WO2020137628A1 - Cell capsule, cell transplantation device, method for extracting oxygen-generating material of cell transplantation device, method for replacing oxygen-generating material of cell transplantation device, and oxygen sustained-release material - Google Patents

Cell capsule, cell transplantation device, method for extracting oxygen-generating material of cell transplantation device, method for replacing oxygen-generating material of cell transplantation device, and oxygen sustained-release material Download PDF

Info

Publication number
WO2020137628A1
WO2020137628A1 PCT/JP2019/048959 JP2019048959W WO2020137628A1 WO 2020137628 A1 WO2020137628 A1 WO 2020137628A1 JP 2019048959 W JP2019048959 W JP 2019048959W WO 2020137628 A1 WO2020137628 A1 WO 2020137628A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
cell
generating material
cells
capsule according
Prior art date
Application number
PCT/JP2019/048959
Other languages
French (fr)
Japanese (ja)
Inventor
優史 丸山
正樹 松森
泰 佐々木
真理子 宮崎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018246947A external-priority patent/JP2020103713A/en
Priority claimed from JP2019037561A external-priority patent/JP2020137495A/en
Priority claimed from JP2019065623A external-priority patent/JP2020164452A/en
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020137628A1 publication Critical patent/WO2020137628A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen

Definitions

  • the present invention relates to a cell capsule for encapsulating cells, a cell transplantation device, a method for taking out an oxygen generating material from a cell transplantation device, and a method for exchanging an oxygen generating material in a cell transplantation device.
  • patent document 1 proposes a method using a solvent having higher oxygen solubility than water, such as a perfluoroorganic compound, in order to improve oxygen availability and delivery to encapsulated cells or tissues. (See 0096 of the same document).
  • Patent Document 1 in the method of dissolving oxygen in a liquid solvent, the solvent diffuses into the body, so it is difficult to retain the solvent in the cell capsule for a long period of time. Moreover, since the amount of oxygen that can be supplied to the cells is small, there is a problem that the survival rate of the cells is low.
  • the present invention has been made in view of the above problems, and a technique capable of stably supplying a sufficient amount of oxygen to a cell/tissue transplanted by a cell capsule over a long period of time.
  • the purpose is to provide.
  • the cell capsule according to the present invention is equipped with a mechanism for supplying a sufficient amount of oxygen to cells using an oxygen sustained release material.
  • the transplanted cells can survive in the body for a longer period of time.
  • FIG. 5 is a graph showing the relationship between the number of days and the amount of sustained release of oxygen in the sustained release oxygen material of Example 1.
  • 7 is a graph showing the relationship between the number of days and the amount of sustained release of oxygen in the sustained release oxygen material of Example 3.
  • 9 is a schematic diagram of a device used for evaluation in Example 5.
  • FIG. 9 is a schematic diagram of a device used for evaluation in Comparative Example 3.
  • FIG. 9 is a schematic diagram of a device used for evaluation in Comparative Example 3.
  • FIG. 1 is a configuration diagram of a cell capsule 100 according to the first embodiment of the present invention.
  • the cell capsule 100 encapsulates cells 101.
  • the cell capsule 100 includes an oxygen sustained release material 102 and a cell holding carrier 103.
  • the cell holding carrier 103 is hatched.
  • the cell capsule is a microcapsule type cell transplantation device capable of protecting target cells, for example, pancreatic cells, from host immune cells by coating them with an immunoisolation membrane.
  • the oxygen sustained release material 102 is solid and has a function of releasing oxygen.
  • the oxygen released from the sustained-release material is dissolved in the liquid and partly released as bubbles. Since the oxygen-releasing material 102 is solid, it can be stably placed in the vicinity of the cells 101. Therefore, the oxygen sustained-release material 102 can continue to supply oxygen to the cells 101 for a long time without being scattered from the vicinity of the cells 101. As a result, the cells 101 that require a large amount of oxygen can survive for a long period of time.
  • the cell holding carrier 103 is a medium for holding the cells 101.
  • the oxygen sustained release material 102 is also held.
  • the position of the cells 101 in the cell capsule 100 can be stabilized by the cell holding carrier 103. This is effective because oxygen can be uniformly supplied from the oxygen sustained release material 102 to the cells 101.
  • the material of the cell holding carrier 103 is not particularly limited, but for example, a gel material such as alginic acid gel or a porous polymer material such as porous polystyrene can be used.
  • the cells 101 can be encapsulated even when the cell capsule 100 is not covered with a container.
  • an oxygen permeable film for example, PDMS
  • the oxygen sustained release material 102 can be configured using a porous material that adsorbs and releases oxygen. This is effective because a large amount of oxygen can be stored.
  • a porous material for storing oxygen cerium oxide (ceria), zirconium oxide (zirconia), cerium oxide-zirconium oxide (CeO 2 —ZrO 2 ) (ceria-zirconia), porous coordination polymer, metal organic structure, Etc. can be used.
  • a method of controlling the amount of oxygen released by the oxygen-controlled release material 102 per unit time (a) the amount of oxygen adsorbed to the porous material is controlled, (b) the oxygen-controlled release material. After arranging 102 in the cell capsule 100, it is possible to change the oxygen concentration in the cell holding carrier 103 (the oxygen sustained release material carrier 106 in the third and fourth embodiments described later).
  • the oxygen-releasing material 102 can also be configured using a peroxide that reacts with water to generate oxygen.
  • peroxides that react with water to generate oxygen include calcium peroxide, magnesium peroxide, hydrogen peroxide-urea, and the like.
  • the viscosity of the cell holding carrier 103 oxygen-releasing material carrier 106 in the third and fourth embodiments described later
  • the mobility of water decreases, so that the oxygen-releasing material 102 is supplied to the vicinity thereof.
  • the amount of released water is reduced, so that the amount of released oxygen can be suppressed.
  • the following can be used: HePG2 cells (human liver cancer-derived cells) as the cells 101, ceria-zirconia as the oxygen sustained release material 102, Alginic acid gel can be used as the cell holding carrier 103. It is assumed that the oxygen release rate in this embodiment is about 0.7 mL/day/cm 3 , the number of cells required for treatment is about 10 8 and the oxygen requirement of cells is about 22 mL/day.
  • the cell capsule 100 according to the first embodiment was immersed in a HePG2 medium and cultured in a low oxygen atmosphere of 90% nitrogen, 5% oxygen, and 5% carbon dioxide. After 7 days, the number of cells 101 increased to 1.9 times the initial number, and after 14 days, the number increased to 3.9 times. It was confirmed that the cell capsule 100 according to the first embodiment exhibits good proliferative property.
  • Comparative form 1 A cell capsule in which the oxygen sustained release material 102 was not placed in the cell capsule 100 according to the first embodiment was manufactured as Comparative Example 1. When cell proliferation was confirmed in the same low oxygen atmosphere as above, the number of cells was 1.1 times the initial number after 7 days and 1.2 times after 14 days. It was confirmed that the cell capsule of Comparative form 1 exhibited lower proliferation properties than the cell capsule 100 according to the first embodiment.
  • FIG. 2 is a configuration diagram of the cell capsule 100 according to the second embodiment of the present invention.
  • the cell capsule 100 according to the second embodiment includes a container 104 in addition to the configuration described in the first embodiment. Other configurations are similar to those of the first embodiment.
  • the container 104 covers the entire cell capsule 100.
  • the container 104 can be configured using a semipermeable membrane.
  • a semipermeable membrane is a membrane that allows only molecules and ions of a certain size or smaller to permeate.
  • the container 104 can supply oxygen and nutrients from the body to the cells 101 through this semipermeable membrane, and can discharge hormones and waste products produced by the cells 101. This contributes to improving the survival rate of the cells 101.
  • the material of the semipermeable membrane forming the container 104 is not particularly limited, but a porous polymer membrane can be used. As a polymer material used for the porous polymer membrane, polytetrafluoroethylene is particularly desirable because of its high biocompatibility.
  • the semipermeable membrane that constitutes the container 104 can also receive oxygen from the body. However, from the viewpoint of improving the amount of oxygen supplied to the cells 101, it is desirable that the amount of oxygen released by the oxygen-releasing material 102 per unit time be larger than the amount of oxygen permeating through the semipermeable membrane.
  • the container 104 can also provide immunoisolation to the cells 101.
  • immune cells in the body may attack the cells 101.
  • the method of immunoisolation is not particularly limited, but by using a porous polymer membrane as the container 104, it is possible to have both a function as a semipermeable membrane and an immunoisolation function. Further, since the cell holding carrier 103 also exerts an immunoisolation function, it is more effective to use these in combination.
  • the following can be used: HePG2 cells as the cells 101, calcium peroxide as the oxygen sustained release material 102, and alginic acid as the cell holding carrier 103.
  • Porous polytetrafluoroethylene can be used as the gel and the semipermeable membrane.
  • FIG. 3A is a configuration diagram of the cell capsule 100 according to the third embodiment of the present invention.
  • the cell capsule 100 according to the third embodiment includes an oxygen permeable membrane 105 and an oxygen sustained release material carrier 106 in addition to the configuration described in the second embodiment.
  • Other configurations are similar to those of the first embodiment.
  • the inside of the container 104 is divided into a first section and a second section by the oxygen permeable membrane 105.
  • the first compartment accommodates the cells 101 and the cell holding carrier 103
  • the second compartment accommodates the oxygen sustained release material 102 and the oxygen sustained release material carrier 106. That is, the cells 101 and the oxygen sustained release material 102 are arranged via the oxygen permeable membrane 105.
  • the oxygen sustained release material 102 has an adverse effect such as decreasing the survival rate of the cells 101
  • the oxygen permeable film 105 can alleviate the adverse effect.
  • the case where the oxygen concentration generated from the oxygen sustained release material 102 is excessive corresponds to this. Since the oxygen permeable film 105 allows oxygen to permeate, the oxygen supply by the oxygen sustained release material 102 can be maintained and the above adverse effects can be mitigated.
  • the oxygen-controlled release material carrier 106 is a medium for holding the position of the oxygen-controlled release material 102 in the cell capsule 100. Thereby, oxygen can be uniformly supplied to the cells 101 without any bias.
  • the oxygen permeable film 105 can be configured using, for example, polydimethylsiloxane or a fluorine-containing polymer film. Since polydimethylsiloxane is highly biocompatible, the present invention works effectively.
  • the oxygen sustained release material carrier 106 can be configured by using an acidic gel material.
  • a peroxide is used as the oxygen sustained release material 102, hydrogen peroxide may be generated and damage the cells 101.
  • the oxygen permeable film 105 blocks hydrogen peroxide to prevent damage to some extent, the oxygen sustained release material carrier 106 is made of an acidic gel material, so that damage can be further suppressed. That is, since it is acidic, hydrogen ions are present, and the hydrogen ions react with hydrogen peroxide to generate water, so that the adverse effects of hydrogen peroxide can be suppressed.
  • FIG. 3B is a modified example of the cell capsule 100 according to the third embodiment.
  • a portion of the container 104 that covers the cells 101 and the cell holding carrier 103 is constituted by the first film 104A
  • a portion of the container 104 that covers the oxygen sustained release material 102 and the oxygen sustained release material carrier 106 is the second film. It is composed of 104B.
  • the first film 104A is a semipermeable film similar to that of FIG. 3A.
  • the second film 104B is a film that allows water to permeate (or pass, the same applies hereinafter).
  • the amount of oxygen generated can be controlled by controlling the amount of water given to the oxygen-controlled release material 102. it can. Therefore, by using a water-permeable film as the second film 104B, the amount of water given from outside the cell capsule 100 can be controlled to control the amount of oxygen generated from the oxygen sustained release material 102.
  • the amount of oxygen permeating the oxygen permeable membrane 105 per unit time is equal to that of the semipermeable membrane forming the container 104. Is preferably larger than the amount of permeation per unit time.
  • the cells 101 and the oxygen sustained release material 102 are isolated via the oxygen permeable membrane 105, for example, only the oxygen sustained release material 102 can be periodically refilled and used. This allows the cells 101 to survive for a long period of time.
  • the method for refilling the oxygen sustained-release material 102 (a) the cell capsule 100 is taken out of the body and the oxygen sustained-release material 102 is refilled, and (b) the oxygen sustained-release material carrier 106 is sucked with a syringe to obtain new oxygen. It is possible to inject the sustained release material carrier 106.
  • FIG. 4 is a configuration diagram of the cell capsule 100 according to the fourth embodiment of the present invention.
  • the cell capsule 100 according to the fourth embodiment has a second oxygen permeable membrane 105 in addition to the configuration described in the third embodiment. Therefore, the inside of the cell capsule 100 is divided into three compartments.
  • An oxygen sustained-release material 102 and an oxygen sustained-release material carrier 106 are arranged in the central compartment, and cells 101 and a cell holding carrier 103 are arranged in the compartments on both sides thereof.
  • the first film 104A is arranged in a portion covering the cells 101 and the cell holding carrier 103, and the second film 104B is arranged in a portion covering the oxygen sustained release material 102 and the oxygen sustained release material carrier 106. Therefore, the second film 104B is arranged in a band shape in the central portion of the cell capsule 100.
  • the cell capsule 100 according to the fourth embodiment contains approximately twice as many cells 101 as in the third embodiment.
  • the cells 101 secreting C-peptide were used to compare the third embodiment with the fourth embodiment, it was confirmed that the fourth embodiment secreted about twice as much C-peptide as the third embodiment.
  • FIG. 5 is a configuration diagram of the cell capsule 100 according to the fifth embodiment of the present invention.
  • the cells 101 and each medium contained in the cell capsule 100 can be put into the cell capsule 100 immediately before using the cell capsule 100.
  • the cell capsule 100 includes at least the container 104 as an initial state.
  • FIG. 5 an example including the configuration described in FIG. 3B is shown. That is, the cell capsule 100 has a configuration in which the first membrane 104A and the second membrane 104B accommodate the oxygen permeable membrane 105.
  • the configuration corresponding to that described in the other embodiments is provided, only the configuration other than the cell 101 and each medium is provided.
  • the cells 101 and each medium are put into the cell capsule 100 immediately before use, so that there is an advantage that they can be put into the body in a fresh state. Further, the cell capsule 100 and each substance or the like contained in the cell capsule 100 can be separately conveyed.
  • FIG. 6 is a schematic cross-sectional view illustrating a sixth embodiment of the cell transplantation device.
  • FIG. 7 is a schematic cross-sectional view illustrating one aspect using the sixth embodiment of the cell transplantation device.
  • FIG. 8 is a schematic cross-sectional view illustrating how to replace the oxygen generating material in one aspect using the sixth embodiment of the cell transplantation device.
  • FIG. 9 is a perspective view illustrating one aspect of the oxygen generating material in the sixth embodiment of the cell transplantation device.
  • the cell transplantation device 200A As shown in FIG. 6, the cell transplantation device 200A according to the sixth embodiment is provided between the oxygen generating material container 201, the cell container 202, and the oxygen generating material container 201 and the cell container 202. And an oxygen transfer unit 203.
  • the cell transplantation device 200A has these elements housed in one housing 204.
  • the shape and size of the housing 204 are not particularly limited, and can be arbitrarily set according to a target such as a site to be implanted in a living body or cells/tissue to be implanted.
  • the housing 204 is a circular or polygonal tubular body in a plan view, and it is possible to use a housing without a bottom.
  • the oxygen generating material storage unit 201 stores an oxygen generating material (also referred to as oxygen sustained release material) 205 (see FIG. 7) that generates oxygen. That is, the oxygen generating material storage unit 201 has a predetermined capacity for storing the oxygen generating material 205. In other words, the oxygen generating material 205 is formed with a capacity that can be stored in the oxygen generating material storage portion 201. The oxygen generating material 205 will be described later with reference to FIG. 7.
  • the oxygen generating material container 201 is provided with a lid 206 that allows the oxygen generating material container 201 to move in and out.
  • the oxygen generating material 205 is taken out through the lid 206 and a new replacement oxygen generating material 205 is stored in the oxygen generating material storage portion 201.
  • the lid 206 may be provided so as to close the opening 207 (see FIG. 8) of the oxygen generating material containing portion 201, and the attachment method is not limited.
  • the lid 206 can be fixed so as to close the opening 207 by an appropriate means such as screwing, adhesion, or locking.
  • the lid 206 is preferably attached to the opening 207 of the oxygen generating material containing portion 201 so as to be openable and closable.
  • the lid 206 can be provided so as to be exposed outside the body when the cell transplantation device 200A is implanted in a living body.
  • the oxygen generating material 205 stored in the oxygen generating material storage portion 201 cannot generate a sufficient amount of oxygen, the oxygen generating material 205 can be removed or easily replaced with a replacement oxygen generating material 205. it can.
  • the lid 206 exposed to the outside of the living body can be opened and closed, so that the oxygen generating material 205 can be easily removed or replaced without lowering the patient's QOL (Quality of life). You can do it.
  • the lid 206 may be provided so as to be placed inside the body when the cell transplantation device 200A is implanted in the living body. That is, the entire cell transplantation device 200A may be implanted in the body. Even in this case, if the lid 206 is opened and closed using an endoscope or the like, the oxygen generating material 205 can be easily removed or replaced without significantly lowering the QOL of the patient.
  • the aforementioned housing 204 and lid 206 can be manufactured using a 3D printer, but the manufacturing method is not limited to this.
  • Various resins that can be used in a 3D printer can be used as the material for forming the housing 204 and the lid 206, but it is desirable to use a resin that does not cause an immune reaction in the living body in which the device is implanted.
  • Examples of the material forming the housing 204 and the lid 206 include, but are not limited to, known biocompatible polypropylene, polyetheretherketone, polystyrene, polyacrylonitrile, polymethylmethacrylate, and the like. ..
  • the housing 204 and the lid 206 are preferably provided with antibacterial properties by including a known antibacterial agent.
  • the cell storage unit 202 stores cells 208.
  • the cell 208 can be used without particular limitation as long as it produces a substance useful for a living body.
  • the cells 208 that can be used in this embodiment will be described later.
  • the cell storage unit 202 includes a release unit 209 that releases the product produced by the cells 208 to the outside of the cell transplantation device 200A. Examples of the product include insulin and the like, but as described above, any product can be used as long as it is a product produced by the cell 208 and is a substance useful to the living body.
  • the release unit 209 preferably has a hole for releasing the product produced by the cell 208 to the outside of the cell transplantation device 200A, but it is sufficient if the substance produced by the cell 208 can be released to the outside of the cell transplantation device 200A, It is not particularly limited.
  • the releasing part 209 can use an immunoisolation membrane in order to protect the cells 208 in the cell containing part 202 from the immune system of the transplant destination.
  • the immunoisolation membrane for example, a semipermeable membrane can be used.
  • the semipermeable membrane is a membrane that allows only molecules or ions of a certain size or smaller to permeate, so that the size of the molecule or the like to be permeated is set to a pore size that is equal to or smaller than the cells 208 of the immune system or an antibody, thereby accommodating cells.
  • the cells 208 in the portion 202 can be protected from the immune system of the transplant destination. That is, it is possible to suppress cell death of the cells 208 in the cell container 202 due to the immune system of the transplant destination. Further, in this way, oxygen and nutritional components can be obtained from the transplant destination in the cells 208 in the cell housing portion 202, so that the survival time of the transplanted cells 208 in the body can be improved.
  • the use of the immunoisolation membrane has a merit that the cells 208 in the cell transplantation device 200A can be protected from the immune system of the transplant destination, but has a demerit that the supply of oxygen from the blood vessel is reduced.
  • oxygen is used. Since the generating material 205 can generate and supply oxygen, the demerit can be eliminated.
  • the semipermeable membrane in the present embodiment for example, a stretched polytetrafluoroethylene (ePTFE) membrane, a polytetrafluoroethylene (PTFE) nonwoven fabric, a porous polycarbonate or the like can be used.
  • hydrogels such as alginic acid, polysulfonic acid, and the like can be used in addition to the physically porous membranes.
  • the oxygen transfer unit 203 transfers the oxygen generated from the oxygen generating material 205 to the cell accommodation unit 202.
  • 6 to 8 show an example in which an oxygen permeable film is used as the oxygen transfer part 203 (the same applies to oxygen permeation in FIGS. 10, 11, 13, 14, 16, and 17 described later). An example using a membrane is shown).
  • the material of the oxygen permeable film for example, silicone or the like can be used, but if the oxygen transmission coefficient is large, it is not limited to this and any material can be used. It is preferable that the oxygen permeability coefficient is, for example, 1 ⁇ 10 11 cc ⁇ cm/(cm 2 ⁇ sec ⁇ atm) or more.
  • oxygen permeable film a film having holes physically can be used.
  • a film for example, an ePTFE film or a PTFE non-woven fabric can be used. Since the ePTFE membrane and the PTFE non-woven fabric are highly hydrophobic, it is difficult for water to soak into them, and even when they are in contact with water, they function as an oxygen permeable membrane.
  • the oxygen transfer part 203 oxygen permeable film
  • the cell transplantation device 200A (Usage mode of the sixth embodiment)
  • the cell transplantation device 200A according to the present embodiment has the above configuration and is used as follows.
  • the oxygen generating material 205 is accommodated in the oxygen generating material accommodating portion 201 and the cells 208 are accommodated in the cell accommodating portion 202. Then, at least a part of the cell transplantation device 200A is implanted in the body. For example, the release part 209 of the cell containing part 202 is implanted in the body so as to be located at a portion planned for the transplant destination.
  • the oxygen generating material 205 can be accommodated in the oxygen generating material accommodating section 201 and the cells 208 can be accommodated in the cell accommodating section 202, respectively, in a timely manner. That is, these may be housed in the field immediately before implanting the cell transplantation device 200A, or one of these may be housed at the time of factory shipment and the other may be housed in the site immediately before implanting. Alternatively, both of them may be stored at the time of factory shipment.
  • the cells 208 are stored in the cell storage unit 202 at the time of factory shipment, in order to prevent the cells 208 from being killed or weakened by the time the cell transplantation device 200A is implanted in the body, for example, temperature and oxygen concentration, It is preferable to control the carbon dioxide concentration and the like.
  • the oxygen generating material 205 in the sixth embodiment shown in FIG. 7 uses a chemical reactant that chemically reacts with peroxide to generate oxygen. It should be noted that in the present invention, other modes in which no chemical reaction agent is used can be applied. Other aspects not using the chemical reaction agent will be described later.
  • the above-mentioned chemical reaction agent includes, for example, peroxide.
  • peroxide hydrogen peroxide is dissociated from the peroxide, and hydrogen peroxide is disproportionated to generate water and oxygen. Therefore, the generated oxygen should be delivered (supplied) to the transplanted cells 208.
  • the peroxide for example, a metal peroxide or a hydrogen peroxide inclusion body can be used.
  • the metal peroxide for example, calcium peroxide, magnesium peroxide, sodium peroxide, barium peroxide, potassium peroxide, zinc peroxide or the like can be used.
  • hydrogen peroxide inclusion body for example, hydrogen peroxide urea can be used.
  • oxygen generating material 205 When a chemical reactant is used as the oxygen generating material 205, oxygen is generated by the chemical reaction, so that when the chemical reaction stops, the generation of oxygen also stops. Therefore, in this embodiment, it is preferable to exchange the chemical reaction agent at regular intervals as needed. Since it is necessary, for example, when the oxygen generating material 205 is sufficient for the first time, the oxygen generating material 205 is not replaced and is simply taken out (removed) from the oxygen generating material accommodating portion 201. ) Can also be set. This is because, for example, the first one-time oxygen generating material 205 sufficiently promotes angiogenesis around the device, and after removing the oxygen generating material 205, oxygen and nutrient components are supplied from the newly formed blood vessels.
  • the method can be applied when the cells 208 in the cell containing portion 202 can survive.
  • the lid portion 206 described above is provided, as shown in FIG. 8, the oxygen generating material 205 can be easily removed or replaced by opening and closing at least a part of the lid portion 206.
  • FIG. 8 illustrates a state where the entire lid 206 is opened (removed) to open the opening 207, and the oxygen generating material 205 is removed or replaced.
  • the replacement frequency of the oxygen generating material 205 is not limited, but the lower the replacement frequency, the higher the QOL of the patient.
  • a preferable oxygen partial pressure when oxygen generated from the oxygen generating material 205 using a chemical reaction agent reaches the cells 208 is 1 kPa to 40.5 kPa (0.01 atm to 0.4 atm), and more preferably 5 kPa to 20. It is 0.3 kPa (0.05 atm to 0.2 atm). When the oxygen partial pressure is in this range, oxygen can be sufficiently supplied to the cells 208, and the oxygen partial pressure does not become too high, so that cytotoxicity is unlikely to occur.
  • the oxygen generating material 205 When the oxygen generating material 205 is a chemical reaction agent, it may be liquid, solid, powder, or a mixture thereof. When the oxygen generating material 205 is a chemical reactant and is a liquid, it can be realized by using a fluid dispersion medium.
  • a fluid dispersion medium examples include liquid polymers such as oligoethylene glycol, polyethylene glycol, polypropylene glycol, and silicone oil, low-molecular liquids such as mineral oil, fluorine-based liquids such as perfluoroethers, water and hydrophilicity.
  • higher fatty acids, oils, terpenes, etc. may be mentioned, but are not limited thereto.
  • the oxygen generating material 205 When the oxygen generating material 205 is a chemical reaction agent and is a liquid or a powder, it may be housed in a tubular cartridge 210 as shown in FIG. 9, for example.
  • the shape of the tubular cartridge 210 is not limited as long as it is hollow.
  • both ends of the tubular cartridge 210 are sealed.
  • the number of cartridges 210 arranged in the cell transplantation device 200A is not limited.
  • the tube-shaped cartridge 210 can be formed of, for example, silicone resin.
  • the cells 208 that can be stored in the cell storage unit 202 include, for example, totipotent stem cells, pluripotent stem cells, unipotent stem cells (eg, neural stem cells, epithelial stem cells, hepatic stem cells, reproductive stem cells, hematopoietic stem cells, mesenchymal stem cells, Skeletal muscle stem cells, etc.), stem cells such as induced pluripotent stem cells, and various cells obtained by differentiating these stem cells (eg, nerve cells, hepatocytes, muscle cells, white blood cells, etc.) and the like.
  • the cells 208 can also be obtained from animals such as humans, dogs, cats, cows, pigs, sheep, rats, mice and birds.
  • the cells 208 are not limited to those described above, and cells of microorganisms such as plant cells, eubacteria, archaea, algae, and protists can also be used.
  • the cells 208 preferably include insulin-producing cells, isolated pancreatic islets, mesenchymal stem cells, and the like.
  • the origin, type, phenotype, presence or absence of gene modification, passage number, etc. of the cells 208 are not limited.
  • the cell 208 is not limited in properties and morphology such as floating cells, adherent cells, single cells, cell sheets, and organoids.
  • the use of the cell 208 is not limited.
  • the cells 208 can be accommodated in the cell accommodating portion 202 together with an arbitrary gel, cultivated agar medium or liquid medium.
  • the cells 208 can also be housed in the cell housing unit 202 together with angiogenic factors, growth (proliferation) factors, biologically active agents such as hormones, and the like.
  • FIG. 10 is a schematic cross-sectional view illustrating the seventh embodiment of the cell transplantation device.
  • FIG. 11 is a schematic cross-sectional view explaining how to replace the oxygen generating material in the seventh embodiment of the cell transplantation device.
  • FIG. 12 is a perspective view illustrating one aspect of the oxygen generating material in the seventh embodiment of the cell transplantation device.
  • the cell transplantation device 200B according to the seventh embodiment and the cell transplantation device 200A according to the sixth embodiment contain the oxygen generating material of the cell transplantation device 200B according to the seventh embodiment.
  • the oxygen generating material 205 accommodated in the part 201 is accommodated in the sheet-shaped (bag-shaped) cartridge 210, and thus the oxygen generating material 205 is accommodated in the tube-shaped cartridge 210 according to the sixth embodiment.
  • This is different from the cell transplant device 200A.
  • the other components of the cell transplantation device 200B according to the seventh embodiment are the same as those of the sixth embodiment, and thus the description thereof will be omitted and only the differences will be described.
  • the oxygen generating material 205 is housed in one sheet-shaped cartridge 210 having a size substantially the same as the internal volume of the oxygen generating material housing portion 201. Then, as shown in FIG. 10, the oxygen generating material 205 accommodated in the sheet-like cartridge 210 is accommodated in the oxygen generating material accommodating portion 201. In such a mode, since the oxygen generating material 205 is housed in one cartridge 210, as shown in FIG. 11, after the lid 206 is opened, the cartridge 210 can be easily oxygen-generated by one operation. It can be removed or replaced from the material container 201.
  • the sheet-shaped cartridge 210 When the sheet-shaped cartridge 210 is used for the oxygen-generating material containing portion 201 having the same volume, the sheet-shaped cartridge 210 has a larger volume than the tube-shaped cartridge 210. Therefore, when the oxygen-generating material 205 is a chemical reaction agent and is solid. Can be suitably used.
  • the sheet-shaped cartridge 210 can be formed of the same material as the tube-shaped cartridge 210.
  • the number of the sheet-shaped cartridges 210 arranged in the oxygen generating material container 201 may be two or more.
  • the oxygen generating material 205 (chemical reaction agent) housed in the sheet-shaped cartridge 210 the same material as in the sixth embodiment can be used.
  • the shape of the sheet-shaped cartridge 210 is not limited as long as it is hollow.
  • FIG. 12 is a three-dimensional view of an example of the sheet-shaped cartridge 210. As shown in FIG. 12, the sheet-shaped cartridge 210 can be formed into, for example, a rectangular parallelepiped shape in accordance with the shape of the oxygen generating material accommodation portion 201.
  • FIG. 13 is a schematic cross section explaining 8th Embodiment of a cell transplantation device.
  • FIG. 14 is a schematic cross-sectional view illustrating how to replace the oxygen generating material in the eighth embodiment of the cell transplantation device.
  • FIG. 15 is a diagram showing the flow path of the oxygen generating material accommodation portion 201 in the eighth embodiment of the cell transplantation device.
  • the cell transplantation device 200C according to the eighth embodiment and the cell transplantation device 200A according to the sixth embodiment are the oxygen generating material accommodation of the cell transplantation device 200C according to the eighth embodiment.
  • the cell transplantation device 200A according to the sixth embodiment in which the oxygen generating material accommodating portion 201 is formed in a cubic shape or a rectangular parallelepiped shape in that the portion 201 is formed as a flow path 211 having a substantially L shape in a longitudinal cross section.
  • the other components of the cell transplantation device 200C according to the eighth embodiment are the same as those of the sixth embodiment, and thus the description thereof will be omitted and only the differences will be described.
  • the oxygen generating material storage unit 201 in the eighth embodiment has a plurality of (two in FIG. 15) flow paths 211 each having a substantially L-shape in a longitudinal section, and these flow paths are provided.
