WO2020137595A1 - Liquid heating medium - Google Patents

Liquid heating medium Download PDF

Info

Publication number
WO2020137595A1
WO2020137595A1 PCT/JP2019/048777 JP2019048777W WO2020137595A1 WO 2020137595 A1 WO2020137595 A1 WO 2020137595A1 JP 2019048777 W JP2019048777 W JP 2019048777W WO 2020137595 A1 WO2020137595 A1 WO 2020137595A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
photothermal conversion
tungsten oxide
liquid
light
Prior art date
Application number
PCT/JP2019/048777
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 常松
長南 武
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2020563072A priority Critical patent/JP7347446B2/en
Publication of WO2020137595A1 publication Critical patent/WO2020137595A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/16Details of absorbing elements characterised by the absorbing material made of ceramic; made of concrete; made of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a liquid heating medium.
  • the applicant of the present application discloses in Patent Document 1 that the infrared shielding material particles containing tungsten oxide fine particles and/or composite tungsten oxide fine particles have a particle diameter of 1 nm or more and 800 nm or less.
  • the infrared ray shielding material fine particle dispersion having excellent optical properties, such as shielding sunlight rays, particularly light in the near infrared region more efficiently, and at the same time maintaining the transmittance in the visible light region. It has been disclosed that can be prepared.
  • the infrared absorbing particles containing tungsten oxide or composite tungsten oxide have excellent photothermal conversion characteristics for converting the absorbed infrared rays into heat, and can be used for various applications utilizing these characteristics. Therefore, various studies have been made accordingly.
  • the applicant of the present application invented a light-absorbing resin composition for laser welding, which was stable in Patent Document 2, utilizing the characteristic that functional fine particles such as composite tungsten oxide absorb light to generate heat.
  • Patent Document 3 utilizes the characteristic that the functional fine particles such as composite tungsten oxide absorb light to generate heat, and thus the tungsten oxide particles and/or the composite tungsten oxide particles are
  • the inventors have invented a near-infrared absorbing fiber that is a fiber contained on the surface and/or inside, and a fiber product obtained by processing the near-infrared absorbing fiber, and disclosed a method for applying heat and heat.
  • ITO indium oxide
  • ATO antimony-doped tin oxide
  • hexaboride hexaboride
  • Patent Document 4 proposes a sunlight absorbing fluid in which titanium nitride is used as a material of the photothermal conversion fine particles, and titanium nitride nanoparticles capable of efficiently absorbing sunlight energy and heating the fluid are dispersed. There is.
  • the liquid heating medium is used to absorb the solar energy and transfer the heat to the device. Then, these liquid heating mediums are used by circulating them in a heating medium transfer facility such as a heat pump, a thermoelectric conversion element, and others (in the present invention, sometimes referred to as “heat pump etc.”). Is done.
  • a heating medium transfer facility such as a heat pump, a thermoelectric conversion element, and others (in the present invention, sometimes referred to as “heat pump etc.”).
  • a solar light absorbing fluid in which titanium nitride nanoparticles or the like as disclosed in Patent Document 4 is applied as a heating medium, the titanium nitride nanoparticles or the like have high hardness. Since the particles are particles, it has been found that there is a problem that a member of a heating medium conveying facility such as a heat pump is significantly worn and it is difficult to operate for a long period of time.
  • the present invention has been made under the above-mentioned circumstances, and the problem is that it has an infrared absorption property from sunlight, and the temperature of the temperature medium conveying facility is hardly worn and the temperature is not increased.
  • the purpose of the present invention is to provide a liquid heating medium that enables long-term operation of the medium transfer facility.
  • the inventors of the present invention have conducted research and as a result, have a combination of excellent visible light transmittance and infrared absorption characteristics, and a liquid temperature medium containing low hardness infrared absorption fine particles as photothermal conversion fine particles. And completed the present invention. That is, the invention for solving the above-mentioned problems is a liquid heating medium in which photothermal conversion fine particles that absorb sunlight energy or the like and convert it into heat are dispersed in a liquid medium.
  • FIG. 3 is a schematic diagram of a crystal structure of a composite tungsten oxide having a hexagonal crystal.
  • the heating medium according to the present invention is a liquid heating medium in which photothermal conversion fine particles that absorb light such as sunlight and convert it into heat are dispersed in the liquid medium.
  • the photothermal conversion fine particles are characterized by being tungsten oxide fine particles and/or composite tungsten oxide fine particles which are infrared absorbing fine particles.
  • the medium used for the liquid heating medium according to the present invention includes organic solvents, oils and fats, petroleum-derived media, liquid resins, liquid plasticizers for plastics, and polymerized by curing. It is possible to use one or more liquid media selected from the compounds, water and the like.
  • organic solvent it is possible to select various ones such as alcohol, ketone, hydrocarbon, glycol and water.
  • alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol and diacetone alcohol; ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone.
  • Ester solvent such as 3-methyl-methoxy-propionate; Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, propylene Glycol derivatives such as glycol ethyl ether acetate; amides such as formamide, N-methylformamide, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone; aromatic hydrocarbons such as toluene and xylene; ethylene chloride, Examples thereof include halogenated hydrocarbons such as chlorobenzene.
  • organic solvents having low polarity are preferable, and isopropyl alcohol, ethanol, 1-methoxy-2-propanol, dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, toluene, propylene glycol monomethyl ether acetate, n-butyl acetate, etc. are more preferable. preferable.
  • These solvents may be used alone or in combination of two or more.
  • vegetable oils compounds derived from vegetable oils and the like can be used.
  • vegetable oil linseed oil, sunflower oil, tung oil, sesame oil, cottonseed oil, rapeseed oil, soybean oil, rice bran oil, olive oil, coconut oil, palm oil, dehydrated castor oil and the like are preferable.
  • compound derived from vegetable oil fatty acid monoester obtained by direct esterification reaction of fatty acid of vegetable oil and monoalcohol, ethers and the like are preferable.
  • petroleum-derived medium commercially available petroleum-based solvents and mineral oils can be used.
  • the petroleum solvent include Isopar E, Exol Hexane, Exol Heptane, Exol E, Exol D30, Exol D40, Exol D60, Exol D80, Exol D95, Exol D110, Exol D130 (above, manufactured by ExxonMobil) and the like.
  • the mineral oil are preferably paraffin-based and naphthene-based oils.
  • Liquid plasticizers for plastics include plasticizers that are compounds of monohydric alcohols and organic acid esters, ester-based plasticizers such as polyhydric alcohol organic acid ester compounds, and phosphorus such as organic phosphoric acid-based plasticizers.
  • a preferable example is an acid-based plasticizer.
  • triethylene glycol di-2-ethyl hexaonate, triethylene glycol di-2-ethyl butyrate, and tetraethylene glycol di-2-ethyl hexaonate are more preferable because they have low hydrolyzability.
  • Photothermal conversion fine particles used for liquid heating medium are tungsten oxide fine particles and/or composite tungsten oxide fine particles which are infrared absorbing fine particles.
  • tungsten oxide WO 3
  • absorption/reflection characteristics in the infrared region are small, and it is not effective as photothermal conversion fine particles.
  • WO 3 having oxygen deficiency and composite tungsten oxide obtained by adding a positive element such as Na to WO 3 are conductive materials and have free electrons. Analysis of single crystals of these materials having free electrons suggests the response of free electrons to light in the infrared region.
  • the present inventors have found that there is a particularly effective range as photothermal conversion fine particles in a specific portion of the composition range of the tungsten and oxygen. Then, it has been conceived that the tungsten oxide fine particles and the composite tungsten oxide fine particles which are transparent in the visible light region and have absorption in the infrared region are suitable as the photothermal conversion fine particles used for the liquid heating medium.
  • the hardness is considered to be low.
  • the tungsten oxide fine particles and the composite tungsten oxide fine particles are excellent photothermal conversion fine particles also from the viewpoint of enabling long-time operation without abrading members of equipment such as a heat pump. ..
  • tungsten oxide fine particles and/or the composite tungsten oxide fine particles which are the photothermal conversion fine particles according to the present invention
  • the composite tungsten oxide fine particles will be described in this order.
  • the tungsten oxide fine particle according to the present invention is a tungsten oxide represented by the general formula WyOz (where W is tungsten, O is oxygen, and 2.2 ⁇ z/y ⁇ 2.999). It is a fine particle.
  • the composition range of the tungsten and oxygen is such that the composition ratio of oxygen to tungsten is less than 3, and further, when the tungsten oxide fine particles are described as WyOz, 2 It is preferable that 0.2 ⁇ z/y ⁇ 2.999.
  • the value of x/y indicating the added amount of the element M will be described.
  • the value of x/y is larger than 0.001
  • a sufficient amount of free electrons are generated in the composite tungsten oxide, and the desired infrared absorption effect can be obtained.
  • the amount of the element M added increases, the supply amount of free electrons increases and the infrared absorption efficiency also increases, but the effect is saturated when the value of x/y is about 1.
  • the value of x/y is smaller than 1, it is possible to avoid generation of an impurity phase in the photothermal conversion fine particles, which is preferable.
  • the element M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au. , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be. , Hf, Os, Bi, and I are preferably one or more.
  • the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir. , Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti More preferably, it is one or more kinds of elements selected from Nb, V, Mo, Ta, and Re. From the viewpoint of improving the optical characteristics and weather resistance of the photothermal conversion fine particles, the element M more preferably belongs to the alkaline earth metal elements, transition metal elements, 4B group elements, and 5B group elements.
  • the composite tungsten oxide fine particles have a hexagonal crystal structure
  • the transmission of the fine particles in the visible light region is improved and the absorption in the infrared region is improved. This will be described with reference to FIG. 1, which is a schematic plan view of the crystal structure of this hexagonal crystal.
  • the composite tungsten oxide fine particles contain the unit structure described with reference to FIG.
  • the composite tungsten oxide fine particles may be crystalline or amorphous.
  • the hexagonal crystal is likely to be formed. Specifically, hexagonal crystals are easily formed when Cs, K, Rb, Tl, In, Ba, Li, Ca, Sr, Fe and Sn are added.
  • other elements may be used as long as the above-mentioned element M exists in the hexagonal void formed by the WO 6 unit, and the elements are not limited to the above-mentioned elements.
  • the addition amount of the additional element M is preferably 0.2 or more and 0.5 or less, more preferably 0 or less in x/y value. .33.
  • the value of x/y is 0.33, it is considered that the element M described above is arranged in all the hexagonal voids.
  • tetragonal and cubic composite tungsten oxides are also effective as photothermal conversion fine particles.
  • the absorption position in the infrared region tends to change, and the absorption position tends to move to the longer wavelength side in the order of cubic crystal ⁇ tetragonal crystal ⁇ hexagonal crystal.
  • incidental low absorption in the visible light region is in the order of hexagonal crystal, tetragonal crystal, and cubic crystal. Therefore, it is preferable to use a hexagonal composite tungsten oxide for the purpose of transmitting light in the visible light region and absorbing light in the infrared light region.
  • the tendency of the optical characteristics described here is only a rough tendency and changes depending on the type of the added element, the added amount, and the oxygen amount, and the present invention is not limited to this.
  • Tungsten Oxide Fine Particles and Composite Tungsten Oxide Fine Particles The photothermal conversion fine particles containing the tungsten oxide fine particles and the composite tungsten oxide fine particles according to the present invention largely absorb light in the near infrared region, particularly in the vicinity of a wavelength of 1000 nm. Therefore, the transmitted color tone is often blue to green.
  • the so-called “Magneli phase” having a composition ratio represented by 2.45 ⁇ z/y ⁇ 2.999 is chemically stable, and is in the infrared region. Since it has good absorption characteristics, it is preferable as the photothermal conversion fine particles.
  • the crystallite diameter of the photothermal conversion fine particles is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less, and further preferably 10 nm or more and 70 nm or less.
  • measurement of an X-ray diffraction pattern by a powder X-ray diffraction method ( ⁇ -2 ⁇ method) and analysis by the Rietveld method are used.
  • the X-ray diffraction pattern can be measured using, for example, a powder X-ray diffractometer "X'Pert-PRO/MPD" manufactured by Spectris KK PAnalytical.
  • the surface of the photothermal conversion fine particles according to the present invention is coated with an oxide containing one or more kinds of metals of Si, Ti, Zr, Al and Zn from the viewpoint of improving weather resistance.
  • the coating method is not particularly limited, but it is possible to coat the surface of the photothermal conversion fine particles by adding the metal alkoxide to the solution in which the photothermal conversion fine particles are dispersed.
  • a dispersant such as a coupling agent, and a surfactant may be added to the liquid heating medium according to the present invention.
  • the dispersant, the coupling agent, and the surfactant can be selected according to the application, but preferably have an amine-containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group. These functional groups are adsorbed on the surface of the tungsten oxide fine particles or the composite tungsten oxide fine particles, prevent the aggregation of the tungsten oxide fine particles or the composite tungsten oxide fine particles, and make the photothermal conversion fine particles according to the present invention uniform in the heating medium. Has the effect of being dispersed.
  • Suitable dispersants include, but are not limited to, phosphate ester compounds, polymer dispersants, silane coupling agents, titanate coupling agents, aluminum coupling agents, and the like. Not a thing.
  • the polymer dispersant include an acrylic polymer dispersant, a urethane polymer dispersant, an acrylic/block copolymer polymer dispersant, a polyether dispersant, and a polyester polymer dispersant.
  • the liquid heating medium according to the present invention absorbs sunlight energy and the like and converts it into heat, and enables long-time operation without abrading the members of the equipment. Is. Therefore, it is suitable as a heating medium for a heat pump or the like using solar energy or the like.
  • the crystallite size of the photothermal conversion fine particles in the dispersions according to the examples, comparative examples and reference examples was measured by powder X-ray diffractometry using a powder X-ray diffractometer (Spectris Co., Ltd. PANalytical X'Pert-PRO/MPD). ( ⁇ 2 ⁇ method), and calculated using Rietveld method.
  • the optical characteristics of the photothermal conversion microparticles were measured using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.) by placing the diluted photothermal conversion microparticle dispersion in a measuring glass cell with a light path of 20 mm.
  • the visible light transmittance and the solar radiation transmittance were calculated according to JISR3106.
  • the incident direction of the light of the spectrophotometer was perpendicular to the measuring glass cell.
  • a blank liquid in which only pure water as a main solvent was put in the measurement glass cell was used as a baseline of light transmittance.
  • the light-heat conversion fine particles dispersion is diluted to a visible light transmittance of 70%, and the solar light approximate spectrum lamp (SAN-EI ELECTRIC solar simulator is used from the initial state at a liquid temperature of 23° C.).
  • SAN-EI ELECTRIC solar simulator is used from the initial state at a liquid temperature of 23° C.
  • XES-40S1 is used to irradiate artificial sunlight corresponding to AM (Air Mass) 1.5 at a radiant intensity of light of 1500 W/m 2 for 20 minutes to measure the temperature rise range of the photothermal conversion fine particle dispersion before and after irradiation. did.
  • the room temperature at this time was 23°C.
  • a composite tungsten oxide powder (YM-01 manufactured by Sumitomo Metal Mining Co., Ltd.) containing ⁇ 3.0) was prepared. Then, the mixed solution obtained by mixing 20% by mass of the photothermal conversion material and 80% by mass of pure water was loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and pulverized and dispersed for 20 hours, A photothermal conversion fine particle dispersion liquid of Cs 0.33 WOz was obtained.
  • the crystallite diameter of the photothermal conversion fine particle was measured and found to be 23 nm. The measurement results are shown in Table 1.
  • the obtained light-heat conversion fine particle dispersion was diluted with pure water until the concentration of the light-heat conversion fine particles became 0.023% by mass to obtain the light-heat conversion fine particle dispersion according to Example 1.
  • the visible light transmittance was 49% and the solar radiation transmittance was 19%.
  • Example 2 and 3 The light-heat converting fine particle dispersion liquid described in Example 1 was diluted with pure water until the concentration of the light-heat converting fine particles became 0.0023% by mass to obtain the light-heat converting fine particle dispersion liquid according to the second embodiment. The mixture was diluted with pure water to 0.00023% by mass to obtain a photothermal conversion fine particle dispersion liquid according to Example 3. Then, in the same manner as in Example 1, the optical characteristics of the photothermal conversion fine particle dispersion liquids according to Examples 2 and 3 were measured. The measurement results are shown in Table 1.
  • Comparative Example 1 As a comparative example, pure water was used as the light-heat converting fine particle dispersion liquid, and the optical characteristics of the light-heat converting fine particle dispersion liquid according to the first comparative example were measured in the same manner as in Example 1. The range of increase was 6.9°C. The measurement results are shown in Table 1.
  • the photothermal conversion material was changed from the composite tungsten oxide powder to tin-doped indium oxide (ITO) powder to obtain photothermal conversion fine particle dispersions according to Reference Examples 1 to 4.
  • the light-heat conversion fine particle dispersion liquid according to Reference Example 1 was obtained by setting the concentration of light-heat conversion fine particles at the time of optical characteristic measurement to 0.071 mass %, and the concentration was 0.050 mass%, and the light-heat conversion fine particle dispersion liquid according to Reference Example 2 was obtained.
  • a concentration of 0.0071 mass% to obtain a photothermal conversion fine particle dispersion according to Reference Example 3 and a concentration of 0.00071 mass% to obtain a photothermal conversion fine particle dispersion according to Reference Example 4.
  • the light-heat conversion material was changed from the composite tungsten oxide powder to the antimony-doped tin oxide (ATO) powder to obtain the light-heat conversion fine particle dispersions according to Reference Examples 5 to 8.
  • the light-heat conversion fine particle dispersion liquid according to Reference Example 5 was obtained by setting the concentration of the light-heat conversion fine particles at the time of optical property measurement to 0.099 mass%, and the concentration was 0.066 mass%, and the light-heat conversion fine particle dispersion liquid according to Reference Example 6 was obtained.
  • a photothermal conversion fine particle dispersion according to Reference Example 7 with a concentration of 0.0066% by mass and obtain a photothermal conversion fine particle dispersion according to Reference Example 8 with a concentration of 0.00066% by mass.
  • the light-heat conversion material was changed from the composite tungsten oxide powder to the titanium nitride powder to obtain light-heat conversion fine particle dispersions according to Reference Examples 11 and 12.
  • the light-heat conversion fine particle dispersion liquid according to Reference Example 11 was obtained by setting the concentration of the light-heat conversion fine particles at the time of optical characteristic measurement to 0.00061% by mass, and the concentration was 0.00052% by mass, and the light-heat conversion fine particle dispersion liquid according to Reference Example 12 was obtained.

