WO2020137681A1 - Composite, and structure and thermistor using same - Google Patents

Composite, and structure and thermistor using same Download PDF

Info

Publication number
WO2020137681A1
WO2020137681A1 PCT/JP2019/049356 JP2019049356W WO2020137681A1 WO 2020137681 A1 WO2020137681 A1 WO 2020137681A1 JP 2019049356 W JP2019049356 W JP 2019049356W WO 2020137681 A1 WO2020137681 A1 WO 2020137681A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
particles
composite
metal oxide
thermistor
Prior art date
Application number
PCT/JP2019/049356
Other languages
French (fr)
Japanese (ja)
Inventor
修一 舟橋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP19903402.6A priority Critical patent/EP3854765A4/en
Priority to CN201980077279.4A priority patent/CN113165979B/en
Priority to JP2020563109A priority patent/JP7074209B2/en
Publication of WO2020137681A1 publication Critical patent/WO2020137681A1/en
Priority to US17/237,456 priority patent/US20210241946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06573Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder
    • H01C17/06586Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder composed of organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/049Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of organic or organo-metal substances

Definitions

  • the present invention relates to a composite, more specifically, a metal oxide-containing composite, and a structure and a thermistor using the composite.
  • thermistor layer that use a metal oxide film that exhibits a large negative temperature coefficient as the thermistor layer are widely used as temperature sensors in various devices and devices.
  • a thin film thermistor is formed by forming a metal electrode on a base material and then contacting a metal oxide film that functions as a thermistor layer with a layer made of a sintered body of metal oxide particles. It is manufactured by forming it.
  • Such a manufacturing method has a problem that the bonding strength at the interface between the metal oxide film and the metal electrode is small, and in some cases interface peeling may occur.
  • This problem occurs because the metal oxide particles are subjected to heat treatment at 400° C. or higher and sintered to form a metal oxide film exhibiting high thermistor characteristics. It is considered that this occurs because cracks and interfacial peeling occur due to the difference in the coefficient of thermal expansion.
  • various measures have been conventionally proposed (for example, refer to Patent Documents 1 to 4).
  • the conventional measures have not always been sufficiently satisfactory for manufacturing a thin film thermistor that achieves both desired electrical characteristics (for example, high thermistor characteristics) and high bonding strength.
  • Solution methods and vapor phase methods are generally known as methods for forming metal oxide films on various types of substrates, but they were carried out at low temperatures where metal and resin substrates were not affected. In this case, the quality of the metal oxide film formed by this is low, and desired electrical characteristics cannot be obtained.
  • Room temperature solidification techniques such as the aerosol deposition method are also known, but they are not suitable for mass production because of the low film formation rate. How to enable low-temperature sintering by adding SiO 2 glass metal oxide, SiO 2 becomes a cause of high resistance, causing a decrease in electrical characteristics.
  • a low temperature sintering (CS) method which can sinter metal oxide particles at a low temperature of 200° C. or lower (see Patent Document 5).
  • the metal oxide particles are mixed with a solvent (water and an acid or alkali) capable of partially dissolving the oxide and heated and pressed at 200° C. or less to theoretically It is said that a sintered body having a density of 85% or more of the density can be formed.
  • this low-temperature sintering method cannot form a high-density sintered body (metal oxide film) with respect to Mn and/or Ni oxide particles, and the strength of the sintered body itself is low. Results in another problem that is not enough.
  • One object of the present invention is to provide a novel composite (also referred to herein as "metal oxide-containing composite") composed of a plurality of particles of a metal oxide, which comprises It is to realize a novel composite in which the metal element contains at least one of Mn and Ni, and which itself has high strength.
  • Another object of the present invention is to provide a structure using such a composite, wherein the composite is bonded to a metal part with high bonding strength.
  • Still another object of the present invention is to provide a thermistor using such a structure, which can achieve both desired electrical characteristics and high bonding strength.
  • the first metal element may further include at least one selected from the group consisting of Fe, Al, Co and Cu.
  • the composite may further include a plurality of second particles composed of a first resin, wherein the first amorphous phase includes the plurality of first particles and the plurality of first particles. It may be between the second particles.
  • the first resin is at least one selected from the group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer. May be included.
  • the thickness of the first amorphous phase may be 100 ⁇ m or less.
  • some of the plurality of first particles may be in contact with each other.
  • the first metal element contains at least one of Mn and Ni.
  • the first metal element may further include at least one selected from the group consisting of Fe, Al, Co and Cu.
  • the first resin is at least one selected from the group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer. May be included.
  • the thickness of the first amorphous phase may be 100 ⁇ m or less.
  • a metal part containing at least one second metal element With the complex of the present invention, A structure including a bonding layer located between the metal part and the composite, wherein the bonding layer includes a second amorphous phase containing the same metal element as the first metal element and the second metal element. Will be provided.
  • the second metal element is selected from the group consisting of Mn, Ni, Fe, Al, Zn, Cr, Ti, Co, Cu, Ag, Au and Pt. It may include at least one.
  • a resin base material made of a second resin there is provided a thermistor including the structure of the present invention arranged on the resin substrate, wherein the metal part includes two metal electrodes.
  • the composite and the bonding layer may have a total thickness of 100 ⁇ m or less.
  • the second resin is at least one selected from the group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer. May be included.
  • the two metal electrodes have main surfaces facing each other, and the composite can be interposed between the main surfaces.
  • the two metal electrodes can be electrically connected to two external electrodes that are alternately arranged in a plan view.
  • a novel metal oxide-containing composite in which the metal element in the metal oxide contains at least one of Mn and Ni, and which itself has high density and high strength is realized.
  • a composite having a small change in resistivity before and after being left in a high temperature and high humidity environment is realized.
  • a structure using such a composite wherein the composite is bonded to a metal part with high bonding strength.
  • a thermistor using such a structure, which can achieve both desired electrical characteristics and high bonding strength.
  • FIG. 1 is a partial schematic view showing the structure of a composite according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing one example of the structure in one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the structure according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a thermistor in one embodiment of the present invention,
  • FIG. 4A is a schematic cross-sectional view taken along line XX in FIG. 4B, and
  • FIG. 5 is a diagram showing another example of the thermistor in one embodiment of the present invention,
  • FIG. 5A is a schematic cross-sectional view taken along line XX in FIG.
  • FIG. 6 is a diagram showing another example of the thermistor in one embodiment of the present invention
  • FIG. 6A is a schematic cross-sectional view taken along line XX in
  • FIG. 8A is a schematic top view showing the resin base material located on the upper side in FIG.
  • FIG. 7 is a diagram showing another example of the thermistor in one embodiment of the present invention, in which (a) is a schematic cross-sectional view seen from line XX in (b), 8A is a schematic top view showing the resin base material located on the upper side in FIG.
  • FIG. 8 is a diagram showing another example of the thermistor in one embodiment of the present invention
  • FIG. 8A is a schematic cross-sectional view taken along line XX in FIG.
  • FIG. 9 is a diagram showing another example of the thermistor in one embodiment of the present invention
  • FIG. 9A is a schematic cross-sectional view taken along line XX in FIG. ) Is a schematic top view
  • FIG. 10(a) is a partial schematic diagram showing the structure of the complex according to another embodiment of the present invention
  • FIG. 10(b) shows a modified example of the complex of FIG. 10(a).
  • FIG. 11 is a schematic cross section which shows one example of the structure in another embodiment of this invention.
  • FIG. 12 is a schematic cross-sectional view showing another example of the structure according to another embodiment of the present invention.
  • 13 is a scanning transmission electron microscope (STEM) observation image (bright-field image) of a partially enlarged cross section of the structure manufactured in Example 1 of the present invention, and (a) is a metal oxide-containing composite.
  • 13B is a STEM observation image of a cross section of the junction between the layer and the lower electrode and the vicinity thereof, (b) shows the element distribution of C (carbon) in FIG. 13( a ), and (c) shows Mn of (a). The element distribution of (manganese) is shown, and (d) shows the element distribution of Cu (copper) of (a).
  • STEM scanning transmission electron microscope
  • FIG. 14 is a scanning transmission electron microscope (STEM) observation image (bright-field image) of a partially enlarged cross section of the structure manufactured in Example 3 of the present invention, and (a) is a metal oxide-containing composite.
  • 13B is a STEM observation image of a cross section of the junction between the layer and the lower electrode and the vicinity thereof, (b) shows the element distribution of C (carbon) in FIG. 13( a ), and (c) shows Mn of (a). The element distribution of (manganese) is shown, and (d) shows the element distribution of Cu (copper) of (a).
  • STEM scanning transmission electron microscope
  • 15 is a transmission electron microscope (TEM) observation image of a partially enlarged cross section of the structure manufactured in Example 1 of the present invention, and (a) is a TEM observation of the cross section of the metal oxide-containing composite layer.
  • 15B is an enlarged image of the rectangular frame area shown in FIG. 15A
  • FIG. 15C is an enlarged image of the rectangular frame area shown in FIG. 15B
  • FIG. ) Is an example of an electron diffraction image of an amorphous phase shown for the purpose of distinguishing the amorphous phase by distinguishing it from particles having a crystal structure.
  • the composite body (metal oxide-containing composite body) 10 in the present embodiment is A plurality of first particles (hereinafter also simply referred to as “metal oxide particles”) 1 made of a metal oxide containing at least one first metal element;
  • the first amorphous phase 2 existing between the plurality of first particles 1 is included.
  • the metal oxide forming the metal oxide particles 1 contains at least one of Mn and Ni as the first metal element, and further contains at least one selected from the group consisting of Fe, Al, Co and Cu. You can stay. Mn and/or Ni are essential metal elements in the metal oxide. Further, at least one selected from the group consisting of Fe, Al, Co and Cu is an optional addition metal element in the metal oxide. The optional addition metal element is preferably at least one selected from the group consisting of Fe, Al and Co. Any of these metal oxides may be a metal oxide semiconductor, and may have a spinel structure in particular, but is not limited thereto.
  • the ratio of the metal element in the entire metal oxide forming the plurality of metal oxide particles 1 is not particularly limited, and can be appropriately selected according to desired electrical characteristics and the like.
  • the Mn:Ni ratio atomic ratio
  • the optional addition metal element if both Mn and Ni are present, the Mn:Ni ratio (atomic ratio) can be, for example, 1 to 100:1.
  • the optional addition metal element when there are a plurality of them, the optional addition metal element (the total of them when there are a plurality of them) may be smaller than the essential metal element (the total of them when both Mn and Ni are present), but is essential.
  • the ratio (atomic ratio) of metallic element: arbitrarily added metallic element may be, for example, 1 to 100:1.
  • the average particle size of the metal oxide particles 1 can be, for example, 0.01 ⁇ m or more and 100 ⁇ m or less, and particularly can be 0.02 ⁇ m or more and 1 ⁇ m or less. Since the average particle size of the metal oxide particles 1 is in the range of 0.01 ⁇ m or more and 100 ⁇ m or less, in the production method described later in this embodiment, a liquid medium and/or a fluid (preferably, a fluid) derived from metal acetylacetonate is used. The solvent) makes it easier for the metal oxide particles to be carried into the gaps between the other metal oxide particles, so that the resultant composite can be more effectively densified.
  • the average particle size is a particle size (D50) at a point where the cumulative value is 50% in a cumulative curve in which the particle size distribution is obtained on a volume basis and the total volume is 100%.
  • the average particle diameter can be measured using a laser diffraction/scattering particle diameter/particle size distribution measuring device or an electron scanning microscope.
  • the metal oxide particles 1 may be a mixture of two or more kinds of metal oxide particles having different metal oxide compositions and/or average particle sizes.
  • the first amorphous phase 2 exists between the metal oxide particles 1 and can bond the metal oxide particles 1 to each other. Therefore, the composite body 10 of this embodiment itself has high strength.
  • a structure in which a plurality of metal oxide particles 1 are dispersed in a continuous phase of the first amorphous phase 2 can be formed.
  • the composite body 10 of the present embodiment can contain the metal oxide particles 1 at a high density due to the first amorphous phase 2 (a conductive path can be formed by the metal oxide particles 1 dispersed at a high density. it can).
  • the first amorphous phase 2 can exhibit electrical characteristics close to those of the metal oxide (semiconductor) particles 1 having a crystal structure. As a result, it is possible to obtain the same electrical characteristics as a sintered body obtained by sintering metal oxide particles at a high temperature by a conventional method.
  • the first amorphous phase 2 contains the same metal element as the first metal element contained in the metal oxide particles 1. Thereby, even if mutual diffusion between the metal oxide particles 1 and the first amorphous phase 2 occurs, it is possible to effectively prevent deterioration of the electrical characteristics of the composite body 10.
  • the amorphous phase means a phase having substantially no crystallinity or a relatively low crystallinity, which is a crystal based on an electron diffraction image which is a method known to those skilled in the art. It can be distinguished from particles having a structure. Further, the elements (particularly metal elements) contained in the amorphous phase can be confirmed by using a scanning transmission electron microscope (STEM).
  • STEM scanning transmission electron microscope
  • the presence of the first amorphous phase 2 between the metal oxide particles 1 may mean that the space between the plurality of metal oxide particles 1 is filled with the first amorphous phase 2.
  • pores that may be contained in the composite 10 can be eliminated by filling the first amorphous phase 2, so that the resistance value before and after being left in a high temperature and high humidity environment that is considered to be due to pores. The change can be reduced.
  • the first amorphous phase 2 may be in contact (preferably bonded) with each other substantially without being present between them.
  • the first amorphous phase 2 may be present with a thickness of 100 ⁇ m or less.
  • the thickness of the first amorphous phase 2 is preferably small from the viewpoint of electrical characteristics and/or strength.
  • a portion where the first amorphous phase 2 is substantially absent may be present in the composite 10.
  • the composite body 10 (in particular, the first amorphous phase 2) of the present embodiment does not substantially contain silicon oxide such as SiO 2 glass. Silicon oxide is not preferable because it causes a remarkable deterioration in electrical characteristics.
  • the content of silicon oxide in the composite 10 (based on the total weight of the metal oxide particles) is, for example, 0.1% by mass or less, preferably 0.01% by mass or less, and substantially zero. More preferably, it is mass %.
  • the composite body 10 of the present embodiment can be arranged (in particular, formed into a film) on an arbitrary object to form a structure.
  • the composite 10 may be at least partially joined to a metal portion (eg, a member or region made of metal).
  • the structure 20 in one example of the present embodiment is A metal part 13 containing at least one second metal element,
  • the composite body 10 of the present embodiment The bonding layer 15 is located between the metal part 13 and the composite body 10.
  • the boundary between the composite body 10 and the bonding layer 15 does not necessarily have to be clear (in the accompanying drawings, a virtual boundary is indicated by a dotted line).
  • the composite 10 and the bonding layer 15 can be collectively understood as a metal oxide-containing composite layer or a thermistor layer.
  • the bonding layer 15 includes the second amorphous phase 12.
  • the second amorphous phase 12 can adhere the composite 10 to the metal part 13. Therefore, the structure 20 of the present embodiment can bond the composite 10 to the metal portion 13 with high bonding strength.
  • the second amorphous phase 12 contains the same metal element as the first metal element and the second metal element.
  • the second amorphous phase 12 can exhibit electrical characteristics similar to those of the metal oxide (semiconductor) particles 1 having a crystal structure.
  • the electrical resistance between the composite body 10, the bonding layer 15, and the metal portion 13 generally, the metal Schottky barrier between the oxide (semiconductor) particles 1 and the metal part 13, more specifically, between the metal oxide particles 1 and the second amorphous phase 12, and between the second amorphous phase 12 and the metal part 13. It is possible to reduce the interfacial resistance between them and improve the electrical characteristics of the structure 20.
  • the second amorphous phase 12 and the first amorphous phase 2 exist continuously (for example, in the intermediate region, forming a gradation and/or intermingling with each other). You can In that case, for example, these boundaries may be determined based on the distribution of the first metal element and the second metal element that may be present in the amorphous phase.
  • the second metal element forming the metal part 13 is not particularly limited, but is at least one selected from the group consisting of Mn, Ni, Fe, Al, Zn, Cr, Ti, Co, Cu, Ag, Au and Pt. And any one or two or more of these alloys, preferably any one or two or more alloys of Ni, Cu and Ag.
  • the second metal element may be a metal commonly used as an electrode. And/or, the second metal element may be the same or different metal element as the first metal element.
  • the composite body 10 of the present embodiment is bonded to the metal portions 13a and 13b with the bonding layers 15a and 15b, respectively. May be joined via.
  • the composite 10 and the bonding layers 15a and 15b can be collectively understood as a metal oxide-containing composite layer or a thermistor layer.
  • the structure 21 has the same effect as that described above for the structure 20. Furthermore, in the structure 21, the metal parts 13 and 13b can be used as counter electrodes, and in this case, the total thickness of the composite 10 and the bonding layers 15a and 15b (thickness of the metal oxide-containing composite layer) is controlled. By doing so, the electrical characteristics of the structure 21 (for example, variations in resistance value) can be effectively controlled.
  • the structures 20 and 21 of the present embodiment can be appropriately modified and arranged on any base material to form a thermistor. Although not limiting the present embodiment, the structures 20 and 21 may be appropriately modified and arranged on the resin base material (or resin film).
  • the thermistor 30 in one example of the present embodiment is A resin base material 27 made of a second resin, A structure 20a of the present embodiment arranged on the resin substrate 27; including.
  • the metal portion 13 includes two metal electrodes 13 c and 13 d, and the bonding layers 15 c and 15 d are located between them and the composite body 10, respectively.
  • the metal electrodes 13c and 13d of the structure 20a are arranged closer to the resin base material 27 than the composite body 10, but the present embodiment is not limited to this.
  • the exposed portions of the composite body 10 and the bonding layers 15c and 15d may be appropriately protected by a protective film (not shown) made of resin or the like.
  • the composite body 10 and the bonding layers 15c and 15d interposed between the metal electrodes 13c and 13d can function as a thermistor layer whose resistance can change depending on temperature (more specifically, has a negative temperature coefficient). ..
  • FIG. 4B the metal electrodes 13c and 13d located below the composite body 10 are shown in a perspective view.
  • the composite 10 can contain the metal oxide particles 1 at a high density due to the first amorphous phase 2, and the first amorphous phase 2 and the second amorphous phase 12 are metal oxides. Since the (semiconductor) particles 1 can exhibit electrical characteristics close to those of the (semiconductor) particles 1, the same electrical characteristics as a sintered body obtained by sintering metal oxide particles at a high temperature by a conventional general method can be obtained, and desired electrical characteristics ( For example, thermistor characteristics, more specifically room temperature resistivity, B constant, etc.) can be achieved.
  • the composite body 10 can be firmly bonded to the metal electrodes 13c and 13d via the bonding layers 15c and 15d, and high bonding strength can be achieved.
  • high bonding strength due to the high bonding strength, variations in the resistance value of the thermistor 30 are small, and high reliability can be achieved.
  • the total thickness of the composite 10 and the bonding layers 15c and 15d formed on the resin base material 27 is, for example, 100 ⁇ m or less. And more specifically 1 ⁇ m or more and 30 ⁇ m or less.
  • the thermistor 30 is also called a thin film thermistor.
  • the thermistor 30 Since the thermistor 30 is thin as described above, it can be easily installed in a small space. Furthermore, it is possible to reduce physical damage due to pressurization during attachment and operation to both the thermistor 30 and the object to which it is attached. Furthermore, since the thermistor 30 has a small heat capacity, it exhibits high temperature responsiveness. Further, since the composite body 10 (and the bonding layers 15c and 15d) is thin and has flexibility, it is difficult to be destroyed even if it is deformed. In particular, when a flexible substrate (or film) is used as the resin substrate 27, the thermistor 30 that is flexible as a whole can be obtained.
  • the second resin constituting the resin base material 27 is not particularly limited, but is, for example, a group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer (LCP: Liquid Crystal Polymer). It may include at least one more selected. Among them, polyimide and polyamide-imide are preferable from the viewpoint of heat resistance and adhesiveness.
  • the thickness of the resin base material 27 is not particularly limited, but in the case of a thin film thermistor, it may be, for example, 1 to 50 ⁇ m.
  • the thermistor 31 is A resin base material 27 made of a second resin, A structure 20b of the present embodiment arranged on the resin base material 27; including.
  • the metal part 13 includes two metal electrodes 13e and 13f, and the bonding layers 15e and 15f are located between the metal electrodes 13e and 13f and the composite 10, respectively.
  • the composite body 10 of the structure 20b is arranged closer to the resin base material 27 than the metal electrodes 13e and 13f.
  • the exposed portions of the composite body 10 and the bonding layers 15e and 15f may be appropriately protected by a protective film (not shown) made of resin or the like.
  • the thermistor 32 has main surfaces where two metal electrodes 13g and 13i face each other, and the composite body 10 is interposed between the main surfaces.
  • the bonding layers 15g and 15i may be bonded to each other, and the two metal electrodes 13h and 13i have main surfaces facing each other, and the composite body 10 is interposed between the main surfaces. , 15i.
  • the thermistor 32 has a structure in which two elements are connected in series.
  • the metal portion 13 includes three metal electrodes 13g, 13h, and 13i, and the bonding layers 15g, 15h, and 15i are located between them and the composite body 10, respectively.
  • the resin base material 27b is excluded, and the metal electrodes 13g and 13h are shown in a perspective view.
  • the total thickness of the composite 10 and the bonding layers 15g and 15i (corresponding to the thickness of the metal oxide-containing composite layer, that is, the thermistor layer, indicated by a symbol "t" in the drawing) is calculated.
  • the electric characteristics of the thermistor 32 can be controlled (for example, the variation in resistance value can be further reduced), and higher temperature resolution can be achieved.
  • the metal electrodes 13g and 13h are electrically connected to (and/or integrally formed with, the external electrodes 14a and 14b, the same applies hereinafter), but the invention is not limited thereto.
  • the thermistor 32 includes the resin base materials 27a and 27b, but only one of them may be provided.
  • the two metal electrodes 13g and 13h′ are respectively arranged with two external electrodes 14a and 14b′ which are alternately arranged in a plan view. It may be electrically connected.
  • the metal part 13 includes three metal electrodes 13g, 13h′, 13i, and the bonding layers 15g, 15h′, 15i are respectively located between them and the composite 10 (others are described above. Of thermistor 32). With this configuration, even when the thermistor 33 is extremely small and difficult to handle, the thermistor 33 can be mounted relatively easily.
  • the thermistor 34 has two metal electrodes 13j and 13l having main surfaces facing each other, and the composite body 10 is interposed between the main surfaces.
  • the two metal electrodes 13k and 13l have main surfaces facing each other, and the composite body 10 is interposed between the main surfaces, and the bonding layers 15k and 15l are bonded to each other. , 15 l.
  • the thermistor 34 has a structure in which two elements are connected in series.
  • the metal portion 13 includes three metal electrodes 13j, 13k, and 13l, and the bonding layers 15j, 15k, and 15l are located between them and the composite body 10, respectively.
  • the two metal electrodes 13j and 13k may be electrically connected to the two external electrodes 14c and 14d, which are alternately arranged in a plan view.
  • the electrical characteristics of the thermistor 34 can be controlled, and higher temperature resolution can be achieved.
  • the thermistor 34 can be mounted relatively easily.
  • the metal electrodes 13m and 13n formed on the same plane may be formed to face each other in a comb shape.
  • the metal portion 13 includes two metal electrodes 13m and 13n, and the bonding layers 15m and 15n are located between them and the composite body 10, respectively.
  • the electrical characteristics of the thermistor 35 can be controlled (for example, the variation in resistance value can be further reduced), and high temperature resolution can be achieved.
  • the two metal electrodes 13m and 13n may be electrically connected to the two external electrodes 14c' and 14d' which are alternately arranged in a plan view. With this configuration, the thermistor 35 can be mounted relatively easily.
  • the composite layer and the bonding layer may be embedded in a part of the resin base material or the metal part exposed in the specific structure of the thermistor (see, for example, FIG. 9 ).
  • the composite body, structure body and thermistor of the present embodiment described above can be manufactured by any appropriate method, for example, the following method.
  • a method of manufacturing the thermistor the above-described method of manufacturing the thermistor 30 will be exemplarily described with reference to FIGS. 1, 2, and 4.
  • other thermistors can be understood by appropriately combining known techniques, Each manufacturing method of the composite and the structure can be understood by referring to only the corresponding portion.
  • the metal electrodes 13c and 13d are formed as the metal portion 13 on the resin base material 27.
  • the metal electrodes 13c and 13d can be patterned by any appropriate method such as photolithography, plating, vapor deposition, and sputtering.
  • the composite 10 and the bonding layers 15c and 15d are formed as the metal parts 13 as described above (the composite 10 and the bonding layers 15c and 15d, in other words, the metal oxide-containing composite layer is formed).
  • a mixture containing the metal oxide particles 1 and the metal acetylacetonate (hereinafter, also referred to as “raw material mixture” in the present specification) is applied to a region to be formed), and the mixture of the metal acetylacetonate is added under pressure.
  • the composite body 10 and the bonding layers 15c and 15d are simultaneously and integrally formed in the form of a sintered body containing the metal oxide particles 1.
  • the raw material mixture can be applied (eg, applied, printed (screen printed, etc.)) to a predetermined area by a method known to those skilled in the art, for example, coating, dipping, laminating, spraying or the like.