  • the ends of 211 are bent at right angles and communicate with each other. That is, as shown in FIG. 15, in the oxygen generating material container 201 according to the eighth embodiment, a plurality of lids 206 (FIG. 13) and openings 207 (FIGS. 14 and 15) are provided on the upper surface 12 of the housing 204. And the openings 207 are interconnected within the housing 204.
  • the flow path 211 has a substantially U shape when viewed in a plan view.
  • the lids of both openings 207 are provided. After opening the portion 206, air can be easily removed by injecting air into either one of the openings 207 or sucking the oxygen generating material 205 through the one of the openings 207. Further, in the cell transplantation device 200C according to the eighth embodiment, when exchanging the oxygen generating material 205, the other opening 207 is removed after or while removing the used oxygen generating material 205 as described above. This can be easily carried out by injecting the replacement oxygen generating material 205 from.
  • the cell transplantation device 200C according to the eighth embodiment has such an aspect, it is suitable when the liquid oxygen generating material 205 (chemical reaction agent) is used.
  • the oxygen generating material storage portion 201 formed as the flow path 211 includes the oxygen transfer portion 203.
  • the material 205 does not diffuse or leak into the cell containing portion 202.
  • the cell transplantation device 200C according to the eighth embodiment has such an aspect, and is suitable when the oxygen generating material 205 (chemical reaction agent) is directly contained in the oxygen generating material accommodating portion 201.
  • the cell transplantation device 200C according to the eighth embodiment can also be suitably applied to the powdery oxygen generating material 205 (chemical reaction agent).
  • FIG. 16 is a schematic cross section explaining 9th Embodiment of a cell transplantation device.
  • the cell transplantation device 200D according to the ninth embodiment and the cell transplantation device 200A according to the sixth embodiment contain the oxygen generating material of the cell transplantation device 200D according to the ninth embodiment.
  • the part 201 directly accommodates the oxygen generating material 205 (chemical reaction agent), and thus the oxygen generating material 205 is accommodated in the cartridge 210, and the cartridge 210 is accommodated in the oxygen generating material accommodating portion 201 according to the sixth embodiment. This is different from the cell transplant device 200A.
  • the oxygen generating material storage portion 201 of the cell transplantation device 200D according to the ninth embodiment is particularly used as the lid portion 206.
  • the use of the septum plug 206a is different from the cell transplantation device 200A according to the sixth embodiment in which the form of the lid 206 is not specified.
  • the other components of the cell transplantation device 200D according to the ninth embodiment are the same as those of the sixth embodiment, and therefore the description thereof will be omitted and only the differences will be described.
  • the oxygen generating material container 201 uses the septum plug 206a as the lid 206 and directly accommodates the oxygen generating material 205 (chemical reaction agent). doing. Therefore, when removing the oxygen generating material 205 of the oxygen generating material storage unit 201, this can be done by puncturing the septum plug 206a with an injection needle and sucking the oxygen generating material 205. Further, in the cell transplantation device 200D according to the ninth embodiment, when the oxygen generating material 205 of the oxygen generating material containing portion 201 is replaced, for example, the injection needle is pierced into the septum plug 206a to suck the oxygen generating material 205.
  • the cell transplantation device 200D according to the ninth embodiment has such an aspect, it is particularly suitable when the oxygen generating material 205 (chemical reaction agent) is in a liquid state.
  • the cell transplantation device 200D according to the ninth embodiment can also be suitably applied to the powdery oxygen generating material 205 (chemical reaction agent).
  • the septum plug 206a may be made of a material such as polytetrafluoroethylene or polyethylene.
  • FIG. 17 is a schematic cross-sectional view illustrating the tenth embodiment of the cell transplantation device.
  • the cell transplantation device 200E according to the tenth embodiment and the cell transplantation device 200A according to the sixth embodiment are the same as those of the cell transplantation device 200E according to the tenth embodiment.
  • the use of the electrolyzing member 220 that electrolyzes water to generate oxygen is different from the cell transplantation device 200A according to the sixth embodiment that uses a chemical reaction agent as the oxygen generating material 205. That is, the tenth embodiment employs another mode in which the chemical reaction agent is not used in the present invention.
  • a cell transplantation device 200E includes an electrolyzing member 220 in the oxygen generating material storage portion 201.
  • the electrolysis member 220 is formed of, for example, a battery 2221 and a cathode 223 and an anode 224 connected to the battery 2221.
  • the electrolysis member 220 contains these components in a rigid cartridge 225.
  • the electrolysis member 220 has, for example, a water storage section 226 for storing water inside the hard cartridge 225.
  • the cathode 223 and the anode 224 are provided so as to be exposed in the water storage section 226, and the battery 221 for supplying electricity to the cathode 223 and the anode 224 is provided separately in the hard cartridge 225 so as not to come into contact with water. ..
  • the water used in the electrolysis member 220 sterilized water or the like may be stored in the water storage unit 226 in advance and used.
  • semipermeable membranes 227a and 227b are respectively provided in a part of the oxygen generating material accommodating part 201 and a part of the water storage part 226, through which water of biological origin is stored in the water storage part 226. May be used for electrolysis.
  • oxygen can be supplied to the cells 208 in the cell transplantation device 200E.
  • hydrogen generated by electrolysis diffuses out of the device through the semipermeable membranes 227a and 227b and/or through the emission unit 209.
  • the hydrogen diffused into the blood from the discharge part 209 is expected to be carried in the blood or to any place in the body to reduce active oxygen and render it harmless, which is useful for improving various diseases and preventing aging. it is conceivable that.
  • the hard cartridge 225 can be formed of a conventionally known resin or metal.
  • the cathode 223 and the anode 224 any one made of metal can be used.
  • the semipermeable membranes 227a and 227b those mentioned in the sixth embodiment can be used.
  • a preferable oxygen partial pressure when oxygen generated from the electrolysis member 220 reaches the cells 208 is 0.01 atm to 0.4 atm, and more preferably 0.05 atm for the same reason as in the case of the chemical reaction agent. Is about 0.2 atm.
  • FIG. 18 is a schematic cross-sectional view illustrating the eleventh embodiment of cell transplantation device.
  • the cell transplantation device 200F according to the eleventh embodiment and the cell transplantation device 200A according to the sixth embodiment are the same as those of the cell transplantation device 200F according to the eleventh embodiment.
  • the accommodation unit 201 and the cell accommodation unit 202 are provided in separate housings 204a and 204b, which is different from the cell transplantation device 200A according to the sixth embodiment in which they are provided in one housing 204. ing.
  • an oxygen generating material container 201 and a cell container 202 are provided in separate housings 204a and 204b, and these are hollow tubes. It is connected by the oxygen transfer unit 203 composed of. That is, in the cell transplantation device 200F according to the eleventh embodiment, oxygen generated in the oxygen generating material containing portion 201 is delivered to the cell containing portion 202 via the oxygen delivering portion 203 formed of a hollow tube.
  • Both of the housings 204a and 204b are circular or polygonal tubular bodies in a plan view, and may have a bottomed tubular shape.
  • the oxygen transfer part 203 in the eleventh embodiment preferably has airtightness so that oxygen in the hollow tube is not diffused to the outside.
  • the length of the oxygen transfer part 203 in the eleventh embodiment can be arbitrarily set as required. Therefore, in the cell transplantation device 200F according to the eleventh embodiment, for example, the cell containing portion 202 is installed deep inside the body, and the entire oxygen generating material containing portion 201 or a part of the oxygen generating material containing portion 201 (for example, The lid portion 206) can be provided by being exposed outside the body. With this configuration, the oxygen generating material 205 in the oxygen generating material accommodating portion 201 can be easily taken out by opening and closing the lid 206 outside the body.
  • the oxygen generating material 205 in the oxygen generating material accommodating portion 201 can be easily replaced.
  • it may be exposed to the outside of the body at any position of the oxygen transporting portion 203. By doing so, the invasive area can be reduced, and the QOL of the patient is less likely to decrease.
  • the oxygen transporting portion 203 in the eleventh embodiment can be formed of, for example, polyurethane, polypropylene, polybutylene, or the like, but any material can be used without limitation as long as it is an airtight material that does not diffuse oxygen in the pipe to the outside.
  • the casing 204a of the oxygen generating material storage unit 201 and the casing 204b of the cell storage unit 202 in the eleventh embodiment can be formed of the same material and method as the casing 204 of the cell transplantation device 200A according to the sixth embodiment.
  • the lid portion 206 and the discharge portion 209 in the eleventh embodiment can also be formed of the same material as in the sixth embodiment.
  • a preferable oxygen partial pressure when oxygen generated from the oxygen generating material 205 reaches the cells 208 in the eleventh embodiment is 0.01 atm to 0.4 atm for the same reason as in the sixth embodiment, and more preferable. Is 0.05 atm to 0.2 atm.
  • the cell transplantation devices 200A to 200F according to the sixth to eleventh embodiments described above can be used for animals such as humans, cows, pigs, mice and rats.
  • the cell transplantation devices 200A to 200F include the oxygen generating material container 201, the cell container 202, and the oxygen transfer part 203 described above, transplantation is performed. It is possible to improve the survival time of the cells and tissues in the body. Further, in the cell transplantation devices 200A to 200F described above, since the oxygen generating material container 201 includes the lid 206, the oxygen generating material 205 can be easily taken out and replaced, and the patient's QOL is improved. Hard to drop.
  • FIG. 19 is a flow chart illustrating an embodiment of a method of taking out an oxygen generating material of a cell transplantation device (hereinafter, may be simply referred to as “takeout method”).
  • the takeout method according to the present embodiment is a method for taking out the oxygen generating material 205 of the cell transplantation devices 200A to 200F described above. Therefore, the components of the cell transplantation devices 200A to 200F have already been described, and detailed description thereof will be omitted.
  • the takeout method according to the present embodiment includes a lid opening step S1, a takeout step S2, and a lid closing step S3, and these steps are performed in this order.
  • the lid opening step S1 is a step of opening at least a part of the lid 206.
  • the taking out step S2 is a step of taking out the oxygen generating material 205 from the opened portion of the lid portion 206 after the lid opening step S1.
  • the lid closing step S3 is a step of closing the opened portion of the lid portion 206 after the extracting step S2.
  • the oxygen generating material 205 can be taken out from the oxygen generating material accommodation section 201 of the cell transplantation devices 200A to 200F by performing these steps S1 to S3. In this case, it may be sufficient to use the oxygen generating material 205 only once, and in such a case, the taking-out method according to the present embodiment is effective.
  • the first dose of the oxygen generating material 205 sufficiently promotes angiogenesis around the device, and after removing the oxygen generating material 205, oxygen and nutrients from the newly formed blood vessels are generated.
  • the case where the cells 208 in the cell housing portion 202 can survive by supplying the components can be mentioned. In the present embodiment, it is preferable to appropriately sterilize before and after these steps, but it is not limited to this as long as infectious diseases can be prevented.
  • FIG. 20 is a flow chart illustrating an embodiment of a method for exchanging oxygen generating material of a cell transplantation device (hereinafter, may be simply referred to as “exchange method”).
  • the replacement method according to the present embodiment is a method for replacing the oxygen generating material 205 of the cell transplantation devices 200A to 200F described above. Therefore, the components of the cell transplantation devices 200A to 200F have already been described, and detailed description thereof will be omitted.
  • the replacement method according to the present embodiment includes a lid opening step S11, a removal step S12, a housing step S13, and a lid closing step S14, and these steps are performed in this order.
  • the lid opening step S11 and the take-out step S12 in the exchange method according to the present embodiment are the same as the lid opening step S1 and the take-out step S2 in the above-mentioned take-out method. Further, the lid closing step S14 in the exchanging method according to the present embodiment and the lid closing step S3 in the above-described taking-out method are performed after the lid closing step S14 after the accommodation step S13, whereas the lid closing step S3 takes out the taking step S2. Only the points to be performed later are different, and the others are the same. Therefore, detailed description of the lid opening step S11, the takeout step S12, and the lid closing step S14 in the replacement method according to the present embodiment will be omitted, and the accommodating step S13 will be described.
  • the accommodating step S13 is a step of accommodating the replacement oxygen generating material 205 in the oxygen generating material accommodating portion 201 after the extracting step S12.
  • the oxygen generating material 205 stored in the oxygen generating material storage portion 201 can be replaced with a new replacement oxygen generating material 205. it can. Therefore, by performing the exchange method according to this embodiment, the survival time of the transplanted cells/tissue in the body can be improved.
  • the oxygen release materials shown below are for supplying oxygen to transplanted cells.
  • the cells in the cell capsule (cell transplantation device) are stored at a high density and are relatively distant from the blood vessel. Therefore, when applied to cells with high oxygen demand, oxygen supply from the outside of the device is desirable for long-term cell survival.
  • An oxygen sustained release material for a cell device preferably has the following three characteristics, but an oxygen sustained release material satisfying all of these has not been realized so far.
  • the first point is that oxygen can be generated without supplying a substance from the outside.
  • an oxygen sustained-release material that supplies a substance from the outside the effect depends on the external environment, and the same effect cannot always be expected.
  • an oxygen sustained-release material having a self-reactive property such that the intended reaction is completed only by the composition of the oxygen sustained-release material can be expected to have the same effect without depending on the external environment or the implantation site.
  • the second point is that oxygen can be supplied smoothly. Excessive oxygenation carries the risk of cell damage by reactive oxygen species produced by high partial pressures of oxygen. On the other hand, an oxygen sustained-release material that smoothly supplies oxygen can be expected to avoid this risk.
  • the third point is that highly toxic by-products are not generated. Oxygen sustained-release materials that produce highly toxic by-products carry the risk of leakage of the by-products when the device is damaged. On the other hand, it is expected that this risk can be avoided with an oxygen sustained release material having a composition that produces only by-products that do not adversely react with body fluids.
  • the oxygen sustained release material according to one embodiment of the present invention contains at least a metal peroxide.
  • the concentration of the substantially reactive weak acid existing in the system is kept constant, and the reaction between the metal peroxide and the weak acid is kept constant.
  • smooth oxygen generation can be realized.
  • a method therefor for example, as a first mode, a method of keeping the rate of dissolution of a poorly soluble weak acid in the system at a low constant value, and as a second mode, lowering the diffusion rate of the weak acid in the system.
  • a method of slowing the reaction between a weak acid and a metal peroxide as a third mode, a method of keeping the reaction rate low and constant when chemically generating a weak acid from a weak acid precursor capable of inducing a weak acid, Alternatively, a combination thereof may be considered.
  • the reaction similar to the reaction using a weak acid can be realized by using a strong acid or a precursor of a strong acid, but there is a risk of safety due to an unreacted strong acid or a precursor of a strong acid.
  • the metal peroxide is a peroxide of a group 1 metal, a group 2 metal, or a fourth-period transition metal, and a peroxide that is not extremely toxic to cells or living organisms is preferable.
  • metal peroxides are selected from the group consisting of calcium peroxide, magnesium peroxide, zinc peroxide, nickel peroxide, lithium peroxide, sodium peroxide, potassium peroxide, barium peroxide, and strontium peroxide.
  • the above metal peroxide has no extreme toxicity to cells or living bodies.
  • the metal peroxide calcium peroxide or magnesium peroxide is preferable from the viewpoint of safety to the living body.
  • the metal peroxide may contain only one kind alone, or may contain two kinds or more as a mixture.
  • the oxygen sustained release material according to one embodiment of the present invention can reduce the required amount as the oxygen sustained release amount per volume is higher, and can reduce the size of the cell transplantation device. Therefore, in the present invention, the amount of the metal peroxide is preferably 5% by weight or more and 50% by weight or less based on the total weight of the oxygen sustained release material.
  • the ratio of the amount of the substance capable of dissociating the weak acid to the amount of the substance of the metal peroxide is preferably 0.5 or more and 5 or less.
  • oxygen sustained release material oxygen is smoothly generated by maintaining a low concentration of a weak acid that comes into contact with a metal peroxide during use. If the weak acid concentration is too high, it becomes difficult to generate smooth oxygen and secure a sufficient sustained release period, but if the weak acid concentration is too low, substantial oxygen generation cannot be obtained, so the weak acid concentration is It is preferably 1.0 ⁇ M or more and 1000 mM or less in the liquid phase at 37° C.
  • the pKa of the weak acid is preferably 3 or more and 13 or less.
  • the lower limit of the pKa of the weak acid is 3 or more in terms of safety to the living body.
  • the upper limit of the pKa of the weak acid is substantially 13 or less as the pKa capable of protonating hydrogen peroxide having a pKa of about 12 from the viewpoint of chemical equilibrium.
  • the pKa of the weak acid used in the present invention is more preferably 3.5 or more and 12 or less, still more preferably 4 or more and 10 or less.
  • Valence of weak acid is not limited.
  • ⁇ Weak acid preferably has a structure that does not easily react with hydrogen peroxide.
  • the structure that easily reacts with hydrogen peroxide is, for example, a CC double bond, a CC triple bond, an aldehyde or a ketone.
  • Examples of the weak acid include carboxylic acid, phosphoric acid conjugate base, and sulfuric acid conjugate base.
  • weak acids are acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, OEG carboxylic acid, PEG carboxylic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, maleic acid, (-)-O-acetyl-L-malic acid, diglycolic acid , Poly(maleic anhydride) hydrolyzate or alcoholysis product, polyacrylic acid, polymethacrylic acid, sodium dihydrogen phosphate, potassium dihydrogen phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, sulfuric acid Examples thereof include sodium hydrogen, potassium hydrogen sulfate, ammonium hydrogen phosphat
  • Examples of the carboxylic acid include a monovalent or divalent carboxylic acid of a saturated hydrocarbon having a C1-C18 linear or branched structure, and methylene which is a part of a saturated hydrocarbon having a C1-C18 linear or branched structure.
  • the carboxylic acid as a weak acid, the conjugate base of phosphoric acid, and the conjugate base of sulfuric acid have a structure that is difficult to react with hydrogen peroxide.
  • the weak acid may contain only one kind alone, or may contain two or more kinds as a mixture.
  • the oxygen-releasing material can include a dispersion medium.
  • the dispersion medium preferably has low toxicity from the viewpoint of risk at the time of leakage.
  • polyalkylene glycols such as oligoalkylene glycol, polyethylene glycol dimethyl ether, polyethylene glycol lauryl ether, or polypropylene glycol, polyisobutylene, polydimethylsiloxane, or any of them is used.
  • examples thereof include derivatives in which a hydrogen atom is substituted with a C1-C18 alkyl group, an alkoxy group, an acyl group, or a copolymer containing them as a partial structure.
  • the low molecular weight compound include water, ethanol and isopropyl alcohol.
  • dispersion medium facilitates the control of the reaction between the metal peroxide and the weak acid, as described below.
  • the dispersion medium may contain only one kind alone, or may contain two or more kinds as a mixture.
  • the guidelines for controlling the affinity include, for example, using a hydrophobic dispersion medium for a weak hydrophilic acid and using a hydrophilic dispersion medium for a weak hydrophobic acid.
  • sodium dihydrogen phosphate is used as the weak acid
  • polyethylene glycol dimethyl ether (average molecular weight 250)/water (90/10% by weight) is used as the dispersion medium. Combinations can be mentioned.
  • viscosity is one of the factors that govern the speed with which molecules move, and the higher the viscosity, the slower the diffusion rate.
  • the diffusion rate control can be realized.
  • a highly viscous dispersion medium or a dispersion medium containing a thickening agent can be used.
  • the dispersion medium in the second mode includes a mixture of polyethylene glycol (average molecular weight 250) and polyethylene glycol (average molecular weight 10000), polyisobutylene, and the like.
  • a protic compound to be reacted with the weak acid precursor for example, the concentration of water or alcohol is used.
  • the concentration of water or alcohol is used.
  • a carboxylic acid anhydride or a carboxylic acid chloride is used as the weak acid precursor, and the weak acid precursor is hydrolyzed (that is, the protic compound is water) or added.
  • the weak acid precursor is hydrolyzed (that is, the protic compound is water) or added.
  • Examples include a reaction of obtaining a carboxylic acid that is a weak acid by alcoholysis (that is, the protic compound is alcohol).
  • the protic compound is water
  • water that is a by-product of the decomposition of hydrogen peroxide can be used in the reaction, and thus the protic compound water can be catalytically reused.
  • the rate of the weak acid generated from the weak acid precursor in the system can be made almost constant.
  • the above-mentioned weak acid anhydrides or chlorides can be used as the weak acid precursor.
  • carboxylic acid anhydrides include acetic acid anhydride, propionic acid anhydride, butyric acid anhydride, valeric acid anhydride, caproic acid anhydride, enanthic acid anhydride, caprylic acid anhydride, pelargonic acid anhydride, capric acid.
  • Acid anhydrides lauric acid anhydrides, myristic acid anhydrides, palmitic acid anhydrides, non-cyclic acid anhydrides such as margaric acid anhydrides or stearic acid anhydrides, succinic acid anhydrides, malonic acid anhydrides, glutaric acid Anhydride, adipic acid anhydride, pimelic acid anhydride, suberic acid anhydride, azelaic acid anhydride, sebacic acid anhydride, phthalic acid anhydride, maleic acid anhydride, (-)-O-acetyl-L-malic acid Examples thereof include anhydrides, cyclic acid anhydrides such as diglycolic acid anhydride, and derivatives in which any hydrogen atom thereof is substituted with a C1-C18 alkyl group, alkoxy group, or acyl group.
  • examples of the weak acid precursor include an acid anhydride or acid chloride of a monovalent or divalent carboxylic acid of a saturated hydrocarbon having a C1-C18 straight chain or branched structure, and a C1-C18 straight chain or branched chain.
  • Examples thereof include acid anhydrides or acid chlorides of divalent carboxylic acids, acid anhydrides or acid chlorides of polymer compounds having a carboxylic acid group in a side chain, and inorganic or organic acidic oxides.
  • a weak acid can be obtained by the reaction between the weak acid precursor and a protic compound such as water or alcohol.
  • the acid anhydride may contain only one kind alone, or may contain two or more kinds as a mixture.
  • An example of the third mode is a method using capric anhydride as a weak acid precursor and water as a protic compound.
  • Capric acid is slowly produced from the hydrolysis reaction of capric anhydride and water, while water is regenerated from the decomposition of hydrogen peroxide produced by the reaction between the metal peroxide and capric acid.
  • the hydrolysis reaction between the acid anhydride and water proceeds at a substantially constant rate. If the amount of water added as a protic compound is small, it is possible to keep the weak acid low.
  • water is produced from the reaction of a metal peroxide, for example, calcium peroxide and a weak acid, Since this water catalytically promotes the hydrolysis reaction of the acid anhydride as described above, it is not necessary to include water in advance.
  • a metal peroxide for example, calcium peroxide and a weak acid
  • the oxygen sustained release material can control the initiation of oxygen generation by utilizing the melting point (or softening point in some cases) of the constituent composition.
  • the oxygen sustained release material At the temperature below the melting point, the oxygen sustained release material has no fluidity and the reaction does not proceed, and at the temperature above the melting point, the oxygen sustained release material has the fluidity and the reaction proceeds. It can also be combined. In such a case, it is preferable that the composition has no fluidity at a storage temperature in a practical range and has fluidity near a body temperature which is a use temperature.
  • Such behavior can be realized by setting the melting point of the dispersion medium, the weak acid, the weak acid precursor, the protic compound, etc. within an appropriate range.
  • the melting point is 25° C. to 37° C., and it is most assumed that it has no fluidity at room temperature and fluidity at body temperature.
  • the preferable melting point is ⁇ 196° C. or higher.
  • the preferable melting point is 50°C or lower.
  • a more preferable melting point is ⁇ 79° C. or higher and 45° C. or lower, and a still more preferable melting point is ⁇ 30° C. or higher and 40° C. or lower.
  • polyethylene glycol dimethyl ether polyether such as polyethylene glycol, dimethyl succinate, etc.
  • polyether such as polyethylene glycol, dimethyl succinate, etc.
  • the melting point of a weak acid caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid or the like can be used.
  • caprylic anhydride, pelargonic anhydride, capric anhydride, lauric anhydride, myristic anhydride, 2,2-dimethylsuccinic anhydride, etc. can be used. ..
  • water, ethanol or the like can be used.
  • the oxygen sustained-release material is self-reactive, which does not depend on external supply of a substance required for oxygen generation, can supply oxygen smoothly over a long period of time, and has high toxicity. No by-products are produced. That is, the oxygen sustained release material of the present invention has few restrictions on the method of use and is highly safe. Therefore, it is possible to realize the transplantation of cells or living tissue using the oxygen-degrading material of the present invention, and further it is possible to realize a cell transplantation device or a living tissue transplantation device having a long-term therapeutic effect.
  • a housing for example, by using the oxygen sustained-release material of the present invention, a housing, the oxygen sustained-release material of the present invention disposed in the housing, preferably at the bottom of the housing, and a gap on the oxygen sustained-release material are provided. It is possible to prepare a cell transplantation device including an oxygen permeable membrane arranged in the gap and cells or living tissue arranged on the oxygen permeable membrane.
  • FIG. 21 shows the result of the amount of oxygen measured in Example 1.
  • FIG. 22 shows the result of the amount of oxygen measured in Example 3.
  • FIG. 23 shows a cell evaluation device equipped with the present invention.
  • the cell evaluation device includes an oxygen sustained release material 301 for supplying oxygen to the cells at the bottom of the device, a gap 302 for uniformly distributing oxygen generated from the oxygen sustained release material, and oxygen generated by the oxygen sustained release material. It is composed of an oxygen permeable membrane 303 supplied to cells from the lower part, an evaluation V79 cell 304 on the upper part of the device and a cell culture solution 305, and a casing 306 supporting the entire device.
  • FIG. 24 shows a cell evaluation device in which the present invention is not mounted.
  • Example 1 an oxygen sustained-release material was prepared based on a method (first mode) of keeping the rate of dissolution of a poorly soluble weak acid in the system at a low level.
  • Example 2 an oxygen sustained-release material was prepared based on a method (second mode) of slowing the reaction of a weak acid with a metal peroxide by reducing the diffusion rate of the weak acid in the system.
  • Calcium peroxide as a metal peroxide, sodium dihydrogen phosphate as a weak acid, polyethylene glycol polyethylene glycol (average molecular weight 1000)/polyethylene glycol (average molecular weight 10000)/water (90/5/5 wt%) as a high-viscosity dispersion medium was used to keep the proton diffusion rate low.
  • 0.3 g of calcium peroxide, 0.6 g of sodium dihydrogen phosphate, 1.0 mL of polyethylene glycol (average molecular weight 1000)/polyethylene glycol (average molecular weight 10000) (90/10 wt%) were uniformly mixed, and at 37°C. When the amount of oxygen generated was quantified, it was confirmed that almost uniform oxygen was generated over 7 days, which is longer than that in Example 1 having a relatively low viscosity.
  • Example 3 an oxygen sustained-release material was prepared based on the method (third mode) of keeping the reaction rate low and constant when a weak acid is chemically generated from a weak acid precursor.
  • the generation rate of the weak acid was kept low by using calcium peroxide as the metal peroxide, capric anhydride as the weak acid precursor, and water as the protic compound.
  • calcium peroxide As the metal peroxide
  • capric anhydride As the weak acid precursor
  • water as the protic compound.
  • 0.3 g of calcium peroxide, 1.6 g of capric anhydride and 30 ⁇ L of water were uniformly mixed and the amount of oxygen generated at 37° C. was quantified, almost uniform oxygen generation was confirmed over 5 days (FIG. 22). ..
  • Example 4 an oxygen sustained-release material was prepared based on the method (third mode) of keeping the reaction rate low and constant when a weak acid is chemically generated from a weak acid precursor.
  • the generation rate of the weak acid was kept low by using calcium peroxide as the metal peroxide, succinic anhydride as the weak acid precursor, and polyethylene glycol dimethyl ether (average molecular weight 1000)/water (95/5% by weight) as the dispersion medium. .. 0.3 g of calcium peroxide, 0.5 g of succinic anhydride, and 1.0 mL of polyethylene glycol dimethyl ether (average molecular weight 1000)/water (95/5 wt%) were uniformly mixed, and the amount of oxygen generated at 37° C. was quantified. However, almost uniform generation of oxygen was confirmed over 7 days.
  • Example 5 V79 cell culture using the sustained-release oxygen material of the present invention was examined (FIG. 23).
  • V79 cells were seeded on a device as shown in FIG. 3 and cultured under anoxic conditions. The survival rate of V79 was 80%, which was a good value.
  • Comparative Example 1 In Comparative Example 1, a combination of metal peroxide and water (pKa15.7) was examined.
  • Comparative example 2 In Comparative Example 2, conditions under which the reactive weak acid concentration existing in the liquid phase was too high were examined. When 0.3 g of calcium peroxide and 1 g of acetic acid were uniformly mixed to prepare a mixture containing a weak acid of 15 M, and the amount of oxygen generated at 37° C. was quantified, the generation of oxygen for 30 minutes or longer was not confirmed.
  • V79 cells were seeded in a device as shown in Fig. 24 without using an oxygen-sustained release material and cultured under anoxic conditions, the survival rate of V79 after 7 days was a low value of 10%.
  • the present invention is not limited to the above embodiment, and various modifications are included.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of a certain embodiment can be added to the configuration of another embodiment.
  • the oxygen-controlled release materials 102 having different characteristics in combination.
  • a combination of a sustained release material capable of releasing a small amount of oxygen for a long period of time and a sustained release material capable of releasing a large amount of oxygen for a short period of time is used.
  • the oxygen adsorbing material tends to release a large amount of oxygen in the initial stage, so that oxygen is first supplied by the oxygen adsorbing material in the initial stage. After the time when the amount of oxygen released from the oxygen adsorbing material begins to decrease, oxygen is released from the peroxide by supplying water. This makes it possible to control the oxygen supply amount over time while maintaining the absolute amount of oxygen supply.
  • the origin, type, phenotype, presence or absence of gene modification, passage number, etc. of the cell 101 are not limited.
  • the nature and morphology of the cells 101 such as floating cells, adherent cells, single cells, sheets, and organoids are not limited.
  • the use of the cell 101 is also not limited. That is, the present invention can be applied to any cell that can be held by the cell holding carrier 103 and stored in the container 104.
  • the effect of the present invention can be most effectively exerted on the cells 101 that require a large amount of oxygen.
  • human pancreatic cells are considered as an example, but the present invention is not limited to this.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Dispersion Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The purpose of the present invention is to provide a technique whereby an adequate amount of oxygen can be stably supplied for a long time to cells/tissue transplanted by cell capsules. A cell capsule pertaining to the present invention is provided with a structure for supplying an adequate amount of oxygen to cells, using an oxygen sustained-release material.