Abstract

Provided is a liquid heating medium in which photothermal conversion microparticles which absorb light and convert the absorbed light into heat are dispersed.

Description

液状の温媒Liquid heating medium
 本発明は、液状の温媒に関する。 The present invention relates to a liquid heating medium.
 赤外線を吸収する赤外線吸収微粒子は、例えば熱線遮蔽膜等の各種用途に用いることができるため、従来から各種検討がなされている。
 例えば、本出願の出願人は特許文献1において、タングステン酸化物微粒子、または/及び、複合タングステン酸化物微粒子を含有する赤外線遮蔽材料粒子の粒子直径を1nm以上800nm以下に微粒子化し、当該赤外線遮蔽材料微粒子を媒体中に分散させることで、太陽光線、特に近赤外線領域の光をより効率良く遮蔽し、同時に可視光領域の透過率を保持する等、優れた光学特性を有する赤外線遮蔽材料微粒子分散体を作製できることを開示した。
Since infrared absorbing fine particles that absorb infrared rays can be used in various applications such as a heat ray shielding film, various studies have been made in the past.
For example, the applicant of the present application discloses in Patent Document 1 that the infrared shielding material particles containing tungsten oxide fine particles and/or composite tungsten oxide fine particles have a particle diameter of 1 nm or more and 800 nm or less. By dispersing fine particles in the medium, the infrared ray shielding material fine particle dispersion having excellent optical properties, such as shielding sunlight rays, particularly light in the near infrared region more efficiently, and at the same time maintaining the transmittance in the visible light region. It has been disclosed that can be prepared.
 一方、タングステン酸化物や、複合タングステン酸化物を含む赤外線吸収粒子は、吸収した赤外線を熱に変換する光熱変換特性にも優れており、その特性を利用した各種用途に用いることも出来る。そこで、それに応じた各種検討もなされている。
 例えば、本出願の出願人は特許文献2において、複合タングステン酸化物などの機能性微粒子が光を吸収して発熱する特性を利用して、レーザー溶着用光吸収樹脂組成物を発明し、安定したプラスチック間の接合を提供できる手段を開示した。
On the other hand, the infrared absorbing particles containing tungsten oxide or composite tungsten oxide have excellent photothermal conversion characteristics for converting the absorbed infrared rays into heat, and can be used for various applications utilizing these characteristics. Therefore, various studies have been made accordingly.
For example, the applicant of the present application invented a light-absorbing resin composition for laser welding, which was stable in Patent Document 2, utilizing the characteristic that functional fine particles such as composite tungsten oxide absorb light to generate heat. Disclosed are means capable of providing a bond between plastics.
 さらに、本出願の出願人は特許文献3において、複合タングステン酸化物などの機能性微粒子が光を吸収して発熱する特性を利用して、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子を、表面および/または内部に含有する繊維である近赤外線吸収繊維や、該近赤外線吸収繊維が加工されてなる繊維製品を発明し、発熱・保温用への応用方法を開示した。 Furthermore, the applicant of the present application, in Patent Document 3, utilizes the characteristic that the functional fine particles such as composite tungsten oxide absorb light to generate heat, and thus the tungsten oxide particles and/or the composite tungsten oxide particles are The inventors have invented a near-infrared absorbing fiber that is a fiber contained on the surface and/or inside, and a fiber product obtained by processing the near-infrared absorbing fiber, and disclosed a method for applying heat and heat.
 また、これらのアプリケーションに使用される、光を吸収して熱に変換する光熱変換微粒子として、上述のタングステン酸化物、複合タングステン酸化物以外に、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、六ホウ化物等も検討がなされてきた。 In addition to the above-described tungsten oxide and composite tungsten oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide ( ATO), hexaboride, etc. have also been studied.
 さらに、特許文献4においては、光熱変換微粒子の材料として窒化チタンを用い、太陽光エネルギーを効率よく吸収するとともに流体への加熱が可能な窒化チタンナノ粒子を分散させた太陽光吸収流体が提案されている。 Further, Patent Document 4 proposes a sunlight absorbing fluid in which titanium nitride is used as a material of the photothermal conversion fine particles, and titanium nitride nanoparticles capable of efficiently absorbing sunlight energy and heating the fluid are dispersed. There is.
国際公開第2005/037932号公報International Publication No. 2005/037932 特開2008-127511号公報JP, 2008-127511, A 国際公開第2006/049025号公報International Publication No. 2006/049025 特開2016-125679号広報Publication of JP-A-2016-125679
 昨今、エネルギー需要の高まりやCO排出削減への対応に伴い、太陽光エネルギー等を利用した光熱変換技術が強く求められるようになった。これにより、従来は採算が取れなかった技術について見直しが進み、その一部は工業化可能なレベルとなってきた。その中の1つが、太陽光エネルギー等を用いたヒートポンプ、熱電変換素子、他に係る技術である。 Recently, as the demand for energy has increased and CO 2 emission has been reduced, there has been a strong demand for a photothermal conversion technology using solar energy or the like. As a result, technologies that were not profitable in the past have been reviewed, and some of them have reached a level where they can be industrialized. One of them is a technique related to a heat pump using solar energy or the like, a thermoelectric conversion element, and the like.
 当該太陽光エネルギー等を用いたヒートポンプ、熱電変換素子、他、においては、太陽光エネルギー等を吸収し、装置へ熱を移動させる為に液状の温媒が使用される。そして、これらの液状の温媒は、ヒートポンプ、熱電変換素子、他(本発明において、「ヒートポンプ等」と記載する場合がある。)における配管やポンプ等の温媒搬送設備内を循環させて使用されるものである。
 ところが、本発明者らの検討によると、例えば特許文献4で開示されているような窒化チタンナノ粒子等を分散させた太陽光吸収流体を温媒として適用すると、当該窒化チタンナノ粒子等が高硬度な粒子である為、ヒートポンプ等の温媒搬送設備の部材が著しく摩耗し、長期間の運転が困難であるという課題が知見された。
In the heat pump, the thermoelectric conversion element, etc. using the solar energy, the liquid heating medium is used to absorb the solar energy and transfer the heat to the device. Then, these liquid heating mediums are used by circulating them in a heating medium transfer facility such as a heat pump, a thermoelectric conversion element, and others (in the present invention, sometimes referred to as “heat pump etc.”). Is done.
However, according to the study by the present inventors, when a solar light absorbing fluid in which titanium nitride nanoparticles or the like as disclosed in Patent Document 4 is applied as a heating medium, the titanium nitride nanoparticles or the like have high hardness. Since the particles are particles, it has been found that there is a problem that a member of a heating medium conveying facility such as a heat pump is significantly worn and it is difficult to operate for a long period of time.
 本発明では上述の状況の下になされたものであり、その課題とするところは、太陽光からの赤外線吸収特性を有し、且つ、温媒搬送設備の部材を摩耗することが殆どなく当該温媒搬送設備の長期間の運転を可能にする液状の温媒を提供することである。 The present invention has been made under the above-mentioned circumstances, and the problem is that it has an infrared absorption property from sunlight, and the temperature of the temperature medium conveying facility is hardly worn and the temperature is not increased. The purpose of the present invention is to provide a liquid heating medium that enables long-term operation of the medium transfer facility.
 本発明者等は上述の課題の解決の為、研究を行った結果、優れた可視光透過性と赤外線吸収特性を兼ね備え、且つ、低硬度な赤外線吸収微粒子を光熱変換微粒子として含む液状の温媒に想到し、本発明を完成した。
 即ち、上述の課題を解決する為の発明は、太陽光エネルギー等を吸収して熱に変換する光熱変換微粒子を液状媒質中に分散させた液状の温媒である。
In order to solve the above problems, the inventors of the present invention have conducted research and as a result, have a combination of excellent visible light transmittance and infrared absorption characteristics, and a liquid temperature medium containing low hardness infrared absorption fine particles as photothermal conversion fine particles. And completed the present invention.
That is, the invention for solving the above-mentioned problems is a liquid heating medium in which photothermal conversion fine particles that absorb sunlight energy or the like and convert it into heat are dispersed in a liquid medium.
 本発明では、太陽光エネルギー等を吸収して熱に変換すると共に機器の部材を摩耗させることなく長時間の運転を可能とする、液状の温媒を提供することができる。 In the present invention, it is possible to provide a liquid heating medium that absorbs sunlight energy and the like and converts it into heat and that enables long-term operation without abrading the members of the equipment.
六方晶を有する複合タングステン酸化物の結晶構造の模式図。FIG. 3 is a schematic diagram of a crystal structure of a composite tungsten oxide having a hexagonal crystal.
 本発明を実施するための形態について、以下、[1]液状の温媒、[2]液状の温媒に用いる媒質、[3]液状の温媒に用いる光熱変換微粒子、[4]液状の温媒に用いるその他の成分、[5]まとめ、の順に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION [1] Liquid heating medium, [2] Medium used for liquid heating medium, [3] Photothermal conversion fine particles used for liquid heating medium, [4] Liquid temperature Other components used in the medium, [5] summary, will be described in this order.
[1]液状の温媒
 本発明に係る温媒は、太陽光等の光を吸収して熱に変換する光熱変換微粒子を液状媒質中に分散させた液状の温媒である。そして、当該光熱変換微粒子が、赤外線吸収微粒子であるタングステン酸化物微粒子および/または複合タングステン酸化物微粒子であることを特徴とする。