  • the base material to which the raw material mixture is applied is subjected to a treatment such as drying under heating or natural drying, if necessary, and then, under a pressure using a means known to those skilled in the art such as a press. It can be heated at a temperature above the melting point of metal acetylacetonate and below 600°C.
  • a metal acetylacetonate is a metal acetylacetonate salt, and more specifically, a bidentate acetylacetonate ion ((CH 3 COCHCOCH 3 ) ⁇ , hereinafter referred to by an abbreviation ( acac) -, which may be referred to as "), and a central metal.
  • the metal element contained in the metal acetylacetonate is preferably any one or two or more elements selected from the above-mentioned first metal elements, and is the same as the first metal element contained in the metal oxide particles 1. More preferably, it is a metal element, but not limited to this.
  • metal acetylacetonate one kind of metal acetylacetonate may be used, or two or more kinds of metal acetylacetonate may be used in combination.
  • metal acetylacetonate may be used in combination according to the abundance ratio of these metal elements. Not limited to.
  • a raw material mixture is obtained by mixing the metal oxide particles and the metal acetylacetonate.
  • the mixing of the metal oxide particles and the metal acetylacetonate can be performed in an atmosphere of normal temperature and normal humidity and atmospheric pressure.
  • the metal acetylacetonate may be mixed in a ratio of, for example, 0.1% by mass or more and 50% by mass or less, preferably 1% by mass or more and 30% by mass or less, based on the total mass of the metal oxide particles. And more preferably 2% by mass or more and 10% by mass or less.
  • the metal acetylacetonate to be mixed may be in any state.
  • the raw material mixture may be obtained by mixing the metal oxide particles and the dry powdery solid metal acetylacetonate.
  • the metal oxide particles and the powdery metal acetylacetonate are, for example, one or more kinds selected from the group consisting of water, acetylacetone, alcohols containing methanol and/or ethanol, etc. under atmospheric pressure.
  • the raw material mixture is obtained by mixing using a general mixing method which is carried out in the solvent of 1 or in one or more kinds of gas selected from the group consisting of air, nitrogen and the like.
  • the raw material mixture may be obtained by mixing the metal oxide particles, the metal acetylacetonate, and the solvent.
  • Any appropriate solvent may be used as the solvent, and may be, for example, one or a mixture of two or more selected from the group consisting of water, acetylacetone, alcohols including methanol and/or ethanol, and the like.
  • the solvent is not particularly limited as long as it is suitable for heating the raw material mixture under pressure, and is not particularly limited, but is, for example, 50 mass% or less, preferably 30 mass% with respect to the total mass of the metal oxide particles. % Can be mixed.
  • the metal acetylacetonate and the solvent may be used separately, or a liquid material in which the metal acetylacetonate is dispersed or dissolved in the solvent may be used. In the latter case, the liquid obtained by synthesizing the metal acetylacetonate may be used without separating the metal acetylacetonate. More specifically, metal acetylacetonate can be synthesized by mixing liquid acetylacetone and a metal compound (for example, metal hydroxide or chloride), and the liquid product after synthesis can be used as it is or as needed. A solvent can be added accordingly and used.
  • a metal compound for example, metal hydroxide or chloride
  • the raw material mixture may further contain, in addition to the metal oxide particles and the metal acetylacetonate, any appropriate material in an amount that does not adversely affect desired electrical characteristics. More specifically, the raw material mixture may further contain additives such as a pH adjuster, a sintering aid, and a pressure relief agent. These additives may be mixed in a proportion of, for example, 0.01% by mass or more and 10% by mass or less, preferably 0.01% by mass or more and 1% by mass or less, based on the total mass of the metal oxide particles. They are mixed, and more preferably in a proportion of 0.01% by mass or more and 0.1% by mass or less.
  • the metal acetylacetonate liquefies and can function as a liquid medium.
  • the heating is preferably performed in the presence of fluid.
  • the fluid is, for example, a liquid, preferably a liquid that can be used as a solvent, and more preferably water.
  • water is present when the raw material mixture is heated and pressurized, water is present at the interface of the metal oxide particles contained in the raw material mixture. Thereby, the raw material mixture can be sintered at a lower temperature, and the strength of the sintered body can be effectively improved.
  • the state in which the mixture is in the presence of water means that water may not be positively added to the mixture, and only a slight amount of water is present at the interface of the metal oxide particles.
  • the metal oxide particles may absorb moisture at room temperature.
  • the positive addition of water may be performed by including (mixing) the raw material mixture, or may be performed by heating and pressurizing the raw material mixture in a steam atmosphere.
  • water when water is present by being mixed with the raw material mixture, the water can be effectively spread to the interface of each particle.
  • its amount is not particularly limited, but may be, for example, 20% by mass or less, preferably 15% by mass or less, based on the total mass of the metal oxide particles. Specifically, it is 10% by mass.
  • water content in the raw material mixture is 20% by mass or less, water can be mixed in the raw material mixture, and deterioration of the moldability of the raw material mixture can be prevented more effectively.
  • the pressure applied to the raw material mixture may be, for example, 1 MPa or more and 5000 MPa or less, preferably 5 MPa or more and 1000 MPa or less, and more preferably 10 MPa or more and 500 MPa or less.
  • pressing of the raw material mixture means pressing force (or physical/mechanical force) to the raw material mixture (more specifically, a solid component contained in the raw material mixture), for example, by using a pressure molding machine. Pressure) is meant. Therefore, it should be noted that even when the raw material mixture is under pressure, the liquid component contained in the raw material mixture is exposed to the pressure of the ambient atmosphere (usually atmospheric pressure).
  • the heating temperature of the raw material mixture refers to the firing temperature, and may be the temperature of the melting point of the metal acetylacetonate contained in the raw material mixture or more and 600° C. or less. ..
  • the melting point refers to a temperature measured by a measuring method defined by JIS standard at room temperature and atmospheric pressure. Each melting point changes depending on various conditions such as pressure at the time of pressurization.
  • Table 1 The melting points of various metal acetylacetonates are shown in Table 1 below.
  • the “melting point of metal acetylacetonate” means the highest melting point of all the metal acetylacetonates.
  • the heating temperature of the raw material mixture depends on the kind of the metal oxide used and the like, but may be higher than the melting point of the metal acetylacetonate by 5°C or higher and 600°C or lower, for example, 100°C or higher and 600°C or lower. Yes, it is preferably 100°C or higher and 400°C or lower, and more preferably 100°C or higher and 300°C or lower.
  • a relatively high density sintered body By thus heating the raw material mixture under pressure at a temperature equal to or higher than the melting point of the metal acetylacetonate, a relatively high density sintered body can be formed at the low temperature as described above.
  • the term “relatively high density” means that the ratio of the density to the theoretical density of the sintered body thus obtained is such that the metal oxide particles contained in the raw material mixture alone (the metal acetylacetonate is allowed to exist). It means that it is higher than the ratio of the density to the theoretical density of the sintered body obtained when heated and pressed under the same temperature and pressure conditions.
  • the sintered body obtained according to the present embodiment may have a relatively high density, and the ratio of the density to the theoretical density depends on the composition of the metal oxide particles used and the like, but is, for example, 70% or more, preferably 80. % Or more.
  • the metal oxide contained in the obtained sintered body may be considered to be substantially the same as the metal oxide of the metal oxide particles contained in the raw material mixture.
  • the time for heating and pressurizing the raw material mixture can be appropriately selected, but is preferably 1 second or more and 120 minutes or less.
  • the sintered body formed by using the raw material mixture containing the metal oxide particles and the metal acetylacetonate in contact with the metal part 13 is As schematically shown in FIGS. 1 and 2, the composite 10 including the metal oxide particles 1 and the first amorphous phase 2 and the bonding layer 15 including the second amorphous phase 12 (bonding layers 15c and 15d in FIG. 4). ) Corresponds to.
  • the first amorphous phase 2 contains a metal element derived from metal acetylacetonate (the same metal element as the first metal element).
  • the second metal element of the metal part 13 (metal electrodes 13c and 13d in FIG.
  • the metal element derived from the metal acetylacetonate (the same metal element as the first metal element)
  • the metal element derived from the metal part 13 (the same metal element as the second metal element) is also included. Will be included.
  • the thermistor 30 exemplified in this embodiment is manufactured.
  • the exposed portions of the composite body 10 and the bonding layers 15c and 15d may be appropriately protected by a protective film (not shown) made of resin or the like.
  • the composite body 11 is A plurality of first particles (that is, the above-mentioned “metal oxide particles”) 1 made of a metal oxide containing at least one first metal element; A first amorphous phase 2 containing the same metal element as the first metal element, A plurality of second particles (hereinafter, also simply referred to as “resin particles” in the present specification) 3 made of a first resin, and the first amorphous phase 2 includes a plurality of metal oxide particles 1 and a plurality of resin particles. It exists between three.
  • the first resin forming the resin particles 3 is preferably a resin that is not easily melted by heat, and examples thereof include polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer (LCP). : Liquid Crystal Polymer).
  • the average particle size of the resin particles 3 may be, for example, 0.001 ⁇ m or more and 100 ⁇ m or less, and particularly 0.001 ⁇ m or more and 1 ⁇ m or less. Within this range, the effect of deterioration of characteristics due to addition of resin is small.
  • the resin particles 3 may be a resin material and/or a mixture of two or more kinds of resin particles having different average particle diameters.
  • the first amorphous phase 2 exists between the metal oxide particles 1 and the resin particles 3 (more specifically, between any particles selected from the metal oxide particles 1 and the resin particles 3).
  • the metal oxide particles 1 and the resin particles 3 can be adhered to each other.
  • the resin particles 3 are mixed in the metal oxide particles 1, so that the bonding strength between the particles can be improved. Therefore, the composite body 11 of the present embodiment itself has higher strength.
  • the composite 11 of the present embodiment can contain the metal oxide particles 1 at a relatively high density due to the first amorphous phase 2 even if the resin particles 3 are present (the resin particles 3 are present. Also, a conductive path can be formed by the metal oxide particles 1 dispersed at a high density).
  • the first amorphous phase 2 can exhibit electrical characteristics close to those of the metal oxide (semiconductor) particles 1 having a crystal structure. As a result, it is possible to obtain the same electrical characteristics as a sintered body obtained by sintering metal oxide particles at a high temperature by a conventional method.
  • the presence of the first amorphous phase 2 between the metal oxide particles 1 and the resin particles 3 means that the space between the plurality of metal oxide particles 1 and the plurality of resin particles 3 is the first amorphous phase 2. It can mean filling.
  • the pores that may be contained in the composite 10 can be replaced with the plurality of resin particles 3 and can be eliminated by filling the first amorphous phase 2, so that the high temperature and high humidity considered to be caused by the pores. It is possible to further reduce the change in resistance value before and after being left in the environment.
  • these two metal oxide particles 1 have a first amorphous phase 2 between them.
  • the first amorphous phase 2 may be in contact (preferably bonded) with each other substantially without being present between them.
  • the first amorphous phase 2 may be present with a thickness of 100 ⁇ m or less.
  • the thickness of the first amorphous phase 2 is preferably small from the viewpoint of electrical characteristics and/or strength.
  • a portion where the first amorphous phase 2 is substantially absent may be present in the composite 11.
  • the complex 11 of the present embodiment is modified as a complex 11′ shown in FIG.
  • the composite body 11′ shown in FIG. A plurality of first particles (that is, the above-mentioned “metal oxide particles”) 1 made of a metal oxide containing at least one first metal element; A first amorphous phase 2 containing the same metal element as the first metal element, A plurality of second particles (hereinafter, also simply referred to as “resin particles” in the present specification) 3 made of the first resin, the plurality of metal oxide particles are in contact with each other, and the resin particles 3 are in contact with each other.
  • first particles that is, the above-mentioned “metal oxide particles”
  • a first amorphous phase 2 containing the same metal element as the first metal element
  • the first amorphous phase 2 exists inside the plurality of metal oxide particles 1 and exists between the plurality of metal oxide particles 1 and the resin particles that are in contact with each other.
  • the first amorphous phase 2 is substantially absent between the metal oxide particles 1, and all of the plurality of metal oxide particles 1 are in contact (preferably bonded, more preferably, It forms one lump as a whole), and is considered to be an ideal structure in which superior electrical properties and/or higher strength can be expected.
  • the description regarding the composite body 11 is similarly applied to the composite body 11 ′ of the modified example.
  • the content of the resin particles 3 in the composite 11 (relative to the total mass of the composite) may be, for example, 50% by mass or less, and more specifically 5% by mass or more and 20% by mass or less. Within such a range, high strength is realized, but the influence of deterioration of characteristics due to addition of resin is small.
  • the composite body 11 of the present embodiment can also be arranged (in particular, formed into a film) on an arbitrary object to form a structure.
  • the composite 11 may be at least partially joined to a metal part (for example, a member or a region formed of a metal).
  • the structure 22 in one example of the present embodiment is A metal part 13 containing at least one second metal element,
  • the complex 11 of the present embodiment is located between the metal part 13 and the composite body 11.
  • the bonding layer 16 includes the second amorphous phase 12 containing the same metal element as the first metal element and the second metal element.
  • the composite body 11 of the present embodiment is bonded to the metal portions 13a and 13b with the bonding layers 16a and 16b, respectively. May be joined via.
  • the bonding layers 16a and 16 include second amorphous phases 12a and 12b containing the same metal element as the first metal element and the second metal element, respectively.
  • the structures 22 and 23 of the present embodiment can be similar to the structures described in the first embodiment, except that the resin particles 3 are present in addition to the metal oxide particles 1.
  • the structures 22 and 23 of the present embodiment can also be appropriately modified and arranged on any base material to form a thermistor. Although not limiting the present embodiment, the structures 22 and 23 may be appropriately modified and arranged on the resin substrate.
  • the thermistor of the present embodiment can also be the same as the thermistor described in the first embodiment except that the resin particles 3 are present in addition to the metal oxide particles 1.
  • the composite body, structure body, and thermistor of the present embodiment described above can be manufactured by any appropriate method.
  • a raw material mixture a mixture containing metal oxide particles 1, resin particles 3, and metal acetylacetonate. It can be manufactured in the same manner as the manufacturing method described in the first embodiment except that the above method is used.
  • the present invention is not limited to these embodiments.
  • Example 1 The present example relates to the structure described in Embodiment 1 with reference to FIG. 3.
  • the bonding strength (adhesiveness) of the structure of this example obtained above was evaluated. This evaluation was performed according to the cross-cut method defined in JIS K5600-5-6. The evaluation results are classified as follows. 0: The edges of the cut are completely smooth, and there is no peeling in any grid. 1: Small peeling of the coating film at the intersection of cuts. The cross-cut portion is clearly not affected by more than 5%. 2: The coating is stripped along the edges of the cut and/or at intersections. The cross-cut portion is clearly affected by more than 5% but never more than 15%. 3: The coating film partially or totally peeled off along the edge of the cut, and/or various portions of the eyes were partially or completely peeled off.
  • the cross-cut portion is clearly affected by more than 15% but not more than 35%.
  • the coating film has a large amount of peeling off partially or entirely along the edge of the cut, and/or some eyes are partially or completely peeled off.
  • the cross-cut portion is clearly not affected by more than 65%.
  • 5 Any of the peeling levels that cannot be classified even in classification 4.
  • the evaluation result of the bonding strength (adhesiveness) of the structure of this example was Class 1. Specifically, only slight peeling was observed between the upper electrode and the metal oxide-containing composite layer.
  • the electrical characteristics of the structure of this example were evaluated. More specifically, the structure was cut with a dicing saw to obtain a die having a size of 5 mm ⁇ 10 mm as viewed from the upper surface and a thickness of 70 ⁇ m. With respect to this die, the resistance values at 25° C., 50° C. and 75° C. were measured by the two-terminal method, and the room temperature (25° C.) resistivity and B constant were calculated from the measured values. As a result, the room temperature resistivity was 100 k ⁇ cm and the B constant was 4500.
  • the evaluation result of the electrical characteristics of the structure of this example shows that the metal oxide particles used in the raw material mixture are heated at 900° C. for 120 minutes at atmospheric pressure and sintered to form a Ag electrode by sputtering on a bulk body. It was substantially in agreement with the electrical characteristics of the prepared sample. Therefore, it was confirmed that the structure of the present example did not substantially increase the resistance at the grain boundaries of the metal oxide particles or at the interface with the electrode.
  • FIGS. 13(a) to 13(d) show the results (bright-field image) obtained by enlarging a part of the cross section of the structure of this example and imaging it with a scanning transmission electron microscope (STEM).
  • FIG. 13A is a STEM observation image of a cross section of the junction between the metal oxide-containing composite layer and the lower electrode in the structure of Example 1 and the vicinity thereof.
  • FIG. 13B shows the element distribution of C (carbon) in FIG.
  • FIG. 13C shows the element distribution of Mn (manganese) in FIG. 13A.
  • FIG. 13D shows the element distribution of Cu (copper) in FIG. 13A.
  • FIGS. 13A is a STEM observation image of a cross section of the junction between the metal oxide-containing composite layer and the lower electrode in the structure of Example 1 and the vicinity thereof.
  • FIG. 13B shows the element distribution of C (carbon) in FIG.
  • FIG. 13C shows the element distribution of Mn (manganese) in FIG. 13A.
  • a plurality of particles of metal oxide particles are present in the main body portion of the metal oxide-containing composite layer (a portion excluding the vicinity of the interface between the upper electrode and the lower electrode). It was confirmed that the boundary was in contact with the first amorphous phase and the metal oxide particles were bonded to each other in the first amorphous phase to form a composite. Further, as understood from FIGS. 13(a) to 13(d), at the joint between the metal oxide-containing composite layer and the lower electrode, the composite of the metal oxide particles and the second amorphous phase serves as the bonding layer.
  • the second amorphous phase formed was a state in which, in addition to Mn, which is a metal element derived from metal oxide particles and metal acetylacetonate, a metal element Cu derived from a metal part was also included.
  • the first amorphous phase and the second amorphous phase have electrical characteristics close to those of the metal oxide (semiconductor) particles. It is considered that the electrical properties equivalent to those of the bulk body sintered at 900° C. were achieved as described above without substantially increasing the resistance at the grain boundaries and at the interface with the electrode.
  • FIGS. 15(a) to 15(c) show the results obtained by enlarging a part of another cross section of the structure obtained in this example and imaging it with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Example 2 (Examples 2 and 3) The present example relates to the structure described in Embodiment 2 with reference to FIG.
  • the raw material mixture was prepared by further adding a polyimide precursor solution (Example 2) or a polyamideimide precursor solution (Example 3) at a ratio of 10 mass% (based on the total mass of the metal oxide particles).
  • a structure was obtained in the same manner as in Example 1 except for the above.
  • FIGS. 14(a) to (d) were enlarged and imaged with a scanning transmission electron microscope (STEM) (bright field image), and the results are shown in FIGS. 14(a) to (d).
  • 14A to 14D are different from FIGS. 13A to 13D in the distribution of C shown in FIG. 14B.
  • C was observed to be dispersed almost uniformly in the metal oxide-containing composite layer. It is considered that this is because the carbon component accompanying sample processing and measurement was detected.
  • FIG. 14B a large amount of C was observed in the region where the metal oxide particles did not exist. From this, it was confirmed that the added polyamideimide precursor liquid was segregated as polyamideimide resin particles.
  • the resin particles are formed during the heat treatment under the pressure, and the average particle diameter of the resin particles is larger than the average particle diameter of the metal oxide particles. Understood to be small.
  • Example 4 This example relates to the thermistor described in the first embodiment with reference to FIG.
  • This precursor structure was annealed at 250° C. for 10 hours to remove unnecessary organic substances that could remain, to obtain a structure. Then, a precursor solution of polyamideimide was applied to a film (metal oxide-containing composite layer capable of functioning as a thermistor layer) derived from the sheet in the obtained structure in a thickness of 10 ⁇ m, and the temperature was set to 200° C. At 1 hour, the polyamide-imide was thermally cured to obtain a resin base material. After that, a resist is applied to the surface of the copper foil opposite to the resin base material in a predetermined pattern, exposed and developed, a predetermined portion of the copper foil is removed by etching, and the remaining resist is removed to remove two A copper electrode was formed.
  • a precursor solution of polyamideimide was applied to a film (metal oxide-containing composite layer capable of functioning as a thermistor layer) derived from the sheet in the obtained structure in a thickness of 10 ⁇ m, and the temperature was set to 200° C. At 1 hour,
  • Each of these copper electrodes had a dimension of 2.5 mm ⁇ 2.5 mm when viewed from the top surface and were arranged in parallel at a distance of 100 ⁇ m (indicated by a symbol “d” in FIG. 5). After that, the structure was cut with a dicing saw to obtain a thermistor having a size of 5 mm ⁇ 15 mm as viewed from the upper surface (see FIG. 5).
  • the temperature (and its change) was detected from the resistance value (and its change) between two electrodes existing on the same surface of the metal oxide-containing composite layer (thermistor layer). can do.
  • Both the distance d between the electrodes and the thickness t of the metal oxide-containing composite layer contribute to the resistance value of the thermistor.
  • the variation in the distance d between the electrodes can be reduced by using, for example, a comb-shaped electrode.
  • Example 5 This example relates to the thermistor described in the first embodiment with reference to FIG.
  • the mixture was added in a ratio, ethanol was used as a solvent to prepare a raw material mixture, and the mixture was mixed for 16 hours.
  • the raw material mixture thus obtained in the form of a slurry was supplied in the form of a sheet having a thickness of 10 ⁇ m on a copper foil having a thickness of 10 ⁇ m by the doctor blade method. This sheet was dried at 100° C. for 10 hours and then heated at 150° C. for 30 minutes under a pressure of 100 MPa using a heating press machine to obtain a laminate.
  • the obtained laminated body was cut with a dicing saw to obtain a first laminated body having a size of 5 mm ⁇ 5 mm as viewed from the upper surface.
  • a second laminate was prepared in which a copper layer having a thickness of 10 ⁇ m was patterned on a polyimide film having a thickness of 20 ⁇ m.
  • a film derived from the sheet of the first laminate (a metal oxide-containing composite layer capable of functioning as a thermistor layer) and a copper layer of the second laminate are appropriately opposed to each other with respect to the first laminate and the second laminate.
  • the precursor structure was obtained by heating and heating at 250° C. for 30 minutes under a pressure of 100 MPa using a heating press machine. This precursor structure was annealed at 250° C.
  • a polyimide film having a thickness of 10 ⁇ m was covered on the surface of the copper foil of the first laminated body and thermally cured to obtain a multilayer structure. Then, this multilayer structure was cut with a dicing saw to obtain a thermistor having a size of 5 mm ⁇ 15 mm as viewed from the upper surface (see FIG. 6).
  • the resistance value (and its change) between two electrodes facing each other with the metal oxide-containing composite layer (thermistor layer) interposed therebetween (the resistance value is the metal electrode of FIG. 6).
  • the temperature (and its change) can be detected from the resistance value between 13g and 13i and the resistance value between the metal electrodes 13i and 13h.
  • the resistance value of this thermistor is contributed by the area of the opposing region of these electrodes and the thickness t of the metal oxide-containing composite layer.
  • the distance between the electrodes of the thermistor of the fourth embodiment contributes to the resistance value of the thermistor, while the thermistor of the present embodiment opposes the electrodes.
  • the difference is that the area of the region contributes.
  • the variation in the distance between the electrodes can be reduced by using, for example, a comb tooth-shaped electrode, but the variation in the area of the opposing region of the electrodes can be reduced more easily in the manufacturing process. Therefore, it can be said that the thermistor of the present embodiment can further reduce variations in resistance value of the thermistor more easily than the fourth embodiment.
  • a SiO 2 film was formed on the Si wafer by thermal oxidation, and a Pt electrode layer containing oxygen or nitrogen was formed thereon by sputtering.
  • the electrode layer is etched in a predetermined pattern to form an electrode, and a metal oxide having the same composition as the metal oxide particles used in the raw material mixture in Example 1 is sputtered thereon to form a metal oxide film (thermistor). Layer) to form a thin film thermistor.
  • the bonding strength (adhesiveness) of the structures of the present comparative example obtained above was evaluated in the same manner as in Example 1 and was classified into Class 3. Specifically, peeling was observed between the electrode and the metal oxide film.
  • a SiO 2 film was formed on the Si wafer by thermal oxidation, and a Pt/Ti or Cr electrode layer was formed on the SiO 2 film by sputtering.
  • the electrode layer is etched in a predetermined pattern to form an electrode, and a metal oxide having the same composition as the metal oxide particles used in the raw material mixture in Example 1 is sputtered thereon to form a metal oxide film (thermistor). Layer) to form a thin film thermistor.
  • the bonding strength (adhesiveness) of the structures of the present comparative example obtained above was evaluated in the same manner as in Example 1 and was classified into Class 3. Specifically, peeling was observed between the electrode and the metal oxide film.
  • the composite and structure of the present invention can be incorporated into a thermistor, and the thermistor of the present invention can be used in a wide variety of applications such as a temperature sensor.
  • a temperature sensor for example, a vehicle-mounted battery in which ignition or deterioration at high temperature is a problem, temperature measurement for temperature management of a smartphone battery, It can be used for applications such as body temperature measurement in the medical and healthcare fields.
  • the present embodiment is not limited to such use.
  • First particles metal oxide particles
  • First amorphous phase Second particles (resin particles) 10, 11, 11' Composite 12, 12a, 12b Second amorphous phase 13, 13a, 13b Metal part 13c-13n
  • Metal electrode 14a-14d' External electrode 15, 15a-15n Bonding layer 16, 16a, 16b Bonding layer 20 , 20a to 20f, 21, 22, 23 Structure 27, 27a, 27b Resin base material 30 to 35
  • Thermistor