Description

細胞カプセル、細胞移植デバイス、細胞移植デバイスの酸素発生材取り出し方法及び細胞移植デバイスの酸素発生材交換方法及び酸素徐放材Cell capsule, cell transplantation device, method for taking out oxygen generating material of cell transplantation device, method for exchanging oxygen generating material for cell transplantation device, and oxygen-releasing material
 本発明は、細胞をカプセル化する細胞カプセル、細胞移植デバイス、細胞移植デバイスの酸素発生材取り出し方法及び細胞移植デバイスの酸素発生材交換方法に関する。 The present invention relates to a cell capsule for encapsulating cells, a cell transplantation device, a method for taking out an oxygen generating material from a cell transplantation device, and a method for exchanging an oxygen generating material in a cell transplantation device.
 再生医療等の治療において、細胞・組織を移植した際に、移植された細胞・組織に対する酸素供給が不足することによる細胞死が課題となっている。下記特許文献1は、カプセル化された細胞もしくは組織に対して酸素利用可能性および送達をより良くするべく、パーフルオロ有機化合物などの水よりも高い酸素溶解度を有する溶媒を用いる方法を提案している(同文献の0096参照)。 In the treatment of regenerative medicine, when cells/tissues are transplanted, cell death due to lack of oxygen supply to the transplanted cells/tissues has become a problem. The following patent document 1 proposes a method using a solvent having higher oxygen solubility than water, such as a perfluoroorganic compound, in order to improve oxygen availability and delivery to encapsulated cells or tissues. (See 0096 of the same document).
特表2012-508584号公報Special table 2012-508584 gazette
 特許文献1に記載されているように、液体溶媒に酸素を溶解させる手法においては、溶媒が体内に拡散してしまうので、細胞カプセル内に溶媒を長期的に保持することが困難である。また細胞に対して供給できる酸素量が少ないので、細胞の生存率が低いという課題がある。 As described in Patent Document 1, in the method of dissolving oxygen in a liquid solvent, the solvent diffuses into the body, so it is difficult to retain the solvent in the cell capsule for a long period of time. Moreover, since the amount of oxygen that can be supplied to the cells is small, there is a problem that the survival rate of the cells is low.
 本発明は、上記のような課題に鑑みてなされたものであり、細胞カプセルによって移植された細胞・組織に対して、十分な量の酸素を長期間にわたって安定的に供給することができる技術を提供することを目的とする。 The present invention has been made in view of the above problems, and a technique capable of stably supplying a sufficient amount of oxygen to a cell/tissue transplanted by a cell capsule over a long period of time. The purpose is to provide.
 本発明に係る細胞カプセルは、酸素徐放材を用いて細胞に対して十分な量の酸素を供給するための仕組みを備える。 The cell capsule according to the present invention is equipped with a mechanism for supplying a sufficient amount of oxygen to cells using an oxygen sustained release material.
 本発明に係る細胞カプセルによれば、移植された細胞が体内においてより長期間生存することができる。本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面によって明らかにする。 According to the cell capsule of the present invention, the transplanted cells can survive in the body for a longer period of time. The above-mentioned and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
第1実施形態に係る細胞カプセル100の構成図である。It is a block diagram of the cell capsule 100 which concerns on 1st Embodiment. 第2実施形態に係る細胞カプセル100の構成図である。It is a block diagram of the cell capsule 100 which concerns on 2nd Embodiment. 第3実施形態に係る細胞カプセル100の構成図である。It is a block diagram of the cell capsule 100 which concerns on 3rd Embodiment. 第3実施形態に係る細胞カプセル100の変形例である。It is a modification of the cell capsule 100 according to the third embodiment. 第4実施形態に係る細胞カプセル100の構成図である。It is a block diagram of the cell capsule 100 which concerns on 4th Embodiment. 第5実施形態に係る細胞カプセル100の構成図である。It is a block diagram of the cell capsule 100 which concerns on 5th Embodiment. 細胞移植デバイスの第6実施形態を説明する模式断面図である。It is a schematic cross section explaining 6th Embodiment of a cell transplantation device. 細胞移植デバイスの第6実施形態を用いた一態様を説明する模式断面図である。It is a schematic cross section explaining one mode using a 6th embodiment of a cell transplantation device. 細胞移植デバイスの第6実施形態を用いた一態様における酸素発生材を交換する様子を説明する模式断面図である。It is a schematic cross section explaining a mode that an oxygen generating material is exchanged in one mode using a 6th embodiment of a cell transplantation device. 細胞移植デバイスの第6実施形態における酸素発生材の一態様を説明する斜視図である。It is a perspective view explaining one mode of the oxygen generating material in a 6th embodiment of a cell transplantation device. 細胞移植デバイスの第7実施形態を説明する模式断面図である。It is a schematic cross section explaining 7th Embodiment of a cell transplantation device. 細胞移植デバイスの第7実施形態における酸素発生材を交換する様子を説明する模式断面図である。It is a schematic cross section explaining a mode that an oxygen generating material in a 7th embodiment of a cell transplantation device is exchanged. 細胞移植デバイスの第7実施形態における酸素発生材の一態様を説明する斜視図である。It is a perspective view explaining one mode of the oxygen generating material in a 7th embodiment of a cell transplantation device. 細胞移植デバイスの第8実施形態を説明する模式断面図である。It is a schematic cross section explaining 8th Embodiment of a cell transplantation device. 細胞移植デバイスの第8実施形態における酸素発生材を交換する様子を説明する模式断面図である。It is a schematic cross section explaining a mode that an oxygen generating material is exchanged in an 8th embodiment of a cell transplantation device. 細胞移植デバイスの第8実施形態における酸素発生材収容部の流路を示した図である。It is the figure which showed the flow path of the oxygen generating material accommodation part in 8th Embodiment of a cell transplantation device. 細胞移植デバイスの第9実施形態を説明する模式断面図である。It is a schematic cross section explaining 9th Embodiment of a cell transplantation device. 細胞移植デバイスの第10実施形態を説明する模式断面図である。It is a schematic cross section explaining 10th Embodiment of a cell transplantation device. 細胞移植デバイスの第11実施形態を説明する模式断面図である。It is a schematic cross section explaining 11th Embodiment of a cell transplantation device. 細胞移植デバイスの酸素発生材取り出し方法の一実施形態を説明するフローチャートである。It is a flowchart explaining one Embodiment of the oxygen generating material extraction method of a cell transplantation device. 細胞移植デバイスの酸素発生材交換方法の一実施形態を説明するフローチャートである。It is a flowchart explaining one Embodiment of the oxygen generating material exchange method of a cell transplantation device. 実施例1の酸素徐放材における日数と酸素徐放量の関係を示すグラフである。5 is a graph showing the relationship between the number of days and the amount of sustained release of oxygen in the sustained release oxygen material of Example 1. 実施例3の酸素徐放材における日数と酸素徐放量の関係を示すグラフである。7 is a graph showing the relationship between the number of days and the amount of sustained release of oxygen in the sustained release oxygen material of Example 3. 実施例5における評価で用いたデバイスの模式図である。9 is a schematic diagram of a device used for evaluation in Example 5. FIG. 比較例3における評価で用いたデバイスの模式図である。9 is a schematic diagram of a device used for evaluation in Comparative Example 3. FIG.
 <細胞カプセル、細胞移植デバイス>
 <第1実施形態>
 図1は、本発明の第1実施形態に係る細胞カプセル100の構成図である。細胞カプセル100は、細胞101をカプセル化する。細胞カプセル100は、酸素徐放材102と細胞保持担体103を備える。図面記載の便宜上、細胞保持担体103にはハッチングを付与した。ここで、細胞カプセルとは、目的の細胞、例えば膵臓細胞を免疫隔離膜で被覆することによりホスト免疫細胞から保護可能であるマイクロカプセル型の細胞移植デバイスである。
<Cell capsule, cell transplant device>
<First Embodiment>
FIG. 1 is a configuration diagram of a cell capsule 100 according to the first embodiment of the present invention. The cell capsule 100 encapsulates cells 101. The cell capsule 100 includes an oxygen sustained release material 102 and a cell holding carrier 103. For convenience of illustration in the drawings, the cell holding carrier 103 is hatched. Here, the cell capsule is a microcapsule type cell transplantation device capable of protecting target cells, for example, pancreatic cells, from host immune cells by coating them with an immunoisolation membrane.
 酸素徐放材102は、固体であり、酸素を放出する機能を有する。徐放材より放出される酸素は、液中に溶解により、また一部は気泡として放出される。酸素徐放材102は固体であるので、細胞101の近傍に安定して配置することができる。したがって酸素徐放材102が細胞101の近傍から散逸することなく、細胞101に対して長期的に酸素を供給し続けることができる。これにより、特に酸素を大量に必要とする細胞101を長期間生存させることができる。 The oxygen sustained release material 102 is solid and has a function of releasing oxygen. The oxygen released from the sustained-release material is dissolved in the liquid and partly released as bubbles. Since the oxygen-releasing material 102 is solid, it can be stably placed in the vicinity of the cells 101. Therefore, the oxygen sustained-release material 102 can continue to supply oxygen to the cells 101 for a long time without being scattered from the vicinity of the cells 101. As a result, the cells 101 that require a large amount of oxygen can survive for a long period of time.
 細胞保持担体103は、細胞101を保持するための媒体である。第1実施形態においては酸素徐放材102も保持している。細胞保持担体103により、細胞101の細胞カプセル100内における位置を安定させることができる。これにより、酸素徐放材102から細胞101に対して酸素を均一に供給することができるので、効果的である。細胞保持担体103の材料は特に限定されるものではないが、例えばアルギン酸ゲルなどのゲル材料や多孔性ポリスチレンなど多孔性高分子材料を用いることができる。また細胞保持担体103を用いることにより、細胞カプセル100を容器によって覆わない場合であっても、細胞101をカプセル化することができる。また、酸素徐放材との間に酸素透過性膜(たとえば、PDMS等)を設けることで、細胞に害を与えず、緩やかに酸素供給できるため望ましい。 The cell holding carrier 103 is a medium for holding the cells 101. In the first embodiment, the oxygen sustained release material 102 is also held. The position of the cells 101 in the cell capsule 100 can be stabilized by the cell holding carrier 103. This is effective because oxygen can be uniformly supplied from the oxygen sustained release material 102 to the cells 101. The material of the cell holding carrier 103 is not particularly limited, but for example, a gel material such as alginic acid gel or a porous polymer material such as porous polystyrene can be used. Further, by using the cell holding carrier 103, the cells 101 can be encapsulated even when the cell capsule 100 is not covered with a container. Further, by providing an oxygen permeable film (for example, PDMS) between the oxygen-releasing material and the oxygen-releasing material, it is desirable because oxygen can be gently supplied without harming cells.
 酸素徐放材102は、酸素を吸着、放出する多孔質材料を用いて構成することができる。これにより、多量の酸素を貯蔵することができるので効果的である。酸素を貯蔵する多孔質材料として、酸化セリウム(セリア)、酸化ジルコニウム(ジルコニア)、酸化セリウム-酸化ジルコニウム(CeO-ZrO)(セリア-ジルコニア)、多孔性配位高分子、金属有機構造、などを用いることができる。この場合、酸素徐放材102が単位時間当たりに酸素を放出する量を制御する方法としては、(a)多孔質材料に対して酸素を吸着させる量を制御する、(b)酸素徐放材102を細胞カプセル100内に配置した後において、細胞保持担体103(後述する第3実施形態と4においては酸素徐放材担体106)内の酸素濃度を変化させる、などが考えられる。 The oxygen sustained release material 102 can be configured using a porous material that adsorbs and releases oxygen. This is effective because a large amount of oxygen can be stored. As a porous material for storing oxygen, cerium oxide (ceria), zirconium oxide (zirconia), cerium oxide-zirconium oxide (CeO 2 —ZrO 2 ) (ceria-zirconia), porous coordination polymer, metal organic structure, Etc. can be used. In this case, as a method of controlling the amount of oxygen released by the oxygen-controlled release material 102 per unit time, (a) the amount of oxygen adsorbed to the porous material is controlled, (b) the oxygen-controlled release material. After arranging 102 in the cell capsule 100, it is possible to change the oxygen concentration in the cell holding carrier 103 (the oxygen sustained release material carrier 106 in the third and fourth embodiments described later).
 酸素徐放材102は、水と反応して酸素を発生する過酸化物を用いて構成することもできる。水と反応して酸素を発生する過酸化物としては、過酸化カルシウム、過酸化マグネシウム、過酸化水素-尿素などが挙げられる。この場合、酸素徐放材102が単位時間当たりに酸素を放出する量を制御する方法としては、酸素徐放材102近傍に水を供給することが考えられる。あるいは、例えば細胞保持担体103(後述する第3実施形態と4においては酸素徐放材担体106)の粘度を上げると水分の移動度が低下し、これにより酸素徐放材102近傍に対して供給される水分が減少するので、酸素放出量を抑制することができる。 The oxygen-releasing material 102 can also be configured using a peroxide that reacts with water to generate oxygen. Examples of peroxides that react with water to generate oxygen include calcium peroxide, magnesium peroxide, hydrogen peroxide-urea, and the like. In this case, as a method of controlling the amount of oxygen released by the oxygen-controlled release material 102 per unit time, it is conceivable to supply water to the vicinity of the oxygen-controlled release material 102. Alternatively, for example, if the viscosity of the cell holding carrier 103 (oxygen-releasing material carrier 106 in the third and fourth embodiments described later) is increased, the mobility of water decreases, so that the oxygen-releasing material 102 is supplied to the vicinity thereof. The amount of released water is reduced, so that the amount of released oxygen can be suppressed.
 第1実施形態に係る細胞カプセル100の具体的な構成例としては、例えば以下のものを用いることができる:細胞101としてHePG2細胞(ヒト肝癌由来細胞)、酸素徐放材102としてセリア-ジルコニア、細胞保持担体103としてアルギン酸ゲルを用いることができる。なお、本実施形態の酸素放出量は約0.7 mL/day/cm3であり、治療に必要な細胞数約108個、細胞の酸素必要量は約22 mL/dayを想定した。 As a specific configuration example of the cell capsule 100 according to the first embodiment, for example, the following can be used: HePG2 cells (human liver cancer-derived cells) as the cells 101, ceria-zirconia as the oxygen sustained release material 102, Alginic acid gel can be used as the cell holding carrier 103. It is assumed that the oxygen release rate in this embodiment is about 0.7 mL/day/cm 3 , the number of cells required for treatment is about 10 8 and the oxygen requirement of cells is about 22 mL/day.
 第1実施形態に係る細胞カプセル100をHePG2用培地に浸漬し、窒素90%、酸素5%、二酸化炭素5%の低酸素雰囲気下で培養した。7日後に細胞101の数が初期の1.9倍となり、14日後に3.9倍となった。第1実施形態に係る細胞カプセル100は良好な増殖性を示すことが確認できた。 The cell capsule 100 according to the first embodiment was immersed in a HePG2 medium and cultured in a low oxygen atmosphere of 90% nitrogen, 5% oxygen, and 5% carbon dioxide. After 7 days, the number of cells 101 increased to 1.9 times the initial number, and after 14 days, the number increased to 3.9 times. It was confirmed that the cell capsule 100 according to the first embodiment exhibits good proliferative property.
 <比較形態1>
 第1実施形態に係る細胞カプセル100内に酸素徐放材102を入れない細胞カプセルを比較例1として作製した。上記と同様の低酸素雰囲気下での細胞増殖性を確認したところ、7日後に細胞数が初期の1.1倍となり、14日後に1.2倍となった。比較形態1の細胞カプセルでは、第1実施形態に係る細胞カプセル100よりも低い増殖性を示すことが確認できた。
<Comparative form 1>
A cell capsule in which the oxygen sustained release material 102 was not placed in the cell capsule 100 according to the first embodiment was manufactured as Comparative Example 1. When cell proliferation was confirmed in the same low oxygen atmosphere as above, the number of cells was 1.1 times the initial number after 7 days and 1.2 times after 14 days. It was confirmed that the cell capsule of Comparative form 1 exhibited lower proliferation properties than the cell capsule 100 according to the first embodiment.
 <第2実施形態>
 図2は、本発明の第2実施形態に係る細胞カプセル100の構成図である。第2実施形態に係る細胞カプセル100は、第1実施形態で説明した構成に加えて容器104を備える。その他構成は第1実施形態と同様である。
<Second Embodiment>
FIG. 2 is a configuration diagram of the cell capsule 100 according to the second embodiment of the present invention. The cell capsule 100 according to the second embodiment includes a container 104 in addition to the configuration described in the first embodiment. Other configurations are similar to those of the first embodiment.
 容器104は、細胞カプセル100全体を覆う。容器104は半透膜を用いて構成することができる。半透膜とは、あるサイズ以下の分子やイオンのみを透過させる膜である。容器104はこの半透膜を介して、細胞101に対して体内からの酸素や栄養素を供給するとともに、細胞101が生産するホルモンや老廃物を排出することができる。これにより細胞101の生存率向上に寄与する。容器104を構成する半透膜の材料は特に限定されるものではないが、多孔性高分子膜を用いることができる。多孔性高分子膜に用いられる高分子材料として、ポリテトラフルオロエチレンは生体適合性が高く特に望ましい。 The container 104 covers the entire cell capsule 100. The container 104 can be configured using a semipermeable membrane. A semipermeable membrane is a membrane that allows only molecules and ions of a certain size or smaller to permeate. The container 104 can supply oxygen and nutrients from the body to the cells 101 through this semipermeable membrane, and can discharge hormones and waste products produced by the cells 101. This contributes to improving the survival rate of the cells 101. The material of the semipermeable membrane forming the container 104 is not particularly limited, but a porous polymer membrane can be used. As a polymer material used for the porous polymer membrane, polytetrafluoroethylene is particularly desirable because of its high biocompatibility.
 容器104を構成する半透膜は、体内から酸素を受け取ることもできる。しかし細胞101に対する酸素供給量を向上させる観点から、酸素徐放材102が単位時間当たりに酸素を放出する量は、半透膜を酸素が単位時間当たりに透過する量よりも大きいことが望ましい。 The semipermeable membrane that constitutes the container 104 can also receive oxygen from the body. However, from the viewpoint of improving the amount of oxygen supplied to the cells 101, it is desirable that the amount of oxygen released by the oxygen-releasing material 102 per unit time be larger than the amount of oxygen permeating through the semipermeable membrane.
 容器104は、細胞101に対して免疫隔離性を提供することもできる。細胞101を体内に直接さらすと、体内の免疫細胞が細胞101を攻撃する場合がある。容器104によって細胞101を免疫細胞から隔離することにより、細胞101の生存率を向上させることができる。免疫隔離の手法は特に限定されるものではないが、容器104として多孔性高分子膜を用いることにより、半透膜としての機能と免疫隔離機能を兼ね備えることができる。また細胞保持担体103も免疫隔離機能を発揮するので、これらを組み合わせて使うとさらに効果的である。 The container 104 can also provide immunoisolation to the cells 101. When the cells 101 are directly exposed to the body, immune cells in the body may attack the cells 101. By separating the cells 101 from the immune cells by the container 104, the survival rate of the cells 101 can be improved. The method of immunoisolation is not particularly limited, but by using a porous polymer membrane as the container 104, it is possible to have both a function as a semipermeable membrane and an immunoisolation function. Further, since the cell holding carrier 103 also exerts an immunoisolation function, it is more effective to use these in combination.
 第2実施形態に係る細胞カプセル100の具体的な構成例としては、例えば以下のものを用いることができる:細胞101としてHePG2細胞、酸素徐放材102として過酸化カルシウム、細胞保持担体103としてアルギン酸ゲル、半透膜として多孔性ポリテトラフルオロエチレンを用いることができる。 As a specific configuration example of the cell capsule 100 according to the second embodiment, for example, the following can be used: HePG2 cells as the cells 101, calcium peroxide as the oxygen sustained release material 102, and alginic acid as the cell holding carrier 103. Porous polytetrafluoroethylene can be used as the gel and the semipermeable membrane.
 <第3実施形態>
 図3Aは、本発明の第3実施形態に係る細胞カプセル100の構成図である。第3実施形態に係る細胞カプセル100は、第2実施形態で説明した構成に加えて、酸素透過膜105と酸素徐放材担体106を備える。その他構成は第1実施形態と同様である。
<Third Embodiment>
FIG. 3A is a configuration diagram of the cell capsule 100 according to the third embodiment of the present invention. The cell capsule 100 according to the third embodiment includes an oxygen permeable membrane 105 and an oxygen sustained release material carrier 106 in addition to the configuration described in the second embodiment. Other configurations are similar to those of the first embodiment.
 容器104内部は、酸素透過膜105によって第1区画と第2区画に区分されている。第1区画は細胞101と細胞保持担体103を収容しており、第2区画は酸素徐放材102と酸素徐放材担体106を収容している。すなわち細胞101と酸素徐放材102は、酸素透過膜105を介して配置されている。酸素徐放材102から細胞101の生存率を低下させるような悪影響が生じた場合、酸素透過膜105によってこれを緩和することができる。例えば酸素徐放材102から生じる酸素濃度が過剰であった場合がこれに相当する。酸素透過膜105は酸素を透過させるので、酸素徐放材102による酸素供給を維持するとともに、上記のような悪影響を緩和できる。 The inside of the container 104 is divided into a first section and a second section by the oxygen permeable membrane 105. The first compartment accommodates the cells 101 and the cell holding carrier 103, and the second compartment accommodates the oxygen sustained release material 102 and the oxygen sustained release material carrier 106. That is, the cells 101 and the oxygen sustained release material 102 are arranged via the oxygen permeable membrane 105. When the oxygen sustained release material 102 has an adverse effect such as decreasing the survival rate of the cells 101, the oxygen permeable film 105 can alleviate the adverse effect. For example, the case where the oxygen concentration generated from the oxygen sustained release material 102 is excessive corresponds to this. Since the oxygen permeable film 105 allows oxygen to permeate, the oxygen supply by the oxygen sustained release material 102 can be maintained and the above adverse effects can be mitigated.
 酸素徐放材担体106は、細胞カプセル100内における酸素徐放材102の位置を保持するための媒体である。これにより、酸素を細胞101に対して偏りなく均一に供給することができる。 The oxygen-controlled release material carrier 106 is a medium for holding the position of the oxygen-controlled release material 102 in the cell capsule 100. Thereby, oxygen can be uniformly supplied to the cells 101 without any bias.
 酸素透過膜105は、例えばポリジメチルシロキサンもしくは含フッ素高分子膜を用いて構成することができる。ポリジメチルシロキサンは生体適合性が高いので、本発明が有効に作用する。 The oxygen permeable film 105 can be configured using, for example, polydimethylsiloxane or a fluorine-containing polymer film. Since polydimethylsiloxane is highly biocompatible, the present invention works effectively.
 酸素徐放材担体106は、酸性のゲル材料を用いて構成することができる。酸素徐放材102として過酸化物を用いる場合、過酸化水素が発生して細胞101に対してダメージを与える可能性がある。酸素透過膜105が過酸化水素をブロックすることによりある程度はダメージを抑制することができるが、酸性のゲル材料によって酸素徐放材担体106を構成することにより、さらにダメージを抑制することができる。すなわち、酸性であるため水素イオンが存在し、この水素イオンが過酸化水素と反応して水を生成するので、過酸化水素の悪影響を抑制することができる。 The oxygen sustained release material carrier 106 can be configured by using an acidic gel material. When a peroxide is used as the oxygen sustained release material 102, hydrogen peroxide may be generated and damage the cells 101. Although the oxygen permeable film 105 blocks hydrogen peroxide to prevent damage to some extent, the oxygen sustained release material carrier 106 is made of an acidic gel material, so that damage can be further suppressed. That is, since it is acidic, hydrogen ions are present, and the hydrogen ions react with hydrogen peroxide to generate water, so that the adverse effects of hydrogen peroxide can be suppressed.
 図3Bは、第3実施形態に係る細胞カプセル100の変形例である。図3Bにおいて、容器104のうち細胞101と細胞保持担体103を覆う部分は第1膜104Aによって構成され、容器104のうち酸素徐放材102と酸素徐放材担体106を覆う部分は第2膜104Bによって構成されている。第1膜104Aは図3Aと同様の半透膜である。第2膜104Bは水を透過(または通過、以下同様)させる膜である。 FIG. 3B is a modified example of the cell capsule 100 according to the third embodiment. In FIG. 3B, a portion of the container 104 that covers the cells 101 and the cell holding carrier 103 is constituted by the first film 104A, and a portion of the container 104 that covers the oxygen sustained release material 102 and the oxygen sustained release material carrier 106 is the second film. It is composed of 104B. The first film 104A is a semipermeable film similar to that of FIG. 3A. The second film 104B is a film that allows water to permeate (or pass, the same applies hereinafter).
 酸素徐放材102として、水と反応して酸素を発生する過酸化物を用いた場合、酸素徐放材102に対して与える水の量を制御することにより、酸素発生量を制御することができる。したがって第2膜104Bとして水を透過させる膜を用いることにより、細胞カプセル100の外から与える水の量を制御して、酸素徐放材102からの酸素発生量を制御することができる。 When a peroxide that reacts with water to generate oxygen is used as the oxygen-controlled release material 102, the amount of oxygen generated can be controlled by controlling the amount of water given to the oxygen-controlled release material 102. it can. Therefore, by using a water-permeable film as the second film 104B, the amount of water given from outside the cell capsule 100 can be controlled to control the amount of oxygen generated from the oxygen sustained release material 102.
 第2実施形態で説明したのと同様に、細胞101に対する酸素供給量を向上させる観点から、酸素が単位時間当たりに酸素透過膜105を透過する量は、容器104を構成する半透膜を酸素が単位時間当たりに透過する量よりも大きいことが望ましい。 In the same manner as described in the second embodiment, from the viewpoint of improving the oxygen supply amount to the cells 101, the amount of oxygen permeating the oxygen permeable membrane 105 per unit time is equal to that of the semipermeable membrane forming the container 104. Is preferably larger than the amount of permeation per unit time.
 本第3実施形態においては、細胞101と酸素徐放材102が酸素透過膜105を介して隔離されているので、例えば酸素徐放材102のみを定期的に詰め替えて使用することができる。これにより、細胞101を長期間にわたって生存させることができる。酸素徐放材102を詰め替える方法としては、(a)細胞カプセル100を体内から取り出して酸素徐放材102を詰め替える、(b)注射器を用いて酸素徐放材担体106を吸引し、新たな酸素徐放材担体106を注入する、などが考えられる。 In the third embodiment, since the cells 101 and the oxygen sustained release material 102 are isolated via the oxygen permeable membrane 105, for example, only the oxygen sustained release material 102 can be periodically refilled and used. This allows the cells 101 to survive for a long period of time. As the method for refilling the oxygen sustained-release material 102, (a) the cell capsule 100 is taken out of the body and the oxygen sustained-release material 102 is refilled, and (b) the oxygen sustained-release material carrier 106 is sucked with a syringe to obtain new oxygen. It is possible to inject the sustained release material carrier 106.
 第3実施形態に係る細胞カプセル100の具体的な構成例としては、例えば以下のものを用いることができる:細胞101としてMIN6(mouse insulinoma 6)細胞、酸素徐放材102として過酸化マグネシウム、細胞保持担体103として多孔性ポリスチレン、容器104として多孔性ポリテトラフルオロエチレン、酸素透過膜105としてポリジメチルシロキサン、酸素徐放材担体106としてアルギン酸ゲルを用いることができる。 As a specific configuration example of the cell capsule 100 according to the third embodiment, for example, the following can be used: MIN6 (mouse insulinoma 6) cells as the cells 101, magnesium peroxide as the oxygen sustained release material 102, and cells. It is possible to use porous polystyrene as the holding carrier 103, porous polytetrafluoroethylene as the container 104, polydimethylsiloxane as the oxygen permeable film 105, and alginic acid gel as the oxygen sustained release material carrier 106.
 <第4実施形態>
 図4は、本発明の第4実施形態に係る細胞カプセル100の構成図である。第4実施形態に係る細胞カプセル100は、第3実施形態で説明した構成に加えて、2つ目の酸素透過膜105を有する。したがって細胞カプセル100内部は、3つの区画に分離されていることになる。中央の区画には酸素徐放材102と酸素徐放材担体106が配置され、その両側の区画には細胞101と細胞保持担体103が配置されている。第1膜104Aは細胞101と細胞保持担体103を覆う部分に配置され、第2膜104Bは酸素徐放材102と酸素徐放材担体106を覆う部分に配置されている。したがって第2膜104Bは、細胞カプセル100の中央部分に帯状に配置されていることになる。
<Fourth Embodiment>
FIG. 4 is a configuration diagram of the cell capsule 100 according to the fourth embodiment of the present invention. The cell capsule 100 according to the fourth embodiment has a second oxygen permeable membrane 105 in addition to the configuration described in the third embodiment. Therefore, the inside of the cell capsule 100 is divided into three compartments. An oxygen sustained-release material 102 and an oxygen sustained-release material carrier 106 are arranged in the central compartment, and cells 101 and a cell holding carrier 103 are arranged in the compartments on both sides thereof. The first film 104A is arranged in a portion covering the cells 101 and the cell holding carrier 103, and the second film 104B is arranged in a portion covering the oxygen sustained release material 102 and the oxygen sustained release material carrier 106. Therefore, the second film 104B is arranged in a band shape in the central portion of the cell capsule 100.
 第4実施形態に係る細胞カプセル100は、第3実施形態と比較して略2倍の細胞101を収容している。C-peptideを分泌する細胞101を用いて第3実施形態と4を比較したところ、第4実施形態においては第3実施形態の約2倍のC-peptideが分泌されることを確認できた。 The cell capsule 100 according to the fourth embodiment contains approximately twice as many cells 101 as in the third embodiment. When the cells 101 secreting C-peptide were used to compare the third embodiment with the fourth embodiment, it was confirmed that the fourth embodiment secreted about twice as much C-peptide as the third embodiment.
 <第5実施形態>
 図5は、本発明の第5実施形態に係る細胞カプセル100の構成図である。細胞カプセル100が収容する細胞101や各媒質などは、細胞カプセル100を用いる直前に細胞カプセル100内へ投入することもできる。この場合、細胞カプセル100は初期状態として少なくとも容器104を備える。図5においては、図3Bで説明した構成を備える例を示した。すなわち細胞カプセル100は、第1膜104Aと第2膜104Bが酸素透過膜105を収容した構成を備える。その他実施形態で説明したものに対応する構成を備える場合も同様に、細胞101と各媒質以外の構成のみを備える。
<Fifth Embodiment>
FIG. 5 is a configuration diagram of the cell capsule 100 according to the fifth embodiment of the present invention. The cells 101 and each medium contained in the cell capsule 100 can be put into the cell capsule 100 immediately before using the cell capsule 100. In this case, the cell capsule 100 includes at least the container 104 as an initial state. In FIG. 5, an example including the configuration described in FIG. 3B is shown. That is, the cell capsule 100 has a configuration in which the first membrane 104A and the second membrane 104B accommodate the oxygen permeable membrane 105. Similarly, when the configuration corresponding to that described in the other embodiments is provided, only the configuration other than the cell 101 and each medium is provided.
 第5実施形態に係る細胞カプセル100によれば、細胞101や各媒質を使用直前に細胞カプセル100内へ投入するので、これらが新鮮な状態で体内へ投入することができる利点がある。また細胞カプセル100とその内部に収容する各物質等を分けて搬送することができる。 According to the cell capsule 100 according to the fifth embodiment, the cells 101 and each medium are put into the cell capsule 100 immediately before use, so that there is an advantage that they can be put into the body in a fresh state. Further, the cell capsule 100 and each substance or the like contained in the cell capsule 100 can be separately conveyed.
 <第6実施形態>
 従来の細胞移植デバイスでは、酸素が体内に拡散してしまい、細胞移植デバイス内に長期的に保持することが困難であり、また、細胞に供給できる酸素量が低いものであった。そのため、移植された細胞・組織への酸素供給が不足することによる細胞死という問題は十分に解消されていない状況であった。そこで、第6実施形態から第11実施形態では、移植された細胞・組織の体内での生存期間を向上できる細胞移植デバイスについて説明する。
<Sixth Embodiment>
In the conventional cell transplantation device, oxygen diffuses into the body, and it is difficult to maintain it in the cell transplantation device for a long period of time, and the amount of oxygen that can be supplied to cells is low. Therefore, the problem of cell death due to insufficient oxygen supply to the transplanted cells/tissues has not been sufficiently solved. Therefore, in the sixth to eleventh embodiments, a cell transplantation device capable of improving the survival time of the transplanted cells/tissue in the body will be described.
 図6は、細胞移植デバイスの第6実施形態を説明する模式断面図である。図7は、細胞移植デバイスの第6実施形態を用いた一態様を説明する模式断面図である。図8は、細胞移植デバイスの第6実施形態を用いた一態様における酸素発生材を交換する様子を説明する模式断面図である。図9は、細胞移植デバイスの第6実施形態における酸素発生材の一態様を説明する斜視図である。 FIG. 6 is a schematic cross-sectional view illustrating a sixth embodiment of the cell transplantation device. FIG. 7 is a schematic cross-sectional view illustrating one aspect using the sixth embodiment of the cell transplantation device. FIG. 8 is a schematic cross-sectional view illustrating how to replace the oxygen generating material in one aspect using the sixth embodiment of the cell transplantation device. FIG. 9 is a perspective view illustrating one aspect of the oxygen generating material in the sixth embodiment of the cell transplantation device.
 図6に示すように、第6実施形態に係る細胞移植デバイス200Aは、酸素発生材収容部201と、細胞収容部202と、酸素発生材収容部201と細胞収容部202との間に設けられた酸素送致部203と、を備えている。細胞移植デバイス200Aは、これらの要素を一つの筐体204内に収めている。筐体204の形状や大きさは特に限定されず、生体に植え込む部位や移植する細胞・組織などの対象に応じて任意に設定できる。一例として、筐体204は平面視で円形または多角形の筒状体であり、底部のないものを用いることができる。 As shown in FIG. 6, the cell transplantation device 200A according to the sixth embodiment is provided between the oxygen generating material container 201, the cell container 202, and the oxygen generating material container 201 and the cell container 202. And an oxygen transfer unit 203. The cell transplantation device 200A has these elements housed in one housing 204. The shape and size of the housing 204 are not particularly limited, and can be arbitrarily set according to a target such as a site to be implanted in a living body or cells/tissue to be implanted. As an example, the housing 204 is a circular or polygonal tubular body in a plan view, and it is possible to use a housing without a bottom.