[1] Liquid heating medium The heating medium according to the present invention is a liquid heating medium in which photothermal conversion fine particles that absorb light such as sunlight and convert it into heat are dispersed in the liquid medium. The photothermal conversion fine particles are characterized by being tungsten oxide fine particles and/or composite tungsten oxide fine particles which are infrared absorbing fine particles.
[2]液状の温媒に用いる媒質
 本発明に係る液状の温媒に用いる媒質としては、有機溶剤、油脂、石油由来の媒質、液状樹脂、プラスチック用の液状可塑剤、硬化により高分子化される化合物、水から選択される1種以上の液体媒質を用いることが出来る。
[2] Medium used for liquid heating medium The medium used for the liquid heating medium according to the present invention includes organic solvents, oils and fats, petroleum-derived media, liquid resins, liquid plasticizers for plastics, and polymerized by curing. It is possible to use one or more liquid media selected from the compounds, water and the like.
 有機溶剤としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系など、種々のものを選択することが可能である。具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;3-メチル-メトキシ-プロピオネートなどのエステル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;フォルムアミド、N-メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド類;トルエン、キシレンなどの芳香族炭化水素類;エチレンクロライド、クロルベンゼンなどのハロゲン化炭化水素類などを挙げることができる。これらの中でも極性の低い有機溶剤が好ましく、特に、イソプロピルアルコール、エタノール、1-メトキシ-2-プロパノール、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n-ブチルなどがより好ましい。これらの溶媒は1種または2種以上を組み合わせて用いることができる。 ∙ As an organic solvent, it is possible to select various ones such as alcohol, ketone, hydrocarbon, glycol and water. Specifically, alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol and diacetone alcohol; ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone. Ester solvent such as 3-methyl-methoxy-propionate; Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, propylene Glycol derivatives such as glycol ethyl ether acetate; amides such as formamide, N-methylformamide, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone; aromatic hydrocarbons such as toluene and xylene; ethylene chloride, Examples thereof include halogenated hydrocarbons such as chlorobenzene. Among these, organic solvents having low polarity are preferable, and isopropyl alcohol, ethanol, 1-methoxy-2-propanol, dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, toluene, propylene glycol monomethyl ether acetate, n-butyl acetate, etc. are more preferable. preferable. These solvents may be used alone or in combination of two or more.
 油脂としては、植物油、植物油由来の化合物などが使用できる。
 植物油としては、アマニ油、ヒマワリ油、桐油、ゴマ油、綿実油、菜種油、大豆油、米糠油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油などが好ましい。
 また、植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類などが好ましい。
As the fats and oils, vegetable oils, compounds derived from vegetable oils and the like can be used.
As the vegetable oil, linseed oil, sunflower oil, tung oil, sesame oil, cottonseed oil, rapeseed oil, soybean oil, rice bran oil, olive oil, coconut oil, palm oil, dehydrated castor oil and the like are preferable.
In addition, as the compound derived from vegetable oil, fatty acid monoester obtained by direct esterification reaction of fatty acid of vegetable oil and monoalcohol, ethers and the like are preferable.
 石油由来の媒質としては、市販されている石油系溶剤や鉱物油が使用できる。
 石油系溶剤の具体例としては、アイソパーE、エクソールHexane、エクソールHeptane、エクソールE、エクソールD30、エクソールD40、エクソールD60、エクソールD80、エクソールD95、エクソールD110、エクソールD130(以上、エクソンモービル製)等が好ましい。
 鉱物油の具体例としては、パラフィン系、ナフテン系等が好ましい。
As the petroleum-derived medium, commercially available petroleum-based solvents and mineral oils can be used.
Specific examples of the petroleum solvent include Isopar E, Exol Hexane, Exol Heptane, Exol E, Exol D30, Exol D40, Exol D60, Exol D80, Exol D95, Exol D110, Exol D130 (above, manufactured by ExxonMobil) and the like. preferable.
Specific examples of the mineral oil are preferably paraffin-based and naphthene-based oils.
 液状の樹脂としては、メタクリル酸メチル等が好ましい。 ㆍMethyl methacrylate and the like are preferable as the liquid resin.
 プラスチック用の液状可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤や、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤などが好ましい例として挙げられる。なかでもトリエチレングリコールジ-2-エチルヘキサオネート、トリエチレングリコールジ-2-エチルブチレート、テトラエチレングリコールジ-2-エチルヘキサオネートは、加水分解性が低い為、さらに好ましい。 Liquid plasticizers for plastics include plasticizers that are compounds of monohydric alcohols and organic acid esters, ester-based plasticizers such as polyhydric alcohol organic acid ester compounds, and phosphorus such as organic phosphoric acid-based plasticizers. A preferable example is an acid-based plasticizer. Among them, triethylene glycol di-2-ethyl hexaonate, triethylene glycol di-2-ethyl butyrate, and tetraethylene glycol di-2-ethyl hexaonate are more preferable because they have low hydrolyzability.
[3]液状の温媒に用いる光熱変換微粒子
 本発明に係る液状の温媒に用いる光熱変換微粒子は、赤外線吸収微粒子であるタングステン酸化物微粒子および/または複合タングステン酸化物微粒子である。
[3] Photothermal conversion fine particles used for liquid heating medium The photothermal conversion fine particles used for the liquid heating medium according to the present invention are tungsten oxide fine particles and/or composite tungsten oxide fine particles which are infrared absorbing fine particles.
 一般に、タングステン酸化物(WO)中には有効な自由電子が存在しない為、赤外線領域の吸収反射特性が少なく、光熱変換微粒子としては有効ではない。
 一方、酸素欠損を持つWOや、WOにNa等の陽性元素を添加した複合タングステン酸化物は、導電性材料であり、自由電子を持つ材料であることが知られている。そして、これらの自由電子を持つ材料の単結晶等の分析により、赤外線領域の光に対する自由電子の応答が示唆されている。
Generally, since effective free electrons do not exist in tungsten oxide (WO 3 ), absorption/reflection characteristics in the infrared region are small, and it is not effective as photothermal conversion fine particles.
On the other hand, it is known that WO 3 having oxygen deficiency and composite tungsten oxide obtained by adding a positive element such as Na to WO 3 are conductive materials and have free electrons. Analysis of single crystals of these materials having free electrons suggests the response of free electrons to light in the infrared region.
 本発明者等は、当該タングステンと酸素との組成範囲の特定部分において、光熱変換微粒子として特に有効な範囲があることを見出した。そして、可視光領域においては透明で、赤外線領域においては吸収を持つタングステン酸化物微粒子、複合タングステン酸化物微粒子が、液状の温媒に用いる光熱変換微粒子として好適であることに想到した。 The present inventors have found that there is a particularly effective range as photothermal conversion fine particles in a specific portion of the composition range of the tungsten and oxygen. Then, it has been conceived that the tungsten oxide fine particles and the composite tungsten oxide fine particles which are transparent in the visible light region and have absorption in the infrared region are suitable as the photothermal conversion fine particles used for the liquid heating medium.
 加えて、タングステン酸化物微粒子および複合タングステン酸化物微粒子は、例えばTiN微粒子と比較して遥かに粉砕が容易であることから硬度も低いと考えられる。このことは、後述する実施例、参考例において、複合タングステン酸化物微粒子をZrOビーズによって粉砕した際、当該ビーズは摩耗しなかったが、TiN微粒子をZrOビーズによって粉砕した際は、当該ビーズが摩耗したことからも裏付けられた。
 以上のことから、タングステン酸化物微粒子および複合タングステン酸化物微粒子は、ヒートポンプ等の機器の部材を摩耗させることなく長時間の運転を可能とする観点からも、優れた光熱変換微粒子であると考えられる。
In addition, since the tungsten oxide fine particles and the composite tungsten oxide fine particles are much easier to pulverize than the TiN fine particles, the hardness is considered to be low. This means that in the examples and reference examples described later, when the composite tungsten oxide fine particles were pulverized with ZrO 2 beads, the beads were not worn, but when the TiN fine particles were pulverized with ZrO 2 beads, the beads were It was also supported by the fact that he was worn.
From the above, it is considered that the tungsten oxide fine particles and the composite tungsten oxide fine particles are excellent photothermal conversion fine particles also from the viewpoint of enabling long-time operation without abrading members of equipment such as a heat pump. ..
 ここで、本発明に係る光熱変換微粒子であるタングステン酸化物微粒子または/および複合タングステン酸化物微粒子について、(1)タングステン酸化物微粒子、(2)複合タングステン酸化物微粒子、(3)タングステン酸化物微粒子および複合タングステン酸化物微粒子の順で説明する。 Here, regarding the tungsten oxide fine particles and/or the composite tungsten oxide fine particles which are the photothermal conversion fine particles according to the present invention, (1) tungsten oxide fine particles, (2) composite tungsten oxide fine particles, and (3) tungsten oxide fine particles The composite tungsten oxide fine particles will be described in this order.
(1)タングステン酸化物微粒子
 本発明に係るタングステン酸化物微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子である。一般式WyOzで表記されるタングステン酸化物において、当該タングステンと酸素との組成範囲は、タングステンに対する酸素の組成比が3よりも少なく、さらには、当該タングステン酸化物微粒子をWyOzと記載したとき、2.2≦z/y≦2.999であることが好ましい。