Abstract

The present invention provides a metal-oxide-containing composite, wherein metal elements in the metal oxide include at least one of Mn and Ni, and the composite is a novel composite having high density and high strength. The present invention provides a composite including a plurality of first particles comprising a metal oxide including at least one first metal element, and a first amorphous phase which is interposed between the plurality of first particles and which includes the same metal element as the first metal element, the first metal element including at least one of Mn and Ni.

Description

複合体ならびにそれを用いた構造体およびサーミスタComposite and structure and thermistor using the same
 本発明は、複合体、より詳細には、金属酸化物含有複合体、ならびに該複合体を用いた構造体およびサーミスタに関する。 The present invention relates to a composite, more specifically, a metal oxide-containing composite, and a structure and a thermistor using the composite.
 大きな負の温度係数を示す金属酸化物膜をサーミスタ層として用いた薄膜サーミスタは、各種の機器およびデバイスにおいて、温度センサ等として幅広く利用されている。薄膜サーミスタは、一般的に、基材上に金属電極を形成した後、サーミスタ層として機能する金属酸化物膜として、金属酸化物粒子の焼結体から成る層を基材上の金属電極に接触させて形成することにより製造されている。 -Thin film thermistors that use a metal oxide film that exhibits a large negative temperature coefficient as the thermistor layer are widely used as temperature sensors in various devices and devices. Generally, a thin film thermistor is formed by forming a metal electrode on a base material and then contacting a metal oxide film that functions as a thermistor layer with a layer made of a sintered body of metal oxide particles. It is manufactured by forming it.
 かかる製造方法には、金属酸化物膜と金属電極との界面の接合強度が小さく、場合により界面剥離を生じ得るという問題がある。この問題は、高いサーミスタ特性を示す金属酸化物膜を形成するために、金属酸化物粒子を400℃以上の熱処理に付して焼結させているため、金属酸化物膜と金属電極との間の熱膨張係数の差によってクラックや界面剥離が起こるために生じると考えられる。この問題に対して、高いサーミスタ特性と高い接合強度の双方を達成すべく、従来から様々な方策が提案されている(例えば特許文献1~4を参照のこと)。 Such a manufacturing method has a problem that the bonding strength at the interface between the metal oxide film and the metal electrode is small, and in some cases interface peeling may occur. This problem occurs because the metal oxide particles are subjected to heat treatment at 400° C. or higher and sintered to form a metal oxide film exhibiting high thermistor characteristics. It is considered that this occurs because cracks and interfacial peeling occur due to the difference in the coefficient of thermal expansion. In order to achieve both high thermistor characteristics and high bonding strength with respect to this problem, various measures have been conventionally proposed (for example, refer to Patent Documents 1 to 4).
国際公開第2014/010591号International Publication No. 2014/010591 特開2008-244344号公報JP, 2008-244344, A 特開2015-065417号公報Japanese Unexamined Patent Publication No. 2015-065417 特開2013-179161号公報JP, 2013-179161, A 米国特許出願公開第2017/0088471号明細書U.S. Patent Application Publication No. 2017/0088471
 しかしながら、従来の方策は、所望の電気特性(例えば高いサーミスタ特性)と高い接合強度の双方を達成する薄膜サーミスタを製造するのに必ずしも十分満足できるものではなかった。 However, the conventional measures have not always been sufficiently satisfactory for manufacturing a thin film thermistor that achieves both desired electrical characteristics (for example, high thermistor characteristics) and high bonding strength.
 各種の基材上に金属酸化物膜を形成する方法としては、一般的に溶液法や気相法などが知られているが、金属や樹脂の基材が影響を受けない低温下で実施した場合、これにより形成される金属酸化物膜の品質が低く、所望の電気特性を得ることができない。エアロゾルデポジション法などの室温固化技術も知られているが、成膜速度が小さいため大量生産に適さない。金属酸化物にSiOガラスを添加することにより低温焼結を可能にする方法は、SiOが高抵抗化の原因となり、電気特性の低下を引き起こす。窒化物を用いることにより、室温でのスパッタリングを可能にする方法もあるが、窒化物は大気中での安定性に課題があり、また、スパッタリングは、その工法上、接合強度が低いという難点がある。 Solution methods and vapor phase methods are generally known as methods for forming metal oxide films on various types of substrates, but they were carried out at low temperatures where metal and resin substrates were not affected. In this case, the quality of the metal oxide film formed by this is low, and desired electrical characteristics cannot be obtained. Room temperature solidification techniques such as the aerosol deposition method are also known, but they are not suitable for mass production because of the low film formation rate. How to enable low-temperature sintering by adding SiO 2 glass metal oxide, SiO 2 becomes a cause of high resistance, causing a decrease in electrical characteristics. There is also a method that enables sputtering at room temperature by using a nitride, but nitride has a problem in stability in the atmosphere, and sputtering has a drawback that the bonding strength is low due to its construction method. is there.
 かかる状況下、近年、200℃以下の低温で金属酸化物粒子を焼結させ得る低温焼結(Cold Sintering:CS)法が開発された(特許文献5を参照のこと)。この低温焼結法は、金属酸化物粒子を、当該酸化物を部分的に溶解させ得る溶媒(水と酸またはアルカリ)と混合して200℃以下の加熱と加圧とを施すことにより、理論密度の85%以上の密度を有する焼結体を形成し得るとされている。しかしながら、この低温焼結法は、Mnおよび/またはNiの酸化物の粒子に対しては、高密度の焼結体(金属酸化物膜)を形成することができず、焼結体そのものの強度が十分でないという別の問題を生じる。 Under such circumstances, in recent years, a low temperature sintering (CS) method has been developed which can sinter metal oxide particles at a low temperature of 200° C. or lower (see Patent Document 5). In this low temperature sintering method, the metal oxide particles are mixed with a solvent (water and an acid or alkali) capable of partially dissolving the oxide and heated and pressed at 200° C. or less to theoretically It is said that a sintered body having a density of 85% or more of the density can be formed. However, this low-temperature sintering method cannot form a high-density sintered body (metal oxide film) with respect to Mn and/or Ni oxide particles, and the strength of the sintered body itself is low. Results in another problem that is not enough.
 本発明者は、上記従来の課題に対処するために、金属酸化物粒子を他の材料と独自に複合化させるべく鋭意研究を行った。本発明の1つの目的は、金属酸化物から成る複数の粒子を含んで構成される新規な複合体(本明細書において「金属酸化物含有複合体」とも言う)であって、金属酸化物における金属元素がMnおよびNiの少なくとも一方を含み、かつ、それ自体が高強度である新規な複合体を実現することにある。本発明のもう1つの目的は、かかる複合体を用いた構造体であって、当該複合体が金属部に高い接合強度で接合されている構造体を提供することにある。本発明の更にもう1つの目的は、かかる構造体を用いたサーミスタであって、所望の電気特性と高い接合強度の双方を達成し得るサーミスタを提供することにある。 The present inventor has conducted earnest research to independently combine metal oxide particles with other materials in order to address the above-mentioned conventional problems. One object of the present invention is to provide a novel composite (also referred to herein as "metal oxide-containing composite") composed of a plurality of particles of a metal oxide, which comprises It is to realize a novel composite in which the metal element contains at least one of Mn and Ni, and which itself has high strength. Another object of the present invention is to provide a structure using such a composite, wherein the composite is bonded to a metal part with high bonding strength. Still another object of the present invention is to provide a thermistor using such a structure, which can achieve both desired electrical characteristics and high bonding strength.
 本発明の第1の要旨によれば、
 少なくとも1つの第1金属元素を含む金属酸化物から成る複数の第1粒子と、
 該複数の第1粒子間に存在し、かつ、該第1金属元素と同じ金属元素を含む第1アモルファス相と
を含み、該第1金属元素が、MnおよびNiの少なくとも一方を含む、複合体が提供される。
According to the first aspect of the present invention,
A plurality of first particles made of a metal oxide containing at least one first metal element;
A composite including a first amorphous phase existing between the plurality of first particles and containing the same metal element as the first metal element, wherein the first metal element contains at least one of Mn and Ni. Will be provided.
 本発明の第1の要旨の1つの態様において、前記第1金属元素は、Fe、Al、CoおよびCuからなる群より選択される少なくとも1つを更に含み得る。 In one aspect of the first aspect of the present invention, the first metal element may further include at least one selected from the group consisting of Fe, Al, Co and Cu.
 本発明の第1の要旨の1つの態様において、前記複合体は、第1樹脂から成る複数の第2粒子を更に含み得、前記第1アモルファス相が、前記複数の第1粒子および該複数の第2粒子間に存在し得る。 In one aspect of the first aspect of the present invention, the composite may further include a plurality of second particles composed of a first resin, wherein the first amorphous phase includes the plurality of first particles and the plurality of first particles. It may be between the second particles.
 本発明の第1の要旨の1つの態様において、前記第1樹脂は、ポリエチレンテレフタレート、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、エポキシ樹脂および液晶ポリマーからなる群より選択される少なくとも1つを含み得る。 In one embodiment of the first aspect of the present invention, the first resin is at least one selected from the group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer. May be included.
 本発明の第1の要旨の1つの態様において、前記第1アモルファス相の厚さは、100μm以下であり得る。 In one aspect of the first aspect of the present invention, the thickness of the first amorphous phase may be 100 μm or less.
 本発明の第1の要旨の1つの態様において、前記複数の第1粒子の一部は互いに接触し得る。 In one aspect of the first aspect of the present invention, some of the plurality of first particles may be in contact with each other.
 本発明の第2の要旨によれば、
 少なくとも1つの第1金属元素を含む金属酸化物から成る複数の第1粒子と、
 該第1金属元素と同じ金属元素を含む第1アモルファス相と
 第1樹脂から成る複数の第2粒子と、
を含み、該複数の第1粒子は互いに接触し、該第2粒子は、互いに接触した該複数の第1粒子の内部に存在し、該第1アモルファス相が、互いに接触した該複数の第1粒子と該第2粒子との間に存在し、該第1金属元素が、MnおよびNiの少なくとも一方を含む、複合体が提供される。
According to the second aspect of the present invention,
A plurality of first particles made of a metal oxide containing at least one first metal element;
A plurality of second particles made of a first resin and a first amorphous phase containing the same metal element as the first metal element;
The first particles are in contact with each other, the second particles are present inside the first particles in contact with each other, and the first amorphous phase is in contact with the first particles in contact with each other. There is provided a composite existing between particles and the second particles, wherein the first metal element contains at least one of Mn and Ni.
 本発明の第2の要旨の1つの態様において、前記第1金属元素は、Fe、Al、CoおよびCuからなる群より選択される少なくとも1つを更に含み得る。 In one aspect of the second aspect of the present invention, the first metal element may further include at least one selected from the group consisting of Fe, Al, Co and Cu.
 本発明の第2の要旨の1つの態様において、前記第1樹脂は、ポリエチレンテレフタレート、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、エポキシ樹脂および液晶ポリマーからなる群より選択される少なくとも1つを含み得る。 In one embodiment of the second aspect of the present invention, the first resin is at least one selected from the group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer. May be included.
 本発明の第2の要旨の1つの態様において、前記第1アモルファス相の厚さは、100μm以下であり得る。 In one aspect of the second aspect of the present invention, the thickness of the first amorphous phase may be 100 μm or less.
 本発明の第3の要旨によれば、
 少なくとも1つの第2金属元素を含む金属部と、
 上記本発明の複合体と、
 該金属部と該複合体との間に位置する接合層と
を含み、該接合層が、前記第1金属元素および該第2金属元素と同じ金属元素を含む第2アモルファス相を含む、構造体が提供される。
According to the third aspect of the present invention,
A metal part containing at least one second metal element,
With the complex of the present invention,
A structure including a bonding layer located between the metal part and the composite, wherein the bonding layer includes a second amorphous phase containing the same metal element as the first metal element and the second metal element. Will be provided.
 本発明の第3の要旨の1つの態様において、前記第2金属元素は、Mn、Ni、Fe、Al、Zn、Cr、Ti、Co、Cu、Ag、AuおよびPtからなる群より選択される少なくとも1つを含み得る。 In one aspect of the third aspect of the present invention, the second metal element is selected from the group consisting of Mn, Ni, Fe, Al, Zn, Cr, Ti, Co, Cu, Ag, Au and Pt. It may include at least one.
 本発明の第4の要旨によれば、
 第2樹脂から成る樹脂基材と、
 該樹脂基材の上に配置された、上記本発明の構造体と
を含み、前記金属部が、2つの金属電極を含む、サーミスタが提供される。
According to the fourth aspect of the present invention,
A resin base material made of a second resin,
There is provided a thermistor including the structure of the present invention arranged on the resin substrate, wherein the metal part includes two metal electrodes.
 本発明の第4の要旨の1つの態様において、前記複合体および前記接合層は、合計100μm以下の厚さを有し得る。 In one aspect of the fourth aspect of the present invention, the composite and the bonding layer may have a total thickness of 100 μm or less.
 本発明の第4の要旨の1つの態様において、前記第2樹脂は、ポリエチレンテレフタレート、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、エポキシ樹脂および液晶ポリマーからなる群より選択される少なくとも1つを含み得る。 In one aspect of the fourth aspect of the present invention, the second resin is at least one selected from the group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer. May be included.
 本発明の第4の要旨の1つの態様において、前記2つの金属電極は互いに対向する主面を有し、それら主面間に前記複合体が介挿され得る。 In one aspect of the fourth aspect of the present invention, the two metal electrodes have main surfaces facing each other, and the composite can be interposed between the main surfaces.
 本発明の第4の要旨の1つの態様において、前記2つの金属電極は、平面視にて互い違いに配列された2つの外部電極とそれぞれ電気的に接続され得る。 In one aspect of the fourth aspect of the present invention, the two metal electrodes can be electrically connected to two external electrodes that are alternately arranged in a plan view.
 本発明によれば、金属酸化物含有複合体であって、金属酸化物における金属元素がMnおよびNiの少なくとも一方を含み、かつ、それ自体が高密度かつ高強度である新規な複合体が実現される。更に、本発明によれば、高温高湿環境下に放置する前後での抵抗率変化が小さい複合体が実現される。また、本発明によれば、かかる複合体を用いた構造体であって、当該複合体が金属部に高い接合強度で接合されている構造体が提供される。更に、本発明によれば、かかる構造体を用いたサーミスタであって、所望の電気特性と高い接合強度の双方を達成し得るサーミスタが提供される。 According to the present invention, a novel metal oxide-containing composite, in which the metal element in the metal oxide contains at least one of Mn and Ni, and which itself has high density and high strength is realized. To be done. Furthermore, according to the present invention, a composite having a small change in resistivity before and after being left in a high temperature and high humidity environment is realized. Further, according to the present invention, there is provided a structure using such a composite, wherein the composite is bonded to a metal part with high bonding strength. Further, according to the present invention, there is provided a thermistor using such a structure, which can achieve both desired electrical characteristics and high bonding strength.
図1は、本発明の1つの実施形態における複合体の構造を示す部分模式図である。FIG. 1 is a partial schematic view showing the structure of a composite according to one embodiment of the present invention. 図2は、本発明の1つの実施形態における構造体の1つの例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing one example of the structure in one embodiment of the present invention. 図3は、本発明の1つの実施形態における構造体のもう1つの例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing another example of the structure according to the embodiment of the present invention. 図4は、本発明の1つの実施形態におけるサーミスタの1つの例を示す図であって、(a)は、(b)中のX-X線から見た模式断面図であり、(b)は模式上面図である。FIG. 4 is a diagram showing an example of a thermistor in one embodiment of the present invention, FIG. 4A is a schematic cross-sectional view taken along line XX in FIG. 4B, and FIG. Is a schematic top view. 図5は、本発明の1つの実施形態におけるサーミスタのもう1つの例を示す図であって、(a)は、(b)中のX-X線から見た模式断面図であり、(b)は模式上面図である。FIG. 5 is a diagram showing another example of the thermistor in one embodiment of the present invention, FIG. 5A is a schematic cross-sectional view taken along line XX in FIG. ) Is a schematic top view. 図6は、本発明の1つの実施形態におけるサーミスタのもう1つの例を示す図であって、(a)は、(b)中のX-X線から見た模式断面図であり、(b)は、(a)中にて上側に位置する樹脂基材を除外して示した模式上面図である。FIG. 6 is a diagram showing another example of the thermistor in one embodiment of the present invention, FIG. 6A is a schematic cross-sectional view taken along line XX in FIG. 8A is a schematic top view showing the resin base material located on the upper side in FIG. 図7は、本発明の1つの実施形態におけるサーミスタのもう1つの例を示す図であって、(a)は、(b)中のX-X線から見た模式断面図であり、(b)は、(a)中にて上側に位置する樹脂基材を除外して示した模式上面図である。FIG. 7 is a diagram showing another example of the thermistor in one embodiment of the present invention, in which (a) is a schematic cross-sectional view seen from line XX in (b), 8A is a schematic top view showing the resin base material located on the upper side in FIG. 図8は、本発明の1つの実施形態におけるサーミスタのもう1つの例を示す図であって、(a)は、(b)中のX-X線から見た模式断面図であり、(b)は模式上面図である。FIG. 8 is a diagram showing another example of the thermistor in one embodiment of the present invention, FIG. 8A is a schematic cross-sectional view taken along line XX in FIG. 8B, ) Is a schematic top view. 図9は、本発明の1つの実施形態におけるサーミスタのもう1つの例を示す図であって、(a)は、(b)中のX-X線から見た模式断面図であり、(b)は模式上面図である。FIG. 9 is a diagram showing another example of the thermistor in one embodiment of the present invention, FIG. 9A is a schematic cross-sectional view taken along line XX in FIG. ) Is a schematic top view. 図10(a)は、本発明のもう1つの実施形態における複合体の構造を示す部分模式図であり、図10(b)は図10(a)の複合体の改変例を示す。FIG. 10(a) is a partial schematic diagram showing the structure of the complex according to another embodiment of the present invention, and FIG. 10(b) shows a modified example of the complex of FIG. 10(a). 図11は、本発明のもう1つの実施形態における構造体の1つの例を示す模式断面図である。FIG. 11: is a schematic cross section which shows one example of the structure in another embodiment of this invention. 図12は、本発明のもう1つの実施形態における構造体のもう1つの例を示す模式断面図である。FIG. 12 is a schematic cross-sectional view showing another example of the structure according to another embodiment of the present invention. 図13は、本発明の実施例1にて製造した構造体の部分拡大断面の走査型透過電子顕微鏡(STEM)観察像(明視野像)であり、(a)は、金属酸化物含有複合体層と下部電極の接合部およびその近傍の断面のSTEM観察像であり、(b)は、図13(a)のC(炭素)の元素分布を示し、(c)は、(a)のMn(マンガン)の元素分布を示し、(d)は、(a)のCu(銅)の元素分布を示す。FIG. 13 is a scanning transmission electron microscope (STEM) observation image (bright-field image) of a partially enlarged cross section of the structure manufactured in Example 1 of the present invention, and (a) is a metal oxide-containing composite. 13B is a STEM observation image of a cross section of the junction between the layer and the lower electrode and the vicinity thereof, (b) shows the element distribution of C (carbon) in FIG. 13( a ), and (c) shows Mn of (a). The element distribution of (manganese) is shown, and (d) shows the element distribution of Cu (copper) of (a). 図14は、本発明の実施例3にて製造した構造体の部分拡大断面の走査型透過電子顕微鏡(STEM)観察像(明視野像)であり、(a)は、金属酸化物含有複合体層と下部電極の接合部およびその近傍の断面のSTEM観察像であり、(b)は、図13(a)のC(炭素)の元素分布を示し、(c)は、(a)のMn(マンガン)の元素分布を示し、(d)は、(a)のCu(銅)の元素分布を示す。FIG. 14 is a scanning transmission electron microscope (STEM) observation image (bright-field image) of a partially enlarged cross section of the structure manufactured in Example 3 of the present invention, and (a) is a metal oxide-containing composite. 13B is a STEM observation image of a cross section of the junction between the layer and the lower electrode and the vicinity thereof, (b) shows the element distribution of C (carbon) in FIG. 13( a ), and (c) shows Mn of (a). The element distribution of (manganese) is shown, and (d) shows the element distribution of Cu (copper) of (a). 図15は、本発明の実施例1にて製造した構造体の部分拡大断面の透過型電子顕微鏡(TEM)観察像であり、(a)は、金属酸化物含有複合体層の断面のTEM観察像であり、(b)は、図15(a)に示す四角枠の領域の拡大像であり、(c)は、図15(b)に示す四角枠の領域の拡大像であり、(d)は、結晶構造を有する粒子と区別してアモルファス相を判別する目的で示したアモルファス相の電子線回折像の一例である。FIG. 15 is a transmission electron microscope (TEM) observation image of a partially enlarged cross section of the structure manufactured in Example 1 of the present invention, and (a) is a TEM observation of the cross section of the metal oxide-containing composite layer. 15B is an enlarged image of the rectangular frame area shown in FIG. 15A, FIG. 15C is an enlarged image of the rectangular frame area shown in FIG. 15B, and FIG. ) Is an example of an electron diffraction image of an amorphous phase shown for the purpose of distinguishing the amorphous phase by distinguishing it from particles having a crystal structure.
 本発明の2つの実施形態における複合体、ならびに該複合体を用いた構造体およびサーミスタについて、以下、図面を参照しながら説明する。図中、同様の部材には同様の番号を付して示し、特に断りのない限り、同様の説明が当て嵌まる。 A composite according to two embodiments of the present invention, and a structure and a thermistor using the composite will be described below with reference to the drawings. In the drawings, the same members are denoted by the same reference numerals, and the same description applies unless otherwise specified.
(実施形態1)
 図1に示すように、本実施形態における複合体(金属酸化物含有複合体)10は、
 少なくとも1つの第1金属元素を含む金属酸化物から成る複数の第1粒子(以下、単に「金属酸化物粒子」とも言う)1と、
 複数の第1粒子1間に存在する第1アモルファス相2と
を含む。
(Embodiment 1)
As shown in FIG. 1, the composite body (metal oxide-containing composite body) 10 in the present embodiment is
A plurality of first particles (hereinafter also simply referred to as “metal oxide particles”) 1 made of a metal oxide containing at least one first metal element;
The first amorphous phase 2 existing between the plurality of first particles 1 is included.
 金属酸化物粒子1を構成する金属酸化物は、第1金属元素として、MnおよびNiの少なくとも一方を含み、更に、Fe、Al、CoおよびCuからなる群より選択される少なくとも1つを含んでいてよい。Mnおよび/またはNiは、金属酸化物における必須金属元素である。また、Fe、Al、CoおよびCuからなる群より選択される少なくとも1つは、金属酸化物における任意添加金属元素である。任意添加金属元素は、好ましくはFe、AlおよびCoからなる群より選択される少なくとも1つである。かかる金属酸化物はいずれも金属酸化物半導体であり得、特にスピネル型構造を有し得るが、これに限定されない。 The metal oxide forming the metal oxide particles 1 contains at least one of Mn and Ni as the first metal element, and further contains at least one selected from the group consisting of Fe, Al, Co and Cu. You can stay. Mn and/or Ni are essential metal elements in the metal oxide. Further, at least one selected from the group consisting of Fe, Al, Co and Cu is an optional addition metal element in the metal oxide. The optional addition metal element is preferably at least one selected from the group consisting of Fe, Al and Co. Any of these metal oxides may be a metal oxide semiconductor, and may have a spinel structure in particular, but is not limited thereto.
 複数の金属酸化物粒子1を構成する金属酸化物全体における金属元素の割合は特に限定されず、所望の電気特性等に応じて適宜選択され得る。必須金属元素に関して、MnおよびNiの双方が存在する場合、Mn:Niの割合(原子比)は、例えば1~100:1であり得る。任意添加金属元素が存在する場合、任意添加金属元素(複数存在する場合はそれらの合計)は、必須金属元素(MnおよびNiの双方が存在する場合はそれらの合計)より少なければよいが、必須金属元素:任意添加金属元素の割合(原子比)は、例えば1~100:1であり得る。 The ratio of the metal element in the entire metal oxide forming the plurality of metal oxide particles 1 is not particularly limited, and can be appropriately selected according to desired electrical characteristics and the like. With respect to the essential metal element, if both Mn and Ni are present, the Mn:Ni ratio (atomic ratio) can be, for example, 1 to 100:1. When the optional addition metal element is present, the optional addition metal element (the total of them when there are a plurality of them) may be smaller than the essential metal element (the total of them when both Mn and Ni are present), but is essential. The ratio (atomic ratio) of metallic element: arbitrarily added metallic element may be, for example, 1 to 100:1.
 金属酸化物粒子1の平均粒径は、例えば0.01μm以上100μm以下であり得、特に0.02μm以上1μm以下であり得る。金属酸化物粒子1の平均粒径が0.01μm以上100μm以下の範囲にあることにより、本実施形態にて後述する製造方法において、金属アセチルアセトネートに由来する液体媒体および/または流体(好ましくは溶媒)によって、金属酸化物粒子が他の金属酸化物粒子同士の隙間に運ばれやすくなり、これにより得られる複合体の高密度化をより効果的に達成できる。本明細書において平均粒径とは、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、累積値が50%となる点の粒径(D50)である。かかる平均粒径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または電子走査顕微鏡を用いて測定することができる。 The average particle size of the metal oxide particles 1 can be, for example, 0.01 μm or more and 100 μm or less, and particularly can be 0.02 μm or more and 1 μm or less. Since the average particle size of the metal oxide particles 1 is in the range of 0.01 μm or more and 100 μm or less, in the production method described later in this embodiment, a liquid medium and/or a fluid (preferably, a fluid) derived from metal acetylacetonate is used. The solvent) makes it easier for the metal oxide particles to be carried into the gaps between the other metal oxide particles, so that the resultant composite can be more effectively densified. In the present specification, the average particle size is a particle size (D50) at a point where the cumulative value is 50% in a cumulative curve in which the particle size distribution is obtained on a volume basis and the total volume is 100%. The average particle diameter can be measured using a laser diffraction/scattering particle diameter/particle size distribution measuring device or an electron scanning microscope.
 金属酸化物粒子1は、金属酸化物組成および/または平均粒径の異なる2種類以上の金属酸化物粒子の混合物であってよい。 The metal oxide particles 1 may be a mixture of two or more kinds of metal oxide particles having different metal oxide compositions and/or average particle sizes.
 第1アモルファス相2は、金属酸化物粒子1間に存在し、金属酸化物粒子1同士を接着させ得る。従って、本実施形態の複合体10は、それ自体が高い強度を有する。本実施形態を限定するものではないが、第1アモルファス相2の連続相中に複数の金属酸化物粒子1が分散した構造を形成することができる。また、本実施形態の複合体10は、第1アモルファス相2により金属酸化物粒子1を高密度で含有することができる(高密度で分散した金属酸化物粒子1による導電パスを形成することができる)。更に、第1アモルファス相2は、結晶構造を有する金属酸化物(半導体)粒子1に近い電気特性を示し得る。これにより、金属酸化物粒子を従来一般的な方法により高温で焼結させた焼結体と同様の電気特性を得ることができる。 The first amorphous phase 2 exists between the metal oxide particles 1 and can bond the metal oxide particles 1 to each other. Therefore, the composite body 10 of this embodiment itself has high strength. Although not limited to this embodiment, a structure in which a plurality of metal oxide particles 1 are dispersed in a continuous phase of the first amorphous phase 2 can be formed. Further, the composite body 10 of the present embodiment can contain the metal oxide particles 1 at a high density due to the first amorphous phase 2 (a conductive path can be formed by the metal oxide particles 1 dispersed at a high density. it can). Furthermore, the first amorphous phase 2 can exhibit electrical characteristics close to those of the metal oxide (semiconductor) particles 1 having a crystal structure. As a result, it is possible to obtain the same electrical characteristics as a sintered body obtained by sintering metal oxide particles at a high temperature by a conventional method.
 第1アモルファス相2は、金属酸化物粒子1に含まれる第1金属元素と同じ金属元素を含む。これにより、金属酸化物粒子1と第1アモルファス相2との間の相互拡散が生じた場合であっても、複合体10の電気特性が劣化することを効果的に防止できる。 The first amorphous phase 2 contains the same metal element as the first metal element contained in the metal oxide particles 1. Thereby, even if mutual diffusion between the metal oxide particles 1 and the first amorphous phase 2 occurs, it is possible to effectively prevent deterioration of the electrical characteristics of the composite body 10.