(酸素発生材収容部)
 酸素発生材収容部201は、酸素を発生させる酸素発生材(酸素徐放材とも言う)205(図7参照)を収容する。つまり、酸素発生材収容部201は、酸素発生材205を収容する所定の容量を有している。言い換えると、酸素発生材205は、酸素発生材収容部201に収容できる容量で形成されている。なお、酸素発生材205については図7を参照して後述する。
(Oxygen generating material storage part)
The oxygen generating material storage unit 201 stores an oxygen generating material (also referred to as oxygen sustained release material) 205 (see FIG. 7) that generates oxygen. That is, the oxygen generating material storage unit 201 has a predetermined capacity for storing the oxygen generating material 205. In other words, the oxygen generating material 205 is formed with a capacity that can be stored in the oxygen generating material storage portion 201. The oxygen generating material 205 will be described later with reference to FIG. 7.
 酸素発生材収容部201は、酸素発生材収容部201の内部に対する出入を可能とする蓋部206を備えている。本実施形態では、この蓋部206を介して酸素発生材205の取り出しや、交換用の新しい酸素発生材205の酸素発生材収容部201への収容を行う。蓋部206は、酸素発生材収容部201の開口部207(図8参照)を塞ぐようにして設けられていればよく、取付け方法は限定されない。蓋部206は、螺着、接着、係止などの適宜の手段によって開口部207を塞ぐように固定することができる。なお、蓋部206は、酸素発生材収容部201の開口部207に対して開閉可能に取り付けられていることが好ましい。 The oxygen generating material container 201 is provided with a lid 206 that allows the oxygen generating material container 201 to move in and out. In this embodiment, the oxygen generating material 205 is taken out through the lid 206 and a new replacement oxygen generating material 205 is stored in the oxygen generating material storage portion 201. The lid 206 may be provided so as to close the opening 207 (see FIG. 8) of the oxygen generating material containing portion 201, and the attachment method is not limited. The lid 206 can be fixed so as to close the opening 207 by an appropriate means such as screwing, adhesion, or locking. The lid 206 is preferably attached to the opening 207 of the oxygen generating material containing portion 201 so as to be openable and closable.
 そして、本実施形態においては、細胞移植デバイス200Aを生体に植え込んだ際に、蓋部206が体外に露出するように設けることができる。このようにすると、酸素発生材収容部201に収容された酸素発生材205が十分な量の酸素を発生できなくなった場合にこれを取り除いたり、交換用の酸素発生材205に容易に交換したりできる。また、このようにすると、生体外に露出している蓋部206を開閉することができるので、患者のQOL(Quality of life)を低下させることなく、簡単に酸素発生材205を取り除いたり、交換したりできる。 In the present embodiment, the lid 206 can be provided so as to be exposed outside the body when the cell transplantation device 200A is implanted in a living body. By doing so, when the oxygen generating material 205 stored in the oxygen generating material storage portion 201 cannot generate a sufficient amount of oxygen, the oxygen generating material 205 can be removed or easily replaced with a replacement oxygen generating material 205. it can. Further, in this way, the lid 206 exposed to the outside of the living body can be opened and closed, so that the oxygen generating material 205 can be easily removed or replaced without lowering the patient's QOL (Quality of life). You can do it.
 もちろん、本実施形態においては、細胞移植デバイス200Aを生体に植え込んだ際に、蓋部206が体内に配置されるように設けてもよい。つまり、細胞移植デバイス200A全体が体内に植え込まれてもよい。この場合であっても、内視鏡などを用いて当該蓋部206を開閉すれば、患者のQOLをそれほど低下させることなく、簡単に酸素発生材205を取り除いたり、交換したりできる。 Of course, in the present embodiment, the lid 206 may be provided so as to be placed inside the body when the cell transplantation device 200A is implanted in the living body. That is, the entire cell transplantation device 200A may be implanted in the body. Even in this case, if the lid 206 is opened and closed using an endoscope or the like, the oxygen generating material 205 can be easily removed or replaced without significantly lowering the QOL of the patient.
 前記した筐体204および蓋部206は3Dプリンタを用いて製造できるが、これに限定されない。筐体204および蓋部206を形成する材料は、3Dプリンタで使用できる各種樹脂を用いることができるが、デバイスを植え込まれた生体が免疫反応を生じない樹脂を用いることが望ましい。筐体204および蓋部206を形成する材料としては、例えば、公知の生体適合性を満たしたポリプロピレン、ポリエーテルエーテルケトン、ポリスチレン、ポリアクリルニトリル、ポリメチルメタクリレートなどが挙げられるが、これらに限定されない。 The aforementioned housing 204 and lid 206 can be manufactured using a 3D printer, but the manufacturing method is not limited to this. Various resins that can be used in a 3D printer can be used as the material for forming the housing 204 and the lid 206, but it is desirable to use a resin that does not cause an immune reaction in the living body in which the device is implanted. Examples of the material forming the housing 204 and the lid 206 include, but are not limited to, known biocompatible polypropylene, polyetheretherketone, polystyrene, polyacrylonitrile, polymethylmethacrylate, and the like. ..
 筐体204および蓋部206は、公知の抗菌剤を含ませるなどして抗菌性を備えさせるのも好ましい。 The housing 204 and the lid 206 are preferably provided with antibacterial properties by including a known antibacterial agent.
(細胞収容部)
 細胞収容部202は、細胞208を収容する。細胞208は、生体にとって有用な物質を産生するものであれば、特に限定されることなく使用できる。なお、本実施形態で用いることのできる細胞208については後述する。細胞収容部202は、前記した細胞208が産生した産生物を細胞移植デバイス200Aの外部に放出する放出部209を備えている。産生物としては、例えば、インスリンなどが挙げられるが、前記したように、細胞208が産生するものであり、生体にとって有用な物質であればどのようなものも対象となる。放出部209は、細胞208が産生した産生物を細胞移植デバイス200Aの外部に放出するための孔を有することが好ましいが、細胞208が産生した物質を細胞移植デバイス200Aの外部に放出できればよく、特に限定されない。放出部209は、細胞収容部202内の細胞208を移植先の免疫系から保護するため、免疫隔離膜を用いることができる。免疫隔離膜として、例えば、半透膜を用いることができる。半透膜は、一定の大きさ以下の分子またはイオンのみを透過させる膜であるので、透過させる分子等の大きさを免疫系の細胞208や抗体以下の細孔サイズとすることにより、細胞収容部202内の細胞208を移植先の免疫系から保護できる。つまり、移植先の免疫系に起因する細胞収容部202内の細胞208の細胞死を抑制することができる。また、このようにすると、細胞収容部202内の細胞208に、移植先から酸素や栄養成分などを得ることができるので、移植された細胞208の体内での生存期間を向上させることができる。さらに、患者に免疫抑制剤を投与したり、用いる細胞208に対して免疫が作用しないような工夫をしたりする必要がない。なお、免疫隔離膜を用いると、移植先の免疫系から細胞移植デバイス200A内の細胞208を保護できるメリットがある一方で血管からの酸素の供給が減るデメリットがあるが、本実施形態においては酸素発生材205が酸素を発生し、供給できるので、当該デメリットは解消できる。本実施形態における半透膜としては、例えば、延伸ポリテトラフルオロエチレン(ePTFE)膜、ポリテトラフルオロエチレン(PTFE)不織布、多孔質ポリカーボネートなどを用いることができる。また、半透膜として、これらのように物理的に孔のある膜以外に、アルギン酸などのハイドロゲルやポリスルホン酸などを用いることもできる。
(Cell storage part)
The cell storage unit 202 stores cells 208. The cell 208 can be used without particular limitation as long as it produces a substance useful for a living body. The cells 208 that can be used in this embodiment will be described later. The cell storage unit 202 includes a release unit 209 that releases the product produced by the cells 208 to the outside of the cell transplantation device 200A. Examples of the product include insulin and the like, but as described above, any product can be used as long as it is a product produced by the cell 208 and is a substance useful to the living body. The release unit 209 preferably has a hole for releasing the product produced by the cell 208 to the outside of the cell transplantation device 200A, but it is sufficient if the substance produced by the cell 208 can be released to the outside of the cell transplantation device 200A, It is not particularly limited. The releasing part 209 can use an immunoisolation membrane in order to protect the cells 208 in the cell containing part 202 from the immune system of the transplant destination. As the immunoisolation membrane, for example, a semipermeable membrane can be used. The semipermeable membrane is a membrane that allows only molecules or ions of a certain size or smaller to permeate, so that the size of the molecule or the like to be permeated is set to a pore size that is equal to or smaller than the cells 208 of the immune system or an antibody, thereby accommodating cells. The cells 208 in the portion 202 can be protected from the immune system of the transplant destination. That is, it is possible to suppress cell death of the cells 208 in the cell container 202 due to the immune system of the transplant destination. Further, in this way, oxygen and nutritional components can be obtained from the transplant destination in the cells 208 in the cell housing portion 202, so that the survival time of the transplanted cells 208 in the body can be improved. Furthermore, it is not necessary to administer an immunosuppressive drug to a patient or to devise such that immunity does not act on the cells 208 used. The use of the immunoisolation membrane has a merit that the cells 208 in the cell transplantation device 200A can be protected from the immune system of the transplant destination, but has a demerit that the supply of oxygen from the blood vessel is reduced. However, in the present embodiment, oxygen is used. Since the generating material 205 can generate and supply oxygen, the demerit can be eliminated. As the semipermeable membrane in the present embodiment, for example, a stretched polytetrafluoroethylene (ePTFE) membrane, a polytetrafluoroethylene (PTFE) nonwoven fabric, a porous polycarbonate or the like can be used. As the semipermeable membrane, hydrogels such as alginic acid, polysulfonic acid, and the like can be used in addition to the physically porous membranes.
(酸素送致部)
 酸素送致部203は、酸素発生材205から発生した酸素を細胞収容部202に送致する。図6~図8においては、酸素送致部203として、酸素透過膜を用いた例を示している(後述する図10、図11、図13、図14、図16、図17も同様に酸素透過膜を用いた例を示している)。酸素透過膜の素材としては、例えば、シリコーンなどを用いることができるが、酸素の透過係数が大きければこれに限定されずどのようなものも用いることができる。酸素の透過係数は、例えば、1×1011cc・cm/(cm・sec・atm)以上であることが好ましい。また、酸素透過膜は、物理的に孔が空いている膜を用いることもできる。そのような膜としては、例えば、ePTFE膜やPTFE不織布などを用いることができる。ePTFE膜やPTFE不織布は、疎水性が高いため水がしみ込み難く、水と接した状態でも酸素透過膜として機能する。酸素送致部203(酸素透過膜)は、任意の接着剤を使用して筐体204の所定の位置に固定したり、溶着機で筐体204の一部を溶着させて固定したりすることが好ましい。
(Oxygen delivery part)
The oxygen transfer unit 203 transfers the oxygen generated from the oxygen generating material 205 to the cell accommodation unit 202. 6 to 8 show an example in which an oxygen permeable film is used as the oxygen transfer part 203 (the same applies to oxygen permeation in FIGS. 10, 11, 13, 14, 16, and 17 described later). An example using a membrane is shown). As the material of the oxygen permeable film, for example, silicone or the like can be used, but if the oxygen transmission coefficient is large, it is not limited to this and any material can be used. It is preferable that the oxygen permeability coefficient is, for example, 1×10 11 cc·cm/(cm 2 ·sec·atm) or more. Further, as the oxygen permeable film, a film having holes physically can be used. As such a film, for example, an ePTFE film or a PTFE non-woven fabric can be used. Since the ePTFE membrane and the PTFE non-woven fabric are highly hydrophobic, it is difficult for water to soak into them, and even when they are in contact with water, they function as an oxygen permeable membrane. The oxygen transfer part 203 (oxygen permeable film) can be fixed to a predetermined position of the housing 204 by using an arbitrary adhesive or can be fixed by welding a part of the housing 204 with a welding machine. preferable.
(第6実施形態の使用態様)
 本実施形態に係る細胞移植デバイス200Aは以上の構成を有しており、次のようにして使用する。
(Usage mode of the sixth embodiment)
The cell transplantation device 200A according to the present embodiment has the above configuration and is used as follows.
 まず、細胞移植デバイス200Aは、図7に示すように、前記した酸素発生材収容部201に酸素発生材205を収容し、細胞収容部202に細胞208を収容する。その後、細胞移植デバイス200Aの少なくとも一部を体内に植え込む。例えば、細胞収容部202の放出部209が移植先において予定されている部分に位置するよう体内に植え込む。 First, in the cell transplantation device 200A, as shown in FIG. 7, the oxygen generating material 205 is accommodated in the oxygen generating material accommodating portion 201 and the cells 208 are accommodated in the cell accommodating portion 202. Then, at least a part of the cell transplantation device 200A is implanted in the body. For example, the release part 209 of the cell containing part 202 is implanted in the body so as to be located at a portion planned for the transplant destination.
 なお、酸素発生材収容部201への酸素発生材205の収容および細胞収容部202への細胞208の収容は、それぞれ適時に行うことができる。すなわち、細胞移植デバイス200Aを体内に植え込む直前に、現場でこれらを収容してもよいし、これらのうちのいずれか一方を工場出荷時に収容しておき、他方を体内に植え込む直前に現場で収容してもよいし、これらの両方を工場出荷時に収容しておいてもよい。工場出荷時に細胞208を細胞収容部202に収容しておく場合は、細胞移植デバイス200Aを体内に植え込むまでに細胞208が死滅したり、弱ったりしないようにするため、例えば、温度や酸素濃度、二酸化炭素濃度などの管理を行うことが好ましい。 Note that the oxygen generating material 205 can be accommodated in the oxygen generating material accommodating section 201 and the cells 208 can be accommodated in the cell accommodating section 202, respectively, in a timely manner. That is, these may be housed in the field immediately before implanting the cell transplantation device 200A, or one of these may be housed at the time of factory shipment and the other may be housed in the site immediately before implanting. Alternatively, both of them may be stored at the time of factory shipment. When the cells 208 are stored in the cell storage unit 202 at the time of factory shipment, in order to prevent the cells 208 from being killed or weakened by the time the cell transplantation device 200A is implanted in the body, for example, temperature and oxygen concentration, It is preferable to control the carbon dioxide concentration and the like.
 図7に示す第6実施形態における酸素発生材205は、過酸化物を化学反応させて酸素を発生させる化学反応剤を用いている。なお、本発明においては、化学反応剤を用いない他の態様も適用できる。化学反応剤を用いない他の態様については後述する。 The oxygen generating material 205 in the sixth embodiment shown in FIG. 7 uses a chemical reactant that chemically reacts with peroxide to generate oxygen. It should be noted that in the present invention, other modes in which no chemical reaction agent is used can be applied. Other aspects not using the chemical reaction agent will be described later.
 前記した化学反応剤としては、例えば、過酸化物が挙げられる。過酸化物を用いると、過酸化物から過酸化水素が解離し、過酸化水素が不均化して水と酸素が発生するので、発生したこの酸素を移植した細胞208に送致(供給)することができる。過酸化物としては、例えば、金属過酸化物や過酸化水素包摂体などを用いることができる。金属過酸化物としては、例えば、過酸化カルシウム、過酸化マグネシウム、過酸化ナトリウム、過酸化バリウム、過酸化カリウム、過酸化亜鉛などを用いることができる。過酸化水素包摂体としては、例えば、過酸化水素尿素を用いることができる。 The above-mentioned chemical reaction agent includes, for example, peroxide. When peroxide is used, hydrogen peroxide is dissociated from the peroxide, and hydrogen peroxide is disproportionated to generate water and oxygen. Therefore, the generated oxygen should be delivered (supplied) to the transplanted cells 208. You can As the peroxide, for example, a metal peroxide or a hydrogen peroxide inclusion body can be used. As the metal peroxide, for example, calcium peroxide, magnesium peroxide, sodium peroxide, barium peroxide, potassium peroxide, zinc peroxide or the like can be used. As the hydrogen peroxide inclusion body, for example, hydrogen peroxide urea can be used.
 酸素発生材205として化学反応剤を用いる場合、化学反応により酸素を発生させるため、化学反応が停止した際には酸素の発生も停止する。そのため、本実施形態においては、必要に応じて一定期間ごとに化学反応剤を交換することが好ましい。必要に応じてであるので、例えば、酸素発生材205が最初の1回分のみあれば十分である場合は、酸素発生材205を交換せず、単にこれを酸素発生材収容部201から取り出す(取り除く)だけとすることもできる。これは、例えば、最初の1回分の酸素発生材205でデバイスの周りの血管新生が十分に促進され、酸素発生材205を取り除いた後は新生してできた血管からの酸素や栄養成分の供給で細胞収容部202内の細胞208が生存できる場合に適用できる。ここで、本実施形態では、前記した蓋部206を備えているため、図8に示すように、蓋部206の少なくとも一部を開閉することで酸素発生材205を容易に取り除いたり、交換したりできる。なお、図8は、蓋部206全体を開けて(外して)開口部207を開放し、酸素発生材205を取り除いたり、交換したりしている様子を図示している。酸素発生材205の交換頻度は限定されないが、交換頻度が低ければ低いほど患者のQOLは高くなる。 When a chemical reactant is used as the oxygen generating material 205, oxygen is generated by the chemical reaction, so that when the chemical reaction stops, the generation of oxygen also stops. Therefore, in this embodiment, it is preferable to exchange the chemical reaction agent at regular intervals as needed. Since it is necessary, for example, when the oxygen generating material 205 is sufficient for the first time, the oxygen generating material 205 is not replaced and is simply taken out (removed) from the oxygen generating material accommodating portion 201. ) Can also be set. This is because, for example, the first one-time oxygen generating material 205 sufficiently promotes angiogenesis around the device, and after removing the oxygen generating material 205, oxygen and nutrient components are supplied from the newly formed blood vessels. The method can be applied when the cells 208 in the cell containing portion 202 can survive. Here, in the present embodiment, since the lid portion 206 described above is provided, as shown in FIG. 8, the oxygen generating material 205 can be easily removed or replaced by opening and closing at least a part of the lid portion 206. You can Note that FIG. 8 illustrates a state where the entire lid 206 is opened (removed) to open the opening 207, and the oxygen generating material 205 is removed or replaced. The replacement frequency of the oxygen generating material 205 is not limited, but the lower the replacement frequency, the higher the QOL of the patient.
 化学反応剤を用いた酸素発生材205から発生する酸素が細胞208まで到達するときの好ましい酸素分圧は1kPa~40.5kPa(0.01atm~0.4atm)であり、より好ましくは5kPa~20.3kPa(0.05atm~0.2atm)である。酸素分圧がこの範囲であれば、細胞208に酸素を十分に補給でき、また、酸素分圧が高くなり過ぎることもないので細胞毒性が生じ難い。 A preferable oxygen partial pressure when oxygen generated from the oxygen generating material 205 using a chemical reaction agent reaches the cells 208 is 1 kPa to 40.5 kPa (0.01 atm to 0.4 atm), and more preferably 5 kPa to 20. It is 0.3 kPa (0.05 atm to 0.2 atm). When the oxygen partial pressure is in this range, oxygen can be sufficiently supplied to the cells 208, and the oxygen partial pressure does not become too high, so that cytotoxicity is unlikely to occur.
 酸素発生材205が化学反応剤である場合は、液体、固体、粉体、それらの混合物のいずれでもよい。酸素発生材205が化学反応剤であり、液体である場合は、流動性のある分散媒を用いることで実現できる。そのような分散媒としては、例えば、オリゴエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、シリコーンオイルなどの液状高分子、ミネラルオイルなどの低分子液体、パーフルオロエーテル類などのフッ素系液体、水や親水性高分子などの水溶液のほか、高級脂肪酸、油、テルペン類などが挙げられるが、これらに限定されない。酸素発生材205が化学反応剤であり、液体または粉体である場合は、例えば、図9に示すようなチューブ状のカートリッジ210に収容するとよい。また、チューブ状のカートリッジ210は中が空洞のものであれば、その形状は限定されない。なお、チューブ状のカートリッジ210内に収容された酸素発生材205がカートリッジ210の外に漏れるのを防ぐため、チューブ状のカートリッジ210の両端は密封する。また、細胞移植デバイス200A内に配置するカートリッジ210の数も限定されない。チューブ状のカートリッジ210は、例えば、シリコーン樹脂などで形成できる。 When the oxygen generating material 205 is a chemical reaction agent, it may be liquid, solid, powder, or a mixture thereof. When the oxygen generating material 205 is a chemical reactant and is a liquid, it can be realized by using a fluid dispersion medium. Examples of such a dispersion medium include liquid polymers such as oligoethylene glycol, polyethylene glycol, polypropylene glycol, and silicone oil, low-molecular liquids such as mineral oil, fluorine-based liquids such as perfluoroethers, water and hydrophilicity. In addition to aqueous solutions of polymers and the like, higher fatty acids, oils, terpenes, etc. may be mentioned, but are not limited thereto. When the oxygen generating material 205 is a chemical reaction agent and is a liquid or a powder, it may be housed in a tubular cartridge 210 as shown in FIG. 9, for example. The shape of the tubular cartridge 210 is not limited as long as it is hollow. In addition, in order to prevent the oxygen generating material 205 housed in the tubular cartridge 210 from leaking to the outside of the cartridge 210, both ends of the tubular cartridge 210 are sealed. Further, the number of cartridges 210 arranged in the cell transplantation device 200A is not limited. The tube-shaped cartridge 210 can be formed of, for example, silicone resin.
 細胞収容部202に収容できる細胞208としては、例えば、全能性幹細胞、多能性幹細胞、単能性幹細胞(例えば、神経幹細胞、上皮幹細胞、肝幹細胞、生殖幹細胞、造血幹細胞、間葉系幹細胞、骨格筋幹細胞など)、人工多能性幹細胞などの幹細胞や、これらの幹細胞が分化してなる各種細胞(例えば、神経細胞、肝細胞、筋肉細胞、白血球など)などが挙げられる。細胞208は、ヒト、イヌ、ネコ、ウシ、ブタ、ヒツジ、ラット、マウス、トリなどの動物から得ることもできる。また、細胞208は、前記したものに限定されず、植物細胞、真正細菌、古細菌、藻類、原生生物などの微生物の細胞も用いることができる。細胞208として、好ましくは、例えば、インスリン産生細胞、単離された膵島、間葉系幹細胞などが挙げられる。なお、本実施形態においては、細胞208の由来、種類、フェノタイプ、遺伝子改変の有無、継代数などは限定されない。また、細胞208は、浮遊細胞、接着細胞、シングル(単一)細胞、細胞シート、オルガノイドなどの性質・形態も限定されない。また、細胞208の用途も限定されない。細胞208は、任意のゲルや培養していた寒天培地や液体培地とともに細胞収容部202に収容することもできる。また、細胞208は、血管新生因子、成長(増殖)因子、ホルモンなどの生物学的活性剤などとともに細胞収容部202に収容することもできる。 The cells 208 that can be stored in the cell storage unit 202 include, for example, totipotent stem cells, pluripotent stem cells, unipotent stem cells (eg, neural stem cells, epithelial stem cells, hepatic stem cells, reproductive stem cells, hematopoietic stem cells, mesenchymal stem cells, Skeletal muscle stem cells, etc.), stem cells such as induced pluripotent stem cells, and various cells obtained by differentiating these stem cells (eg, nerve cells, hepatocytes, muscle cells, white blood cells, etc.) and the like. The cells 208 can also be obtained from animals such as humans, dogs, cats, cows, pigs, sheep, rats, mice and birds. The cells 208 are not limited to those described above, and cells of microorganisms such as plant cells, eubacteria, archaea, algae, and protists can also be used. Examples of the cells 208 preferably include insulin-producing cells, isolated pancreatic islets, mesenchymal stem cells, and the like. In addition, in this embodiment, the origin, type, phenotype, presence or absence of gene modification, passage number, etc. of the cells 208 are not limited. In addition, the cell 208 is not limited in properties and morphology such as floating cells, adherent cells, single cells, cell sheets, and organoids. Moreover, the use of the cell 208 is not limited. The cells 208 can be accommodated in the cell accommodating portion 202 together with an arbitrary gel, cultivated agar medium or liquid medium. The cells 208 can also be housed in the cell housing unit 202 together with angiogenic factors, growth (proliferation) factors, biologically active agents such as hormones, and the like.
<第7実施形態>
 図10は、細胞移植デバイスの第7実施形態を説明する模式断面図である。図11は、細胞移植デバイスの第7実施形態における酸素発生材を交換する様子を説明する模式断面図である。図12は、細胞移植デバイスの第7実施形態における酸素発生材の一態様を説明する斜視図である。
<Seventh Embodiment>
FIG. 10 is a schematic cross-sectional view illustrating the seventh embodiment of the cell transplantation device. FIG. 11 is a schematic cross-sectional view explaining how to replace the oxygen generating material in the seventh embodiment of the cell transplantation device. FIG. 12 is a perspective view illustrating one aspect of the oxygen generating material in the seventh embodiment of the cell transplantation device.
 図10および図7に示すように、第7実施形態に係る細胞移植デバイス200Bと、第6実施形態に係る細胞移植デバイス200Aとは、第7実施形態に係る細胞移植デバイス200Bの酸素発生材収容部201に収容される酸素発生材205が、シート状(袋状)のカートリッジ210に収容されている点で、酸素発生材205がチューブ状のカートリッジ210に収容されている第6実施形態に係る細胞移植デバイス200Aと相違している。第7実施形態に係る細胞移植デバイス200Bにおけるその他の構成要素は第6実施形態と同様であるので説明を省略し、相違点について説明する。 As shown in FIG. 10 and FIG. 7, the cell transplantation device 200B according to the seventh embodiment and the cell transplantation device 200A according to the sixth embodiment contain the oxygen generating material of the cell transplantation device 200B according to the seventh embodiment. The oxygen generating material 205 accommodated in the part 201 is accommodated in the sheet-shaped (bag-shaped) cartridge 210, and thus the oxygen generating material 205 is accommodated in the tube-shaped cartridge 210 according to the sixth embodiment. This is different from the cell transplant device 200A. The other components of the cell transplantation device 200B according to the seventh embodiment are the same as those of the sixth embodiment, and thus the description thereof will be omitted and only the differences will be described.
 図10に示すように、第7実施形態においては、酸素発生材205が酸素発生材収容部201の内容積と略同じ大きさである1つのシート状のカートリッジ210に収容されている。そして、図10に示すように、そのようなシート状のカートリッジ210に収容された酸素発生材205が酸素発生材収容部201に収容されている。このような態様とすると、酸素発生材205が1つのカートリッジ210に収容されているので、図11に示すように、蓋部206を開けた後、一回の操作で容易にカートリッジ210を酸素発生材収容部201から取り除いたり、交換したりできる。シート状のカートリッジ210は、同じ容積の酸素発生材収容部201に用いる場合、前記チューブ状のカートリッジ210と比較して容積が大きいので、酸素発生材205が化学反応剤であり、固体である場合に好適に用いることができる。シート状のカートリッジ210は、チューブ状のカートリッジ210と同様の材料で形成できる。なお、酸素発生材収容部201内に配置するシート状のカートリッジ210の数は2以上であってもよい。シート状のカートリッジ210に収容される酸素発生材205(化学反応剤)は、第6実施形態と同様のものを用いることができる。 As shown in FIG. 10, in the seventh embodiment, the oxygen generating material 205 is housed in one sheet-shaped cartridge 210 having a size substantially the same as the internal volume of the oxygen generating material housing portion 201. Then, as shown in FIG. 10, the oxygen generating material 205 accommodated in the sheet-like cartridge 210 is accommodated in the oxygen generating material accommodating portion 201. In such a mode, since the oxygen generating material 205 is housed in one cartridge 210, as shown in FIG. 11, after the lid 206 is opened, the cartridge 210 can be easily oxygen-generated by one operation. It can be removed or replaced from the material container 201. When the sheet-shaped cartridge 210 is used for the oxygen-generating material containing portion 201 having the same volume, the sheet-shaped cartridge 210 has a larger volume than the tube-shaped cartridge 210. Therefore, when the oxygen-generating material 205 is a chemical reaction agent and is solid. Can be suitably used. The sheet-shaped cartridge 210 can be formed of the same material as the tube-shaped cartridge 210. The number of the sheet-shaped cartridges 210 arranged in the oxygen generating material container 201 may be two or more. As the oxygen generating material 205 (chemical reaction agent) housed in the sheet-shaped cartridge 210, the same material as in the sixth embodiment can be used.
 シート状のカートリッジ210は中が空洞のものであれば、その形状は限定されない。図12は、シート状のカートリッジ210の一例を立体的に図示したものである。図12に示すように、シート状のカートリッジ210は、例えば、酸素発生材収容部201の形状に合わせて直方体形状などとすることができる。 The shape of the sheet-shaped cartridge 210 is not limited as long as it is hollow. FIG. 12 is a three-dimensional view of an example of the sheet-shaped cartridge 210. As shown in FIG. 12, the sheet-shaped cartridge 210 can be formed into, for example, a rectangular parallelepiped shape in accordance with the shape of the oxygen generating material accommodation portion 201.
<第8実施形態>
 図13は、細胞移植デバイスの第8実施形態を説明する模式断面図である。図14は、細胞移植デバイスの第8実施形態における酸素発生材を交換する様子を説明する模式断面図である。図15は、細胞移植デバイスの第8実施形態における酸素発生材収容部201の流路を示した図である。
<Eighth Embodiment>
FIG. 13: is a schematic cross section explaining 8th Embodiment of a cell transplantation device. FIG. 14 is a schematic cross-sectional view illustrating how to replace the oxygen generating material in the eighth embodiment of the cell transplantation device. FIG. 15 is a diagram showing the flow path of the oxygen generating material accommodation portion 201 in the eighth embodiment of the cell transplantation device.
 図13および図7に示すように、第8実施形態に係る細胞移植デバイス200Cと、第6実施形態に係る細胞移植デバイス200Aとは、第8実施形態に係る細胞移植デバイス200Cの酸素発生材収容部201が、縦断面視略L字状の流路211として形成されている点で、酸素発生材収容部201が立方体形状または直方体形状に形成されている第6実施形態に係る細胞移植デバイス200Aと相違している。第8実施形態に係る細胞移植デバイス200Cにおけるその他の構成要素は第6実施形態と同様であるので説明を省略し、相違点について説明する。 As shown in FIGS. 13 and 7, the cell transplantation device 200C according to the eighth embodiment and the cell transplantation device 200A according to the sixth embodiment are the oxygen generating material accommodation of the cell transplantation device 200C according to the eighth embodiment. The cell transplantation device 200A according to the sixth embodiment in which the oxygen generating material accommodating portion 201 is formed in a cubic shape or a rectangular parallelepiped shape in that the portion 201 is formed as a flow path 211 having a substantially L shape in a longitudinal cross section. Is different from The other components of the cell transplantation device 200C according to the eighth embodiment are the same as those of the sixth embodiment, and thus the description thereof will be omitted and only the differences will be described.
 また、第8実施形態における酸素発生材収容部201は、図15に示すように、縦断面視略L字状の流路211を複数(図15においては2つ)有し、これらの流路211の端部がそれぞれ直角に屈曲して連通している。つまり、図15に示すように、第8実施形態における酸素発生材収容部201は、蓋部206(図13)および開口部207(図14、図15)を筐体204の上面部12に複数有し、かつこれらの開口部207が筐体204内で相互に接続されている。流路211を平面視すると略U字状となっている。 Further, as shown in FIG. 15, the oxygen generating material storage unit 201 in the eighth embodiment has a plurality of (two in FIG. 15) flow paths 211 each having a substantially L-shape in a longitudinal section, and these flow paths are provided. The ends of 211 are bent at right angles and communicate with each other. That is, as shown in FIG. 15, in the oxygen generating material container 201 according to the eighth embodiment, a plurality of lids 206 (FIG. 13) and openings 207 (FIGS. 14 and 15) are provided on the upper surface 12 of the housing 204. And the openings 207 are interconnected within the housing 204. The flow path 211 has a substantially U shape when viewed in a plan view.
 このような構成の第8実施形態に係る細胞移植デバイス200Cは、酸素発生材205を酸素発生材収容部201から取り除く際に、図14および図15に示すように、両方の開口部207の蓋部206を開けた後、いずれか一方の開口部207に空気を注入したり、いずれか一方の開口部207から酸素発生材205を吸引したりすることで容易にこれを取り除くことができる。また、第8実施形態に係る細胞移植デバイス200Cは、酸素発生材205を交換する際には、使用後の酸素発生材205を前記したようにして取り除いた後または取り除きつつ、他方の開口部207から交換用の酸素発生材205を注入することで容易にこれを行うことができる。 In the cell transplantation device 200C according to the eighth embodiment having such a configuration, when removing the oxygen generating material 205 from the oxygen generating material accommodating portion 201, as shown in FIGS. 14 and 15, the lids of both openings 207 are provided. After opening the portion 206, air can be easily removed by injecting air into either one of the openings 207 or sucking the oxygen generating material 205 through the one of the openings 207. Further, in the cell transplantation device 200C according to the eighth embodiment, when exchanging the oxygen generating material 205, the other opening 207 is removed after or while removing the used oxygen generating material 205 as described above. This can be easily carried out by injecting the replacement oxygen generating material 205 from.
 第8実施形態に係る細胞移植デバイス200Cは、このような態様であるため、液体状の酸素発生材205(化学反応剤)を用いる際に好適である。なお、本実施形態においては、図13や図14に示すように、流路211として形成されている酸素発生材収容部201が酸素送致部203を備えているので、これにより液体状の酸素発生材205が細胞収容部202に拡散したり、漏れ出したりしない。また、第8実施形態に係る細胞移植デバイス200Cは、このような態様であるため、酸素発生材収容部201内に酸素発生材205(化学反応剤)を直接収容する際に好適である。第8実施形態に係る細胞移植デバイス200Cは、粉末状の酸素発生材205(化学反応剤)についても好適に適用できる。 Since the cell transplantation device 200C according to the eighth embodiment has such an aspect, it is suitable when the liquid oxygen generating material 205 (chemical reaction agent) is used. In addition, in the present embodiment, as shown in FIG. 13 and FIG. 14, the oxygen generating material storage portion 201 formed as the flow path 211 includes the oxygen transfer portion 203. The material 205 does not diffuse or leak into the cell containing portion 202. Further, the cell transplantation device 200C according to the eighth embodiment has such an aspect, and is suitable when the oxygen generating material 205 (chemical reaction agent) is directly contained in the oxygen generating material accommodating portion 201. The cell transplantation device 200C according to the eighth embodiment can also be suitably applied to the powdery oxygen generating material 205 (chemical reaction agent).