(1) Tungsten Oxide Fine Particle The tungsten oxide fine particle according to the present invention is a tungsten oxide represented by the general formula WyOz (where W is tungsten, O is oxygen, and 2.2≦z/y≦2.999). It is a fine particle. In the tungsten oxide represented by the general formula WyOz, the composition range of the tungsten and oxygen is such that the composition ratio of oxygen to tungsten is less than 3, and further, when the tungsten oxide fine particles are described as WyOz, 2 It is preferable that 0.2≦z/y≦2.999.
 当該z/yの値が2.2以上であれば、当該タングステン酸化物中に目的以外であるWO2の結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので有効な光熱変換微粒子となる。一方、当該z/yの値が2.999以下であれば、必要とされる量の自由電子が生成され効率よい光熱変換微粒子となる。 When the value of z/y is 2.2 or more, it is possible to avoid the appearance of a crystal phase of WO2 other than the purpose in the tungsten oxide, and it is possible to improve the chemical stability of the material. Since it can be obtained, it becomes an effective photothermal conversion fine particle. On the other hand, when the value of z/y is 2.999 or less, the required amount of free electrons are generated and the photothermal conversion fine particles become efficient.
(2)複合タングステン酸化物微粒子
 上述したWOへ、後述する元素Mを添加し複合タングステン酸化物とすることで、当該WO中に自由電子が生成され、特に近赤外線領域に自由電子由来の強い吸収特性が発現し、波長1000nm付近の近赤外線吸収微粒子として有効となる。
(2) Fine Particles of Composite Tungsten Oxide By adding the element M described below to WO 3 described above to form a composite tungsten oxide, free electrons are generated in the WO 3 , and in particular, in the near infrared region, free electrons derived from free electrons are generated. A strong absorption characteristic is exhibited, and it is effective as a near-infrared absorbing fine particle having a wavelength of around 1000 nm.
 即ち、当該WOに対し、酸素量の制御と、自由電子を生成する元素Mの添加とを併用することで、より効率の良い光熱変換微粒子を得ることが出来る。この酸素量の制御と、自由電子を生成する元素Mの添加とを併用した光熱変換微粒子の一般式をMxWyOz(但し、Mは、前記M元素、Wはタングステン、Oは酸素)と記載したとき、0.001≦x/y≦1、2.0≦z/y≦3の関係を満たす光熱変換微粒子が望ましい。 That is, by combining the control of the oxygen amount and the addition of the element M that produces free electrons with respect to the WO 3 , it is possible to obtain more efficient photothermal conversion fine particles. When the general formula of the photothermal conversion fine particles in which the control of the oxygen amount and the addition of the element M that generates free electrons are used in combination is MxWyOz (where M is the M element, W is tungsten, and O is oxygen). , 0.001≦x/y≦1, and 2.0≦z/y≦3 are preferable.
 まず、元素Mの添加量を示すx/yの値について説明する。
 x/yの値が0.001より大きければ、複合タングステン酸化物において十分な量の自由電子が生成され目的とする赤外線吸収効果を得ることが出来る。そして、元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線吸収効率も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1より小さければ、当該光熱変換微粒子中に不純物相が生成されるのを回避できるので好ましい。
First, the value of x/y indicating the added amount of the element M will be described.
When the value of x/y is larger than 0.001, a sufficient amount of free electrons are generated in the composite tungsten oxide, and the desired infrared absorption effect can be obtained. As the amount of the element M added increases, the supply amount of free electrons increases and the infrared absorption efficiency also increases, but the effect is saturated when the value of x/y is about 1. Further, if the value of x/y is smaller than 1, it is possible to avoid generation of an impurity phase in the photothermal conversion fine particles, which is preferable.
 また、元素Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上であることが好ましい。 The element M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au. , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be. , Hf, Os, Bi, and I are preferably one or more.
 ここで、元素Mを添加された当該MxWyOzにおける安定性の観点から、元素Mは、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちから選択される1種類以上の元素であることがより好ましい。そして、光熱変換微粒子としての光学特性、耐候性を向上させる観点から、元素Mは、アルカリ土類金属元素、遷移金属元素、4B族元素、5B族元素に属するものであることがさらに好ましい。 Here, from the viewpoint of stability in the MxWyOz to which the element M is added, the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir. , Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti More preferably, it is one or more kinds of elements selected from Nb, V, Mo, Ta, and Re. From the viewpoint of improving the optical characteristics and weather resistance of the photothermal conversion fine particles, the element M more preferably belongs to the alkaline earth metal elements, transition metal elements, 4B group elements, and 5B group elements.
 次に、酸素量の制御を示すz/yの値について説明する。z/yの値については、MxWyOzで表記される複合タングステン酸化物においても、上述したWyOzで表記されるタングステン酸化物と同様の機構が働くことに加え、z/y=3.0や2.0≦z/y≦2.2においても、上述した元素Mの添加量による自由電子の供給がある。この為、2.0≦z/y≦3.0が好ましく、より好ましくは2.2≦z/y≦3.0、さらに好ましくは2.45≦z/y≦3.0である。 Next, the value of z/y indicating the control of the oxygen amount will be explained. Regarding the value of z/y, in the composite tungsten oxide represented by MxWyOz, in addition to the mechanism similar to that of the tungsten oxide represented by WyOz described above, z/y=3.0 or 2. Even in the case of 0≦z/y≦2.2, the free electrons are supplied by the addition amount of the element M described above. Therefore, 2.0≦z/y≦3.0 is preferable, 2.2≦z/y≦3.0 is more preferable, and 2.45≦z/y≦3.0 is further preferable.
 さらに、当該複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、赤外領域の吸収が向上する。この六方晶の結晶構造の模式的な平面図である図1を参照しながら説明する。 Further, when the composite tungsten oxide fine particles have a hexagonal crystal structure, the transmission of the fine particles in the visible light region is improved and the absorption in the infrared region is improved. This will be described with reference to FIG. 1, which is a schematic plan view of the crystal structure of this hexagonal crystal.
 図1において、符号11で示すWO単位にて形成される8面体が6個集合して六角形の空隙が構成され、当該空隙中に、符号12で示す元素Mが配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。
 そして、可視光領域における光の透過を向上させ、赤外領域における光の吸収を向上させる効果を得る為には、複合タングステン酸化物微粒子中に、図1を用いて説明した単位構造が含まれていれば良く、当該複合タングステン酸化物微粒子が結晶質であっても非晶質であっても構わない。
In FIG. 1, six octahedrons formed by the WO 6 unit shown by reference numeral 11 are aggregated to form a hexagonal void, and the element M shown by reference numeral 12 is arranged in the void to form one hexagonal void. A unit is formed, and a large number of this one unit are assembled to form a hexagonal crystal structure.
In order to improve the light transmission in the visible light region and the light absorption in the infrared region, the composite tungsten oxide fine particles contain the unit structure described with reference to FIG. The composite tungsten oxide fine particles may be crystalline or amorphous.
 この六角形の空隙に元素Mの陽イオンが添加されて存在するとき、可視光領域における光の透過が向上し、赤外領域における光の吸収が向上する。ここで一般的には、イオン半径の大きな元素Mを添加したとき当該六方晶が形成され易い。具体的には、Cs、K、Rb、Tl、In、Ba、Li、Ca、Sr、Fe、Snを添加したとき六方晶が形成され易い。勿論これら以外の元素でも、WO単位で形成される六角形の空隙に上述した元素Mが存在すれば良く、上述の元素に限定される訳ではない。 When the cations of the element M are present in the hexagonal voids, the light transmission in the visible light region is improved and the light absorption in the infrared region is improved. Generally, when the element M having a large ionic radius is added, the hexagonal crystal is likely to be formed. Specifically, hexagonal crystals are easily formed when Cs, K, Rb, Tl, In, Ba, Li, Ca, Sr, Fe and Sn are added. Of course, other elements may be used as long as the above-mentioned element M exists in the hexagonal void formed by the WO 6 unit, and the elements are not limited to the above-mentioned elements.
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは0.33である。x/yの値が0.33となることで、上述した元素Mが六角形の空隙の全てに配置されると考えられる。 When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount of the additional element M is preferably 0.2 or more and 0.5 or less, more preferably 0 or less in x/y value. .33. When the value of x/y is 0.33, it is considered that the element M described above is arranged in all the hexagonal voids.
 また、六方晶以外であって、正方晶、立方晶の複合タングステン酸化物も光熱変換微粒子として有効である。結晶構造によって、赤外線領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光線領域の吸収が少ないのは、六方晶、正方晶、立方晶の順である。従って、より可視光領域の光を透過し、より赤外線領域の光を吸収する用途には、六方晶の複合タングステン酸化物を用いることが好ましい。ただし、ここで述べた光学特性の傾向は、あくまで大まかな傾向であり、添加元素の種類や、添加量、酸素量によって変化するものであり、本発明がこれに限定されるわけではない。 Also, other than hexagonal crystals, tetragonal and cubic composite tungsten oxides are also effective as photothermal conversion fine particles. Depending on the crystal structure, the absorption position in the infrared region tends to change, and the absorption position tends to move to the longer wavelength side in the order of cubic crystal <tetragonal crystal <hexagonal crystal. In addition, incidental low absorption in the visible light region is in the order of hexagonal crystal, tetragonal crystal, and cubic crystal. Therefore, it is preferable to use a hexagonal composite tungsten oxide for the purpose of transmitting light in the visible light region and absorbing light in the infrared light region. However, the tendency of the optical characteristics described here is only a rough tendency and changes depending on the type of the added element, the added amount, and the oxygen amount, and the present invention is not limited to this.