 本明細書において、アモルファス相とは、実質的に結晶性を有しない、または結晶度が比較的低い相を意味し、これは当業者に公知な手法である電子線回折像に基づいて、結晶構造を有する粒子と区別して判別可能である。また、アモルファス相に含まれる元素(特に金属元素)は、走査型透過電子顕微鏡(STEM)を用いて確認できる。 In the present specification, the amorphous phase means a phase having substantially no crystallinity or a relatively low crystallinity, which is a crystal based on an electron diffraction image which is a method known to those skilled in the art. It can be distinguished from particles having a structure. Further, the elements (particularly metal elements) contained in the amorphous phase can be confirmed by using a scanning transmission electron microscope (STEM).
 本実施形態において、第1アモルファス相2が、金属酸化物粒子1間に存在するとは、複数の金属酸化物粒子1間の空間を第1アモルファス相2が充填していることを意味し得る。これにより、複合体10に含まれるおそれがある空孔を、第1アモルファス相2の充填により無くすことができるので、空孔起因によると考えられる高温高湿環境下に放置する前後での抵抗値変化を小さくすることができる。全ての金属酸化物粒子1のうち互いに隣接する任意の2つの金属酸化物粒子1に着目した場合、これら2つの金属酸化物粒子1は、それらの間に第1アモルファス相2が存在していても、それらの間に第1アモルファス相2が実質的に存在せずに互いに接触(好ましくは結合)していてもよい。前者の場合、第1アモルファス相2は、100μm以下の厚さで存在し得る。第1アモルファス相2の厚さは、電気特性および/または強度の観点からは小さいほうが好ましい。上述の後者の場合、第1アモルファス相2が実質的に存在しない部分が、複合体10に存在していてもよい。 In the present embodiment, the presence of the first amorphous phase 2 between the metal oxide particles 1 may mean that the space between the plurality of metal oxide particles 1 is filled with the first amorphous phase 2. As a result, pores that may be contained in the composite 10 can be eliminated by filling the first amorphous phase 2, so that the resistance value before and after being left in a high temperature and high humidity environment that is considered to be due to pores. The change can be reduced. When paying attention to any two metal oxide particles 1 adjacent to each other among all the metal oxide particles 1, these two metal oxide particles 1 have a first amorphous phase 2 between them. However, the first amorphous phase 2 may be in contact (preferably bonded) with each other substantially without being present between them. In the former case, the first amorphous phase 2 may be present with a thickness of 100 μm or less. The thickness of the first amorphous phase 2 is preferably small from the viewpoint of electrical characteristics and/or strength. In the latter case described above, a portion where the first amorphous phase 2 is substantially absent may be present in the composite 10.
 なお、本実施形態の複合体10(特に、第1アモルファス相2)は、SiOガラス等の珪素酸化物を実質的に含まないことに留意されたい。珪素酸化物は、電気特性の著しい低下を招くため好ましくない。複合体10における珪素酸化物の含有量(金属酸化物粒子の全質量に対して)は、例えば0.1質量%以下であり、0.01質量%以下であることが好ましく、実質的にゼロ質量%であることがより好ましい。 It should be noted that the composite body 10 (in particular, the first amorphous phase 2) of the present embodiment does not substantially contain silicon oxide such as SiO 2 glass. Silicon oxide is not preferable because it causes a remarkable deterioration in electrical characteristics. The content of silicon oxide in the composite 10 (based on the total weight of the metal oxide particles) is, for example, 0.1% by mass or less, preferably 0.01% by mass or less, and substantially zero. More preferably, it is mass %.
 本実施形態の複合体10は、任意の物体上に配置(特に成膜)して構造体を構成することができる。本実施形態を限定するものではないが、複合体10は、金属部(例えば金属から構成される部材または領域等)に少なくとも部分的に接合され得る。 The composite body 10 of the present embodiment can be arranged (in particular, formed into a film) on an arbitrary object to form a structure. Although not limiting to this embodiment, the composite 10 may be at least partially joined to a metal portion (eg, a member or region made of metal).
 例えば、図2に示すように、本実施形態の1つの例における構造体20は、
 少なくとも1つの第2金属元素を含む金属部13と、
 上記の本実施形態の複合体10と、
 金属部13および複合体10との間に位置する接合層15と
を含む。実際には、複合体10と接合層15との境界は必ずしも明瞭でなくてよい(添付の図面においては、仮想的な境界を点線にて示す)。構造体20においては、複合体10と接合層15とをまとめて、金属酸化物含有複合体層またはサーミスタ層として理解することも可能である。
For example, as shown in FIG. 2, the structure 20 in one example of the present embodiment is
A metal part 13 containing at least one second metal element,
The composite body 10 of the present embodiment,
The bonding layer 15 is located between the metal part 13 and the composite body 10. In practice, the boundary between the composite body 10 and the bonding layer 15 does not necessarily have to be clear (in the accompanying drawings, a virtual boundary is indicated by a dotted line). In the structure 20, the composite 10 and the bonding layer 15 can be collectively understood as a metal oxide-containing composite layer or a thermistor layer.
 接合層15は、第2アモルファス相12を含む。第2アモルファス相12は、複合体10を金属部13に接着させ得る。従って、本実施形態の構造体20は、複合体10を金属部13に高い接合強度で接合することができる。 The bonding layer 15 includes the second amorphous phase 12. The second amorphous phase 12 can adhere the composite 10 to the metal part 13. Therefore, the structure 20 of the present embodiment can bond the composite 10 to the metal portion 13 with high bonding strength.
 更に、本実施形態の複合体10において、第2アモルファス相12は、第1金属元素および第2金属元素と同じ金属元素を含む。第2アモルファス相12は、結晶構造を有する金属酸化物(半導体)粒子1に近い電気特性を示し得る。更に、第2アモルファス相12が第1金属元素および第2金属元素と同じ金属元素を含むことにより、複合体10と接合層15と金属部13との間の電気抵抗(概略的には、金属酸化物(半導体)粒子1と金属部13との間のショットキーバリア、より詳細には、金属酸化物粒子1と第2アモルファス相12との間および第2アモルファス相12と金属部13との間の界面抵抗)を低減することができ、構造体20の電気特性を向上させることができる。 Further, in the composite body 10 of the present embodiment, the second amorphous phase 12 contains the same metal element as the first metal element and the second metal element. The second amorphous phase 12 can exhibit electrical characteristics similar to those of the metal oxide (semiconductor) particles 1 having a crystal structure. Furthermore, since the second amorphous phase 12 contains the same metal element as the first metal element and the second metal element, the electrical resistance between the composite body 10, the bonding layer 15, and the metal portion 13 (generally, the metal Schottky barrier between the oxide (semiconductor) particles 1 and the metal part 13, more specifically, between the metal oxide particles 1 and the second amorphous phase 12, and between the second amorphous phase 12 and the metal part 13. It is possible to reduce the interfacial resistance between them and improve the electrical characteristics of the structure 20.
 本実施形態を限定するものではないが、第2アモルファス相12および第1アモルファス相2は連続して(例えば中間領域にて、グラデーションを形成しておよび/または相互に入り交じって)存在していてよい。その場合、例えば、アモルファス相に存在し得る第1金属元素および第2金属元素の分布に基づいて、これらの境界を決定してよい。 Although not limiting the present embodiment, the second amorphous phase 12 and the first amorphous phase 2 exist continuously (for example, in the intermediate region, forming a gradation and/or intermingling with each other). You can In that case, for example, these boundaries may be determined based on the distribution of the first metal element and the second metal element that may be present in the amorphous phase.
 金属部13を構成する第2金属元素は、特に限定されないが、Mn、Ni、Fe、Al、Zn、Cr、Ti、Co、Cu、Ag、AuおよびPtからなる群より選択される少なくとも1つを含んでいてよく、これらのいずれかまたは2つ以上の合金であり、好ましくはNi、CuおよびAgのいずれかまたは2つ以上の合金である。第2金属元素は、一般的に電極として使用される金属であってよい。ならびに/あるいは、第2金属元素は、第1金属元素と同じまたは異なる金属元素であってよい。 The second metal element forming the metal part 13 is not particularly limited, but is at least one selected from the group consisting of Mn, Ni, Fe, Al, Zn, Cr, Ti, Co, Cu, Ag, Au and Pt. And any one or two or more of these alloys, preferably any one or two or more alloys of Ni, Cu and Ag. The second metal element may be a metal commonly used as an electrode. And/or, the second metal element may be the same or different metal element as the first metal element.
 また例えば、図3に示すように、本実施形態のもう1つの例における構造体21は、上記の本実施形態の複合体10が、金属部13aおよび13bに対して、それぞれ接合層15aおよび15bを介して接合されていてよい。構造体21においては、複合体10と接合層15aおよび15bとをまとめて、金属酸化物含有複合体層またはサーミスタ層として理解することも可能である。 Further, for example, as shown in FIG. 3, in the structure 21 in another example of the present embodiment, the composite body 10 of the present embodiment is bonded to the metal portions 13a and 13b with the bonding layers 15a and 15b, respectively. May be joined via. In the structure 21, the composite 10 and the bonding layers 15a and 15b can be collectively understood as a metal oxide-containing composite layer or a thermistor layer.
 かかる構造体21は、構造体20について上述したものと同様の効果を奏する。更に、構造体21においては、金属部13、13bを対向電極として使用でき、この場合、複合体10ならびに接合層15aおよび15bの合計厚さ(金属酸化物含有複合体層の厚さ)を制御することにより、構造体21の電気特性(例えば抵抗値のばらつき)を効果的に制御することができる。 The structure 21 has the same effect as that described above for the structure 20. Furthermore, in the structure 21, the metal parts 13 and 13b can be used as counter electrodes, and in this case, the total thickness of the composite 10 and the bonding layers 15a and 15b (thickness of the metal oxide-containing composite layer) is controlled. By doing so, the electrical characteristics of the structure 21 (for example, variations in resistance value) can be effectively controlled.
 本実施形態の構造体20、21は、適宜改変されて、任意の基材上に配置されてサーミスタを構成することができる。本実施形態を限定するものではないが、構造体20、21は、適宜改変されて、樹脂基材(または樹脂フィルム)上に配置され得る。 The structures 20 and 21 of the present embodiment can be appropriately modified and arranged on any base material to form a thermistor. Although not limiting the present embodiment, the structures 20 and 21 may be appropriately modified and arranged on the resin base material (or resin film).
 例えば、図4(a)および(b)に示すように、本実施形態の1つの例におけるサーミスタ30は、
 第2樹脂から成る樹脂基材27と、
 樹脂基材27の上に配置された、本実施形態の構造体20aと、
を含む。構造体20aにおいて、金属部13は、2つの金属電極13c、13dを含み、それらと複合体10との間にそれぞれ接合層15c、15dが位置している。このサーミスタ30においては、構造体20aのうち、複合体10よりも金属電極13c、13dが、樹脂基材27の側に配置されているが、本実施形態はこれに限定されない。複合体10および接合層15c、15dの露出部は、適宜、樹脂などからなる保護膜(図示せず)で保護してよい。
For example, as shown in FIGS. 4A and 4B, the thermistor 30 in one example of the present embodiment is
A resin base material 27 made of a second resin,
A structure 20a of the present embodiment arranged on the resin substrate 27;
including. In the structure 20 a, the metal portion 13 includes two metal electrodes 13 c and 13 d, and the bonding layers 15 c and 15 d are located between them and the composite body 10, respectively. In the thermistor 30, the metal electrodes 13c and 13d of the structure 20a are arranged closer to the resin base material 27 than the composite body 10, but the present embodiment is not limited to this. The exposed portions of the composite body 10 and the bonding layers 15c and 15d may be appropriately protected by a protective film (not shown) made of resin or the like.
 金属電極13c、13dの間に介挿された複合体10および接合層15c、15dは、温度に依存して抵抗が変化し得る(より詳細には負の温度係数を有する)サーミスタ層として機能できる。なお、図4(b)中、複合体10の下方に位置する金属電極13c、13dを透視図にて示す。 The composite body 10 and the bonding layers 15c and 15d interposed between the metal electrodes 13c and 13d can function as a thermistor layer whose resistance can change depending on temperature (more specifically, has a negative temperature coefficient). .. In FIG. 4B, the metal electrodes 13c and 13d located below the composite body 10 are shown in a perspective view.
 本実施形態のサーミスタ30においては、複合体10が、第1アモルファス相2により金属酸化物粒子1を高密度で含有することができ、第1アモルファス相2および第2アモルファス相12が金属酸化物(半導体)粒子1に近い電気特性を示し得るので、金属酸化物粒子を従来一般的な方法により高温で焼結させた焼結体と同様の電気特性を得ることができ、所望の電気特性(例えばサーミスタ特性、より詳細には、室温抵抗率、B定数等)を達成し得る。また、本実施形態のサーミスタ30においては、複合体10が接合層15c、15dを介して金属電極13c、13dに強固に接合され、高い接合強度を達成し得る。加えて、高い接合強度により、サーミスタ30の抵抗値のばらつきが小さく、高い信頼性を達成し得る。 In the thermistor 30 of the present embodiment, the composite 10 can contain the metal oxide particles 1 at a high density due to the first amorphous phase 2, and the first amorphous phase 2 and the second amorphous phase 12 are metal oxides. Since the (semiconductor) particles 1 can exhibit electrical characteristics close to those of the (semiconductor) particles 1, the same electrical characteristics as a sintered body obtained by sintering metal oxide particles at a high temperature by a conventional general method can be obtained, and desired electrical characteristics ( For example, thermistor characteristics, more specifically room temperature resistivity, B constant, etc.) can be achieved. In addition, in the thermistor 30 of the present embodiment, the composite body 10 can be firmly bonded to the metal electrodes 13c and 13d via the bonding layers 15c and 15d, and high bonding strength can be achieved. In addition, due to the high bonding strength, variations in the resistance value of the thermistor 30 are small, and high reliability can be achieved.
 かかるサーミスタ30において、樹脂基材27上に形成された複合体10および接合層15c、15dの合計厚さ(サーミスタ層として機能し得る金属酸化物含有複合体層の厚さ)は、例えば100μm以下であり得、より詳細には1μm以上30μm以下であり得る。かかるサーミスタ30は、薄膜サーミスタとも称される。 In the thermistor 30, the total thickness of the composite 10 and the bonding layers 15c and 15d formed on the resin base material 27 (thickness of the metal oxide-containing composite layer that can function as a thermistor layer) is, for example, 100 μm or less. And more specifically 1 μm or more and 30 μm or less. The thermistor 30 is also called a thin film thermistor.
 サーミスタ30は、上記のように薄いことにより、僅かな空間にも容易に設置することができる。更に、サーミスタ30およびこれが取り付けられる対象物の双方への取り付け時および動作時の加圧による物理損傷を低減することができる。また更に、かかるサーミスタ30は熱容量が小さいため、高い温度応答性を示す。また、複合体10(および接合層15c、15d)が薄く、柔軟性を有するため、変形に対しても破壊され難い。特に、樹脂基材27としてフレキシブル基材(またはフィルム)を使用した場合には、全体としてフレキシブルなサーミスタ30を得ることができる。 Since the thermistor 30 is thin as described above, it can be easily installed in a small space. Furthermore, it is possible to reduce physical damage due to pressurization during attachment and operation to both the thermistor 30 and the object to which it is attached. Furthermore, since the thermistor 30 has a small heat capacity, it exhibits high temperature responsiveness. Further, since the composite body 10 (and the bonding layers 15c and 15d) is thin and has flexibility, it is difficult to be destroyed even if it is deformed. In particular, when a flexible substrate (or film) is used as the resin substrate 27, the thermistor 30 that is flexible as a whole can be obtained.
 樹脂基材27を構成する第2樹脂は、特に限定されないが、例えばポリエチレンテレフタレート、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、エポキシ樹脂および液晶ポリマー(LCP: Liquid Crystal Polymer)からなる群より選択される少なくとも1つを含み得る。なかでも、ポリイミド、ポリアミドイミドが、耐熱性と密着性の観点から好ましい。 The second resin constituting the resin base material 27 is not particularly limited, but is, for example, a group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer (LCP: Liquid Crystal Polymer). It may include at least one more selected. Among them, polyimide and polyamide-imide are preferable from the viewpoint of heat resistance and adhesiveness.
 樹脂基材27の厚さは特に限定されないが、薄膜サーミスタの場合には、例えば1~50μmであり得る。 The thickness of the resin base material 27 is not particularly limited, but in the case of a thin film thermistor, it may be, for example, 1 to 50 μm.
 本実施形態のサーミスタ30は種々の改変が可能である。例えば、図5(a)および(b)に示すように、サーミスタ31は、
 第2樹脂から成る樹脂基材27と、
 樹脂基材27の上に配置された、本実施形態の構造体20bと、
を含む。構造体20bにおいて、金属部13は、2つの金属電極13e、13fを含み、それらと複合体10との間にそれぞれ接合層15e、15fが位置している。このサーミスタ31においては、構造体20bのうち、複合体10が金属電極13e、13fよりも、樹脂基材27の側に配置されている。複合体10および接合層15e、15fの露出部は、適宜、樹脂などからなる保護膜(図示せず)で保護してよい。
The thermistor 30 of this embodiment can be modified in various ways. For example, as shown in FIGS. 5A and 5B, the thermistor 31 is
A resin base material 27 made of a second resin,
A structure 20b of the present embodiment arranged on the resin base material 27;
including. In the structure 20b, the metal part 13 includes two metal electrodes 13e and 13f, and the bonding layers 15e and 15f are located between the metal electrodes 13e and 13f and the composite 10, respectively. In the thermistor 31, the composite body 10 of the structure 20b is arranged closer to the resin base material 27 than the metal electrodes 13e and 13f. The exposed portions of the composite body 10 and the bonding layers 15e and 15f may be appropriately protected by a protective film (not shown) made of resin or the like.
 また例えば、図6(a)および(b)に示すように、サーミスタ32は、2つの金属電極13g、13iが互いに対向する主面を有し、それら主面間に複合体10が介挿され、それぞれ接合層15g、15iにより接合されていてよく、また、2つの金属電極13h、13iが互いに対向する主面を有し、それら主面間に複合体10が介挿され、それぞれ接合層15h、15iにより接合されていてよい。換言すれば、サーミスタ32は、2つの素子が直列に接続された構造を有する。構造体20cにおいて、金属部13は、3つの金属電極13g、13h、13iを含み、それらと複合体10との間にそれぞれ接合層15g、15h、15iが位置している。なお、図6(b)中、樹脂基材27bを除外して示し、金属電極13g、13hを透視図にて示す。かかる構成によれば、複合体10および接合層15g、15iの合計厚さ(金属酸化物含有複合体層、即ち、サーミスタ層の厚さに対応し、図中に記号「t」で示す)を制御することにより、サーミスタ32の電気特性を制御すること(例えば抵抗値のばらつきをより一層低減すること)ができ、より高い温度分解能を達成できる。なお、図示する態様においては、金属電極13g、13hは、外部電極14a、14bと電気的に接続され(および/または一体的に形成されている、以下同様)が、これに限定されない。また、図示する態様においては、サーミスタ32は、樹脂基材27a、27bを備えるが、いずれか一方のみであってもよい。 Further, for example, as shown in FIGS. 6A and 6B, the thermistor 32 has main surfaces where two metal electrodes 13g and 13i face each other, and the composite body 10 is interposed between the main surfaces. , The bonding layers 15g and 15i may be bonded to each other, and the two metal electrodes 13h and 13i have main surfaces facing each other, and the composite body 10 is interposed between the main surfaces. , 15i. In other words, the thermistor 32 has a structure in which two elements are connected in series. In the structure 20c, the metal portion 13 includes three metal electrodes 13g, 13h, and 13i, and the bonding layers 15g, 15h, and 15i are located between them and the composite body 10, respectively. In FIG. 6B, the resin base material 27b is excluded, and the metal electrodes 13g and 13h are shown in a perspective view. According to this configuration, the total thickness of the composite 10 and the bonding layers 15g and 15i (corresponding to the thickness of the metal oxide-containing composite layer, that is, the thermistor layer, indicated by a symbol "t" in the drawing) is calculated. By controlling, the electric characteristics of the thermistor 32 can be controlled (for example, the variation in resistance value can be further reduced), and higher temperature resolution can be achieved. In the illustrated embodiment, the metal electrodes 13g and 13h are electrically connected to (and/or integrally formed with, the external electrodes 14a and 14b, the same applies hereinafter), but the invention is not limited thereto. Further, in the illustrated embodiment, the thermistor 32 includes the resin base materials 27a and 27b, but only one of them may be provided.
 また例えば、図7(a)および(b)に示すように、サーミスタ33は、2つの金属電極13g、13h’が、平面視にて互い違いに配列された2つの外部電極14a、14b’とそれぞれ電気的に接続されていてよい。構造体20dにおいて、金属部13は、3つの金属電極13g、13h’、13iを含み、それらと複合体10との間にそれぞれ接合層15g、15h’、15iが位置している(その他は上述のサーミスタ32と同様であってよい)。かかる構成によれば、サーミスタ33が極めて小型で取扱い難い場合であっても、サーミスタ33を比較的容易に実装することができる。 Further, for example, as shown in FIGS. 7A and 7B, in the thermistor 33, the two metal electrodes 13g and 13h′ are respectively arranged with two external electrodes 14a and 14b′ which are alternately arranged in a plan view. It may be electrically connected. In the structure 20d, the metal part 13 includes three metal electrodes 13g, 13h′, 13i, and the bonding layers 15g, 15h′, 15i are respectively located between them and the composite 10 (others are described above. Of thermistor 32). With this configuration, even when the thermistor 33 is extremely small and difficult to handle, the thermistor 33 can be mounted relatively easily.
 また例えば、図8(a)および(b)に示すように、サーミスタ34は、2つの金属電極13j、13lが互いに対向する主面を有し、それら主面間に複合体10が介挿され、それぞれ接合層15i、15lにより接合されていてよく、また、2つの金属電極13k、13lが互いに対向する主面を有し、それら主面間に複合体10が介挿され、それぞれ接合層15k、15lにより接合されていてよい。換言すれば、サーミスタ34は、2つの素子が直列に接続された構造を有する。構造体20eにおいて、金属部13は、3つの金属電極13j、13k、13lを含み、それらと複合体10との間にそれぞれ接合層15j、15k、15lが位置している。また、サーミスタ34においては、2つの金属電極13j、13kが、平面視にて互い違いに配列された2つの外部電極14c、14dとそれぞれ電気的に接続されていてよい。かかる構成によれば、金属酸化物含有複合体層の厚さを制御することにより、サーミスタ34の電気特性を制御することができ、より高い温度分解能を達成できる。また、かかる構成によれば、サーミスタ34を比較的容易に実装することができる。 Further, for example, as shown in FIGS. 8A and 8B, the thermistor 34 has two metal electrodes 13j and 13l having main surfaces facing each other, and the composite body 10 is interposed between the main surfaces. , The two metal electrodes 13k and 13l have main surfaces facing each other, and the composite body 10 is interposed between the main surfaces, and the bonding layers 15k and 15l are bonded to each other. , 15 l. In other words, the thermistor 34 has a structure in which two elements are connected in series. In the structure 20e, the metal portion 13 includes three metal electrodes 13j, 13k, and 13l, and the bonding layers 15j, 15k, and 15l are located between them and the composite body 10, respectively. Further, in the thermistor 34, the two metal electrodes 13j and 13k may be electrically connected to the two external electrodes 14c and 14d, which are alternately arranged in a plan view. With such a configuration, by controlling the thickness of the metal oxide-containing composite layer, the electrical characteristics of the thermistor 34 can be controlled, and higher temperature resolution can be achieved. Moreover, according to this structure, the thermistor 34 can be mounted relatively easily.
 また例えば、図9(a)および(b)に示すように、サーミスタ35は、同一平面上に形成された金属電極13m、13nが、クシ歯状に互いに対向して形成されていてもよい。構造体20fにおいて、金属部13は、2つの金属電極13m、13nを含み、それらと複合体10との間にそれぞれ接合層15m、15nが位置している。これにより、サーミスタ35の電気特性を制御すること(例えば抵抗値のばらつきを一層低減すること)ができ、高い温度分解能を達成できる。サーミスタ35においても、2つの金属電極13m、13nが、平面視にて互い違いに配列された2つの外部電極14c’、14d’とそれぞれ電気的に接続されていてよい。かかる構成によれば、サーミスタ35を比較的容易に実装することができる。 Further, for example, as shown in FIGS. 9A and 9B, in the thermistor 35, the metal electrodes 13m and 13n formed on the same plane may be formed to face each other in a comb shape. In the structure 20f, the metal portion 13 includes two metal electrodes 13m and 13n, and the bonding layers 15m and 15n are located between them and the composite body 10, respectively. As a result, the electrical characteristics of the thermistor 35 can be controlled (for example, the variation in resistance value can be further reduced), and high temperature resolution can be achieved. Also in the thermistor 35, the two metal electrodes 13m and 13n may be electrically connected to the two external electrodes 14c' and 14d' which are alternately arranged in a plan view. With this configuration, the thermistor 35 can be mounted relatively easily.
 また例えば、複合体層および接合層は、サーミスタの任意の具体的構成において、樹脂基材または金属部から一部が露出した状態にこれに埋設されていてもよい(例えば図9参照)。 Further, for example, the composite layer and the bonding layer may be embedded in a part of the resin base material or the metal part exposed in the specific structure of the thermistor (see, for example, FIG. 9 ).
 上述した本実施形態の複合体、構造体およびサーミスタは、任意の適切な方法で製造され得るが、例えば下記の方法により製造することができる。以下、サーミスタの製造方法として、図1、2、4を参照して上述したサーミスタ30の製造方法を例示的に説明するが、その他のサーミスタについては公知の技術を適宜組み合わせることによって理解され得、複合体および構造体の各製造方法についてはそれぞれ該当する部分のみを参照することによって理解され得る。 The composite body, structure body and thermistor of the present embodiment described above can be manufactured by any appropriate method, for example, the following method. Hereinafter, as a method of manufacturing the thermistor, the above-described method of manufacturing the thermistor 30 will be exemplarily described with reference to FIGS. 1, 2, and 4. However, other thermistors can be understood by appropriately combining known techniques, Each manufacturing method of the composite and the structure can be understood by referring to only the corresponding portion.
 まず、樹脂基材27の上に金属部13として金属電極13c、13dを形成する。金属電極13c、13dは、フォトリソグラフィ、メッキ、蒸着、スパッタリング等の任意の適切な方法によりパターン形成できる。 First, the metal electrodes 13c and 13d are formed as the metal portion 13 on the resin base material 27. The metal electrodes 13c and 13d can be patterned by any appropriate method such as photolithography, plating, vapor deposition, and sputtering.
 次に、上記のように金属部13として金属電極13c、13dを形成した樹脂基材27の所定の領域(複合体10および接合層15c、15dを、換言すれば金属酸化物含有複合体層を形成すべき領域)に、金属酸化物粒子1と金属アセチルアセトネートとを含む混合物(以下、本明細書において「原料混合物」とも言う)を適用し、加圧下にて、上記金属アセチルアセトネートの融点以上かつ600℃以下の温度で加熱することにより、金属酸化物粒子1を含む焼結体の形態で、複合体10および接合層15c、15dが同時的かつ一体的に形成される。 Next, a predetermined region of the resin base material 27 on which the metal electrodes 13c and 13d are formed as the metal parts 13 as described above (the composite 10 and the bonding layers 15c and 15d, in other words, the metal oxide-containing composite layer is formed). A mixture containing the metal oxide particles 1 and the metal acetylacetonate (hereinafter, also referred to as “raw material mixture” in the present specification) is applied to a region to be formed), and the mixture of the metal acetylacetonate is added under pressure. By heating at a temperature equal to or higher than the melting point and equal to or lower than 600° C., the composite body 10 and the bonding layers 15c and 15d are simultaneously and integrally formed in the form of a sintered body containing the metal oxide particles 1.
 原料混合物は、当業者に公知の方法、例えばコーティング、ディッピング、ラミネート、またはスプレー等によって、所定の領域に適用(例えば塗布、印刷(スクリーン印刷等))できる。原料混合物を適用した基材に対して、必要に応じて加温下での乾燥または自然乾燥等の処理を行い、その後、プレス機等の当業者に公知の手段等を用いて、加圧下にて金属アセチルアセトネートの融点以上かつ600℃以下の温度で加熱できる。 The raw material mixture can be applied (eg, applied, printed (screen printed, etc.)) to a predetermined area by a method known to those skilled in the art, for example, coating, dipping, laminating, spraying or the like. The base material to which the raw material mixture is applied is subjected to a treatment such as drying under heating or natural drying, if necessary, and then, under a pressure using a means known to those skilled in the art such as a press. It can be heated at a temperature above the melting point of metal acetylacetonate and below 600°C.
 本明細書において、金属アセチルアセトネートとは、金属のアセチルアセトネート塩であり、より詳細には、二座配位子のアセチルアセトネートイオン((CHCOCHCOCH、以下、略号により(acac)とも表記し得る)と、中心金属とを有するキレート錯体である。金属アセチルアセトネートに含まれる金属元素は、上記第1金属元素から選択される任意の1つまたは2つ以上の元素であることが好ましく、金属酸化物粒子1に含まれる第1金属元素と同じ金属元素であることがより好ましいが、これに限定されない。 In the present specification, a metal acetylacetonate is a metal acetylacetonate salt, and more specifically, a bidentate acetylacetonate ion ((CH 3 COCHCOCH 3 ) , hereinafter referred to by an abbreviation ( acac) -, which may be referred to as "), and a central metal. The metal element contained in the metal acetylacetonate is preferably any one or two or more elements selected from the above-mentioned first metal elements, and is the same as the first metal element contained in the metal oxide particles 1. More preferably, it is a metal element, but not limited to this.
 金属アセチルアセトネートは、1種の金属アセチルアセトネートを用いても、2種以上の金属アセチルアセトネートを組み合わせて用いてもよい。金属酸化物粒子1に含まれる第1金属元素が2つ以上存在する場合には、これら金属元素の存在比に合わせて、2種以上の金属アセチルアセトネートを組み合わせて用いてもよいが、これに限定されない。 As the metal acetylacetonate, one kind of metal acetylacetonate may be used, or two or more kinds of metal acetylacetonate may be used in combination. When two or more first metal elements contained in the metal oxide particles 1 exist, two or more kinds of metal acetylacetonates may be used in combination according to the abundance ratio of these metal elements. Not limited to.