<第9実施形態>
 図16は、細胞移植デバイスの第9実施形態を説明する模式断面図である。
 図16および図7に示すように、第9実施形態に係る細胞移植デバイス200Dと、第6実施形態に係る細胞移植デバイス200Aとは、第9実施形態に係る細胞移植デバイス200Dの酸素発生材収容部201が、酸素発生材205(化学反応剤)を直接収容する点で、酸素発生材205をカートリッジ210に収容し、このカートリッジ210を酸素発生材収容部201に収容する第6実施形態に係る細胞移植デバイス200Aと相違している。
<Ninth Embodiment>
FIG. 16: is a schematic cross section explaining 9th Embodiment of a cell transplantation device.
As shown in FIG. 16 and FIG. 7, the cell transplantation device 200D according to the ninth embodiment and the cell transplantation device 200A according to the sixth embodiment contain the oxygen generating material of the cell transplantation device 200D according to the ninth embodiment. The part 201 directly accommodates the oxygen generating material 205 (chemical reaction agent), and thus the oxygen generating material 205 is accommodated in the cartridge 210, and the cartridge 210 is accommodated in the oxygen generating material accommodating portion 201 according to the sixth embodiment. This is different from the cell transplant device 200A.
 また、第9実施形態に係る細胞移植デバイス200Dと、第6実施形態に係る細胞移植デバイス200Aとは、第9実施形態に係る細胞移植デバイス200Dの酸素発生材収容部201が蓋部206として特にセプタム栓206aを用いている点で、蓋部206の形態を特定していない第6実施形態に係る細胞移植デバイス200Aと相違している。第9実施形態に係る細胞移植デバイス200Dにおけるその他の構成要素は第6実施形態と同様であるので説明を省略し、相違点について説明する。 In addition, in the cell transplantation device 200D according to the ninth embodiment and the cell transplantation device 200A according to the sixth embodiment, the oxygen generating material storage portion 201 of the cell transplantation device 200D according to the ninth embodiment is particularly used as the lid portion 206. The use of the septum plug 206a is different from the cell transplantation device 200A according to the sixth embodiment in which the form of the lid 206 is not specified. The other components of the cell transplantation device 200D according to the ninth embodiment are the same as those of the sixth embodiment, and therefore the description thereof will be omitted and only the differences will be described.
 図16に示すように、第9実施形態に係る細胞移植デバイス200Dは、酸素発生材収容部201が蓋部206としてセプタム栓206aを用いており、酸素発生材205(化学反応剤)を直接収容している。そのため、酸素発生材収容部201の酸素発生材205を取り除く場合は、注射針をセプタム栓206aに穿刺して酸素発生材205を吸引等することでこれを行うことができる。また、第9実施形態に係る細胞移植デバイス200Dは、酸素発生材収容部201の酸素発生材205を交換する場合は、例えば、注射針をセプタム栓206aに穿刺して酸素発生材205を吸引して取り除いた後または取り除きつつ、他の注射針をセプタム栓206aに穿刺して交換用の酸素発生材205を注入することで容易にこれを行うことができる。第9実施形態に係る細胞移植デバイス200Dは、このような態様であるため、特に、酸素発生材205(化学反応剤)が液体状である場合に好適である。なお、第9実施形態に係る細胞移植デバイス200Dは、粉末状の酸素発生材205(化学反応剤)についても好適に適用できる。なお、セプタム栓206aは、例えば、ポリテトラフルオロエチレン、ポリエチレンなどの材料で形成したものを用いることができる。 As shown in FIG. 16, in the cell transplantation device 200D according to the ninth embodiment, the oxygen generating material container 201 uses the septum plug 206a as the lid 206 and directly accommodates the oxygen generating material 205 (chemical reaction agent). doing. Therefore, when removing the oxygen generating material 205 of the oxygen generating material storage unit 201, this can be done by puncturing the septum plug 206a with an injection needle and sucking the oxygen generating material 205. Further, in the cell transplantation device 200D according to the ninth embodiment, when the oxygen generating material 205 of the oxygen generating material containing portion 201 is replaced, for example, the injection needle is pierced into the septum plug 206a to suck the oxygen generating material 205. This can be easily done by puncturing the septum plug 206a with another injection needle and injecting the replacement oxygen generating material 205 after or while removing it. Since the cell transplantation device 200D according to the ninth embodiment has such an aspect, it is particularly suitable when the oxygen generating material 205 (chemical reaction agent) is in a liquid state. The cell transplantation device 200D according to the ninth embodiment can also be suitably applied to the powdery oxygen generating material 205 (chemical reaction agent). The septum plug 206a may be made of a material such as polytetrafluoroethylene or polyethylene.
<第10実施形態>
 図17は、細胞移植デバイスの第10実施形態を説明する模式断面図である。
 図17および図7に示すように、第10実施形態に係る細胞移植デバイス200Eと、第6実施形態に係る細胞移植デバイス200Aとは、第10実施形態に係る細胞移植デバイス200Eが酸素発生材205として、水を電気分解して酸素を発生させる電気分解部材220を用いる点で、酸素発生材205として化学反応剤を用いている第6実施形態に係る細胞移植デバイス200Aと相違している。すなわち、第10実施形態は、本発明において化学反応剤を用いない他の態様を採用するものである。
<Tenth Embodiment>
FIG. 17 is a schematic cross-sectional view illustrating the tenth embodiment of the cell transplantation device.
As shown in FIGS. 17 and 7, the cell transplantation device 200E according to the tenth embodiment and the cell transplantation device 200A according to the sixth embodiment are the same as those of the cell transplantation device 200E according to the tenth embodiment. The use of the electrolyzing member 220 that electrolyzes water to generate oxygen is different from the cell transplantation device 200A according to the sixth embodiment that uses a chemical reaction agent as the oxygen generating material 205. That is, the tenth embodiment employs another mode in which the chemical reaction agent is not used in the present invention.
 図17に示すように、第10実施形態に係る細胞移植デバイス200Eは、酸素発生材収容部201に電気分解部材220を備えている。電気分解部材220は、例えば、電池2221と、この電池2221と接続された陰極223および陽極224と、で形成されている。電気分解部材220はこれらの構成要素を硬質カートリッジ225内に収めている。電気分解部材220は、例えば、硬質カートリッジ225の内側に水を貯める貯水部226を有している。そして、前記した陰極223および陽極224をこの貯水部226に露出するように設け、陰極223および陽極224に電気を流す電池221を硬質カートリッジ225内において水と接触しないように隔離して設けている。電気分解部材220で用いる水は、予め貯水部226に滅菌水などを収容しておき、これを使用することが挙げられる。また、例えば、図17に示すように、酸素発生材収容部201の一部および貯水部226の一部にそれぞれ半透膜227a、227bを設け、これらを介して生体由来の水分を貯水部226に取り込んで電気分解に使用してもよい。このような電気分解部材220で水を電気分解することによって細胞移植デバイス200E中の細胞208に酸素を供給することができる。なお、電気分解によって発生した水素は、半透膜227a、227bを介して、および/または放出部209を介してデバイス外に拡散する。放出部209から血中に拡散した水素は、血中でまたは体内の任意の箇所に運ばれて活性酸素を還元し、無害化することが期待されるため、各種疾患の改善や老化防止に役立つと考えられる。 As shown in FIG. 17, a cell transplantation device 200E according to the tenth embodiment includes an electrolyzing member 220 in the oxygen generating material storage portion 201. The electrolysis member 220 is formed of, for example, a battery 2221 and a cathode 223 and an anode 224 connected to the battery 2221. The electrolysis member 220 contains these components in a rigid cartridge 225. The electrolysis member 220 has, for example, a water storage section 226 for storing water inside the hard cartridge 225. The cathode 223 and the anode 224 are provided so as to be exposed in the water storage section 226, and the battery 221 for supplying electricity to the cathode 223 and the anode 224 is provided separately in the hard cartridge 225 so as not to come into contact with water. .. As the water used in the electrolysis member 220, sterilized water or the like may be stored in the water storage unit 226 in advance and used. In addition, for example, as shown in FIG. 17, semipermeable membranes 227a and 227b are respectively provided in a part of the oxygen generating material accommodating part 201 and a part of the water storage part 226, through which water of biological origin is stored in the water storage part 226. May be used for electrolysis. By electrolyzing water with such an electrolysis member 220, oxygen can be supplied to the cells 208 in the cell transplantation device 200E. Note that hydrogen generated by electrolysis diffuses out of the device through the semipermeable membranes 227a and 227b and/or through the emission unit 209. The hydrogen diffused into the blood from the discharge part 209 is expected to be carried in the blood or to any place in the body to reduce active oxygen and render it harmless, which is useful for improving various diseases and preventing aging. it is conceivable that.
 硬質カートリッジ225は、従来公知の樹脂や金属などで形成できる。陰極223および陽極224は金属製のものであればどのようなものでも用いることができる。半透膜227a、227bは、第6実施形態で挙げたものを使用することができる。 The hard cartridge 225 can be formed of a conventionally known resin or metal. As the cathode 223 and the anode 224, any one made of metal can be used. As the semipermeable membranes 227a and 227b, those mentioned in the sixth embodiment can be used.
 なお、電気分解部材220から発生する酸素が細胞208まで到達するときの好ましい酸素分圧は、化学反応剤の場合と同様の理由から0.01atm~0.4atmであり、より好ましくは0.05atm~0.2atmである。 A preferable oxygen partial pressure when oxygen generated from the electrolysis member 220 reaches the cells 208 is 0.01 atm to 0.4 atm, and more preferably 0.05 atm for the same reason as in the case of the chemical reaction agent. Is about 0.2 atm.
<第11実施形態>
 図18は、細胞移植デバイスの第11実施形態を説明する模式断面図である。
 図18および図7に示すように、第11実施形態に係る細胞移植デバイス200Fと、第6実施形態に係る細胞移植デバイス200Aとは、第11実施形態に係る細胞移植デバイス200Fが、酸素発生材収容部201と、細胞収容部202とを別々の筐体204a、204bで設けている点で、これらを1つの筐体204内に設けている第6実施形態に係る細胞移植デバイス200Aと相違している。
<Eleventh Embodiment>
FIG. 18 is a schematic cross-sectional view illustrating the eleventh embodiment of cell transplantation device.
As shown in FIGS. 18 and 7, the cell transplantation device 200F according to the eleventh embodiment and the cell transplantation device 200A according to the sixth embodiment are the same as those of the cell transplantation device 200F according to the eleventh embodiment. The accommodation unit 201 and the cell accommodation unit 202 are provided in separate housings 204a and 204b, which is different from the cell transplantation device 200A according to the sixth embodiment in which they are provided in one housing 204. ing.
 図18に示すように、第11実施形態に係る細胞移植デバイス200Fは、酸素発生材収容部201と、細胞収容部202とを別々の筐体204a、204bで設けており、これらを中空管で構成した酸素送致部203で接続している。つまり、第11実施形態に係る細胞移植デバイス200Fは、酸素発生材収容部201で発生させた酸素を中空管で構成した酸素送致部203を介して細胞収容部202に送致する。なお、筐体204a、204bはともに平面視で円形または多角形の筒状体であり、有底筒状のものを用いることができる。 As shown in FIG. 18, in the cell transplantation device 200F according to the eleventh embodiment, an oxygen generating material container 201 and a cell container 202 are provided in separate housings 204a and 204b, and these are hollow tubes. It is connected by the oxygen transfer unit 203 composed of. That is, in the cell transplantation device 200F according to the eleventh embodiment, oxygen generated in the oxygen generating material containing portion 201 is delivered to the cell containing portion 202 via the oxygen delivering portion 203 formed of a hollow tube. Both of the housings 204a and 204b are circular or polygonal tubular bodies in a plan view, and may have a bottomed tubular shape.
 第11実施形態における酸素送致部203は、中空管内の酸素を外部に拡散させない気密性を有することが好ましい。第11実施形態における酸素送致部203の長さは必要に応じて任意に設定できる。そのため、第11実施形態に係る細胞移植デバイス200Fは、例えば、細胞収容部202を体内の奥深くに設置し、酸素発生材収容部201全体または酸素発生材収容部201のうちの一部(例えば、蓋部206)を体外に露出させて設けることができる。このようにすると、体外にある蓋部206を開閉することによって酸素発生材収容部201内の酸素発生材205の取り出しを容易に行うことができる。また、酸素発生材収容部201内の酸素発生材205の交換を容易に行うことができる。酸素発生材収容部201全体を体外に露出させる場合、酸素送致部203の任意の位置で体外に露出させるようにしてもよい。このようにすると、侵襲面積を小さくすることができるので、患者のQOLが低下し難い。 The oxygen transfer part 203 in the eleventh embodiment preferably has airtightness so that oxygen in the hollow tube is not diffused to the outside. The length of the oxygen transfer part 203 in the eleventh embodiment can be arbitrarily set as required. Therefore, in the cell transplantation device 200F according to the eleventh embodiment, for example, the cell containing portion 202 is installed deep inside the body, and the entire oxygen generating material containing portion 201 or a part of the oxygen generating material containing portion 201 (for example, The lid portion 206) can be provided by being exposed outside the body. With this configuration, the oxygen generating material 205 in the oxygen generating material accommodating portion 201 can be easily taken out by opening and closing the lid 206 outside the body. Further, the oxygen generating material 205 in the oxygen generating material accommodating portion 201 can be easily replaced. When exposing the entire oxygen generating material accommodating portion 201 to the outside of the body, it may be exposed to the outside of the body at any position of the oxygen transporting portion 203. By doing so, the invasive area can be reduced, and the QOL of the patient is less likely to decrease.
 第11実施形態における酸素送致部203は、例えば、ポリウレタン、ポリプロピレン、ポリブチレンなどで形成できるが、管内の酸素を外部に拡散させない気密性を有する材料であればこれらに限定されることなく使用できる。 The oxygen transporting portion 203 in the eleventh embodiment can be formed of, for example, polyurethane, polypropylene, polybutylene, or the like, but any material can be used without limitation as long as it is an airtight material that does not diffuse oxygen in the pipe to the outside.
 第11実施形態における酸素発生材収容部201の筐体204aおよび細胞収容部202の筐体204bは、第6実施形態に係る細胞移植デバイス200Aの筐体204と同様の材料および手法で形成できる。第11実施形態における蓋部206および放出部209も第6実施形態と同様の材料で形成できる。 The casing 204a of the oxygen generating material storage unit 201 and the casing 204b of the cell storage unit 202 in the eleventh embodiment can be formed of the same material and method as the casing 204 of the cell transplantation device 200A according to the sixth embodiment. The lid portion 206 and the discharge portion 209 in the eleventh embodiment can also be formed of the same material as in the sixth embodiment.
 第11実施形態における酸素発生材205から発生する酸素が細胞208まで到達するときの好ましい酸素分圧は、第6実施形態の場合と同様の理由から0.01atm~0.4atmであり、より好ましくは0.05atm~0.2atmである。 A preferable oxygen partial pressure when oxygen generated from the oxygen generating material 205 reaches the cells 208 in the eleventh embodiment is 0.01 atm to 0.4 atm for the same reason as in the sixth embodiment, and more preferable. Is 0.05 atm to 0.2 atm.
 以上に説明した第6実施形態から第11実施形態に係る細胞移植デバイス200A~200Fは、ヒト、ウシ、ブタ、マウス、ラットなどの動物に使用することができる。 The cell transplantation devices 200A to 200F according to the sixth to eleventh embodiments described above can be used for animals such as humans, cows, pigs, mice and rats.
 以上に説明した第6実施形態から第11実施形態に係る細胞移植デバイス200A~200Fは、以上に述べた酸素発生材収容部201、細胞収容部202および酸素送致部203を備えているので、移植された細胞・組織の体内での生存期間を向上できる。また、以上に説明した細胞移植デバイス200A~200Fは、酸素発生材収容部201が蓋部206を備えているので、酸素発生材205の取り出しや交換を容易に行うことができ、患者のQOLが低下し難い。 Since the cell transplantation devices 200A to 200F according to the sixth to eleventh embodiments described above include the oxygen generating material container 201, the cell container 202, and the oxygen transfer part 203 described above, transplantation is performed. It is possible to improve the survival time of the cells and tissues in the body. Further, in the cell transplantation devices 200A to 200F described above, since the oxygen generating material container 201 includes the lid 206, the oxygen generating material 205 can be easily taken out and replaced, and the patient's QOL is improved. Hard to drop.
<細胞移植デバイスの酸素発生材取り出し方法>
 次に、第6実施形態から第11実施形態に係る細胞移植デバイスの酸素発生材取り出し方法の一実施形態について説明する。
<Oxygen generating material removal method for cell transplantation device>
Next, an embodiment of the oxygen generating material removal method for the cell transplantation device according to the sixth to eleventh embodiments will be described.
 図19は、細胞移植デバイスの酸素発生材取り出し方法(以下、単に「取り出し方法」ということがある)の一実施形態を説明するフローチャートである。 FIG. 19 is a flow chart illustrating an embodiment of a method of taking out an oxygen generating material of a cell transplantation device (hereinafter, may be simply referred to as “takeout method”).
 本実施形態に係る取り出し方法は、前述した細胞移植デバイス200A~200Fの酸素発生材205を取り出すための方法である。従って、細胞移植デバイス200A~200Fの構成要素については既に説明しているので、詳細な説明を省略する。 The takeout method according to the present embodiment is a method for taking out the oxygen generating material 205 of the cell transplantation devices 200A to 200F described above. Therefore, the components of the cell transplantation devices 200A to 200F have already been described, and detailed description thereof will be omitted.
 図19に示すように、本実施形態に係る取り出し方法は、蓋開け工程S1と、取り出し工程S2と、蓋閉じ工程S3と、を含み、これらの工程についてはこの順で行う。 As shown in FIG. 19, the takeout method according to the present embodiment includes a lid opening step S1, a takeout step S2, and a lid closing step S3, and these steps are performed in this order.
 蓋開け工程S1は、蓋部206の少なくとも一部を開ける工程である。 The lid opening step S1 is a step of opening at least a part of the lid 206.
 そして、取り出し工程S2は、前記蓋開け工程S1後、蓋部206の開けた部分から酸素発生材205を取り出す工程である。 Then, the taking out step S2 is a step of taking out the oxygen generating material 205 from the opened portion of the lid portion 206 after the lid opening step S1.
 最後に、蓋閉じ工程S3は、前記取り出し工程S2後、蓋部206の開けた部分を閉じる工程である。 Finally, the lid closing step S3 is a step of closing the opened portion of the lid portion 206 after the extracting step S2.
 本実施形態に係る取り出し方法は、これらの工程S1~S3を行うことで細胞移植デバイス200A~200Fの酸素発生材収容部201から酸素発生材205を取り出すことができる。これは、酸素発生材205を1回分だけ使用すれば十分な場合があり、そのような場合に本実施形態に係る取り出し方法は有効である。そのような場合として、例えば、最初の1回分の酸素発生材205でデバイスの周りの血管新生が十分に促進され、酸素発生材205を取り除いた後は新生してできた血管からの酸素や栄養成分の供給で細胞収容部202内の細胞208が生存できる場合などが挙げられる。本実施形態においては、これらの工程の前後において適宜殺菌等することが好ましいが、感染症などを予防できるのであればこの限りではない。 In the takeout method according to the present embodiment, the oxygen generating material 205 can be taken out from the oxygen generating material accommodation section 201 of the cell transplantation devices 200A to 200F by performing these steps S1 to S3. In this case, it may be sufficient to use the oxygen generating material 205 only once, and in such a case, the taking-out method according to the present embodiment is effective. In such a case, for example, the first dose of the oxygen generating material 205 sufficiently promotes angiogenesis around the device, and after removing the oxygen generating material 205, oxygen and nutrients from the newly formed blood vessels are generated. The case where the cells 208 in the cell housing portion 202 can survive by supplying the components can be mentioned. In the present embodiment, it is preferable to appropriately sterilize before and after these steps, but it is not limited to this as long as infectious diseases can be prevented.
(細胞移植デバイスの酸素発生材交換方法)
 次に、第6実施形態から第11実施形態に係る細胞移植デバイスの酸素発生材交換方法の一実施形態について説明する。
(Oxygen generating material replacement method for cell transplantation device)
Next, an embodiment of the oxygen generating material exchange method for the cell transplantation device according to the sixth to eleventh embodiments will be described.
 図20は、細胞移植デバイスの酸素発生材交換方法(以下、単に「交換方法」ということがある)の一実施形態を説明するフローチャートである。 FIG. 20 is a flow chart illustrating an embodiment of a method for exchanging oxygen generating material of a cell transplantation device (hereinafter, may be simply referred to as “exchange method”).
 本実施形態に係る交換方法は、前述した細胞移植デバイス200A~200Fの酸素発生材205を交換するための方法である。従って、細胞移植デバイス200A~200Fの構成要素については既に説明しているので、詳細な説明を省略する。 The replacement method according to the present embodiment is a method for replacing the oxygen generating material 205 of the cell transplantation devices 200A to 200F described above. Therefore, the components of the cell transplantation devices 200A to 200F have already been described, and detailed description thereof will be omitted.
 図20に示すように、本実施形態に係る交換方法は、蓋開け工程S11と、取り出し工程S12と、収容工程S13と、蓋閉じ工程S14と、を含み、これらの工程についてはこの順で行う。 As shown in FIG. 20, the replacement method according to the present embodiment includes a lid opening step S11, a removal step S12, a housing step S13, and a lid closing step S14, and these steps are performed in this order.
 なお、本実施形態に係る交換方法における蓋開け工程S11および取り出し工程S12と、前記した取り出し方法における蓋開け工程S1および取り出し工程S2とは同様の工程である。また、本実施形態に係る交換方法における蓋閉じ工程S14と、前記した取り出し方法における蓋閉じ工程S3とは、蓋閉じ工程S14が収容工程S13後に行うのに対し、蓋閉じ工程S3が取り出し工程S2後に行う点でのみ相違しており、その他は同様である。そのため、本実施形態に係る交換方法における蓋開け工程S11、取り出し工程S12、蓋閉じ工程S14については詳細な説明を省略し、収容工程S13について説明する。 The lid opening step S11 and the take-out step S12 in the exchange method according to the present embodiment are the same as the lid opening step S1 and the take-out step S2 in the above-mentioned take-out method. Further, the lid closing step S14 in the exchanging method according to the present embodiment and the lid closing step S3 in the above-described taking-out method are performed after the lid closing step S14 after the accommodation step S13, whereas the lid closing step S3 takes out the taking step S2. Only the points to be performed later are different, and the others are the same. Therefore, detailed description of the lid opening step S11, the takeout step S12, and the lid closing step S14 in the replacement method according to the present embodiment will be omitted, and the accommodating step S13 will be described.
 収容工程S13は、前記取り出し工程S12後、交換用の酸素発生材205を酸素発生材収容部201内に収容する工程である。 The accommodating step S13 is a step of accommodating the replacement oxygen generating material 205 in the oxygen generating material accommodating portion 201 after the extracting step S12.
 これらの工程S11~S14を含む本実施形態に係る交換方法を行うことで、酸素発生材収容部201内に収容されていた酸素発生材205を新しい交換用の酸素発生材205に交換することができる。従って、本実施形態に係る交換方法を行うことにより、移植された細胞・組織の体内での生存期間を向上できる。 By performing the exchange method according to this embodiment including these steps S11 to S14, the oxygen generating material 205 stored in the oxygen generating material storage portion 201 can be replaced with a new replacement oxygen generating material 205. it can. Therefore, by performing the exchange method according to this embodiment, the survival time of the transplanted cells/tissue in the body can be improved.
 <酸素徐放材>
 第1実施形態から第5実施形態に係る細胞カプセル及び第6実施形態から第11実施形態に係る細胞移植デバイスでは、以下に示す酸素徐放材を用いることもできる。
<Oxygen-releasing material>
In the cell capsule according to the first embodiment to the fifth embodiment and the cell transplantation device according to the sixth embodiment to the eleventh embodiment, the oxygen sustained release material shown below can be used.
 以下に示す酸素徐放材は、移植細胞への酸素供給用である。細胞カプセル(細胞移植デバイス)内の細胞は高密度に格納されている上に、血管から比較的距離が離れている。そのため、酸素要求量の大きな細胞に適用する場合、長期的な細胞の生存には、デバイス外部からの酸素供給が望ましい。細胞デバイス向け酸素徐放材は、以下の3点の特性を有することが望ましいが、これらを全て満たす酸素徐放材はこれまでに実現されていなかった。 The oxygen release materials shown below are for supplying oxygen to transplanted cells. The cells in the cell capsule (cell transplantation device) are stored at a high density and are relatively distant from the blood vessel. Therefore, when applied to cells with high oxygen demand, oxygen supply from the outside of the device is desirable for long-term cell survival. An oxygen sustained release material for a cell device preferably has the following three characteristics, but an oxygen sustained release material satisfying all of these has not been realized so far.
 1点目としては、外部から物質を供給することなく酸素を発生できる点である。外部からの物質を供給する酸素徐放材では、その効果が外部の環境に依存し、必ずしも同一の効果が期待できない。それに対して、酸素徐放材の組成のみで目的の反応を完遂するような自己反応性を有する酸素徐放材では、外部の環境や移植部位に依存することなく、同一の効果が期待できる。 The first point is that oxygen can be generated without supplying a substance from the outside. With an oxygen sustained-release material that supplies a substance from the outside, the effect depends on the external environment, and the same effect cannot always be expected. On the other hand, an oxygen sustained-release material having a self-reactive property such that the intended reaction is completed only by the composition of the oxygen sustained-release material can be expected to have the same effect without depending on the external environment or the implantation site.
 2点目としては、平滑的に酸素を供給できる点である。過剰な酸素供給は、高分圧な酸素により生じる活性酸素種が細胞を損傷するリスクを伴う。それに対して、平滑的に酸素を供給する酸素徐放材では、このリスクを避けることが期待できる。 The second point is that oxygen can be supplied smoothly. Excessive oxygenation carries the risk of cell damage by reactive oxygen species produced by high partial pressures of oxygen. On the other hand, an oxygen sustained-release material that smoothly supplies oxygen can be expected to avoid this risk.
 3点目としては、毒性の高い副生成物を生じない点である。毒性の高い副生成物が生じる酸素徐放材は、デバイスが破損した際にその副生成物が漏洩するリスクを伴う。それに対して、体液と不利益な反応をしない副生成物のみを生じる組成の酸素徐放材では、このリスクを避けることが期待できる。 ③ The third point is that highly toxic by-products are not generated. Oxygen sustained-release materials that produce highly toxic by-products carry the risk of leakage of the by-products when the device is damaged. On the other hand, it is expected that this risk can be avoided with an oxygen sustained release material having a composition that produces only by-products that do not adversely react with body fluids.
 本発明の一実施形態に係る酸素徐放材は、少なくとも金属過酸化物を含む。 The oxygen sustained release material according to one embodiment of the present invention contains at least a metal peroxide.
 酸素徐放材では、金属過酸化物と弱酸との反応で過酸化水素が発生し、発生した過酸化水素が分解することで酸素が発生する。この際に、金属と弱酸との反応による副生成物が生じるが、当該副生成物は、一般に金属水酸化物と比較して反応性が低く、毒性も低い。
(金属過酸化物のプロトン化反応)
 M(O + 2yH → xM2y/x+ + yH
(過酸化水素の分解反応)
 2H → 2HO + O
In the oxygen sustained release material, hydrogen peroxide is generated by the reaction between the metal peroxide and the weak acid, and the generated hydrogen peroxide is decomposed to generate oxygen. At this time, a by-product is produced by the reaction between the metal and the weak acid, but the by-product generally has lower reactivity and lower toxicity than metal hydroxide.
(Protonation reaction of metal peroxide)
M x (O 2 ) y + 2yH + → xM 2y/x+ + yH 2 O 2
(Hydrogen peroxide decomposition reaction)
2H 2 O 2 → 2H 2 O + O 2
 反応の進行による金属過酸化物の固体表面積の増減はほぼ一定とみなせるため、系中に存在する反応可能な実質的な弱酸の濃度を一定に保ち、かつ金属過酸化物と弱酸との反応を律速段階とすることで、平滑的な酸素発生を実現できる。そのための方法としては、例えば、第一の様式として、難溶性の弱酸が系中に溶解する速度を低く一定に保つ方法や、第二の様式として、系中の弱酸の拡散速度を低くすることで弱酸と金属過酸化物との反応を遅くする方法や、第三の様式として、弱酸を誘導し得る弱酸前駆体から弱酸を化学的に発生させる際にその反応速度を低く一定に保つ方法、又はそれらの組合せなどが考えられる。 Since the increase/decrease in the solid surface area of the metal peroxide due to the progress of the reaction can be considered to be almost constant, the concentration of the substantially reactive weak acid existing in the system is kept constant, and the reaction between the metal peroxide and the weak acid is kept constant. By setting the rate-determining step, smooth oxygen generation can be realized. As a method therefor, for example, as a first mode, a method of keeping the rate of dissolution of a poorly soluble weak acid in the system at a low constant value, and as a second mode, lowering the diffusion rate of the weak acid in the system. With a method of slowing the reaction between a weak acid and a metal peroxide, as a third mode, a method of keeping the reaction rate low and constant when chemically generating a weak acid from a weak acid precursor capable of inducing a weak acid, Alternatively, a combination thereof may be considered.
 なお、強酸や強酸の前駆体を用いることでも弱酸を用いる反応と同様の反応を実現可能であるが、未反応の強酸や強酸の前駆体による安全性のリスクが生じ得る。 The reaction similar to the reaction using a weak acid can be realized by using a strong acid or a precursor of a strong acid, but there is a risk of safety due to an unreacted strong acid or a precursor of a strong acid.
 金属過酸化物は、第1族金属、第2族金属、又は第4周期遷移金属の過酸化物であり、細胞や生体に対して極端な毒性がない過酸化物が好ましい。金属過酸化物の例として、過酸化カルシウム、過酸化マグネシウム、過酸化亜鉛、過酸化ニッケル、過酸化リチウム、過酸化ナトリウム、過酸化カリウム、過酸化バリウム、及び過酸化ストロンチウムからなる群から選択されるものが挙げられる。上記金属過酸化物であれば、細胞や生体に対して極端な毒性がない。金属過酸化物としては、特に生体への安全性の観点から過酸化カルシウム又は過酸化マグネシウムが好ましい。なお、金属過酸化物は、これらの中において、一種類のみを単独で含んでいてもよいし、二種類以上を組み合わせて混合物として含んでいてもよい。 The metal peroxide is a peroxide of a group 1 metal, a group 2 metal, or a fourth-period transition metal, and a peroxide that is not extremely toxic to cells or living organisms is preferable. Examples of metal peroxides are selected from the group consisting of calcium peroxide, magnesium peroxide, zinc peroxide, nickel peroxide, lithium peroxide, sodium peroxide, potassium peroxide, barium peroxide, and strontium peroxide. There are things. The above metal peroxide has no extreme toxicity to cells or living bodies. As the metal peroxide, calcium peroxide or magnesium peroxide is preferable from the viewpoint of safety to the living body. Among these, the metal peroxide may contain only one kind alone, or may contain two kinds or more as a mixture.
 本発明の一実施形態に係る酸素徐放材は、体積当たりの酸素徐放量が高いほど、必要量を削減することができ、細胞移植デバイスを低サイズ化することができる。したがって、本発明において、金属過酸化物の量は、酸素徐放材の全重量に対して、5重量%以上50重量%以下であることが好ましい。また、金属過酸化物の物質量に対する弱酸の解離し得るプロトンの物質量の割合は、0.5以上5以下であることが好ましい。 The oxygen sustained release material according to one embodiment of the present invention can reduce the required amount as the oxygen sustained release amount per volume is higher, and can reduce the size of the cell transplantation device. Therefore, in the present invention, the amount of the metal peroxide is preferably 5% by weight or more and 50% by weight or less based on the total weight of the oxygen sustained release material. The ratio of the amount of the substance capable of dissociating the weak acid to the amount of the substance of the metal peroxide is preferably 0.5 or more and 5 or less.
 本発明の一実施形態に酸素徐放材では、使用時において金属過酸化物と接触する弱酸濃度を低く維持することで酸素を平滑的に発生する。弱酸濃度が高すぎる場合には平滑的な酸素の発生及び充分な徐放期間の確保が困難になるが、弱酸濃度が低すぎる場合には実質的な酸素発生が得られないため、弱酸濃度は、37℃における液相中で、1.0μM以上1000mM以下であることが好ましい。 In the oxygen sustained release material according to one embodiment of the present invention, oxygen is smoothly generated by maintaining a low concentration of a weak acid that comes into contact with a metal peroxide during use. If the weak acid concentration is too high, it becomes difficult to generate smooth oxygen and secure a sufficient sustained release period, but if the weak acid concentration is too low, substantial oxygen generation cannot be obtained, so the weak acid concentration is It is preferably 1.0 μM or more and 1000 mM or less in the liquid phase at 37° C.
 弱酸のpKaは、3以上13以下が好ましい。弱酸のpKaの下限としては、生体への安全性から3以上である。さらに、弱酸のpKaの上限としては、化学平衡の観点からpKaが約12である過酸化水素をプロトン化可能であるpKaとして、実質的に13以下である。本発明で使用する弱酸のpKaは、3.5以上12以下がより好ましく、4以上10以下がさらにより好ましい。 The pKa of the weak acid is preferably 3 or more and 13 or less. The lower limit of the pKa of the weak acid is 3 or more in terms of safety to the living body. Further, the upper limit of the pKa of the weak acid is substantially 13 or less as the pKa capable of protonating hydrogen peroxide having a pKa of about 12 from the viewpoint of chemical equilibrium. The pKa of the weak acid used in the present invention is more preferably 3.5 or more and 12 or less, still more preferably 4 or more and 10 or less.
 弱酸の価数は、限定されない。 Valence of weak acid is not limited.
 弱酸は、過酸化水素と反応しにくい構造であることが好ましい。過酸化水素と反応しやすい構造とは、例えばCC二重結合、CC三重結合、アルデヒド、ケトンなどである。弱酸としては、例えば、カルボン酸、リン酸の共役塩基、硫酸の共役塩基などが挙げられる。弱酸の例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、OEGカルボン酸、PEGカルボン酸、コハク酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、マレイン酸、(-)-O-アセチル-L-リンゴ酸、ジグリコール酸、ポリ(無水マレイン酸)の加水分解物又は加アルコール分解物、ポリアクリル酸、ポリメタクリル酸、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、硫酸水素ナトリウム、硫酸水素カリウム、硫酸水素アンモニウムなどが挙げられる。カルボン酸の例としては、C1-C18の直鎖若しくは分岐構造をもつ飽和炭化水素の一価若しくは二価のカルボン酸、C1-C18の直鎖若しくは分岐構造をもつ飽和炭化水素の一部のメチレン構造が酸素原子に置換された構造の一価若しくは二価のカルボン酸、安息香酸、フタル酸、又はそれらの任意の水素原子がC1-C18のアルキル基、アルコキシ基、アシル基に置換された誘導体、オリゴエチレングリコール若しくはポリエチレングリコール構造を含む一価若しくは二価のカルボン酸、又は側鎖にカルボン酸基を備える高分子化合物が挙げられる。弱酸としての上記カルボン酸、リン酸の共役塩基、及び硫酸の共役塩基は、過酸化水素と反応しにくい構造を有する。弱酸は、これらの中において、一種類のみを単独で含んでいてもよいし、二種類以上を組み合わせて混合物として含んでいてもよい。 ㆍWeak acid preferably has a structure that does not easily react with hydrogen peroxide. The structure that easily reacts with hydrogen peroxide is, for example, a CC double bond, a CC triple bond, an aldehyde or a ketone. Examples of the weak acid include carboxylic acid, phosphoric acid conjugate base, and sulfuric acid conjugate base. Examples of weak acids are acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, OEG carboxylic acid, PEG carboxylic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, maleic acid, (-)-O-acetyl-L-malic acid, diglycolic acid , Poly(maleic anhydride) hydrolyzate or alcoholysis product, polyacrylic acid, polymethacrylic acid, sodium dihydrogen phosphate, potassium dihydrogen phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, sulfuric acid Examples thereof include sodium hydrogen, potassium hydrogen sulfate, ammonium hydrogen sulfate and the like. Examples of the carboxylic acid include a monovalent or divalent carboxylic acid of a saturated hydrocarbon having a C1-C18 linear or branched structure, and methylene which is a part of a saturated hydrocarbon having a C1-C18 linear or branched structure. A monovalent or divalent carboxylic acid having a structure substituted with an oxygen atom, benzoic acid, phthalic acid, or a derivative in which any hydrogen atom thereof is substituted with a C1-C18 alkyl group, alkoxy group or acyl group. , A monovalent or divalent carboxylic acid containing an oligoethylene glycol or polyethylene glycol structure, or a polymer compound having a carboxylic acid group in its side chain. The carboxylic acid as a weak acid, the conjugate base of phosphoric acid, and the conjugate base of sulfuric acid have a structure that is difficult to react with hydrogen peroxide. Among these, the weak acid may contain only one kind alone, or may contain two or more kinds as a mixture.
 酸素徐放材は、分散媒を含むことができる。分散媒は、漏洩時のリスクの観点から、低毒性であることが好ましい。 The oxygen-releasing material can include a dispersion medium. The dispersion medium preferably has low toxicity from the viewpoint of risk at the time of leakage.
 分散媒としては、例えば、高分子性化合物としては、オリゴアルキレングリコール、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールラウリルエーテル、若しくはポリプロピレングリコールのようなポリアルキレングリコール類、ポリイソブチレン、ポリジメチルシロキサン、又はそれらの任意の水素原子がC1-C18のアルキル基、アルコキシ基、アシル基に置換された誘導体、あるいはそれらを部分構造として含む共重合体などが挙げられ、低分子性化合物としては、水、エタノールやイソプロピルアルコールのようなアルコール、油脂、コハク酸ジメチル、コハク酸ジエチルのようなコハク酸の低級アルコールジエステル、酢酸エチルのような低級脂肪酸、例えば酢酸の低級アルコールエステルなどが挙げられる。上記分散媒を用いることにより、下記で説明するように、金属過酸化物と弱酸との反応の制御が容易になる。分散媒は、これらの中において、一種類のみを単独で含んでいてもよいし、二種類以上を組み合わせて混合物として含んでいてもよい。 As the dispersion medium, for example, as the polymer compound, polyalkylene glycols such as oligoalkylene glycol, polyethylene glycol dimethyl ether, polyethylene glycol lauryl ether, or polypropylene glycol, polyisobutylene, polydimethylsiloxane, or any of them is used. Examples thereof include derivatives in which a hydrogen atom is substituted with a C1-C18 alkyl group, an alkoxy group, an acyl group, or a copolymer containing them as a partial structure. Examples of the low molecular weight compound include water, ethanol and isopropyl alcohol. Examples thereof include alcohols, oils and fats, lower alcohol diesters of succinic acid such as dimethyl succinate and diethyl succinate, lower fatty acids such as ethyl acetate, for example, lower alcohol ester of acetic acid. The use of the above dispersion medium facilitates the control of the reaction between the metal peroxide and the weak acid, as described below. Among these, the dispersion medium may contain only one kind alone, or may contain two or more kinds as a mixture.
 以下では、金属過酸化物と弱酸との反応を律速段階にする方法について例示する。 The following is an example of how to make the reaction of metal peroxide and weak acid the rate-determining step.
 上述の第一の様式である難溶性の弱酸が系中に溶解する速度を低く一定に保つ方法としては、弱酸と分散媒の親和性を制御する方法が挙げられる。親和性を制御する指針としては、例えば親水性の弱酸に対しては疎水性の分散媒を用いる、疎水性の弱酸に対して親水性の分散媒を用いる、などが挙げられる。 As a method of keeping the rate at which the poorly soluble weak acid is dissolved in the system at a low and constant level, which is the first mode described above, there is a method of controlling the affinity between the weak acid and the dispersion medium. The guidelines for controlling the affinity include, for example, using a hydrophobic dispersion medium for a weak hydrophilic acid and using a hydrophilic dispersion medium for a weak hydrophobic acid.
 この第一の様式における弱酸と分散媒の組み合わせの一例として、弱酸としてリン酸二水素ナトリウムを用いて、さらに分散媒としてポリエチレングリコールジメチルエーテル(平均分子量250)/水(90/10重量%)を用いる組み合わせが挙げられる。 As an example of the combination of the weak acid and the dispersion medium in the first mode, sodium dihydrogen phosphate is used as the weak acid, and polyethylene glycol dimethyl ether (average molecular weight 250)/water (90/10% by weight) is used as the dispersion medium. Combinations can be mentioned.
 上述の第二の様式である系中の弱酸の拡散速度を低くすることで弱酸と金属過酸化物との反応を遅くする方法としては、粘性により拡散を制御する方法がある。一般に、粘性は分子が移動する速さを支配する要素の1つであり、粘性が高ければ、拡散速度は遅くなる。これを利用することで拡散律速を実現可能である。このような場合、例えば高粘性分散媒や増粘材を含む分散媒を使うことができる。 As a method for slowing the reaction between the weak acid and the metal peroxide by lowering the diffusion rate of the weak acid in the system, which is the second mode, there is a method of controlling the diffusion by viscosity. Generally, viscosity is one of the factors that govern the speed with which molecules move, and the higher the viscosity, the slower the diffusion rate. By utilizing this, the diffusion rate control can be realized. In such a case, for example, a highly viscous dispersion medium or a dispersion medium containing a thickening agent can be used.
 この第二の様式における分散媒としては、ポリエチレングリコール(平均分子量250)にポリエチレングリコール(平均分子量10000)を添加した混合物やポリイソブチレンなどが挙げられる。 The dispersion medium in the second mode includes a mixture of polyethylene glycol (average molecular weight 250) and polyethylene glycol (average molecular weight 10000), polyisobutylene, and the like.
 上述の第三の様式である弱酸前駆体から弱酸を化学的に発生させる際にその反応速度を低く一定に保つ方法としては、弱酸前駆体と反応させるプロトン性化合物、例えば水やアルコールの濃度を低く保つ方法が挙げられる。 As a method of keeping the reaction rate low at the time of chemically generating a weak acid from the weak acid precursor, which is the above-mentioned third mode, a protic compound to be reacted with the weak acid precursor, for example, the concentration of water or alcohol is used. One way is to keep it low.
 弱酸前駆体とプロトン性化合物との反応の例としては、弱酸前駆体としてカルボン酸無水物やカルボン酸塩化物を用い、弱酸前駆体の加水分解(すなわち、プロトン性化合物が水である)や加アルコール分解(すなわち、プロトン性化合物がアルコールである)によって弱酸であるカルボン酸を得る反応などが挙げられる。また、プロトン性化合物が水である場合には、過酸化水素の分解の際に副生する水を反応に用いることができるため、プロトン性化合物である水を触媒的に再利用することができ、系中で弱酸前駆体から生じる弱酸の速度をほぼ一定にすることができる。 As an example of the reaction between the weak acid precursor and the protic compound, a carboxylic acid anhydride or a carboxylic acid chloride is used as the weak acid precursor, and the weak acid precursor is hydrolyzed (that is, the protic compound is water) or added. Examples include a reaction of obtaining a carboxylic acid that is a weak acid by alcoholysis (that is, the protic compound is alcohol). In addition, when the protic compound is water, water that is a by-product of the decomposition of hydrogen peroxide can be used in the reaction, and thus the protic compound water can be catalytically reused. The rate of the weak acid generated from the weak acid precursor in the system can be made almost constant.
 弱酸前駆体としては、上述の弱酸の無水物や塩化物を用いることができる。中でも、カルボン酸無水物の例としては、酢酸無水物、プロピオン酸無水物、酪酸無水物、吉草酸無水物、カプロン酸無水物、エナント酸無水物、カプリル酸無水物、ペラルゴン酸無水物、カプリン酸無水物、ラウリン酸無水物、ミリスチン酸無水物、パルミチン酸無水物、マルガリン酸無水物、若しくはステアリン酸無水物などの非環状酸無水物や、コハク酸無水物、マロン酸無水物、グルタル酸無水物、アジピン酸無水物、ピメリン酸無水物、スベリン酸無水物、アゼライン酸無水物、セバシン酸無水物、フタル酸無水物、マレイン酸無水物、(-)-O-アセチル-L-リンゴ酸無水物、若しくはジグリコール酸無水物などの環状酸無水物、又はそれらの任意の水素原子がC1-C18のアルキル基、アルコキシ基、アシル基に置換された誘導体などが挙げられる。さらに、弱酸前駆体の例としては、C1-C18の直鎖若しくは分岐構造をもつ飽和炭化水素の一価若しくは二価のカルボン酸の酸無水物若しくは酸塩化物、C1-C18の直鎖若しくは分岐構造をもつ飽和炭化水素の一部のメチレン構造が酸素原子に置換された構造の一価若しくは二価のカルボン酸の酸無水物若しくは酸塩化物、オリゴエチレングリコール若しくはポリエチレングリコール構造を含む一価若しくは二価のカルボン酸の酸無水物若しくは酸塩化物、側鎖にカルボン酸基を備える高分子化合物の酸無水物若しくは酸塩化物、無機若しくは有機の酸性酸化物などが挙げられる。上記弱酸前駆体を用いることで、弱酸前駆体とプロトン性化合物、例えば水やアルコールとの反応により、弱酸を得ることができる。酸無水物は、これらの中において、一種類のみを単独で含んでいてもよいし、二種類以上を組み合わせて混合物として含んでいてもよい。 As the weak acid precursor, the above-mentioned weak acid anhydrides or chlorides can be used. Among them, examples of carboxylic acid anhydrides include acetic acid anhydride, propionic acid anhydride, butyric acid anhydride, valeric acid anhydride, caproic acid anhydride, enanthic acid anhydride, caprylic acid anhydride, pelargonic acid anhydride, capric acid. Acid anhydrides, lauric acid anhydrides, myristic acid anhydrides, palmitic acid anhydrides, non-cyclic acid anhydrides such as margaric acid anhydrides or stearic acid anhydrides, succinic acid anhydrides, malonic acid anhydrides, glutaric acid Anhydride, adipic acid anhydride, pimelic acid anhydride, suberic acid anhydride, azelaic acid anhydride, sebacic acid anhydride, phthalic acid anhydride, maleic acid anhydride, (-)-O-acetyl-L-malic acid Examples thereof include anhydrides, cyclic acid anhydrides such as diglycolic acid anhydride, and derivatives in which any hydrogen atom thereof is substituted with a C1-C18 alkyl group, alkoxy group, or acyl group. Further, examples of the weak acid precursor include an acid anhydride or acid chloride of a monovalent or divalent carboxylic acid of a saturated hydrocarbon having a C1-C18 straight chain or branched structure, and a C1-C18 straight chain or branched chain. A monovalent or divalent carboxylic acid anhydride or acid chloride having a structure in which a part of the methylene structure of a saturated hydrocarbon having a structure is replaced by an oxygen atom, or a monovalent or monovalent structure containing an oligoethylene glycol or polyethylene glycol structure. Examples thereof include acid anhydrides or acid chlorides of divalent carboxylic acids, acid anhydrides or acid chlorides of polymer compounds having a carboxylic acid group in a side chain, and inorganic or organic acidic oxides. By using the above weak acid precursor, a weak acid can be obtained by the reaction between the weak acid precursor and a protic compound such as water or alcohol. Among these, the acid anhydride may contain only one kind alone, or may contain two or more kinds as a mixture.
 第三の様式の一例として、弱酸前駆体としてのカプリン酸無水物と、プロトン性化合物としての水とを用いる方法が挙げられる。カプリン酸無水物と水との加水分解反応からカプリン酸を緩徐に生成する一方で、金属過酸化物とカプリン酸とが反応して生成した過酸化水素の分解から水を再生することにより、カプリン酸無水物と水との加水分解反応はほぼ一定の速度で進行する。プロトン性化合物として添加する水の量が少なければ弱酸を低く維持することが可能である。 An example of the third mode is a method using capric anhydride as a weak acid precursor and water as a protic compound. Capric acid is slowly produced from the hydrolysis reaction of capric anhydride and water, while water is regenerated from the decomposition of hydrogen peroxide produced by the reaction between the metal peroxide and capric acid. The hydrolysis reaction between the acid anhydride and water proceeds at a substantially constant rate. If the amount of water added as a protic compound is small, it is possible to keep the weak acid low.
 また、第三の様式において、上記のプロトン性化合物として水を含む代わりに一定量の弱酸をあらかじめ含む場合には、まず金属過酸化物、例えば過酸化カルシウムと弱酸との反応から水が生じ、この水が上述のように触媒的に酸無水物の加水分解反応を促進するので、あらかじめ水を含む必要性はない。 Further, in the third mode, when a certain amount of weak acid is contained in advance instead of containing water as the above-mentioned protic compound, first, water is produced from the reaction of a metal peroxide, for example, calcium peroxide and a weak acid, Since this water catalytically promotes the hydrolysis reaction of the acid anhydride as described above, it is not necessary to include water in advance.
 本発明の一実施形態に係る酸素徐放材は、いずれの様式においても、構成する組成の融点(又は場合により軟化点)を利用して酸素の発生開始を制御することもできる。融点以下の温度では酸素徐放材に流動性がなく反応が進まない状態、融点以上の温度で酸素徐放材に流動性があり反応が進む状態、という状態の遷移を用いることで保存性を兼ね備えさせることもできる。このような場合、現実的な範囲での保存温度において流動性がなく、使用温度である体温付近で流動性がある状態にすることが好ましい。このような挙動は、分散媒や弱酸や弱酸前駆体やプロトン性化合物などの融点を適切な範囲にすることで実現できる。 In any of the modes, the oxygen sustained release material according to the embodiment of the present invention can control the initiation of oxygen generation by utilizing the melting point (or softening point in some cases) of the constituent composition. At the temperature below the melting point, the oxygen sustained release material has no fluidity and the reaction does not proceed, and at the temperature above the melting point, the oxygen sustained release material has the fluidity and the reaction proceeds. It can also be combined. In such a case, it is preferable that the composition has no fluidity at a storage temperature in a practical range and has fluidity near a body temperature which is a use temperature. Such behavior can be realized by setting the melting point of the dispersion medium, the weak acid, the weak acid precursor, the protic compound, etc. within an appropriate range.
 融点を利用して酸素の発生開始を制御する場合、融点は25℃~37℃であり、室温では流動性がなく、体温では流動性があることが最も想定される形態であるが、これに限定されることはない。例えば保存に液体窒素を使用することができるので、液体窒素温度で凝固すればよいため、好ましい融点は-196℃以上である。一方、凝固点降下を考慮すると好ましい融点は50℃以下である。より好ましい融点は-79℃以上45℃以下、さらに好ましい融点は-30℃以上40℃以下である。 When the initiation of oxygen generation is controlled using the melting point, the melting point is 25° C. to 37° C., and it is most assumed that it has no fluidity at room temperature and fluidity at body temperature. There is no limitation. For example, since liquid nitrogen can be used for storage and solidification at the liquid nitrogen temperature is required, the preferable melting point is −196° C. or higher. On the other hand, in consideration of the freezing point depression, the preferable melting point is 50°C or lower. A more preferable melting point is −79° C. or higher and 45° C. or lower, and a still more preferable melting point is −30° C. or higher and 40° C. or lower.
 分散媒の融点を利用する場合、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールなどのポリエーテル、コハク酸ジメチルなどを用いることができる。弱酸の融点をする場合、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸などを用いることができる。弱酸前駆体の融点を利用する場合、カプリル酸無水物、ペラルゴン酸無水物、カプリン酸無水物、ラウリン酸無水物、ミリスチン酸無水物、2,2-ジメチルコハク酸無水物などを用いることができる。プロトン性化合物の融点を利用する場合、水、エタノールなどを用いることができる。 When using the melting point of the dispersion medium, polyethylene glycol dimethyl ether, polyether such as polyethylene glycol, dimethyl succinate, etc. can be used. When the melting point of a weak acid is used, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid or the like can be used. When utilizing the melting point of the weak acid precursor, caprylic anhydride, pelargonic anhydride, capric anhydride, lauric anhydride, myristic anhydride, 2,2-dimethylsuccinic anhydride, etc. can be used. .. When utilizing the melting point of the protic compound, water, ethanol or the like can be used.
 本発明の一実施形態に酸素徐放材は、酸素発生に必要な物質を外部からの供給に依存しない自己反応性であり、長期間にわたって平滑的に酸素を供給可能であり、かつ毒性の高い副生成物を生じない。すなわち、本発明の酸素徐放材は、使用方法の制限が少なく、安全性が高い。したがって、本発明の酸素徐放材を用いた細胞又は生体組織の移植が実現可能であり、さらに、長期治療効果を有する細胞移植デバイスや生体組織移植デバイスを実現することができる。例えば、本発明の酸素徐放材を利用することで、筐体と、筐体中、好ましくは筐体下部に配置されている本発明の酸素徐放材と、酸素徐放材上の間隙と、間隙中に配置されている酸素透過膜と、酸素透過膜上に配置されている細胞又は生体組織とを含む細胞移植デバイスを調製することができる。 In one embodiment of the present invention, the oxygen sustained-release material is self-reactive, which does not depend on external supply of a substance required for oxygen generation, can supply oxygen smoothly over a long period of time, and has high toxicity. No by-products are produced. That is, the oxygen sustained release material of the present invention has few restrictions on the method of use and is highly safe. Therefore, it is possible to realize the transplantation of cells or living tissue using the oxygen-degrading material of the present invention, and further it is possible to realize a cell transplantation device or a living tissue transplantation device having a long-term therapeutic effect. For example, by using the oxygen sustained-release material of the present invention, a housing, the oxygen sustained-release material of the present invention disposed in the housing, preferably at the bottom of the housing, and a gap on the oxygen sustained-release material are provided. It is possible to prepare a cell transplantation device including an oxygen permeable membrane arranged in the gap and cells or living tissue arranged on the oxygen permeable membrane.
 酸素徐放材に関する実施例を以下で説明する。 Example of oxygen-releasing material is explained below.
 図21は、実施例1で測定した酸素量の結果である。 FIG. 21 shows the result of the amount of oxygen measured in Example 1.
 図22は、実施例3で測定した酸素量の結果である。 FIG. 22 shows the result of the amount of oxygen measured in Example 3.
 図23は、本発明が搭載された細胞評価用デバイスである。細胞評価用デバイスは、デバイス下部の細胞に酸素を供給するための酸素徐放材301、酸素徐放材から発生した酸素を均一に分配するための間隙302、酸素徐放材で生成した酸素を下部から細胞に供給する酸素透過膜303、デバイス上部の評価用V79細胞304及び細胞培養液305、並びにデバイス全体を支える筐体306で構成されている。 FIG. 23 shows a cell evaluation device equipped with the present invention. The cell evaluation device includes an oxygen sustained release material 301 for supplying oxygen to the cells at the bottom of the device, a gap 302 for uniformly distributing oxygen generated from the oxygen sustained release material, and oxygen generated by the oxygen sustained release material. It is composed of an oxygen permeable membrane 303 supplied to cells from the lower part, an evaluation V79 cell 304 on the upper part of the device and a cell culture solution 305, and a casing 306 supporting the entire device.
 図24は、本発明が搭載されていない細胞評価用デバイスである。 FIG. 24 shows a cell evaluation device in which the present invention is not mounted.
 実施例1では、難溶性の弱酸が系中に溶解する速度を低く一定に保つ方法(第一の様式)に基づく酸素徐放材を調製した。 In Example 1, an oxygen sustained-release material was prepared based on a method (first mode) of keeping the rate of dissolution of a poorly soluble weak acid in the system at a low level.
 金属化酸化物として過酸化カルシウム、難溶性の弱酸としてリン酸二水素ナトリウム、分散媒としてポリエチレングリコールジメチルエーテル(平均分子量1000)/水(95/5重量%)を用いることで弱酸の溶解速度を低く保った。過酸化カルシウム0.3g、リン酸二水素ナトリウム0.6g、ポリエチレングリコールジメチルエーテル(平均分子量1000)/水(95/5重量%)1.0mLを均一に混合し、37℃において発生した酸素量を定量したところ、5日間にわたるほぼ均一な酸素発生が確認された(図21)。 Low dissolution rate of weak acid by using calcium peroxide as metallized oxide, sodium dihydrogen phosphate as weakly soluble acid, and polyethylene glycol dimethyl ether (average molecular weight 1000)/water (95/5 wt%) as dispersion medium I kept it. 0.3 g of calcium peroxide, 0.6 g of sodium dihydrogen phosphate, 1.0 mL of polyethylene glycol dimethyl ether (average molecular weight 1000)/water (95/5 wt%) were uniformly mixed, and the amount of oxygen generated at 37°C was adjusted. When quantified, almost uniform oxygen generation was confirmed over 5 days (FIG. 21).
 実施例2では、系中の弱酸の拡散速度を低くすることで弱酸と金属過酸化物との反応を遅くする方法(第二の様式)に基づく酸素徐放材を調製した。 In Example 2, an oxygen sustained-release material was prepared based on a method (second mode) of slowing the reaction of a weak acid with a metal peroxide by reducing the diffusion rate of the weak acid in the system.
 金属過酸化物として過酸化カルシウム、弱酸としてリン酸二水素ナトリウム、高粘度分散媒としてポリエチレングリコールポリエチレングリコール(平均分子量1000)/ポリエチレングリコール(平均分子量10000)/水(90/5/5重量%)を用いることでプロトンの拡散速度を遅く保った。過酸化カルシウム0.3g、リン酸二水素ナトリウム0.6g、ポリエチレングリコール(平均分子量1000)/ポリエチレングリコール(平均分子量10000)(90/10重量%)1.0mLを均一に混合し、37℃において発生した酸素量を定量したところ、粘性の比較的低い実施例1よりもさらに長い7日間にわたるほぼ均一な酸素発生が確認された。 Calcium peroxide as a metal peroxide, sodium dihydrogen phosphate as a weak acid, polyethylene glycol polyethylene glycol (average molecular weight 1000)/polyethylene glycol (average molecular weight 10000)/water (90/5/5 wt%) as a high-viscosity dispersion medium Was used to keep the proton diffusion rate low. 0.3 g of calcium peroxide, 0.6 g of sodium dihydrogen phosphate, 1.0 mL of polyethylene glycol (average molecular weight 1000)/polyethylene glycol (average molecular weight 10000) (90/10 wt%) were uniformly mixed, and at 37°C. When the amount of oxygen generated was quantified, it was confirmed that almost uniform oxygen was generated over 7 days, which is longer than that in Example 1 having a relatively low viscosity.
 実施例3では、弱酸前駆体から弱酸を化学的に発生させる際にその反応速度を低く一定に保つ方法(第三の様式)方法に基づく酸素徐放材を調製した。 In Example 3, an oxygen sustained-release material was prepared based on the method (third mode) of keeping the reaction rate low and constant when a weak acid is chemically generated from a weak acid precursor.
 金属過酸化物として過酸化カルシウム、弱酸前駆体としてカプリン酸無水物、プロトン性化合物として水を用いることで弱酸の発生速度を遅く保った。過酸化カルシウム0.3g、カプリン酸無水物1.6g、水30μLを均一に混合し、37℃において発生した酸素を定量したところ、5日間にわたるほぼ均一な酸素発生が確認された(図22)。 The generation rate of the weak acid was kept low by using calcium peroxide as the metal peroxide, capric anhydride as the weak acid precursor, and water as the protic compound. When 0.3 g of calcium peroxide, 1.6 g of capric anhydride and 30 μL of water were uniformly mixed and the amount of oxygen generated at 37° C. was quantified, almost uniform oxygen generation was confirmed over 5 days (FIG. 22). ..
 実施例4では、弱酸前駆体から弱酸を化学的に発生させる際にその反応速度を低く一定に保つ方法(第三の様式)方法に基づく酸素徐放材を調製した。 In Example 4, an oxygen sustained-release material was prepared based on the method (third mode) of keeping the reaction rate low and constant when a weak acid is chemically generated from a weak acid precursor.
 金属過酸化物として過酸化カルシウム、弱酸前駆体としてコハク酸無水物、分散媒としてポリエチレングリコールジメチルエーテル(平均分子量1000)/水(95/5重量%)を用いることで弱酸の発生速度を遅く保った。過酸化カルシウム0.3g、コハク酸無水物0.5g、ポリエチレングリコールジメチルエーテル(平均分子量1000)/水(95/5重量%)1.0mLを均一に混合し、37℃において発生した酸素を定量したところ、7日間にわたるほぼ均一な酸素発生が確認された。 The generation rate of the weak acid was kept low by using calcium peroxide as the metal peroxide, succinic anhydride as the weak acid precursor, and polyethylene glycol dimethyl ether (average molecular weight 1000)/water (95/5% by weight) as the dispersion medium. .. 0.3 g of calcium peroxide, 0.5 g of succinic anhydride, and 1.0 mL of polyethylene glycol dimethyl ether (average molecular weight 1000)/water (95/5 wt%) were uniformly mixed, and the amount of oxygen generated at 37° C. was quantified. However, almost uniform generation of oxygen was confirmed over 7 days.
 実施例5では、本発明における酸素徐放材を用いたV79細胞培養を検討した(図23)。 In Example 5, V79 cell culture using the sustained-release oxygen material of the present invention was examined (FIG. 23).
 過酸化カルシウム0.6g、カプリン酸無水物3.2g、水50μLを混合して酸素徐放材とし、図3のようなデバイスにV79細胞を播種し、無酸素下で培養したところ、7日後のV79の生存率は80%であり、良好な値であった。 Calcium peroxide (0.6 g), capric anhydride (3.2 g) and water (50 μL) were mixed to obtain an oxygen sustained-release material. V79 cells were seeded on a device as shown in FIG. 3 and cultured under anoxic conditions. The survival rate of V79 was 80%, which was a good value.
 (比較例1)
 比較例1では、金属過酸化物と水(pKa15.7)の組み合わせを検討した。
(Comparative Example 1)
In Comparative Example 1, a combination of metal peroxide and water (pKa15.7) was examined.
 過酸化カルシウム0.3g、水1gを均一に混合し、37℃において発生した酸素を定量したところ、水が弱酸として機能しなかったため、酸素の発生は確認されなかった。 When 0.3 g of calcium peroxide and 1 g of water were uniformly mixed and the amount of oxygen generated at 37°C was quantified, the generation of oxygen was not confirmed because water did not function as a weak acid.
 (比較例2)
 比較例2では、液相中に存在する反応可能な弱酸濃度が高すぎる条件を検討した。
過酸化カルシウム0.3g、酢酸1gを均一に混合して15Mの弱酸を含む混合物を調製し、37℃において発生した酸素を定量したところ、30分以上の酸素発生は確認されなかった。
(Comparative example 2)
In Comparative Example 2, conditions under which the reactive weak acid concentration existing in the liquid phase was too high were examined.
When 0.3 g of calcium peroxide and 1 g of acetic acid were uniformly mixed to prepare a mixture containing a weak acid of 15 M, and the amount of oxygen generated at 37° C. was quantified, the generation of oxygen for 30 minutes or longer was not confirmed.
 (比較例3)
 比較例3では、本発明における酸素徐放材を用いずにV79細胞培養を検討した(図24)。
(Comparative example 3)
In Comparative Example 3, V79 cell culture was investigated without using the oxygen sustained release material of the present invention (FIG. 24).
 酸素徐放材用いずに、図24のようなデバイスにV79細胞を播種し、無酸素下で培養したところ、7日後のV79の生存率は10%と低い値であった。 When V79 cells were seeded in a device as shown in Fig. 24 without using an oxygen-sustained release material and cultured under anoxic conditions, the survival rate of V79 after 7 days was a low value of 10%.
 以上の結果から、実施例1~5の酸素徐放材は、酸素発生に必要な物質を外部からの供給に依存しない自己反応性であり、かつ毒性の高い副生成物を生じないことが明らかになった。 From the above results, it is clear that the oxygen sustained-release materials of Examples 1 to 5 are self-reactive, which does not depend on external supply of the substance required for oxygen generation, and do not produce a highly toxic by-product. Became.
 <本発明の変形例について>
 本発明は上記実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
<Regarding Modifications of the Present Invention>
The present invention is not limited to the above embodiment, and various modifications are included. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of a certain embodiment can be added to the configuration of another embodiment. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the respective embodiments.
 以上の実施形態において、異なる特性の酸素徐放材102を組み合わせて使用することが考えられる。例えば、長期間少量の酸素放出が可能な徐放材と、短期間酸素放出量の多い徐放材とを組み合わせること等である。また、酸素徐放材102として、上記に例示した水と反応することにより酸素を放出する材料と、酸素吸着材料とを組み合わせて用いることが好ましい。例えば酸素吸着材料は初期の酸素放出量が大きい傾向があるので、初期段階においてはまず酸素吸着材料によって酸素を供給する。酸素吸着材料からの酸素放出量が低下し始める時点以降は、水を供給することによって過酸化物から酸素を放出させる。これにより酸素供給の絶対量を維持しつつ、時間経過にともなって酸素供給量を制御することができる。 In the above embodiment, it is possible to use the oxygen-controlled release materials 102 having different characteristics in combination. For example, a combination of a sustained release material capable of releasing a small amount of oxygen for a long period of time and a sustained release material capable of releasing a large amount of oxygen for a short period of time is used. Further, it is preferable to use, as the oxygen-releasing material 102, a combination of the above-exemplified material that releases oxygen by reacting with water and an oxygen adsorbing material. For example, the oxygen adsorbing material tends to release a large amount of oxygen in the initial stage, so that oxygen is first supplied by the oxygen adsorbing material in the initial stage. After the time when the amount of oxygen released from the oxygen adsorbing material begins to decrease, oxygen is released from the peroxide by supplying water. This makes it possible to control the oxygen supply amount over time while maintaining the absolute amount of oxygen supply.
 以上の実施形態において、細胞101の由来、種類、フェノタイプ、遺伝子改変の有無、継代数、などは限定されない。浮遊細胞、接着細胞、シングル、シート、オルガノイド、などのような細胞101の性質・形態も限定されない。細胞101の用途も限定されない。すなわち細胞保持担体103によって保持し容器104内に収容することができる任意の細胞について本発明を適用することができる。ただし酸素徐放材102によって酸素供給能力を向上させたことに鑑みると、酸素を大量に必要とする細胞101に対して本発明の効果を最も効果的に発揮することができる。例えばヒト膵臓細胞などが1例として考えられるが、これに限られるものではない。 In the above embodiments, the origin, type, phenotype, presence or absence of gene modification, passage number, etc. of the cell 101 are not limited. The nature and morphology of the cells 101 such as floating cells, adherent cells, single cells, sheets, and organoids are not limited. The use of the cell 101 is also not limited. That is, the present invention can be applied to any cell that can be held by the cell holding carrier 103 and stored in the container 104. However, in view of improving the oxygen supply capacity by the oxygen sustained release material 102, the effect of the present invention can be most effectively exerted on the cells 101 that require a large amount of oxygen. For example, human pancreatic cells are considered as an example, but the present invention is not limited to this.
100:細胞カプセル
101:細胞
102:酸素徐放材
103:細胞保持担体
104:容器
105:酸素透過膜
106:酸素徐放材担体
200A~200F:細胞移植デバイス
201:酸素発生材収容部
202:細胞収容部
203:酸素送致部
204、204a、204b 筐体
205:酸素発生材(酸素徐放材)
206:蓋部
206a:セプタム栓
207:開口部
208:細胞
209:放出部
210:カートリッジ
211:流路
212:上面部
220:電気分解部材
221:電池
223:陰極
224:陽極
225:硬質カートリッジ
226:貯水部
227a、227b:半透膜
S1:蓋開け工程
S2:取り出し工程
S3:蓋閉じ工程
S11:蓋開け工程
S12:取り出し工程
S13:収容工程
S14:蓋閉じ工程
301:酸素徐放材
302:間隙
303:酸素透過膜
304:評価用V79細胞
305:細胞培養液
306:筐体
100: Cell Capsule 101: Cell 102: Oxygen Sustained Release Material 103: Cell Retaining Carrier 104: Container 105: Oxygen Permeation Membrane 106: Oxygen Sustained Release Material Carrier 200A to 200F: Cell Transplanting Device 201: Oxygen Generating Material Housing 202: Cell Housing 203: Oxygen transfer parts 204, 204a, 204b Case 205: Oxygen generating material (oxygen-releasing material)
206: Lid 206a: Septum plug 207: Opening 208: Cell 209: Discharge part 210: Cartridge 211: Flow path 212: Top part 220: Electrolytic member 221: Battery 223: Cathode 224: Anode 225: Hard cartridge 226: Water storage part 227a, 227b: Semipermeable membrane S1: Lid opening step S2: Taking out step S3: Lid closing step S11: Lid opening step S12: Taking out step S13: Housing step S14: Lid closing step 301: Oxygen sustained release material 302: Gap 303: Oxygen permeable membrane 304: V79 cells for evaluation 305: Cell culture fluid 306: Housing

Claims (37)

  1.  細胞をカプセル化する細胞カプセルであって、
     前記細胞を保持する細胞保持担体、
     前記細胞カプセル内に収容された固体の酸素徐放材、
     を有することを特徴とする細胞カプセル。
    A cell capsule for encapsulating cells,
    A cell-retaining carrier that retains the cells,
    A solid oxygen sustained release material contained in the cell capsule,
    A cell capsule comprising:
  2.  前記酸素徐放材は、過酸化物または多孔質材料のいずれかまたは双方を用いて構成されている
     ことを特徴とする請求項1記載の細胞カプセル。
    The cell capsule according to claim 1, wherein the oxygen sustained-release material is constituted by using one or both of a peroxide and a porous material.
  3.  前記細胞保持担体は、ゲル材料または多孔性高分子材料を用いて構成されている
     ことを特徴とする請求項1記載の細胞カプセル。
    The cell capsule according to claim 1, wherein the cell-holding carrier is made of a gel material or a porous polymer material.
  4.  前記細胞カプセルはさらに、前記細胞保持担体と前記酸素徐放材を収容する容器を備える
     ことを特徴とする請求項1記載の細胞カプセル。
    The cell capsule according to claim 1, further comprising a container that contains the cell holding carrier and the oxygen sustained release material.
  5.  前記容器は、半透膜を用いて形成されている
     ことを特徴とする請求項4記載の細胞カプセル。
    The cell capsule according to claim 4, wherein the container is formed using a semipermeable membrane.
  6.  前記半透膜は、多孔性ポリテトラフルオロエチレン膜によって形成されている
     ことを特徴とする請求項5記載の細胞カプセル。
    The cell capsule according to claim 5, wherein the semipermeable membrane is formed of a porous polytetrafluoroethylene membrane.
  7.  前記酸素徐放材が単位時間当たりに酸素を放出する量は、前記半透膜を酸素が前記単位時間当たりに透過する量よりも大きい
     ことを特徴とする請求項5記載の細胞カプセル。
    The cell capsule according to claim 5, wherein the amount of oxygen released by the oxygen sustained release material per unit time is larger than the amount of oxygen permeated through the semipermeable membrane per unit time.
  8.  前記細胞カプセルはさらに、酸素を透過させる酸素透過膜を備え、
     前記容器の内部は、前記酸素透過膜によって第1区画と第2区画に区分されており、
     前記細胞は前記第1区画に配置され、前記酸素徐放材は前記第2区画に配置されている
     ことを特徴とする請求項4記載の細胞カプセル。
    The cell capsule further comprises an oxygen permeable membrane permeable to oxygen,
    The interior of the container is divided into a first compartment and a second compartment by the oxygen permeable membrane,
    The cell capsule according to claim 4, wherein the cells are arranged in the first compartment, and the oxygen sustained-release material is arranged in the second compartment.
  9.  前記容器は、半透膜を用いて形成されており、
     前記酸素透過膜を酸素が単位時間当たりに透過する量は、前記半透膜を酸素が前記単位時間当たりに透過する量よりも大きい
     ことを特徴とする請求項8記載の細胞カプセル。
    The container is formed using a semipermeable membrane,
    The cell capsule according to claim 8, wherein an amount of oxygen permeating the oxygen permeable membrane per unit time is larger than an amount of oxygen permeating the semipermeable membrane per unit time.
  10.  前記酸素透過膜は、ポリジメチルシロキサンまたは含フッ素高分子膜によって形成されている
     ことを特徴とする請求項8記載の細胞カプセル。
    The cell capsule according to claim 8, wherein the oxygen permeable membrane is formed of a polydimethylsiloxane or a fluorine-containing polymer membrane.
  11.  前記容器は、前記第1区画を覆う第1膜と、前記第2区画を覆う第2膜とを備え、
     前記第1膜は、半透膜を用いて形成されている
     ことを特徴とする請求項8記載の細胞カプセル。
    The container includes a first film covering the first section and a second film covering the second section,
    The cell capsule according to claim 8, wherein the first membrane is formed by using a semipermeable membrane.
  12.  前記酸素徐放材は、水と反応して酸素を発生する過酸化物を用いて構成されており、
     前記第2膜は、水を透過または通過させる膜を用いて構成されている
     ことを特徴とする請求項11記載の細胞カプセル。
    The oxygen sustained release material is composed of a peroxide that reacts with water to generate oxygen,
    The cell capsule according to claim 11, wherein the second membrane is configured by using a membrane that allows water to permeate or pass therethrough.
  13.  前記細胞カプセルはさらに、前記第2区画内に配置され前記酸素徐放材を保持する酸素徐放材担体を備える
     ことを特徴とする請求項8記載の細胞カプセル。
    The cell capsule according to claim 8, further comprising an oxygen sustained-release material carrier that is disposed in the second compartment and holds the oxygen sustained-release material.
  14.  前記酸素徐放材担体は、酸性のゲル材料を用いて構成されている
     ことを特徴とする請求項13記載の細胞カプセル。
    The cell capsule according to claim 13, wherein the oxygen sustained-release material carrier is constituted by using an acidic gel material.
  15.  前記細胞カプセルはさらに、酸素を透過させる第2酸素透過膜を備え、
     前記容器の内部は、前記酸素透過膜によって前記第1区画と前記第2区画に区分されるとともに、前記第2酸素透過膜によって前記第2区画と第3区画に区分されており、
     前記細胞は、前記第1区画に加えて前記第3区画にも配置されている
     ことを特徴とする請求項8記載の細胞カプセル。
    The cell capsule further comprises a second oxygen permeable membrane permeable to oxygen,
    The inside of the container is divided into the first section and the second section by the oxygen permeable film, and is divided into the second section and the third section by the second oxygen permeable film,
    The cell capsule according to claim 8, wherein the cells are arranged in the third compartment in addition to the first compartment.
  16.  前記容器は免疫隔離性を有することを特徴とする請求項4記載の細胞カプセル。 The cell capsule according to claim 4, wherein the container has an immunoisolation property.
  17.  前記細胞はヒト膵臓細胞であることを特徴とする請求項4記載の細胞カプセル。 The cell capsule according to claim 4, wherein the cells are human pancreatic cells.
  18.  細胞をカプセル化する細胞カプセルであって、
     前記細胞を収容する容器、
     前記容器内を第1区画と第2区画に区分する区画膜、
     を備え、
     前記区画膜は、酸素を透過させる酸素透過膜を用いて構成されている
     ことを特徴とする細胞カプセル。
    A cell capsule for encapsulating cells,
    A container containing the cells,
    A partition membrane for partitioning the inside of the container into a first compartment and a second compartment,
    Equipped with
    The cell capsule, wherein the partition membrane is configured by using an oxygen permeable membrane that allows oxygen to pass therethrough.
  19.  前記容器は、前記第1区画を覆う第1膜と、前記第2区画を覆う第2膜とを備え、
     前記第1膜は、半透膜を用いて形成されている
     ことを特徴とする請求項18記載の細胞カプセル。
    The container includes a first film covering the first section and a second film covering the second section,
    The cell capsule according to claim 18, wherein the first membrane is formed using a semipermeable membrane.
  20.  前記酸素透過膜を酸素が単位時間当たりに透過する量は、前記半透膜を酸素が前記単位時間当たりに透過する量よりも大きい
     ことを特徴とする請求項19記載の細胞カプセル。
    The cell capsule according to claim 19, wherein an amount of oxygen permeating through the oxygen permeable membrane per unit time is larger than an amount of oxygen permeating through the semipermeable membrane per unit time.
  21.  前記第2膜は、水を透過または通過させる膜を用いて構成されている
     ことを特徴とする請求項19記載の細胞カプセル。
    The cell capsule according to claim 19, wherein the second membrane is configured by using a membrane that allows water to permeate or pass therethrough.
  22.  前記酸素透過膜は、ポリジメチルシロキサンまたは含フッ素高分子膜によって形成されている
     ことを特徴とする請求項18記載の細胞カプセル。
    The cell capsule according to claim 18, wherein the oxygen permeable membrane is formed of polydimethylsiloxane or a fluorine-containing polymer membrane.
  23.  前記半透膜は、多孔性ポリテトラフルオロエチレン膜によって形成されている
     ことを特徴とする請求項19記載の細胞カプセル。
    The cell capsule according to claim 19, wherein the semipermeable membrane is formed of a porous polytetrafluoroethylene membrane.
  24.  前記細胞カプセルはさらに、酸素を透過させる第2酸素透過膜を備え、
     前記容器の内部は、前記酸素透過膜によって前記第1区画と前記第2区画に区分されるとともに、前記第2酸素透過膜によって前記第2区画と第3区画に区分されている
     ことを特徴とする請求項18記載の細胞カプセル。
    The cell capsule further comprises a second oxygen permeable membrane permeable to oxygen,
    The inside of the container is divided into the first compartment and the second compartment by the oxygen permeable membrane, and is divided into the second compartment and the third compartment by the second oxygen permeable membrane. The cell capsule according to claim 18.
  25.  前記第1区画は前記細胞を収容しており、
     前記第2区画は固体の酸素徐放材を収容している
     ことを特徴とする請求項18記載の細胞カプセル。
    The first compartment contains the cells,
    The cell capsule according to claim 18, wherein the second compartment contains a solid oxygen-releasing material.
  26.  前記酸素徐放材は、過酸化物または多孔質材料のいずれかまたは双方を用いて構成されている
     ことを特徴とする請求項25記載の細胞カプセル。
    The cell capsule according to claim 25, wherein the oxygen-releasing material is constituted by using one or both of a peroxide and a porous material.
  27.  前記第1区画は、前記細胞を保持する細胞保持担体を収容している
     ことを特徴とする請求項18記載の細胞カプセル。
    The cell capsule according to claim 18, wherein the first compartment contains a cell holding carrier that holds the cells.
  28.  前記細胞保持担体は、ゲル材料または多孔性高分子材料を用いて構成されている
     ことを特徴とする請求項27記載の細胞カプセル。
    The cell capsule according to claim 27, wherein the cell-holding carrier is made of a gel material or a porous polymer material.
  29.  前記容器は、半透膜を用いて形成されており、
     前記酸素徐放材が単位時間当たりに酸素を放出する量は、前記半透膜を酸素が前記単位時間当たりに透過する量よりも大きい
     ことを特徴とする請求項25記載の細胞カプセル。
    The container is formed using a semipermeable membrane,
    The cell capsule according to claim 25, wherein the amount of oxygen released by the oxygen sustained release material per unit time is larger than the amount of oxygen permeated through the semipermeable membrane per unit time.
  30.  前記細胞カプセルはさらに、前記第2区画内に配置され前記酸素徐放材を保持する酸素徐放材担体を備える
     ことを特徴とする請求項25記載の細胞カプセル。
    26. The cell capsule according to claim 25, wherein the cell capsule further comprises an oxygen sustained release material carrier that is disposed in the second compartment and holds the oxygen sustained release material.
  31.  前記酸素徐放材担体は、酸性のゲル材料を用いて構成されている
     ことを特徴とする請求項30記載の細胞カプセル。
    The cell capsule according to claim 30, wherein the oxygen-releasing material carrier is constituted by using an acidic gel material.
  32.  前記容器は免疫隔離性を有することを特徴とする請求項18記載の細胞カプセル。 The cell capsule according to claim 18, wherein the container has an immunoisolation property.
  33.  前記細胞はヒト膵臓細胞であることを特徴とする請求項18記載の細胞カプセル。 The cell capsule according to claim 18, wherein the cells are human pancreatic cells.
  34.  酸素を発生させる酸素発生材を収容する酸素発生材収容部と、
     細胞を収容する細胞収容部と、
     前記酸素発生材収容部と前記細胞収容部との間に設けられ、前記酸素発生材から発生した酸素を前記細胞収容部に送致する酸素送致部と、を備えるとともに、
     前記酸素発生材収容部は、内部に対する出入を可能とする蓋部を備え、かつ
     前記細胞収容部は、前記細胞が産生した産生物をデバイスの外部に放出する放出部を備えている細胞移植デバイス。
    An oxygen generating material accommodating portion that accommodates an oxygen generating material that generates oxygen,
    A cell containing portion for containing cells,
    Provided between the oxygen generating material storage portion and the cell storage portion, and with an oxygen transfer portion that transfers oxygen generated from the oxygen generating material to the cell storage portion,
    The oxygen generating material storage unit includes a lid unit that allows the oxygen generating material storage unit to move in and out, and the cell storage unit includes a release unit that releases the products produced by the cells to the outside of the device. ..
  35.  酸素を発生させる酸素発生材を収容する酸素発生材収容部と、細胞を収容する細胞収容部と、前記酸素発生材収容部と前記細胞収容部との間に設けられ、前記酸素発生材から発生した酸素を前記細胞収容部に送致する酸素送致部と、を備えるとともに、前記酸素発生材収容部は、内部に対する出入を可能とする蓋部を備え、かつ前記細胞収容部は、前記細胞が産生した産生物をデバイスの外部に放出する放出部を備えている細胞移植デバイスから酸素発生材を取り出す方法であり、
     前記蓋部の少なくとも一部を開ける蓋開け工程と、
     前記蓋開け工程後、前記蓋部の開けた部分から前記酸素発生材を取り出す取り出し工程と、
     前記取り出し工程後、前記蓋部の開けた部分を閉じる蓋閉じ工程と、
     を含む細胞移植デバイスの酸素発生材取り出し方法。
    An oxygen generating material storage portion that stores an oxygen generating material that generates oxygen, a cell storage portion that stores cells, and is provided between the oxygen generating material storage portion and the cell storage portion, and is generated from the oxygen generating material. The oxygen generating part for sending oxygen to the cell containing part, the oxygen generating material containing part is provided with a lid part capable of entering and exiting, and the cell containing part is produced by the cells. A method of taking out an oxygen generating material from a cell transplantation device having a release part for releasing the produced product to the outside of the device,
    A lid opening step of opening at least a part of the lid,
    A step of taking out the oxygen generating material from the opened portion of the lid after the lid opening step,
    A lid closing step of closing the opened portion of the lid portion after the removing step,
    And a method for removing an oxygen generating material from a cell transplantation device including the same.
  36.  酸素を発生させる酸素発生材を収容する酸素発生材収容部と、細胞を収容する細胞収容部と、前記酸素発生材収容部と前記細胞収容部との間に設けられ、前記酸素発生材から発生した酸素を前記細胞収容部に送致する酸素送致部と、を備えるとともに、前記酸素発生材収容部は、内部に対する出入を可能とする蓋部を備え、かつ前記細胞収容部は、前記細胞が産生した産生物をデバイスの外部に放出する放出部を備えている細胞移植デバイスから酸素発生材を交換する方法であり、
     前記蓋部の少なくとも一部を開ける蓋開け工程と、
     前記蓋開け工程後、前記蓋部の開けた部分から前記酸素発生材を取り出す取り出し工程と、
     前記取り出し工程後、交換用の酸素発生材を前記酸素発生材収容部内に収容する収容工程と、
     前記収容工程後、前記蓋部の開けた部分を閉じる蓋閉じ工程と、
     を含む細胞移植デバイスの酸素発生材交換方法。
    An oxygen generating material storage portion that stores an oxygen generating material that generates oxygen, a cell storage portion that stores cells, and is provided between the oxygen generating material storage portion and the cell storage portion, and is generated from the oxygen generating material. The oxygen generating part for sending oxygen to the cell containing part, the oxygen generating material containing part is provided with a lid part capable of entering and exiting, and the cell containing part is produced by the cells. Is a method of exchanging an oxygen generating material from a cell transplantation device having a release part for releasing the produced product to the outside of the device,
    A lid opening step of opening at least a part of the lid,
    A step of taking out the oxygen generating material from the opened portion of the lid after the lid opening step,
    After the removing step, a storing step of storing a replacement oxygen generating material in the oxygen generating material storing section,
    A lid closing step of closing the opened portion of the lid portion after the housing step,
    And a method for exchanging an oxygen generating material in a cell transplantation device including the same.
  37.  金属過酸化物と、弱酸又は弱酸前駆体とを含み、自己反応性を備えることを特徴とする酸素徐放材。 An oxygen-releasing material that is self-reactive and contains a metal peroxide and a weak acid or a weak acid precursor.
PCT/JP2019/048959 2018-12-28 2019-12-13 Cell capsule, cell transplantation device, method for extracting oxygen-generating material of cell transplantation device, method for replacing oxygen-generating material of cell transplantation device, and oxygen sustained-release material WO2020137628A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018246947A JP2020103713A (en) 2018-12-28 2018-12-28 Cell capsule
JP2018-246947 2018-12-28
JP2019037561A JP2020137495A (en) 2019-03-01 2019-03-01 Cell transplantation device, method for taking out oxygen generating material of cell transplantation device, and method for replacing oxygen generating material of cell transplantation device
JP2019-037561 2019-03-01
JP2019065623A JP2020164452A (en) 2019-03-29 2019-03-29 Oxygen sustained release material for cell transplantation
JP2019-065623 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020137628A1 true WO2020137628A1 (en) 2020-07-02