(3)タングステン酸化物微粒子および複合タングステン酸化物微粒子
 本発明に係る、タングステン酸化物微粒子や複合タングステン酸化物微粒子を含有する光熱変換微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。
(3) Tungsten Oxide Fine Particles and Composite Tungsten Oxide Fine Particles The photothermal conversion fine particles containing the tungsten oxide fine particles and the composite tungsten oxide fine particles according to the present invention largely absorb light in the near infrared region, particularly in the vicinity of a wavelength of 1000 nm. Therefore, the transmitted color tone is often blue to green.
 また、タングステン酸化物微粒子や複合タングステン酸化物微粒子において、2.45≦z/y≦2.999で表される組成比を有する、所謂「マグネリ相」は化学的に安定であり、赤外線領域の吸収特性も良いので、光熱変換微粒子として好ましい。 Further, in the tungsten oxide fine particles and the composite tungsten oxide fine particles, the so-called “Magneli phase” having a composition ratio represented by 2.45≦z/y≦2.999 is chemically stable, and is in the infrared region. Since it has good absorption characteristics, it is preferable as the photothermal conversion fine particles.
 また、優れた赤外線吸収特性を発揮させる観点から、光熱変換微粒子の結晶子径は1nm以上200nm以下であることが好ましく、より好ましくは1nm以上100nm以下、さらに好ましくは10nm以上70nm以下である。結晶子径の測定には、粉末X線回折法(θ―2θ法)によるX線回折パターンの測定と、リートベルト法による解析を用いる。X線回折パターンの測定には、例えばスペクトリス株式会社PANalytical製の粉末X線回折装置「X’Pert-PRO/MPD」などを用いて行うことができる。 From the viewpoint of exhibiting excellent infrared absorption characteristics, the crystallite diameter of the photothermal conversion fine particles is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less, and further preferably 10 nm or more and 70 nm or less. To measure the crystallite size, measurement of an X-ray diffraction pattern by a powder X-ray diffraction method (θ-2θ method) and analysis by the Rietveld method are used. The X-ray diffraction pattern can be measured using, for example, a powder X-ray diffractometer "X'Pert-PRO/MPD" manufactured by Spectris KK PAnalytical.
 本発明に係る光熱変換微粒子の表面が、Si、Ti、Zr、Al、Znの一種類以上の金属を含有する酸化物で被覆されていることは、耐候性の向上の観点から好ましい。被覆方法は特に限定されないが、当該光熱変換微粒子を分散した溶液中へ、上記金属のアルコキシドを添加することで、光熱変換微粒子の表面を被覆することが可能である。 It is preferable that the surface of the photothermal conversion fine particles according to the present invention is coated with an oxide containing one or more kinds of metals of Si, Ti, Zr, Al and Zn from the viewpoint of improving weather resistance. The coating method is not particularly limited, but it is possible to coat the surface of the photothermal conversion fine particles by adding the metal alkoxide to the solution in which the photothermal conversion fine particles are dispersed.
[4]液状の温媒に用いるその他の成分
 本発明に係る液状の温媒中へは、さらに所望により、分散剤、カップリング剤、界面活性剤等のその他の成分を添加することも出来る。
 当該分散剤、カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有することが好ましい。これらの官能基は、タングステン酸化物微粒子や複合タングステン酸化物微粒子の表面に吸着し、タングステン酸化物微粒子や複合タングステン酸化物微粒子の凝集を防ぎ、熱媒中において本発明に係る光熱変換微粒子を均一に分散させる効果を持つ。
[4] Other components used in liquid heating medium If desired, other components such as a dispersant, a coupling agent, and a surfactant may be added to the liquid heating medium according to the present invention.
The dispersant, the coupling agent, and the surfactant can be selected according to the application, but preferably have an amine-containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group. These functional groups are adsorbed on the surface of the tungsten oxide fine particles or the composite tungsten oxide fine particles, prevent the aggregation of the tungsten oxide fine particles or the composite tungsten oxide fine particles, and make the photothermal conversion fine particles according to the present invention uniform in the heating medium. Has the effect of being dispersed.
 好適に用いることのできる分散剤としては、リン酸エステル化合物、高分子系分散剤、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、等があるが、これらに限定されるものではない。高分子系分散剤としては、アクリル系高分子分散剤、ウレタン系高分子分散剤、アクリル・ブロックコポリマー系高分子分散剤、ポリエーテル類分散剤、ポリエステル系高分子分散剤などが挙げられる。 Suitable dispersants include, but are not limited to, phosphate ester compounds, polymer dispersants, silane coupling agents, titanate coupling agents, aluminum coupling agents, and the like. Not a thing. Examples of the polymer dispersant include an acrylic polymer dispersant, a urethane polymer dispersant, an acrylic/block copolymer polymer dispersant, a polyether dispersant, and a polyester polymer dispersant.
[5]まとめ
 以上、詳細に説明した本発明に係る液状の温媒は、太陽光エネルギー等を吸収して熱に変換すると共に機器の部材を摩耗させることなく長時間の運転を可能とするものである。従って、太陽光エネルギー等を用いたヒートポンプ等への温媒として適したものである。
[5] Summary The liquid heating medium according to the present invention, which has been described in detail above, absorbs sunlight energy and the like and converts it into heat, and enables long-time operation without abrading the members of the equipment. Is. Therefore, it is suitable as a heating medium for a heat pump or the like using solar energy or the like.
 以下、実施例を参照しながら本発明を具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 実施例、比較例および参考例に係る分散液中の光熱変換微粒子の結晶子径は、粉末X線回折装置(スペクトリス株式会社PANalytical製X’Pert-PRO/MPD)を用いて粉末X線回折法(θ―2θ法)により測定し、リートベルト法を用いて算出した。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
The crystallite size of the photothermal conversion fine particles in the dispersions according to the examples, comparative examples and reference examples was measured by powder X-ray diffractometry using a powder X-ray diffractometer (Spectris Co., Ltd. PANalytical X'Pert-PRO/MPD). (Θ−2θ method), and calculated using Rietveld method.
 光熱変換微粒子の光学特性は、希釈した光熱変換微粒子分散液を光長路20mmの測定用ガラスセルに入れて、分光光度計(日立製作所株式会社製 U-4100)を用いて測定した。可視光透過率と日射透過率は、JISR3106に従って算出した。分光光度計の光の入射方向は測定用ガラスセルに垂直な方向とした。また、当該測定用ガラスセルに主溶媒の純水のみを入れたブランク液を、光の透過率のベースラインとした。 The optical characteristics of the photothermal conversion microparticles were measured using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.) by placing the diluted photothermal conversion microparticle dispersion in a measuring glass cell with a light path of 20 mm. The visible light transmittance and the solar radiation transmittance were calculated according to JISR3106. The incident direction of the light of the spectrophotometer was perpendicular to the measuring glass cell. In addition, a blank liquid in which only pure water as a main solvent was put in the measurement glass cell was used as a baseline of light transmittance.
 光熱変換微粒子の光熱変換効率は、光熱変換微粒子分散液を可視光透過率70%となるまで希釈し、液温23℃の初期状態から、太陽光線近似スペクトルランプ(SAN-EI ELECTRIC社製ソーラーシミュレーターXES-40S1)を用い、光の放射強度1500W/mでAM(Air Mass)1.5相当の擬似太陽光を20分間照射し、照射前後における光熱変換微粒子分散液の液温上昇幅を測定した。このときの室温は23℃とした。 Regarding the light-heat conversion efficiency of the light-heat conversion fine particles, the light-heat conversion fine particles dispersion is diluted to a visible light transmittance of 70%, and the solar light approximate spectrum lamp (SAN-EI ELECTRIC solar simulator is used from the initial state at a liquid temperature of 23° C.). XES-40S1) is used to irradiate artificial sunlight corresponding to AM (Air Mass) 1.5 at a radiant intensity of light of 1500 W/m 2 for 20 minutes to measure the temperature rise range of the photothermal conversion fine particle dispersion before and after irradiation. did. The room temperature at this time was 23°C.
[実施例1]
 光熱変換材料として、セシウム(Cs)と、タングステン(W)との物質量の比が、Cs/W=0.33である、六方晶セシウムタングステンブロンズ(Cs0.33WOz、2.0≦z≦3.0)を含む複合タングステン酸化物粉末(住友金属鉱山株式会社製YM-01)を用意した。
 そして、光熱変換材料を20質量%と、純水を80質量%とを混合して得られた混合液を、0.3mmφZrOビーズを入れたペイントシェイカーに装填し20時間粉砕・分散処理し、Cs0.33WOzの光熱変換微粒子分散液を得た。
[Example 1]
A hexagonal cesium tungsten bronze (Cs 0.33 WOz, 2.0≦z) in which the ratio of the amounts of cesium (Cs) and tungsten (W) as the photothermal conversion material is Cs/W=0.33. A composite tungsten oxide powder (YM-01 manufactured by Sumitomo Metal Mining Co., Ltd.) containing ≦3.0) was prepared.
Then, the mixed solution obtained by mixing 20% by mass of the photothermal conversion material and 80% by mass of pure water was loaded into a paint shaker containing 0.3 mmφZrO 2 beads and pulverized and dispersed for 20 hours, A photothermal conversion fine particle dispersion liquid of Cs 0.33 WOz was obtained.