 金属酸化物粒子と金属アセチルアセトネートとを混合することにより原料混合物が得られる。金属酸化物粒子と金属アセチルアセトネートとの混合は、常温常湿の大気圧下の雰囲気で行うことができる。金属アセチルアセトネートは、金属酸化物粒子の全質量に対して、例えば0.1質量%以上50質量%以下の割合で混合されてよく、好ましくは1質量%以上30質量%以下の割合で混合され、より好ましくは2質量%以上10質量%以下の割合で混合される。 A raw material mixture is obtained by mixing the metal oxide particles and the metal acetylacetonate. The mixing of the metal oxide particles and the metal acetylacetonate can be performed in an atmosphere of normal temperature and normal humidity and atmospheric pressure. The metal acetylacetonate may be mixed in a ratio of, for example, 0.1% by mass or more and 50% by mass or less, preferably 1% by mass or more and 30% by mass or less, based on the total mass of the metal oxide particles. And more preferably 2% by mass or more and 10% by mass or less.
 混合する金属アセチルアセトネートには、任意の状態のものを用いてよい。例えば原料混合物は、金属酸化物粒子と、乾燥した粉末状の固体の金属アセチルアセトネートとを混合することによって得てよい。この場合、金属酸化物粒子と粉末状の金属アセチルアセトネートとを、例えば、大気圧下で、水、アセチルアセトン、メタノールおよび/またはエタノールを含むアルコール等からなる群より選ばれる1種類または2種類以上の溶媒中、または空気、窒素等からなる群より選ばれる1種類または2種類以上のガス中で行われる、一般的な混合方法を用いて混合することにより、原料混合物が得られる。 The metal acetylacetonate to be mixed may be in any state. For example, the raw material mixture may be obtained by mixing the metal oxide particles and the dry powdery solid metal acetylacetonate. In this case, the metal oxide particles and the powdery metal acetylacetonate are, for example, one or more kinds selected from the group consisting of water, acetylacetone, alcohols containing methanol and/or ethanol, etc. under atmospheric pressure. The raw material mixture is obtained by mixing using a general mixing method which is carried out in the solvent of 1 or in one or more kinds of gas selected from the group consisting of air, nitrogen and the like.
 また、原料混合物は、金属酸化物粒子と金属アセチルアセトネートと溶媒とを混合することによって得てもよい。溶媒には、任意の適切な溶媒を使用でき、例えば水、アセチルアセトン、メタノールおよび/またはエタノールを含むアルコール等からなる群より選択される1種または2種以上の混合物であってよい。溶媒は、原料混合物を加圧下での加熱に付すのに適する程度に多すぎなければよく、特に限定されないが、金属酸化物粒子の全質量に対して、例えば50質量%以下、好ましくは30質量%以下の割合で混合され得る。混合に際して、金属アセチルアセトネートおよび溶媒は、別々に用いても、金属アセチルアセトネートが溶媒中に分散または溶解した液状物を用いてもよい。後者の場合、金属アセチルアセトネートを合成した液状物を、金属アセチルアセトネートをそこから分離することなく使用してよい。より詳細には、液体のアセチルアセトンと金属化合物(例えば金属の水酸化物、塩化物)とを混合して金属アセチルアセトネートを合成することができ、合成後の液状物をそのままで、または必要に応じて溶媒を追加して、使用することができる。 Alternatively, the raw material mixture may be obtained by mixing the metal oxide particles, the metal acetylacetonate, and the solvent. Any appropriate solvent may be used as the solvent, and may be, for example, one or a mixture of two or more selected from the group consisting of water, acetylacetone, alcohols including methanol and/or ethanol, and the like. The solvent is not particularly limited as long as it is suitable for heating the raw material mixture under pressure, and is not particularly limited, but is, for example, 50 mass% or less, preferably 30 mass% with respect to the total mass of the metal oxide particles. % Can be mixed. Upon mixing, the metal acetylacetonate and the solvent may be used separately, or a liquid material in which the metal acetylacetonate is dispersed or dissolved in the solvent may be used. In the latter case, the liquid obtained by synthesizing the metal acetylacetonate may be used without separating the metal acetylacetonate. More specifically, metal acetylacetonate can be synthesized by mixing liquid acetylacetone and a metal compound (for example, metal hydroxide or chloride), and the liquid product after synthesis can be used as it is or as needed. A solvent can be added accordingly and used.
 なお、原料混合物は、金属酸化物粒子と金属アセチルアセトネートとに加えて、任意の適切な材料を、所望の電気特性に悪影響を与えない程度で更に含んでいてもよい。より詳細には、原料混合物は、例えば、pH調整剤、焼結助剤、圧力緩和剤等の添加物を更に含んでいてもよい。これら添加物は、金属酸化物粒子の全質量に対して、例えば0.01質量%以上10質量%以下の割合で混合されてよく、好ましくは0.01質量%以上1質量%以下の割合で混合され、より好ましくは0.01質量%以上0.1質量%以下の割合で混合される。 The raw material mixture may further contain, in addition to the metal oxide particles and the metal acetylacetonate, any appropriate material in an amount that does not adversely affect desired electrical characteristics. More specifically, the raw material mixture may further contain additives such as a pH adjuster, a sintering aid, and a pressure relief agent. These additives may be mixed in a proportion of, for example, 0.01% by mass or more and 10% by mass or less, preferably 0.01% by mass or more and 1% by mass or less, based on the total mass of the metal oxide particles. They are mixed, and more preferably in a proportion of 0.01% by mass or more and 0.1% by mass or less.
 上記のようにして得られた原料混合物を、加圧下にて、金属アセチルアセトネートの融点以上かつ600℃以下の温度で加熱することにより、比較的高密度の焼結体を形成することができる。この加熱工程において、金属アセチルアセトネートが液化し、液体媒体として機能し得る。加熱は流体の存在下で行われることが好ましい。本明細書において流体とは、例えば液体であり、好ましくは溶媒として用い得る液体であり、より好ましくは水である。例えば、原料混合物の加熱および加圧が行われる際に水が存在する場合、原料混合物に含まれる金属酸化物粒子の界面に水が存在するようになる。これにより、原料混合物をより低温で焼結することができるようになり、また、焼結体の強度を効果的に向上させることができる。 By heating the raw material mixture obtained as described above under pressure at a temperature not lower than the melting point of metal acetylacetonate and not higher than 600° C., a relatively high density sintered body can be formed. .. In this heating step, the metal acetylacetonate liquefies and can function as a liquid medium. The heating is preferably performed in the presence of fluid. In the present specification, the fluid is, for example, a liquid, preferably a liquid that can be used as a solvent, and more preferably water. For example, when water is present when the raw material mixture is heated and pressurized, water is present at the interface of the metal oxide particles contained in the raw material mixture. Thereby, the raw material mixture can be sintered at a lower temperature, and the strength of the sintered body can be effectively improved.
 本明細書において、混合物が水の存在下にある状態とは、混合物に水が積極的に添加されていなくてもよく、金属酸化物粒子の界面にわずかでも存在していればよい。金属酸化物粒子が室温中で吸湿している程度であってもよい。水の積極的な添加は、原料混合物に含ませる(混合させる)ことにより行われてもよく、原料混合物の加熱及び加圧を水蒸気雰囲気下で行うことにより行われていてもよい。特に、水が原料混合物に混合されることにより存在する場合に、各粒子の界面により効果的に水を行きわたらせることができる。水が原料混合物に混合されている場合、その量は特に限定されないが、金属酸化物粒子の全質量に対して、例えば20質量%以下であってよく、好ましくは15質量%以下であり、代表的には10質量%である。原料混合物に混合されている水が20質量%以下であることにより、原料混合物に水を混合することができ、また原料混合物の成形性の低下をより効果的に防ぐことができる。焼結体の強度の向上を効果的に達成するためには、上記範囲内でできるだけ多くの水を、具体的には10質量%以上20質量%以下の水を使用することが好ましい。また、成形をより容易に実施するためには、上記範囲内でできるだけ少ない水を、具体的には0質量%を超えて10質量%以下の水を使用することが好ましい。 In the present specification, the state in which the mixture is in the presence of water means that water may not be positively added to the mixture, and only a slight amount of water is present at the interface of the metal oxide particles. The metal oxide particles may absorb moisture at room temperature. The positive addition of water may be performed by including (mixing) the raw material mixture, or may be performed by heating and pressurizing the raw material mixture in a steam atmosphere. In particular, when water is present by being mixed with the raw material mixture, the water can be effectively spread to the interface of each particle. When water is mixed in the raw material mixture, its amount is not particularly limited, but may be, for example, 20% by mass or less, preferably 15% by mass or less, based on the total mass of the metal oxide particles. Specifically, it is 10% by mass. When the water content in the raw material mixture is 20% by mass or less, water can be mixed in the raw material mixture, and deterioration of the moldability of the raw material mixture can be prevented more effectively. In order to effectively achieve the improvement of the strength of the sintered body, it is preferable to use as much water as possible within the above range, specifically 10% by mass or more and 20% by mass or less of water. Further, in order to carry out molding more easily, it is preferable to use as little water as possible within the above range, specifically, more than 0% by mass and 10% by mass or less of water.
 原料混合物の加圧の圧力は、例えば1MPa以上5000MPa以下であってよく、好ましくは5MPa以上1000MPa以下であり、より好ましくは10MPa以上500MPa以下である。本明細書において、原料混合物の加圧とは、例えば加圧成形器を用いるなどして、原料混合物(より詳細には原料混合物に含まれる固体成分)に押圧力(または物理的/機械的な圧力)を加えることを意味する。そのため、原料混合物が加圧された状態にあっても、原料混合物に含まれる液体成分は、周囲雰囲気の圧力(通常、大気圧)に曝されることに留意されるべきである。 The pressure applied to the raw material mixture may be, for example, 1 MPa or more and 5000 MPa or less, preferably 5 MPa or more and 1000 MPa or less, and more preferably 10 MPa or more and 500 MPa or less. In the present specification, pressing of the raw material mixture means pressing force (or physical/mechanical force) to the raw material mixture (more specifically, a solid component contained in the raw material mixture), for example, by using a pressure molding machine. Pressure) is meant. Therefore, it should be noted that even when the raw material mixture is under pressure, the liquid component contained in the raw material mixture is exposed to the pressure of the ambient atmosphere (usually atmospheric pressure).
 原料混合物の加熱の温度(以下、本明細書において「加熱温度」とも言う)は焼成温度のことであり、原料混合物に含まれる金属アセチルアセトネートの融点以上かつ600℃以下の温度であればよい。本明細書において、融点とは、室温かつ大気圧下において、JIS規格で定められた測定法で測定された温度を言う。なお、各融点は加圧時の圧力等、各種条件により変化するものである。各種金属アセチルアセトネートの融点を以下の表1に示す。2種以上の金属アセチルアセトネートを用いる場合、「金属アセチルアセトネートの融点」は、全ての金属アセチルアセトネートの融点のうち最も高い融点を言うものとする。原料混合物の加熱温度は、使用する金属酸化物の種類等にもよるが、金属アセチルアセトネートの融点より5℃以上高くかつ600℃以下の温度であってよく、例えば100℃以上600℃以下であり、好ましくは100℃以上400℃以下であり、より好ましくは100℃以上300℃以下である。 The heating temperature of the raw material mixture (hereinafter, also referred to as “heating temperature” in the present specification) refers to the firing temperature, and may be the temperature of the melting point of the metal acetylacetonate contained in the raw material mixture or more and 600° C. or less. .. In the present specification, the melting point refers to a temperature measured by a measuring method defined by JIS standard at room temperature and atmospheric pressure. Each melting point changes depending on various conditions such as pressure at the time of pressurization. The melting points of various metal acetylacetonates are shown in Table 1 below. When two or more kinds of metal acetylacetonates are used, the “melting point of metal acetylacetonate” means the highest melting point of all the metal acetylacetonates. The heating temperature of the raw material mixture depends on the kind of the metal oxide used and the like, but may be higher than the melting point of the metal acetylacetonate by 5°C or higher and 600°C or lower, for example, 100°C or higher and 600°C or lower. Yes, it is preferably 100°C or higher and 400°C or lower, and more preferably 100°C or higher and 300°C or lower.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように原料混合物を、加圧下にて、金属アセチルアセトネートの融点以上の温度で加熱することにより、上記のように低い温度において、比較的高密度の焼結体を形成することができる。本明細書において、比較的高密度であるとは、これにより得られる焼結体の理論密度に対する密度の割合が、原料混合物に含まれる金属酸化物粒子を単独で(金属アセチルアセトネートを存在させずに)、同様の温度および圧力条件にて加熱および加圧した場合に得られる焼結体の理論密度に対する密度の割合よりも高いことを意味する。本実施形態によって得られる焼結体は、比較的高密度であればよく、理論密度に対する密度の割合は、使用する金属酸化物粒子の組成等にもよるが、例えば70%以上、好ましくは80%以上であり得る。得られる焼結体に含まれる金属酸化物は、原料混合物に含まれる金属酸化物粒子の金属酸化物と実質的に同じであると考えて差し支えない。原料混合物の加熱および加圧を行う時間は、適宜選択され得るが、好ましくは1秒以上120分以内である。 By thus heating the raw material mixture under pressure at a temperature equal to or higher than the melting point of the metal acetylacetonate, a relatively high density sintered body can be formed at the low temperature as described above. In the present specification, the term “relatively high density” means that the ratio of the density to the theoretical density of the sintered body thus obtained is such that the metal oxide particles contained in the raw material mixture alone (the metal acetylacetonate is allowed to exist). It means that it is higher than the ratio of the density to the theoretical density of the sintered body obtained when heated and pressed under the same temperature and pressure conditions. The sintered body obtained according to the present embodiment may have a relatively high density, and the ratio of the density to the theoretical density depends on the composition of the metal oxide particles used and the like, but is, for example, 70% or more, preferably 80. % Or more. The metal oxide contained in the obtained sintered body may be considered to be substantially the same as the metal oxide of the metal oxide particles contained in the raw material mixture. The time for heating and pressurizing the raw material mixture can be appropriately selected, but is preferably 1 second or more and 120 minutes or less.
 以上のようにして、金属酸化物粒子と金属アセチルアセトネートとを含む原料混合物を用いて、金属部13(図4では金属電極13c、13d)と接触して形成された焼結体は、図1、2に模式的に示すように、金属酸化物粒子1と第1アモルファス相2とを含む複合体10、ならびに、第2アモルファス相12を含む接合層15(図4では接合層15c、15d)に対応する。第1アモルファス相2には、金属アセチルアセトネート由来の金属元素(第1金属元素と同じ金属元素)が含まれることとなる。第2アモルファス相12には、金属部13(図4では金属電極13c、13d)の第2金属元素が熱拡散により移動し得る。よって、第2アモルファス相12には、金属アセチルアセトネート由来の金属元素(第1金属元素と同じ金属元素)に加えて、金属部13由来の金属元素(第2金属元素を同じ金属元素)も含まれることとなる。 As described above, the sintered body formed by using the raw material mixture containing the metal oxide particles and the metal acetylacetonate in contact with the metal part 13 (the metal electrodes 13c and 13d in FIG. 4) is As schematically shown in FIGS. 1 and 2, the composite 10 including the metal oxide particles 1 and the first amorphous phase 2 and the bonding layer 15 including the second amorphous phase 12 (bonding layers 15c and 15d in FIG. 4). ) Corresponds to. The first amorphous phase 2 contains a metal element derived from metal acetylacetonate (the same metal element as the first metal element). The second metal element of the metal part 13 ( metal electrodes 13c and 13d in FIG. 4) can move to the second amorphous phase 12 by thermal diffusion. Therefore, in the second amorphous phase 12, in addition to the metal element derived from the metal acetylacetonate (the same metal element as the first metal element), the metal element derived from the metal part 13 (the same metal element as the second metal element) is also included. Will be included.
 これにより、本実施形態にて例示したサーミスタ30が製造される。複合体10および接合層15c、15dの露出部は、適宜、樹脂などからなる保護膜(図示せず)で保護してよい。 As a result, the thermistor 30 exemplified in this embodiment is manufactured. The exposed portions of the composite body 10 and the bonding layers 15c and 15d may be appropriately protected by a protective film (not shown) made of resin or the like.
(実施形態2)
 本実施形態は、実施形態1にて上述した複合体、構造体およびサーミスタを改変したものであって、特に断りのない限り、実施形態1と同様の説明が当て嵌まる。
(Embodiment 2)
The present embodiment is a modification of the composite body, structure, and thermistor described in the first embodiment, and the same explanations as in the first embodiment apply unless otherwise specified.
 図10(a)に示すように、本実施形態における複合体11は、
 少なくとも1つの第1金属元素を含む金属酸化物から成る複数の第1粒子(即ち、上述の「金属酸化物粒子」)1と、
 第1金属元素と同じ金属元素を含む第1アモルファス相2と、
 第1樹脂から成る複数の第2粒子(以下、本明細書にて単に「樹脂粒子」とも言う)3と
を含み、第1アモルファス相2が、複数の金属酸化物粒子1および複数の樹脂粒子3間に存在する。
As shown in FIG. 10A, the composite body 11 according to the present embodiment is
A plurality of first particles (that is, the above-mentioned “metal oxide particles”) 1 made of a metal oxide containing at least one first metal element;
A first amorphous phase 2 containing the same metal element as the first metal element,
A plurality of second particles (hereinafter, also simply referred to as “resin particles” in the present specification) 3 made of a first resin, and the first amorphous phase 2 includes a plurality of metal oxide particles 1 and a plurality of resin particles. It exists between three.
 樹脂粒子3を構成する第1樹脂は、熱により容易に溶融しない樹脂であることが好ましく、例えば、ポリエチレンテレフタレート、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、エポキシ樹脂および液晶ポリマー(LCP: Liquid Crystal Polymer)からなる群より選択される少なくとも1つを含み得る。 The first resin forming the resin particles 3 is preferably a resin that is not easily melted by heat, and examples thereof include polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer (LCP). : Liquid Crystal Polymer).
 樹脂粒子3の平均粒径は、例えば0.001μm以上100μm以下であり得、特に0.001μm以上1μm以下であり得る。かかる範囲であれば、樹脂の添加による特性劣化の影響が少ない。 The average particle size of the resin particles 3 may be, for example, 0.001 μm or more and 100 μm or less, and particularly 0.001 μm or more and 1 μm or less. Within this range, the effect of deterioration of characteristics due to addition of resin is small.
 樹脂粒子3は、樹脂材料および/または平均粒径の異なる2種類以上の樹脂粒子の混合物であってよい。 The resin particles 3 may be a resin material and/or a mixture of two or more kinds of resin particles having different average particle diameters.
 本実施形態においては、第1アモルファス相2は、金属酸化物粒子1および樹脂粒子3間(より詳細には、金属酸化物粒子1および樹脂粒子3から選択される任意の粒子間)に存在し、金属酸化物粒子1および樹脂粒子3の粒子同士を接着させ得る。更に、本実施形態の複合体11は、金属酸化物粒子1に樹脂粒子3が混在することにより、粒子間の接合強度を向上させることができる。従って、本実施形態の複合体11は、それ自体がより一層高い強度を有する。本実施形態の複合体11は、樹脂粒子3が存在していても、第1アモルファス相2により金属酸化物粒子1を比較的高密度で含有することができる(樹脂粒子3が存在していても、高密度で分散した金属酸化物粒子1による導電パスを形成することができる)。更に、第1アモルファス相2は、結晶構造を有する金属酸化物(半導体)粒子1に近い電気特性を示し得る。これにより、金属酸化物粒子を従来一般的な方法により高温で焼結させた焼結体と同様の電気特性を得ることができる。 In the present embodiment, the first amorphous phase 2 exists between the metal oxide particles 1 and the resin particles 3 (more specifically, between any particles selected from the metal oxide particles 1 and the resin particles 3). The metal oxide particles 1 and the resin particles 3 can be adhered to each other. Further, in the composite body 11 of the present embodiment, the resin particles 3 are mixed in the metal oxide particles 1, so that the bonding strength between the particles can be improved. Therefore, the composite body 11 of the present embodiment itself has higher strength. The composite 11 of the present embodiment can contain the metal oxide particles 1 at a relatively high density due to the first amorphous phase 2 even if the resin particles 3 are present (the resin particles 3 are present. Also, a conductive path can be formed by the metal oxide particles 1 dispersed at a high density). Furthermore, the first amorphous phase 2 can exhibit electrical characteristics close to those of the metal oxide (semiconductor) particles 1 having a crystal structure. As a result, it is possible to obtain the same electrical characteristics as a sintered body obtained by sintering metal oxide particles at a high temperature by a conventional method.
 本実施形態において、第1アモルファス相2が、金属酸化物粒子1および樹脂粒子3間に存在するとは、複数の金属酸化物粒子1および複数の樹脂粒子3間の空間を第1アモルファス相2が充填していることを意味し得る。これにより、複合体10に含まれるおそれがある空孔を、複数の樹脂粒子3で置換すると共に、第1アモルファス相2の充填により無くすことができるので、空孔起因によると考えられる高温高湿環境下に放置する前後での抵抗値変化をより一層小さくすることができる。全ての金属酸化物粒子1のうち互いに隣接する任意の2つの金属酸化物粒子1に着目した場合、これら2つの金属酸化物粒子1は、それらの間に第1アモルファス相2が存在していても、それらの間に第1アモルファス相2が実質的に存在せずに互いに接触(好ましくは結合)していてもよい。前者の場合、第1アモルファス相2は、100μm以下の厚さで存在し得る。第1アモルファス相2の厚さは、電気特性および/または強度の観点からは小さいほうが好ましい。上述の後者の場合、第1アモルファス相2が実質的に存在しない部分が、複合体11に存在していてもよい。 In the present embodiment, the presence of the first amorphous phase 2 between the metal oxide particles 1 and the resin particles 3 means that the space between the plurality of metal oxide particles 1 and the plurality of resin particles 3 is the first amorphous phase 2. It can mean filling. As a result, the pores that may be contained in the composite 10 can be replaced with the plurality of resin particles 3 and can be eliminated by filling the first amorphous phase 2, so that the high temperature and high humidity considered to be caused by the pores. It is possible to further reduce the change in resistance value before and after being left in the environment. When paying attention to any two metal oxide particles 1 adjacent to each other among all the metal oxide particles 1, these two metal oxide particles 1 have a first amorphous phase 2 between them. However, the first amorphous phase 2 may be in contact (preferably bonded) with each other substantially without being present between them. In the former case, the first amorphous phase 2 may be present with a thickness of 100 μm or less. The thickness of the first amorphous phase 2 is preferably small from the viewpoint of electrical characteristics and/or strength. In the latter case described above, a portion where the first amorphous phase 2 is substantially absent may be present in the composite 11.
 本実施形態の複合体11は、図10(b)に示す複合体11’のように改変されていることが好ましい。図10(b)に示す複合体11’は、
 少なくとも1つの第1金属元素を含む金属酸化物から成る複数の第1粒子(即ち、上述の「金属酸化物粒子」)1と、
 第1金属元素と同じ金属元素を含む第1アモルファス相2と、
 第1樹脂から成る複数の第2粒子(以下、本明細書にて単に「樹脂粒子」とも言う)3と
を含み、複数の金属酸化物粒子は互いに接触し、樹脂粒子3は、互いに接触した複数の金属酸化物粒子1の内部に存在し、第1アモルファス相2が、互いに接触した複数の金属酸化物粒子1と樹脂粒子との間に存在する。かかる改変例の複合体11’は、金属酸化物粒子1間に第1アモルファス相2が実質的に存在せず、複数の金属酸化物粒子1の全部が接触(好ましくは結合し、より好ましくは全体として1つの塊を形成)しており、より優れた電気特性および/またはより高い強度が期待できる理想的な構造であると考えられる。
 以下、複合体11に関する説明は、かかる改変例の複合体11’にも同様に当て嵌まる。
It is preferable that the complex 11 of the present embodiment is modified as a complex 11′ shown in FIG. The composite body 11′ shown in FIG.
A plurality of first particles (that is, the above-mentioned “metal oxide particles”) 1 made of a metal oxide containing at least one first metal element;
A first amorphous phase 2 containing the same metal element as the first metal element,
A plurality of second particles (hereinafter, also simply referred to as “resin particles” in the present specification) 3 made of the first resin, the plurality of metal oxide particles are in contact with each other, and the resin particles 3 are in contact with each other. The first amorphous phase 2 exists inside the plurality of metal oxide particles 1 and exists between the plurality of metal oxide particles 1 and the resin particles that are in contact with each other. In the modified composite body 11 ′, the first amorphous phase 2 is substantially absent between the metal oxide particles 1, and all of the plurality of metal oxide particles 1 are in contact (preferably bonded, more preferably, It forms one lump as a whole), and is considered to be an ideal structure in which superior electrical properties and/or higher strength can be expected.
Hereinafter, the description regarding the composite body 11 is similarly applied to the composite body 11 ′ of the modified example.
 複合体11における樹脂粒子3の含有量(複合体の全質量に対して)は、例えば50質量%以下、より詳細には5質量%以上20質量%以下であってよい。かかる範囲であれば、高い強度を実現しつつも、樹脂の添加による特性劣化の影響が少ない。 The content of the resin particles 3 in the composite 11 (relative to the total mass of the composite) may be, for example, 50% by mass or less, and more specifically 5% by mass or more and 20% by mass or less. Within such a range, high strength is realized, but the influence of deterioration of characteristics due to addition of resin is small.
 本実施形態の複合体11も、任意の物体上に配置(特に成膜)して構造体を構成することができる。本実施形態を限定するものではないが、複合体11は、金属部(例えば金属から構成される部材または領域等)に少なくとも部分的に接合され得る。 The composite body 11 of the present embodiment can also be arranged (in particular, formed into a film) on an arbitrary object to form a structure. Although not limiting the present embodiment, the composite 11 may be at least partially joined to a metal part (for example, a member or a region formed of a metal).
 例えば、図11に示すように、本実施形態の1つの例における構造体22は、
 少なくとも1つの第2金属元素を含む金属部13と、
 上記の本実施形態の複合体11と、
 金属部13および複合体11との間に位置する接合層16と
を含む。接合層16は、第1金属元素および第2金属元素と同じ金属元素を含む第2アモルファス相12を含む。
For example, as shown in FIG. 11, the structure 22 in one example of the present embodiment is
A metal part 13 containing at least one second metal element,
The complex 11 of the present embodiment,
The bonding layer 16 is located between the metal part 13 and the composite body 11. The bonding layer 16 includes the second amorphous phase 12 containing the same metal element as the first metal element and the second metal element.
 また例えば、図12に示すように、本実施形態のもう1つの例における構造体23は、上記の本実施形態の複合体11が、金属部13aおよび13bに対して、それぞれ接合層16aおよび16bを介して接合されていてよい。接合層16a、16は、第1金属元素および第2金属元素と同じ金属元素を含む第2アモルファス相12a、12bをそれぞれ含む。 Further, for example, as shown in FIG. 12, in the structure 23 in another example of the present embodiment, the composite body 11 of the present embodiment is bonded to the metal portions 13a and 13b with the bonding layers 16a and 16b, respectively. May be joined via. The bonding layers 16a and 16 include second amorphous phases 12a and 12b containing the same metal element as the first metal element and the second metal element, respectively.
 本実施形態の構造体22、23は、金属酸化物粒子1に加えて樹脂粒子3が存在する点を除き、実施形態1にて上述した構造体と同様であり得る。 The structures 22 and 23 of the present embodiment can be similar to the structures described in the first embodiment, except that the resin particles 3 are present in addition to the metal oxide particles 1.
 本実施形態の構造体22、23も、適宜改変されて、任意の基材上に配置されてサーミスタを構成することができる。本実施形態を限定するものではないが、構造体22、23は、適宜改変されて、樹脂基材上に配置され得る。本実施形態のサーミスタも、金属酸化物粒子1に加えて樹脂粒子3が存在する点を除き、実施形態1にて上述したサーミスタと同様であり得る。 The structures 22 and 23 of the present embodiment can also be appropriately modified and arranged on any base material to form a thermistor. Although not limiting the present embodiment, the structures 22 and 23 may be appropriately modified and arranged on the resin substrate. The thermistor of the present embodiment can also be the same as the thermistor described in the first embodiment except that the resin particles 3 are present in addition to the metal oxide particles 1.
 上述した本実施形態の複合体、構造体およびサーミスタは、任意の適切な方法で製造され得るが、例えば、原料混合物として、金属酸化物粒子1と樹脂粒子3と金属アセチルアセトネートとを含む混合物を用いたこと以外は、実施形態1にて上述した製造方法と同様にして製造することができる。 The composite body, structure body, and thermistor of the present embodiment described above can be manufactured by any appropriate method. For example, as a raw material mixture, a mixture containing metal oxide particles 1, resin particles 3, and metal acetylacetonate. It can be manufactured in the same manner as the manufacturing method described in the first embodiment except that the above method is used.
 以上、本発明の2つの実施形態における複合体、ならびに該複合体を用いた構造体およびサーミスタについて説明したが、本発明はこれら実施形態に限定されない。 Although the composite according to the two embodiments of the present invention, and the structure and the thermistor using the composite have been described above, the present invention is not limited to these embodiments.
(実施例1)
 本実施例は、実施形態1にて図3を参照して説明した構造体に関する。