Family

ID=71127673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048959 WO2020137628A1 (en) 2018-12-28 2019-12-13 Cell capsule, cell transplantation device, method for extracting oxygen-generating material of cell transplantation device, method for replacing oxygen-generating material of cell transplantation device, and oxygen sustained-release material

Country Status (1)

Country Link
WO (1) WO2020137628A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138104A (en) * 1987-11-25 1989-05-31 Meiwa Kouyu Kk Oxygen generation agent
WO2013023013A1 (en) * 2011-08-09 2013-02-14 Wake Forest University Health Sciences Co-encapsulation of live cells with oxygen-generating particles
WO2017024076A1 (en) * 2015-08-04 2017-02-09 The Regents Of The University Of California Cell transplantation device
US20170239391A1 (en) * 2016-02-08 2017-08-24 Beta-O2 Technologies Ltd. Systems and methods for providing oxygen to transplanted cells
JP2017222566A (en) * 2016-06-10 2017-12-21 宇部マテリアルズ株式会社 Oxygen sustained-release agent, method for producing the same and oxygen feed method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138104A (en) * 1987-11-25 1989-05-31 Meiwa Kouyu Kk Oxygen generation agent
WO2013023013A1 (en) * 2011-08-09 2013-02-14 Wake Forest University Health Sciences Co-encapsulation of live cells with oxygen-generating particles
WO2017024076A1 (en) * 2015-08-04 2017-02-09 The Regents Of The University Of California Cell transplantation device
US20170239391A1 (en) * 2016-02-08 2017-08-24 Beta-O2 Technologies Ltd. Systems and methods for providing oxygen to transplanted cells
JP2017222566A (en) * 2016-06-10 2017-12-21 宇部マテリアルズ株式会社 Oxygen sustained-release agent, method for producing the same and oxygen feed method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALEMDAR, N. ET AL.: "Oxygen-generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis", ACS BIOMATER SCI ENG, vol. 3, 2016, pages 1964 - 71, XP055540147, ISSN: 2373-9878, DOI: 10.1021/acsbiomaterials.6b00109 *
BARKAI, U., ROTEM AVI, DE VOS PAUL: "Survival of encapsulated islets: More than a membrane story, World J Transplant", WORLD JOURNAL OF TRANSPLANTATION, vol. 6, no. 1, 24 March 2016 (2016-03-24), pages 69 - 90, XP055568276, ISSN: 2220-3230 *
EUN MI LEE, JI‐IN JUNG, ZAHID ALAM, HEE‐GYEONG YI, HEEJIN KIM, JIN WOO CHOI, SUNGHOON HURH, YOUNG JUNE KIM, JONG CHEOL JEO: "Effect of an oxygen-generating scaffold on the viability and insulin secretion function of porcine neonatal pancreatic cell clusters", XENOTRANSPLANTATION, vol. 25, no. 2, 10 January 2018 (2018-01-10) - March 2018 (2018-03-01), pages e12378, XP055503037, ISSN: 1399-3089 *
MCQUILLING, J.P . ET AL.: "Applicaitons of particulate oxygen-generating substances (POGS) in the bioartificial pancreas", BIOMATER SCI, vol. 5, no. 12, 21 November 2017 (2017-11-21), pages 2437 - 2447, XP055723153, ISSN: 2047-7830 *
SULEEPORN KITCHA ET BENJAMAS CHEIRSILP: "Enhanced Lipid Production by Co-cultivation and Co- encapsulation of Oleaginous Yeast Trichosporonoides spathulata with Microalgae in Alginate Gel Beads", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 173, no. 2, 28 March 2014 (2014-03-28) - May 2014 (2014-05-01), pages 522 - 34, XP055723152, ISSN: 0273-2289 *

Similar Documents

Publication Publication Date Title
US10064976B2 (en) Multiple-layer immune barrier for donor cells
CA2744643C (en) Apparatus for transportation of oxygen to implanted cells
JP6696206B2 (en) Cell culture device using gas impermeable tube and cell culture method
JP6749239B2 (en) Cell implant gas treatment system
EP2104492B1 (en) Oxygen supply for cell transplant and vascularization
JP2008521538A (en) Implantable device
KR20190106995A (en) Stacked tissue encapsulation device systems with or without oxygen delivery
CA3043468C (en) Percutaneous gas diffusion device suitable for use with a subcutaneous implant
EP1679365A1 (en) Cell handling device, human tissue regeneration composition, and human tissue regeneration method
KR20150013469A (en) Cell culture system and cell culture method
WO2011024178A1 (en) Oxygen supply for implantable medical device
CA3013860A1 (en) Systems and methods for providing oxygen to transplanted cells
Neumann et al. Encapsulation of stem-cell derived β-cells: A promising approach for the treatment for type 1 diabetes mellitus
WO2020137628A1 (en) Cell capsule, cell transplantation device, method for extracting oxygen-generating material of cell transplantation device, method for replacing oxygen-generating material of cell transplantation device, and oxygen sustained-release material
US8592203B2 (en) Selective siliceous bioreactor
EP3903881A1 (en) Cell transplant kit, method for manufacturing bag-like structure, and therapeutic agent for diabetes
JP2020137495A (en) Cell transplantation device, method for taking out oxygen generating material of cell transplantation device, and method for replacing oxygen generating material of cell transplantation device
JP2020103713A (en) Cell capsule
RU2482180C2 (en) Tissue-engineered construct bioreactor
Li et al. Encapsulation matrices for neurotrophic factor-secreting myoblast cells
WO2014193963A1 (en) Controlled outgassing of hyberbarically loaded materials for the delivery of oxygen and other therapeutic gases in biomedical applications
JP2020164452A (en) Oxygen sustained release material for cell transplantation
US20220118025A1 (en) Nanofibrous encapsulation device for safe delivery of therapeutic agents
JP2009095315A (en) Atmosphere-regulating agent, cell culture method and cell culture kit
Steg et al. Review on increasing the viability of seeded cells in implanted tissue engineering scaffolds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903539

Country of ref document: EP

Kind code of ref document: A1