 得られた光熱変換微粒子分散液の溶媒を除去したあと、当該光熱変換微粒子の結晶子径を測定したところ23nmであった。当該測定結果を表1に示す。 After removing the solvent of the obtained photothermal conversion fine particle dispersion, the crystallite diameter of the photothermal conversion fine particle was measured and found to be 23 nm. The measurement results are shown in Table 1.
 また、得られた光熱変換微粒子分散液を、当該光熱変換微粒子の濃度が0.023質量%なるまで純水で希釈し、実施例1に係る光熱変換微粒子分散液を得た。そして実施例1に係る光熱変換微粒子分散液の光学特性を測定した結果、可視光透過率が49%、日射透過率19%であった。 Further, the obtained light-heat conversion fine particle dispersion was diluted with pure water until the concentration of the light-heat conversion fine particles became 0.023% by mass to obtain the light-heat conversion fine particle dispersion according to Example 1. As a result of measuring the optical characteristics of the photothermal conversion fine particle dispersion according to Example 1, the visible light transmittance was 49% and the solar radiation transmittance was 19%.
 さらに、実施例1に係る光熱変換微粒子分散液20mLを50mLのガラスビーカーに入れ、ガラスビーカーの側方部と下部を発泡スチロールで断熱化し、上方の開口部より擬似太陽光を照射して光熱変換効率を測定したところ、擬似太陽光照射前後の液温上昇幅は12.4℃となった。当該測定結果を表1に示す。 Further, 20 mL of the photothermal conversion fine particle dispersion liquid according to Example 1 was put into a 50 mL glass beaker, the side part and the lower part of the glass beaker were heat-insulated with styrofoam, and the pseudo-sunlight was irradiated from the upper opening to convert the photothermal conversion efficiency. Was measured, the increase in the liquid temperature before and after the irradiation with the artificial sunlight was 12.4°C. The measurement results are shown in Table 1.
[実施例2、3]
 実施例1にて説明した光熱変換微粒子分散液を、光熱変換微粒子の濃度が0.0023質量%となるまで純水で希釈して実施例2に係る光熱変換微粒子分散液を得、次に、0.00023質量%となるまで純水で希釈して実施例3に係る光熱変換微粒子分散液を得た。そして、実施例1と同様に操作して、実施例2、3に係る光熱変換微粒子分散液の光学特性を測定した。当該測定結果を表1に示す。
[Examples 2 and 3]
The light-heat converting fine particle dispersion liquid described in Example 1 was diluted with pure water until the concentration of the light-heat converting fine particles became 0.0023% by mass to obtain the light-heat converting fine particle dispersion liquid according to the second embodiment. The mixture was diluted with pure water to 0.00023% by mass to obtain a photothermal conversion fine particle dispersion liquid according to Example 3. Then, in the same manner as in Example 1, the optical characteristics of the photothermal conversion fine particle dispersion liquids according to Examples 2 and 3 were measured. The measurement results are shown in Table 1.
[比較例1]
 比較例として純水を光熱変換微粒子分散液として用い、実施例1と同様に操作して、比較例1に係る光熱変換微粒子分散液の光学特性を測定したところ、擬似太陽光照射後の液温上昇幅は、6.9℃となった。当該測定結果を表1に示す。
[Comparative Example 1]
As a comparative example, pure water was used as the light-heat converting fine particle dispersion liquid, and the optical characteristics of the light-heat converting fine particle dispersion liquid according to the first comparative example were measured in the same manner as in Example 1. The range of increase was 6.9°C. The measurement results are shown in Table 1.
[参考例1~4]
 光熱変換材料を複合タングステン酸化物粉末から錫ドープ酸化インジウム(ITO)粉
末へ変え、参考例1~4に係る光熱変換微粒子分散液を得た。
 但し、光学特性測定時の光熱変換微粒子の濃度を0.071質量%として参考例1に係る光熱変換微粒子分散液を得、濃度を0.050質量%として参考例2に係る光熱変換微粒子分散液を得、濃度を0.0071質量%として参考例3に係る光熱変換微粒子分散液を得、濃度を0.00071質量%として参考例4に係る光熱変換微粒子分散液を得た。
[Reference Examples 1 to 4]
The photothermal conversion material was changed from the composite tungsten oxide powder to tin-doped indium oxide (ITO) powder to obtain photothermal conversion fine particle dispersions according to Reference Examples 1 to 4.
However, the light-heat conversion fine particle dispersion liquid according to Reference Example 1 was obtained by setting the concentration of light-heat conversion fine particles at the time of optical characteristic measurement to 0.071 mass %, and the concentration was 0.050 mass%, and the light-heat conversion fine particle dispersion liquid according to Reference Example 2 was obtained. And a concentration of 0.0071 mass% to obtain a photothermal conversion fine particle dispersion according to Reference Example 3, and a concentration of 0.00071 mass% to obtain a photothermal conversion fine particle dispersion according to Reference Example 4.
 実施例1と同様に操作して、参考例1~4に係る光熱変換微粒子分散液の光学特性を測定した。当該測定結果を表1に示す。 In the same manner as in Example 1, the optical characteristics of the photothermal conversion fine particle dispersions according to Reference Examples 1 to 4 were measured. The measurement results are shown in Table 1.
[参考例5~8]
 光熱変換材料を複合タングステン酸化物粉末からアンチモンドープ酸化錫(ATO)粉末へ変え、参考例5~8に係る光熱変換微粒子分散液を得た。
 但し、光学特性測定時の光熱変換微粒子の濃度を0.099質量%として参考例5に係る光熱変換微粒子分散液を得、濃度を0.066質量%として参考例6に係る光熱変換微粒子分散液を得、濃度を0.0066質量%として参考例7に係る光熱変換微粒子分散液を得、濃度を0.00066質量%として参考例8に係る光熱変換微粒子分散液を得た。
[Reference Examples 5 to 8]
The light-heat conversion material was changed from the composite tungsten oxide powder to the antimony-doped tin oxide (ATO) powder to obtain the light-heat conversion fine particle dispersions according to Reference Examples 5 to 8.
However, the light-heat conversion fine particle dispersion liquid according to Reference Example 5 was obtained by setting the concentration of the light-heat conversion fine particles at the time of optical property measurement to 0.099 mass%, and the concentration was 0.066 mass%, and the light-heat conversion fine particle dispersion liquid according to Reference Example 6 was obtained. To obtain a photothermal conversion fine particle dispersion according to Reference Example 7 with a concentration of 0.0066% by mass, and obtain a photothermal conversion fine particle dispersion according to Reference Example 8 with a concentration of 0.00066% by mass.
 実施例1と同様に操作して、参考例5~8に係る光熱変換微粒子分散液の光学特性を測定した。当該測定結果を表1に示す。 In the same manner as in Example 1, the optical characteristics of the photothermal conversion fine particle dispersions according to Reference Examples 5 to 8 were measured. The measurement results are shown in Table 1.
[参考例9、10]
 光熱変換材料を複合タングステン酸化物粉末からカーボンブラック粉末へ変え、参考例9、10に係る光熱変換微粒子分散液を得た。
 但し、光学特性測定時の光熱変換微粒子の濃度を0.00027質量%として参考例9に係る光熱変換微粒子分散液を得、濃度を0.00018質量%として参考例10に係る光熱変換微粒子分散液を得た。
[Reference Examples 9 and 10]
The light-heat conversion material was changed from the composite tungsten oxide powder to carbon black powder to obtain light-heat conversion fine particle dispersions according to Reference Examples 9 and 10.
However, the photothermal conversion fine particle dispersion liquid according to Reference Example 9 was obtained by setting the concentration of the photothermal conversion fine particle during optical property measurement to 0.00027% by mass, and the concentration was 0.00018% by mass, and the photothermal conversion fine particle dispersion liquid according to Reference Example 10 was obtained. Got
 実施例1と同様に操作して、参考例9、10に係る光熱変換微粒子分散液の光学特性を測定した。当該測定結果を表1に示す。尚、カーボンブラックは非晶質である為、参考例9、10に係る光熱変換微粒子分散液の結晶子径は測定出来なかった。 By operating in the same manner as in Example 1, the optical characteristics of the photothermal conversion fine particle dispersions according to Reference Examples 9 and 10 were measured. The measurement results are shown in Table 1. Since the carbon black is amorphous, the crystallite size of the photothermal conversion fine particle dispersion liquids of Reference Examples 9 and 10 could not be measured.
[参考例11、12]
 光熱変換材料を複合タングステン酸化物粉末から窒化チタン粉末へ変え、参考例11、12に係る光熱変換微粒子分散液を得た。
 但し、光学特性測定時の光熱変換微粒子の濃度を0.00061質量%として参考例11に係る光熱変換微粒子分散液を得、濃度を0.00052質量%として参考例12に係る光熱変換微粒子分散液を得た。
[Reference Examples 11 and 12]
The light-heat conversion material was changed from the composite tungsten oxide powder to the titanium nitride powder to obtain light-heat conversion fine particle dispersions according to Reference Examples 11 and 12.
However, the light-heat conversion fine particle dispersion liquid according to Reference Example 11 was obtained by setting the concentration of the light-heat conversion fine particles at the time of optical characteristic measurement to 0.00061% by mass, and the concentration was 0.00052% by mass, and the light-heat conversion fine particle dispersion liquid according to Reference Example 12 was obtained. Got
 実施例1と同様に操作して、参考例11、12に係る光熱変換微粒子分散液の光学特性を測定した。当該測定結果を表1に示す。 In the same manner as in Example 1, the optical characteristics of the photothermal conversion fine particle dispersions according to Reference Examples 11 and 12 were measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  11 WO単位
  12 元素M
11 WO 6 units 12 element M