(Example 1)
The present example relates to the structure described in Embodiment 1 with reference to FIG. 3.
 Mn:Ni:Alを4:1:1(原子比)の割合で含む、平均粒径約0.2μmの金属酸化物粒子に、マンガンアセチルアセトネートを10質量%(金属酸化物粒子の全質量に対して)の割合で添加し、エタノールを溶媒として原料混合物を調製し、16時間混合した。これにより得られたスラリーの形態の原料混合物を、厚さ30μmの銅箔(下部電極)上にドクターブレード法により厚さ10μmのシートの形態で供給した。このシートを100℃で10時間乾燥させた後、加熱プレス機を用いて100MPaの加圧下にて150℃で30分間加熱した。その後、上記シートに由来する膜(金属酸化物含有複合体層)の上に厚さ30μmの別の銅箔(上部電極)を重ね、再び加熱プレス機を用いて100MPaの加圧下にて250℃で30分間加熱して、前駆構造体を得た。この前駆構造体を250℃で10時間アニールして、残存し得る不要な有機物を除去して、本実施例の構造体(2つの銅箔の間にサーミスタ層として機能し得る金属酸化物含有複合体層が挟持された構造体、合計厚さ約70μm)を得た。 10% by mass of manganese acetylacetonate (total mass of metal oxide particles) was added to metal oxide particles containing Mn:Ni:Al in a ratio of 4:1:1 (atomic ratio) and having an average particle size of about 0.2 μm. The mixture was added for 16 hours, and the raw material mixture was prepared using ethanol as a solvent and mixed for 16 hours. The raw material mixture thus obtained in the form of a slurry was supplied in the form of a sheet having a thickness of 10 μm by a doctor blade method onto a copper foil (lower electrode) having a thickness of 30 μm. This sheet was dried at 100° C. for 10 hours and then heated at 150° C. for 30 minutes under a pressure of 100 MPa using a heating press machine. After that, another copper foil (upper electrode) having a thickness of 30 μm is overlaid on the film (metal oxide-containing composite layer) derived from the above sheet, and again using a heat press machine at 250° C. under a pressure of 100 MPa. And heated for 30 minutes to obtain a precursor structure. This precursor structure is annealed at 250° C. for 10 hours to remove unnecessary organic substances that may remain, and thus the structure of this example (a metal oxide-containing composite that can function as a thermistor layer between two copper foils). A structure in which the body layers were sandwiched, and the total thickness was about 70 μm) was obtained.
 上記で得られた本実施例の構造体について接合強度(付着性)を評価した。この評価は、JIS K5600-5-6に定められたクロスカット法に準拠して行った。評価結果は下記の通り分類される。
 0:カットの縁が完全に滑らかで、どの格子の目にもはがれがない。
 1:カットの交差点における塗膜の小さなはがれ。クロスカット部分で影響を受けるのは、明確に5%を上回ることはない。
 2:塗膜がカットの縁に沿って、及び/又は交差点においてはがれている。クロスカット部分で影響を受けるのは明確に5%を超えるが15%を上回ることはない。
 3:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は目のいろいろな部分が、部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に15%を超えるが35%を上回ることはない。
 4:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は数か所の目が部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に65%を上回ることはない。
 5:分類4でも分類できないはがれ程度のいずれか。
The bonding strength (adhesiveness) of the structure of this example obtained above was evaluated. This evaluation was performed according to the cross-cut method defined in JIS K5600-5-6. The evaluation results are classified as follows.
0: The edges of the cut are completely smooth, and there is no peeling in any grid.
1: Small peeling of the coating film at the intersection of cuts. The cross-cut portion is clearly not affected by more than 5%.
2: The coating is stripped along the edges of the cut and/or at intersections. The cross-cut portion is clearly affected by more than 5% but never more than 15%.
3: The coating film partially or totally peeled off along the edge of the cut, and/or various portions of the eyes were partially or completely peeled off. The cross-cut portion is clearly affected by more than 15% but not more than 35%.
4: The coating film has a large amount of peeling off partially or entirely along the edge of the cut, and/or some eyes are partially or completely peeled off. The cross-cut portion is clearly not affected by more than 65%.
5: Any of the peeling levels that cannot be classified even in classification 4.
 本実施例の構造体の接合強度(付着性)の評価結果は、分類1であった。具体的には、上部電極と金属酸化物含有複合体層との間にごくわずかに剥離が観察されたのみであった。 The evaluation result of the bonding strength (adhesiveness) of the structure of this example was Class 1. Specifically, only slight peeling was observed between the upper electrode and the metal oxide-containing composite layer.
 更に、本実施例の構造体について電気特性を評価した。より詳細には、構造体をダイシングソーでカットして、上面から見た寸法が5mm×10mmで厚さが70μmのサイズのダイスを得た。このダイスについて、2端子法によって25℃、50℃および75℃における抵抗値を測定し、それらの測定値から、室温(25℃)抵抗率およびB定数を算出した。その結果、室温抵抗率は100kΩcmであり、B定数は4500であった。 Furthermore, the electrical characteristics of the structure of this example were evaluated. More specifically, the structure was cut with a dicing saw to obtain a die having a size of 5 mm×10 mm as viewed from the upper surface and a thickness of 70 μm. With respect to this die, the resistance values at 25° C., 50° C. and 75° C. were measured by the two-terminal method, and the room temperature (25° C.) resistivity and B constant were calculated from the measured values. As a result, the room temperature resistivity was 100 kΩcm and the B constant was 4500.
 本実施例の構造体の電気特性の評価結果は、原料混合物に使用した金属酸化物粒子を、大気圧にて900℃で120分間加熱して焼結したバルク体にスパッタリングにてAg電極を形成した試料の電気特性と実質的に一致していた。よって、本実施例の構造体は、金属酸化物粒子の粒界や、電極との界面での抵抗増加が実質的に生じていないことが確認された。 The evaluation result of the electrical characteristics of the structure of this example shows that the metal oxide particles used in the raw material mixture are heated at 900° C. for 120 minutes at atmospheric pressure and sintered to form a Ag electrode by sputtering on a bulk body. It was substantially in agreement with the electrical characteristics of the prepared sample. Therefore, it was confirmed that the structure of the present example did not substantially increase the resistance at the grain boundaries of the metal oxide particles or at the interface with the electrode.
 更に、本実施例の試料(上記ダイス)を温度60℃および湿度95%の恒温高湿環境下で24時間放置した後に、再度、抵抗値を測定したところ、上記で測定した25℃での抵抗値を基準とした変化率は0.3%であった。 Furthermore, after the sample of the present example (the above-mentioned die) was left in a constant temperature and high humidity environment of a temperature of 60° C. and a humidity of 95% for 24 hours, the resistance value was measured again, and the resistance at 25° C. measured above was measured. The rate of change based on the value was 0.3%.
 また更に、本実施例の構造体の断面の一部を拡大して走査型透過電子顕微鏡(STEM)にて撮像した(明視野像)結果を図13(a)~(d)に示す。図13(a)は、実施例1の構造体における金属酸化物含有複合体層と下部電極の接合部およびその近傍の断面のSTEM観察像である。図13(b)は、図13(a)のC(炭素)の元素分布を示す。図13(c)は、図13(a)のMn(マンガン)の元素分布を示す。図13(d)は、図13(a)のCu(銅)の元素分布を示す。図13(a)~(d)から理解されるように、金属酸化物含有複合体層の本体部分(上部電極および下部電極との界面付近を除く部分)において、複数の金属酸化物粒子の粒界が第1アモルファス相と接し、金属酸化物粒子同士が第1アモルファス相で接着された複合体が形成されていることが確認された。更に、図13(a)~(d)から理解されるように、金属酸化物含有複合体層と下部電極の接合部においては、金属酸化物粒子と第2アモルファス相の複合体が接合層として形成され、第2アモルファス相は金属酸化物粒子や金属アセチルアセトネート由来の金属元素であるMnに加えて、金属部由来の金属元素Cuも含まれている状態であることが確認された。 Furthermore, FIGS. 13(a) to 13(d) show the results (bright-field image) obtained by enlarging a part of the cross section of the structure of this example and imaging it with a scanning transmission electron microscope (STEM). FIG. 13A is a STEM observation image of a cross section of the junction between the metal oxide-containing composite layer and the lower electrode in the structure of Example 1 and the vicinity thereof. FIG. 13B shows the element distribution of C (carbon) in FIG. FIG. 13C shows the element distribution of Mn (manganese) in FIG. 13A. FIG. 13D shows the element distribution of Cu (copper) in FIG. 13A. As can be understood from FIGS. 13(a) to 13(d), a plurality of particles of metal oxide particles are present in the main body portion of the metal oxide-containing composite layer (a portion excluding the vicinity of the interface between the upper electrode and the lower electrode). It was confirmed that the boundary was in contact with the first amorphous phase and the metal oxide particles were bonded to each other in the first amorphous phase to form a composite. Further, as understood from FIGS. 13(a) to 13(d), at the joint between the metal oxide-containing composite layer and the lower electrode, the composite of the metal oxide particles and the second amorphous phase serves as the bonding layer. It was confirmed that the second amorphous phase formed was a state in which, in addition to Mn, which is a metal element derived from metal oxide particles and metal acetylacetonate, a metal element Cu derived from a metal part was also included.
 上記電気特性の結果およびSTEM観察の結果から、第1アモルファス相および第2アモルファス相は、金属酸化物(半導体)粒子に近い電気特性を有していると推測され、これにより、金属酸化物粒子の粒界や、電極との界面での抵抗増加が実質的に生じず、上記の通り900℃で焼結したバルク体と同等の電気特性が実現できたものと考えられる。 From the results of the above electrical characteristics and the results of STEM observation, it is presumed that the first amorphous phase and the second amorphous phase have electrical characteristics close to those of the metal oxide (semiconductor) particles. It is considered that the electrical properties equivalent to those of the bulk body sintered at 900° C. were achieved as described above without substantially increasing the resistance at the grain boundaries and at the interface with the electrode.
 また更に、本実施例で得られた構造体の別の断面の一部を拡大して透過型電子顕微鏡(TEM)にて撮像した結果を図15(a)~(c)に示す。図15(a)~(c)を参照して、この部位においては、金属酸化物粒子(第1粒子)の間に第1アモルファス相は確認されなかった。なお、アモルファス相が存在するか否かの判定は、当業者に公知な手法である電子線回折像に基づいて行った。図15(c)に示されるような格子縞がない場合、図15(d)に一例として挙げるように回折スポット(ドット)が観測されないことは、アモルファス相が存在するものと判定できる。図15(a)~(c)に示す測定箇所では0.01μm以上の厚みのアモルファス相は確認されなかった。このことから、第1アモルファス相は全く存在しない場所があっても良いことを示している。 Further, FIGS. 15(a) to 15(c) show the results obtained by enlarging a part of another cross section of the structure obtained in this example and imaging it with a transmission electron microscope (TEM). With reference to FIGS. 15(a) to (c), no first amorphous phase was observed between the metal oxide particles (first particles) at this portion. The determination as to whether or not the amorphous phase exists was made based on an electron diffraction image, which is a method known to those skilled in the art. When there is no lattice fringe as shown in FIG. 15C, no diffraction spot (dot) is observed as shown in FIG. 15D as an example, which means that an amorphous phase exists. At the measurement points shown in FIGS. 15A to 15C, no amorphous phase having a thickness of 0.01 μm or more was confirmed. From this, it is shown that there may be a place where the first amorphous phase does not exist at all.
(実施例2、3)
 本実施例は、実施形態2にて図12を参照して説明した構造体に関する。
(Examples 2 and 3)
The present example relates to the structure described in Embodiment 2 with reference to FIG.
 原料混合物を、ポリイミドの前駆体液(実施例2)またはポリアミドイミドの前駆体液(実施例3)を10質量%(金属酸化物粒子の全質量に対して)の割合で更に添加して調製したこと以外は、実施例1と同様にして、構造体を得た。 The raw material mixture was prepared by further adding a polyimide precursor solution (Example 2) or a polyamideimide precursor solution (Example 3) at a ratio of 10 mass% (based on the total mass of the metal oxide particles). A structure was obtained in the same manner as in Example 1 except for the above.
 上記で得られたこれら本実施例の構造体について、実施例1と同様にして接合強度(付着性)および電気特性を評価した。 The bonding strength (adhesiveness) and electrical characteristics of the structures obtained in the present example obtained above were evaluated in the same manner as in Example 1.
 これら本実施例の構造体の接合強度(付着性)の評価結果は、いずれも分類0であった。具体的には、上部電極と金属酸化物含有複合体層との間ならびに下部電極と金属酸化物含有複合体層との間において剥離は観察されなかった。 The evaluation results of the bonding strength (adhesiveness) of the structures of these examples were all Class 0. Specifically, no peeling was observed between the upper electrode and the metal oxide-containing composite layer and between the lower electrode and the metal oxide-containing composite layer.
 これら本実施例の構造体の電気特性の評価結果は、実施例1の構造体と同等であった。更に、これら本実施例の試料を温度60℃および湿度95%の恒温高湿環境下で24時間放置した後に、再度、抵抗値を測定したところ、上記で測定した25℃での抵抗値を基準とした変化率は0.1%であった。 The evaluation results of the electrical characteristics of the structures of these examples were equivalent to those of the structure of Example 1. Furthermore, after the samples of these examples were left in a constant temperature and high humidity environment of a temperature of 60° C. and a humidity of 95% for 24 hours, the resistance values were measured again, and the resistance value at 25° C. measured above was used as a reference. The change rate was 0.1%.
 また更に、実施例3の構造体の断面の一部を拡大して走査型透過電子顕微鏡(STEM)にて撮像した(明視野像)結果を図14(a)~(d)に示す。図14(a)~(d)が図13(a)~(d)と特に異なる点は、図14(b)に示すCの分布である。図13(b)では金属酸化物含有複合体層中にCがほぼ均一に分散して観察された。これは、試料加工や、測定に付随する炭素成分が検出されていると考えられる。他方、図14(b)では金属酸化物粒子の存在していない領域においてCが多く観察された。これにより、添加したポリアミドイミドの前駆体液が、ポリアミドイミドの樹脂粒子として偏析している状態であることが確認された。 Furthermore, a part of the cross section of the structure of Example 3 was enlarged and imaged with a scanning transmission electron microscope (STEM) (bright field image), and the results are shown in FIGS. 14(a) to (d). 14A to 14D are different from FIGS. 13A to 13D in the distribution of C shown in FIG. 14B. In FIG. 13B, C was observed to be dispersed almost uniformly in the metal oxide-containing composite layer. It is considered that this is because the carbon component accompanying sample processing and measurement was detected. On the other hand, in FIG. 14B, a large amount of C was observed in the region where the metal oxide particles did not exist. From this, it was confirmed that the added polyamideimide precursor liquid was segregated as polyamideimide resin particles.
 よって、これら本実施例2、3において、上記加圧下での加熱処理中に樹脂粒子が形成されるものと理解され、かかる樹脂粒子の平均粒径は、金属酸化物粒子の平均粒径より相当小さいものと理解される。 Therefore, in these Examples 2 and 3, it is understood that the resin particles are formed during the heat treatment under the pressure, and the average particle diameter of the resin particles is larger than the average particle diameter of the metal oxide particles. Understood to be small.
(実施例4)
 本実施例は、実施形態1にて図5を参照して説明したサーミスタに関する。
(Example 4)
This example relates to the thermistor described in the first embodiment with reference to FIG.
 Mn:Ni:Alを4:1:1(原子比)の割合で含む、平均粒径約0.2μmの金属酸化物粒子に、マンガンアセチルアセトネートを10質量%(金属酸化物粒子の全質量に対して)の割合で添加し、エタノールを溶媒として原料混合物を調製し、16時間混合した。これにより得られたスラリーの形態の原料混合物を、厚さ10μmの銅箔上にドクターブレード法により厚さ10μmのシートの形態で供給した。このシートを100℃で10時間乾燥させた後、加熱プレス機を用いて100MPaの加圧下にて250℃で30分間加熱して、前駆構造体を得た。この前駆構造体を250℃で10時間アニールして、残存し得る不要な有機物を除去して、構造体を得た。その後、得られた構造体のうち上記シートに由来する膜(サーミスタ層として機能し得る金属酸化物含有複合体層)の上にポリアミドイミドの前駆体液を10μmの厚さで塗布して、200℃で1時間加熱して、ポリアミドイミドを熱硬化させて樹脂基材とした。その後、樹脂基材と反対側の銅箔の表面にレジストを所定のパターンで塗布して、露光および現像し、銅箔の所定部分をエッチング除去し、残っているレジストを除去して、2つの銅電極を形成した。これら銅電極は、上面から見た各寸法が2.5mm×2.5mmであり、100μmの距離(図5中に記号「d」で示す)で並列に配置させた。その後、構造体をダイシングソーでカットして、上面から見た寸法が5mm×15mmのサイズのサーミスタを得た(図5参照)。 10% by mass of manganese acetylacetonate (total mass of metal oxide particles) was added to metal oxide particles containing Mn:Ni:Al in a ratio of 4:1:1 (atomic ratio) and having an average particle size of about 0.2 μm. The mixture was added for 16 hours, and the raw material mixture was prepared using ethanol as a solvent and mixed for 16 hours. The raw material mixture thus obtained in the form of a slurry was supplied in the form of a sheet having a thickness of 10 μm on a copper foil having a thickness of 10 μm by the doctor blade method. This sheet was dried at 100° C. for 10 hours and then heated at 250° C. for 30 minutes under a pressure of 100 MPa using a heating press machine to obtain a precursor structure. This precursor structure was annealed at 250° C. for 10 hours to remove unnecessary organic substances that could remain, to obtain a structure. Then, a precursor solution of polyamideimide was applied to a film (metal oxide-containing composite layer capable of functioning as a thermistor layer) derived from the sheet in the obtained structure in a thickness of 10 μm, and the temperature was set to 200° C. At 1 hour, the polyamide-imide was thermally cured to obtain a resin base material. After that, a resist is applied to the surface of the copper foil opposite to the resin base material in a predetermined pattern, exposed and developed, a predetermined portion of the copper foil is removed by etching, and the remaining resist is removed to remove two A copper electrode was formed. Each of these copper electrodes had a dimension of 2.5 mm×2.5 mm when viewed from the top surface and were arranged in parallel at a distance of 100 μm (indicated by a symbol “d” in FIG. 5). After that, the structure was cut with a dicing saw to obtain a thermistor having a size of 5 mm×15 mm as viewed from the upper surface (see FIG. 5).
 本実施例のサーミスタの電気特性に関しては、金属酸化物含有複合体層(サーミスタ層)の同一面上に存在する2つの電極間の抵抗値(およびその変化)から温度(およびその変化)を検知することができる。このサーミスタの抵抗値には、電極間の距離dと金属酸化物含有複合体層の厚さtとの両方が寄与する。高い温度分解能を得るためには、サーミスタの抵抗値のばらつきを更に小さく、ある一定以下に抑えることが肝要であると考えられる。電極間の距離dのばらつきは、例えば、クシ歯状電極の利用によって低減することが可能である。 Regarding the electrical characteristics of the thermistor of this example, the temperature (and its change) was detected from the resistance value (and its change) between two electrodes existing on the same surface of the metal oxide-containing composite layer (thermistor layer). can do. Both the distance d between the electrodes and the thickness t of the metal oxide-containing composite layer contribute to the resistance value of the thermistor. In order to obtain a high temperature resolution, it is considered important to reduce the variation in the resistance value of the thermistor to a certain level or less. The variation in the distance d between the electrodes can be reduced by using, for example, a comb-shaped electrode.
(実施例5)
 本実施例は、実施形態1にて図6を参照して説明したサーミスタに関する。
(Example 5)
This example relates to the thermistor described in the first embodiment with reference to FIG.
 Mn:Ni:Alを4:1:1(原子比)の割合で含む、平均粒径約0.2μmに、マンガンアセチルアセトネートを10質量%(金属酸化物粒子の全質量に対して)の割合で添加し、エタノールを溶媒として原料混合物を調製し、16時間混合した。これにより得られたスラリーの形態の原料混合物を、厚さ10μmの銅箔上にドクターブレード法により厚さ10μmのシートの形態で供給した。このシートを100℃で10時間乾燥させた後、加熱プレス機を用いて100MPaの加圧下にて150℃で30分間加熱して、積層体を得た。得られた積層体をダイシングソーでカットして、上面から見た寸法が5mm×5mmのサイズの第1積層体を得た。別途、厚さ20μmのポリイミドフィルム上に厚さ10μmの銅層をパターン形成した第2積層体を準備した。第1積層体および第2積層体を、第1積層体の上記シートに由来する膜(サーミスタ層として機能し得る金属酸化物含有複合体層)と第2積層体の銅層とが適切に相対するように重ね合わせて、加熱プレス機を用いて100MPaの加圧下にて250℃で30分間加熱して、前駆構造体を得た。この前駆構造体を250℃で10時間アニールして、残存し得る不要な有機物を除去して、構造体を得た。その後、得られた構造体のうち、第1積層体の銅箔表面上に、厚さ10μmのポリイミドフィルムを被せて熱硬化させて、多層構造体を得た。その後、この多層構造体をダイシングソーでカットして、上面から見た寸法が5mm×15mmのサイズのサーミスタを得た(図6参照)。 Mn:Ni:Al at a ratio of 4:1:1 (atomic ratio), with an average particle size of about 0.2 μm, manganese acetylacetonate of 10 mass% (based on the total mass of the metal oxide particles). The mixture was added in a ratio, ethanol was used as a solvent to prepare a raw material mixture, and the mixture was mixed for 16 hours. The raw material mixture thus obtained in the form of a slurry was supplied in the form of a sheet having a thickness of 10 μm on a copper foil having a thickness of 10 μm by the doctor blade method. This sheet was dried at 100° C. for 10 hours and then heated at 150° C. for 30 minutes under a pressure of 100 MPa using a heating press machine to obtain a laminate. The obtained laminated body was cut with a dicing saw to obtain a first laminated body having a size of 5 mm×5 mm as viewed from the upper surface. Separately, a second laminate was prepared in which a copper layer having a thickness of 10 μm was patterned on a polyimide film having a thickness of 20 μm. A film derived from the sheet of the first laminate (a metal oxide-containing composite layer capable of functioning as a thermistor layer) and a copper layer of the second laminate are appropriately opposed to each other with respect to the first laminate and the second laminate. Then, the precursor structure was obtained by heating and heating at 250° C. for 30 minutes under a pressure of 100 MPa using a heating press machine. This precursor structure was annealed at 250° C. for 10 hours to remove unnecessary organic substances that could remain, to obtain a structure. After that, among the obtained structures, a polyimide film having a thickness of 10 μm was covered on the surface of the copper foil of the first laminated body and thermally cured to obtain a multilayer structure. Then, this multilayer structure was cut with a dicing saw to obtain a thermistor having a size of 5 mm×15 mm as viewed from the upper surface (see FIG. 6).
 本実施例のサーミスタの電気特性に関しては、金属酸化物含有複合体層(サーミスタ層)を挟んで対向する2つの電極間の抵抗値(およびその変化)(該抵抗値は、図6の金属電極13g、13iの間の抵抗値と、金属電極13i、13hの間の抵抗値の合計であり得る)から温度(およびその変化)を検知することができる。このサーミスタの抵抗値には、これら電極の対向領域の面積と金属酸化物含有複合体層の厚さtが寄与する。本実施例のサーミスタを実施例4のサーミスタと比較すると、サーミスタの抵抗値に対して、実施例4のサーミスタは電極間の距離が寄与するのに対して、本実施例のサーミスタは電極の対向領域の面積が寄与する点で相違する。電極間の距離のばらつきは、例えばクシ歯状電極の利用によって低減することが可能であるが、電極の対向領域の面積のばらつきのほうが製造プロセスにおいてより容易に低減することが可能である。よって、実施例4に比べて本実施例のサーミスタの方が、サーミスタの抵抗値のばらつきをより一層低減し易いと言える。 Regarding the electrical characteristics of the thermistor of this example, the resistance value (and its change) between two electrodes facing each other with the metal oxide-containing composite layer (thermistor layer) interposed therebetween (the resistance value is the metal electrode of FIG. 6). The temperature (and its change) can be detected from the resistance value between 13g and 13i and the resistance value between the metal electrodes 13i and 13h. The resistance value of this thermistor is contributed by the area of the opposing region of these electrodes and the thickness t of the metal oxide-containing composite layer. Comparing the thermistor of the present embodiment with the thermistor of the fourth embodiment, the distance between the electrodes of the thermistor of the fourth embodiment contributes to the resistance value of the thermistor, while the thermistor of the present embodiment opposes the electrodes. The difference is that the area of the region contributes. The variation in the distance between the electrodes can be reduced by using, for example, a comb tooth-shaped electrode, but the variation in the area of the opposing region of the electrodes can be reduced more easily in the manufacturing process. Therefore, it can be said that the thermistor of the present embodiment can further reduce variations in resistance value of the thermistor more easily than the fourth embodiment.
(比較例1)
 特許文献1に記載された構造に対応する薄膜サーミスタを作製した。
(Comparative Example 1)
A thin film thermistor corresponding to the structure described in Patent Document 1 was produced.
 Siウエハ上に熱酸化処理によりSiO膜を形成し、その上にスパッタリングにより酸素または窒素を含むPt電極層を形成した。電極層を所定のパターンでエッチングして電極を形成し、その上に、実施例1で原料混合物に使用した金属酸化物粒子と同様の組成の金属酸化物をスパッタリングして金属酸化物膜(サーミスタ層)を形成して、薄膜サーミスタを作製した。 A SiO 2 film was formed on the Si wafer by thermal oxidation, and a Pt electrode layer containing oxygen or nitrogen was formed thereon by sputtering. The electrode layer is etched in a predetermined pattern to form an electrode, and a metal oxide having the same composition as the metal oxide particles used in the raw material mixture in Example 1 is sputtered thereon to form a metal oxide film (thermistor). Layer) to form a thin film thermistor.
 上記で得られたこれら本比較例の構造体について、実施例1と同様にして接合強度(付着性)を評価したところ、分類3であった。具体的には、電極と金属酸化物膜との間に剥離が観察された。 The bonding strength (adhesiveness) of the structures of the present comparative example obtained above was evaluated in the same manner as in Example 1 and was classified into Class 3. Specifically, peeling was observed between the electrode and the metal oxide film.
(比較例2)
 特許文献2に記載された構造に対応する薄膜サーミスタを作製した。
(Comparative example 2)
A thin film thermistor corresponding to the structure described in Patent Document 2 was produced.
 Siウエハ上に熱酸化処理によりSiO膜を形成し、その上にスパッタリングによりPt/TiまたはCr電極層を形成した。電極層を所定のパターンでエッチングして電極を形成し、その上に、実施例1で原料混合物に使用した金属酸化物粒子と同様の組成の金属酸化物をスパッタリングして金属酸化物膜(サーミスタ層)を形成して、薄膜サーミスタを作製した。 A SiO 2 film was formed on the Si wafer by thermal oxidation, and a Pt/Ti or Cr electrode layer was formed on the SiO 2 film by sputtering. The electrode layer is etched in a predetermined pattern to form an electrode, and a metal oxide having the same composition as the metal oxide particles used in the raw material mixture in Example 1 is sputtered thereon to form a metal oxide film (thermistor). Layer) to form a thin film thermistor.
 上記で得られたこれら本比較例の構造体について、実施例1と同様にして接合強度(付着性)を評価したところ、分類3であった。具体的には、電極と金属酸化物膜との間に剥離が観察された。 The bonding strength (adhesiveness) of the structures of the present comparative example obtained above was evaluated in the same manner as in Example 1 and was classified into Class 3. Specifically, peeling was observed between the electrode and the metal oxide film.
 本発明の複合体および構造体はサーミスタに組み込まれ得、本発明のサーミスタは、温度センサ等の幅広く様々な用途に利用され得る。例えば、本発明のサーミスタを全体としてフレキシブルに構成した場合、フレキシブルな温度センサとして、例えば、高温での発火や劣化が課題となっている車載電池、スマホ用電池の温度管理のための温度測定、メディカルおよびヘルスケアの分野における体温測定など用途に利用され得る。しかしながら本実施形態はかかる用途に限定されるものではない。 The composite and structure of the present invention can be incorporated into a thermistor, and the thermistor of the present invention can be used in a wide variety of applications such as a temperature sensor. For example, when the thermistor of the present invention is configured to be flexible as a whole, as a flexible temperature sensor, for example, a vehicle-mounted battery in which ignition or deterioration at high temperature is a problem, temperature measurement for temperature management of a smartphone battery, It can be used for applications such as body temperature measurement in the medical and healthcare fields. However, the present embodiment is not limited to such use.
 本願は、2018年12月28日付けで日本国にて出願された特願2018-248102に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2018-248102 filed in Japan on December 28, 2018, the entire contents of which are incorporated herein by reference.
  1 第1粒子(金属酸化物粒子)
  2 第1アモルファス相
  3 第2粒子(樹脂粒子)
  10、11,11’ 複合体
  12、12a、12b 第2アモルファス相
  13、13a、13b 金属部
  13c~13n 金属電極
  14a~14d’ 外部電極
  15、15a~15n 接合層
  16、16a、16b 接合層
  20、20a~20f、21、22、23 構造体
  27、27a、27b 樹脂基材
  30~35 サーミスタ
1 First particles (metal oxide particles)
2 First amorphous phase 3 Second particles (resin particles)
10, 11, 11' Composite 12, 12a, 12b Second amorphous phase 13, 13a, 13b Metal part 13c-13n Metal electrode 14a-14d' External electrode 15, 15a- 15n Bonding layer 16, 16a, 16b Bonding layer 20 , 20a to 20f, 21, 22, 23 Structure 27, 27a, 27b Resin base material 30 to 35 Thermistor

