シクロヘキサンカルボン酸ヒドラジド、安息香酸ヒドラジド、p-トルイル酸ヒドラジド、サリチル酸ヒドラジド、3-ヒドロキシ-2-ナフトエ酸ヒドラジド、p-ヒドロキシ安息香酸ヒドラジド、2-エトキシ安息香酸ヒドラジド、コハク酸ジヒドラジド、マレイン酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、イソフタル酸ジヒドラジド等のヒドラジド類、ベンゾフェノンヒドラゾン、9-フルオレノンヒドラゾン、アントラキノンモノヒドラゾン、サリチルアルデヒドヒドラゾン等のヒドラゾン類、メチルカルバゼート、エチルカルバゼート、t-ブチルカルバゼート、ベンジルカルバゼート等のカルバゼート類などのヒドラジン誘導体などが挙げられる。 Examples of the nitrogen-containing compound include formic acid hydrazide, acetic acid hydrazide, cyanoacetic acid hydrazide, trifluoroacetic acid hydrazide, propionic acid hydrazide, cyclohexanecarboxylic acid hydrazide, benzoic acid hydrazide, p-toluic acid hydrazide, salicylic acid hydrazide, 3-hydroxy-2-hydroxide. Naphthoic acid hydrazide, p-hydroxybenzoic acid hydrazide, 2-ethoxybenzoic acid hydrazide, succinic acid dihydrazide, maleic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, benzohydrazides, etc. Examples include hydrazones such as 9-fluorenone hydrazone, anthraquinone monohydrazone and salicylaldehyde hydrazone, and hydrazine derivatives such as methyl carbazate, ethyl carbazate, t-butyl carbazate and benzyl carbazate. ..
(他の金属含有化合物)
 他の金属含有化合物としては、コバルト以外の金属、例えばニッケル、鉄、ルテニウム、銅、銀、金、パラジウム、白金、亜鉛、アルミニウム、スズ、タングステン、ジルコニウム、チタン、タンタル、モリブデン等を含む化合物などが挙げられる。他の金属含有化合物は、金属塩であっても、金属と配位子とを有する錯体であってもよい。
(Other metal-containing compounds)
As other metal-containing compounds, compounds other than cobalt, such as compounds containing nickel, iron, ruthenium, copper, silver, gold, palladium, platinum, zinc, aluminum, tin, tungsten, zirconium, titanium, tantalum, molybdenum, etc. Are listed. The other metal-containing compound may be a metal salt or a complex having a metal and a ligand.
 当該塗工膜形成用組成物が他の金属含有化合物を含有する場合、当該塗工膜形成用組成物に含まれる金属含有化合物の全体における[A]化合物の含有割合の下限としては、50質量%が好ましく、70質量%がより好ましく、90質量%がさらに好ましく、99質量%が特に好ましい。当該塗工膜形成用組成物に含まれる金属含有化合物の全体における[A]化合物の含有割合は100質量%であってもよい。 When the coating film forming composition contains another metal-containing compound, the lower limit of the content ratio of the [A] compound in the entire metal containing compound contained in the coating film forming composition is 50 mass. %, more preferably 70% by mass, further preferably 90% by mass, particularly preferably 99% by mass. The content ratio of the [A] compound in the whole metal-containing compound contained in the coating film forming composition may be 100% by mass.
[塗工膜形成用組成物の調製方法]
 当該塗工膜形成用組成物は、[A]化合物、[B]溶媒及び必要に応じて任意成分を所定の割合で混合し、好ましくは得られた混合物を孔径0.2μm以下のフィルター等でろ過することにより調製することができる。
[Method for preparing coating film forming composition]
The coating film-forming composition is prepared by mixing the [A] compound, the [B] solvent and, if necessary, optional components in a predetermined ratio, and preferably using the obtained mixture with a filter having a pore size of 0.2 μm or less. It can be prepared by filtration.
<基板の製造方法>
 当該基板の製造方法は、基板に直接又は間接に組成物を塗工する工程(以下、「塗工工程」ともいう)を備える。当該基板の製造方法では、上記組成物として、上述の当該塗工膜形成用組成物として示した組成物(以下、「組成物(I)」ともいう)を用いる。
<Substrate manufacturing method>
The method for manufacturing the substrate includes a step of applying the composition directly or indirectly to the substrate (hereinafter, also referred to as "application step"). In the method for producing a substrate, the composition described above as the composition for forming a coating film (hereinafter, also referred to as “composition (I)”) is used as the composition.
 当該基板の製造方法によれば、上述の当該塗工膜形成用組成物を使用することにより、導電性及び埋め込み性に優れるコバルト含有膜を形成することができる。 According to the method for manufacturing the substrate, a cobalt-containing film having excellent conductivity and embeddability can be formed by using the coating film forming composition described above.
 当該基板の製造方法は、上記塗工工程の後に、上記塗工工程により形成された塗工膜を加熱する工程(以下、「加熱工程」ともいう)をさらに備えてもよい。 The method for manufacturing the substrate may further include a step of heating the coating film formed by the coating step (hereinafter, also referred to as “heating step”) after the coating step.
 以下、当該基板の製造方法が備える各工程について説明する。 The following describes each step included in the method for manufacturing the board.
[塗工工程]
 本工程では、基板に直接又は間接に組成物(I)を塗工する。本工程により、基板に直接又は間接に塗工膜が形成される。上記塗工方法は特に限定されず、例えば回転塗工、流延塗工、ロール塗工等の適宜の方法で実施することができる。基板に間接に組成物(I)を塗工する場合としては、例えば基板上に基板の表面改質膜が形成された場合などが挙げられる。上記基板の表面改質膜は、例えば水との接触角が上記塗工膜とは異なる膜である。
[Coating process]
In this step, the composition (I) is applied directly or indirectly to the substrate. By this step, the coating film is directly or indirectly formed on the substrate. The above-mentioned coating method is not particularly limited and can be carried out by an appropriate method such as spin coating, cast coating, roll coating and the like. The case where the composition (I) is indirectly applied to the substrate includes, for example, the case where the surface-modified film of the substrate is formed on the substrate. The surface modification film of the substrate is, for example, a film having a contact angle with water different from that of the coating film.
 基板としては、例えば金属基板、シリコンウェハ等が挙げられる。「金属基板」とは、表層の少なくとも一部に金属原子を含む基板をいう。金属基板が含む金属原子としては、金属元素の原子であれば特に限定されない。ケイ素及びホウ素は、金属原子に含まれない。金属原子としては、例えば銅、鉄、亜鉛、コバルト、アルミニウム、スズ、タングステン、ジルコニウム、チタン、タンタル、ゲルマニウム、モリブデン、ルテニウム、金、銀、白金、パラジウム、ニッケル等が挙げられる。金属基板としては、例えば金属製の基板、金属で被覆したシリコンウェハ等が挙げられる。金属基板の一部に窒化ケイ素膜、アルミナ膜、二酸化ケイ素膜、窒化タンタル膜、窒化チタン膜等が形成されていてもよい。 The substrate may be, for example, a metal substrate or a silicon wafer. The “metal substrate” refers to a substrate containing metal atoms in at least a part of its surface layer. The metal atom contained in the metal substrate is not particularly limited as long as it is an atom of a metal element. Silicon and boron are not included in the metal atom. Examples of the metal atom include copper, iron, zinc, cobalt, aluminum, tin, tungsten, zirconium, titanium, tantalum, germanium, molybdenum, ruthenium, gold, silver, platinum, palladium, nickel and the like. Examples of the metal substrate include a metal substrate and a metal-coated silicon wafer. A silicon nitride film, an alumina film, a silicon dioxide film, a tantalum nitride film, a titanium nitride film, or the like may be formed on a part of the metal substrate.
 基板としては、パターンが形成されていない基板であってもよいし、パターンが形成された基板であってもよい。 The substrate may be a substrate on which no pattern is formed or a substrate on which a pattern is formed.
 パターンが形成された基板のパターンとしては、例えばスペース部の線幅が2,000nm以下、1,000nm以下、500nm以下、さらには50nm以下のラインアンドスペースパターン又はトレンチパターンや、直径が300nm以下、150nm以下、100nm以下、さらには50nm以下のホールパターン等が挙げられる。 As the pattern of the substrate on which the pattern is formed, for example, the line width of the space portion is 2,000 nm or less, 1,000 nm or less, 500 nm or less, and further a line and space pattern or trench pattern of 50 nm or less, or a diameter of 300 nm or less, Examples of the hole pattern include 150 nm or less, 100 nm or less, and further 50 nm or less.
 基板に形成されたパターンの寸法としては、例えば高さが100nm以上、200nm以上、さらには300nm以上、幅が50nm以下、40nm以下、さらには30nm以下、アスペクト比(パターンの高さ/パターン幅)が、3以上、5以上、さらには10以上の微細なパターンなどが挙げられる。 The dimensions of the pattern formed on the substrate are, for example, height of 100 nm or more, 200 nm or more, further 300 nm or more, width of 50 nm or less, 40 nm or less, further 30 nm or less, aspect ratio (pattern height/pattern width) However, a fine pattern of 3 or more, 5 or more, and further 10 or more can be used.
 基板としてパターンが形成された基板を用いる場合、この基板に当該塗工膜形成用組成物を塗工することで形成される塗工膜は、パターンの凹部を埋め込めるものであることが好ましい。例えば、パターンが形成された基板が、金属基板の一部に二酸化ケイ素膜のパターンが形成された基板である場合、塗工膜がパターンの凹部を埋め込めるものであることで、導電回路を形成することができる。 When a substrate on which a pattern is formed is used as the substrate, it is preferable that the coating film formed by applying the composition for forming a coating film on the substrate fills the concave portion of the pattern. For example, when the substrate on which the pattern is formed is a substrate on which the pattern of the silicon dioxide film is formed on a part of the metal substrate, the coating film fills the concave portion of the pattern to form the conductive circuit. can do.
[加熱工程]
 本工程は、上記塗工工程により形成された塗工膜を加熱する任意の工程である。本工程により塗工膜の導電性が向上すると考えられる。塗工膜を加熱することで、塗工膜中のコバルト原子は還元されて、0価となり、コバルト含有膜の導電性が向上すると考えられる。
[Heating process]
This step is an optional step of heating the coating film formed by the above coating step. It is considered that this step improves the conductivity of the coating film. It is considered that by heating the coating film, the cobalt atoms in the coating film are reduced to zero valence, and the conductivity of the cobalt-containing film is improved.
 塗工膜の加熱を行う雰囲気としては、窒素雰囲気下、水素雰囲気下、大気下等が挙げられる。塗工膜の加熱が、水素雰囲気下で行われると、塗工膜中のコバルト原子の還元がより促進され、コバルト含有膜の導電性がより向上すると考えられる。加熱における温度の下限としては、200℃が好ましく、300℃がより好ましく、400℃がさらに好ましい。上記温度の上限としては、700℃が好ましく、600℃がより好ましく、550℃がさらに好ましい。加熱における時間の下限としては、10秒が好ましく、60秒がより好ましく、180秒がさらに好ましい。上記時間の上限としては、3,000秒が好ましく、1,200秒がより好ましく、600秒がさらに好ましい。 The atmosphere for heating the coating film may be a nitrogen atmosphere, a hydrogen atmosphere, an atmosphere, or the like. It is considered that when the coating film is heated in a hydrogen atmosphere, the reduction of cobalt atoms in the coating film is further promoted and the conductivity of the cobalt-containing film is further improved. The lower limit of the heating temperature is preferably 200°C, more preferably 300°C, and even more preferably 400°C. The upper limit of the temperature is preferably 700°C, more preferably 600°C, and even more preferably 550°C. The lower limit of the heating time is preferably 10 seconds, more preferably 60 seconds, and even more preferably 180 seconds. The upper limit of the above time is preferably 3,000 seconds, more preferably 1,200 seconds, and even more preferably 600 seconds.
 上記塗工膜の加熱の前に、60℃以上150℃以下の温度で予備加熱してもよい。予備加熱における時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、300秒が好ましく、180秒がより好ましい。 Before heating the coating film, it may be preheated at a temperature of 60°C or higher and 150°C or lower. The lower limit of the time for preheating is preferably 10 seconds, more preferably 30 seconds. The upper limit of the time is preferably 300 seconds, more preferably 180 seconds.
 当該基板の製造方法においては、露光と加熱とを組み合わせることもできる。この露光に用いられる放射線としては、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線から適宜選択される。 -Exposure and heating can be combined in the method of manufacturing the substrate. The radiation used for this exposure is appropriately selected from visible rays, ultraviolet rays, far ultraviolet rays, electromagnetic waves such as X-rays and γ rays, and particle beams such as electron beams, molecular beams and ion beams.
 形成されるコバルト含有膜の平均厚みの下限としては、1nmが好ましく、10nmがより好ましく、30nmがさらに好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましく、300nmがさらに好ましい。 The lower limit of the average thickness of the formed cobalt-containing film is preferably 1 nm, more preferably 10 nm, further preferably 30 nm. The upper limit of the average thickness is preferably 1,000 nm, more preferably 500 nm, even more preferably 300 nm.
<パターン形成方法>
 当該パターン形成方法は、基板に直接又は間接に組成物(I)を塗工する工程と、上記塗工膜形成用組成物塗工工程により形成されたレジスト下層膜に直接又は間接に有機レジスト膜形成用組成物を塗工する工程と、上記有機レジスト膜形成用組成物塗工工程により形成された有機レジスト膜を放射線により露光する工程と、上記露光された有機レジスト膜を現像する工程と、上記現像工程により形成された有機レジストパターンをマスクとして、レジスト下層膜に塩素ガスを接触させる工程と、水又は有機溶媒を含む除去液で塩素ガスに接触したレジスト下層膜を除去する工程とを備える。
<Pattern forming method>
The pattern forming method includes a step of directly or indirectly coating the composition (I) on a substrate and an organic resist film directly or indirectly on the resist underlayer film formed by the coating film forming composition coating step. A step of applying a forming composition, a step of exposing the organic resist film formed by the organic resist film forming composition applying step to radiation, and a step of developing the exposed organic resist film, Using the organic resist pattern formed by the developing step as a mask, a step of contacting chlorine gas with the resist underlayer film, and a step of removing the resist underlayer film in contact with chlorine gas with a removing liquid containing water or an organic solvent are provided. ..
 具体的には、当該パターン形成方法は、基板に、上述の組成物(I)を塗工する工程(以下、「塗工工程(I-1)」ともいう)と、上記塗工工程(I-1)により形成されたレジスト下層膜に、有機レジスト膜形成用組成物を塗工する工程(以下、「塗工工程(I-2)」ともいう)と、上記塗工工程(I-2)により形成された有機レジスト膜を放射線により露光する工程(以下、「露光工程」ともいう)と、上記露光された有機レジスト膜を現像する工程(以下、「現像工程」ともいう)と、上記現像工程により形成された有機レジストパターンをマスクとして、レジスト下層膜に塩素ガスを接触させる工程(以下、「塩素ガス接触工程」ともいう)と、水または有機溶媒を含む除去液で塩素ガスに接触したレジスト下層膜を除去する工程(以下、「除去工程」ともいう)を備える。 Specifically, the pattern forming method includes a step of applying the composition (I) described above to a substrate (hereinafter, also referred to as “application step (I-1)”), and a coating step (I -1) applying a composition for forming an organic resist film to the resist underlayer film formed (hereinafter, also referred to as "coating step (I-2)") and the above coating step (I-2 ) A step of exposing the organic resist film formed by radiation to radiation (hereinafter, also referred to as “exposure step”); a step of developing the exposed organic resist film (hereinafter, also referred to as “developing step”); Using the organic resist pattern formed by the development process as a mask, a step of bringing chlorine gas into contact with the resist underlayer film (hereinafter, also referred to as "chlorine gas contacting step"), and contacting chlorine gas with a removing solution containing water or an organic solvent The step of removing the resist underlayer film (hereinafter, also referred to as “removal step”) is provided.
 当該パターン形成方法は、上記塗工工程(I-1)前に、上記基板に、直接又は間接に有機下層膜を形成する工程(以下、「有機下層膜形成工程(I)」ともいう)をさらに備えることができる。当該パターン形成方法は、必要に応じて、上記塗工工程(I-2)前に、上記塗工工程(I-1)により形成されたレジスト下層膜にケイ素含有膜を形成する工程を備えていてもよい。 The pattern forming method includes a step of directly or indirectly forming an organic underlayer film on the substrate (hereinafter, also referred to as “organic underlayer film forming step (I)”) before the coating step (I-1). Further provisions can be made. The pattern forming method optionally includes a step of forming a silicon-containing film on the resist underlayer film formed in the coating step (I-1) before the coating step (I-2). May be.
 当該パターン形成方法によれば、組成物(I)を用いるので、良好なパターンを形成することができる。 According to the pattern forming method, since the composition (I) is used, a good pattern can be formed.
 以下、当該パターン形成方法が備える各工程について説明する。 Hereinafter, each step included in the pattern forming method will be described.
[有機下層膜形成工程(I)]
 本工程では、基板に有機下層膜を形成する。有機下層膜としては、例えば後述する反転パターン形成方法で形成される有機下層膜と同様のものが挙げられる。
[Organic Underlayer Film Forming Step (I)]
In this step, an organic underlayer film is formed on the substrate. Examples of the organic underlayer film include the same as the organic underlayer film formed by the inversion pattern forming method described later.
[塗工工程(I-1)]
 本工程では、基板に直接又は間接に組成物(I)を塗工する。本工程により、レジスト下層膜が形成される。基板に間接に組成物(I)を塗工する場合としては、例えば上記有機下層膜形成工程(I)により形成された有機下層膜に組成物(I)を塗工する場合などが挙げられる。この場合、有機下層膜上にレジスト下層膜が形成される。本工程は、上述した当該基板の製造方法における塗工工程と同様である。
[Coating process (I-1)]
In this step, the composition (I) is applied directly or indirectly to the substrate. By this step, a resist underlayer film is formed. Examples of the case where the composition (I) is indirectly applied to the substrate include a case where the composition (I) is applied to the organic underlayer film formed in the above organic underlayer film forming step (I). In this case, the resist underlayer film is formed on the organic underlayer film. This step is the same as the coating step in the above-described substrate manufacturing method.
[ケイ素含有膜形成工程]
 本工程では、上記塗工工程(I-1)により形成されたレジスト下層膜にケイ素含有膜を形成する。
[Silicon-containing film forming step]
In this step, a silicon-containing film is formed on the resist underlayer film formed in the coating step (I-1).
 ケイ素含有膜は、ケイ素含有膜形成用組成物を上記レジスト下層膜に塗工して形成された塗膜を、通常、露光及び/又は加熱することにより硬化等させることにより、形成される。上記ケイ素含有膜形成用組成物の市販品としては、例えば、JSR(株)の「NFC SOG01」、「NFC SOG04」、「NFC SOG080」等を用いることができる。 The silicon-containing film is usually formed by applying a composition for forming a silicon-containing film to the resist underlayer film, and then curing the coating film by exposing and/or heating. As the commercially available product of the above silicon-containing film forming composition, for example, "NFC SOG01", "NFC SOG04", "NFC SOG080", etc. of JSR Corporation can be used.
 上記露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。 Examples of the radiation used for the above-mentioned exposure include electromagnetic waves such as visible light rays, ultraviolet rays, far ultraviolet rays, X-rays and γ rays, and particle beams such as electron beams, molecular beams and ion beams.
 塗膜を加熱する際の温度の下限としては、90℃が好ましく、150℃がより好ましく、180℃がさらに好ましい。上記温度の上限としては、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。 The lower limit of the temperature for heating the coating film is preferably 90°C, more preferably 150°C, and even more preferably 180°C. As the upper limit of the temperature, 550° C. is preferable, 450° C. is more preferable, and 300° C. is further preferable.
[塗工工程(I-2)]
 本工程では、上記塗工工程(I-1)により形成されたレジスト下層膜に、有機レジスト膜形成用組成物を塗工する。上記ケイ素含有膜形成工程を行った場合には、上記有機レジスト膜形成用組成物を上記ケイ素含有膜に塗工する。本工程により、有機レジスト膜が形成される。
[Coating process (I-2)]
In this step, the composition for forming an organic resist film is applied to the resist underlayer film formed in the above coating step (I-1). When the silicon-containing film forming step is performed, the organic resist film-forming composition is applied to the silicon-containing film. Through this step, the organic resist film is formed.
 本工程では、具体的には、得られる有機レジスト膜が所定の厚みとなるように、有機レジスト膜形成用組成物を塗工した後、加熱することによって塗膜中の溶媒を揮発させることにより、有機レジスト膜を形成する。 In this step, specifically, by coating the composition for forming an organic resist film so that the resulting organic resist film has a predetermined thickness, and then heating to evaporate the solvent in the coating film. Forming an organic resist film.
 有機レジスト膜形成用組成物としては、例えば感放射線性酸発生剤を含有するポジ型又はネガ型の化学増幅型レジスト組成物、アルカリ可溶性樹脂とキノンジアジド系感光剤とを含有するポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とを含有するネガ型レジスト組成物等が挙げられる。 Examples of the organic resist film-forming composition include a positive or negative chemically amplified resist composition containing a radiation-sensitive acid generator, and a positive resist composition containing an alkali-soluble resin and a quinonediazide-based photosensitizer. And a negative resist composition containing an alkali-soluble resin and a crosslinking agent.
 有機レジスト膜形成用組成物は、一般に、例えば孔径0.2μm以下のフィルターで濾過して、有機レジスト膜の形成に供される。なお、本工程では、市販の有機レジスト組成物をそのまま使用することもできる。 The composition for forming an organic resist film is generally provided for forming an organic resist film by filtering with a filter having a pore size of 0.2 μm or less. In this step, a commercially available organic resist composition can be used as it is.
 有機レジスト膜形成用組成物の塗工方法としては特に限定されず、例えば回転塗工法等が挙げられる。また、加熱の温度としては、使用される有機レジスト膜形成用組成物の種類等に応じて適宜調整されるが、上記温度の下限としては、30℃が好ましく、50℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。加熱の時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。 The method of applying the composition for forming an organic resist film is not particularly limited, and examples thereof include a spin coating method. The heating temperature is appropriately adjusted depending on the type of the organic resist film forming composition used and the like, but the lower limit of the temperature is preferably 30°C, more preferably 50°C. The upper limit of the temperature is preferably 200°C, more preferably 150°C. The lower limit of the heating time is preferably 10 seconds, more preferably 30 seconds. The upper limit of the time is preferably 600 seconds, more preferably 300 seconds.
[露光工程]
 本工程では、上記塗工工程(I-2)により形成された有機レジスト膜を放射線により露光する。
[Exposure process]
In this step, the organic resist film formed in the coating step (I-2) is exposed to radiation.
 露光に用いられる放射線としては、有機レジスト膜形成用組成物に使用される感放射線性酸発生剤、キノンジアジド系感光剤及び架橋剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線から適切に選択される。これらの中で、遠紫外線が好ましく、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)、Fエキシマレーザー光(波長157nm)、Krエキシマレーザー光(波長147nm)、ArKrエキシマレーザー光(波長134nm)又は極端紫外線(波長13.5nm等、EUV)がより好ましく、KrFエキシマレーザー光、ArFエキシマレーザー光、EUV又は極端紫外線がさらに好ましい。 As the radiation used for the exposure, depending on the type of radiation-sensitive acid generator, quinonediazide-based photosensitizer and cross-linking agent used in the organic resist film forming composition, visible light, ultraviolet light, far ultraviolet light, X-ray, It is appropriately selected from electromagnetic waves such as γ-rays, electron beams, molecular beams, and particle beams such as ion beams. Of these, far ultraviolet rays are preferable, and KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), F 2 excimer laser light (wavelength 157 nm), Kr 2 excimer laser light (wavelength 147 nm), ArKr excimer laser light. (Wavelength: 134 nm) or extreme ultraviolet light (wavelength: 13.5 nm etc., EUV) is more preferable, and KrF excimer laser light, ArF excimer laser light, EUV or extreme ultraviolet light is further preferable.
 上記露光後、解像度、パターンプロファイル、現像性等を向上させるため加熱を行うことができる。この加熱の温度としては、使用される有機レジスト膜形成用組成物の種類等に応じて適宜調整されるが、上記温度の下限としては、50℃が好ましく、70℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。上記加熱の時間の下限としては、10秒が好ましく、30秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。 After the above exposure, heating can be performed to improve resolution, pattern profile, developability, etc. The heating temperature is appropriately adjusted depending on the type of the organic resist film forming composition used and the like, but the lower limit of the temperature is preferably 50°C, more preferably 70°C. The upper limit of the temperature is preferably 200°C, more preferably 150°C. The lower limit of the heating time is preferably 10 seconds, more preferably 30 seconds. The upper limit of the time is preferably 600 seconds, more preferably 300 seconds.
[現像工程]
 本工程では、上記露光された有機レジスト膜を現像する。この現像は、アルカリ現像であっても有機溶媒現像であってもよい。現像液としては、アルカリ現像の場合、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等の塩基性水溶液が挙げられる。これらの塩基性水溶液には、例えばメタノール、エタノール等のアルコール類などの水溶性有機溶媒、界面活性剤等を適量添加することもできる。また、有機溶媒現像の場合、現像液としては、例えば上述の組成物(I)の[B]溶媒として例示した種々の有機溶媒等が挙げられる。
[Development process]
In this step, the exposed organic resist film is developed. This development may be alkali development or organic solvent development. As the developing solution, in the case of alkali development, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyl Diethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5 Examples thereof include basic aqueous solutions of diazabicyclo[4.3.0]-5-nonene and the like. An appropriate amount of a water-soluble organic solvent such as alcohols such as methanol and ethanol, a surfactant and the like can be added to these basic aqueous solutions. Further, in the case of organic solvent development, examples of the developing solution include various organic solvents exemplified as the solvent [B] of the above composition (I).
 上記現像液での現像後、洗浄し、乾燥することによって、所定のレジストパターンが形成される。 After the development with the above-mentioned developing solution, a predetermined resist pattern is formed by washing and drying.
[塩素ガス接触工程]
 本工程では、上記現像工程(I)により形成されたレジストパターンをマスクとして、レジスト下層膜に塩素ガスを接触させる。これにより、塩素ガスに接触したレジスト下層膜は、塩化コバルト(II)を主成分とする膜となり、水又は有機溶媒を含む除去液に溶解性を有する。
[Chlorine gas contact process]
In this step, chlorine gas is brought into contact with the resist underlayer film using the resist pattern formed in the developing step (I) as a mask. As a result, the resist underlayer film in contact with chlorine gas becomes a film containing cobalt (II) chloride as a main component, and is soluble in a removing solution containing water or an organic solvent.
[除去工程]
 本工程では、水又は有機溶媒を含む除去液で塩素ガスに接触したレジスト下層膜を除去する。これにより、レジスト下層膜のパターンが形成される。
[Removal process]
In this step, the resist underlayer film in contact with chlorine gas is removed with a removing solution containing water or an organic solvent. As a result, the pattern of the resist underlayer film is formed.
 有機溶媒としては、[b]有機溶媒として挙げたものが挙げられる。 Examples of the organic solvent include those listed as the organic solvent [b].
 除去液(I)が酸を含有する場合は、例えば酸及び水を含む液、酸、過酸化水素及び水の混合により得られる液等が挙げられる。酸としては、例えば硫酸、フッ化水素酸、塩酸、リン酸等が挙げられる。酸を含有する除去液(I)としては、より具体的には、例えばフッ化水素酸及び水の混合により得られる液、硫酸、過酸化水素及び水の混合により得られる液、塩酸、過酸化水素及び水の混合により得られる液等が挙げられる。 When the removing liquid (I) contains an acid, for example, a liquid containing an acid and water, a liquid obtained by mixing an acid, hydrogen peroxide and water, and the like can be mentioned. Examples of the acid include sulfuric acid, hydrofluoric acid, hydrochloric acid, phosphoric acid and the like. More specifically, the acid-containing removal liquid (I) is, for example, a liquid obtained by mixing hydrofluoric acid and water, a liquid obtained by mixing sulfuric acid, hydrogen peroxide and water, hydrochloric acid, or peroxide. Examples include liquids obtained by mixing hydrogen and water.
 除去液(I)が塩基を含有する場合、例えば塩基及び水を含む液、塩基、過酸化水素及び水の混合により得られる液等が挙げられ、塩基、過酸化水素及び水の混合により得られる液が好ましい。 When the removal liquid (I) contains a base, examples thereof include a liquid containing a base and water, a liquid obtained by mixing a base, hydrogen peroxide and water, and the like, which is obtained by mixing a base, hydrogen peroxide and water. Liquids are preferred.
 塩基としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等が挙げられる。これらの中でも、アンモニアが好ましい。 Examples of the base include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, Triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diazabicyclo[4.3] .0]-5-nonene and the like. Of these, ammonia is preferred.
 除去工程における温度の下限としては、20℃が好ましく、40℃がより好ましく、50℃がさらに好ましい。上記温度の上限としては、300℃が好ましく、100℃がより好ましい。 The lower limit of the temperature in the removing step is preferably 20°C, more preferably 40°C, and even more preferably 50°C. The upper limit of the temperature is preferably 300°C, more preferably 100°C.
 除去工程における時間の下限としては、5秒が好ましく、30秒がより好ましい。上記時間の上限としては、10分が好ましく、180秒がより好ましい。 The lower limit of the time in the removing step is preferably 5 seconds, more preferably 30 seconds. The upper limit of the time is preferably 10 minutes, more preferably 180 seconds.
<反転パターン形成方法>
 当該反転パターン形成方法は、基板に直接又は間接に有機下層膜を形成する工程(以下、「有機下層膜形成工程(II)」ともいう)と、上記有機下層膜に直接又は間接にレジストパターンを形成する工程(以下、「レジストパターン形成工程(II)」ともいう)と、上記レジストパターンに反転パターン形成用膜を形成する工程(以下、「反転パターン形成用膜形成工程」ともいう)と、上記レジストパターンの除去により反転パターンを形成する工程(以下、「反転パターン形成工程」ともいう)とを備える。当該基板の製造方法では、上記反転パターン形成用膜形成工程において、上述の当該塗工膜形成用組成物として示した組成物(以下、「組成物(II)」ともいう)を用いる。
<Reversal pattern forming method>
The inversion pattern forming method includes a step of directly or indirectly forming an organic underlayer film on a substrate (hereinafter, also referred to as “organic underlayer film forming step (II)”) and a resist pattern directly or indirectly on the organic underlayer film. A step of forming (hereinafter, also referred to as “resist pattern forming step (II)”), a step of forming a reverse pattern forming film on the resist pattern (hereinafter also referred to as “reverse pattern forming film forming step”), And a step of forming a reverse pattern by removing the resist pattern (hereinafter, also referred to as a “reverse pattern forming step”). In the substrate manufacturing method, the composition (hereinafter, also referred to as “composition (II)”) described above as the coating film forming composition is used in the inversion pattern forming film forming step.
 当該反転パターン形成方法によれば、組成物(II)を用いるので、良好な反転パターンを形成することができる。 According to the inversion pattern forming method, since the composition (II) is used, a good inversion pattern can be formed.
 当該反転パターン形成方法は、必要に応じて、上記レジストパターン形成工程前に、上記有機下層膜形成工程(II)により形成された有機下層膜にレジスト中間膜を形成する工程(以下、「レジスト中間膜形成工程」ともいう)を備えていてもよい。をさらに備えていてもよい。 The reversal pattern forming method includes a step of forming a resist intermediate film on the organic underlayer film formed by the organic underlayer film forming step (II) before the resist pattern forming step (hereinafter, referred to as "resist intermediate step", if necessary). (Also referred to as a film forming step)). May be further provided.
 以下、当該反転パターン形成方法が備える各工程について説明する。 Hereinafter, each step included in the inversion pattern forming method will be described.
[有機下層膜形成工程(II)]
 本工程では、基板に有機下層膜を形成する。基板としては、上述の当該基板の製造方法における塗工工程で用いる基板と同様のものが挙げられる。
[Organic Underlayer Film Forming Step (II)]
In this step, an organic underlayer film is formed on the substrate. Examples of the substrate include the same substrates as those used in the coating step in the above-described method for manufacturing the substrate.
 有機下層膜は、有機化合物により形成することができる。上記有機化合物としては、市販品として、例えばJSR(株)の「NFC HM8006」等が挙げられる。有機下層膜は、有機下層膜形成用組成物をスピンコート法等により塗布して塗膜を形成した後、加熱することにより形成することができる。 The organic underlayer film can be formed of an organic compound. As the above-mentioned organic compound, as a commercially available product, for example, "NFC HM8006" of JSR Corporation can be mentioned. The organic underlayer film can be formed by applying a composition for forming an organic underlayer film by a spin coating method or the like to form a coating film, and then heating.
 形成される有機下層膜の平均厚みの下限としては、10nmが好ましく、50nmがより好ましく、100nmがさらに好ましい。上記平均厚みの上限としては、1000nmが好ましく、500nmがより好ましい。 The lower limit of the average thickness of the organic underlayer film formed is preferably 10 nm, more preferably 50 nm, further preferably 100 nm. The upper limit of the average thickness is preferably 1000 nm, more preferably 500 nm.
[レジスト中間膜形成工程]
 本工程では、上記有機下層膜形成工程(II)により形成された有機下層膜にレジスト中間膜を形成する。上記レジスト中間膜としては、市販品として、例えば「NFC SOG01」、「NFC SOG04」、「NFC SOG080」(以上、JSR(株))等が挙げられる。また、CVD法により形成されるポリシロキサン、酸化チタン、酸化アルミニウム、酸化タングステン等を用いることができる。レジスト中間膜の形成方法は特に限定されないが、例えば塗布法やCVD法等を用いることができる。これらの中でも、塗布法が好ましい。塗布法を用いた場合、有機下層膜を形成した後、レジスト中間膜を連続して形成することができる。
[Resist intermediate film forming process]
In this step, a resist intermediate film is formed on the organic underlayer film formed in the above organic underlayer film forming step (II). As the resist intermediate film, commercially available products such as “NFC SOG01”, “NFC SOG04”, and “NFC SOG080” (above, JSR Corporation) can be mentioned. Further, polysiloxane, titanium oxide, aluminum oxide, tungsten oxide, or the like formed by a CVD method can be used. The method for forming the resist intermediate film is not particularly limited, but for example, a coating method, a CVD method or the like can be used. Among these, the coating method is preferable. When the coating method is used, the resist intermediate film can be continuously formed after forming the organic underlayer film.
[レジストパターン形成工程(II)]
 本工程では、上記有機下層膜に直接又は間接にレジストパターンを形成する。上記有機下層膜に間接にレジストパターンを形成する場合としては、例えば上記レジスト中間膜形成工程により形成されたレジスト中間膜にレジストパターンを形成する場合などが挙げられる。レジストパターンを形成する方法としては、例えばレジスト組成物を用いる方法、ナノインプリントリソグラフィー法を用いる方法等の公知の方法が挙げられる。
[Resist pattern forming step (II)]
In this step, a resist pattern is formed directly or indirectly on the organic underlayer film. Examples of the case of indirectly forming a resist pattern on the organic underlayer film include a case of forming a resist pattern on the resist intermediate film formed by the resist intermediate film forming step. Examples of methods for forming the resist pattern include known methods such as a method using a resist composition and a method using a nanoimprint lithography method.
[反転パターン形成用膜形成工程]
 本工程では、上記レジストパターンに反転パターン形成用膜を形成する。具体的には、本工程では、上記レジストパターンが形成された基板上に上記組成物(II)を塗工することにより、反転パターン形成用膜を形成する。この場合、上記レジストパターンの間隙には組成物(II)が埋め込まれる。具体的には、上記レジストパターンが形成された基板上に組成物(II)を塗工する方法としては、例えば回転塗布、流延塗布、ロール塗布等の公知の方法が挙げられるまた、本工程においては、組成物(II)を上記レジストパターンの間隙に埋め込んだ後に、乾燥工程を設けることが好ましい。上記乾燥手段は特に限定されないが、例えば、焼成することにより、組成物(II)中の[b]有機溶媒を揮発させることができる。この焼成条件は、樹脂組成物の配合組成によって適宜調整されるが、焼成温度は通常80~250℃、好ましくは80~200℃である。この焼成温度が、80~180℃である場合には、後述の平坦化工程、特にウェットエッチバック法による平坦化加工を円滑に行うことができる。なお、この加熱時間は通常10~300秒間、好ましくは30~180秒間である。また、乾燥後に得られる反転パターン形成用膜の厚みは特に限定されないが、通常10~1000nmであり、好ましくは20~500nmである。
[Reverse pattern forming film forming step]
In this step, a reverse pattern forming film is formed on the resist pattern. Specifically, in this step, the reverse pattern forming film is formed by applying the composition (II) onto the substrate on which the resist pattern is formed. In this case, the composition (II) is embedded in the gap between the resist patterns. Specifically, examples of the method for applying the composition (II) onto the substrate on which the resist pattern is formed include known methods such as spin coating, cast coating, and roll coating. In the above, it is preferable to provide a drying step after the composition (II) is embedded in the gap of the resist pattern. Although the drying means is not particularly limited, for example, the organic solvent [b] in the composition (II) can be volatilized by firing. The firing conditions are appropriately adjusted depending on the composition of the resin composition, but the firing temperature is usually 80 to 250°C, preferably 80 to 200°C. When the firing temperature is 80 to 180° C., the flattening step described later, particularly the flattening process by the wet etch back method can be smoothly performed. The heating time is usually 10 to 300 seconds, preferably 30 to 180 seconds. The thickness of the reverse pattern forming film obtained after drying is not particularly limited, but is usually 10 to 1000 nm, preferably 20 to 500 nm.
[反転パターン形成工程]
 本工程では、上記レジストパターンが除去され、反転パターンが形成される。
[Reversal pattern formation process]
In this step, the resist pattern is removed and an inverted pattern is formed.
 具体的には、まず、好ましくは上記レジストパターンの上表面を露出するための平坦化加工が行われる。次に、ドライエッチング又は溶解除去により上記レジストパターンが除去され、所定の反転パターンが得られる。 Specifically, first, preferably, a flattening process is performed to expose the upper surface of the resist pattern. Next, the resist pattern is removed by dry etching or dissolution removal to obtain a predetermined inversion pattern.
 この反転パターン形成工程により、通常のリソグラフィープロセスでは困難な高アスペクト比の微細なパターンを基板上に形成することができる。これにより、基板に微細なパターンを転写することができる。 By this inversion pattern forming process, it is possible to form a fine pattern with a high aspect ratio on a substrate, which is difficult with a normal lithography process. Thereby, a fine pattern can be transferred to the substrate.
 上記平坦化加工で利用される平坦化法としては、ドライエッチバック、ウェットエッチバック等のエッチング法や、CMP法等を用いることができる。これらのなかでも、フッ素系ガス等を用いたドライエッチバック、ウェットエッチバック法が低コストで好ましい。なお、平坦化加工における加工条件は特に限定されず、適宜調整できる。 As the flattening method used in the flattening process, an etching method such as dry etch back or wet etch back, or a CMP method can be used. Among these, the dry etch back method and the wet etch back method using a fluorine-based gas or the like are preferable at low cost. The processing conditions in the flattening process are not particularly limited and can be adjusted as appropriate.
 また、レジストパターンの除去にはドライエッチングが好ましく、具体的には、酸素系ガスエッチング、オゾンエッチング等が好ましく用いられる。上記ドライエッチングには、酸素プラズマ灰化装置、オゾンアッシング装置等の公知の装置を用いることができる。なお、エッチング加工条件は特に限定されず、適宜調整できる。 Also, dry etching is preferable for removing the resist pattern, and specifically, oxygen-based gas etching, ozone etching, etc. are preferably used. Known devices such as an oxygen plasma ashing device and an ozone ashing device can be used for the dry etching. The etching processing conditions are not particularly limited and can be adjusted appropriately.
<有機下層膜パターン形成方法>
 上述の当該反転パターン形成方法により形成された反転パターンは、例えば有機下層膜をパターニングする際のマスク等として用いることができる。換言すると、上述の当該反転パターン形成方法は、後述する有機下層膜パターン形成方法の前工程として好適に採用することができる。
<Method for forming organic underlayer film pattern>
The inversion pattern formed by the above-described inversion pattern forming method can be used as, for example, a mask when patterning the organic underlayer film. In other words, the above-mentioned inversion pattern forming method can be suitably adopted as a pre-process of the organic underlayer film pattern forming method described later.
 当該有機下層膜パターン形成方法は、上述の当該反転パターン形成方法により形成された反転パターンをマスクとして有機下層膜のエッチングを行う工程(以下、「有機下層膜パターン形成工程」ともいう)と、上記反転パターンに塩素ガスを接触させた後、水又は有機溶媒を含有する除去液で上記反転パターンを除去する工程(以下、「反転パターン除去工程」ともいう)とを備える。 The organic underlayer film pattern forming method includes a step of etching the organic underlayer film using the inversion pattern formed by the above inversion pattern forming method as a mask (hereinafter, also referred to as “organic underlayer film pattern forming step”), After the chlorine gas is brought into contact with the inversion pattern, a step of removing the inversion pattern with a removing liquid containing water or an organic solvent (hereinafter, also referred to as “inversion pattern removing step”) is provided.
[有機下層膜パターン形成工程]
 本工程では、上述の当該反転パターン形成方法により形成された反転パターンをマスクとして、有機下層膜のエッチングを行う。このエッチングの方法としては、ドライエッチング、ウエットエッチング等が挙げられる。上記ドライエッチングは、公知のドライエッチング装置を用いて行うことができる。また、ドライエッチング時のソースガスとしては、被エッチ膜の元素組成にもよるが、例えば、CHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O等の酸素系ガス、H、NH、CO、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、NH、BCl等の還元性ガス、He、N、Ar等の不活性ガス等が用いられ、これらのガスは混合して用いることもできる。レジスト中間膜を形成する場合におけるレジスト中間膜のドライエッチングには、通常、フッ素系ガスが用いられ、有機下層膜のドライエッチングには酸素系ガスが好適に用いられる。
[Organic underlayer film pattern forming step]
In this step, the organic underlayer film is etched by using the inversion pattern formed by the above inversion pattern forming method as a mask. Examples of this etching method include dry etching and wet etching. The dry etching can be performed using a known dry etching apparatus. The source gas during dry etching depends on the elemental composition of the film to be etched, but is, for example, a fluorine-based gas such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 or SF 6 , Cl 2 or the like. , Chlorine-based gas such as BCl 3 , oxygen-based gas such as O 2 and O 3 , H 2 , NH 3 , CO, CO 2 , CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C A reducing gas such as 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 or an inert gas such as He, N 2 or Ar is used. It is also possible to use a mixture of these gases. Usually, a fluorine-based gas is used for dry etching of the resist intermediate film when forming the resist intermediate film, and an oxygen-based gas is preferably used for dry etching of the organic lower layer film.
[反転パターン形成用膜除去工程]
 本工程では、上記反転パターンに塩素ガスを接触させた後、水又は有機溶媒を含有する除去液で除去する。本工程により、塩素ガスに接触した反転パターンは、塩化コバルト(II)を主成分とする膜となり、水又は有機溶媒を含む除去液に溶解性を有するため、除去される。
[Reverse pattern forming film removal step]
In this step, chlorine gas is brought into contact with the inversion pattern and then removed with a removing liquid containing water or an organic solvent. By this step, the reversal pattern in contact with chlorine gas becomes a film containing cobalt (II) chloride as a main component and is soluble in a removing liquid containing water or an organic solvent, and thus is removed.
 本工程で用いる除去液は、上述の当該パターン形成方法の除去工程における除去液(I)と同様である。 The removing solution used in this step is the same as the removing solution (I) in the removing step of the pattern forming method described above.
<ダマシン構造の形成>
 パターンが形成された低誘電絶縁膜に、塗工膜形成用組成物を塗工し、上記パターン(配線溝)を埋め込み、上記塗工膜を加熱することにより、コバルト金属層(配線層)を形成することができる。上記塗工膜形成用組成物を塗工する前に、バリアメタル膜を形成してもよい。コバルト金属層を形成した後、コバルト金属層の一部を化学的研磨(CMP)により除去することで、上記低誘電絶縁膜の表面を露出し、平坦化することができる。塗工条件、加熱条件は、上述の当該基板の製造方法における上記塗工工程、上記加熱工程と同様とすることができる。
<Formation of damascene structure>
By coating the coating film forming composition on the patterned low dielectric insulating film, filling the pattern (wiring groove), and heating the coating film, the cobalt metal layer (wiring layer) is formed. Can be formed. A barrier metal film may be formed before applying the coating film forming composition. After forming the cobalt metal layer, a part of the cobalt metal layer is removed by chemical polishing (CMP) to expose and flatten the surface of the low dielectric insulating film. The coating conditions and the heating conditions can be the same as those of the coating process and the heating process in the above-described method for manufacturing the substrate.
 以下、実施例を説明する。なお、以下に示す実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 An example will be described below. In addition, the following embodiments are examples of typical embodiments of the present invention, and the scope of the present invention should not be construed narrowly.
[膜の平均厚み]
 膜の平均厚みは、X線回折装置((株)リガクの「SmartLab」)を用いて測定した。
[Average film thickness]
The average thickness of the film was measured using an X-ray diffractometer (“SmartLab” manufactured by Rigaku Corporation).
<塗工膜形成用組成物の調製>
 塗工膜形成用組成物の調製に用いた[A]化合物、[B]溶媒及び[C]他の有機化合物について以下に示す。
<Preparation of coating film forming composition>
The [A] compound, [B] solvent and [C] other organic compound used for the preparation of the coating film forming composition are shown below.
[[A]化合物]
 化合物(A-1)~(A-6)及び(a-1)~(a-2):各化合物の構造を下記式(A-1)~(A-6)及び(a-1)~(a-2)に示す。
[[A] compound]
Compounds (A-1) to (A-6) and (a-1) to (a-2): The structures of the respective compounds are represented by the following formulas (A-1) to (A-6) and (a-1) to It is shown in (a-2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[[B]溶媒]
 B-1:プロピレングリコールモノエチルエーテル
 B-2:乳酸エチル
 B-3:n-ブチルアルコール
 B-4:プロピレングリコールモノメチルエーテルアセテート
 B-5:エチレングリコール
 B-6:1,2-ブタンジオール
 B-7:ジエチレングリコール
 B-8:トリエタノールアミン
 B-9:水
 B-10:2-ヒドラジノエタノール(下記式(B-10)で表される化合物)
 B-11:1-ヒドロキシ-2-プロパノンヒドラゾン(下記式(B-11)で表される化合物)
[[B] solvent]
B-1: Propylene glycol monoethyl ether B-2: Ethyl lactate B-3: n-Butyl alcohol B-4: Propylene glycol monomethyl ether acetate B-5: Ethylene glycol B-6: 1,2-butanediol B- 7: diethylene glycol B-8: triethanolamine B-9: water B-10: 2-hydrazinoethanol (compound represented by the following formula (B-10))
B-11: 1-hydroxy-2-propanone hydrazone (compound represented by the following formula (B-11))
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[[C]他の有機化合物]
 C-1:クエン酸(下記式(C-1)で表される化合物)
 C-2:アスコルビン酸(下記式(C-2)で表される化合物)
 C-3:没食子酸(下記式(C-3)で表される化合物)
 C-4:酢酸ヒドラジド(下記式(C-4)で表される化合物)
 C-5:メチルカルバゼート(下記式(C-5)で表される化合物)
 C-6:シアノ酢酸ヒドラジド(下記式(C-6)で表される化合物)
 C-7:サリチル酸ヒドラジド(下記式(C-7)で表される化合物)
[[C] Other Organic Compound]
C-1: Citric acid (compound represented by the following formula (C-1))
C-2: Ascorbic acid (compound represented by the following formula (C-2))
C-3: gallic acid (compound represented by the following formula (C-3))
C-4: Acetic acid hydrazide (compound represented by the following formula (C-4))
C-5: Methylcarbazate (a compound represented by the following formula (C-5))
C-6: Cyanoacetic acid hydrazide (compound represented by the following formula (C-6))
C-7: Salicylic acid hydrazide (compound represented by the following formula (C-7))
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[実施例1]
 [A]化合物としての(A-1)18質量部及び(A-2)2質量部と、[B]溶媒としての(B-1)80質量部とを混合し、得られた溶液を孔径0.2μmのナイロンシリンジフィルターでろ過して、塗工膜形成用組成物(J-1)を調製した。
[Example 1]
18 parts by mass of (A-1) as a compound [A] and 2 parts by mass of (A-2) are mixed with 80 parts by mass of (B-1) as a solvent [B], and the resulting solution has a pore size of A 0.2 μm nylon syringe filter was used for filtration to prepare a coating film forming composition (J-1).
[実施例2~24及び比較例1~2]
 下記表1に示す種類及び含有量の各成分を用いた以外は、実施例1と同様に操作して、塗工膜形成用組成物(J-2)~(J-24)及び(j-1)~(j-2)を調製した。表1中の「-」は、該当する成分を使用しなかったことを示す。
[Examples 2 to 24 and Comparative Examples 1 to 2]
The coating film forming compositions (J-2) to (J-24) and (j-) were operated in the same manner as in Example 1 except that the components and contents shown in Table 1 below were used. 1) to (j-2) were prepared. "-" in Table 1 indicates that the corresponding component was not used.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<評価>
 上記調製した塗工膜形成用組成物(J-1)~(J-24)及び(j-1)~(j-2)について、保存安定性、形成されたコバルト含有膜の導電性及び埋め込み性を下記方法により評価した。評価結果を下記表2に示す。
<Evaluation>
Regarding the prepared coating film forming compositions (J-1) to (J-24) and (j-1) to (j-2), storage stability, conductivity and embedding of the formed cobalt-containing film. The sex was evaluated by the following method. The evaluation results are shown in Table 2 below.
[保存安定性]
 塗工膜形成用組成物の保存安定性を、時間経過による塗工性の差異により評価した。上記調製した直後の塗工膜形成用組成物(T=0)をコバルト基板上に、スピンコーター(ミカサ(株)の「MS-B200」)を用い、1,500rpm及び30秒間の条件で、回転塗工法により塗工した後、得られた塗工膜を、RTA炉((株)アルバックの「QHC-P610CP」)を用いて、窒素雰囲気中にて、500℃で300秒間加熱することによりコバルト含有膜を形成した。塗工性について、形成されたコバルト含有膜を光学顕微鏡で観察し、塗工ムラが見られない場合は「A」(良好)と、塗工ムラが見られる場合は「B」(不良)と評価した。また、上記塗工性を評価した塗工膜形成用組成物を25℃で7日間保存したもの(T=7)について、上記同様に塗工性評価を行い、上記同様に評価した。保存安定性は、T=0における塗工性とT=7における塗工性とが共に「A」(良好)であると評価された場合には保存安定性が良好であり、そうでない場合には保存安定性が不良であると評価できる。
[Storage stability]
The storage stability of the coating film-forming composition was evaluated by the difference in coating property over time. The composition for coating film formation (T=0) immediately after the above-mentioned preparation was placed on a cobalt substrate using a spin coater (“MS-B200” manufactured by Mikasa Co., Ltd.) under conditions of 1,500 rpm and 30 seconds. After coating by the spin coating method, the obtained coating film was heated at 500° C. for 300 seconds in a nitrogen atmosphere using an RTA furnace (“QHC-P610CP” manufactured by ULVAC, Inc.). A cobalt-containing film was formed. Regarding the coatability, the formed cobalt-containing film was observed with an optical microscope, and "A" (good) was observed when no coating unevenness was observed, and "B" (bad) when coating unevenness was observed. evaluated. Further, the coating film composition for which the coating property was evaluated was stored at 25° C. for 7 days (T=7), the coating property was evaluated in the same manner as above, and evaluated in the same manner as above. Regarding the storage stability, the storage stability is good when both the coatability at T=0 and the coatability at T=7 are evaluated as “A” (good), and otherwise. Can be evaluated as having poor storage stability.
[導電性]
 上記調製した直後の塗工膜形成用組成物をシリコン基板上に、スピンコーター(ミカサ(株)の「MS-B200」)を用い、回転塗工法により塗工した。次に、RTA炉((株)アルバックの「QHC-P610CP」)を用いて、窒素雰囲気中にて、500℃で300秒間加熱した後、23℃で60秒間冷却することにより、平均厚みが200nmのコバルト含有膜を形成し、コバルト含有膜付きシリコン基板を得た。直流4探針法による抵抗率測定器(エヌピイエス(株)の「Σ-5」)を用い、上記コバルト含有膜付きシリコン基板におけるコバルト含有膜の比抵抗率を測定した。導電性は、比抵抗率が25.0μΩ・cm以下の場合は「S」(極めて良好)と、25.0μΩ・cmより大きく50.0μΩ・cm以下の場合は「A」(良好)と、50.0μΩ・cmより大きい場合は「B」(不良)と評価した。
[Conductivity]
The composition for coating film formation immediately after the above preparation was applied onto a silicon substrate by a spin coating method using a spin coater (“MS-B200” manufactured by Mikasa Co., Ltd.). Next, using an RTA furnace (“QHC-P610CP” manufactured by ULVAC, Inc.) in a nitrogen atmosphere, the sample was heated at 500° C. for 300 seconds and then cooled at 23° C. for 60 seconds to give an average thickness of 200 nm. A cobalt-containing film was formed to obtain a silicon substrate with a cobalt-containing film. The resistivity of the cobalt-containing film in the silicon substrate with the cobalt-containing film was measured using a resistivity measuring device (“Σ-5” manufactured by Enpies Co., Ltd.) by the direct current 4-probe method. The electrical conductivity is “S” (extremely good) when the specific resistance is 25.0 μΩ·cm or less and “A” (good) when the specific resistance is more than 25.0 μΩ·cm and 50.0 μΩ·cm or less, When it was larger than 50.0 μΩ·cm, it was evaluated as “B” (poor).
[埋め込み性]
 上記調製した塗工膜形成用組成物を、深さ400nm、幅45nmのライン・アンド・スペース・パターンが形成されたシリコン基板上に、スピンコーター(ミカサ(株)の「MS-B200」)を用い、回転塗工法により塗工した。次に、RTA炉((株)アルバックの「QHC-P610CP」)を用いて、窒素雰囲気中にて、500℃で300秒間加熱した後、23℃で60秒間冷却することにより、ラインパターンの部分における平均厚みが50nmのコバルト含有膜を形成し、コバルト含有膜付きシリコン基板を得た。上記コバルト含有膜付きシリコン基板の断面形状を走査型電子顕微鏡((株)日立ハイテクノロジーズの「SU8220」)にて観察し、埋め込み性を評価した。埋め込み性は、コバルト含有膜がスペースパターンの底部まで埋め込まれている場合は「A」(良好)と、コバルト含有膜がパターンの底部まで埋め込まれていない場合は「B」(不良)と評価した。
[Embedding]
A spin coater (“MS-B200” manufactured by Mikasa Co., Ltd.) was applied to the prepared coating film-forming composition on a silicon substrate on which a line-and-space pattern having a depth of 400 nm and a width of 45 nm was formed. It was used and was coated by the spin coating method. Next, using an RTA furnace ("QHC-P610CP" manufactured by ULVAC, Inc.) in a nitrogen atmosphere, after heating at 500°C for 300 seconds and then cooling at 23°C for 60 seconds, the line pattern portion A cobalt-containing film having an average thickness of 50 nm was formed to obtain a silicon substrate with a cobalt-containing film. The cross-sectional shape of the silicon substrate with the cobalt-containing film was observed with a scanning electron microscope (“SU8220” manufactured by Hitachi High-Technologies Corporation) to evaluate embeddability. The embeddability was evaluated as "A" (good) when the cobalt-containing film was buried to the bottom of the space pattern and "B" (bad) when the cobalt-containing film was not buried to the bottom of the pattern. ..
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表2の結果から、実施例の塗工膜形成用組成物は、保存安定性に優れると共に、形成するコバルト含有膜の導電性及び埋め込み性に優れていることが分かる。 From the results in Table 2 above, it can be seen that the coating film forming compositions of the examples are excellent in storage stability and also in conductivity and embedding property of the cobalt-containing film to be formed.
 本発明の塗工膜形成用組成物は、保存安定性に優れている。本発明の基板の製造方法によれば、当該塗工膜形成用組成物を使用することにより、導電性及び埋め込み性に優れるコバルト含有膜を形成することができる。従って、これらは、半導体分野、電池材料分野等におけるコバルト含有膜の形成において好適に用いることができる。 The coating film forming composition of the present invention has excellent storage stability. According to the method for producing a substrate of the present invention, by using the coating film forming composition, a cobalt-containing film having excellent conductivity and embedding property can be formed. Therefore, these can be suitably used in forming a cobalt-containing film in the fields of semiconductors, battery materials and the like.

Claims (10)

  1.  コバルト-炭素結合を有さないコバルト含有化合物と、
     溶媒と
     を含有する塗工膜形成用組成物。
    A cobalt-containing compound having no cobalt-carbon bond,
    A coating film-forming composition containing a solvent.
  2.  上記溶媒が有機溶媒を含み、
     上記有機溶媒がアルコール系溶媒を含む請求項1に記載の塗工膜形成用組成物。
    The solvent includes an organic solvent,
    The coating film-forming composition according to claim 1, wherein the organic solvent contains an alcohol solvent.
  3.  上記アルコール系溶媒がモノアルコール類、多価アルコール部分エーテル類、乳酸エステル類、ヒドラジノアルコール類、ヒドロキシケトンヒドラゾン類又はこれらの組み合わせである請求項2に記載の塗工膜形成用組成物。 The coating film forming composition according to claim 2, wherein the alcohol solvent is a monoalcohol, a polyhydric alcohol partial ether, a lactic acid ester, a hydrazino alcohol, a hydroxyketone hydrazone, or a combination thereof.
  4.  上記有機溶媒における上記アルコール系溶媒の含有割合が50質量%以上である請求項2又は請求項3に記載の塗工膜形成用組成物。 The coating film forming composition according to claim 2 or 3, wherein the content ratio of the alcohol solvent in the organic solvent is 50% by mass or more.
  5.  上記コバルト含有化合物が、硝酸、硫酸若しくはカルボン酸のコバルト塩、コバルトと配位子とを有する錯体又はこれらの組み合わせである請求項1から請求項4のいずれか1項に記載の塗工膜形成用組成物。 The coating film formation according to any one of claims 1 to 4, wherein the cobalt-containing compound is a cobalt salt of nitric acid, sulfuric acid or carboxylic acid, a complex having cobalt and a ligand, or a combination thereof. Composition.
  6.  上記溶媒以外の全成分における上記コバルト含有化合物の含有割合が50質量%以上である請求項1から請求項5のいずれか1項に記載の塗工膜形成用組成物。 The coating film forming composition according to any one of claims 1 to 5, wherein the content ratio of the cobalt-containing compound in all components other than the solvent is 50% by mass or more.
  7.  パターン形成用である請求項1から請求項6のいずれか1項に記載の塗工膜形成用組成物。 The coating film-forming composition according to any one of claims 1 to 6, which is for pattern formation.
  8.  反転パターン形成用である請求項1から請求項6のいずれか1項に記載の塗工膜形成用組成物。 The composition for forming a coating film according to any one of claims 1 to 6, which is for forming a reverse pattern.
  9.  基板に直接又は間接に組成物を塗工する工程
     を備え、
     上記組成物が、コバルト-炭素結合を有さないコバルト含有化合物と、溶媒とを含有する、基板の製造方法。
    Comprises a step of directly or indirectly coating the composition on the substrate,
    A method for producing a substrate, wherein the composition contains a cobalt-containing compound having no cobalt-carbon bond and a solvent.
  10.  上記塗工工程により形成された塗工膜を加熱する工程
     をさらに備える請求項9に記載の基板の製造方法。
    The method for manufacturing a substrate according to claim 9, further comprising: a step of heating the coating film formed by the coating step.
PCT/JP2019/050710 2018-12-26 2019-12-24 Coating film forming composition and substrate manufacturing method WO2020138121A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217019485A KR20210107688A (en) 2018-12-26 2019-12-24 Composition for forming a coating film and method for manufacturing a substrate
JP2020563328A JP7363819B2 (en) 2018-12-26 2019-12-24 Composition for forming conductive coating film and method for producing substrate
US17/356,582 US20210318619A1 (en) 2018-12-26 2021-06-24 Composition, method of producing substrate, method of forming pattern, and method of forming reverse pattern

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-242573 2018-12-26
JP2018242573 2018-12-26
JP2019067945 2019-03-29
JP2019-067945 2019-03-29
JP2019-191492 2019-10-18
JP2019191492 2019-10-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/356,582 Continuation US20210318619A1 (en) 2018-12-26 2021-06-24 Composition, method of producing substrate, method of forming pattern, and method of forming reverse pattern

Publications (1)

Publication Number Publication Date
WO2020138121A1 true WO2020138121A1 (en) 2020-07-02

Family

ID=71129439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050710 WO2020138121A1 (en) 2018-12-26 2019-12-24 Coating film forming composition and substrate manufacturing method

Country Status (4)

Country Link
US (1) US20210318619A1 (en)
JP (1) JP7363819B2 (en)
KR (1) KR20210107688A (en)
WO (1) WO2020138121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118698A1 (en) * 2020-12-03 2022-06-09 Jsr株式会社 Metal-containing film formation composition, metal-containing film, metal-containing film formation method, and production method of metal-containing film formation composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541274A (en) * 1999-04-01 2002-12-03 ビーエーエスエフ アクチェンゲゼルシャフト Method of radical-initiated aqueous emulsion polymerization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102574884B (en) 2009-08-07 2016-02-10 西格玛-奥吉奇有限责任公司 High molecular weight alkyl-allyl three carbonylic cobalt compound and the purposes for the preparation of dielectric film thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541274A (en) * 1999-04-01 2002-12-03 ビーエーエスエフ アクチェンゲゼルシャフト Method of radical-initiated aqueous emulsion polymerization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118698A1 (en) * 2020-12-03 2022-06-09 Jsr株式会社 Metal-containing film formation composition, metal-containing film, metal-containing film formation method, and production method of metal-containing film formation composition

Also Published As

Publication number Publication date
US20210318619A1 (en) 2021-10-14
KR20210107688A (en) 2021-09-01
JP7363819B2 (en) 2023-10-18
JPWO2020138121A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
KR101719834B1 (en) Resist composition and patterning process
JP5003279B2 (en) Inversion pattern forming method
JP2019113855A (en) Organometallic solution-based high-resolution patterning composition
TWI512142B (en) An etching method for etching a copper-containing and titanium-containing multilayer film, a method of manufacturing a multi-layer film wiring of copper and titanium by the etching method of the copper-containing and titanium-containing multilayer film of the liquid composition And a substrate made by the method for manufacturing the multilayer wiring
TWI845711B (en) Composition, kit, method of treating substrate
JP7205472B2 (en) METAL-CONTAINING FILM-FORMING COMPOSITION AND PATTERN-FORMING METHOD FOR EXTREME-UV OR ELECTRON-BEAM LITHOGRAPHY
JP2004512672A (en) Electronic material manufacturing method
CN113015940A (en) Silanol-containing organic-inorganic hybrid coatings for high resolution patterning
KR102351281B1 (en) Composition for forming inorganic film for multilayer resist process, and pattern formation method
EP3598232A1 (en) Radiation sensitive composition and pattern forming method
KR102683037B1 (en) Methods for processing chemicals and substrates
JP6670917B1 (en) An etching solution, a method for processing a target object, and a method for manufacturing a semiconductor element.
JP7363819B2 (en) Composition for forming conductive coating film and method for producing substrate
JPWO2015137193A1 (en) Composition for manufacturing semiconductor device and pattern forming method using the composition for manufacturing semiconductor device
KR20220016076A (en) Film forming composition, resist underlayer film, film forming method, resist pattern forming method, organic underlayer film inverted pattern forming method, film forming composition manufacturing method and metal-containing film pattern forming method
TW201207100A (en) Cleaning composition, cleaning method using the same and fabricating method of semiconductor device
CN109196421A (en) Gap filling composition and the pattern forming method for using the composition comprising polymer
TWI769312B (en) Resist pattern formation method and substrate processing method
JP7028940B2 (en) Compositions for semiconductor photoresists and pattern forming methods using them
TWI641913B (en) Polymer, organic layer composition, and method of forming patterns
KR20210044591A (en) Semiconductor resist composition, and method of forming patterns using the composition
CN106537564A (en) Seal composition and production method for semiconductor device
JP2020013994A (en) Substrate processing method, substrate processing system, and self-organizing material
WO2021153171A1 (en) Composition, and substrate processing method
CN114341328A (en) Cleaning agent composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903768

Country of ref document: EP

Kind code of ref document: A1