Claims (4)

  1.  光を吸収して熱に変換する光熱変換微粒子を液状媒質中に分散させた液状の温媒。 ㆍLiquid heating medium in which light-heat conversion particles that absorb light and convert it into heat are dispersed in a liquid medium.
  2.  前記光熱変換微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記される化合物、または/および、一般式MxWyOzで表記される化合物(元素Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3.0)で表される赤外吸収微粒子であることを特徴とする請求項1に記載の液状の温媒。 The photothermal conversion fine particles are compounds represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.2≦z/y≦2.999), and/or a compound represented by the general formula MxWyOz. (The element M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, One or more elements selected from Hf, Os, Bi and I, W is tungsten, O is oxygen, 0.001≦x/y≦1, 2.0≦z/y≦3.0) The liquid heating medium according to claim 1, which is represented by infrared absorbing fine particles.
  3.  前記液体媒質が、有機溶剤、油脂、液状可塑剤、硬化により高分子化される化合物、水、から選択される1種以上の液体媒質であることを特徴とする請求項1または2に記載の液状の温媒。 3. The liquid medium according to claim 1, wherein the liquid medium is at least one liquid medium selected from organic solvents, oils and fats, liquid plasticizers, compounds that are polymerized by curing, and water. Liquid heating medium.
  4.  前記光熱変換微粒子が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含む化合物で被覆されていることを特徴とする請求項1から3のいずれかに記載の液状の温媒。 The liquid according to any one of claims 1 to 3, wherein the photothermal conversion fine particles are coated with a compound containing at least one metal element selected from Al, Zr, Ti, Si, and Zn. Heating medium.
PCT/JP2019/048777 2018-12-27 2019-12-12 Liquid heating medium WO2020137595A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563072A JP7347446B2 (en) 2018-12-27 2019-12-12 liquid heating medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244227 2018-12-27
JP2018-244227 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137595A1 true WO2020137595A1 (en) 2020-07-02

Family

ID=71127662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048777 WO2020137595A1 (en) 2018-12-27 2019-12-12 Liquid heating medium

Country Status (3)

Country Link
JP (1) JP7347446B2 (en)
TW (1) TW202035295A (en)
WO (1) WO2020137595A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049025A1 (en) * 2004-11-08 2006-05-11 Sumitomo Metal Mining Co., Ltd. Near infrared radiation absobing fiber and textile product using the same
JP2010144957A (en) * 2008-12-16 2010-07-01 Ihi Corp Solar heat collection method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049025A1 (en) * 2004-11-08 2006-05-11 Sumitomo Metal Mining Co., Ltd. Near infrared radiation absobing fiber and textile product using the same
JP2010144957A (en) * 2008-12-16 2010-07-01 Ihi Corp Solar heat collection method and device

Also Published As

Publication number Publication date
JPWO2020137595A1 (en) 2021-11-18
JP7347446B2 (en) 2023-09-20
TW202035295A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
TWI722334B (en) Surface-treated infrared absorbing fine particles, surface-treated infrared absorbing fine particle powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body, and method for producing the same
JP5176492B2 (en) Near-infrared absorbing adhesive, near-infrared absorbing filter for plasma display panel, and plasma display panel
KR102371493B1 (en) Near-infrared shielding material particle dispersion, near-infrared shielding body and laminated structure for near-infrared shielding, and manufacturing method thereof
TWI715747B (en) Near-infrared shielding material particles and manufacturing method thereof and near-infrared shielding material particles dispersion liquid
JP5849766B2 (en) Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield
AU2016213105B2 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
BR112018012241B1 (en) COMPOSITE TUNGSTEN OXIDE ULTRAFINE PARTICLES, E, COMPOSITE TUNGSTEN OXIDE ULTRAFINE PARTICLE DISPERSION LIQUID
CA3085139A1 (en) Infrared absorbing fine particle dispersed powder, dispersion liquid containing infrared absorbing fine particle dispersed powder, ink containing infrared absorbing fine particle dispersed powder, and anti-counterfeit ink, and anti-counterfeit printed matter
JP6508224B2 (en) Near infrared ray absorbing fine particle dispersion and method for producing the same
TWI597242B (en) Near-infrared absorption filter and imaging device
WO2020137595A1 (en) Liquid heating medium
JP7151712B2 (en) Agricultural and horticultural soil cover film and its manufacturing method
BR112020005072A2 (en) laminated solar shielding structures, and method for producing a laminated solar shielding structure
US20220251400A1 (en) Infrared-absorbing fine particle-containing composition and method for producing the same
JP7367686B2 (en) Infrared absorbing material fine particle dispersion and its manufacturing method
JP6623944B2 (en) Heat ray shielding fine particles and heat ray shielding fine particle dispersion
JP2018077301A (en) Near-infrared absorptive optical member and image display device using the same
JP6575443B2 (en) Heat ray shielding film and heat ray shielding glass
JP2017145163A (en) Method for selecting substituted element of boride particle and manufacturing method of boride particle
KR20150076573A (en) A composition for controlling infrared ray, a film comprising the same and a method for preparing the film
JP7338237B2 (en) IR-absorbing lamps and IR-absorbing lamp covers
JP2017197632A (en) Heat ray-shielding fine particle and heat ray-shielding fine particle dispersion liquid
JP2021075676A (en) Composite tungsten oxide fine particle dispersion and composite tungsten oxide fine particle dispersion liquid
JP2010059040A (en) Method for producing microparticle and heat-ray-shielding microparticle obtained thereby
JP2021084825A (en) Mixed composite tungsten oxide fine particle powder, mixed composite tungsten oxide fine particle dispersion liquid, and mixed composite tungsten oxide fine particle dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905133

Country of ref document: EP

Kind code of ref document: A1