Claims (17)

  1.  少なくとも1つの第1金属元素を含む金属酸化物から成る複数の第1粒子と、
     該複数の第1粒子間に存在し、かつ、該第1金属元素と同じ金属元素を含む第1アモルファス相と
    を含み、該第1金属元素が、MnおよびNiの少なくとも一方を含む、複合体。
    A plurality of first particles made of a metal oxide containing at least one first metal element;
    A composite including a first amorphous phase existing between the plurality of first particles and containing the same metal element as the first metal element, wherein the first metal element contains at least one of Mn and Ni. ..
  2.  前記第1金属元素が、Fe、Al、CoおよびCuからなる群より選択される少なくとも1つを更に含む、請求項1に記載の複合体。 The composite according to claim 1, wherein the first metal element further comprises at least one selected from the group consisting of Fe, Al, Co and Cu.
  3.  第1樹脂から成る複数の第2粒子を更に含み、前記第1アモルファス相が、前記複数の第1粒子および該複数の第2粒子間に存在する、請求項1または2に記載の複合体。 The composite according to claim 1 or 2, further comprising a plurality of second particles made of a first resin, wherein the first amorphous phase is present between the plurality of first particles and the plurality of second particles.
  4.  前記第1樹脂が、ポリエチレンテレフタレート、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、エポキシ樹脂および液晶ポリマーからなる群より選択される少なくとも1つを含む、請求項3に記載の複合体。 The composite according to claim 3, wherein the first resin contains at least one selected from the group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer.
  5.  前記第1アモルファス相の厚さが、100μm以下である、請求項1~4のいずれかに記載の複合体。 The composite according to any one of claims 1 to 4, wherein the first amorphous phase has a thickness of 100 µm or less.
  6.  前記複数の第1粒子の一部が互いに接触している、請求項1~5のいずれかに記載の複合体。 The composite according to any one of claims 1 to 5, wherein some of the plurality of first particles are in contact with each other.
  7.  少なくとも1つの第1金属元素を含む金属酸化物から成る複数の第1粒子と、
     該第1金属元素と同じ金属元素を含む第1アモルファス相と
     第1樹脂から成る複数の第2粒子と、
    を含み、該複数の第1粒子は互いに接触し、該第2粒子は、互いに接触した該複数の第1粒子の内部に存在し、該第1アモルファス相が、互いに接触した該複数の第1粒子と該第2粒子との間に存在し、該第1金属元素が、MnおよびNiの少なくとも一方を含む、複合体。
    A plurality of first particles made of a metal oxide containing at least one first metal element;
    A plurality of second particles made of a first resin and a first amorphous phase containing the same metal element as the first metal element;
    The first particles are in contact with each other, the second particles are present inside the first particles in contact with each other, and the first amorphous phase is in contact with the first particles in contact with each other. A composite existing between particles and the second particles, wherein the first metal element contains at least one of Mn and Ni.
  8.  前記第1金属元素が、Fe、Al、CoおよびCuからなる群より選択される少なくとも1つを更に含む、請求項7に記載の複合体。 The composite according to claim 7, wherein the first metal element further comprises at least one selected from the group consisting of Fe, Al, Co and Cu.
  9.  前記第1樹脂が、ポリエチレンテレフタレート、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、エポキシ樹脂および液晶ポリマーからなる群より選択される少なくとも1つを含む、請求項7または8に記載の複合体。 9. The composite according to claim 7, wherein the first resin contains at least one selected from the group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer. body.
  10.  前記第1アモルファス相の厚さが、100μm以下である、請求項7~9のいずれかに記載の複合体。 The composite according to claim 7, wherein the first amorphous phase has a thickness of 100 μm or less.
  11.  少なくとも1つの第2金属元素を含む金属部と、
     請求項1~10のいずれかに記載の複合体と、
     該金属部と該複合体との間に位置する接合層と
    を含み、該接合層が、前記第1金属元素および該第2金属元素と同じ金属元素を含む第2アモルファス相を含む、構造体。
    A metal part containing at least one second metal element,
    The composite according to any one of claims 1 to 10,
    A structure including a bonding layer located between the metal part and the composite, wherein the bonding layer includes a second amorphous phase containing the same metal element as the first metal element and the second metal element. ..
  12.  前記第2金属元素が、Mn、Ni、Fe、Al、Zn、Cr、Ti、Co、Cu、Ag、AuおよびPtからなる群より選択される少なくとも1つを含む、請求項11に記載の構造体。 12. The structure of claim 11, wherein the second metal element comprises at least one selected from the group consisting of Mn, Ni, Fe, Al, Zn, Cr, Ti, Co, Cu, Ag, Au and Pt. body.
  13.  第2樹脂から成る樹脂基材と、
     該樹脂基材の上に配置された、請求項11または12に記載の構造体と
    を含み、前記金属部が、2つの金属電極を含む、サーミスタ。
    A resin base material made of a second resin,
    The structure according to claim 11 or 12 arranged on the resin substrate, wherein the metal part includes two metal electrodes.
  14.  前記複合体および前記接合層が、合計100μm以下の厚さを有する、請求項13に記載のサーミスタ。 The thermistor according to claim 13, wherein the composite and the bonding layer have a total thickness of 100 μm or less.
  15.  前記第2樹脂が、ポリエチレンテレフタレート、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、エポキシ樹脂および液晶ポリマーからなる群より選択される少なくとも1つを含む、請求項13または14に記載のサーミスタ。 The thermistor according to claim 13 or 14, wherein the second resin contains at least one selected from the group consisting of polyethylene terephthalate, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene, epoxy resin and liquid crystal polymer. ..
  16.  前記2つの金属電極が互いに対向する主面を有し、それら主面間に前記複合体が介挿されている、請求項13~15のいずれかに記載のサーミスタ。 The thermistor according to any one of claims 13 to 15, wherein the two metal electrodes have main surfaces facing each other, and the composite is interposed between the main surfaces.
  17.  前記2つの金属電極が、平面視にて互い違いに配列された2つの外部電極とそれぞれ電気的に接続されている、請求項13~16のいずれかに記載のサーミスタ。 The thermistor according to any one of claims 13 to 16, wherein the two metal electrodes are electrically connected to two external electrodes arranged in a staggered manner in plan view.
PCT/JP2019/049356 2018-12-28 2019-12-17 Composite, and structure and thermistor using same WO2020137681A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19903402.6A EP3854765A4 (en) 2018-12-28 2019-12-17 Composite, and structure and thermistor using same
CN201980077279.4A CN113165979B (en) 2018-12-28 2019-12-17 Composite, and structure and thermistor using same
JP2020563109A JP7074209B2 (en) 2018-12-28 2019-12-17 Complex and structures and thermistors using it
US17/237,456 US20210241946A1 (en) 2018-12-28 2021-04-22 Composite, and structure and thermistor using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018248102 2018-12-28
JP2018-248102 2018-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/237,456 Continuation US20210241946A1 (en) 2018-12-28 2021-04-22 Composite, and structure and thermistor using the same

