WO2020137781A1 - Epihalohydrin rubber composition - Google Patents

Epihalohydrin rubber composition Download PDF

Info

Publication number
WO2020137781A1
WO2020137781A1 PCT/JP2019/049768 JP2019049768W WO2020137781A1 WO 2020137781 A1 WO2020137781 A1 WO 2020137781A1 JP 2019049768 W JP2019049768 W JP 2019049768W WO 2020137781 A1 WO2020137781 A1 WO 2020137781A1
Authority
WO
WIPO (PCT)
Prior art keywords
epihalohydrin
rubber composition
parts
epihalohydrin rubber
weight
Prior art date
Application number
PCT/JP2019/049768
Other languages
French (fr)
Japanese (ja)
Inventor
榊田 宏
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020563152A priority Critical patent/JP7375774B2/en
Publication of WO2020137781A1 publication Critical patent/WO2020137781A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins

Definitions

  • the present invention relates to an epihalohydrin rubber composition, and more specifically, to an epihalohydrin rubber composition having particularly excellent storage stability, which provides a crosslinked product having low metal corrosiveness, tensile strength, and heat aging resistance.
  • the present invention relates to an epihalohydrin rubber composition that can be produced and a crosslinked product obtained by crosslinking the same.
  • Crosslinked molded products of epihalohydrin rubber such as binary copolymers of epichlorohydrin and ethylene oxide and ternary copolymers of epichlorohydrin, ethylene oxide and allyl glycidyl ether, have heat resistance and heat aging resistance. It is widely used in various rubber products such as hoses, tubes, diaphragms, gaskets, O-rings, tire inner liners, and electric wire coating materials.
  • crosslinking agents such as triazine thiol compounds, thiadiazole compounds, diazine thiol compounds, sulfur and sulfur donors have been used for crosslinking epihalohydrin rubber.
  • a cross-linking agent for example, when a triazine thiol compound is used, a cross-linking reaction occurs via a halogen atom in the epihalohydrin monomer unit in the epihalohydrin rubber, and as a result, hydrogen halide is generated and hydrogen halide It is said that the crosslinked molded product of halohydrin rubber has a problem in metal corrosivity and the like because it harms metals and the like.
  • Patent Document 1 discloses a binary copolymer of epichlorohydrin and allyl glycidyl ether, and three copolymers of epichlorohydrin, ethylene oxide and allyl glycidyl ether.
  • a rubber composition containing an epihalohydrin rubber such as a copolymer, a peroxide crosslinking agent and a piperidinyloxy radical compound is crosslinked with peroxide, and the resulting crosslinked product is converted from a reaction product of the piperidinyloxy radical compound. It is described that the following piperidine compound is contained. And it is described that the crosslinked product obtained by such a method is excellent in fatigue resistance and heat aging resistance. However, this method does not particularly take into consideration storage stability of the rubber composition and improvement of metal corrosiveness of a crosslinked product obtained from the rubber composition.
  • the problem to be solved by the present invention is an epihalohydrin rubber composition which is particularly excellent in storage stability, has low metal corrosiveness, and can provide a crosslinked product excellent in tensile strength, heat aging resistance and the like.
  • An object is to provide an epihalohydrin rubber composition and a crosslinked product obtained by crosslinking it.
  • the present inventor as a result of intensive research to solve the above problems, as an epihalohydrin rubber, containing a specific range amount of monomer units of a compound having a glycidyl ether group, containing an epihalohydrin unit and a compound unit having a glycidyl ether group
  • An epihalohydrin rubber composition obtained by blending a specific range amount of an organic peroxide cross-linking agent, a specific range amount of a cross-linking retarder and a specific range amount of an anti-aging agent into the copolymer is particularly preferable. It was found that a crosslinked product having excellent storage stability, low metal corrosiveness, and excellent tensile strength and heat aging resistance can be provided, and the present invention has been completed based on this finding.
  • an epihalohydrin rubber composition comprising an epihalohydrin rubber, an organic peroxide crosslinking agent, a crosslinking retarder and an antioxidant
  • the epihalohydrin rubber is a copolymer containing an epihalohydrin unit and a compound unit having a glycidyl ether group,
  • the content of the monomer unit of the compound having a glycidyl ether group in the copolymer is 5 to 15% by weight
  • the organic peroxide crosslinking agent is contained in an amount of 0.24 to 2 parts by weight per 100 parts by weight of the epihalohydrin rubber.
  • the epihalohydrin rubber composition is provided.
  • the content of the monomer unit of the compound having a glycidyl ether group in the copolymer is preferably 6 to 13% by weight, more preferably 7 to 12% by weight.
  • the epihalohydrin rubber is preferably at least one selected from a binary copolymer of epihalohydrin and a compound having a glycidyl ether group, and a terpolymer of epihalohydrin, an alkylene oxide and a compound having a glycidyl ether group. It consists of a copolymer.
  • the epihalohydrin is preferably epichlorohydrin.
  • the alkylene oxide is preferably ethylene oxide.
  • the compound having a glycidyl ether group is preferably allyl glycidyl ether.
  • the epihalohydrin rubber composition preferably contains 0.32 to 1.2 parts by weight, more preferably 0.4 to 0.8 parts by weight, of the organic peroxide crosslinking agent per 100 parts by weight of the epihalohydrin rubber.
  • the organic peroxide cross-linking agent is preferably dialkyl peroxide, peroxyketal or peroxyester, more preferably dicumyl peroxide.
  • the epihalohydrin rubber composition preferably contains 0.012 to 0.12 parts by weight, more preferably 0.0192 to 0.072 parts by weight, of the crosslinking retarder per 100 parts by weight of the epihalohydrin rubber.
  • the cross-linking retarder is preferably a nitroso compound, more preferably 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl.
  • the epihalohydrin rubber composition preferably contains 1 to 3.5 parts by weight, more preferably 1.5 to 3 parts by weight, per 100 parts by weight of the epihalohydrin rubber.
  • the antiaging agent is preferably at least one selected from aromatic secondary amine compounds, dithiocarbamate compounds, benzimidazole compounds and amine-ketone compounds, and more preferably 4,4′- It is at least one selected from bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine, nickel dibutyldithiocarbamate and 2-mercaptobenzimidazole.
  • an epihalohydrin rubber crosslinked product obtained by crosslinking the above epihalohydrin rubber composition.
  • an epihalohydrin rubber composition having particularly excellent storage stability, having low metal corrosion resistance, tensile strength, heat aging resistance, fuel oil resistance, cold resistance (that is, resistance to embrittlement at low temperatures), resistance to Provided are an epihalohydrin rubber composition capable of giving a crosslinked product excellent in compression set and the like, and a crosslinked product obtained by crosslinking the same.
  • the epihalohydrin rubber composition of the present invention and the crosslinked product obtained by crosslinking the same are specifically described below.
  • the epihalohydrin rubber used as a rubber component in the epihalohydrin rubber composition of the present invention is a copolymer containing an epihalohydrin unit and a compound unit having a glycidyl ether group, and the compound having a glycidyl ether group in the copolymer.
  • This copolymer is a binary copolymer composed of epihalohydrin, a compound having a glycidyl ether group and a compound having a glycidyl ether group. It may be a combination or a terpolymer composed of epihalohydrin, an alkylene oxide and a compound having a glycidyl ether group. Also, a mixture of these may be used.
  • epihalohydrin examples include epichlorohydrin, epibromohydrin, 2-methylepichlorohydrin, and the like, of which epichlorohydrin is preferable.
  • Examples of the compound having a glycidyl ether group include compounds having a carbon-carbon unsaturated bond and a glycidyl ether group such as vinyl glycidyl ether, allyl glycidyl ether and o-allyl phenyl glycidyl ether, and among them, allyl glycidyl ether is preferable.
  • alkylene oxide examples include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane, 1,2-epoxy-4-chloropentane, 1,2-epoxyhexane, 1,2-epoxyoctane, 1 ,2-epoxydecane, 1,2-epoxytetradecane, 1,2-epoxyhexadecane, 1,2-epoxyoctadecane, 1,2-epoxyeicosan, 1,2-epoxyisobutane, 2,3-epoxyisobutane, etc.
  • a copolymer containing epihalohydrin and a compound having a glycidyl ether group as a copolymerization component such as the binary copolymer and the ternary copolymer, each copolymer
  • the content of the monomer unit of the compound having a glycidyl ether group in the combined product is 5 to 15% by weight.
  • the crosslinked product obtained from the epihalohydrin rubber composition has tensile strength, heat resistance, fuel oil resistance, cold resistance (that is, embrittlement resistance at low temperature), compression set resistance. It is not preferable from the viewpoint of sex.
  • the content is preferably 6 to 13% by weight, and particularly preferably 7 to 12% by weight from the viewpoint of storage stability of the epihalohydrin rubber composition and metal corrosiveness of the crosslinked product obtained from the epihalohydrin rubber composition.
  • the content of the epihalohydrin monomer unit in the binary copolymer of epihalohydrin and a compound having a glycidyl ether group used as the epihalohydrin rubber in the present invention is 85 to 95% by weight, preferably 87 to 94%. %, and more preferably 88 to 93% by weight.
  • the total content of the monomer unit of epihalohydrin and the monomer composition of alkylene oxide is 85 to 95% by weight, preferably Is 87 to 94% by weight, and more preferably 88 to 93% by weight.
  • the content of the epihalohydrin monomer unit is preferably 48 to 78% by weight, and the content of the alkylene oxide monomer is preferably 10 to 45% by weight.
  • the 13 C-NMR was measured, it can be calculated from 13 C-NMR chart obtained.
  • the peak derived from the carbon bonded to chlorine in the epichlorohydrin unit is observed at a chemical shift of 40 to 50 ppm, and the peak of allyl glycidyl ether unit is observed.
  • a peak derived from unsaturated carbon is observed at a chemical shift of 110 to 140 ppm.
  • the epihalohydrin rubber used in the present invention includes a binary copolymer of the above epihalohydrin and a compound having a glycidyl ether group, and a terpolymer of the above epihalohydrin, an alkylene oxide and a compound having a glycidyl ether group. And may be used alone or as a mixture of these copolymers.
  • the Mooney viscosity ML 1+4 (100° C.) of the epihalohydrin rubber used in the present invention is usually 30 to 160, preferably 40 to 120. If the Mooney viscosity is too low or too high, the kneading processability with the compounding agent will deteriorate, which is not preferable.
  • the method for producing the epihalohydrin rubber used in the present invention is not particularly limited, and it may be produced by copolymerizing a predetermined amount of each predetermined monomer according to a known polymerization method. For example, it can be produced by the methods of Production Examples 1 to 5 described in this specification.
  • the Mooney viscosity can be set to a desired value by appropriately adjusting the composition of the monomers.
  • the organic peroxide crosslinking agent used in the epihalohydrin rubber composition of the present invention is preferably a dialkyl peroxide, a peroxyketal or a peroxyester.
  • dialkyl peroxide examples include dicumyl peroxide, di(2-tert-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, 2,5-dimethyl- 2,5-di(tert-butylperoxy)hexyne-3 and the like can be mentioned.
  • Peroxyketals include 1,1-di(tert-hexylperoxy)cyclohexane, 1,1-di(tert-butylperoxy)cyclohexane, n-butyl 4,4-di(tert-butylperoxy)valerate And so on.
  • peroxyesters examples include tert-butylperoxybenzoate, tert-hexylperoxybenzoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, tert-butylperoxy-2-ethylhexyl monocarbonate, Examples thereof include tert-butylperoxylaurate, tert-butylperoxy-3,5,5-trimethylhexanoate and tert-hexylperoxyisopropyl monocarbonate.
  • dicumyl peroxide and di(2-tert-butylperoxyisopropyl) are preferred because unreacted components after crosslinking are less likely to remain and the boiling point of the decomposed product is relatively low and the decomposed product is easily removed.
  • Benzene, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, 1,1-di(tert-butylperoxy)cyclohexane and the like are preferable, and dicumyl peroxide is particularly preferable.
  • the organic peroxide cross-linking agent contained in the epihalohydrin rubber composition of the present invention is an epihalohydrin rubber via a double bond in a monomer unit of a compound having a glycidyl ether group in the above copolymer constituting the epihalohydrin rubber. Can be crosslinked. Therefore, the amount of the organic peroxide crosslinking agent used in the present invention is appropriately determined based on the content of the monomer unit of the compound having a glycidyl ether group in the copolymer. From this point of view, the epihalohydrin rubber composition of the present invention contains the organic peroxide crosslinking agent in an amount of 0.24 to 2 parts by weight per 100 parts by weight of the above epihalohydrin rubber.
  • the crosslinked product obtained from the epihalohydrin rubber composition has tensile strength, compression set resistance, heat aging resistance, fuel oil resistance, cold resistance (that is, embrittlement resistance at low temperature). It is not preferable from the viewpoint of, for example, even when it exceeds 2 parts by weight, the crosslinked product obtained from the epihalohydrin rubber composition has tensile strength, compression set resistance, heat aging resistance, heat resistance (that is, embrittlement resistance at low temperature). ) Etc. are not preferable.
  • the epihalohydrin rubber composition of the present invention contains 100 parts by weight of the above-mentioned epihalohydrin rubber.
  • the content is preferably 0.32 to 1.2 parts by weight, more preferably 0.4 to 0.8 parts by weight.
  • the theoretical active oxygen amount of the organic peroxide cross-linking agent with respect to 1 part by weight of the carbon-carbon unsaturated bond in the epihalohydrin rubber is preferably 0.001 to 0.05 part by weight, more preferably 0.004 part by weight. To 0.04 parts by weight, more preferably 0.008 to 0.03 parts by weight.
  • the crosslinking retarder contained in the epihalohydrin rubber composition of the present invention is preferably a nitroso compound.
  • the nitroso compound include 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-methoxy-2,2,6 ,6-Tetramethylpiperidine-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl, 2,2,5,5-tetramethylpiperidine-1-oxyl, bis(2 ,2,6,6-Tetramethyl-1-piperidinyloxy-4-yl)sebacate, 4,4′-[(1,10-dioxo-1,10-decanediyl)bis(oxy)]bis[2 ,2,6,6-Tetramethyl]-1-piperidinidinyloxy, 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl monophosphate, 3-carboxy
  • the cross-linking start time can be appropriately delayed, the time from the cross-linking start to the cross-linking completion can be appropriately adjusted, and the cross-linking density of the resulting cross-linked product can be adjusted.
  • a crosslinked product having desired properties can be advantageously obtained.
  • the epihalohydrin rubber composition of the present invention contains the crosslinking retarder in an amount of 0.0072 to 0.24 part by weight per 100 parts by weight of the above epihalohydrin rubber.
  • it is not preferable from the viewpoint of the storage stability of the epihalohydrin rubber composition and the heat aging resistance of the crosslinked product obtained from the epihalohydrin rubber composition, and when it exceeds 0.24 parts by weight.
  • it is not preferable from the viewpoint of heat aging resistance, fuel oil resistance, tensile strength, etc. of the crosslinked product obtained from the epihalohydrin rubber composition.
  • the crosslinking retarder is preferably 0.012 to 0.12 parts by weight, more preferably 0.0192 to 0 per 100 parts by weight of the above epihalohydrin rubber. Contains 0.072 parts by weight.
  • the amount of the crosslinking retarder with respect to 1 part by weight of the carbon-carbon unsaturated bond in the epihalohydrin rubber is preferably 0.003 to 0.1 part by weight, more preferably 0.005 to 0.07 part by weight. And more preferably 0.007 to 0.05 parts by weight.
  • the antioxidant contained in the epihalohydrin rubber composition of the present invention is preferably an aromatic secondary amine compound, a dithiocarbamate compound, a benzimidazole compound or an amine-ketone compound.
  • aromatic secondary amine compound include N,N′-di-2-naphthyl-p-phenylenediamine, N-phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis( ⁇ , ⁇ -Dimethylbenzyl)diphenylamine, p-(p-toluenesulfonylamide)diphenylamine, N,N'-di-2-naphthyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N- Phenyl-N'-isopropyl-p-phenylenediamine, N-phenyl-N'
  • Examples of the dithiocarbamate-based compound include nickel dibutyldithiocarbamate.
  • Examples of the benzimidazole compound include zinc salt of 2-mercaptobenzimidazole and 2-mercaptobenzimidazole.
  • As the amine-ketone compound 2,2,4-trimethyl-1,2-dihydroquinoline polymer, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline, a reaction product of diphenylamine and acetone And so on.
  • 4,4′-bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine, nickel dibutyldithiocarbamate or 2-mercaptobenzimidazole is preferable.
  • As the antiaging agent one of these may be used alone or two or more of them may be used in combination, but it is preferable to use two or more of them in combination.
  • the epihalohydrin rubber composition of the present invention contains the antioxidant in an amount of 0.5 to 4 parts by weight per 100 parts by weight of the above epihalohydrin rubber.
  • the amount is less than 0.5 parts by weight, it is not preferable from the viewpoint of heat aging resistance, fuel oil resistance, compression set resistance, etc. of the crosslinked product obtained from the epihalohydrin rubber composition, and even when it exceeds 4 parts by weight.
  • the epihalohydrin rubber composition of the present invention preferably contains 1 to 3.5 parts by weight, more preferably 1.5 to 3 parts by weight of an antioxidant per 100 parts by weight of the above epihalohydrin rubber. contains.
  • the epihalohydrin rubber composition of the present invention is a rubber other than the above epihalohydrin rubber, for example, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, etc., within a range that does not impair the desired effect of the present invention.
  • Unsaturated rubber; butyl rubber, ethylene-propylene rubber, ethylene-acrylic rubber, acrylic rubber, chlorosulfonated polyethylene, chlorinated polyethylene, nitrile rubber, hydrogenated nitrile rubber, silicon rubber, fluorine rubber, etc. Highly saturated rubber and the like may be included.
  • the content of these rubbers can be appropriately adjusted, but is preferably 40 parts by weight or less, more preferably 20 parts by weight or less, and further preferably 10 parts by weight or less with respect to 100 parts by weight of the epihalohydrin rubber.
  • the epihalohydrin rubber composition of the present invention in addition to the above-mentioned organic peroxide cross-linking agent, cross-linking retarder and anti-aging agent, compounding agents usually used in rubber compositions, for example, reinforcing properties of carbon black and silica.
  • Fillers; non-reinforcing fillers such as calcium carbonate and clay; processing aids such as fatty acid esters; plasticizers such as polyether ester compounds; acid acceptors such as hydrotalcite; co-use such as trimethylolpropane trimethacrylate You may contain a crosslinking agent etc.
  • the epihalohydrin rubber composition of the present invention may contain a light stabilizer, a lubricant, an adhesive, a lubricant, a flame retardant, a mildew proofing agent, a colorant, an antistatic agent and the like which are usually used in the rubber industry.
  • a light stabilizer e.g., a lubricant, an adhesive, a lubricant, a flame retardant, a mildew proofing agent, a colorant, an antistatic agent and the like which are usually used in the rubber industry.
  • the content of these compounding agents in the epihalohydrin rubber composition of the present invention may be appropriately selected so as to satisfy processing conditions and various performances normally required for a rubber cross-linked product.
  • the method for preparing the epihalohydrin rubber composition of the present invention is not particularly limited, and a commonly used method can be used. For example, by using a mixer such as an open roll, a Banbury mixer, and a screw mixer, the epihalohydrin rubber, the organic peroxide cross-linking agent, the cross-linking retarder and the anti-aging agent, and optionally other compounding agents are mixed. A method can be adopted. The order of compounding the epihalohydrin rubber, the organic peroxide cross-linking agent, the cross-linking retarder and the antioxidant, and other compounding agents is not particularly limited.
  • the epihalohydrin rubber composition of the present invention can be formed into a crosslinked product by molding with a molding machine and heating during molding or by heating subsequent to molding. It is preferable that such heating is usually performed at 100° C. or higher for 1 minute to 5 hours.
  • crosslinking at 100° C. or higher for 1 minute to 5 hours is used as a primary crosslinking step, and if necessary, the primary crosslinked product obtained in the primary crosslinking step may be used at 100 to 220° C.
  • a step of secondary cross-linking by heating for 5 to 48 hours may be further added.
  • the conditions of the secondary cross-linking as needed for the primary cross-linked product are usually a heating temperature of 100 to 220° C., preferably 130 to 210° C., more preferably 150 to 180° C., and a heating time of 0. It is 5 to 48 hours, preferably 0.7 to 24 hours, more preferably 1 to 12 hours.
  • the epihalohydrin rubber composition of the present invention is particularly excellent in storage stability, has low metal corrosion resistance, tensile strength, heat aging resistance, fuel oil resistance, cold resistance (that is, embrittlement resistance at low temperatures), and compression resistance. It is possible to give a crosslinked product which is excellent in permanent set property and the like.
  • the crosslinked product of the epihalohydrin rubber composition of the present invention can be suitably used for automobile hoses, air duct hoses, OA equipment rolls, electrophotographic equipment conductive rolls, and the like.
  • Mooney scorch time (T5) was used as JIS Scorch stability test of the epichlorohydrin rubber composition. It was measured at 125° C. using an L rotor according to K6300:2013.
  • the Mooney scorch time (T5) is the time until the Mooney viscosity increases from the minimum value (Vm) by 5 points. The larger the Mooney scorch time (T5), the better the scorch stability.
  • the scorch stability was judged according to the following criteria, and each sample was graded to 1 to 4.
  • Mooney scorch time (T5) is 30 minutes or more 2: Mooney scorch time (T5) is 20 minutes or more and less than 30 minutes 3: Mooney scorch time (T5) is 10 minutes or more, less than 20 minutes If 4: Mooney scorch time (T5) is less than 10 minutes
  • volume change rate is less than 50% 2: When the volume change rate is 50% or more and less than 60% 3: When the volume change rate is 60% or more and less than 70% 4: Volume change rate is 70% If more than
  • Production example 1 Production of Polymerization Catalyst
  • the closed pressure-resistant glass container was replaced with nitrogen, and 200 parts of toluene and 60 parts of triisobutylaluminum were supplied. After dipping this glass container in ice water and cooling, 230 parts of diethyl ether was added and stirred. Next, while cooling with ice water, 13.6 parts of phosphoric acid was added and further stirred. At this time, the internal pressure of the container increased due to the reaction between triisobutylaluminum and phosphoric acid, so depressurization was carried out at appropriate times. Then, the obtained reaction mixture was aged in a warm water bath at 60° C. for 1 hour to obtain a catalyst solution.
  • the monomer composition ratio of the epichlorohydrin rubber (a-3) was measured by 13 C-NMR and found to be 75.5 wt% of epichlorohydrin monomer unit and 13.4 wt% of ethylene oxide monomer unit.
  • the allyl glycidyl ether monomer unit was 11.1 wt %.
  • the Mooney viscosity of the obtained epichlorohydrin rubber (a-1) was 71.
  • Production Example 3 Production of epichlorohydrin rubber (a-2) Put 323.05 parts of epichlorohydrin, 26.95 parts of allyl glycidyl ether, and 3500 parts of toluene in an autoclave, and raise the temperature of the inner solution to 60°C with stirring under a nitrogen atmosphere. After warming, 10 parts of the catalyst solution obtained in Production Example 1 above was added to start the reaction. Every 30 minutes after the start of the reaction, 7 parts of the catalyst solution was added over 5 hours. Then, 15 parts of water was added and stirred to terminate the reaction.
  • Example 1 To 100 parts of the epichlorohydrin rubber (a-1) obtained in Production Example 2 above, 40 parts of a filler (carbon black) "SEAST SO (registered trademark) (FEF)" (manufactured by Tokai Carbon Co., Ltd.) and a filler ( Wet silica) "Nipsil (registered trademark) VN-3" (manufactured by Tosoh Silica Co., Ltd.) 50 parts, plasticizer (polyether ester compound) "Adeka Sizer (registered trademark) RS735" (manufactured by ADEKA), 35 parts, processed Auxiliary agent (fatty acid ester) "Splender R300V” (manufactured by Kao) 3.0 parts, Acid acceptor (hydrotalcite) "DHT-4A” (manufactured by Kyowa Chemical Industry Co., Ltd.) 3.0 parts, calcium carbonate "Shiragika CC” 3.0 parts (manufactured by Shiraishi Calcium Co
  • Example 2 An epichlorohydrin rubber composition was prepared in the same manner as in Example 1 except that the epichlorohydrin rubber (a-2) obtained in Production Example 3 was changed.
  • Example 3 0.56 parts of peroxide (dicumyl peroxide) "Parkmill (registered trademark)-D” (manufactured by NOF Corporation), and nitroso compound (TEMPOL) were added to the epichlorohydrin rubber (a-3) obtained in Production Example 4 above. : 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) "Polystop 7300P” (manufactured by Hakutosha Co., Ltd.) A chlorohydrin rubber composition was prepared.
  • Example 4 Anti-aging agent (4,4'-bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine) "Nocrac (registered trademark) CD” (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) 0.50 parts, anti-aging agent (dibutylthiocarbamic acid) Nickel) 0.50 parts of "Nocrac (registered trademark) NBC” (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), peroxide (dicumyl peroxide) "Park Mill (registered trademark)-D” (manufactured by NOF Corporation) 0.32 Part, and nitroso compound (TEMPOL: 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) "Polystop 7300P” (manufactured by Hakutosha Co., Ltd.), 0.02 part.
  • An epichlorohydrin rubber composition was prepared in the same manner as in.
  • Table 1 shows the test results of the epichlorohydrin rubber compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 7. Table 1 also shows the composition of each epichlorohydrin rubber composition. Further, Table 1 also shows the amount of theoretical active oxygen amount of organic peroxide per 1 g of double bond for Percumyl D (organic peroxide), and TEMPOL (crosslinking retarder) for TEMPOL (crosslinking retarder). The amount of the crosslinking retarder) added is also shown.
  • a binary copolymer of epichlorohydrin and allyl glycidyl ether wherein the content of allyl glycidyl ether monomer units (AGE) is 7.7% by weight.
  • a copolymer terpolymer of epichlorohydrin rubber (a-2) or a terpolymer of epichlorohydrin, ethylene oxide and allyl glycidyl ether, which comprises a monomer unit (AGE) of allyl glycidyl ether A terpolymer having a content of 11.1 or 6.9% by weight, epichlorohydrin rubber (a-1) or epichlorohydrin rubber (a-3), was used.
  • Comparative Example 2 and Comparative Example 3 blended in an amount of less than 2 parts by weight or more than 2 parts by weight, and an amount of crosslinking retarder (TEMPOL) exceeding 0.24 parts by weight per 100 parts by weight of epichlorohydrin rubber (a-1) or 0.
  • Comparative Examples 4 and 5 blended in an amount of less than 0.0072 parts by weight, and less than 0.5 parts by weight or 4 parts by weight of an antioxidant per 100 parts by weight of epichlorohydrin rubber (a-1).
  • the epichlorohydrin rubber compositions of Comparative Example 6 and Comparative Example 7 blended in an amount exceeding the above range show storage stability of the epichlorohydrin rubber composition, tensile strength of a crosslinked product of the epichlorohydrin rubber composition, heat aging resistance, The fuel oil resistance, cold resistance (brittle resistance at low temperature), metal corrosion resistance, and compression set resistance were inferior in one or more.
  • the epihalohydrin rubber composition of the present invention is particularly excellent in storage stability, has low metal corrosion resistance, tensile strength, heat aging resistance, fuel oil resistance, cold resistance (brittle resistance at low temperature), compression permanent resistance. It is possible to give a crosslinked product which is excellent in terms of strainability and the like.
  • the crosslinked product of the epihalohydrin rubber composition of the present invention can be suitably used for automobile hoses, air duct hoses, OA equipment rolls, electrophotographic equipment conductive rolls, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is an epihalohydrin rubber composition that has especially excellent storage stability and is capable of giving a crosslinked product having low metal corrosiveness and excellent tensile strength, thermal aging resistance, fuel oil resistance, etc. The present invention provides an epihalohydrin rubber composition obtained by compounding an amount of an organic peroxide crosslinking agent that falls within a specific range, an amount of a crosslinking retarder that falls within a specific range, and an amount of an aging inhibitor that falls within a specific range, with a copolymer that contains epihalohydrin units and units of a compound having glycidyl ether groups, the copolymer including an amount, within a specific range, of monomer units of the compound having glycidyl ether groups.

Description

エピハロヒドリンゴム組成物Epihalohydrin rubber composition
 本発明はエピハロヒドリンゴム組成物に関し、さらに詳細には、特に貯蔵安定性に優れたエピハロヒドリンゴム組成物であって、金属腐食性が低く、引張強度、耐熱老化性などに優れた架橋物を与えることができるエピハロヒドリンゴム組成物およびそれを架橋してなる架橋物に関する。 The present invention relates to an epihalohydrin rubber composition, and more specifically, to an epihalohydrin rubber composition having particularly excellent storage stability, which provides a crosslinked product having low metal corrosiveness, tensile strength, and heat aging resistance. The present invention relates to an epihalohydrin rubber composition that can be produced and a crosslinked product obtained by crosslinking the same.
 エピクロロヒドリンとエチレンオキサイドとの二元共重合体やエピクロロヒドリンとエチレンオキサイドとアリルグリシジルエーテルとの三元共重合体などのエピハロヒドリンゴムの架橋成形体は、耐熱性や耐熱老化性などの点において優れているため、ホース、チューブ、ダイヤフラム、ガスケット、O-リング、タイヤのインナーライナー、電線被覆材などの各種ゴム製品に広範に使用されている。 Crosslinked molded products of epihalohydrin rubber, such as binary copolymers of epichlorohydrin and ethylene oxide and ternary copolymers of epichlorohydrin, ethylene oxide and allyl glycidyl ether, have heat resistance and heat aging resistance. It is widely used in various rubber products such as hoses, tubes, diaphragms, gaskets, O-rings, tire inner liners, and electric wire coating materials.
 従来から、エピハロヒドリンゴムを架橋する際には、トリアジンチオール化合物、チアジアゾール化合物、ジアジンチオール化合物、硫黄、硫黄供与体などの各種の架橋剤が用いられている。架橋剤として、例えば、トリアジンチオール化合物を用いた場合、エピハロヒドリンゴム中のエピハロヒドリン単量体単位中のハロゲン原子を介して架橋反応が起き、その結果、ハロゲン化水素が発生して、ハロゲン化水素が金属等に害を与えるために、ハロヒドリンゴムの架橋成形体は金属腐食性などに問題があるとされている。 Conventionally, various crosslinking agents such as triazine thiol compounds, thiadiazole compounds, diazine thiol compounds, sulfur and sulfur donors have been used for crosslinking epihalohydrin rubber. As a cross-linking agent, for example, when a triazine thiol compound is used, a cross-linking reaction occurs via a halogen atom in the epihalohydrin monomer unit in the epihalohydrin rubber, and as a result, hydrogen halide is generated and hydrogen halide It is said that the crosslinked molded product of halohydrin rubber has a problem in metal corrosivity and the like because it harms metals and the like.
 また、アリルグリシジルエーテル単量体単位を含有する二元共重合体や三元共重合体のエピハロヒドリンゴムを架橋する場合には、架橋剤としてパーオキサイドを用いることが知られている。架橋剤としてパーオキサイドを用いる方法として、日本特許公開2015-114589号公報(特許文献1)には、エピクロルヒドリンとアリルグリシジルエーテルとの二元共重合体、エピクロルヒドリンとエチレンオキサイドとアリルグリシジルエーテルとの三元共重合体などのエピハロヒドリンゴム、パーオキサイド架橋剤およびピペリジニルオキシラジカル化合物を含有するゴム組成物をパーオキサイドにより架橋させ、得られる架橋物に、ピペリジニルオキシラジカル化合物の反応生成物からなるピペリジン化合物を含有させることが記載されている。そして、このような方法で得られる架橋物は、耐ヘタリ性や耐熱老化性に優れることが記載されている。しかしながら、この方法では、ゴム組成物の貯蔵安定性や、ゴム組成物から得られる架橋物の金属腐食性の改良などの点については、特に考慮されていない。 Also, it is known to use peroxide as a cross-linking agent when cross-linking an epihalohydrin rubber of a binary copolymer or a terpolymer containing an allyl glycidyl ether monomer unit. As a method of using peroxide as a cross-linking agent, Japanese Patent Publication No. 2015-114589 (Patent Document 1) discloses a binary copolymer of epichlorohydrin and allyl glycidyl ether, and three copolymers of epichlorohydrin, ethylene oxide and allyl glycidyl ether. A rubber composition containing an epihalohydrin rubber such as a copolymer, a peroxide crosslinking agent and a piperidinyloxy radical compound is crosslinked with peroxide, and the resulting crosslinked product is converted from a reaction product of the piperidinyloxy radical compound. It is described that the following piperidine compound is contained. And it is described that the crosslinked product obtained by such a method is excellent in fatigue resistance and heat aging resistance. However, this method does not particularly take into consideration storage stability of the rubber composition and improvement of metal corrosiveness of a crosslinked product obtained from the rubber composition.
日本特許公開2015-114589号公報Japanese Patent Publication No. 2015-114589
 本発明が解決しようとする課題は、特に貯蔵安定性に優れたエピハロヒドリンゴム組成物であって、金属腐食性が低く、引張強度、耐熱老化性などの点で優れた架橋物を与えることができるエピハロヒドリンゴム組成物およびそれを架橋してなる架橋物を提供することにある。 The problem to be solved by the present invention is an epihalohydrin rubber composition which is particularly excellent in storage stability, has low metal corrosiveness, and can provide a crosslinked product excellent in tensile strength, heat aging resistance and the like. An object is to provide an epihalohydrin rubber composition and a crosslinked product obtained by crosslinking it.
 本発明者は、上記課題を解決すべく鋭意研究した結果、エピハロヒドリンゴムとして、グリシジルエーテル基を有する化合物の単量体単位を特定範囲量含む、エピハロヒドリン単位とグリシジルエーテル基を有する化合物単位とを含有する共重合体を用い、この共重合体に特定範囲量の有機パーオキサイド架橋剤、特定範囲量の架橋遅延剤および特定範囲量の老化防止剤を配合して得られるエピハロヒドリンゴム組成物が、特に貯蔵安定性に優れ、また、金属腐食性が低く、引張強度、耐熱老化性などの点で優れた架橋物を与えることができることを見出し、この知見に基づいて本発明を完成するに至った。 The present inventor, as a result of intensive research to solve the above problems, as an epihalohydrin rubber, containing a specific range amount of monomer units of a compound having a glycidyl ether group, containing an epihalohydrin unit and a compound unit having a glycidyl ether group An epihalohydrin rubber composition obtained by blending a specific range amount of an organic peroxide cross-linking agent, a specific range amount of a cross-linking retarder and a specific range amount of an anti-aging agent into the copolymer is particularly preferable. It was found that a crosslinked product having excellent storage stability, low metal corrosiveness, and excellent tensile strength and heat aging resistance can be provided, and the present invention has been completed based on this finding.
 かくして、本発明によれば、エピハロヒドリンゴム、有機パーオキサイド架橋剤、架橋遅延剤および老化防止剤を含有するエピハロヒドリンゴム組成物であって、
 前記エピハロヒドリンゴムは、エピハロヒドリン単位とグリシジルエーテル基を有する化合物単位とを含有する共重合体であり、
 前記共重合体におけるグリシジルエーテル基を有する化合物の単量体単位の含有量が5~15重量%であり、
 前記有機パーオキサイド架橋剤を、前記エピハロヒドリンゴム100重量部当たり0.24~2重量部含有し、
 前記架橋遅延剤を、前記エピハロヒドリンゴム100重量部当たり0.0072~0.24重量部含有し、および
 前記老化防止剤を、前記エピハロヒドリンゴム100重量部当たり0.5~4重量部含有する、
 前記エピハロヒドリンゴム組成物が提供される。
Thus, according to the present invention, an epihalohydrin rubber composition comprising an epihalohydrin rubber, an organic peroxide crosslinking agent, a crosslinking retarder and an antioxidant,
The epihalohydrin rubber is a copolymer containing an epihalohydrin unit and a compound unit having a glycidyl ether group,
The content of the monomer unit of the compound having a glycidyl ether group in the copolymer is 5 to 15% by weight,
The organic peroxide crosslinking agent is contained in an amount of 0.24 to 2 parts by weight per 100 parts by weight of the epihalohydrin rubber.
0.0072 to 0.24 parts by weight of the crosslinking retarder per 100 parts by weight of the epihalohydrin rubber, and 0.5 to 4 parts by weight of the antioxidant per 100 parts by weight of the epihalohydrin rubber,
The epihalohydrin rubber composition is provided.
 前記共重合体におけるグリシジルエーテル基を有する化合物の単量体単位の含有量は、好ましくは6~13重量%であり、より好ましくは7~12重量%である。 The content of the monomer unit of the compound having a glycidyl ether group in the copolymer is preferably 6 to 13% by weight, more preferably 7 to 12% by weight.
 前記エピハロヒドリンゴムは、好ましくは、エピハロヒドリンとグリシジルエーテル基を有する化合物との二元共重合体、およびエピハロヒドリンとアルキレンオキサイドとグリシジルエーテル基を有する化合物との三元共重合体から選ばれる少なくとも1種の共重合体からなる。 The epihalohydrin rubber is preferably at least one selected from a binary copolymer of epihalohydrin and a compound having a glycidyl ether group, and a terpolymer of epihalohydrin, an alkylene oxide and a compound having a glycidyl ether group. It consists of a copolymer.
 前記エピハロヒドリンは、好ましくはエピクロロヒドリンである。前記アルキレンオキサイドは、好ましくはエチレンオキサイドである。前記グリシジルエーテル基を有する化合物は、好ましくはアリルグリシジルエーテルである。 The epihalohydrin is preferably epichlorohydrin. The alkylene oxide is preferably ethylene oxide. The compound having a glycidyl ether group is preferably allyl glycidyl ether.
 前記エピハロヒドリンゴム組成物は、前記有機パーオキサイド架橋剤を、前記エピハロヒドリンゴム100重量部当たり、好ましくは0.32~1.2重量部、より好ましくは0.4~0.8重量部含有する。 The epihalohydrin rubber composition preferably contains 0.32 to 1.2 parts by weight, more preferably 0.4 to 0.8 parts by weight, of the organic peroxide crosslinking agent per 100 parts by weight of the epihalohydrin rubber.
 前記有機パーオキサイド架橋剤は、好ましくはジアルキルパーオキサイド、パーオキシケタールまたはパーオキシエステルであり、より好ましくはジクミルパーオキサイドである。 The organic peroxide cross-linking agent is preferably dialkyl peroxide, peroxyketal or peroxyester, more preferably dicumyl peroxide.
 前記エピハロヒドリンゴム組成物は、前記架橋遅延剤を、前記エピハロヒドリンゴム100重量部当たり、好ましくは0.012~0.12重量部、より好ましくは0.0192~0.072重量部含有する。 The epihalohydrin rubber composition preferably contains 0.012 to 0.12 parts by weight, more preferably 0.0192 to 0.072 parts by weight, of the crosslinking retarder per 100 parts by weight of the epihalohydrin rubber.
 前記架橋遅延剤は、好ましくはニトロソ化合物であり、より好ましくは4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルである。 The cross-linking retarder is preferably a nitroso compound, more preferably 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl.
 前記エピハロヒドリンゴム組成物は、前記老化防止剤を、前記エピハロヒドリンゴム100重量部当たり、好ましくは1~3.5重量部、より好ましくは1.5~3重量部含有する。 The epihalohydrin rubber composition preferably contains 1 to 3.5 parts by weight, more preferably 1.5 to 3 parts by weight, per 100 parts by weight of the epihalohydrin rubber.
 前記老化防止剤は、好ましくは芳香族第二級アミン系化合物、ジチオカルバミン酸塩系化合物、ベンズイミダゾール系化合物およびアミン-ケトン系化合物から選ばれる少なくとも1種であり、より好ましくは4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン、ジブチルジチオカルバミン酸ニッケルおよび2-メルカプトベンゾイミダゾールから選ばれる少なくとも1種である。 The antiaging agent is preferably at least one selected from aromatic secondary amine compounds, dithiocarbamate compounds, benzimidazole compounds and amine-ketone compounds, and more preferably 4,4′- It is at least one selected from bis(α,α-dimethylbenzyl)diphenylamine, nickel dibutyldithiocarbamate and 2-mercaptobenzimidazole.
 さらにまた、本発明によれば、上記したエピハロヒドリンゴム組成物を架橋してなるエピハロヒドリンゴム架橋物が提供される。 Furthermore, according to the present invention, there is provided an epihalohydrin rubber crosslinked product obtained by crosslinking the above epihalohydrin rubber composition.
 本発明により、特に貯蔵安定性に優れたエピハロヒドリンゴム組成物であって、金属腐食性が低く、引張強度、耐熱老化性、耐燃料油性、耐寒性(すなわち低温での耐脆化性)、耐圧縮永久歪み性などにおいて優れる架橋物を与えることができるエピハロヒドリンゴム組成物およびそれを架橋してなる架橋物が提供される。 According to the present invention, an epihalohydrin rubber composition having particularly excellent storage stability, having low metal corrosion resistance, tensile strength, heat aging resistance, fuel oil resistance, cold resistance (that is, resistance to embrittlement at low temperatures), resistance to Provided are an epihalohydrin rubber composition capable of giving a crosslinked product excellent in compression set and the like, and a crosslinked product obtained by crosslinking the same.
 以下に、本発明のエピハロヒドリンゴム組成物およびそれを架橋してなる架橋物について具体的に説明する。 The epihalohydrin rubber composition of the present invention and the crosslinked product obtained by crosslinking the same are specifically described below.
 本発明のエピハロヒドリンゴム組成物においてゴム成分として使用されるエピハロヒドリンゴムは、エピハロヒドリン単位とグリシジルエーテル基を有する化合物単位とを含有する共重合体であって、該共重合体におけるグリシジルエーテル基を有する化合物の単量体単位の含有量が5~15重量%である共重合体である、この共重合体は、エピハロヒドリンとグリシジルエーテル基を有する化合物とグリシジルエーテル基を有する化合物とからなる二元共重合体であってもよく、エピハロヒドリンとアルキレンオキサイドとグリシジルエーテル基を有する化合物とからなる三元共重合体であってもよい。また、これらの混合体であってもよい。 The epihalohydrin rubber used as a rubber component in the epihalohydrin rubber composition of the present invention is a copolymer containing an epihalohydrin unit and a compound unit having a glycidyl ether group, and the compound having a glycidyl ether group in the copolymer. Is a copolymer having a content of monomer units of 5 to 15% by weight. This copolymer is a binary copolymer composed of epihalohydrin, a compound having a glycidyl ether group and a compound having a glycidyl ether group. It may be a combination or a terpolymer composed of epihalohydrin, an alkylene oxide and a compound having a glycidyl ether group. Also, a mixture of these may be used.
 ここで、エピハロヒドリンとしては、エピクロルヒドリン、エピブロモヒドリン、2-メチルエピクロルヒドリンなどが挙げられ、なかでもエピクロルヒドリンが好ましい。 Here, examples of epihalohydrin include epichlorohydrin, epibromohydrin, 2-methylepichlorohydrin, and the like, of which epichlorohydrin is preferable.
 グリシジルエーテル基を有する化合物としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの炭素-炭素不飽和結合およびグリシジルエーテル基を有する化合物が挙げられ、なかでもアリルグリシジルエーテルが好ましい。 Examples of the compound having a glycidyl ether group include compounds having a carbon-carbon unsaturated bond and a glycidyl ether group such as vinyl glycidyl ether, allyl glycidyl ether and o-allyl phenyl glycidyl ether, and among them, allyl glycidyl ether is preferable.
 アルキレンオキサイドとしては、エチレンオキシド、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン、1,2-エポキシ-4-クロロペンタン、1,2-エポキシヘキサン、1,2-エポキシオクタン、1,2-エポキシデカン、1,2-エポキシテトラデカン、1,2-エポキシヘキサデカン、1,2-エポキシオクタデカン、1,2-エポキシエイコサン、1,2-エポキシイソブタン、2,3-エポキシイソブタンなどのエポキシ環以外の環構造を含まない化合物;1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシシクロドデカンなどのエポキシ環以外の環構造を含む化合物等が挙げられる。これらのなかでもエポキシ環以外の環構造を含まない化合物が好ましく、エチレンオキシドまたはプロピレンオキシドがより好ましく、特にエチレンオキシドが好ましい。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane, 1,2-epoxy-4-chloropentane, 1,2-epoxyhexane, 1,2-epoxyoctane, 1 ,2-epoxydecane, 1,2-epoxytetradecane, 1,2-epoxyhexadecane, 1,2-epoxyoctadecane, 1,2-epoxyeicosan, 1,2-epoxyisobutane, 2,3-epoxyisobutane, etc. Compounds containing no ring structure other than the epoxy ring; compounds containing ring structures other than the epoxy ring such as 1,2-epoxycyclopentane, 1,2-epoxycyclohexane and 1,2-epoxycyclododecane. Among these, compounds containing no ring structure other than the epoxy ring are preferable, ethylene oxide or propylene oxide is more preferable, and ethylene oxide is particularly preferable.
 本発明でエピハロヒドリンゴムとして使用される、共重合成分としてエピハロヒドリンとグリシジルエーテル基を有する化合物とを含有する共重合体、例えば前記二元共重合体および前記三元共重合体では、それぞれの共重合体におけるグリシジルエーテル基を有する化合物の単量体単位の含有量が5~15重量%である。かかる含有量が5重量%未満の場合には、エピハロヒドリンゴム組成物から得られる架橋物の引張強度、耐熱性、耐燃料油性、耐寒性(すなわち低温での耐脆化性)、耐圧縮永久歪み性などの観点から好ましくない。含有量が15重量%を超える場合には、エピハロヒドリンゴム組成物から得られる架橋物の破断伸びなどの観点から好ましくない。かかる含有量は、エピハロヒドリンゴム組成物の貯蔵安定性や、エピハロヒドリンゴム組成物から得られる架橋物の金属腐食性の観点から、6~13重量%が好ましく、特に7~12重量%が好ましい。 Used as an epihalohydrin rubber in the present invention, a copolymer containing epihalohydrin and a compound having a glycidyl ether group as a copolymerization component, such as the binary copolymer and the ternary copolymer, each copolymer The content of the monomer unit of the compound having a glycidyl ether group in the combined product is 5 to 15% by weight. When the content is less than 5% by weight, the crosslinked product obtained from the epihalohydrin rubber composition has tensile strength, heat resistance, fuel oil resistance, cold resistance (that is, embrittlement resistance at low temperature), compression set resistance. It is not preferable from the viewpoint of sex. When the content exceeds 15% by weight, it is not preferable from the viewpoint of elongation at break of the crosslinked product obtained from the epihalohydrin rubber composition. The content is preferably 6 to 13% by weight, and particularly preferably 7 to 12% by weight from the viewpoint of storage stability of the epihalohydrin rubber composition and metal corrosiveness of the crosslinked product obtained from the epihalohydrin rubber composition.
 本発明でエピハロヒドリンゴムとして使用される、エピハロヒドリンとグリシジルエーテル基を有する化合物との二元共重合体におけるエピハロヒドリンの単量体単位の含有量は、85~95重量%であり、好ましくは87~94重量%、より好ましくは、88~93重量%である。エピハロヒドリンとアルキレンオキサイドとグリシジルエーテル基を有する化合物との三元共重合体における、エピハロヒドリンの単量体単位とアルキレンオキサイドの単量体構成との合計含有量は、85~95重量%であり、好ましくは87~94重量%、より好ましくは、88~93重量%である。その合計含有量のうち、エピハロヒドリンの単量体単位の含有量は、好ましくは48~78重量%であり、アルキレンオキサイドの単量体の含有量は、好ましくは10~45重量%である。 The content of the epihalohydrin monomer unit in the binary copolymer of epihalohydrin and a compound having a glycidyl ether group used as the epihalohydrin rubber in the present invention is 85 to 95% by weight, preferably 87 to 94%. %, and more preferably 88 to 93% by weight. In the terpolymer of epihalohydrin, alkylene oxide and a compound having a glycidyl ether group, the total content of the monomer unit of epihalohydrin and the monomer composition of alkylene oxide is 85 to 95% by weight, preferably Is 87 to 94% by weight, and more preferably 88 to 93% by weight. Of the total content, the content of the epihalohydrin monomer unit is preferably 48 to 78% by weight, and the content of the alkylene oxide monomer is preferably 10 to 45% by weight.
 エピハロヒドリンゴムにおける上記した各単量体の含有量である重量%、すなわち、単量体組成比は、13C-NMRを測定し、得られる13C-NMRチャートから算出することができる。例えば、エピハロヒドリンとアルキレンオキサイドとグリシジルエーテル基を有する化合物との三元共重合体の場合は、エピクロルヒドリン単位の塩素に結合した炭素由来のピークは化学シフト40~50ppmに観測され、アリルグリシジルエーテル単位の不飽和炭素由来のピークは化学シフト110~140ppmに観測される。これらの両方の領域それぞれのピーク面積を算出し、全エピクロルヒドリンゴム中の上記以外の炭素由来のピークが観測される化学シフトである60~90ppmの領域のピーク面積から、エピクロルヒドリン単位およびアリルグリシジルエーテル単位に相当する分を差し引いたピーク面積をエチレンオキシド単位の主鎖炭素に相当する分として、これらピーク面積比より各単量体の組成比を算出することができる。 Wt%; and a content of each monomer as described above in epihalohydrin rubbers, i.e., monomer composition ratio, the 13 C-NMR was measured, it can be calculated from 13 C-NMR chart obtained. For example, in the case of a terpolymer of epihalohydrin, an alkylene oxide, and a compound having a glycidyl ether group, the peak derived from the carbon bonded to chlorine in the epichlorohydrin unit is observed at a chemical shift of 40 to 50 ppm, and the peak of allyl glycidyl ether unit is observed. A peak derived from unsaturated carbon is observed at a chemical shift of 110 to 140 ppm. The peak areas of both of these regions were calculated, and from the peak areas of the region of 60 to 90 ppm, which is the chemical shift in which peaks derived from carbons other than the above in the total epichlorohydrin rubber were observed, epichlorohydrin units and allylglycidyl ether units were calculated. It is possible to calculate the composition ratio of each monomer from the peak area ratio by assuming that the peak area obtained by subtracting the amount corresponding to is the quantity corresponding to the main chain carbon of the ethylene oxide unit.
 本発明で使用されるエピハロヒドリンゴムとしては、上記したエピハロヒドリンとグリシジルエーテル基を有する化合物との二元共重合体と、上記したエピハロヒドリンとアルキレンオキサイドとグリシジルエーテル基を有する化合物との三元共重合体とをそれぞれ単独で用いてもよく、また、それら共重合体の混合物として用いてもよい。 The epihalohydrin rubber used in the present invention includes a binary copolymer of the above epihalohydrin and a compound having a glycidyl ether group, and a terpolymer of the above epihalohydrin, an alkylene oxide and a compound having a glycidyl ether group. And may be used alone or as a mixture of these copolymers.
 本発明で用いるエピハロヒドリンゴムのムーニー粘度ML1+4(100℃)は、通常、30~160、好ましくは40~120である。ムーニー粘度が低すぎても高すぎても配合剤との混練加工性が低下するので好ましくない。 The Mooney viscosity ML 1+4 (100° C.) of the epihalohydrin rubber used in the present invention is usually 30 to 160, preferably 40 to 120. If the Mooney viscosity is too low or too high, the kneading processability with the compounding agent will deteriorate, which is not preferable.
 本発明で用いられるエピハロヒドリンゴムの製造方法は、特に限定されず、公知の重合方法にしたがって所定の各単量体の所定量を共重合して製造すればよい。例えば、本明細書に記載する製造例1~5の方法によって製造することができる。ムーニー粘度は単量体の配合を適宜調整することにより所望の値とすることができる。 The method for producing the epihalohydrin rubber used in the present invention is not particularly limited, and it may be produced by copolymerizing a predetermined amount of each predetermined monomer according to a known polymerization method. For example, it can be produced by the methods of Production Examples 1 to 5 described in this specification. The Mooney viscosity can be set to a desired value by appropriately adjusting the composition of the monomers.
 本発明のエピハロヒドリンゴム組成物において使用される有機パーオキサイド架橋剤は、好ましくはジアルキルパーオキサイド、パーオキシケタールまたはパーオキシエステルである。ジアルキルパーオキサイドとしては、ジクミルパーオキサイド、ジ(2-tert-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン-3などが挙げられる。パーオキシケタールとしては、1,1-ジ(tert-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(tert-ブチルパーオキシ)シクロヘキサン、n-ブチル4,4-ジ(tert-ブチルパーオキシ)バレレートなどが挙げられる。パーオキシエステルとしては、tert-ブチルパーオキシベンゾエート、tert-ヘキシルパーキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、tert-ブチルパーオキシラウレート、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、tert-ヘキシルパーオキシイソプロピルモノカーボネートなどが挙げられる。これらのうちでは、架橋後の未反応成分が残りにくく、分解物の沸点が比較的低くて分解物を除去しやすいなどの観点から、ジクミルパーオキサイド、ジ(2-tert-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、1,1-ジ(tert-ブチルパーオキシ)シクロヘキサンなどが好ましく、特にジクミルパーオキサイドが好ましい。 The organic peroxide crosslinking agent used in the epihalohydrin rubber composition of the present invention is preferably a dialkyl peroxide, a peroxyketal or a peroxyester. Examples of the dialkyl peroxide include dicumyl peroxide, di(2-tert-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, 2,5-dimethyl- 2,5-di(tert-butylperoxy)hexyne-3 and the like can be mentioned. Peroxyketals include 1,1-di(tert-hexylperoxy)cyclohexane, 1,1-di(tert-butylperoxy)cyclohexane, n-butyl 4,4-di(tert-butylperoxy)valerate And so on. Examples of peroxyesters include tert-butylperoxybenzoate, tert-hexylperoxybenzoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, tert-butylperoxy-2-ethylhexyl monocarbonate, Examples thereof include tert-butylperoxylaurate, tert-butylperoxy-3,5,5-trimethylhexanoate and tert-hexylperoxyisopropyl monocarbonate. Of these, dicumyl peroxide and di(2-tert-butylperoxyisopropyl) are preferred because unreacted components after crosslinking are less likely to remain and the boiling point of the decomposed product is relatively low and the decomposed product is easily removed. ) Benzene, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, 1,1-di(tert-butylperoxy)cyclohexane and the like are preferable, and dicumyl peroxide is particularly preferable.
 本発明のエピハロヒドリンゴム組成物に含有される有機パーオキサイド架橋剤は、エピハロヒドリンゴムを構成する上記共重合体における特にグリシジルエーテル基を有する化合物の単量体単位中の二重結合を介してエピハロヒドリンゴムを架橋させることができる。したがって、本発明における有機パーオキサイド架橋剤の使用量は、該共重合体におけるグリシジルエーテル基を有する化合物の単量体単位の含有量に基づいて、決定するのが適切である。かかる観点から、本発明のエピハロヒドリンゴム組成物は、有機パーオキサイド架橋剤を、上記したエピハロヒドリンゴム100重量部当たり、0.24~2重量部含有する。0.24重量部未満の場合には、エピハロヒドリンゴム組成物から得られる架橋物の引張強度、耐圧縮永久歪み性、耐熱老化性、耐燃料油性、耐寒性(すなわち低温での耐脆化性)などの観点から好ましくなく、2重量部を超える場合にも、エピハロヒドリンゴム組成物から得られる架橋物の引張強度、耐圧縮永久歪み性、耐熱老化性、耐熱性(すなわち低温での耐脆化性)などの観点から好ましくない。本発明のエピハロヒドリンゴム組成物は、エピハロヒドリンゴム組成物の貯蔵安定性や、エピハロヒドリンゴム組成物から得られる架橋物の金属腐食性の観点から、有機パーオキサイド架橋剤を、上記したエピハロヒドリンゴム100重量部当たり、好ましくは0.32~1.2重量部、より好ましくは0.4~0.8重量部含有する。また、この場合のエピハロヒドリン系ゴム中の炭素-炭素不飽和結合1重量部に対する有機パーオキサイド架橋剤の理論活性酸素量は、好ましくは0.001~0.05重量部、より好ましくは0.004~0.04重量部、さらに好ましくは0.008~0.03重量部である。 The organic peroxide cross-linking agent contained in the epihalohydrin rubber composition of the present invention is an epihalohydrin rubber via a double bond in a monomer unit of a compound having a glycidyl ether group in the above copolymer constituting the epihalohydrin rubber. Can be crosslinked. Therefore, the amount of the organic peroxide crosslinking agent used in the present invention is appropriately determined based on the content of the monomer unit of the compound having a glycidyl ether group in the copolymer. From this point of view, the epihalohydrin rubber composition of the present invention contains the organic peroxide crosslinking agent in an amount of 0.24 to 2 parts by weight per 100 parts by weight of the above epihalohydrin rubber. When the amount is less than 0.24 parts by weight, the crosslinked product obtained from the epihalohydrin rubber composition has tensile strength, compression set resistance, heat aging resistance, fuel oil resistance, cold resistance (that is, embrittlement resistance at low temperature). It is not preferable from the viewpoint of, for example, even when it exceeds 2 parts by weight, the crosslinked product obtained from the epihalohydrin rubber composition has tensile strength, compression set resistance, heat aging resistance, heat resistance (that is, embrittlement resistance at low temperature). ) Etc. are not preferable. From the viewpoint of storage stability of the epihalohydrin rubber composition and metal corrosion of the crosslinked product obtained from the epihalohydrin rubber composition, the epihalohydrin rubber composition of the present invention contains 100 parts by weight of the above-mentioned epihalohydrin rubber. The content is preferably 0.32 to 1.2 parts by weight, more preferably 0.4 to 0.8 parts by weight. In this case, the theoretical active oxygen amount of the organic peroxide cross-linking agent with respect to 1 part by weight of the carbon-carbon unsaturated bond in the epihalohydrin rubber is preferably 0.001 to 0.05 part by weight, more preferably 0.004 part by weight. To 0.04 parts by weight, more preferably 0.008 to 0.03 parts by weight.
 本発明のエピハロヒドリンゴム組成物に含有される架橋遅延剤は、好ましくはニトロソ化合物である。ニトロソ化合物としては、2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-メトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-オキソ-2,2,6,6-テトラメチルピペリジン-1-オキシル、2,2,5,5-テトラメチルピペリジン-1-オキシル、ビス(2,2,6,6-テトラメチル-1-ピペリジニルオキシ-4-イル)セバケート、4,4'-[(1,10-ジオキソ-1,10-デカンジイル)ビス(オキシ)]ビス[2,2,6,6-テトラメチル]-1-ピペリジジニルオキシ、2,2,6,6-テトラメチル-4-ヒドロキシピペリジン-1-オキシルモノフォスフェート、3-カルボキシ-2,2,5,5-テトラメチルピロリジン-1-オキシルなどが挙げられる。なかでも2,2,6,6-テトラメチルピペリジン-1-オキシルが好ましい。 The crosslinking retarder contained in the epihalohydrin rubber composition of the present invention is preferably a nitroso compound. Examples of the nitroso compound include 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-methoxy-2,2,6 ,6-Tetramethylpiperidine-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl, 2,2,5,5-tetramethylpiperidine-1-oxyl, bis(2 ,2,6,6-Tetramethyl-1-piperidinyloxy-4-yl)sebacate, 4,4′-[(1,10-dioxo-1,10-decanediyl)bis(oxy)]bis[2 ,2,6,6-Tetramethyl]-1-piperidinidinyloxy, 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl monophosphate, 3-carboxy-2,2, Examples include 5,5-tetramethylpyrrolidine-1-oxyl and the like. Of these, 2,2,6,6-tetramethylpiperidine-1-oxyl is preferable.
 上記した架橋遅延剤を用いることにより、架橋開始時期を適度に遅延することができ、架橋開始から架橋完了までの時間を適度に調節することができ、また、得られる架橋物の架橋密度を調節し、所望の特性を有する架橋物を有利に得ることができる。 By using the above-mentioned cross-linking retarder, the cross-linking start time can be appropriately delayed, the time from the cross-linking start to the cross-linking completion can be appropriately adjusted, and the cross-linking density of the resulting cross-linked product can be adjusted. However, a crosslinked product having desired properties can be advantageously obtained.
 本発明のエピハロヒドリンゴム組成物は、架橋遅延剤を、上記したエピハロヒドリンゴム100重量部当たり、0.0072~0.24重量部含有する。0.0072重量部未満の場合には、エピハロヒドリンゴム組成物の貯蔵安定性や、エピハロヒドリンゴム組成物から得られる架橋物の耐熱老化性などの観点から、好ましくなく、0.24重量部を超える場合には、エピハロヒドリンゴム組成物から得られる架橋物の耐熱老化性、耐燃料油性、引張強度などの観点から好ましくない。本発明のエピハロヒドリンゴム組成物は、貯蔵安定性の観点から、架橋遅延剤を、上記したエピハロヒドリンゴム100重量部当たり、好ましくは0.012~0.12重量部、より好ましくは0.0192~0.072重量部含有する。また、この場合のエピハロヒドリン系ゴム中の炭素-炭素不飽和結合1重量部に対する架橋遅延剤量は、好ましくは0.003~0.1重量部、より好ましくは0.005~0.07重量部、さらに好ましくは0.007~0.05重量部である。 The epihalohydrin rubber composition of the present invention contains the crosslinking retarder in an amount of 0.0072 to 0.24 part by weight per 100 parts by weight of the above epihalohydrin rubber. When it is less than 0.0072 parts by weight, it is not preferable from the viewpoint of the storage stability of the epihalohydrin rubber composition and the heat aging resistance of the crosslinked product obtained from the epihalohydrin rubber composition, and when it exceeds 0.24 parts by weight. In particular, it is not preferable from the viewpoint of heat aging resistance, fuel oil resistance, tensile strength, etc. of the crosslinked product obtained from the epihalohydrin rubber composition. In the epihalohydrin rubber composition of the present invention, from the viewpoint of storage stability, the crosslinking retarder is preferably 0.012 to 0.12 parts by weight, more preferably 0.0192 to 0 per 100 parts by weight of the above epihalohydrin rubber. Contains 0.072 parts by weight. In this case, the amount of the crosslinking retarder with respect to 1 part by weight of the carbon-carbon unsaturated bond in the epihalohydrin rubber is preferably 0.003 to 0.1 part by weight, more preferably 0.005 to 0.07 part by weight. And more preferably 0.007 to 0.05 parts by weight.
 本発明のエピハロヒドリンゴム組成物に含有される老化防止剤は、好ましくは、芳香族第二級アミン系化合物、ジチオカルバミン酸塩系化合物、ベンズイミダゾール系化合物またはアミン-ケトン系化合物である。芳香族第二級アミン系化合物としては、N,N'-ジ-2-ナフチル-p-フェニレンジアミン、N-フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N'-ジ-2-ナフチル-p-フェニレンジアミン、N,N'-ジフェニル-p-フェニレンジアミン、N-フェニル-N'-イソプロピル-p-フェニレンジアミン、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、N-フェニル-N'-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミンなどが挙げられる。ジチオカルバミン酸塩系化合物としては、ジブチルジチオカルバミン酸ニッケルなどが挙げられる。ベンズイミダゾール系化合物としては、2-メルカプトベンズイミダゾールの亜鉛塩、2-メルカプトベンズイミダゾールなどが挙げられる。アミン-ケトン系化合物としては、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、ジフェニルアミンとアセトンの反応物などが挙げられる。これらのなかでも4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン、ジブチルジチオカルバミン酸ニッケルまたは2-メルカプトベンゾイミダゾールが好ましい。老化防止剤は、これらのうちの1種を単独で用いることもでき、2種以上を組み合わせて用いることもできるが、2種以上を組み合わせて用いることが好ましい。 The antioxidant contained in the epihalohydrin rubber composition of the present invention is preferably an aromatic secondary amine compound, a dithiocarbamate compound, a benzimidazole compound or an amine-ketone compound. Examples of the aromatic secondary amine compound include N,N′-di-2-naphthyl-p-phenylenediamine, N-phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis( α,α-Dimethylbenzyl)diphenylamine, p-(p-toluenesulfonylamide)diphenylamine, N,N'-di-2-naphthyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N- Phenyl-N'-isopropyl-p-phenylenediamine, N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine, N-phenyl-N'-(3-methacryloyloxy-2-hydroxypropyl )-P-Phenylenediamine and the like. Examples of the dithiocarbamate-based compound include nickel dibutyldithiocarbamate. Examples of the benzimidazole compound include zinc salt of 2-mercaptobenzimidazole and 2-mercaptobenzimidazole. As the amine-ketone compound, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline, a reaction product of diphenylamine and acetone And so on. Among these, 4,4′-bis(α,α-dimethylbenzyl)diphenylamine, nickel dibutyldithiocarbamate or 2-mercaptobenzimidazole is preferable. As the antiaging agent, one of these may be used alone or two or more of them may be used in combination, but it is preferable to use two or more of them in combination.
 本発明のエピハロヒドリンゴム組成物は、老化防止剤を、上記したエピハロヒドリンゴム100重量部当たり、0.5~4重量部含有する。0.5重量部未満の場合には、エピハロヒドリンゴム組成物から得られる架橋物の耐熱老化性、耐燃料油性、耐圧縮永久歪み性などの観点から、好ましくなく、4重量部を超える場合にも、同様に、エピハロヒドリンゴム組成物から得られる架橋物の耐熱老化性、耐燃料油性、耐圧縮永久歪み性などの観点から好ましくない。本発明のエピハロヒドリンゴム組成物は、貯蔵安定性の観点から、老化防止剤を、上記したエピハロヒドリンゴム100重量部当たり、好ましくは1~3.5重量部、より好ましくは1.5~3重量部含有する。 The epihalohydrin rubber composition of the present invention contains the antioxidant in an amount of 0.5 to 4 parts by weight per 100 parts by weight of the above epihalohydrin rubber. When the amount is less than 0.5 parts by weight, it is not preferable from the viewpoint of heat aging resistance, fuel oil resistance, compression set resistance, etc. of the crosslinked product obtained from the epihalohydrin rubber composition, and even when it exceeds 4 parts by weight. Similarly, it is not preferable from the viewpoint of heat aging resistance, fuel oil resistance, compression set resistance, etc. of the crosslinked product obtained from the epihalohydrin rubber composition. From the viewpoint of storage stability, the epihalohydrin rubber composition of the present invention preferably contains 1 to 3.5 parts by weight, more preferably 1.5 to 3 parts by weight of an antioxidant per 100 parts by weight of the above epihalohydrin rubber. contains.
 本発明のエピハロヒドリンゴム組成物は、本発明の所期の効果の発現を阻害しない範囲において、上記したエピハロヒドリンゴム以外のゴム、例えば、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエン系ゴム、クロロプレンゴムなどの不飽和型ゴム;ブチルゴム、エチレン-プロピレン系ゴム、エチレン-アクリル系ゴム、アクリル系ゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ニトリル系ゴム、水素化ニトリル系ゴム、シリコン系ゴム、フッ素系ゴムなどの高飽和型ゴムなどを含有してもよい。これらのゴムの含有量は適宜調整することができるが、エピハロヒドリンゴム100重量部に対して、好ましくは40重量部以下、より好ましくは20重量部以下、さらに好ましくは10重量部以下である。 The epihalohydrin rubber composition of the present invention is a rubber other than the above epihalohydrin rubber, for example, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, etc., within a range that does not impair the desired effect of the present invention. Unsaturated rubber; butyl rubber, ethylene-propylene rubber, ethylene-acrylic rubber, acrylic rubber, chlorosulfonated polyethylene, chlorinated polyethylene, nitrile rubber, hydrogenated nitrile rubber, silicon rubber, fluorine rubber, etc. Highly saturated rubber and the like may be included. The content of these rubbers can be appropriately adjusted, but is preferably 40 parts by weight or less, more preferably 20 parts by weight or less, and further preferably 10 parts by weight or less with respect to 100 parts by weight of the epihalohydrin rubber.
 また、本発明のエピハロヒドリンゴム組成物は、上記した有機パーオキサイド架橋剤、架橋遅延剤および老化防止剤以外に、ゴム組成物において通常使用される配合剤、例えば、カーボンブラックやシリカなどの補強性充填剤;炭酸カルシウムやクレイなどの非補強性充填剤;脂肪酸エステルなどの加工助剤;ポリエーテルエステル系化合物などの可塑剤;ハイドロタルサイトなどの受酸剤;トリメチロールプロパントリメタクリレートなどの共架橋剤などを含有してもよい。また、ゴム工業分野において通常使用される光安定剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、着色剤、帯電防止剤などを含有してもよい。本発明のエピハロヒドリンゴム組成物中のこれらの配合剤の含有量は、加工条件や、ゴム架橋物に通常要求される種々の性能を満足させるように適宜選定すればよい。 Further, the epihalohydrin rubber composition of the present invention, in addition to the above-mentioned organic peroxide cross-linking agent, cross-linking retarder and anti-aging agent, compounding agents usually used in rubber compositions, for example, reinforcing properties of carbon black and silica. Fillers; non-reinforcing fillers such as calcium carbonate and clay; processing aids such as fatty acid esters; plasticizers such as polyether ester compounds; acid acceptors such as hydrotalcite; co-use such as trimethylolpropane trimethacrylate You may contain a crosslinking agent etc. Further, it may contain a light stabilizer, a lubricant, an adhesive, a lubricant, a flame retardant, a mildew proofing agent, a colorant, an antistatic agent and the like which are usually used in the rubber industry. The content of these compounding agents in the epihalohydrin rubber composition of the present invention may be appropriately selected so as to satisfy processing conditions and various performances normally required for a rubber cross-linked product.
 本発明のエピハロヒドリンゴム組成物の調製方法は、特に限定されず、通常採用される方法を用いることができる。例えば、オープンロール、バンバリーミキサー、スクリュー混合機などの混合機を用いて、上記したエピハロヒドリンゴム、有機パーオキサイド架橋剤、架橋遅延剤および老化防止剤、並びに必要に応じて他の配合剤を混合する方法を採用することができる。エピハロヒドリンゴム、有機パーオキサイド架橋剤、架橋遅延剤および老化防止剤、並びにその他の配合剤の配合順序は特に限定されない。例えば、先ず、熱によって他の配合剤と反応したり分解したりしにくい成分をバンバリーミキサー等で十分に混ぜ合わせた後、熱によって他成分と反応したり分解したりし易い成分、例えば、上記した有機パーオキサイド架橋剤、架橋遅延剤などを、オープンロール等により反応や分解を起こさない温度で短時間に混合するという手順を採るのが好ましい。 The method for preparing the epihalohydrin rubber composition of the present invention is not particularly limited, and a commonly used method can be used. For example, by using a mixer such as an open roll, a Banbury mixer, and a screw mixer, the epihalohydrin rubber, the organic peroxide cross-linking agent, the cross-linking retarder and the anti-aging agent, and optionally other compounding agents are mixed. A method can be adopted. The order of compounding the epihalohydrin rubber, the organic peroxide cross-linking agent, the cross-linking retarder and the antioxidant, and other compounding agents is not particularly limited. For example, first, after thoroughly mixing components that are difficult to react or decompose with other compounding ingredients with heat with a Banbury mixer or the like, components that easily react or decompose with other ingredients by heat, such as the above It is preferable to employ a procedure of mixing the organic peroxide cross-linking agent, the cross-linking retarder and the like described above in a short time at a temperature that does not cause reaction or decomposition by an open roll or the like.
 本発明のエピハロヒドリンゴム組成物は、成形機で成形し、成形時の加熱により、あるいは、成形に続いて行う加熱により架橋物とすることができる。かかる加熱は通常100℃以上で1分~5時間かけて行うのが好ましい。エピハロヒドリンゴム組成物を架橋する際には、100℃以上で1分~5時間の架橋を一次架橋工程とし、必要に応じて、一次架橋工程で得られる一次架橋物を100~220℃で0.5~48時間加熱して二次架橋する工程をさらに加えてもよい。一次架橋物に対して必要に応じて行う二次架橋の条件は、通常、加熱温度が100~220℃、好ましくは130~210℃、より好ましくは150~180℃であり、加熱時間が0.5~48時間、好ましくは0.7~24時間、より好ましくは1~12時間である。 The epihalohydrin rubber composition of the present invention can be formed into a crosslinked product by molding with a molding machine and heating during molding or by heating subsequent to molding. It is preferable that such heating is usually performed at 100° C. or higher for 1 minute to 5 hours. When the epihalohydrin rubber composition is crosslinked, crosslinking at 100° C. or higher for 1 minute to 5 hours is used as a primary crosslinking step, and if necessary, the primary crosslinked product obtained in the primary crosslinking step may be used at 100 to 220° C. A step of secondary cross-linking by heating for 5 to 48 hours may be further added. The conditions of the secondary cross-linking as needed for the primary cross-linked product are usually a heating temperature of 100 to 220° C., preferably 130 to 210° C., more preferably 150 to 180° C., and a heating time of 0. It is 5 to 48 hours, preferably 0.7 to 24 hours, more preferably 1 to 12 hours.
 本発明のエピハロヒドリンゴム組成物は、特に貯蔵安定性に優れ、また、金属腐食性が低く、引張強度、耐熱老化性、耐燃料油性、耐寒性(すなわち低温での耐脆化性)、耐圧縮永久歪み性などにおいて優れる架橋物を与えることができる。本発明のエピハロヒドリンゴム組成物の架橋物は、自動車用ホース、エアダクト用ホース、OA機器用ロール、電子写真機器用導電性ロールなどに好適に使用できる。 The epihalohydrin rubber composition of the present invention is particularly excellent in storage stability, has low metal corrosion resistance, tensile strength, heat aging resistance, fuel oil resistance, cold resistance (that is, embrittlement resistance at low temperatures), and compression resistance. It is possible to give a crosslinked product which is excellent in permanent set property and the like. The crosslinked product of the epihalohydrin rubber composition of the present invention can be suitably used for automobile hoses, air duct hoses, OA equipment rolls, electrophotographic equipment conductive rolls, and the like.
 以下に、実施例および比較例を挙げて、本発明を具体的に説明する。ただし本発明は、これらの実施例に限定されるものではない。以下において、「部」は重量部を表し、「wt%」は重量%を表す。
 各種試験法は下記に記載の方法によった。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples. In the following, "part" represents part by weight and "wt%" represents% by weight.
Various test methods were based on the methods described below.
(1)エピクロロヒドリンゴム組成物のスコーチ安定性試験
 エピクロロヒドリンゴム組成物の貯蔵安定性を評価するため、エピクロロヒドリンゴム組成物のスコーチ安定性試験としてムーニースコーチ時間(T5)を、JIS K6300:2013に従って、Lロータを使用して125℃で測定した。なお、ムーニースコーチ時間(T5)は、ムーニー粘度が最小値(Vm)から5ポイント増加するまでの時間である。ムーニースコーチ時間(T5)の値が大きいほど、スコーチ安定性に優れる。なお、スコーチ安定性は、以下の基準で判定し、各試料をグレード1~4に格付けした。
(1) Scorch stability test of epichlorohydrin rubber composition In order to evaluate the storage stability of epichlorohydrin rubber composition, Mooney scorch time (T5) was used as JIS Scorch stability test of the epichlorohydrin rubber composition. It was measured at 125° C. using an L rotor according to K6300:2013. The Mooney scorch time (T5) is the time until the Mooney viscosity increases from the minimum value (Vm) by 5 points. The larger the Mooney scorch time (T5), the better the scorch stability. The scorch stability was judged according to the following criteria, and each sample was graded to 1 to 4.
 1:ムーニースコーチ時間(T5)が30分以上である場合
 2:ムーニースコーチ時間(T5)が20分以上、30分未満である場合
 3:ムーニースコーチ時間(T5)が10分以上、20分未満である場合
 4:ムーニースコーチ時間(T5)が10分未満である場合
1: Mooney scorch time (T5) is 30 minutes or more 2: Mooney scorch time (T5) is 20 minutes or more and less than 30 minutes 3: Mooney scorch time (T5) is 10 minutes or more, less than 20 minutes If 4: Mooney scorch time (T5) is less than 10 minutes
(2)エピクロロヒドリンゴム組成物からなる架橋物の引張試験
 エピクロロヒドリンゴム組成物を160℃で30分間プレス成形することにより、一次架橋させ、縦15cm×横15cm×厚さ2mmの一次架橋物(シート)を得た。次に、オーブンを用いて、一次架橋物を150℃で1時間加熱することにより、二次架橋させ、二次架橋物(シート)を得た。次に、二次架橋物から、JIS3号ダンベル形状の試験片を切り出した。次に、JIS 6251:2017に準拠して、引張強さを測定した。なお、引張強度は、以下の基準で判定し、グレード1~4に格付けした。
(2) Tensile test of cross-linked product composed of epichlorohydrin rubber composition Primary cross-linking by press-molding the epichlorohydrin rubber composition at 160° C. for 30 minutes, lengthwise 15 cm×width 15 cm×thickness 2 mm, primary cross-linking The thing (sheet) was obtained. Next, the primary cross-linked product was heated at 150° C. for 1 hour in an oven to carry out secondary cross-linking to obtain a secondary cross-linked product (sheet). Next, a JIS No. 3 dumbbell-shaped test piece was cut out from the secondary crosslinked product. Next, the tensile strength was measured according to JIS 6251:2017. The tensile strength was judged according to the following criteria and graded from 1 to 4.
 1:引張強度が11.0MPa以上である場合
 2:引張強度が9.0MPa以上、11.0MPa未満である場合
 3:引張強度が7.0MPa以上、9.0MPa未満である場合
 4:引張強度が7.0MPa未満である場合
1: When the tensile strength is 11.0 MPa or more 2: When the tensile strength is 9.0 MPa or more and less than 11.0 MPa 3: When the tensile strength is 7.0 MPa or more and less than 9.0 MPa 4: Tensile strength Is less than 7.0 MPa
(3)エピクロロヒドリンゴム組成物からなる架橋物の耐熱老化試験
 上記引張試験と同様にして得られた試験片(シート状のゴム架橋物を3号形ダンベルで打ち抜いて得られた試験片)について、耐熱老化試験を行った。耐熱老化試験は、JIS K6257:2017に準拠して、ギヤー式老化試験機を使用して150℃で、240時間の試験条件で行い、破断伸びを測定した。耐熱老化試験後の破断伸びを以下の基準で判定し、グレード1~4に格付けした。
(3) Heat aging test of crosslinked product composed of epichlorohydrin rubber composition Test piece obtained in the same manner as the above tensile test (test piece obtained by punching a sheet-shaped rubber crosslinked product with a No. 3 dumbbell) The heat aging test was performed on The heat resistance aging test was carried out in accordance with JIS K6257:2017 using a gear type aging tester at 150° C. for 240 hours to measure the elongation at break. The elongation at break after the heat aging test was judged according to the following criteria and graded from 1 to 4.
 1:耐熱老化試験後の破断伸び120%以上である場合
 2:耐熱老化試験後の破断伸び100%以上120%未満である場合
 3:耐熱老化試験後の破断伸び80%以上100%未満である場合
 4:耐熱老化試験後の破断伸び80%未満である場合
1: When the elongation at break after the heat aging test is 120% or more 2: When the elongation at break after the heat aging test is 100% or more and less than 120% 3: When the elongation at break after the heat aging test is 80% or more and less than 100% Case 4: When the breaking elongation after the heat aging test is less than 80%
(4)エピクロロヒドリンゴム組成物からなる架橋物の耐燃料油試験
 上記(2)と同様にして、二次架橋物を得た。二次架橋物から、縦30mm×横20mm×厚さ2mmのサイズで切り出した後、その試験片をイソオクタン:トルエン:メタノール=40:40:20(体積比率)混合液に、40℃、48時間浸漬した後の体積変化率(%)を測定し、グレード1~4に格付けした。
(4) Fuel oil resistance test of crosslinked product composed of epichlorohydrin rubber composition A secondary crosslinked product was obtained in the same manner as in (2) above. After being cut out from the secondary crosslinked product in a size of 30 mm in length×20 mm in width×2 mm in thickness, the test piece was placed in an isooctane:toluene:methanol=40:40:20 (volume ratio) mixed solution at 40° C. for 48 hours. The rate of change in volume (%) after immersion was measured and graded from 1 to 4.
 1:体積変化率が50%未満である場合
 2:体積変化率が50%以上60%未満である場合
 3:体積変化率が60%以上70%未満である場合
 4:体積変化率が70%以上である場合
1: When the volume change rate is less than 50% 2: When the volume change rate is 50% or more and less than 60% 3: When the volume change rate is 60% or more and less than 70% 4: Volume change rate is 70% If more than
(5)エピクロロヒドリンゴム組成物からなる架橋物の低温脆化試験
 上記(2)と同様にして、二次架橋物を得、その二次架橋物を用いて、JIS K 6261:2017のB法の低温衝撃脆化試験を行い、その脆化温度を求めて、グレード1~4に格付けした。
(5) Low-temperature embrittlement test of a crosslinked product composed of an epichlorohydrin rubber composition A secondary crosslinked product was obtained in the same manner as in the above (2), and the secondary crosslinked product was used to prepare a B of JIS K 6261:2017. A low-temperature impact embrittlement test of the method was performed, the embrittlement temperature was determined, and the grades were classified as 1 to 4.
 1:脆化温度が-50℃未満である場合
 2:脆化温度が-40℃以上-50℃未満である場合
 3:脆化温度が-30℃以上-40℃未満である場合
 4:脆化温度が-30℃以上である場合
1: When the brittle temperature is less than -50°C 2: When the brittle temperature is between -40°C and less than -50°C 3: When the brittle temperature is between -30°C and less than -40°C 4: Brittle When the oxidization temperature is -30℃
(6)エピクロロヒドリンゴム組成物からなる架橋物の金属腐食試験
 上記(2)と同様にして、二次架橋物を得た。二次架橋物から、縦20mm×横10mm×厚さ2mmのサイズで切り出した後、縦40mm×横15mm×厚さ3mmの軟鉄(SPCC-SB)板の間に挟み、試料を得た。次に、40℃、90%RHの環境下、試料を7日間放置し、試料を剥離した後、軟鉄の腐食面積率(二次架橋物と接触していた面積に対する腐食している面積の割合)を測定し、軟鉄の腐食度を評価した。なお、軟鉄の腐食度は、以下の基準で判定し、グレード1~4に格付けした。
(6) Metal Corrosion Test of Crosslinked Product Composed of Epichlorohydrin Rubber Composition A secondary crosslinked product was obtained in the same manner as in (2) above. After being cut out from the secondary crosslinked product in a size of length 20 mm×width 10 mm×thickness 2 mm, it was sandwiched between length 40 mm×width 15 mm×thickness 3 mm soft iron (SPCC-SB) plates to obtain a sample. Next, after leaving the sample for 7 days in an environment of 40° C. and 90% RH and peeling the sample, the corrosion area ratio of the soft iron (the ratio of the corroded area to the area in contact with the secondary crosslinked product) ) Was measured to evaluate the degree of corrosion of soft iron. The corrosion degree of soft iron was judged according to the following criteria and graded from 1 to 4.
 1:軟鉄の腐食面積率が5%未満である場合
 2:軟鉄の腐食面積率が5%以上20%未満である場合
 3:軟鉄の腐食面積率が20%以上60%未満である場合
 4:軟鉄の腐食面積率が60%以上である場合
1: When the corrosion area ratio of soft iron is less than 5% 2: When the corrosion area ratio of soft iron is 5% or more and less than 20% 3: When the corrosion area ratio of soft iron is 20% or more and less than 60% 4: When the corrosion area ratio of soft iron is 60% or more
(7)エピクロロヒドリンゴム組成物からなる架橋物の圧縮永久歪み試験
 上記(2)と同一の架橋条件で、直径29.0mm、厚さ12.5mmの二次架橋物を得た。次に、JIS K6262:2013に準拠して、100℃、70時間の条件で、二次架橋物の圧縮永久歪みを測定し、グレード1~4に格付けした。
(7) Compression set test of crosslinked product composed of epichlorohydrin rubber composition Under the same crosslinking conditions as in (2) above, a secondary crosslinked product having a diameter of 29.0 mm and a thickness of 12.5 mm was obtained. Next, in accordance with JIS K6262:2013, the compression set of the secondary crosslinked product was measured under the conditions of 100° C. and 70 hours, and graded to 1 to 4.
 1:圧縮永久歪みが30%未満である場合
 2:圧縮永久歪みが30%以上40%未満である場合
 3:圧縮永久歪みが40%以上50%未満である場合
 4:圧縮永久歪みが50%以上である場合
1: When compression set is less than 30% 2: When compression set is 30% or more and less than 40% 3: When compression set is 40% or more and less than 50% 4: Compression set is 50% If more than
 以下に、重合触媒の製造例1およびその重合触媒を用いた各種ハロヒドリンゴムの製造例2~5を記載する。 The following describes Production Example 1 of the polymerization catalyst and Production Examples 2 to 5 of various halohydrin rubbers using the polymerization catalyst.
製造例1
重合触媒の製造
 密閉した耐圧ガラス容器を窒素置換して、トルエン200部およびトリイソブチルアルミニウム60部を供給した。このガラス容器を氷水に浸漬して冷却後、ジエチルエーテル230部を添加し、攪拌した。次に、氷水で冷却しながら、リン酸13.6部を添加し、さらに攪拌した。この時、トリイソブチルアルミニウムとリン酸との反応により、容器内圧が上昇するので適時脱圧を実施した。次いで、得られた反応混合物を60℃の温水浴内で1時間熟成反応させて触媒溶液を得た。
Production example 1
Production of Polymerization Catalyst The closed pressure-resistant glass container was replaced with nitrogen, and 200 parts of toluene and 60 parts of triisobutylaluminum were supplied. After dipping this glass container in ice water and cooling, 230 parts of diethyl ether was added and stirred. Next, while cooling with ice water, 13.6 parts of phosphoric acid was added and further stirred. At this time, the internal pressure of the container increased due to the reaction between triisobutylaluminum and phosphoric acid, so depressurization was carried out at appropriate times. Then, the obtained reaction mixture was aged in a warm water bath at 60° C. for 1 hour to obtain a catalyst solution.
製造例2
エピクロロヒドリンゴム(a-1)の製造
 オートクレーブにエピクロロヒドリン264.25部、アリルグリシジルエーテル38.85部、エチレンオキサイド5.52部、トルエン3250部を入れ、窒素雰囲気下で攪拌しながら内溶液を60℃に昇温し、上記製造例1で得た触媒溶液8部を添加して反応を開始した。次に、反応開始からエチレンオキサイド41.38部をトルエン300部に溶解した溶液を5時間かけて等速度で連続添加した。また、反応開始後30分毎に触媒溶液7部ずつを5時間にわたり添加した。次いで、水15部を添加して攪拌し、反応を終了させた。ここにさらに、安定剤として4,4'-チオビス-(6-tert-ブチル-3-メチルフェノール)の5重量%トルエン溶液45部を添加し、攪拌した。スチームストリッピングを実施してトルエンを除去し、上澄み水を除去後、60℃にて真空乾燥し、エピクロロヒドリンゴム(a-3)349部を得た。このエピクロロヒドリンゴム(a-3)の単量体組成比は、13C-NMRにより測定した結果、エピクロロヒドリン単量体単位75.5wt%、エチレンオキサイド単量体単位13.4wt%、アリルグリシジルエーテル単量体単位11.1wt%であった。また、得られたエピクロロヒドリンゴム(a-1)のムーニー粘度は71であった。
Production example 2
Manufacture of epichlorohydrin rubber (a-1) 264.25 parts of epichlorohydrin, 38.85 parts of allyl glycidyl ether, 5.52 parts of ethylene oxide and 3250 parts of toluene were put into an autoclave and stirred under a nitrogen atmosphere. The temperature of the inner solution was raised to 60° C., and 8 parts of the catalyst solution obtained in Production Example 1 was added to start the reaction. Next, from the start of the reaction, a solution of 41.38 parts of ethylene oxide dissolved in 300 parts of toluene was continuously added at a constant rate over 5 hours. In addition, every 30 minutes after the start of the reaction, 7 parts of the catalyst solution was added over 5 hours. Then, 15 parts of water was added and stirred to terminate the reaction. Further, 45 parts of a 5% by weight toluene solution of 4,4′-thiobis-(6-tert-butyl-3-methylphenol) was added as a stabilizer to the mixture, and the mixture was stirred. Toluene was removed by performing steam stripping, and supernatant water was removed, followed by vacuum drying at 60° C. to obtain 349 parts of epichlorohydrin rubber (a-3). The monomer composition ratio of the epichlorohydrin rubber (a-3) was measured by 13 C-NMR and found to be 75.5 wt% of epichlorohydrin monomer unit and 13.4 wt% of ethylene oxide monomer unit. The allyl glycidyl ether monomer unit was 11.1 wt %. The Mooney viscosity of the obtained epichlorohydrin rubber (a-1) was 71.
製造例3
エピクロロヒドリンゴム(a-2)の製造
 オートクレーブにエピクロロヒドリン323.05部、アリルグリシジルエーテル26.95部、トルエン3500部を入れ、窒素雰囲気下で攪拌しながら内溶液を60℃に昇温し、上記製造例1で得た触媒溶液10部を添加して反応を開始した。反応開始後30分毎に触媒溶液7部ずつを5時間にわたり添加した。次いで、水15部を添加して攪拌し、反応を終了させた。ここにさらに、安定剤として4,4'-チオビス-(6-tert-ブチル-3-メチルフェノール)の5重量%トルエン溶液45部を添加し、攪拌した。スチームストリッピングを実施してトルエンを除去し、上澄み水を除去後、60℃にて真空乾燥し、エピクロロヒドリンゴム(a-2)348部を得た。このエピクロロヒドリンゴム(a-2)の単量体組成比は、13C-NMRにより測定した結果、エピクロロヒドリン単量体単位92.3wt%、アリルグリシジルエーテル単量体単位7.7wt%であった。また、得られたエピクロロヒドリンゴム(a-2)のムーニー粘度は60であった。
Production Example 3
Production of epichlorohydrin rubber (a-2) Put 323.05 parts of epichlorohydrin, 26.95 parts of allyl glycidyl ether, and 3500 parts of toluene in an autoclave, and raise the temperature of the inner solution to 60°C with stirring under a nitrogen atmosphere. After warming, 10 parts of the catalyst solution obtained in Production Example 1 above was added to start the reaction. Every 30 minutes after the start of the reaction, 7 parts of the catalyst solution was added over 5 hours. Then, 15 parts of water was added and stirred to terminate the reaction. Further, 45 parts of a 5% by weight toluene solution of 4,4′-thiobis-(6-tert-butyl-3-methylphenol) was added as a stabilizer to the mixture, and the mixture was stirred. Toluene was removed by steam stripping, and the supernatant water was removed, followed by vacuum drying at 60°C to obtain 348 parts of epichlorohydrin rubber (a-2). The monomer composition ratio of this epichlorohydrin rubber (a-2) was measured by 13 C-NMR and found to be 92.3 wt% of epichlorohydrin monomer unit and 7.7 wt of allyl glycidyl ether monomer unit. %Met. The Mooney viscosity of the obtained epichlorohydrin rubber (a-2) was 60.
製造例4
エピクロロヒドリンゴム(a-3)の製造
 オートクレーブにエピクロロヒドリン195.65部、アリルグリシジルエーテル24.15部、エチレンオキサイド15.31部、トルエン3050部を入れ、窒素雰囲気下で攪拌しながら内溶液を60℃に昇温し、上記製造例1で得た触媒溶液8部を添加して反応を開始した。次に、反応開始からエチレンオキサイド114.88部をトルエン500部に溶解した溶液を5時間かけて等速度で連続添加した。また、反応開始後30分毎に触媒溶液7部ずつを5時間にわたり添加した。次いで、水15部を添加して攪拌し、反応を終了させた。ここにさらに、安定剤として4,4'-チオビス-(6-tert-ブチル-3-メチルフェノール)の5重量%トルエン溶液45部を添加し、攪拌した。スチームストリッピングを実施してトルエンを除去し、上澄み水を除去後、60℃にて真空乾燥し、エピクロロヒドリンゴム(a-3)348部を得た。このエピクロロヒドリンゴム(a-3)の単量体組成比は、13C-NMRにより測定した結果、エピクロロヒドリン単量体単位55.9wt%、エチレンオキサイド単量体単位37.2wt%、アリルグリシジルエーテル単量体単位6.9wt%であった。また、得られたエピクロロヒドリンゴム(a-3)のムーニー粘度は61であった。
Production Example 4
Manufacture of epichlorohydrin rubber (a-3) Into an autoclave, 195.65 parts of epichlorohydrin, 24.15 parts of allyl glycidyl ether, 15.31 parts of ethylene oxide, and 3050 parts of toluene were added and stirred under a nitrogen atmosphere. The temperature of the inner solution was raised to 60° C., and 8 parts of the catalyst solution obtained in Production Example 1 was added to start the reaction. Next, from the start of the reaction, a solution of 114.88 parts of ethylene oxide dissolved in 500 parts of toluene was continuously added at a constant rate over 5 hours. In addition, every 30 minutes after the start of the reaction, 7 parts of the catalyst solution was added over 5 hours. Then, 15 parts of water was added and stirred to terminate the reaction. Further, 45 parts of a 5% by weight toluene solution of 4,4′-thiobis-(6-tert-butyl-3-methylphenol) was added as a stabilizer to the mixture, and the mixture was stirred. After removing the toluene by performing steam stripping and removing the supernatant water, vacuum drying was performed at 60° C. to obtain 348 parts of epichlorohydrin rubber (a-3). The monomer composition ratio of this epichlorohydrin rubber (a-3) was measured by 13 C-NMR and found to be 55.9 wt% for epichlorohydrin monomer units and 37.2 wt% for ethylene oxide monomer units. Allyl glycidyl ether monomer unit was 6.9 wt %. The Mooney viscosity of the obtained epichlorohydrin rubber (a-3) was 61.
製造例5
エピクロロヒドリンゴム(a-4)の製造
 オートクレーブにエピクロロヒドリン265.25部、アリルグリシジルエーテル13.0部、エチレンオキサイド9.72部、トルエン3250部を入れ、窒素雰囲気下で攪拌しながら内溶液を60℃に昇温し、上記製造例1で得た触媒溶液8部を添加して反応を開始した。次に、反応開始からエチレンオキサイド41.60.91部をトルエン300部に溶解した溶液を5時間かけて等速度で連続添加した。また、反応開始後30分毎に触媒溶液7部ずつを5時間にわたり添加した。次いで、水15部を添加して攪拌し、反応を終了させた。ここにさらに、安定剤として4,4'-チオビス-(6-tert-ブチル-3-メチルフェノール)の5重量%トルエン溶液45部を添加し、攪拌した。スチームストリッピングを実施してトルエンを除去し、上澄み水を除去後、60℃にて真空乾燥し、エピクロロヒドリンゴム(a-4)348部を得た。このエピクロロヒドリンゴム(a-4)の単量体組成比は、13C-NMRにより測定した結果、エピクロロヒドリン単量体単位76.0wt%、エチレンオキサイド単量体単位20.3wt%、アリルグリシジルエーテル単量体単位3.7wt%であった。また、得られたエピクロロヒドリンゴム(a-4)のムーニー粘度は88であった。
Production Example 5
Production of epichlorohydrin rubber (a-4) 265.25 parts of epichlorohydrin, 13.0 parts of allyl glycidyl ether, 9.72 parts of ethylene oxide, and 3250 parts of toluene were put into an autoclave, and stirred under a nitrogen atmosphere. The temperature of the inner solution was raised to 60° C., and 8 parts of the catalyst solution obtained in Production Example 1 was added to start the reaction. Next, from the start of the reaction, a solution prepared by dissolving 41.60.91 parts of ethylene oxide in 300 parts of toluene was continuously added at a constant rate over 5 hours. In addition, every 30 minutes after the start of the reaction, 7 parts of the catalyst solution was added over 5 hours. Then, 15 parts of water was added and stirred to terminate the reaction. Further, 45 parts of a 5% by weight toluene solution of 4,4′-thiobis-(6-tert-butyl-3-methylphenol) was added as a stabilizer to the mixture, and the mixture was stirred. After removing the toluene by performing steam stripping and removing the supernatant water, vacuum drying was performed at 60° C. to obtain 348 parts of epichlorohydrin rubber (a-4). The monomer composition ratio of this epichlorohydrin rubber (a-4) was measured by 13 C-NMR, and as a result, epichlorohydrin monomer unit was 76.0 wt% and ethylene oxide monomer unit was 20.3 wt%. The allyl glycidyl ether monomer unit was 3.7 wt %. The Mooney viscosity of the obtained epichlorohydrin rubber (a-4) was 88.
 以下に、製造例2~5のエピクロロヒドリンゴムを用いたエピクロロヒドリンゴム組成物の調製例である実施例1~6および比較例1~6を記載する。 Hereinafter, Examples 1 to 6 and Comparative Examples 1 to 6 which are preparation examples of epichlorohydrin rubber compositions using the epichlorohydrin rubbers of Production Examples 2 to 5 will be described.
実施例1
 上記製造例2で得られたエピクロロヒドリンゴム(a-1)100部に、充填剤(カーボンブラック)「シーストSO(登録商標)(FEF)」(東海カーボン社製)40部、充填剤(湿式シリカ)「ニプシル(登録商標)VN-3」(東ソー・シリカ社製)50部、可塑剤(ポリエーテルエステル系化合物)「アデカサイザー(登録商標)RS735」(ADEKA社製)35部、加工助剤(脂肪酸エステル)「スプレンダーR300V」(花王社製)3.0部、受酸剤(ハイドロタルサイト)「DHT-4A」(協和化学工業社製)3.0部、炭酸カルシウム「白艶華CC」(白石カルシウム社製)3.0部、老化防止剤(4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン)「ノクラック(登録商標)CD」(大内新興化学工業社製)1.0部、老化防止剤(ジブチルチオカルバミン酸ニッケル)「ノクラック(登録商標)NBC」(大内新興化学工業社製)1.0部、老化防止剤(2-メルカプトベンズイミダゾール)「ノクラック(登録商標)MB」(大内新興化学工業社製)0.5部、シランカップリング剤(3-メタクリロキシプロピルトリメトキシシラン)「KBM503」(信越シリコーン社製)1.0部を添加した後、バンバリーミキサーを用いて、50℃で5分間混練し、混練物を得た。
Example 1
To 100 parts of the epichlorohydrin rubber (a-1) obtained in Production Example 2 above, 40 parts of a filler (carbon black) "SEAST SO (registered trademark) (FEF)" (manufactured by Tokai Carbon Co., Ltd.) and a filler ( Wet silica) "Nipsil (registered trademark) VN-3" (manufactured by Tosoh Silica Co., Ltd.) 50 parts, plasticizer (polyether ester compound) "Adeka Sizer (registered trademark) RS735" (manufactured by ADEKA), 35 parts, processed Auxiliary agent (fatty acid ester) "Splender R300V" (manufactured by Kao) 3.0 parts, Acid acceptor (hydrotalcite) "DHT-4A" (manufactured by Kyowa Chemical Industry Co., Ltd.) 3.0 parts, calcium carbonate "Shiragika CC" 3.0 parts (manufactured by Shiraishi Calcium Co., Ltd.), antiaging agent (4,4′-bis(α,α-dimethylbenzyl)diphenylamine) “Nocrac (registered trademark) CD” (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) 1 0.0 part, anti-aging agent (nickel dibutylthiocarbamate) "Nocrac (registered trademark) NBC" (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) 1.0 part, anti-aging agent (2-mercaptobenzimidazole) "Nocrac (registered trademark)" After adding 0.5 part of "trademark) MB" (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) and 1.0 part of silane coupling agent (3-methacryloxypropyltrimethoxysilane) "KBM503" (manufactured by Shin-Etsu Silicone Co., Ltd.) Using a Banbury mixer, the mixture was kneaded at 50° C. for 5 minutes to obtain a kneaded product.
 得られた混練物に、パーオキサイド(ジクミルパーオキサイド)「パークミル(登録商標)-D」(日本油脂社製)0.48部、共架橋剤(トリメチロールプロパントリメタクリレート)「NKエステル(登録商標)-TMPT」(新中村化学工業社製)1.5部、ニトロソ化合物(TEMPOL:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル)「ポリストップ7300P」(伯東社製)0.03部を添加し、オープンロールを用いて、50℃で混練し、エピクロロヒドリンゴム組成物を調製した。 In the obtained kneaded product, 0.48 part of peroxide (dicumyl peroxide) "Parkmill (registered trademark)-D" (manufactured by NOF CORPORATION), co-crosslinking agent (trimethylolpropane trimethacrylate) "NK ester (registered Trademark)-TMPT" (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.5 parts, nitroso compound (TEMPOL: 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) "Polystop 7300P" (Hakuto) 0.03 part) was added and kneaded at 50° C. using an open roll to prepare an epichlorohydrin rubber composition.
実施例2
 上記製造例3で得られたエピクロロヒドリンゴム(a-2)に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Example 2
An epichlorohydrin rubber composition was prepared in the same manner as in Example 1 except that the epichlorohydrin rubber (a-2) obtained in Production Example 3 was changed.
実施例3
 上記製造例4で得られたエピクロロヒドリンゴム(a-3)にパーオキサイド(ジクミルパーオキサイド)「パークミル(登録商標)-D」(日本油脂社製)0.56部、ニトロソ化合物(TEMPOL:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル)「ポリストップ7300P」(伯東社製)0.04部に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Example 3
0.56 parts of peroxide (dicumyl peroxide) "Parkmill (registered trademark)-D" (manufactured by NOF Corporation), and nitroso compound (TEMPOL) were added to the epichlorohydrin rubber (a-3) obtained in Production Example 4 above. : 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) "Polystop 7300P" (manufactured by Hakutosha Co., Ltd.) A chlorohydrin rubber composition was prepared.
実施例4
 老化防止剤(4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン)「ノクラック(登録商標)CD」(大内新興化学工業社製)0.50部、老化防止剤(ジブチルチオカルバミン酸ニッケル)「ノクラック(登録商標)NBC」(大内新興化学工業社製)0.50部、パーオキサイド(ジクミルパーオキサイド)「パークミル(登録商標)-D」(日本油脂社製)0.32部、ニトロソ化合物(TEMPOL:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル)「ポリストップ7300P」(伯東社製)0.02部に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Example 4
Anti-aging agent (4,4'-bis(α,α-dimethylbenzyl)diphenylamine) "Nocrac (registered trademark) CD" (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) 0.50 parts, anti-aging agent (dibutylthiocarbamic acid) Nickel) 0.50 parts of "Nocrac (registered trademark) NBC" (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), peroxide (dicumyl peroxide) "Park Mill (registered trademark)-D" (manufactured by NOF Corporation) 0.32 Part, and nitroso compound (TEMPOL: 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) "Polystop 7300P" (manufactured by Hakutosha Co., Ltd.), 0.02 part. An epichlorohydrin rubber composition was prepared in the same manner as in.
実施例5
 老化防止剤(4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン)「ノクラック(登録商標)CD」(大内新興化学工業社製)1.50部、老化防止剤(ジブチルチオカルバミン酸ニッケル)「ノクラック(登録商標)NBC」(大内新興化学工業社製)1.50部、パーオキサイド(ジクミルパーオキサイド)「パークミル(登録商標)-D」(日本油脂社製)1.20部、ニトロソ化合物(TEMPOL:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル)「ポリストップ7300P」(伯東社製)0.10部に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Example 5
Anti-aging agent (4,4'-bis(α,α-dimethylbenzyl)diphenylamine) "Nocrac (registered trademark) CD" 1.50 parts (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), anti-aging agent (dibutylthiocarbamic acid) Nickel) 1.50 parts of "Nocrac (registered trademark) NBC" (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), peroxide (dicumyl peroxide) "Park Mill (registered trademark)-D" (manufactured by NOF Corporation) 1.20 Part, and nitroso compound (TEMPOL: 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) "Polystop 7300P" (manufactured by Hakutosha Co., Ltd.), except that the content was changed to 0.10 part. An epichlorohydrin rubber composition was prepared in the same manner as in.
実施例6
 老化防止剤(4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン)「ノクラック(登録商標)CD」(大内新興化学工業社製)1.50部、老化防止剤(ジブチルチオカルバミン酸ニッケル)「ノクラック(登録商標)NBC」(大内新興化学工業社製)1.50部、老化防止剤(2-メルカプトベンズイミダゾール)「ノクラック(登録商標)MB」(大内新興化学工業社製)1.0部、パーオキサイド(ジクミルパーオキサイド)「パークミル(登録商標)-D」(日本油脂社製)0.80部、ニトロソ化合物(TEMPOL:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル)「ポリストップ7300P」(伯東社製)0.08部に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Example 6
Anti-aging agent (4,4'-bis(α,α-dimethylbenzyl)diphenylamine) "Nocrac (registered trademark) CD" 1.50 parts (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), anti-aging agent (dibutylthiocarbamic acid) Nickel) 1.50 parts of "Nocrac (registered trademark) NBC" (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), antioxidant (2-mercaptobenzimidazole) "Nocrac (registered trademark) MB" (manufactured by Ouchi Shinko Chemical Co., Ltd.) ) 1.0 part, peroxide (dicumyl peroxide) "Parkmill (registered trademark)-D" (manufactured by NOF CORPORATION) 0.80 part, nitroso compound (TEMPOL: 4-hydroxy-2,2,6,6) -Tetramethylpiperidine-1-oxyl) "Polystop 7300P" (manufactured by Hakutosha Co., Ltd.) was changed to 0.08 part to prepare an epichlorohydrin rubber composition in the same manner as in Example 1.
比較例1
 上記製造例5で得られたエピクロロヒドリンゴム(a-4)に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Comparative Example 1
An epichlorohydrin rubber composition was prepared in the same manner as in Example 1 except that the epichlorohydrin rubber (a-4) obtained in Production Example 5 was changed.
比較例2
 パーオキサイド(ジクミルパーオキサイド)「パークミル(登録商標)-D」(日本油脂社製)0.20部、ニトロソ化合物(TEMPOL:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル)「ポリストップ7300P」(伯東社製)0.01部に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Comparative example 2
Peroxide (dicumyl peroxide) "Parkmill (registered trademark)-D" (manufactured by NOF CORPORATION) 0.20 parts, nitroso compound (TEMPOL: 4-hydroxy-2,2,6,6-tetramethylpiperidine-1) -Oxyl) An epichlorohydrin rubber composition was prepared in the same manner as in Example 1 except that the amount was changed to 0.01 part of "Polystop 7300P" (manufactured by Hakutosha Co., Ltd.).
比較例3
 パーオキサイド(ジクミルパーオキサイド)「パークミル(登録商標)-D」(日本油脂社製)2.40部に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Comparative Example 3
An epichlorohydrin rubber composition was prepared in the same manner as in Example 1 except that 2.40 parts of peroxide (dicumyl peroxide) "Parkmill (registered trademark)-D" (manufactured by NOF CORPORATION) was used. ..
比較例4
 パーオキサイド(ジクミルパーオキサイド)「パークミル(登録商標)-D」(日本油脂社製)0.60部、ニトロソ化合物(TEMPOL:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル)「ポリストップ7300P」(伯東社製)0.30部に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Comparative Example 4
0.60 parts of peroxide (dicumyl peroxide) "Parkmill (registered trademark)-D" (manufactured by NOF CORPORATION), nitroso compound (TEMPOL: 4-hydroxy-2,2,6,6-tetramethylpiperidine-1) -Oxyl) An epichlorohydrin rubber composition was prepared in the same manner as in Example 1 except that 0.30 part of "Polystop 7300P" (manufactured by Hakutosha Co., Ltd.) was used.
比較例5
 ニトロソ化合物(TEMPOL:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル)「ポリストップ7300P」(伯東社製)0.005部に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Comparative Example 5
Nitroso compound (TEMPOL: 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) “Polystop 7300P” (manufactured by Hakutosha Co., Ltd.) Then, an epichlorohydrin rubber composition was prepared.
比較例6
 老化防止剤(4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン)「ノクラック(登録商標)CD」(大内新興化学工業社製)0.00部、老化防止剤(ジブチルチオカルバミン酸ニッケル)「ノクラック(登録商標)NBC」(大内新興化学工業社製)0.30部、老化防止剤(2-メルカプトベンズイミダゾール)「ノクラック(登録商標)MB」(大内新興化学工業社製)0.00部、に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Comparative Example 6
Antiaging agent (4,4'-bis(α,α-dimethylbenzyl)diphenylamine) "Nocrac (registered trademark) CD" 0.00 part (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), antiaging agent (dibutylthiocarbamic acid) Nickel) 0.30 parts of "Nocrac (registered trademark) NBC" (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), antioxidant (2-mercaptobenzimidazole) "Nocrac (registered trademark) MB" (manufactured by Ouchi Shinko Chemical Co., Ltd.) ) An epichlorohydrin rubber composition was prepared in the same manner as in Example 1 except that the amount was changed to 0.00 part.
比較例7
 老化防止剤(4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン)「ノクラック(登録商標)CD」(大内新興化学工業社製)1.50部、老化防止剤(ジブチルチオカルバミン酸ニッケル)「ノクラック(登録商標)NBC」(大内新興化学工業社製)1.50部、老化防止剤(2-メルカプトベンズイミダゾール)「ノクラック(登録商標)MB」(大内新興化学工業社製)1.50部、に変更した以外は、実施例1と同様にして、エピクロロヒドリンゴム組成物を調製した。
Comparative Example 7
Anti-aging agent (4,4'-bis(α,α-dimethylbenzyl)diphenylamine) "Nocrac (registered trademark) CD" 1.50 parts (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), anti-aging agent (dibutylthiocarbamic acid) Nickel) 1.50 parts of "Nocrac (registered trademark) NBC" (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.), antioxidant (2-mercaptobenzimidazole) "Nocrac (registered trademark) MB" (manufactured by Ouchi Shinko Chemical Co., Ltd.) ) An epichlorohydrin rubber composition was prepared in the same manner as in Example 1 except that the amount was changed to 1.50 parts.
 実施例1~5および比較例1~7で得られたエピクロロヒドリンゴム組成物の各試験結果を表1に示した。また、表1には、各エピクロロヒドリンゴム組成物の配合組成も併せて示した。さらに、表1には、パークミルD(有機パーオキサイド)については二重結合1g当たりの有機パーオキサイド理論活性酸素量も併せて示し、TEMPOL(架橋遅延剤)については二重結合1g当たりのTEMPOL(架橋遅延剤)添加量も併せて示した。 Table 1 shows the test results of the epichlorohydrin rubber compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 7. Table 1 also shows the composition of each epichlorohydrin rubber composition. Further, Table 1 also shows the amount of theoretical active oxygen amount of organic peroxide per 1 g of double bond for Percumyl D (organic peroxide), and TEMPOL (crosslinking retarder) for TEMPOL (crosslinking retarder). The amount of the crosslinking retarder) added is also shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、エピクロロヒドリンとアリルグリシジルエーテルとの二元共重合体であって、アリルグリシジルエーテルの単量体単位(AGE)の含有量が7.7重量%である二元共重合体のエピクロロヒドリンゴム(a-2)、あるいは、エピクロロヒドリンとエチレンオキサイドとアリルグリシジルエーテルとの三元共重合体であって、アリルグリシジルエーテルの単量体単位(AGE)の含有量が11.1または6.9重量%である三元共重合体のエピクロロヒドリンゴム(a-1)またはエピクロロヒドリンゴム(a-3)を用い、これらのエピクロロヒドリンゴム(a-2)、(a-1)または(a-3)の100重量部当たり、有機パーオキサイド架橋剤(ジクミルパーオキサイド)を0.24~2重量部の範囲内の量で、架橋遅延剤(TEMPOL)を0.0072~0.24重量部の範囲内の量で、および老化防止剤を0.5~4重量部の範囲内の量で配合した実施例1~6のエピクロロヒドリンゴム組成物は、スコーチ安定性試験の結果から、貯蔵安定性に優れ、また、実施例1~6のエピクロロヒドリンゴム組成物からなる架橋物は、引張強度、耐熱老化性、耐燃料油性、耐寒性(低温での耐脆化性)、金属腐食性および耐圧縮永久歪み性に優れていた。 As shown in Table 1, a binary copolymer of epichlorohydrin and allyl glycidyl ether, wherein the content of allyl glycidyl ether monomer units (AGE) is 7.7% by weight. A copolymer terpolymer of epichlorohydrin rubber (a-2) or a terpolymer of epichlorohydrin, ethylene oxide and allyl glycidyl ether, which comprises a monomer unit (AGE) of allyl glycidyl ether A terpolymer having a content of 11.1 or 6.9% by weight, epichlorohydrin rubber (a-1) or epichlorohydrin rubber (a-3), was used. -2), (a-1) or (a-3) per 100 parts by weight of an organic peroxide crosslinking agent (dicumyl peroxide) in an amount within the range of 0.24 to 2 parts by weight crosslinking retarder. (TEMPOL) in an amount in the range of 0.0072 to 0.24 parts by weight, and an antioxidant in an amount in the range of 0.5 to 4 parts by weight, the epichlorohydrin rubbers of Examples 1 to 6. From the results of the scorch stability test, the composition was excellent in storage stability, and the crosslinked products composed of the epichlorohydrin rubber compositions of Examples 1 to 6 had tensile strength, heat aging resistance, fuel oil resistance, and cold resistance. Excellent in resistance (brittle resistance at low temperature), metal corrosion resistance and compression set resistance.
 これに対して、エピクロロヒドリンとエチレンオキサイドとアリルグリシジルエーテルとの三元共重合体であって、アリルグリシジルエーテルの単量体単位(AGE)の含有量が3.7重量%である三元共重合体のエピクロロヒドリンゴム(a-4)を用いた比較例1、エピクロロヒドリンゴム(a-1)100重量部当たり有機パーオキサイド架橋剤(ジクミルパーオキサイド)を0.24重量部未満または2重量部を超える量で配合した比較例2および比較例3、エピクロロヒドリンゴム(a-1)100重量部当たり架橋遅延剤(TEMPOL)を0.24重量部を超える量または0.0072重量部未満の量で配合した比較例4および比較例5、並びに、エピクロロヒドリンゴム(a-1)100重量部当たり老化防止剤を0.5重量部未満の量または4重量部を超える量で配合した比較例6および比較例7のエピクロロヒドリンゴム組成物は、エピクロロヒドリンゴム組成物の貯蔵安定性、エピクロロヒドリンゴム組成物からなる架橋物の引張強度、耐熱老化性、耐燃料油性、耐寒性(低温での耐脆化性)、金属腐食性および耐圧縮永久歪み性のいずれか1つまたは2つ以上で劣っていた。 On the other hand, it is a terpolymer of epichlorohydrin, ethylene oxide and allyl glycidyl ether, in which the content of allyl glycidyl ether monomer units (AGE) is 3.7% by weight. Comparative Example 1 using the original copolymer epichlorohydrin rubber (a-4), 0.24 parts by weight of the organic peroxide crosslinking agent (dicumyl peroxide) per 100 parts by weight of the epichlorohydrin rubber (a-1). Comparative Example 2 and Comparative Example 3 blended in an amount of less than 2 parts by weight or more than 2 parts by weight, and an amount of crosslinking retarder (TEMPOL) exceeding 0.24 parts by weight per 100 parts by weight of epichlorohydrin rubber (a-1) or 0. Comparative Examples 4 and 5 blended in an amount of less than 0.0072 parts by weight, and less than 0.5 parts by weight or 4 parts by weight of an antioxidant per 100 parts by weight of epichlorohydrin rubber (a-1). The epichlorohydrin rubber compositions of Comparative Example 6 and Comparative Example 7 blended in an amount exceeding the above range show storage stability of the epichlorohydrin rubber composition, tensile strength of a crosslinked product of the epichlorohydrin rubber composition, heat aging resistance, The fuel oil resistance, cold resistance (brittle resistance at low temperature), metal corrosion resistance, and compression set resistance were inferior in one or more.
 本発明のエピハロヒドリンゴム組成物は、特に貯蔵安定性に優れ、また、金属腐食性が低く、引張強度、耐熱老化性、耐燃料油性、耐寒性(低温での耐脆化性)、耐圧縮永久歪み性などにおいて優れた架橋物を与えることができる。本発明のエピハロヒドリンゴム組成物からなる架橋物は、自動車用ホース、エアダクト用ホース、OA機器用ロール、電子写真機器用導電性ロールなどに好適に使用できる。
 
The epihalohydrin rubber composition of the present invention is particularly excellent in storage stability, has low metal corrosion resistance, tensile strength, heat aging resistance, fuel oil resistance, cold resistance (brittle resistance at low temperature), compression permanent resistance. It is possible to give a crosslinked product which is excellent in terms of strainability and the like. The crosslinked product of the epihalohydrin rubber composition of the present invention can be suitably used for automobile hoses, air duct hoses, OA equipment rolls, electrophotographic equipment conductive rolls, and the like.

Claims (12)

  1.  エピハロヒドリンゴム、有機パーオキサイド架橋剤、架橋遅延剤および老化防止剤を含有するエピハロヒドリンゴム組成物であって、
     前記エピハロヒドリンゴムは、エピハロヒドリン単位とグリシジルエーテル基を有する化合物単位とを含有する共重合体であり、
     前記共重合体におけるグリシジルエーテル基を有する化合物の単量体単位の含有量が5~15重量%であり、
     前記有機パーオキサイド架橋剤を、前記エピハロヒドリンゴム100重量部当たり0.24~2重量部含有し、
     前記架橋遅延剤を、前記エピハロヒドリンゴム100重量部当たり0.0072~0.24重量部含有し、および
     前記老化防止剤を、前記エピハロヒドリンゴム100重量部当たり0.5~4重量部含有する、
     前記エピハロヒドリンゴム組成物。
    An epihalohydrin rubber composition comprising an epihalohydrin rubber, an organic peroxide cross-linking agent, a cross-linking retarder and an anti-aging agent,
    The epihalohydrin rubber is a copolymer containing an epihalohydrin unit and a compound unit having a glycidyl ether group,
    The content of the monomer unit of the compound having a glycidyl ether group in the copolymer is 5 to 15% by weight,
    The organic peroxide crosslinking agent is contained in an amount of 0.24 to 2 parts by weight per 100 parts by weight of the epihalohydrin rubber.
    0.0072 to 0.24 parts by weight of the crosslinking retarder per 100 parts by weight of the epihalohydrin rubber, and 0.5 to 4 parts by weight of the antioxidant per 100 parts by weight of the epihalohydrin rubber,
    The epihalohydrin rubber composition.
  2.  前記エピハロヒドリンゴムは、エピハロヒドリンとグリシジルエーテル基を有する化合物との二元共重合体、およびエピハロヒドリンとアルキレンオキサイドとグリシジルエーテル基を有する化合物との三元共重合体から選ばれる少なくとも1種の共重合体からなる、請求項1に記載のエピハロヒドリンゴム組成物。 The epihalohydrin rubber is at least one copolymer selected from a binary copolymer of epihalohydrin and a compound having a glycidyl ether group, and a terpolymer of epihalohydrin, an alkylene oxide and a compound having a glycidyl ether group. The epihalohydrin rubber composition according to claim 1, which comprises:
  3.  前記エピハロヒドリンが、エピクロロヒドリンである、請求項2に記載のエピハロヒドリンゴム組成物。 The epihalohydrin rubber composition according to claim 2, wherein the epihalohydrin is epichlorohydrin.
  4.  前記アルキレンオキサイドが、エチレンオキサイドである、請求項2または3に記載のエピハロヒドリンゴム組成物。 The epihalohydrin rubber composition according to claim 2 or 3, wherein the alkylene oxide is ethylene oxide.
  5.  前記グリシジルエーテル基を有する化合物が、アリルグリシジルエーテルである、請求項1から4のいずれか1項に記載のエピハロヒドリンゴム組成物。 The epihalohydrin rubber composition according to any one of claims 1 to 4, wherein the compound having a glycidyl ether group is allyl glycidyl ether.
  6.  前記有機パーオキサイド架橋剤が、ジアルキルパーオキサイド、パーオキシケタールまたはパーオキシエステルである、請求項1~5のいずれか1項に記載のエピハロヒドリンゴム組成物。 The epihalohydrin rubber composition according to any one of claims 1 to 5, wherein the organic peroxide crosslinking agent is a dialkyl peroxide, a peroxyketal or a peroxyester.
  7.  前記有機パーオキサイド架橋剤が、ジクミルパーオキサイドである、請求項1~6のいずれか1項に記載のエピハロヒドリンゴム組成物。 The epihalohydrin rubber composition according to any one of claims 1 to 6, wherein the organic peroxide crosslinking agent is dicumyl peroxide.
  8.  前記架橋遅延剤が、ニトロソ化合物である、請求項1~7のいずれか1項に記載のエピハロヒドリンゴム組成物。 The epihalohydrin rubber composition according to any one of claims 1 to 7, wherein the crosslinking retarder is a nitroso compound.
  9.  前記架橋遅延剤が、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルである、請求項1~8のいずれか1項に記載のエピハロヒドリンゴム組成物。 The epihalohydrin rubber composition according to any one of claims 1 to 8, wherein the crosslinking retarder is 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl.
  10.  前記老化防止剤が、芳香族第二級アミン系化合物、ジチオカルバミン酸塩系化合物、ベンズイミダゾール系化合物およびアミン-ケトン系化合物から選ばれる少なくとも1種である、請求項1~9のいずれか1項に記載のエピハロヒドリンゴム組成物。 10. The anti-aging agent is at least one selected from an aromatic secondary amine compound, a dithiocarbamate compound, a benzimidazole compound and an amine-ketone compound. The epihalohydrin rubber composition described in 1.
  11.  前記老化防止剤が、4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン、ジブチルジチオカルバミン酸ニッケルおよび2-メルカプトベンゾイミダゾールから選ばれる少なくとも1種である、請求項1~10のいずれか1項に記載のエピハロヒドリンゴム組成物。 11. The antiaging agent is at least one selected from 4,4′-bis(α,α-dimethylbenzyl)diphenylamine, nickel dibutyldithiocarbamate and 2-mercaptobenzimidazole. An epihalohydrin rubber composition according to item.
  12.  請求項1~11のいずれか1項に記載のエピハロヒドリンゴム組成物を架橋してなるエピハロヒドリンゴム架橋物。
     
    A crosslinked epihalohydrin rubber obtained by crosslinking the epihalohydrin rubber composition according to any one of claims 1 to 11.
PCT/JP2019/049768 2018-12-26 2019-12-19 Epihalohydrin rubber composition WO2020137781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563152A JP7375774B2 (en) 2018-12-26 2019-12-19 Epihalohydrin rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-242275 2018-12-26
JP2018242275 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137781A1 true WO2020137781A1 (en) 2020-07-02

Family

ID=71126024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049768 WO2020137781A1 (en) 2018-12-26 2019-12-19 Epihalohydrin rubber composition

Country Status (2)

Country Link
JP (1) JP7375774B2 (en)
WO (1) WO2020137781A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190181A1 (en) * 2022-03-31 2023-10-05 株式会社大阪ソーダ Crosslinking composition and rubber material obtained by crosslinking same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680827A (en) * 1992-09-01 1994-03-22 Sumitomo Chem Co Ltd Rubber composition
JPH07157566A (en) * 1993-12-09 1995-06-20 Daiso Co Ltd Composition for vulcanizing epichlorohydrin-based polymer
JP2004107540A (en) * 2002-09-19 2004-04-08 Nippon Zeon Co Ltd Epihalohydrin rubber composition and method for producing epihalohydrin rubber-crosslinked molded product
JP2005187710A (en) * 2003-12-26 2005-07-14 Nippon Zeon Co Ltd Epihalohydrin rubber composition
JP2013147582A (en) * 2012-01-20 2013-08-01 Daiso Co Ltd Rubber composition for vulcanization, and vulcanized material thereof
CN104861631A (en) * 2015-04-28 2015-08-26 安徽同丰橡塑工业有限公司 Wear-resistant rubber
JP2016501974A (en) * 2012-12-31 2016-01-21 ダウ グローバル テクノロジーズ エルエルシー Thermoplastic vulcanizates having crosslinked olefin block copolymers
JP2018506598A (en) * 2014-12-09 2018-03-08 アーケマ・インコーポレイテッド Liquid and meltable solid grades of anti-scorch peroxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680827A (en) * 1992-09-01 1994-03-22 Sumitomo Chem Co Ltd Rubber composition
JPH07157566A (en) * 1993-12-09 1995-06-20 Daiso Co Ltd Composition for vulcanizing epichlorohydrin-based polymer
JP2004107540A (en) * 2002-09-19 2004-04-08 Nippon Zeon Co Ltd Epihalohydrin rubber composition and method for producing epihalohydrin rubber-crosslinked molded product
JP2005187710A (en) * 2003-12-26 2005-07-14 Nippon Zeon Co Ltd Epihalohydrin rubber composition
JP2013147582A (en) * 2012-01-20 2013-08-01 Daiso Co Ltd Rubber composition for vulcanization, and vulcanized material thereof
JP2016501974A (en) * 2012-12-31 2016-01-21 ダウ グローバル テクノロジーズ エルエルシー Thermoplastic vulcanizates having crosslinked olefin block copolymers
JP2018506598A (en) * 2014-12-09 2018-03-08 アーケマ・インコーポレイテッド Liquid and meltable solid grades of anti-scorch peroxide
CN104861631A (en) * 2015-04-28 2015-08-26 安徽同丰橡塑工业有限公司 Wear-resistant rubber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190181A1 (en) * 2022-03-31 2023-10-05 株式会社大阪ソーダ Crosslinking composition and rubber material obtained by crosslinking same

Also Published As

Publication number Publication date
JPWO2020137781A1 (en) 2021-11-18
JP7375774B2 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
US5912288A (en) Vulcanized rubber composition
US10894878B2 (en) Halogen free and fire-resistant rubber composition and hose
EP0796897A1 (en) Low compression-set rubber composition
WO2006000079A1 (en) Elastomeric compositions having improved mechanical properties and scorch resistance
EP0317346A1 (en) A process for producing a rubber composition derived from fluoroelastomer and ethylene-a-olefin copolymer rubber and a process for producing a rubber article formed therefrom
JP7375774B2 (en) Epihalohydrin rubber composition
KR101017114B1 (en) Ethylene/alkyl acrylate copolymer rubber composition
EP0485906A2 (en) Vulcanizable rubber composition
US5523353A (en) Rubber composition
US20230027517A1 (en) Rubber composition and vulcanized molded article
JP3633322B2 (en) Ethylene-acrylate copolymer rubber composition
KR100396015B1 (en) Vulcanized rubber composition
JPH05287150A (en) Fluorine-containing elastomer composition
JP2021017531A (en) Rubber composition
KR101821482B1 (en) Flame-retardant elastomer composition and a preparation method thereof
JP3804413B2 (en) Ethylene / propylene copolymer rubber composition
JP2006213743A (en) Hydrogenated nitrile rubber composition
JP3344187B2 (en) Hydrogenated NBR composition for CFC-resistant refrigerant
US5446098A (en) Covulcanizable rubber composition of partially hydrogenated nitrile rubber and chlorinated ethylene-propylene copolymer
CN110536923B (en) Hydrogenated NBR compositions
JP2005344037A (en) Hydrogenated nbr rubber composition
Oliveira et al. The effect of the vulcanizing system on cure and mechanical properties of NBR/EPDM blends
JP2853305B2 (en) Heat resistant rubber composition
JPH06271734A (en) Fluoroelastomer composition
JPH02245046A (en) Rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901447

Country of ref document: EP

Kind code of ref document: A1