Publications (1)

Publication Number Publication Date
WO2020137681A1 true WO2020137681A1 (en) 2020-07-02

Family

ID=71129794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049356 WO2020137681A1 (en) 2018-12-28 2019-12-17 Composite, and structure and thermistor using same

Country Status (5)

Country Link
US (1) US20210241946A1 (en)
EP (1) EP3854765A4 (en)
JP (1) JP7074209B2 (en)
CN (1) CN113165979B (en)
WO (1) WO2020137681A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049004A (en) * 1998-07-28 2000-02-18 Matsushita Electric Works Ltd Thin-film thermistor device and its manufacture
JP2008244344A (en) 2007-03-28 2008-10-09 Mitsubishi Materials Corp Thin film thermistor element and manufacturing method of thin film thermistor element
JP2013179161A (en) 2012-02-28 2013-09-09 Mitsubishi Materials Corp Metal nitride material for thermistor and method of manufacturing the same, and film type thermistor sensor
WO2014010591A1 (en) 2012-07-13 2014-01-16 Semitec株式会社 Thin-film thermistor element and method for manufacturing same
JP2015065417A (en) 2013-08-30 2015-04-09 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
US20170088471A1 (en) 2015-09-29 2017-03-30 The Penn State Research Foundation Cold sintering ceramics and composites
US20180315575A1 (en) * 2017-04-27 2018-11-01 Littelfuse, Inc. Hybrid device structures including negative temperature coefficient/positive temperature coefficient device
WO2019009320A1 (en) * 2017-07-05 2019-01-10 株式会社村田製作所 Method for manufacturing sintered body, structure, and composite structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111700A (en) * 1978-02-22 1979-09-01 Hitachi Ltd Thermistor composition
EP0225392B1 (en) * 1985-06-10 1992-02-19 Takeuchi Press Industries Co., Ltd. Resin-bonded magnetic composition and process for producing magnetic molding therefrom
DE10239058A1 (en) * 2001-08-27 2003-04-03 Denso Corp Method for producing a thermistor element and manufacturing device for producing raw material for a thermistor element
KR101121399B1 (en) * 2004-06-18 2012-03-21 미쓰비시 마테리알 가부시키가이샤 Thermistor thin-film and method of forming the same
JPWO2008041481A1 (en) * 2006-09-29 2010-02-04 株式会社村田製作所 NTC thermistor porcelain and NTC thermistor using it
TWI349946B (en) * 2007-12-26 2011-10-01 Ind Tech Res Inst Method for fabricating negative temperature coefficient thermistor
CN104247090B (en) * 2012-01-19 2017-10-31 索尼公司 Barrier film, nonaqueous electrolyte battery, battery pack, electronic equipment, electric vehicle, electric power storing device and power system
CN103014701A (en) * 2012-12-22 2013-04-03 蚌埠玻璃工业设计研究院 Preparation method of vanadium dioxide film
JP6119854B2 (en) * 2013-06-13 2017-04-26 株式会社村田製作所 Thermistor and manufacturing method thereof
JP6318916B2 (en) * 2013-08-30 2018-05-09 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
CN104700970B (en) * 2015-03-30 2017-12-22 东莞理工学院 A kind of adjusting method of negative temperature coefficient thin-film thermistor and preparation method thereof and its resistance value

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049004A (en) * 1998-07-28 2000-02-18 Matsushita Electric Works Ltd Thin-film thermistor device and its manufacture
JP2008244344A (en) 2007-03-28 2008-10-09 Mitsubishi Materials Corp Thin film thermistor element and manufacturing method of thin film thermistor element
JP2013179161A (en) 2012-02-28 2013-09-09 Mitsubishi Materials Corp Metal nitride material for thermistor and method of manufacturing the same, and film type thermistor sensor
WO2014010591A1 (en) 2012-07-13 2014-01-16 Semitec株式会社 Thin-film thermistor element and method for manufacturing same
JP2015065417A (en) 2013-08-30 2015-04-09 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
US20170088471A1 (en) 2015-09-29 2017-03-30 The Penn State Research Foundation Cold sintering ceramics and composites
US20180315575A1 (en) * 2017-04-27 2018-11-01 Littelfuse, Inc. Hybrid device structures including negative temperature coefficient/positive temperature coefficient device
WO2019009320A1 (en) * 2017-07-05 2019-01-10 株式会社村田製作所 Method for manufacturing sintered body, structure, and composite structure
WO2019008711A1 (en) * 2017-07-05 2019-01-10 株式会社村田製作所 Method for producing sintered body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3854765A4

Also Published As

Publication number Publication date
US20210241946A1 (en) 2021-08-05
JPWO2020137681A1 (en) 2021-11-11
CN113165979B (en) 2023-04-11
JP7074209B2 (en) 2022-05-24
EP3854765A1 (en) 2021-07-28
CN113165979A (en) 2021-07-23
EP3854765A4 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
CN103081095B (en) Electronic device
JP6356821B2 (en) NTC device and method for its manufacture
JP6354947B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
TWI375665B (en)
JP6308435B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP2009026954A (en) Varistor
EP2822002A1 (en) Metal nitride material for thermistor, method for producing same, and film thermistor sensor
JPWO2012035938A1 (en) Semiconductor ceramic element and manufacturing method thereof
EP2937441A1 (en) Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
JP6308436B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015424B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
WO2020137681A1 (en) Composite, and structure and thermistor using same
JP6318916B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
WO2004026789A1 (en) Piezoelectric porcelain composition, piezoelectric element, and method for production thereof
JP6355022B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
WO2021261006A1 (en) Thermistor
WO2014196583A1 (en) Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
Heinen et al. Influence of the thickness and area of NiCr/Ag electrodes on the characteristics of BaTiO3-ceramic based positive-temperature-coefficient thermistors
Ravi et al. Diffusion and growth mechanism of phases in the Pd-Sn system
JP4696443B2 (en) Manufacturing method of multilayer ceramic substrate
WO2014097883A1 (en) Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
JP2009218320A (en) Thermal power generation device element
WO2024029538A1 (en) Strain gauge
US9831018B2 (en) Electronic component
WO2024010027A1 (en) Strain gauge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019903402

Country of ref document: EP

Effective date: 20210423

ENP Entry into the national phase

Ref document number: 2020563109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE