WO2020137497A1 - Method for producing laminate - Google Patents

Method for producing laminate Download PDF

Info

Publication number
WO2020137497A1
WO2020137497A1 PCT/JP2019/048151 JP2019048151W WO2020137497A1 WO 2020137497 A1 WO2020137497 A1 WO 2020137497A1 JP 2019048151 W JP2019048151 W JP 2019048151W WO 2020137497 A1 WO2020137497 A1 WO 2020137497A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
peak
resin coating
intermediate layer
coating layer
Prior art date
Application number
PCT/JP2019/048151
Other languages
French (fr)
Japanese (ja)
Inventor
大道 千葉
荒井 邦仁
春樹 上村
小原 禎二
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020563028A priority Critical patent/JP7380593B2/en
Publication of WO2020137497A1 publication Critical patent/WO2020137497A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers

Definitions

  • the present invention relates to a method for manufacturing a laminated body.
  • a laminate formed by forming a resin coating layer on the surface of a metal substrate is a packaging material for pharmaceuticals, a packaging material for foods, a packaging material for electronic parts, a back protective sheet for solar cell modules, a water pipe, a gas transportation pipe, It is used in various applications such as fuel transportation pipes and cable protection pipes.
  • a laminated body formed by forming a resin coating layer as a sealing material on the surface of a metal base material such as an LED element, an organic EL element, and an electronic substrate wiring You can also list them.
  • Patent Document 1 a composite multilayer sheet obtained by laminating a sheet made of a predetermined modified block copolymer hydride having an alkoxysilyl group introduced and a metal foil has a moisture-proof property, an oxygen barrier property, a light-shielding property, and a heat resistance. It has been reported that it is useful for applications such as packaging of pharmaceuticals and foods, back surface protection sheet for solar cell modules, encapsulation of organic EL elements, and packaging of electronic parts due to its excellent properties and hydrolysis resistance.
  • Patent Document 2 a predetermined polyethylene-coated steel pipe coated with a silane coupling agent-treated layer, an epoxy primer layer, an adhesive polyethylene layer, and a polyethylene layer on the steel pipe surface in order from the surface side of the steel pipe is coated at high temperature. It is disclosed that the layer has excellent adhesion durability and can be suitably used as a line pipe for carrying oil, natural gas, city gas, water and the like.
  • the above-mentioned conventional laminated body had room for improvement in the adhesive strength between the metal base material and the resin coating layer.
  • the adhesive strength hereinafter sometimes referred to as “initial adhesive strength”
  • an object of the present invention is to provide a laminate having excellent initial adhesive strength between a metal base material and a resin coating layer.
  • the present inventor has conducted earnest studies for the purpose of solving the above problems. Then, the present inventor produced by forming an intermediate layer containing a silicon oxide on the surface of a metal substrate, and then coating the surface of the intermediate layer with a resin coating layer containing a predetermined modified block copolymer hydride. The present invention has been completed by finding that such a laminated body is excellent in the initial adhesive strength between the metal base material and the resin coating layer.
  • a method for producing a laminate of the present invention is an intermediate step of forming an intermediate layer containing a silicon oxide on the surface of a metal substrate.
  • a polymer block [A] containing an aromatic vinyl monomer unit as a main component means "a polymer block containing an aromatic vinyl monomer unit in an amount of more than 50% by mass [A]. ]
  • a polymer block [B] containing a chain conjugated diene monomer unit as a main component means a polymer block [B containing more than 50% by mass of the chain conjugated diene monomer unit. ]] is meant.
  • containing a monomer unit means "a structural unit derived from a monomer is contained in a polymer obtained by using the monomer”.
  • the intermediate layer on the surface of the metal base material.
  • the adhesive strength between the metal base material and the resin coating layer after the laminate is used for a long time (hereinafter, simply “long-term adhesive strength”) , And the moisture resistance of the laminate can be improved.
  • the silicon ratio on the surface of the intermediate layer is preferably 2.0 atom% or more and 30.0 atom% or less.
  • the silicon ratio on the surface of the intermediate layer can be measured by the method described in Examples of this specification.
  • the intermediate layer is formed by itro treatment and/or atmospheric pressure plasma coating treatment.
  • the initial adhesive strength between the metal base material and the resin coating layer can be further increased.
  • the elution curve of the sample containing the modified block copolymer hydride [E] measured by gel permeation chromatography (GPC) has at least two modified block copolymers.
  • the molecular weight) is preferably 1.50 or more.
  • the elution curve of the sample containing the modified block copolymer hydride [E] measured by GPC has at least the predetermined first peak and the second peak, and is based on the elution time of the second peak.
  • the ratio of the standard polystyrene reduced molecular weight (first peak molecular weight) based on the elution time of the first peak to the standard polystyrene reduced molecular weight (second peak molecular weight) (first peak molecular weight/second peak molecular weight) is not less than the above predetermined value.
  • the initial adhesive strength between the metal base material and the resin coating layer can be further increased.
  • FIG. 1 It is a figure for demonstrating an example of the elution curve measured by the gel permeation chromatography (GPC) of the sample containing a block copolymer hydride [D].
  • the vertical axis of FIG. 1 represents the polystyrene reduced molecular weight (left vertical axis) or the sensitivity (mV) (right vertical axis), and the horizontal axis of FIG. 1 represents the elution time (minutes).
  • the method for producing a laminate of the present invention can be used when producing a laminate having excellent initial adhesive strength between the metal substrate and the resin coating layer.
  • the method for producing a laminate of the present invention comprises an intermediate layer forming step of forming an intermediate layer containing silicon oxide on the surface of a metal substrate, and a resin coating layer containing a predetermined modified block copolymer hydride [E]. And a resin coating step of coating the surface of the intermediate layer with.
  • the laminate produced by the method for producing a laminate of the present invention is a resin coating layer containing a metal substrate, an intermediate layer containing silicon oxide, and a predetermined modified block copolymer hydride [E]. And an intermediate layer is disposed between the surface of the metal base material and the resin coating layer.
  • the laminate produced by the method for producing a laminate of the present invention is excellent in initial adhesive strength between the metal base material and the resin coating layer.
  • the method for producing a laminate of the present invention may include other steps than the above-mentioned intermediate layer forming step and resin coating step.
  • Intermediate layer forming step an intermediate layer containing silicon oxide is formed on the surface of the metal base material.
  • the metal base material is a base material made of a metal material.
  • the metal material forming the metal substrate is not particularly limited, but examples thereof include transition metals such as iron (Fe), silver (Ag), copper (Cu), nickel (Ni), and chromium (Cr); aluminum (Al ); lead (Pb); zinc (Zn); tin (Sn); alloys containing these as the main components; and the like. Above all, it is preferable to use copper (Cu), nickel (Ni), iron (Fe), aluminum (Al), stainless steel, and carbon steel. As stainless steel, SUS304, SUS316, SUS410, SUS430, etc. can be used. Moreover, S55C, S15C, S65C etc. can be used as carbon steel.
  • the shape, thickness, size, etc. of the metal base material can be appropriately selected according to the application of the laminate.
  • Examples of the shape of the metal base material include a sheet shape, a tubular shape, and a columnar shape.
  • the “surface of the metal base material” is not particularly limited as long as it is a surface of the metal base material.
  • the “surface of the metal base material” may be either one of the main surfaces of the metal base material in the form of a sheet, or both surfaces of the metal base material in the form of a sheet. It may be the main surface.
  • the “surface of the metal base material” may be the outer surface (outer surface) of the tubular metal base material, or the inner surface of the tubular metal base material ( Inner surface).
  • the surface of the metal base material may be flat or curved.
  • the surface of the metal base material on which the intermediate layer and the resin coating layer are formed is rust-removing such as blast treatment. It may be derusted.
  • the method for forming the intermediate layer containing silicon oxide is not particularly limited, and for example, surface treatment such as itro treatment, atmospheric pressure plasma coating treatment, reduced pressure plasma coating treatment and the like can be used. Above all, it is preferable that the intermediate layer is formed by itro treatment and/or atmospheric pressure plasma coating treatment from the viewpoint of further increasing the initial adhesive strength between the metal base material and the resin coating layer.
  • an intermediate layer containing silicon oxide can be formed on the surface of the metal substrate.
  • the metal base material is indirectly bonded to the metal base material via the other layer.
  • the other layer may be interposed between the surface of the metal base material and the intermediate layer to be formed by subjecting the metal base material to the surface treatment, but the initial adhesive strength between the metal base material and the resin coating layer and From the viewpoint of enhancing the moisture resistance of the laminate, it is preferable to directly form the intermediate layer on the surface of the metal base material by directly performing the surface treatment on the metal base material.
  • the intermediate layer may be formed on at least a part of the surface of the metal base material on which the resin coating layer is formed (resin coating layer forming surface). From the viewpoint of further increasing the initial adhesive strength with the layer, it is preferable to form the intermediate layer on the entire surface on which the resin coating layer is formed. For example, when one main surface of the sheet-shaped metal base material is the resin coating layer forming surface and the intermediate layer is formed on the main surface, from the viewpoint of further increasing the initial adhesive strength between the metal base material and the resin coating layer. It is preferable to form the intermediate layer on the entire main surface.
  • an intermediate layer is preferably formed on the entire outer surface (or inner surface).
  • the same intermediate layer may be formed on the surface of the plurality of locations on the metal base material, or different intermediate layers may be formed.
  • the same intermediate layer may be formed on one main surface and the other main surface, or different intermediate layers may be formed. It may be formed.
  • the same intermediate layer may be formed on the outer surface and the inner surface, or different intermediate layers may be formed. May be formed.
  • the components such as silicon oxide forming the intermediate layer must be present on the area without any gap.
  • the area may be completely covered, or the area may be partially covered by being scattered on the area.
  • combustible gas for example, propane gas or LPG (liquefied petroleum gas other than propane gas alone) can be used.
  • LPG liquefied petroleum gas other than propane gas alone
  • examples of LPG include butane (normal butane and isobutane), butane/propane mixed gas, ethane, pentane (normal pentane, isopentane, cyclopentane), and the like.
  • the silane compound as a silicon supply source is not particularly limited as long as it contains a silicon atom and can form a layer containing a silicon oxide by the intro treatment, and examples thereof include an organic silicon compound.
  • the organic silicon compound include hexamethyldisiloxane; hexamethyldisilazane; tetramethylsilane, tetraethylsilane, dimethyldichlorosilane, dimethyldiphenylsilane, diethyldichlorosilane, diethyldiphenylsilane, methyltrichlorosilane, methyltriphenylsilane, Alkylsilane such as dimethyldiethylsilane; tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dichlorodimethoxysilane, dichlorodieth
  • itro treatment includes, for example, a burner that ignites a mixture of the above-described combustible gas, a silane compound, and air to release a flame, and a table that conveys a metal base material that is a target object. It can be carried out using a device such as a product “ITRO processing device”.
  • various conditions such as the distance between the nozzle of the burner and the metal substrate, the flow rate of the silicon supply source, the air flow rate, the combustible gas flow rate, the number of treatments, etc. are set according to the desired conditions of the present invention. It can be appropriately set within the range in which the effect is obtained.
  • a silane compound which is a silicon source, is applied to the surface of a metal base material together with plasma generated under atmospheric pressure to form an intermediate layer containing silicon oxide.
  • the silane compound which is the silicon supply source the silane compound described above in the section “ITRO treatment” can be used.
  • hexamethyldisilane is preferably used from the viewpoint of further increasing the initial adhesive strength between the metal base material and the resin coating layer.
  • the gas required for generating plasma under atmospheric pressure include oxygen, nitrogen, argon, and a mixed gas thereof.
  • the atmospheric pressure plasma coating treatment can be performed using, for example, an apparatus such as "UL-Coat" manufactured by AcXys Technologies.
  • various conditions in the atmospheric pressure plasma coating treatment can be appropriately adjusted within a range in which a desired effect of the present invention can be obtained.
  • a silane compound which is a silicon supply source, is applied to the surface of the metal substrate together with plasma generated under reduced pressure to form an intermediate layer containing silicon oxide.
  • the silane compound which is the silicon supply source the silane compound described above in the section “ITRO treatment” can be used.
  • the gas necessary for generating plasma under reduced pressure include oxygen and argon.
  • an apparatus such as "CME-200E” manufactured by ULVAC Co. can be used.
  • Various conditions in the low pressure plasma coating treatment can be appropriately adjusted within a range where the desired effects of the present invention can be obtained.
  • the intermediate layer formed in the above-described intermediate layer forming step contains silicon oxide and optionally other components other than silicon oxide.
  • the intermediate layer is disposed between the surface of the metal base material described above and the resin coating layer used in the resin coating step described later.
  • the laminate to be produced is interposed between the surface of the metal base material and the resin coating layer, and has an intermediate layer containing silicon oxide, thereby increasing the initial adhesive strength between the metal base material and the resin coating layer. be able to.
  • Examples of the silicon oxide contained in the intermediate layer include silicon dioxide, silicon monoxide, and a mixture thereof.
  • examples of the components other than the silicon oxide contained in the intermediate layer include carbon derived from the organosilicon compound used in the surface treatment at the time of forming the intermediate layer, which will be described later, and carbon-containing compounds.
  • the proportion of silicon on the surface of the intermediate layer is not particularly limited, but is preferably 2.0 atom% or more, more preferably 5.0 atom% or more, further preferably 6.7 atom% or more. It is more preferably 0 atom% or more, still more preferably 14.1 atom% or more, further preferably 30.0 atom% or less, and more preferably 25.0 atom% or less.
  • the silicon ratio on the surface of the intermediate layer is within the above predetermined range, the initial adhesive strength between the metal base material and the resin coating layer can be further increased, and the long-term adhesive strength between the metal base material and the resin coating layer and the moisture resistance of the laminate can be improved. You can improve your sex.
  • the ratio of silicon on the surface of the intermediate layer can be adjusted, for example, by changing various conditions such as the table speed of the itro process and the number of times of the process in the method of forming the intermediate layer described above.
  • the surface of the intermediate layer is coated with a resin coating layer containing a predetermined modified block copolymer hydride [E]. That is, the surface of the intermediate layer formed on the surface of the metal substrate is covered with a resin coating layer containing a predetermined modified block copolymer hydride [E]. Therefore, the resin coating layer is formed on the side of the intermediate layer opposite to the side adjacent to the metal base material. Thereby, it has a metal base material, an intermediate layer containing silicon oxide, and a resin coating layer containing a predetermined modified block copolymer hydride [E], and the intermediate layer has a surface of the metal base material and a resin. A laminate is obtained that is interposed between the coating layer and the coating layer.
  • the resin coating layer in the resin coating step covers the intermediate layer formed on the surface of the metal base material. That is, the resin coating layer covers the surface of the metal substrate on the side where the intermediate layer is arranged. Therefore, the resin coating layer also covers the surface of the metal substrate through the intermediate layer. In this way, the resin coating layer covers the surface of the metal base material via the intermediate layer, whereby corrosion of the metal base material in the manufactured laminate can be favorably suppressed.
  • a layer other than the intermediate layer and the resin coating layer may be interposed between the intermediate layer and the resin coating layer. From the viewpoint of increasing the long-term adhesive strength between the resin coating layer and the resin coating layer, it is preferable to directly bond the intermediate layer and the resin coating layer.
  • the resin coating step at least a part of the surface of the intermediate layer may be coated with the resin coating layer, but from the viewpoint of enhancing the corrosion resistance of the laminate, the entire surface of the intermediate layer is coated with the resin coating layer. Preferably.
  • the surfaces of the plurality of intermediate layers formed on the plurality of surfaces of the metal base material are coated with the resin coating layer
  • the surfaces of the plurality of intermediate layers may be coated with the same resin coating layer. It may be coated with a different resin coating layer.
  • the intermediate layer is formed on the surface of both main surfaces of the sheet-shaped substrate, the surface of the intermediate layer formed on the surface of one main surface and the surface of the other main surface
  • the surface of the formed intermediate layer may be covered with the same resin coating layer or different resin coating layers.
  • the intermediate layer formed on the outer surface and the intermediate layer formed on the inner surface may be covered with the same resin coating layer or different resin coating layers.
  • the resin coating layer is a block copolymer composed of a polymer block [A] containing an aromatic vinyl monomer unit as a main component and a polymer block [B] containing a chain conjugated diene monomer unit as a main component.
  • a modified block copolymer hydride [E] obtained by introducing an alkoxysilyl group into a block copolymer hydride [D] obtained by hydrogenating a polymer [C], and optionally a modified block such as an additive It is a layer containing components other than the copolymer hydride [E].
  • the modified block copolymer hydride [E] is a polymer in which an alkoxysilyl group is introduced into the precursor block copolymer hydride [D].
  • the content ratio of the modified block copolymer hydride [E] in the resin coating layer is preferably 65% by mass or more, and 70% by mass from the viewpoint of initial adhesive strength, long-term adhesive strength, and moisture resistance. More preferably, it is more preferably 75 mass% or more, still more preferably 100 mass% or less.
  • the block copolymer hydride [D] is a polymer obtained by hydrogenating a block copolymer [C] which is a precursor, and more specifically, a polymer containing an aromatic vinyl monomer unit as a main component. It is a polymer obtained by hydrogenating a block copolymer [C] which is a polymer having a block [A] and a polymer block [B] containing a chain conjugated diene monomer unit as a main component.
  • the block copolymer hydride [D] selectively hydrogenates only carbon-carbon unsaturated bonds in the main chain and side chains derived from the chain conjugated diene monomer of the block copolymer [C]. It may be a polymerized polymer, or may be derived from the main chain and side chain carbon-carbon unsaturated bonds derived from the chain conjugated diene monomer of the block copolymer [C] and from the aromatic vinyl monomer.
  • the polymer may be a polymer in which the carbon-carbon unsaturated bond of the aromatic ring is hydrogenated, or a mixture thereof.
  • the main chain and side chain carbon-carbon unsaturated bonds The hydrogenation rate of the saturated bond is usually 95% or more, preferably 97% or more, more preferably 99% or more, and the hydrogenation rate of the carbon-carbon unsaturated bond of the aromatic ring derived from the aromatic vinyl monomer. Is usually 10% or less, preferably 5% or less, more preferably 3% or less.
  • “hydrogenating carbon-carbon unsaturated bonds in the main chain and side chains” means “hydrogenating a double bond derived from a chain conjugated diene monomer in a block copolymer”.
  • hydrogenating a carbon-carbon unsaturated bond of an aromatic ring means “hydrogenating a double bond derived from an aromatic ring in a block copolymer”.
  • the hydrogenation rate is usually 90% or more, preferably 95% or more, more preferably 99% or more of the total carbon-carbon unsaturated bonds. The higher the hydrogenation rate indicating the degree of hydrogenation, the better the light resistance and heat resistance of the resin coating layer.
  • “hydrogenation of carbon-carbon unsaturated bond in main chain and side chain” means “hydrogenation of double bond derived from chain conjugated diene monomer in block copolymer [C]”.
  • “hydrogenation of carbon-carbon unsaturated bond in aromatic ring” means “hydrogenation of double bond derived from aromatic ring in block copolymer [C]”.
  • the hydrogenation rate of the block copolymer hydride [D] is obtained by a method of measuring 1 H-NMR of the block copolymer [C] and the block copolymer hydride [D]. be able to.
  • the method of hydrogenating the carbon-carbon unsaturated bond, the reaction form, etc. are not particularly limited and may be carried out according to known methods.
  • a method for selectively hydrogenating carbon-carbon unsaturated bonds in the main chain and side chains derived from the chain conjugated diene compound of the block copolymer [C] is described in, for example, JP-A-2015-78090. Mention may be made of the methods described.
  • the molecular weight of the block copolymer hydride [D] is not particularly limited, but from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer, gel permeation chromatography (GPC) using THF as a solvent.
  • the polystyrene-equivalent weight average molecular weight (Mw) is preferably 35,000 or more, more preferably 38,000 or more, still more preferably 40,000 or more, 200, It is preferably 000 or less, more preferably 150,000 or less, still more preferably 100,000 or less.
  • the molecular weight distribution (Mw/Mn) of the block copolymer hydride [D] is not particularly limited, but is preferably 3 or less from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer. It is more preferably 2 or less, still more preferably 1.7 or less.
  • the number of peaks derived from the block copolymer hydride [D] in the elution curve measured by gel permeation chromatography (GPC) of the sample containing the block copolymer hydride [D] is not particularly limited. From the viewpoint of enhancing the shape following property of the coating layer and further enhancing the initial adhesive strength between the metal base material and the resin coating layer, it is preferably 2 or more, preferably 4 or less, and 3 or less. It is more preferable, and it is particularly preferable that the number is two.
  • the elution curve may be any that can detect the peak derived from the block copolymer hydride [D], and only the elution curve obtained by GPC measurement of the block copolymer hydride [D] alone Instead, it may be an elution curve obtained from a composition containing a block copolymer hydride [D] (for example, a composition containing an antioxidant and a block copolymer hydride [D]).
  • peak means "a portion protruding from the baseline”
  • peak top is a peak at which the differential refractometer (RI) has the highest detection sensitivity (mV). Means.
  • the most detected peak is obtained from at least two block copolymer hydride [D] derived peaks.
  • the peak derived from compound [D] is designated as the second peak. For example, in FIG.
  • F is the first peak
  • G is the second peak
  • It is a peak derived from a solvent (for example, cyclohexane), and two peaks detected on the minus side after 16.5 minutes are peaks derived from tetrahydrofuran (THF) as a solvent used in the GPC measurement.
  • I is a peak derived from the antiaging agent.
  • J is a plot (calibration curve) of the molecular weight of standard polystyrene measured by GPC. As shown in FIG. 1, this calibration curve and the hydride of the block copolymer measured by GPC are shown.
  • the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak is not particularly limited, but is preferably 15,000 or more, more preferably 20,000 or more, and further preferably 25,000 or more. It is preferably 200,000 or less, more preferably 170000 or less, still more preferably 140000 or less. If the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak is 15,000 or more, the impact strength of the resin coating layer can be secured, and if it is 200,000 or less, the resin coating layer. It is possible to further improve the shape following property and to further increase the initial adhesive strength between the metal base material and the resin coating layer.
  • the standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the elution time of the second peak is not particularly limited, but is preferably 1000 or more, more preferably 1200 or more, and further preferably 1500 or more. It is preferably 1800 or more, more preferably 153800 or less, more preferably 100000 or less, and further preferably 50000 or less.
  • the standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the elution time of the second peak is 1000 or more and 153800 or less
  • the shape-following property of the resin coating layer is further enhanced, and the metal base material and the resin coating
  • the initial adhesive strength with the layer can be further increased.
  • Ratio of standard polystyrene reduced molecular weight (first peak molecular weight) based on elution time of first peak to standard polystyrene reduced molecular weight (second peak molecular weight) based on elution time of second peak (first peak molecular weight/second peak molecular weight) Is not particularly limited, but is preferably 1.50 or more, more preferably 2.0 or more, further preferably 4.0 or more, preferably 200 or less, and 150 or less. Is more preferable, and 100 or less is further preferable.
  • the ratio of the first peak molecular weight to the second peak molecular weight is 1.50 or more and 200 or less
  • the shape following property of the resin coating layer is further enhanced, and the initial adhesion between the metal base material and the resin coating layer is performed.
  • the strength can be further increased.
  • the ratio of (sensitivity) (mV) is not particularly limited, but is preferably 1.0 or more, and is 1.5 or more. More preferably, it is more preferably 2.0 or more, further preferably 99 or less, more preferably 70 or less, and further preferably 50 or less.
  • the ratio of the first peak top sensitivity (mV) to the second peak top sensitivity (mV) is 1.0 or more, the shape following property of the resin coating layer is further enhanced, and the initial stage of the metal base material and the resin coating layer.
  • the adhesive strength can be further increased, and when it is 99 or less, the unevenness of the film thickness of the resin coating layer can be further improved.
  • hydrogenation reaction time hydrogenation reaction time
  • hydrogenation temperature hydrogenation temperature
  • hydrogenation reaction time hydrogenation reaction time
  • hydrogen supply stop time hydrogenation reaction time
  • a predetermined first peak and a predetermined peak are obtained in the elution curve measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the block copolymer [C] includes at least one polymer block [A] containing an aromatic vinyl monomer unit as a main component and a polymer block [A] containing a chain conjugated diene monomer unit as a main component.
  • it is a polymer having one or more B]
  • it is preferably a polymer composed of two or more polymer blocks [A] and one or more polymer blocks [B].
  • the number of polymer blocks [A] in the block copolymer [C] is preferably 3 or less, and more preferably 2.
  • the number of polymer blocks [B] in the block copolymer [C] is preferably 2 or less, and more preferably 1.
  • a resin composition containing a modified block copolymer hydride [E] obtained by introducing an alkoxysilyl group into a hydride [D] a hydrogenated polymer block derived from the polymer block [A] (hereinafter referred to as "hydrogenation The polymer block [A h ]”) and the hydrogenated polymer block derived from the polymer block [B] are prevented from becoming unclear, and the hydrogenated polymer block [A h ] It is possible to prevent the glass transition temperature on the high temperature side based on [ h ] from lowering, and thus to prevent the heat resistance of the resin coating layer from lowering.
  • the block form of the block copolymer [C] is not particularly limited and may be a chain block or a radial block, but from the viewpoint of improving the mechanical strength of the resin coating layer, It is preferably a chain block.
  • a particularly preferable form of the block copolymer [C] is a triblock copolymer ([A]-[B]-[A] in which the polymer blocks [A] are bonded to both ends of the polymer block [B]. ]).
  • the block copolymer is preferably not subjected to terminal modification at the stage after block polymerization and before hydrogenation.
  • the block copolymer is composed of two polymer blocks [A] (first polymer block [A1], second polymer block [A2]) and one polymer block [B].
  • the mass of the aromatic vinyl monomer unit derived from the first polymer block [A1] in the entire block copolymer Of the mass fraction and the mass fraction of the aromatic vinyl monomer unit derived from the second polymer block [A2] in the entire block copolymer, one is St1 and the other is St2 (where St1 ⁇ When it is St2), the ratio (St1/St2) of St1 and St2 is preferably 20/80 or more, and preferably 50/50 or less.
  • the mass fraction of all aromatic vinyl monomer units in the block copolymer [C] in the entire block copolymer [C] is wA, and the whole chain conjugated diene monomer in the block copolymer [C] is
  • wA is preferably 60% or less, more preferably 55% or less, and 50% or less. More preferably, it is preferably 20% or more, more preferably 30% or more, further preferably 40% or more, wB is preferably 80% or less, and 70% or less. More preferably, it is more preferably 60% or less, further preferably 40% or more, more preferably 45% or more, still more preferably 50% or more.
  • Adhesion of the resin coating layer obtained by setting the mass fraction (wA) of all the aromatic vinyl monomer units in the block copolymer [C] in the entire block copolymer [C] to 60% or less. It is possible to secure the sex.
  • the mass fraction (wA) of all aromatic vinyl monomer units in the block copolymer [C] in the entire block copolymer [C] to be 20% or more, the heat resistance of the resin coating layer can be improved. It is possible to secure the sex.
  • the molecular weight of the block copolymer [C] is not particularly limited, but from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer, the polystyrene equivalent weight measured by GPC using tetrahydrofuran (THF) as a solvent.
  • the average molecular weight (Mw) is preferably 35,000 or more, more preferably 38,000 or more, further preferably 40,000 or more, and preferably 200,000 or less, 150 It is more preferably 2,000 or less, still more preferably 100,000 or less.
  • the molecular weight distribution (Mw/Mn) of the block copolymer [C] is not particularly limited, but is preferably 3 or less from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer. It is more preferably not more than 1.7, still more preferably not more than 1.7.
  • the method for producing the block copolymer [C] is not particularly limited, and for example, the methods described in International Publication No. 2003/018656, International Publication No. 2011/096389 and the like can be adopted.
  • the polymer block [A] is a polymer block containing an aromatic vinyl monomer unit as a main component.
  • the content ratio of the aromatic vinyl monomer unit in the polymer block [A] needs to be more than 50% by mass based on 100% by mass of all structural units constituting the polymer block [A], It is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more.
  • the upper limit of the content ratio of the aromatic vinyl monomer unit in the polymer block [A] is not particularly limited and can be 100% by mass or less. When the content ratio of the aromatic vinyl monomer unit in the polymer block [A] is more than 50% by mass, the heat resistance of the resin coating layer can be secured.
  • the polymer block [A] may contain a monomer unit (other monomer unit) other than the aromatic vinyl monomer unit.
  • Examples of other monomer units that can be contained in the polymer block [A] include a chain conjugated diene monomer unit described below and/or other vinyl monomer units.
  • the total content of the chain conjugated diene monomer units and the other vinyl monomer units in the polymer block [A] is 100% by mass based on all the monomer units constituting the polymer block [A]. It is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 1% by mass or less.
  • the total content ratio of the chain conjugated diene monomer unit and the other vinyl monomer unit in the polymer block [A] is 10% by mass or less, the heat resistance of the resin coating layer can be secured. ..
  • the polymer block [A] contains a chain conjugated diene monomer unit and/or another vinyl monomer unit
  • the polymer block [A] is usually an aromatic vinyl monomer unit, It is preferable to have a portion in which a chain conjugated diene monomer unit and other vinyl monomer units are irregularly repeated.
  • the block copolymer [C] has a plurality of polymer blocks [A]
  • the polymer blocks [A] may be the same as or different from each other.
  • aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit examples include styrene; ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene.
  • Styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent such as 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene; 4-methoxystyrene, etc.
  • a styrene having an alkoxy group having 1 to 6 carbon atoms as a substituent a styrene having an aryl group as a substituent such as 4-phenylstyrene; a vinylnaphthalene such as 1-vinylnaphthalene or 2-vinylnaphthalene And the like; You may use these individually by 1 type or in combination of 2 or more type.
  • aromatic vinyl monomers containing no polar group such as styrene and styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, from the viewpoint of reducing the hygroscopicity of the resin coating layer. Is preferred, and styrene is more preferred because of its industrial availability.
  • vinyl monomers capable of forming other vinyl monomer units include vinyl compounds other than aromatic vinyl monomers and chain conjugated diene monomers, for example, chain vinyl compounds, cyclic vinyl compounds, Examples thereof include unsaturated cyclic acid anhydrides and unsaturated imide compounds. These compounds may have a substituent such as a nitrile group, an alkoxycarbonyl group, a hydroxycarbonyl group and a halogen atom. These compounds may be used alone or in combination of two or more.
  • chain olefins such as dodecene, 1-eicosene, 4-methyl-1-pentene, 4,6-dimethyl-1-heptene; vinylcyclohexane, norbornene, etc.
  • a cyclic vinyl compound having 5 to 20 carbon atoms (cyclic olefin); a cyclic diene compound such as 1,3-cyclohexadiene or norbornadiene; and the like, which does not contain a polar group, are preferable.
  • the polymer block [B] is a polymer block containing a chain conjugated diene monomer unit as a main component.
  • the content ratio of the chain conjugated diene monomer unit in the polymer block [B] needs to be more than 50% by mass based on 100% by mass of all structural units constituting the polymer block [B]. , 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more.
  • the upper limit of the content of the chain conjugated diene monomer unit in the polymer block [B] is not particularly limited and can be 100% by mass or less.
  • the content ratio of the chain conjugated diene monomer unit in the polymer block [B] is more than 50% by mass, the flexibility of the resin coating layer is increased, and for example, the resin coating layer has a sharp temperature change in the environment. However, it is difficult to cause defects such as cracks, which is preferable.
  • the polymer block [B] may contain a monomer unit (other monomer unit) other than the chain conjugated diene monomer unit.
  • examples of the other monomer unit that can be contained in the polymer block [B] include the above-mentioned aromatic vinyl monomer unit and/or the above-mentioned other vinyl monomer unit.
  • the total content of the aromatic vinyl monomer units and the other vinyl monomer units in the polymer block [B] is 30% by mass based on 100% by mass of all the structural units constituting the polymer block [B]. % Or less, more preferably 20% by mass or less, still more preferably 10% by mass or less.
  • the flexibility of the resin coating layer increases, and for example, the resin coating layer
  • the polymer block [B] contains an aromatic vinyl monomer unit and/or another vinyl monomer unit
  • the polymer block [B] is usually a chain conjugated diene monomer unit, It is preferable to have a portion in which an aromatic vinyl monomer unit and other vinyl monomer units are irregularly repeated.
  • the polymer blocks [B] may be the same or different from each other.
  • the polymer block [B] is a structural unit (1,2- and 3, in which a part of a chain conjugated diene monomer unit is polymerized with 1,2-bond and/or 3,4-bond).
  • 4-addition polymerization-derived structural units), and the rest of the chain conjugated diene monomer units have structural units polymerized with 1,4-bonds (1,4-addition polymerization-derived structural units) May be
  • “1,2-bond (3,4-bond)” and “1,4-bond” The ratio of “1,4-bond” to the total of the above is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • the polymer block [B] containing a structural unit derived from a chain conjugated diene monomer polymerized by 1,2-bond and/or 3,4-bond is a chain conjugated diene monomer, if necessary. Then, the aromatic vinyl monomer and other vinyl monomers are polymerized in the presence of a specific compound having an electron donating atom as a randomizing agent. The content of the structural unit derived from the chain conjugated diene monomer polymerized by 1,2-bond and/or 3,4-bond can be controlled by the addition amount of the randomizing agent.
  • Examples of the compound having an electron donating atom include ether compounds, amine compounds, phosphine compounds, and the like.
  • ether compounds are preferable from the viewpoints that the molecular weight distribution of the random copolymer block can be made small and the hydrogenation reaction is difficult to be inhibited.
  • the compound having an electron donating atom include, for example, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol diisopropyl ether, ethylene glycol dibutyl ether, ethylene glycol methylphenyl ether, Examples thereof include propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol diisopropyl ether, propylene glycol dibutyl ether, di(2-tetrahydrofuryl)methane, diethylene glycol dibutyl ether, dipropylene glycol dibutyl ether, and tetramethylethylene diamine.
  • the content of the compound having these electron-donating atoms is preferably 0.001 part by mass or more, and more preferably 0.01 part by mass or more, relative to 100 parts by mass of the chain conjugated diene monomer. It is preferably 10 parts by mass or less, more preferably 1 part by mass or less.
  • chain conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene and the like. You may use these individually by 1 type or in combination of 2 or more type. Among these, from the viewpoint of reducing the hygroscopicity of the resin coating layer, a chain conjugated diene monomer containing no polar group is preferable, and further, 1,3-butadiene and isoprene are preferred because of their industrial availability. Is more preferable.
  • alkoxysilyl group into hydride block copolymer [D]--
  • alkoxysilyl group to be introduced into the above hydrogenated block copolymer [D] include, for example, trimethoxysilyl group, triethoxysilyl group and the like, tri(C 1-6 alkoxy)silyl group; methyldimethoxysilyl group.
  • (C1-C20 alkyl)di(C1-C6 alkoxy)silyl groups such as, methyldiethoxysilyl group, ethyldimethoxysilyl group, ethyldiethoxysilyl group, propyldimethoxysilyl group and propyldiethoxysilyl group
  • (aryl)di(C 1-6 alkoxy)silyl groups such as phenyldimethoxysilyl group and phenyldiethoxysilyl group
  • the alkoxysilyl group is bonded to the block copolymer hydride [D] through a divalent organic group such as an alkylene group having 1 to 20 carbon atoms or an alkyleneoxycarbonylalkylene group having 2 to 20 carbon atoms. May be combined with each other.
  • the introduction amount of the alkoxysilyl group to 100 parts by mass of the block copolymer hydride [D] is not particularly limited and is preferably 0.5 parts by mass or more, and preferably 5 parts by mass or less. It is more preferably less than or equal to parts by mass.
  • the introduced amount of the alkoxysilyl group is 5 parts by mass or less, the crosslinking of the alkoxysilyl groups decomposed with a small amount of water or the like is suppressed before molding the obtained modified block copolymer hydride [E]. It is possible to prevent gelation and deterioration of moldability due to deterioration of fluidity during melting.
  • the introduction amount of the alkoxysilyl group is 0.5 parts by mass or more, the adhesiveness of the resin coating layer is improved, and for example, the initial adhesive strength between the metal base material and the resin coating layer can be further increased.
  • the introduction of the alkoxysilyl group can be confirmed by the IR spectrum of the modified block copolymer hydride [E] having the alkoxysilyl group introduced.
  • the amount of introduction can be calculated from the 1 H-NMR spectrum of the modified block copolymer hydride [E] having an alkoxysilyl group introduced.
  • the method for introducing an alkoxysilyl group into the block copolymer hydride [D] is not particularly limited, and for example, the block copolymer hydride [D] may be added with an ethylenic monomer in the presence of an organic peroxide.
  • a method of introducing an alkoxysilyl group by reacting (grafting reaction) with a saturated silane compound, more specifically, a block copolymer hydride [D], an ethylenically unsaturated silane compound and an organic peroxide examples thereof include a method of kneading the mixture in a molten state for a desired time with a twin-screw kneader, a twin-screw extruder, or the like.
  • the ethylenically unsaturated silane compound used in the above-described introduction method may be one that is capable of introducing an alkoxysilyl group into the block copolymer hydride [D] through a graft reaction with the block copolymer hydride [D].
  • an alkoxysilyl group into the block copolymer hydride [D] through a graft reaction with the block copolymer hydride [D].
  • the organic peroxide used in the grafting reaction is not particularly limited, but one having a one-minute half-life temperature of 170° C. or higher and 190° C. or lower is preferable, and examples thereof include t-butyl cumyl peroxide, dicumyl peroxide, Di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, di-t-butyl peroxide, 1,4-bis(2-t-butylperoxyisopropyl) ) Benzene and the like are preferable. These may be used alone or in combination of two or more.
  • the kneading temperature by the twin-screw extruder is not particularly limited, but is preferably 180° C. or higher, more preferably 185° C. or higher, further preferably 190° C. or higher, and 220° C. or lower. Is preferable, 210° C. or lower is more preferable, and 200° C. or lower is further preferable.
  • the heating and kneading time is not particularly limited, but is preferably 0.1 minutes or longer, more preferably 0.2 minutes or longer, still more preferably 0.3 minutes or longer. It is preferably not more than minutes, more preferably not more than 5 minutes, further preferably not more than 2 minutes.
  • the form of the obtained modified block copolymer hydride [E] is not particularly limited, but it is usually preferable to make it into a pellet shape and then use it for the subsequent molding processing and compounding of additives.
  • modified block copolymer hydride [E]-- Regarding the molecular weight of the modified block copolymer hydride [E], since the molecular weight of the introduced alkoxysilyl group is usually small, it is substantially the same as the molecular weight of the block copolymer hydride [D] used as a raw material. does not change. However, in order to react the ethylenically unsaturated silane compound with the block copolymer hydride [D] in the presence of an organic peroxide (grafting reaction), a crosslinking reaction and a cleavage reaction of the polymer occur simultaneously, The value of the molecular weight distribution of the modified block copolymer hydride [E] becomes large.
  • the molecular weight of the hydride of the modified block copolymer [E] is not particularly limited, but from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer, it can be converted into polystyrene by GPC using THF as a solvent.
  • the weight average molecular weight (Mw) is preferably 20,000 or more, more preferably 25,000 or more, further preferably 30,000 or more, and preferably 200,000 or less, It is more preferably 150,000 or less, still more preferably 100,000 or less.
  • the molecular weight distribution (Mw/Mn) of the modified block copolymer hydride [E] is not particularly limited, but is 3.5 or less from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer. Preferably, it is 3.0 or less, more preferably 2.5 or less.
  • the number of peaks derived from the modified block copolymer hydride [E] in the elution curve measured by gel permeation chromatography (GPC) of the sample containing the modified block copolymer hydride [E] is not particularly limited. From the viewpoints of improving the shape conformability of the resin coating layer and further increasing the initial adhesive strength between the metal substrate and the resin coating layer, it is preferably 2 or more, preferably 4 or less, and 3 or less. Is more preferable, and it is particularly preferable that it is two.
  • the elution curve may be any as long as the peak derived from the modified block copolymer hydride [E] can be detected, and the elution curve obtained by GPC measurement of only the modified block copolymer hydride [E]. Not only the curve but also the elution curve obtained from the composition containing the modified block copolymer hydride [E] (for example, the composition containing the antioxidant and the modified block copolymer hydride [E]). May be.
  • peak means "a portion protruding from the baseline”
  • peak top is a peak at which the differential refractometer (RI) has the highest detection sensitivity (mV). Means.
  • a modified block copolymer hydride [E]-derived peak exhibiting the highest peak of detection sensitivity is defined as the first peak, and a modified block exhibiting a peak top with the shortest elution time after the elution time of the peak top of the first peak.
  • the peak derived from the copolymer hydride [E] is designated as the second peak.
  • the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak is not particularly limited, but is preferably 15,000 or more, more preferably 20,000 or more, and further preferably 25,000 or more. It is preferably 200,000 or less, more preferably 170000 or less, still more preferably 140000 or less. If the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak is 15,000 or more, the impact strength of the resin coating layer can be secured, and if it is 200,000 or less, the resin coating layer. It is possible to further improve the shape following property and to further increase the initial adhesive strength between the metal base material and the resin coating layer.
  • the standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the elution time of the second peak is not particularly limited, but is preferably 1000 or more, more preferably 1200 or more, and further preferably 1500 or more. It is preferably 1800 or more, more preferably 153800 or less, more preferably 100000 or less, and further preferably 50000 or less.
  • the standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the elution time of the second peak is 1000 or more and 153800 or less
  • the shape-following property of the resin coating layer is further enhanced, and the metal base material and the resin coating
  • the initial adhesive strength with the layer can be further increased.
  • Ratio of standard polystyrene reduced molecular weight (first peak molecular weight) based on elution time of first peak to standard polystyrene reduced molecular weight (second peak molecular weight) based on elution time of second peak (first peak molecular weight/second peak molecular weight) Is not particularly limited, but is preferably 1.50 or more, more preferably 2.0 or more, further preferably 4.0 or more, preferably 200 or less, and 150 or less. Is more preferable, and 100 or less is further preferable.
  • the ratio of the first peak molecular weight to the second peak molecular weight is 1.50 or more and 200 or less
  • the shape following property of the resin coating layer is further enhanced, and the initial adhesion between the metal base material and the resin coating layer is performed.
  • the strength can be further increased.
  • the ratio of (sensitivity) (mV) is not particularly limited, but is preferably 1.0 or more, and is 1.5 or more. More preferably, it is more preferably 2.0 or more, further preferably 99 or less, more preferably 70 or less, and further preferably 50 or less.
  • the ratio of the first peak top sensitivity (mV) to the second peak top sensitivity (mV) is 1.0 or more, the shape following property of the resin coating layer is further enhanced, and the initial stage of the metal base material and the resin coating layer.
  • the adhesive strength can be further increased, and if it is 99 or less, the unevenness of the film thickness of the resin coating layer can be improved.
  • hydrogenation reaction time hydrogenation reaction time
  • hydrogenation temperature hydrogenation temperature
  • hydrogenation reaction time hydrogenation reaction time
  • hydrogen supply stop time hydrogenation reaction time
  • a predetermined first peak and a predetermined peak are obtained in the elution curve measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • additives that the resin coating layer may optionally include include antioxidants, antiblocking agents, light stabilizers, and processing aids. These may be used alone or in combination of two or more. Further, the content ratio of each of the above-mentioned additives in the resin coating layer can be appropriately adjusted within a range in which the desired effects of the present invention can be obtained.
  • the processability of the resin coating layer can be improved.
  • the antioxidant include phosphorus-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants and the like.
  • the anti-blocking agent By blending the anti-blocking agent, it is possible to prevent the pellet containing the thermoplastic resin as a main component from blocking.
  • the antiblocking agent include lithium stearate, sodium stearate, potassium stearate, magnesium stearate, calcium stearate, aluminum stearate, zinc stearate, barium stearate, calcium laurate, zinc laurate, barium laurate.
  • the durability of the resin coating layer can be increased.
  • the light stabilizer include hindered amine light stabilizers.
  • the processing aid is preferably one that can be uniformly dissolved or dispersed in the modified block copolymer hydride [E], and more preferably a hydrocarbon polymer having a number average molecular weight of 300 or more and 5,000 or less.
  • hydrocarbon-based polymer examples include polyisobutylene, polybutene, poly-4-methylpentene, poly-1-octene, polyisoprene, ethylene/ ⁇ -olefin copolymer, polyisoprene-butadiene copolymer and the like.
  • Polyisobutylene hydride and low molecular weight number average molecular weight is preferably 500 or more and 3,000 or less, more preferably 500 or more and 2,500 or less) polybutene hydride.
  • the blending amount of the low-molecular weight hydrocarbon polymer is usually 40 parts by mass or less, preferably 30 parts by mass or less, and more preferably 20 parts by mass or less with respect to 100 parts by mass of the copolymer hydride.
  • the heat resistance tends to decrease and the eluate tends to increase easily when the interlayer film for laminated glass is used.
  • Examples of the method for coating the surface of the intermediate layer formed on the surface of the metal substrate with the resin coating layer containing the modified block copolymer hydride [E] described above include: (I) A resin coating layer is formed while molding the resin composition containing the modified block copolymer hydride [E] into a shape that covers the surface of the intermediate layer formed on the surface of the metal substrate.
  • a method that is, a method of simultaneously molding and coating a resin composition
  • (Ii) A resin composition containing the modified block copolymer hydride [E] is preformed into a sheet to obtain a resin coating layer, and the sheet resin coating layer is optionally deformed, Method of sticking to the surface of the intermediate layer formed on the surface of the metal substrate (that is, method of coating after molding the resin composition) Either of these may be adopted.
  • the additive is added to the modified block copolymer hydride [E].
  • a method of blending a generally used known method can be applied. For example, (a) pellets of the modified block copolymer hydride [E] and additives are mixed with a mixer such as a tumbler, a ribbon blender or a Henschel type mixer.
  • the method for molding the resin composition containing the modified block copolymer hydride [E] into a desired shape in the above methods (i) and (ii) is not particularly limited, and examples thereof include melt extrusion.
  • Examples of the molding method include a molding method, an inflation molding method, a calender molding method, and the like.
  • the temperature of the resin composition is preferably 170° C. or higher, more preferably 180° C. or higher, and further preferably 190° C. or higher.
  • the temperature is preferably 250° C. or lower, more preferably 240° C. or lower, still more preferably 230° C. or lower.
  • the “shape of covering the surface of the intermediate layer formed on the surface of the metal substrate” means, for example, when a tubular metal substrate is used, It refers to the shape of a tube covering the outer surface or the inner surface of a tubular metal substrate, or the shape corresponding to a part of the tube.
  • a method of attaching the sheet-shaped resin coating layer to the surface of the intermediate layer formed on the surface of the metal substrate while arbitrarily deforming the resin coating layer is, for example, flat plate press or roll.
  • a method using a press, a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, a method of pressurizing with an autoclave after temporary pressure bonding, a TOM method (Three-dimension Over-lay Method), etc. can be used.
  • a laminate obtained by stacking a sheet-shaped resin coating layer on the surface of an intermediate layer formed on the surface of a metal substrate is placed in a heat-resistant bag and degassed.
  • the resin coating layer can be melted by heating and pressurizing in an autoclave, and the resin coating layer can be attached to the surface of the intermediate layer.
  • the depressurizing condition when degassing using a heat resistant bag and the heating temperature and pressurizing condition in the autoclave can be appropriately set within the range where the desired effect of the present invention can be obtained.
  • the thickness of the resin coating layer obtained as described above is not particularly limited and can be appropriately set according to the application of the laminate.
  • the method for manufacturing a laminate of the present invention may include other steps than the above-mentioned intermediate layer forming step and resin coating step.
  • a laminate produced by the method for producing a laminate of the present invention including, for example, a step of forming an intermediate layer and a layer other than the resin coating layer on the surface of the resin coating layer after the resin coating step.
  • the other layer may be arranged outside the resin coating layer (that is, on the side opposite to the side adjacent to the intermediate layer).
  • the method for producing a laminate of the present invention includes, for example, a step of forming an intermediate layer and a layer other than the resin coating layer on the surface of the intermediate layer between the intermediate layer forming step and the resin coating step.
  • the other layer may be interposed between the intermediate layer and the resin coating layer in the manufactured laminate.
  • the manufacturing method of the laminate of the present invention for example, by including a step of forming an intermediate layer and a layer other than the resin coating layer on the surface of the metal substrate before the intermediate layer forming step, In the laminated body, the other layer may be interposed between the surface of the metal base material and the intermediate layer.
  • the method for producing a laminate of the present invention comprises a laminate produced by including an organic adhesive layer forming step of forming an organic adhesive layer on the surface of the metal substrate before the intermediate layer forming step.
  • an organic adhesive layer may be disposed between the surface of the metal base material and the intermediate layer.
  • the method for producing a laminate of the present invention is produced by including an organic adhesive layer forming step of forming an organic adhesive layer on the surface of the intermediate layer between the intermediate layer forming step and the resin coating step.
  • an organic adhesive layer may be interposed between the intermediate layer and the resin coating layer.
  • Organic Adhesive Layer Forming Step an organic adhesive layer is formed on the surface of the metal substrate before the intermediate layer forming step described above, and/or on the surface of the intermediate layer between the intermediate layer forming step and the resin coating step. An organic adhesive layer is formed on.
  • the component composition of the organic adhesive layer formed in the organic adhesive layer forming step is different from any of the component compositions of the intermediate layer and the resin coating layer described above.
  • the organic adhesive layer includes, but is not particularly limited to, an organosilicon compound such as 3-acryloxypropyltrimethoxysilane.
  • an aqueous solution or an aqueous dispersion containing the above-mentioned organosilicon compound is prepared as a treatment liquid, and by a known method such as dipping and coating, on the surface of the metal substrate or the intermediate layer.
  • appropriate treatments such as washing, reheating and drying are performed to remove water to form an organic adhesive layer on the surface of the metal substrate. Can be formed.
  • the method for producing a laminate of the present invention does not include the above-mentioned organic adhesive layer forming step before the intermediate layer forming step.
  • a laminate produced by the method for producing a laminate of the present invention comprises a metal substrate, an intermediate layer containing silicon oxide, and a resin coating layer containing the above-mentioned predetermined modified block copolymer hydride [E]. And the intermediate layer is disposed between the surface of the metal base material and the resin coating layer. Thus, it has a metal base material, an intermediate layer containing silicon oxide, and a resin coating layer containing a predetermined modified block copolymer hydride [E], and the intermediate layer is the surface of the metal base material.
  • a laminate having an interposition between the resin coating layer and the resin coating layer has excellent initial adhesive strength between the metal base material and the resin coating layer.
  • the laminate produced by the method for producing a laminate of the present invention is a packaging material for pharmaceuticals, a packaging material for foods, a packaging material for electronic parts, a solar cell module rear surface protection sheet, a water pipe, a gas transportation pipe, a fuel. It can be suitably used as a transportation pipe, a cable protection pipe, and the like.
  • the laminate produced by the method for producing a laminate of the present invention has a metal base material such as an LED element, an organic EL element, and an electronic substrate wiring, an intermediate layer containing silicon oxide, and a sealing material.
  • a resin coating layer, and the intermediate layer may be a laminate in which the intermediate layer is interposed between the surface of the metal base material and the resin coating layer (sealing material).
  • the laminate produced by the method for producing a laminate of the present invention may optionally further include other members other than the above-mentioned metal base material, intermediate layer, and resin coating layer.
  • the laminated body produced by the method for producing a laminated body of the present invention may further have, as another member, an organic adhesive layer interposed between the surface of the metal base material and the intermediate layer. ..
  • the organic adhesive layer can be formed, for example, by the method for forming the organic adhesive layer described above.
  • the surface of the metal base material is directly adhered to the intermediate layer. It is preferable that no organic adhesive layer is interposed between the intermediate layer and the intermediate layer. That is, it is preferable that the produced laminate does not have an organic adhesive layer interposed between the surface of the metal base material and the intermediate layer.
  • Tosoh “HLC8320GPC” is used as a measuring device, and Tosoh “TSKgel SuperH G5000HLX”, Tosoh “G4000HLX”, Tosoh “G2000HLX” are connected in series as a measuring column. did. The amount of polymer was adjusted to a concentration of 4 mg/1 cc. Further, in the same manner as above, after measuring the number average molecular weight (Mn), the molecular weight distribution of the block copolymer [C], the block copolymer hydride [D], and the modified block copolymer hydride [E] (Mw/Mn) was determined.
  • Mn number average molecular weight
  • the intermediate layer formed in each of the Examples and Comparative Examples was subjected to elemental analysis of the surface by using XPS (“PHI5000 VersaProbe II” manufactured by ULVAC-PHI, Inc.) with the irradiation diameter of X-ray being 100 ⁇ m.
  • the silicon ratio on the layer surface was measured.
  • the elements to be analyzed were 9 elements of silicon, oxygen, carbon, nitrogen, iron, chromium, nickel, copper and aluminum.
  • a 180° peel strength test was performed, and the obtained value was evaluated as the initial adhesive strength between the metal substrate and the resin coating layer according to the following criteria. The higher the initial adhesive strength value, the better the initial adhesive strength between the metal base material and the resin coating layer.
  • D Initial adhesive strength of less than 30 N/10 mm
  • ⁇ Adhesive strength after temperature cycle test> With respect to the test pieces for evaluation produced in each of the examples and the comparative examples, a temperature cycle test in which one cycle of storing at ⁇ 50° C. for 12 hours and then at 60° C. for 12 hours was repeated 30 times. Then, after each test piece for evaluation was further stored at 23° C. for 24 hours, a 180° peel strength test was performed by the same treatment and operation as the above-mentioned initial adhesive strength, and the obtained value was used as the metal base material and the resin coating. It was taken as the adhesive strength after the temperature cycle test with the layer. The higher the value of the adhesive strength after the temperature cycle test, the better the long-term adhesive strength between the metal substrate and the resin coating layer.
  • Adhesive strength after the temperature cycle test is 100 N/10 mm or more
  • B Adhesive strength after the temperature cycle test is 50 N/10 mm or more and less than 100 N/10 mm
  • Adhesive strength after the temperature cycle test is 30 N/10 mm or more and less than 50 N/10 mm
  • D Adhesive strength after the temperature cycle test is less than 30 N/10 mm
  • Adhesive strength after storage is 100 N/10 mm or more
  • B Adhesive strength after storage is 50 N/10 mm or more and less than 100 N/10 mm
  • C Adhesive strength after storage is 30 N/10 mm or more and less than 50 N/10 mm
  • D Adhesion after storage Strength is less than 30N/10mm
  • the obtained block copolymer [C]-1 had a polymer block [A] composed of styrene monomer units and a polymer block [B] composed of isoprene monomer units [A]-[ It was a triblock copolymer which was arranged in the order of B]-[A].
  • the block copolymer hydride [D]-1 contained in the reaction solution obtained by the hydrogenation reaction had a weight average molecular weight (Mw) of 43,900 and a molecular weight distribution (Mw/Mn) of 1.45.
  • the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak was 45,000, and the elution time of the second peak was The standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the above was 9,200.
  • the first peak molecular weight/second peak molecular weight is 4.89, and the detection sensitivity (first peak top sensitivity) (mV)/second peak of the differential refractometer (RI) indicated by the peak top of the first peak.
  • the detection sensitivity (second peak top sensitivity) (mV) of the differential refractometer (RI) indicated by the peak top was 10.18.
  • the hydrogenation rate of the block copolymer hydride [D]-1 was 99.9%.
  • the reaction solution was filtered to remove the hydrogenation catalyst, and the resulting solution was mixed with pentaerythrityl tetrakis[3-(3,5-di-t- Butyl-4-hydroxyphenyl)propionate] (“Songnox 1010” manufactured by Matsubara Sangyo Co., Ltd.) was dissolved in 2.0 parts of xylene solution. Then, using a cylindrical concentrating dryer (“Contro” manufactured by Hitachi, Ltd.), at a temperature of 260° C.
  • the FT-IR spectrum of the obtained modified block copolymer hydride [E]-1 crumb was measured.
  • Si-OCH 3 group was found at 1090 cm -1
  • Si-OCH 3 was found at 825 cm -1 and 739 cm -1 .
  • a new absorption band derived from the CH 2 group is observed at a position different from the absorption bands (1075 cm -1 , 808 cm -1 and 766 cm -1 ) derived from the Si-OCH 3 group and Si-CH group of vinyltrimethoxysilane. was done.
  • the 1 H-NMR spectrum (in deuterated chloroform) of the hydrogenated modified block copolymer [E]-1 was measured, and a peak based on the proton of the methoxy group was observed at 3.6 ppm. From the peak area ratio, it was confirmed that 2.6 parts of vinyltrimethoxysilane was bound to 100 parts of the block copolymer hydride [D]-1.
  • the modified block copolymer hydride [E]-1 had a weight average molecular weight (Mw) of 40,000 and a molecular weight distribution (Mw/Mn) of 2.38. Further, in the GPC elution curve of the modified block copolymer hydride [E]-1, the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak was 45,000, and the second peak was eluted. The standard polystyrene-equivalent molecular weight (second peak molecular weight) based on time was 9,200.
  • the first peak molecular weight/second peak molecular weight is 4.89
  • the detection sensitivity (first peak top sensitivity) (mV)/second peak of the differential refractometer (RI) indicated by the peak top of the first peak was 11.35.
  • the block copolymer hydride [D]-2 obtained after the hydrogenation reaction had a weight average molecular weight (Mw) of 39,500 and a molecular weight distribution (Mw/Mn) of 1.76.
  • Mw weight average molecular weight
  • Mw/Mn molecular weight distribution
  • the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak was 45,000
  • the elution time of the second peak was Based on the standard polystyrene equivalent molecular weight (second peak molecular weight) was 31,200.
  • the first peak molecular weight/second peak molecular weight is 1.44
  • the detection sensitivity (first peak top sensitivity) (mV)/second peak of the differential refractometer (RI) indicated by the peak top of the first peak was 2.36
  • the hydrogenation rate of the block copolymer hydride [D]-2 was 99.8%.
  • the reaction solution was filtered to remove the hydrogenation catalyst, and the resulting solution was mixed with pentaerythrityl tetrakis[3-(3,5-di-t- Butyl-4-hydroxyphenyl)propionate] (“Songnox 1010” manufactured by Matsubara Sangyo Co., Ltd.) was dissolved in 2.0 parts of xylene solution. Then, using a cylindrical concentrating dryer (“Contro” manufactured by Hitachi, Ltd.), at a temperature of 260° C.
  • the FT-IR spectrum of the obtained modified block copolymer hydride [E]-2 crumb was measured.
  • Si-OCH 3 group was found at 1090 cm -1 and Si-at 825 cm -1 and 739 cm -1 .
  • a new absorption band derived from the CH 2 group is observed at a position different from the absorption bands (1075 cm -1 , 808 cm -1 and 766 cm -1 ) derived from the Si-OCH 3 group and Si-CH group of vinyltrimethoxysilane. was done.
  • the modified block copolymer hydride [E]-2 had a weight average molecular weight (Mw) of 35,900 and a molecular weight distribution (Mw/Mn) of 2.79. Further, in the GPC elution curve of the modified block copolymer hydride [E]-2, the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak was 45,000, and the second peak was eluted. The standard polystyrene-equivalent molecular weight (second peak molecular weight) based on time was 31,200.
  • the first peak molecular weight/second peak molecular weight is 1.44
  • the detection sensitivity (first peak top sensitivity) (mV)/second peak of the differential refractometer (RI) indicated by the peak top of the first peak was 5.14.
  • Example 1 ⁇ Intermediate layer forming step>
  • a metal piece material: copper (Cu), width 100 mm x length 150 mm x thickness 5 mm
  • an intermediate layer containing silicon oxide is formed on one surface of the metal piece by the itro treatment (hereinafter, may be referred to as “itro treatment (1)”).
  • the itro process (1) was performed using the following apparatus and conditions. Then, the silicon ratio on the surface of the formed intermediate layer was measured. The results are shown in Table 1.
  • a sheet-shaped resin coating layer (width: 330 mm, thickness: 0.5 mm) containing the polymer hydride [E]-1 was obtained.
  • the obtained sheet-shaped resin coating layer was wound on a roll and collected.
  • ⁇ Coating with resin coating layer>> Next, the sheet-shaped resin coating layer (thickness: 0.5 mm) produced above is cut into a width of 100 mm and a length of 150 mm, and four sheets are stacked on the surface of the intermediate layer formed on one surface of the metal piece.
  • the obtained laminate was put in a heat-resistant bag made of NY (nylon)/PP (polypropylene) having a thickness of 75 ⁇ m, and the both sides of the heat-resistant bag were heat-sealed with a heat sealer while leaving the center of the opening of the heat-resistant bag at a width of 200 mm.
  • a sealed pack device (“BH-951” manufactured by Panasonic Corporation)
  • the opening was heat-sealed while the inside of the heat-resistant bag was deaerated, and the laminate was hermetically sealed for temporary pressure bonding.
  • the hermetically-sealed laminate is put into an autoclave and heated and pressurized at a temperature of 125° C.
  • test piece for evaluation (a metal piece/intermediate layer/resin coating layer, laminated in this order, width 100 mm ⁇ length 150 mm ⁇ thickness 7 mm), which is a laminate formed by being interposed between the surface of the metal piece and the resin coating layer, Obtained.
  • initial adhesive strength, long-term adhesive strength, and moisture resistance were evaluated. The results are shown in Table 1.
  • Example 2 In the intermediate layer forming step of Example 1, the material of the metal piece as the metal base material was changed from copper (Cu) to aluminum (Al), and the silicon source flow rate was set to 1 in the condition of the itro treatment (1).
  • the intermediate layer was formed by the itro treatment (2) in which the pressure was changed from 2 NL/min to 0.6 NL/min, and the sheet-shaped resin coating layer was obtained in Production Example 1 in the resin coating step of Example 1.
  • the modified block copolymer hydride [E]-1 obtained in Production Example 2 was used in place of the modified block copolymer hydride [E]-1.
  • a test piece for evaluation was prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 In the intermediate layer forming step of Example 1, an evaluation test piece was prepared in the same manner as in Example 1 except that the material of the metal piece as the metal base material was changed from copper (Cu) to carbon steel (S55C). It was made. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 In the intermediate layer forming step of Example 1, before forming the intermediate layer, the following organic adhesive layer forming step is performed to form the organic adhesive layer on one surface of the metal piece and to form the intermediate layer. In doing so, instead of itro treatment (1), silicon oxide was formed on the surface of the organic adhesive layer formed on one surface of the metal piece by atmospheric pressure plasma coating treatment under the following apparatus and conditions.
  • An evaluation test piece was prepared in the same manner as in Example 1 except that an evaluation test piece in which metal pieces/organic adhesive layer/intermediate layer/resin coating layer were laminated in this order was formed by forming an intermediate layer containing the same. Was produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • ⁇ Organic adhesive layer forming step> A 1 mass% aqueous solution of 3-acryloxypropyltrimethoxysilane (“KBM-5103” manufactured by Shin-Etsu Chemical Co., Ltd.) was prepared. Then, the metal piece was immersed in the aqueous dispersion for 5 minutes in an environment of 23°C. Then, the metal piece was taken out from the diluent and kept in an oven at 40° C. for 5 minutes. The metal piece was taken out of the oven and immersed in pure water for 5 minutes in an environment of 23°C. The metal piece taken out from the pure water was kept in an oven at 40° C. for 120 minutes to evaporate water as a solvent to form an organic adhesive layer on the surface of the metal piece.
  • KBM-5103 3-acryloxypropyltrimethoxysilane
  • Example 1 (Comparative Example 1) In Example 1, the itro treatment (1) was not performed in the intermediate layer forming step, and in the resin coating step, the intermediate layer was formed on the surface instead of the metal piece having the intermediate layer formed on one surface. By directly laying a sheet-shaped resin coating layer on one surface of the metal piece that does not exist, an intermediate test piece is not placed between the surface of the metal piece and the resin coating layer. A test piece for evaluation was prepared in the same manner as in Example 1 except that the resin coating layer was laminated in this order). Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • an intermediate layer forming step of forming an intermediate layer containing a silicon oxide on the surface of a metal substrate, and a resin coating layer containing a predetermined modified block copolymer hydride in which an alkoxysilyl group is introduced According to the method for producing a laminate of Examples 1 to 4 including the step of coating the surface of the intermediate layer with a resin, it is possible to produce a laminate having excellent initial adhesion strength between the metal substrate and the resin coating layer. Recognize.
  • the laminate produced by the method for producing a laminate of Comparative Example 1 in which the intermediate layer containing silicon oxide was not formed on the surface of the metal substrate had an initial adhesive strength between the metal substrate and the resin coating layer. It turns out that it is inferior to.
  • the surface of the intermediate layer was coated with a resin coating layer containing a block copolymer hydride in which an alkoxysilyl group was not introduced, instead of a predetermined modified block copolymer hydride in which an alkoxysilyl group was introduced. It can be seen that the laminate produced by the method for producing a laminate of Comparative Example 2 is also inferior in the initial adhesive strength between the metal base material and the resin coating layer.

Abstract

The present invention addresses the problem of providing a laminate having excellent initial bonding strength between a metallic base material and a resin coating layer. A method for producing a laminate according to the present invention is characterized by comprising an intermediate layer formation step of forming an intermediate layer containing a silicon oxide on the surface of a metallic base material and a resin coating step of coating the surface of the intermediate layer with a resin coating layer, wherein the resin coating layer contains a modified block copolymer hydrogenated product [E] which is produced by introducing an alkoxysilyl group into a block copolymer hydrogenated product [D] produced by hydrogenating a block copolymer [C] composed of a polymer block [A] containing an aromatic vinyl monomer unit as the main component and a polymer block [B] containing a linear conjugated diene monomer unit as the main component.

Description

積層体の製造方法Method for manufacturing laminated body
 本発明は、積層体の製造方法に関するものである。 The present invention relates to a method for manufacturing a laminated body.
 金属基材の表面上に樹脂被覆層を形成してなる積層体は、医薬品用包装材、食品用包装材、電子部品用包装材、太陽電池モジュール用裏面保護シート、水道管、ガス輸送管、燃料輸送管、およびケーブル保護管などの多様な用途で使用されている。また、このような積層体の具体例としては、LED素子、有機EL素子、および電子基板配線などの金属基材の表面上に、封止材としての樹脂被覆層を形成してなる積層体を挙げることもできる。 A laminate formed by forming a resin coating layer on the surface of a metal substrate is a packaging material for pharmaceuticals, a packaging material for foods, a packaging material for electronic parts, a back protective sheet for solar cell modules, a water pipe, a gas transportation pipe, It is used in various applications such as fuel transportation pipes and cable protection pipes. Further, as a specific example of such a laminated body, a laminated body formed by forming a resin coating layer as a sealing material on the surface of a metal base material such as an LED element, an organic EL element, and an electronic substrate wiring. You can also list them.
 例えば特許文献1では、アルコキシシリル基を導入した所定の変性ブロック共重合体水素化物からなるシートと金属箔とを積層して得られる複合多層シートが、防湿性、酸素バリアー性、遮光性、耐熱性、耐加水分解性等に優れるため、医薬品や食品の包装、太陽電池モジュール用裏面保護シート、有機EL素子の封止、電子部品の包装等の用途に有用である旨が報告されている。 For example, in Patent Document 1, a composite multilayer sheet obtained by laminating a sheet made of a predetermined modified block copolymer hydride having an alkoxysilyl group introduced and a metal foil has a moisture-proof property, an oxygen barrier property, a light-shielding property, and a heat resistance. It has been reported that it is useful for applications such as packaging of pharmaceuticals and foods, back surface protection sheet for solar cell modules, encapsulation of organic EL elements, and packaging of electronic parts due to its excellent properties and hydrolysis resistance.
 また、特許文献2では、鋼管表面に、鋼管の表面側から順に、シランカップリング剤処理層、エポキシプライマー層、接着性ポリエチレン層、ポリエチレン層を被覆した所定のポリエチレン被覆鋼管が、高温での被覆層の接着耐久性に優れ、石油、天然ガス、都市ガスおよび水などを運搬するためのラインパイプとして好適に使用し得る旨が開示されている。 Further, in Patent Document 2, a predetermined polyethylene-coated steel pipe coated with a silane coupling agent-treated layer, an epoxy primer layer, an adhesive polyethylene layer, and a polyethylene layer on the steel pipe surface in order from the surface side of the steel pipe is coated at high temperature. It is disclosed that the layer has excellent adhesion durability and can be suitably used as a line pipe for carrying oil, natural gas, city gas, water and the like.
国際公開第2015/137376号International Publication No. 2015/137376 特開2018-69592号公報JP, 2018-69592, A
 しかしながら、上記従来技術の積層体は、金属基材と樹脂被覆層との接着強度に改善の余地があった。特に、積層体が製造された直後における金属基材と樹脂被覆層との接着強度(以下、「初期接着強度」と称することがある。)が十分ではなかった。 However, the above-mentioned conventional laminated body had room for improvement in the adhesive strength between the metal base material and the resin coating layer. In particular, the adhesive strength (hereinafter sometimes referred to as “initial adhesive strength”) between the metal base material and the resin coating layer immediately after the laminate was manufactured was not sufficient.
 そこで、本発明は、金属基材と樹脂被覆層との初期接着強度に優れる積層体を提供することを目的とする。 Therefore, an object of the present invention is to provide a laminate having excellent initial adhesive strength between a metal base material and a resin coating layer.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、金属基材の表面上にケイ素酸化物を含む中間層を形成した後に、所定の変性ブロック共重合体水素化物を含む樹脂被覆層で中間層の表面を被覆して製造される積層体であれば、金属基材と樹脂被覆層との初期接着強度に優れることを見出し、本発明を完成させた。 The present inventor has conducted earnest studies for the purpose of solving the above problems. Then, the present inventor produced by forming an intermediate layer containing a silicon oxide on the surface of a metal substrate, and then coating the surface of the intermediate layer with a resin coating layer containing a predetermined modified block copolymer hydride. The present invention has been completed by finding that such a laminated body is excellent in the initial adhesive strength between the metal base material and the resin coating layer.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の積層体の製造方法は、金属基材の表面上にケイ素酸化物を含む中間層を形成する中間層形成工程と、樹脂被覆層で前記中間層の表面を被覆する樹脂被覆工程と、を含み、前記樹脂被覆層が、芳香族ビニル単量体単位を主成分とする重合体ブロック[A]と、鎖状共役ジエン単量体単位(直鎖状共役ジエン、分岐鎖状共役ジエン)を主成分とする重合体ブロック[B]とからなるブロック共重合体[C]を水素化して得られるブロック共重合体水素化物[D]にアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物[E]を含むことを特徴とする。このように、金属基材の表面上にケイ素酸化物を含む中間層を形成した後に、上記所定の変性ブロック共重合体水素化物を含む樹脂被覆層で中間層の表面を被覆して製造される積層体は、金属基材と樹脂被覆層との初期接着強度に優れている。
 なお、本明細書中において、「芳香族ビニル単量体単位を主成分とする重合体ブロック[A]」は、「芳香族ビニル単量体単位を50質量%超含有する重合体ブロック[A]」を意味し、「鎖状共役ジエン単量体単位を主成分とする重合体ブロック[B]」は、「鎖状共役ジエン単量体単位を50質量%超含有する重合体ブロック[B]」を意味する。また、「単量体単位を含有する」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。
That is, the present invention has an object to advantageously solve the above problems, and a method for producing a laminate of the present invention is an intermediate step of forming an intermediate layer containing a silicon oxide on the surface of a metal substrate. A layer forming step and a resin coating step of coating the surface of the intermediate layer with a resin coating layer, wherein the resin coating layer comprises a polymer block [A] containing an aromatic vinyl monomer unit as a main component; A block obtained by hydrogenating a block copolymer [C] consisting of a polymer block [B] containing a chain conjugated diene monomer unit (linear conjugated diene, branched conjugated diene) as a main component It is characterized in that it contains a modified block copolymer hydride [E] in which an alkoxysilyl group is introduced into the copolymer hydride [D]. Thus, after the intermediate layer containing silicon oxide is formed on the surface of the metal substrate, the surface of the intermediate layer is produced by coating the surface of the intermediate layer with the resin coating layer containing the predetermined modified block copolymer hydride. The laminate has excellent initial adhesive strength between the metal base material and the resin coating layer.
In the present specification, "a polymer block [A] containing an aromatic vinyl monomer unit as a main component" means "a polymer block containing an aromatic vinyl monomer unit in an amount of more than 50% by mass [A]. ], "a polymer block [B] containing a chain conjugated diene monomer unit as a main component" means a polymer block [B containing more than 50% by mass of the chain conjugated diene monomer unit. ]] is meant. In addition, "containing a monomer unit" means "a structural unit derived from a monomer is contained in a polymer obtained by using the monomer".
 ここで、本発明の積層体の製造方法は、前記金属基材の表面に前記中間層を直接形成することが好ましい。このように、金属基材の表面に中間層を直接形成すれば、積層体が長期に亘って使用された後における金属基材と樹脂被覆層との接着強度(以下、単に「長期接着強度」と称することがある。)、および積層体の耐湿性を高めることができる。 Here, in the method for producing a laminate of the present invention, it is preferable to directly form the intermediate layer on the surface of the metal base material. Thus, if the intermediate layer is directly formed on the surface of the metal base material, the adhesive strength between the metal base material and the resin coating layer after the laminate is used for a long time (hereinafter, simply “long-term adhesive strength”) , And the moisture resistance of the laminate can be improved.
 また、本発明の積層体の製造方法は、前記中間層表面のケイ素割合が、2.0atom%以上30.0atom%以下であることが好ましい。このように、中間層表面のケイ素割合が上記所定範囲内であれば、金属基材と樹脂被覆層との初期接着強度を更に高め得ると共に、金属基材と樹脂被覆層との長期接着強度、および積層体の耐湿性を高めることができる。
 なお、本発明において、中間層表面のケイ素割合は、本明細書の実施例に記載の方法により測定することができる。
Further, in the method for producing a laminate of the present invention, the silicon ratio on the surface of the intermediate layer is preferably 2.0 atom% or more and 30.0 atom% or less. Thus, if the silicon ratio of the intermediate layer surface is within the above predetermined range, it is possible to further increase the initial adhesive strength between the metal base material and the resin coating layer, and the long-term adhesive strength between the metal base material and the resin coating layer, And the moisture resistance of a laminated body can be improved.
In the present invention, the silicon ratio on the surface of the intermediate layer can be measured by the method described in Examples of this specification.
 また、本発明の積層体の製造方法は、イトロ処理および/または大気圧プラズマコーティング処理により前記中間層を形成することが好ましい。このように、イトロ処理および/または大気圧プラズマコーティング処理により中間層を形成すれば、金属基材と樹脂被覆層との初期接着強度を更に高めることができる。 Further, in the method for producing a laminate of the present invention, it is preferable that the intermediate layer is formed by itro treatment and/or atmospheric pressure plasma coating treatment. As described above, when the intermediate layer is formed by the itro treatment and/or the atmospheric pressure plasma coating treatment, the initial adhesive strength between the metal base material and the resin coating layer can be further increased.
 さらに、本発明の積層体の製造方法は、前記変性ブロック共重合体水素化物[E]を含有する試料のゲルパーミエーションクロマトグラフィー(GPC)で測定した溶出曲線が、少なくとも2つの変性ブロック共重合体水素化物[E]由来ピークを有し、前記少なくとも2つの変性ブロック共重合体水素化物[E]由来ピークのうち、最も検出感度の高いピークトップを示す変性ブロック共重合体水素化物[E]由来ピークを第1ピークとし、前記第1ピークのピークトップの溶出時間の次に溶出時間の早いピークトップを示す変性ブロック共重合体水素化物[E]由来ピークを第2ピークとしたときに、前記第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)に対する前記第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)の比(第1ピーク分子量/第2ピーク分子量)が、1.50以上であることが好ましい。このように、変性ブロック共重合体水素化物[E]を含有する試料のGPCで測定した溶出曲線が、少なくとも上記所定の第1ピークおよび第2ピークを有し、第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)に対する第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)の比(第1ピーク分子量/第2ピーク分子量)が、上記所定値以上であれば、金属基材と樹脂被覆層との初期接着強度を更に高めることができる。 Furthermore, according to the method for producing a laminate of the present invention, the elution curve of the sample containing the modified block copolymer hydride [E] measured by gel permeation chromatography (GPC) has at least two modified block copolymers. A modified block copolymer hydride [E] having a peak derived from the above-mentioned at least two modified block copolymer hydrides [E], which has a peak with the highest detection sensitivity. When the derived peak is the first peak, and the modified block copolymer hydride [E]-derived peak showing the peak top with the shortest elution time next to the elution time of the peak top of the first peak is the second peak, Ratio of standard polystyrene reduced molecular weight (first peak molecular weight) based on elution time of the first peak to standard polystyrene reduced molecular weight (second peak molecular weight) based on elution time of the second peak (first peak molecular weight/second peak) The molecular weight) is preferably 1.50 or more. As described above, the elution curve of the sample containing the modified block copolymer hydride [E] measured by GPC has at least the predetermined first peak and the second peak, and is based on the elution time of the second peak. The ratio of the standard polystyrene reduced molecular weight (first peak molecular weight) based on the elution time of the first peak to the standard polystyrene reduced molecular weight (second peak molecular weight) (first peak molecular weight/second peak molecular weight) is not less than the above predetermined value. For example, the initial adhesive strength between the metal base material and the resin coating layer can be further increased.
 本発明によれば、金属基材と樹脂被覆層との初期接着強度に優れる積層体を提供することができる。 According to the present invention, it is possible to provide a laminate having excellent initial adhesive strength between the metal base material and the resin coating layer.
ブロック共重合体水素化物[D]を含有する試料のゲルパーミエーションクロマトグラフィー(GPC)で測定した溶出曲線の一例を説明するための図である。なお、図1の縦軸は、ポリスチレン換算分子量(左縦軸)または感度(mV)(右縦軸)を示し、図1の横軸は、溶出時間(分)を示す。It is a figure for demonstrating an example of the elution curve measured by the gel permeation chromatography (GPC) of the sample containing a block copolymer hydride [D]. The vertical axis of FIG. 1 represents the polystyrene reduced molecular weight (left vertical axis) or the sensitivity (mV) (right vertical axis), and the horizontal axis of FIG. 1 represents the elution time (minutes).
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の積層体の製造方法は、金属基材と樹脂被覆層との初期接着強度に優れる積層体を製造する際に用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the method for producing a laminate of the present invention can be used when producing a laminate having excellent initial adhesive strength between the metal substrate and the resin coating layer.
(積層体の製造方法)
 本発明の積層体の製造方法は、金属基材の表面上にケイ素酸化物を含む中間層を形成する中間層形成工程と、所定の変性ブロック共重合体水素化物[E]を含む樹脂被覆層で前記中間層の表面を被覆する樹脂被覆工程と、を含む。
(Method for manufacturing laminated body)
The method for producing a laminate of the present invention comprises an intermediate layer forming step of forming an intermediate layer containing silicon oxide on the surface of a metal substrate, and a resin coating layer containing a predetermined modified block copolymer hydride [E]. And a resin coating step of coating the surface of the intermediate layer with.
 ここで、本発明の積層体の製造方法により製造される積層体は、金属基材と、ケイ素酸化物を含む中間層と、所定の変性ブロック共重合体水素化物[E]を含む樹脂被覆層とを備え、中間層が金属基材の表面と樹脂被覆層との間に介在配置されている。 Here, the laminate produced by the method for producing a laminate of the present invention is a resin coating layer containing a metal substrate, an intermediate layer containing silicon oxide, and a predetermined modified block copolymer hydride [E]. And an intermediate layer is disposed between the surface of the metal base material and the resin coating layer.
 そして、本発明の積層体の製造方法により製造される積層体は、金属基材と樹脂被覆層との初期接着強度に優れている。 The laminate produced by the method for producing a laminate of the present invention is excellent in initial adhesive strength between the metal base material and the resin coating layer.
 なお、本発明の積層体の製造方法は、上述した中間層形成工程および樹脂被覆工程以外のその他の工程を含んでいてもよい。 The method for producing a laminate of the present invention may include other steps than the above-mentioned intermediate layer forming step and resin coating step.
<中間層形成工程>
 中間層形成工程では、金属基材の表面上に、ケイ素酸化物を含む中間層を形成する。
<Intermediate layer forming step>
In the intermediate layer forming step, an intermediate layer containing silicon oxide is formed on the surface of the metal base material.
<<金属基材>>
 金属基材は、金属材料からなる基材である。
 金属基材を構成する金属材料としては、特に限定されないが、例えば、鉄(Fe)、銀(Ag)、銅(Cu)、ニッケル(Ni)、クロム(Cr)等の遷移金属;アルミニウム(Al);鉛(Pb);亜鉛(Zn);スズ(Sn);これらを主成分とする合金;などを用いることができる。中でも、銅(Cu)、ニッケル(Ni)、鉄(Fe)、アルミニウム(Al)、ステンレス鋼、および炭素鋼を用いることが好ましい。なお、ステンレス鋼としては、SUS304、SUS316、SUS410、SUS430等を用いることができる。また、炭素鋼としては、S55C、S15C、S65C等を用いることができる。
<< metal substrate >>
The metal base material is a base material made of a metal material.
The metal material forming the metal substrate is not particularly limited, but examples thereof include transition metals such as iron (Fe), silver (Ag), copper (Cu), nickel (Ni), and chromium (Cr); aluminum (Al ); lead (Pb); zinc (Zn); tin (Sn); alloys containing these as the main components; and the like. Above all, it is preferable to use copper (Cu), nickel (Ni), iron (Fe), aluminum (Al), stainless steel, and carbon steel. As stainless steel, SUS304, SUS316, SUS410, SUS430, etc. can be used. Moreover, S55C, S15C, S65C etc. can be used as carbon steel.
 金属基材の形状、厚み、大きさ等は、積層体の用途に応じて、適宜選択できるものとする。 The shape, thickness, size, etc. of the metal base material can be appropriately selected according to the application of the laminate.
 金属基材の形状としては、例えば、シート状、管状、および柱状などが挙げられる。 Examples of the shape of the metal base material include a sheet shape, a tubular shape, and a columnar shape.
 なお、本明細書中において、「金属基材の表面」とは、金属基材が有する面であれば、特に限定されない。
 例えば、金属基材がシート状である場合、「金属基材の表面」は、シート状の金属基材のいずれか一方の主面であってもよいし、シート状の金属基材の両方の主面であってもよい。
 また、金属基材が管状である場合、「金属基材の表面」は、管状の金属基材の外側の表面(外表面)であってもよいし、管状の金属基材の内側の表面(内表面)であってもよい。
In addition, in this specification, the “surface of the metal base material” is not particularly limited as long as it is a surface of the metal base material.
For example, when the metal base material is in the form of a sheet, the “surface of the metal base material” may be either one of the main surfaces of the metal base material in the form of a sheet, or both surfaces of the metal base material in the form of a sheet. It may be the main surface.
When the metal base material is tubular, the “surface of the metal base material” may be the outer surface (outer surface) of the tubular metal base material, or the inner surface of the tubular metal base material ( Inner surface).
 また、金属基材の表面は、平面であってもよいし、曲面であってもよいものとする。 Also, the surface of the metal base material may be flat or curved.
 さらに、積層体における金属基材と樹脂被覆層との長期接着強度を高める観点から、金属基材における中間層および樹脂被覆層が形成される側の表面は、ブラスト処理などの除錆方法により、除錆されていてもよい。 Furthermore, from the viewpoint of increasing the long-term adhesive strength between the metal base material and the resin coating layer in the laminate, the surface of the metal base material on which the intermediate layer and the resin coating layer are formed is rust-removing such as blast treatment. It may be derusted.
<<中間層の形成方法>>
 ケイ素酸化物を含む中間層を形成する方法としては、特に限定されることはなく、例えば、イトロ処理、大気圧プラズマコーティング処理、減圧プラズマコーティング処理等の表面処理を用いることができる。中でも、金属基材と樹脂被覆層との初期接着強度を更に高める観点から、中間層はイトロ処理および/または大気圧プラズマコーティング処理により形成されることが好ましい。
<<Method of forming intermediate layer>>
The method for forming the intermediate layer containing silicon oxide is not particularly limited, and for example, surface treatment such as itro treatment, atmospheric pressure plasma coating treatment, reduced pressure plasma coating treatment and the like can be used. Above all, it is preferable that the intermediate layer is formed by itro treatment and/or atmospheric pressure plasma coating treatment from the viewpoint of further increasing the initial adhesive strength between the metal base material and the resin coating layer.
 そして、金属基材に対して上述した表面処理を行なうことにより、金属基材の表面上にケイ素酸化物を含む中間層を形成することができる。 Then, by performing the above-mentioned surface treatment on the metal substrate, an intermediate layer containing silicon oxide can be formed on the surface of the metal substrate.
 なお、金属基材の表面上に、事前に中間層および樹脂被覆層以外の他の層(例えば、後述する有機接着層など)を形成した後、当該他の層を介して金属基材に間接的に表面処理を行なうことで、金属基材の表面と形成される中間層との間に当該他の層が介在配置されてもよいが、金属基材と樹脂被覆層との初期接着強度および積層体の耐湿性を高める観点から、金属基材に対して表面処理を直接行なうことで、金属基材の表面に中間層を直接形成することが好ましい。 In addition, after forming a layer other than the intermediate layer and the resin coating layer in advance on the surface of the metal base material (for example, an organic adhesive layer described later), the metal base material is indirectly bonded to the metal base material via the other layer. The other layer may be interposed between the surface of the metal base material and the intermediate layer to be formed by subjecting the metal base material to the surface treatment, but the initial adhesive strength between the metal base material and the resin coating layer and From the viewpoint of enhancing the moisture resistance of the laminate, it is preferable to directly form the intermediate layer on the surface of the metal base material by directly performing the surface treatment on the metal base material.
 また、中間層形成工程では、金属基材の樹脂被覆層を形成する側の面(樹脂被覆層形成面)の少なくとも一部の上に中間層を形成すればよいが、金属基材と樹脂被覆層との初期接着強度を更に高める観点から、樹脂被覆層形成面の全体の上に中間層を形成することが好ましい。
 例えば、シート状の金属基材の一方の主面を樹脂被覆層形成面とし、当該主面上に中間層を形成する場合、金属基材と樹脂被覆層との初期接着強度を更に高める観点から、当該主面全体の上に中間層を形成することが好ましい。
 また、例えば、管状の金属基材の外表面(または内表面)を樹脂被覆層形成面とし、当該外表面(または内表面)上に中間層を形成する場合、金属基材と樹脂被覆層との初期接着強度を更に高める観点から、当該外表面(または内表面)全体の上に中間層を形成することが好ましい。
In the intermediate layer forming step, the intermediate layer may be formed on at least a part of the surface of the metal base material on which the resin coating layer is formed (resin coating layer forming surface). From the viewpoint of further increasing the initial adhesive strength with the layer, it is preferable to form the intermediate layer on the entire surface on which the resin coating layer is formed.
For example, when one main surface of the sheet-shaped metal base material is the resin coating layer forming surface and the intermediate layer is formed on the main surface, from the viewpoint of further increasing the initial adhesive strength between the metal base material and the resin coating layer. It is preferable to form the intermediate layer on the entire main surface.
Further, for example, when the outer surface (or inner surface) of the tubular metal base material is used as the resin coating layer forming surface and the intermediate layer is formed on the outer surface (or inner surface), the metal base material and the resin coating layer From the viewpoint of further increasing the initial adhesive strength of, an intermediate layer is preferably formed on the entire outer surface (or inner surface).
 さらに、金属基材の複数箇所に樹脂被覆層を形成する場合、金属基材の当該複数箇所の表面上に、同じ中間層を形成してもよいし、異なる中間層を形成してもよいものとする。
 例えば、シート状の基材の両方の主面上に中間層を形成する場合、一方の主面上と他方の主面上とで、同じ中間層を形成してもよいし、異なる中間層を形成してもよいものとする。
 また、例えば、管状の金属基材の外表面上および内表面上の両方に中間層を形成する場合、外表面上と内表面上とで同じ中間層を形成してもよいし、異なる中間層を形成してもよいものとする。
Further, when the resin coating layer is formed at a plurality of locations on the metal base material, the same intermediate layer may be formed on the surface of the plurality of locations on the metal base material, or different intermediate layers may be formed. And
For example, when the intermediate layer is formed on both main surfaces of the sheet-shaped substrate, the same intermediate layer may be formed on one main surface and the other main surface, or different intermediate layers may be formed. It may be formed.
Further, for example, when the intermediate layer is formed on both the outer surface and the inner surface of the tubular metal substrate, the same intermediate layer may be formed on the outer surface and the inner surface, or different intermediate layers may be formed. May be formed.
 なお、金属基材の樹脂被覆層形成面の少なくとも一部である領域上に中間層を形成した場合において、中間層を構成するケイ素酸化物等の成分は、当該領域上に隙間無く存在することで当該領域を完全に被覆していてもよいし、当該領域上に点在することで当該領域を部分的に被覆していてもよいものとする。 When the intermediate layer is formed on at least a part of the surface of the metal base material on which the resin coating layer is formed, the components such as silicon oxide forming the intermediate layer must be present on the area without any gap. The area may be completely covered, or the area may be partially covered by being scattered on the area.
 以下に、中間層の形成方法として使用し得る表面処理であるイトロ処理、大気圧プラズマコーティング処理および減圧プラズマコーティング処理について詳述する。 The following is a detailed description of itro treatment, atmospheric pressure plasma coating treatment, and reduced pressure plasma coating treatment, which are surface treatments that can be used as a method for forming the intermediate layer.
[イトロ処理]
 イトロ処理では、可燃性ガスと、ケイ素供給源であるシラン化合物を気液平衡状態下で蒸発させて得られる気体と、空気との混合物を着火して放出される火炎を金属基材の表面に当てて(吹き付けて)、ケイ素酸化物を含む中間層を形成する。
[ITRO processing]
In the itro treatment, a flame that is emitted by igniting a mixture of flammable gas, a gas obtained by evaporating a silane compound that is a silicon source under a gas-liquid equilibrium state, and air is emitted to the surface of the metal substrate. Apply (spray) to form an intermediate layer containing silicon oxide.
 ここで、可燃性ガスとしては、例えば、プロパンガスまたはLPG(プロパンガス単独以外の液化石油ガス)を用いることができる。なお、LPGとしては、ブタン(ノルマルブタン、イソブタン)、ブタン/プロパンの混合ガス、エタン、ペンタン(ノルマルペンタン、イソペンタン、シクロペンタン)等が挙げられる。 Here, as the combustible gas, for example, propane gas or LPG (liquefied petroleum gas other than propane gas alone) can be used. Examples of LPG include butane (normal butane and isobutane), butane/propane mixed gas, ethane, pentane (normal pentane, isopentane, cyclopentane), and the like.
 また、ケイ素供給源であるシラン化合物としては、ケイ素原子を含み、イトロ処理によりケイ素酸化物を含む層を形成できるものであれば、特に限定されず、例えば、有機ケイ素化合物が挙げられる。
 有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン;ヘキサメチルジシラザン;テトラメチルシラン、テトラエチルシラン、ジメチルジクロロシラン、ジメチルジフェニルシラン、ジエチルジクロロシラン、ジエチルジフェニルシラン、メチルトリクロロシラン、メチルトリフェニルシラン、ジメチルジエチルシラン等のアルキルシラン;テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジクロロジメトキシシラン、ジクロロジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリクロロメトキシシラン、トリクロロエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、トリフルオロプロピルトリクロロシラン、トリフルオロプロピルトリメトキシシラン等のアルコキシシラン;などを用いることができる。
The silane compound as a silicon supply source is not particularly limited as long as it contains a silicon atom and can form a layer containing a silicon oxide by the intro treatment, and examples thereof include an organic silicon compound.
Examples of the organic silicon compound include hexamethyldisiloxane; hexamethyldisilazane; tetramethylsilane, tetraethylsilane, dimethyldichlorosilane, dimethyldiphenylsilane, diethyldichlorosilane, diethyldiphenylsilane, methyltrichlorosilane, methyltriphenylsilane, Alkylsilane such as dimethyldiethylsilane; tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dichlorodimethoxysilane, dichlorodiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, trichloromethoxy Silane, trichloroethoxysilane, triphenylmethoxysilane, triphenylethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, Alkoxysilanes such as trifluoropropyltrichlorosilane and trifluoropropyltrimethoxysilane; and the like can be used.
 なお、イトロ処理は、例えば、上述した可燃性ガスとシラン化合物と空気との混合物を着火して火炎を放出するバーナー、および、被処理体である金属基材を搬送するテーブルなどを備えるイトロ社製「イトロ処理装置」などの装置を用いて行なうことができる。
 上記装置を用いたイトロ処理において、バーナーのノズルと金属基材との間の距離、ケイ素供給源の流量、エアー流量、可燃性ガス流量、処理回数などの各種の条件は、本発明の所望の効果が得られる範囲内で適宜設定することができる。
In addition, itro treatment includes, for example, a burner that ignites a mixture of the above-described combustible gas, a silane compound, and air to release a flame, and a table that conveys a metal base material that is a target object. It can be carried out using a device such as a product “ITRO processing device”.
In the itro treatment using the above apparatus, various conditions such as the distance between the nozzle of the burner and the metal substrate, the flow rate of the silicon supply source, the air flow rate, the combustible gas flow rate, the number of treatments, etc. are set according to the desired conditions of the present invention. It can be appropriately set within the range in which the effect is obtained.
[大気圧プラズマコーティング処理]
 大気圧プラズマコーティング処理では、ケイ素供給源であるシラン化合物を、大気圧下で発生させたプラズマと共に金属基材の表面に当てて、ケイ素酸化物を含む中間層を形成する。
[Atmospheric pressure plasma coating processing]
In the atmospheric pressure plasma coating treatment, a silane compound, which is a silicon source, is applied to the surface of a metal base material together with plasma generated under atmospheric pressure to form an intermediate layer containing silicon oxide.
 ケイ素供給源であるシラン化合物としては、「イトロ処理」の項で上述したシラン化合物を用いることができる。中でも、金属基材と樹脂被覆層との初期接着強度を更に高める観点から、ヘキサメチルジシランを用いることが好ましい。
 また、大気圧下でのプラズマの発生に必要なガスとしては、酸素、窒素、アルゴン、およびこれらの混合ガスが挙げられる。
 大気圧プラズマコーティング処理は、例えば、AcXys Technologies社製「UL-Coat」などの装置を用いて行なうことができる。
As the silane compound which is the silicon supply source, the silane compound described above in the section “ITRO treatment” can be used. Among them, hexamethyldisilane is preferably used from the viewpoint of further increasing the initial adhesive strength between the metal base material and the resin coating layer.
In addition, examples of the gas required for generating plasma under atmospheric pressure include oxygen, nitrogen, argon, and a mixed gas thereof.
The atmospheric pressure plasma coating treatment can be performed using, for example, an apparatus such as "UL-Coat" manufactured by AcXys Technologies.
 なお、大気圧プラズマコーティング処理における各種の条件は、本発明の所望の効果が得られる範囲内で適宜調整することができる。 Incidentally, various conditions in the atmospheric pressure plasma coating treatment can be appropriately adjusted within a range in which a desired effect of the present invention can be obtained.
[減圧プラズマコーティング処理]
 減圧プラズマコーティング処理では、ケイ素供給源であるシラン化合物を、減圧下で発生させたプラズマと共に金属基材の表面に当てて、ケイ素酸化物を含む中間層を形成する。
[Low-pressure plasma coating process]
In the low pressure plasma coating treatment, a silane compound, which is a silicon supply source, is applied to the surface of the metal substrate together with plasma generated under reduced pressure to form an intermediate layer containing silicon oxide.
 ケイ素供給源であるシラン化合物としては、「イトロ処理」の項で上述したシラン化合物を用いることができる。
 また、減圧下でのプラズマの発生に必要なガスとしては、例えば、酸素、アルゴンなどが挙げられる。
 減圧プラズマコーティング処理は、例えば、ULVAC社製「CME-200E」などの装置を用いることができる。
 なお、減圧プラズマコーティング処理における各種の条件は、本発明の所望の効果が得られる範囲内で適宜調整することができる。
As the silane compound which is the silicon supply source, the silane compound described above in the section “ITRO treatment” can be used.
In addition, examples of the gas necessary for generating plasma under reduced pressure include oxygen and argon.
For the low pressure plasma coating treatment, for example, an apparatus such as "CME-200E" manufactured by ULVAC Co. can be used.
Various conditions in the low pressure plasma coating treatment can be appropriately adjusted within a range where the desired effects of the present invention can be obtained.
[中間層]
 上述した中間層形成工程において形成された中間層は、ケイ素酸化物を含み、任意にケイ素酸化物以外のその他の成分を含む。そして、中間層は、上述した金属基材の表面と、後述する樹脂被覆工程で用いられる樹脂被覆層との間に介在配置される。
[Middle layer]
The intermediate layer formed in the above-described intermediate layer forming step contains silicon oxide and optionally other components other than silicon oxide. The intermediate layer is disposed between the surface of the metal base material described above and the resin coating layer used in the resin coating step described later.
 製造される積層体が、金属基材の表面と樹脂被覆層との間に介在配置され、ケイ素酸化物を含む中間層を有することにより、金属基材と樹脂被覆層との初期接着強度を高めることができる。 The laminate to be produced is interposed between the surface of the metal base material and the resin coating layer, and has an intermediate layer containing silicon oxide, thereby increasing the initial adhesive strength between the metal base material and the resin coating layer. be able to.
 中間層に含まれるケイ素酸化物としては、例えば、二酸化ケイ素、一酸化ケイ素、およびこれらの混合物などが挙げられる。また、中間層に含まれるケイ素酸化物以外のその他の成分としては、後述する中間層の形成時の表面処理で使用した有機ケイ素化合物などに由来する炭素、および炭素含有化合物などが挙げられる。 Examples of the silicon oxide contained in the intermediate layer include silicon dioxide, silicon monoxide, and a mixture thereof. In addition, examples of the components other than the silicon oxide contained in the intermediate layer include carbon derived from the organosilicon compound used in the surface treatment at the time of forming the intermediate layer, which will be described later, and carbon-containing compounds.
 中間層表面のケイ素割合は、特に限定されないが、2.0atom%以上であることが好ましく、5.0atm%以上であることがより好ましく、6.7atom%以上であることが更に好ましく、10.0atom%以上であることが一層好ましく、14.1atom%以上であることがより一層好ましく、30.0atom%以下であることが好ましく、25.0atom%以下であることがより好ましい。中間層表面のケイ素割合が上記所定範囲内であれば、金属基材と樹脂被覆層との初期接着強度を更に高め得ると共に、金属基材と樹脂被覆層との長期接着強度および積層体の耐湿性を高めることができる。 The proportion of silicon on the surface of the intermediate layer is not particularly limited, but is preferably 2.0 atom% or more, more preferably 5.0 atom% or more, further preferably 6.7 atom% or more. It is more preferably 0 atom% or more, still more preferably 14.1 atom% or more, further preferably 30.0 atom% or less, and more preferably 25.0 atom% or less. When the silicon ratio on the surface of the intermediate layer is within the above predetermined range, the initial adhesive strength between the metal base material and the resin coating layer can be further increased, and the long-term adhesive strength between the metal base material and the resin coating layer and the moisture resistance of the laminate can be improved. You can improve your sex.
 なお、中間層表面のケイ素割合は、例えば、上述した中間層の形成方法において、イトロ処理のテーブル速度、処理回数等の各種条件を変更することにより調節することができる。 The ratio of silicon on the surface of the intermediate layer can be adjusted, for example, by changing various conditions such as the table speed of the itro process and the number of times of the process in the method of forming the intermediate layer described above.
<樹脂被覆工程>
 樹脂被覆工程では、所定の変性ブロック共重合体水素化物[E]を含む樹脂被覆層で前記中間層の表面を被覆する。即ち、所定の変性ブロック共重合体水素化物[E]を含む樹脂被覆層で、金属基材の表面上に形成された中間層の表面を被覆する。したがって、中間層の金属基材と隣接する側とは反対側に樹脂被覆層が形成される。これにより、金属基材と、ケイ素酸化物を含む中間層と、所定の変性ブロック共重合体水素化物[E]を含む樹脂被覆層と、を有し、中間層が金属基材の表面と樹脂被覆層との間に介在配置される積層体が得られる。
<Resin coating process>
In the resin coating step, the surface of the intermediate layer is coated with a resin coating layer containing a predetermined modified block copolymer hydride [E]. That is, the surface of the intermediate layer formed on the surface of the metal substrate is covered with a resin coating layer containing a predetermined modified block copolymer hydride [E]. Therefore, the resin coating layer is formed on the side of the intermediate layer opposite to the side adjacent to the metal base material. Thereby, it has a metal base material, an intermediate layer containing silicon oxide, and a resin coating layer containing a predetermined modified block copolymer hydride [E], and the intermediate layer has a surface of the metal base material and a resin. A laminate is obtained that is interposed between the coating layer and the coating layer.
 ここで、樹脂被覆工程における樹脂被覆層は、金属基材の表面上に形成された中間層を被覆する。即ち、樹脂被覆層は、金属基材における中間層が配置される側の表面を被覆する。したがって、樹脂被覆層は、中間層を介して、金属基材の表面も被覆する。このように、樹脂被覆層が、中間層を介して、金属基材の表面を被覆することで、製造される積層体において金属基材が腐食されることを良好に抑制することができる。 Here, the resin coating layer in the resin coating step covers the intermediate layer formed on the surface of the metal base material. That is, the resin coating layer covers the surface of the metal substrate on the side where the intermediate layer is arranged. Therefore, the resin coating layer also covers the surface of the metal substrate through the intermediate layer. In this way, the resin coating layer covers the surface of the metal base material via the intermediate layer, whereby corrosion of the metal base material in the manufactured laminate can be favorably suppressed.
 なお、上記樹脂被覆層で中間層の表面を被覆する際、中間層と樹脂被覆層との間には、中間層および樹脂被覆層以外の他の層を介在させてもよいが、金属基材と樹脂被覆層との長期接着強度を高める観点から、中間層と樹脂被覆層とを直接接着させることが好ましい。 When the surface of the intermediate layer is coated with the resin coating layer, a layer other than the intermediate layer and the resin coating layer may be interposed between the intermediate layer and the resin coating layer. From the viewpoint of increasing the long-term adhesive strength between the resin coating layer and the resin coating layer, it is preferable to directly bond the intermediate layer and the resin coating layer.
 また、樹脂被覆工程では、中間層の表面の少なくとも一部を上記樹脂被覆層で被覆すればよいが、積層体の防食性を高める観点から、中間層の表面の全体を上記樹脂被覆層で被覆することが好ましい。 In the resin coating step, at least a part of the surface of the intermediate layer may be coated with the resin coating layer, but from the viewpoint of enhancing the corrosion resistance of the laminate, the entire surface of the intermediate layer is coated with the resin coating layer. Preferably.
 さらに、金属基材が有する複数の表面上に形成された複数の中間層の表面を樹脂被覆層で被覆する場合、当該複数の中間層の表面を、同じ樹脂被覆層で被覆してもよいし、異なる樹脂被覆層で被覆してもよいものとする。
 例えば、シート状の基材の両方の主面の表面上に中間層が形成されている場合、一方の主面の表面上に形成された中間層の表面と、他方の主面の表面上に形成された中間層の表面とを、同じ樹脂被覆層で被覆してもよいし、異なる樹脂被覆層で被覆してもよいものとする。
 また、例えば、管状の金属基材の外表面上および内表面上の両方に中間層が形成されている場合、外表面上に形成された中間層の表面と、内表面上に形成された中間層の表面とを、同じ樹脂被覆層で被覆してもよいし、異なる樹脂被覆層で被覆してもよいものとする。
Furthermore, when the surfaces of the plurality of intermediate layers formed on the plurality of surfaces of the metal base material are coated with the resin coating layer, the surfaces of the plurality of intermediate layers may be coated with the same resin coating layer. It may be coated with a different resin coating layer.
For example, when the intermediate layer is formed on the surface of both main surfaces of the sheet-shaped substrate, the surface of the intermediate layer formed on the surface of one main surface and the surface of the other main surface The surface of the formed intermediate layer may be covered with the same resin coating layer or different resin coating layers.
Further, for example, when the intermediate layer is formed on both the outer surface and the inner surface of the tubular metal substrate, the intermediate layer formed on the outer surface and the intermediate layer formed on the inner surface The surface of the layer may be covered with the same resin coating layer or different resin coating layers.
<<樹脂被覆層>>
 樹脂被覆層は、芳香族ビニル単量体単位を主成分とする重合体ブロック[A]と、鎖状共役ジエン単量体単位を主成分とする重合体ブロック[B]とからなるブロック共重合体[C]を水素化して得られるブロック共重合体水素化物[D]にアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物[E]を含み、任意に、添加剤などの変性ブロック共重合体水素化物[E]以外の成分を含む層である。
<<Resin coating layer>>
The resin coating layer is a block copolymer composed of a polymer block [A] containing an aromatic vinyl monomer unit as a main component and a polymer block [B] containing a chain conjugated diene monomer unit as a main component. A modified block copolymer hydride [E] obtained by introducing an alkoxysilyl group into a block copolymer hydride [D] obtained by hydrogenating a polymer [C], and optionally a modified block such as an additive It is a layer containing components other than the copolymer hydride [E].
―変性ブロック共重合体水素化物[E]―
 変性ブロック共重合体水素化物[E]は、前駆体であるブロック共重合体水素化物[D]に、アルコキシシリル基が導入された高分子である。
-Modified block copolymer hydride [E]-
The modified block copolymer hydride [E] is a polymer in which an alkoxysilyl group is introduced into the precursor block copolymer hydride [D].
 ここで、樹脂被覆層における変性ブロック共重合体水素化物[E]の含有割合は、初期接着強度、長期接着強度、および耐湿性の観点から、65質量%以上であることが好ましく、70質量%以上であることがより好ましく、75質量%以上であることが更に好ましく、100質量%以下であることが好ましい。 Here, the content ratio of the modified block copolymer hydride [E] in the resin coating layer is preferably 65% by mass or more, and 70% by mass from the viewpoint of initial adhesive strength, long-term adhesive strength, and moisture resistance. More preferably, it is more preferably 75 mass% or more, still more preferably 100 mass% or less.
――ブロック共重合体水素化物[D]――
 ブロック共重合体水素化物[D]は、前駆体であるブロック共重合体[C]を水素化してなる高分子であり、より詳しくは、芳香族ビニル単量体単位を主成分とする重合体ブロック[A]と鎖状共役ジエン単量体単位を主成分とする重合体ブロック[B]とを有する高分子であるブロック共重合体[C]を水素化してなる高分子である。
--Block copolymer hydride [D]--
The block copolymer hydride [D] is a polymer obtained by hydrogenating a block copolymer [C] which is a precursor, and more specifically, a polymer containing an aromatic vinyl monomer unit as a main component. It is a polymer obtained by hydrogenating a block copolymer [C] which is a polymer having a block [A] and a polymer block [B] containing a chain conjugated diene monomer unit as a main component.
 ここで、ブロック共重合体水素化物[D]は、ブロック共重合体[C]の鎖状共役ジエン単量体に由来する主鎖および側鎖の炭素-炭素不飽和結合のみを選択的に水素化した高分子であってもよいし、ブロック共重合体[C]の鎖状共役ジエン単量体に由来する主鎖および側鎖の炭素-炭素不飽和結合並びに芳香族ビニル単量体に由来する芳香環の炭素-炭素不飽和結合を水素化した高分子であってもよいし、これらの混合物であってもよい。
 ブロック共重合体[C]の鎖状共役ジエン単量体に由来する主鎖および側鎖の炭素-炭素不飽和結合のみを選択的に水素化する場合、主鎖および側鎖の炭素-炭素不飽和結合の水素化率は、通常95%以上、好ましくは97%以上、より好ましくは99%以上であり、芳香族ビニル単量体に由来する芳香環の炭素-炭素不飽和結合の水素化率は、通常10%以下、好ましくは5%以下、より好ましくは3%以下である。
 ここで、「主鎖および側鎖の炭素-炭素不飽和結合を水素化すること」は、「ブロック共重合体における鎖状共役ジエン単量体に由来の二重結合を水素化すること」を意味し、「芳香環の炭素-炭素不飽和結合を水素化すること」は、「ブロック共重合体における芳香環に由来の二重結合を水素化すること」を意味する。
 ブロック共重合体[C]の鎖状共役ジエン単量体に由来する主鎖および側鎖の炭素-炭素不飽和結合、並びに、芳香族ビニル単量体に由来する芳香環の炭素-炭素不飽和結合を水素化する場合、水素化率は、通常全炭素-炭素不飽和結合の90%以上、好ましくは95%以上、より好ましくは99%以上である。水素化の程度を示す水素化率が高いほど、樹脂被覆層の耐光性、および耐熱性が良好である。
Here, the block copolymer hydride [D] selectively hydrogenates only carbon-carbon unsaturated bonds in the main chain and side chains derived from the chain conjugated diene monomer of the block copolymer [C]. It may be a polymerized polymer, or may be derived from the main chain and side chain carbon-carbon unsaturated bonds derived from the chain conjugated diene monomer of the block copolymer [C] and from the aromatic vinyl monomer. The polymer may be a polymer in which the carbon-carbon unsaturated bond of the aromatic ring is hydrogenated, or a mixture thereof.
In the case of selectively hydrogenating only the carbon-carbon unsaturated bonds of the main chain and side chains derived from the chain conjugated diene monomer of the block copolymer [C], the main chain and side chain carbon-carbon unsaturated bonds The hydrogenation rate of the saturated bond is usually 95% or more, preferably 97% or more, more preferably 99% or more, and the hydrogenation rate of the carbon-carbon unsaturated bond of the aromatic ring derived from the aromatic vinyl monomer. Is usually 10% or less, preferably 5% or less, more preferably 3% or less.
Here, “hydrogenating carbon-carbon unsaturated bonds in the main chain and side chains” means “hydrogenating a double bond derived from a chain conjugated diene monomer in a block copolymer”. Meaning, "hydrogenating a carbon-carbon unsaturated bond of an aromatic ring" means "hydrogenating a double bond derived from an aromatic ring in a block copolymer".
Carbon-carbon unsaturated bonds of main chain and side chain derived from chain conjugated diene monomer of block copolymer [C], and carbon-carbon unsaturated of aromatic ring derived from aromatic vinyl monomer When the bonds are hydrogenated, the hydrogenation rate is usually 90% or more, preferably 95% or more, more preferably 99% or more of the total carbon-carbon unsaturated bonds. The higher the hydrogenation rate indicating the degree of hydrogenation, the better the light resistance and heat resistance of the resin coating layer.
 なお、本発明において、「主鎖および側鎖における炭素-炭素不飽和結合の水素化」は、「ブロック共重合体[C]における鎖状共役ジエン単量体に由来の二重結合の水素化」を意味し、「芳香環における炭素-炭素不飽和結合の水素化」は、「ブロック共重合体[C]における芳香環に由来の二重結合の水素化」を意味する。また、本発明において、ブロック共重合体水素化物[D]の水素化率は、ブロック共重合体[C]およびブロック共重合体水素化物[D]の1H-NMRを測定する方法等により求めることができる。 In the present invention, “hydrogenation of carbon-carbon unsaturated bond in main chain and side chain” means “hydrogenation of double bond derived from chain conjugated diene monomer in block copolymer [C]”. And "hydrogenation of carbon-carbon unsaturated bond in aromatic ring" means "hydrogenation of double bond derived from aromatic ring in block copolymer [C]". Further, in the present invention, the hydrogenation rate of the block copolymer hydride [D] is obtained by a method of measuring 1 H-NMR of the block copolymer [C] and the block copolymer hydride [D]. be able to.
 炭素-炭素不飽和結合の水素化方法や反応形態等は、特に制限はなく、公知の方法にしたがって行えばよい。 The method of hydrogenating the carbon-carbon unsaturated bond, the reaction form, etc. are not particularly limited and may be carried out according to known methods.
 ブロック共重合体[C]の鎖状共役ジエン化合物に由来する主鎖および側鎖の炭素-炭素不飽和結合を選択的に水素化する方法としては、例えば、特開2015-78090号公報等に記載された方法を挙げることができる。 A method for selectively hydrogenating carbon-carbon unsaturated bonds in the main chain and side chains derived from the chain conjugated diene compound of the block copolymer [C] is described in, for example, JP-A-2015-78090. Mention may be made of the methods described.
 また、ブロック共重合体[C]の鎖状共役ジエン単量体に由来する主鎖および側鎖の炭素-炭素不飽和結合並びに芳香族ビニル単量体に由来する芳香環の炭素-炭素不飽和結合を水素化する方法としては、例えば、国際公開第2011/096389号、国際公開第2012/043708号等に記載された方法を挙げることができる。
 水素化反応終了後においては、水素化触媒および/または重合触媒を反応溶液から除去した後、得られた溶液からブロック共重合体水素化物[D]を回収することができる。回収されたブロック共重合体水素化物[D]の形態としては、特に制限はないが、ペレット形状にして、その後のアルコキシシリル基の導入反応に供することが好ましい。
In addition, carbon-carbon unsaturated bonds of the main chain and side chains derived from the chain conjugated diene monomer of the block copolymer [C] and carbon-carbon unsaturated of the aromatic ring derived from the aromatic vinyl monomer. Examples of the method for hydrogenating the bond include the methods described in International Publication No. 2011/096389 and International Publication No. 2012/043708.
After completion of the hydrogenation reaction, the hydrogenation catalyst and/or the polymerization catalyst can be removed from the reaction solution, and then the block copolymer hydride [D] can be recovered from the obtained solution. There are no particular restrictions on the form of the recovered block copolymer hydride [D], but it is preferable to use it in the form of pellets for subsequent introduction reaction of an alkoxysilyl group.
 ブロック共重合体水素化物[D]の分子量としては、特に制限はないが、樹脂被覆層の耐熱性や機械的強度を向上させる観点から、THFを溶媒としたゲル・パーミエーション・クロマトグラフィー(GPC)により測定されるポリスチレン換算の重量平均分子量(Mw)で、35,000以上であることが好ましく、38,000以上であることがより好ましく、40,000以上であることが更に好ましく、200,000以下であることが好ましく、150,000以下であることがより好ましく、100,000以下であることが更に好ましい。
 また、ブロック共重合体水素化物[D]の分子量分布(Mw/Mn)は、特に制限はないが、樹脂被覆層の耐熱性や機械的強度を向上させる観点から、3以下であることが好ましく、2以下であることがより好ましく、1.7以下であることが更に好ましい。
The molecular weight of the block copolymer hydride [D] is not particularly limited, but from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer, gel permeation chromatography (GPC) using THF as a solvent. The polystyrene-equivalent weight average molecular weight (Mw) is preferably 35,000 or more, more preferably 38,000 or more, still more preferably 40,000 or more, 200, It is preferably 000 or less, more preferably 150,000 or less, still more preferably 100,000 or less.
The molecular weight distribution (Mw/Mn) of the block copolymer hydride [D] is not particularly limited, but is preferably 3 or less from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer. It is more preferably 2 or less, still more preferably 1.7 or less.
〔ゲルパーミエーションクロマトグラフィー(GPC)で測定した溶出曲線〕
 ブロック共重合体水素化物[D]を含有する試料のゲルパーミエーションクロマトグラフィー(GPC)で測定した溶出曲線におけるブロック共重合体水素化物[D]由来ピークの数は、特に制限はないが、樹脂被覆層の形状追従性を高め、金属基材と樹脂被覆層との初期接着強度を更に高める観点から、2つ以上であることが好ましく、4つ以下であることが好ましく、3つ以下であることがより好ましく、2つであることが特に好ましい。
 ここで、溶出曲線は、ブロック共重合体水素化物[D]由来ピークを検出可能なものであればよく、ブロック共重合体水素化物[D]のみをGPC測定することにより得られた溶出曲線だけでなく、ブロック共重合体水素化物[D]を含む組成物より得られた溶出曲線(例えば、老化防止剤とブロック共重合体水素化物[D]とを含む組成物)であってもよい。
 なお、本明細書において、「ピーク」とは「ベースラインに対して突出した部分」を意味し、「ピークトップ」とは「示差屈折計(RI)の検出感度(mV)が一番高い頂点」を意味する。
 ここで、GPCで測定した溶出曲線におけるブロック共重合体水素化物[D]由来ピークの数が2つ以上である場合、少なくとも2つのブロック共重合体水素化物[D]由来ピークのうち、最も検出感度の高いピークトップを示すブロック共重合体水素化物[D]由来ピークを第1ピークとし、前記第1ピークのピークトップの溶出時間の次に溶出時間の早いピークトップを示すブロック共重合体水素化物[D]由来ピークを第2ピークとする。例えば、図1では、Fが第1ピークであり、Gが第2ピークであり、溶出時間約16分で検出されるHがブロック共重合体水素化物[D]を製造するときに使われた溶媒(例えば、シクロヘキサン)に由来するピークであり、16.5分以降のマイナス側に検出される2つのピークはGPC測定で用いた溶媒としてのテトラヒドロフラン(THF)に由来するピークである。Iは老化防止剤に由来するピークである。
 また、図1において、JはGPCで測定された標準ポリスチレンの分子量のプロット(キャリブレーションカーブ)であり、図1に示すように、このキャリブレーションカーブとGPCで測定されたブロック共重合体水素化物[D]の溶出時間から、「第1ピークの感度が最も高い溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)」および「第2ピークの感度が最も高い溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)」を算出する。
 なお、図1の溶出曲線では、Iの老化防止剤由来のピークは、ブロック共重合体水素化物[D]によるものではない。
[Elution curve measured by gel permeation chromatography (GPC)]
The number of peaks derived from the block copolymer hydride [D] in the elution curve measured by gel permeation chromatography (GPC) of the sample containing the block copolymer hydride [D] is not particularly limited. From the viewpoint of enhancing the shape following property of the coating layer and further enhancing the initial adhesive strength between the metal base material and the resin coating layer, it is preferably 2 or more, preferably 4 or less, and 3 or less. It is more preferable, and it is particularly preferable that the number is two.
Here, the elution curve may be any that can detect the peak derived from the block copolymer hydride [D], and only the elution curve obtained by GPC measurement of the block copolymer hydride [D] alone Instead, it may be an elution curve obtained from a composition containing a block copolymer hydride [D] (for example, a composition containing an antioxidant and a block copolymer hydride [D]).
In the present specification, "peak" means "a portion protruding from the baseline", and "peak top" is a peak at which the differential refractometer (RI) has the highest detection sensitivity (mV). Means.
Here, when the number of peaks derived from the block copolymer hydride [D] in the elution curve measured by GPC is 2 or more, the most detected peak is obtained from at least two block copolymer hydride [D] derived peaks. A block copolymer hydrogen having a peak with a high sensitivity and a peak derived from the block copolymer hydride [D] having the first peak as the first peak, and having the shortest elution time after the elution time of the peak top of the first peak. The peak derived from compound [D] is designated as the second peak. For example, in FIG. 1, F is the first peak, G is the second peak, and H detected at an elution time of about 16 minutes was used in the production of the block copolymer hydride [D]. It is a peak derived from a solvent (for example, cyclohexane), and two peaks detected on the minus side after 16.5 minutes are peaks derived from tetrahydrofuran (THF) as a solvent used in the GPC measurement. I is a peak derived from the antiaging agent.
Further, in FIG. 1, J is a plot (calibration curve) of the molecular weight of standard polystyrene measured by GPC. As shown in FIG. 1, this calibration curve and the hydride of the block copolymer measured by GPC are shown. From the elution time of [D], “standard polystyrene-equivalent molecular weight based on elution time with highest sensitivity of first peak (first peak molecular weight)” and “standard polystyrene-equivalent molecular weight based on elution time with highest sensitivity of second peak” (Second peak molecular weight)" is calculated.
In the elution curve of FIG. 1, the peak derived from the antioxidant of I is not due to the block copolymer hydride [D].
〔〔第1ピーク〕〕
 第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)は、特に制限はないが、15000以上であることが好ましく、20000以上であることがより好ましく、25000以上であることが更に好ましく、200000以下であることが好ましく、170000以下であることがより好ましく、140000以下であることが更に好ましい。第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)が、15000以上であれば、樹脂被覆層の衝撃強度を確保することができ、200,000以下であれば、樹脂被覆層の形状追従性を更に高め、金属基材と樹脂被覆層との初期接着強度を一層高めることができる。
[[First peak]]
The standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak is not particularly limited, but is preferably 15,000 or more, more preferably 20,000 or more, and further preferably 25,000 or more. It is preferably 200,000 or less, more preferably 170000 or less, still more preferably 140000 or less. If the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak is 15,000 or more, the impact strength of the resin coating layer can be secured, and if it is 200,000 or less, the resin coating layer. It is possible to further improve the shape following property and to further increase the initial adhesive strength between the metal base material and the resin coating layer.
〔〔第2ピーク〕〕
 第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)は、特に制限はないが、1000以上であることが好ましく、1200以上であることがより好ましく、1500以上であることが更に好ましく、1800以上であることが一層好ましく、153800以下であることが好ましく、100000以下であることがより好ましく、50000以下であることが更に好ましい。第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)が、1000以上であり、かつ、153800以下であれば、樹脂被覆層の形状追従性を更に高め、金属基材と樹脂被覆層との初期接着強度を一層高めることができる。
[[Second peak]]
The standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the elution time of the second peak is not particularly limited, but is preferably 1000 or more, more preferably 1200 or more, and further preferably 1500 or more. It is preferably 1800 or more, more preferably 153800 or less, more preferably 100000 or less, and further preferably 50000 or less. When the standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the elution time of the second peak is 1000 or more and 153800 or less, the shape-following property of the resin coating layer is further enhanced, and the metal base material and the resin coating The initial adhesive strength with the layer can be further increased.
 第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)に対する第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)の比(第1ピーク分子量/第2ピーク分子量)は、特に制限はないが、1.50以上であることが好ましく、2.0以上であることがより好ましく、4.0以上であることが更に好ましく、200以下であることが好ましく、150以下であることがより好ましく、100以下であることが更に好ましい。第2ピーク分子量に対する第1ピーク分子量の比が、1.50以上であり、かつ、200以下であれば、樹脂被覆層の形状追従性を更に高め、金属基材と樹脂被覆層との初期接着強度を一層高めることができる。 Ratio of standard polystyrene reduced molecular weight (first peak molecular weight) based on elution time of first peak to standard polystyrene reduced molecular weight (second peak molecular weight) based on elution time of second peak (first peak molecular weight/second peak molecular weight) Is not particularly limited, but is preferably 1.50 or more, more preferably 2.0 or more, further preferably 4.0 or more, preferably 200 or less, and 150 or less. Is more preferable, and 100 or less is further preferable. When the ratio of the first peak molecular weight to the second peak molecular weight is 1.50 or more and 200 or less, the shape following property of the resin coating layer is further enhanced, and the initial adhesion between the metal base material and the resin coating layer is performed. The strength can be further increased.
 第2ピークのピークトップが示す示差屈折計(RI)の検出感度(第2ピークトップ感度)(mV)に対する第1ピークのピークトップが示す示差屈折計(RI)の検出感度(第1ピークトップ感度)(mV)の比(第1ピークトップ感度(mV)/第2ピークトップ感度(mV))は、特に制限はないが、1.0以上であることが好ましく、1.5以上であることがより好ましく、2.0以上であることが更に好ましく、99以下であることが好ましく、70以下であることがより好ましく、50以下であることが更に好ましい。第2ピークトップ感度(mV)に対する第1ピークトップ感度(mV)の比が、1.0以上であれば、樹脂被覆層の形状追従性を更に高め、金属基材と樹脂被覆層との初期接着強度を一層高めることができ、99以下であれば、樹脂被覆層の膜厚ムラをより改良することができる。 The detection sensitivity of the differential refractometer (RI) indicated by the peak top of the second peak (second peak top sensitivity) (mV) to the detection sensitivity of the differential refractometer (RI) indicated by the peak top of the first peak (first peak top) The ratio of (sensitivity) (mV) (first peak top sensitivity (mV)/second peak top sensitivity (mV)) is not particularly limited, but is preferably 1.0 or more, and is 1.5 or more. More preferably, it is more preferably 2.0 or more, further preferably 99 or less, more preferably 70 or less, and further preferably 50 or less. If the ratio of the first peak top sensitivity (mV) to the second peak top sensitivity (mV) is 1.0 or more, the shape following property of the resin coating layer is further enhanced, and the initial stage of the metal base material and the resin coating layer. The adhesive strength can be further increased, and when it is 99 or less, the unevenness of the film thickness of the resin coating layer can be further improved.
 なお、水素化反応(水添反応)に供するブロック共重合体[C]の重量平均分子量(Mw)および分子量分布(Mw/Mn)と、水素化温度(水添温度)と、水素化反応時間(水添反応時間)と、水素化反応(水添反応)における水素供給停止時間とを適宜調整することにより、ゲルパーミエーションクロマトグラフィー(GPC)で測定した溶出曲線において所定の第1ピークと所定の第2ピークとを有するブロック共重合体水素化物[D]が得られる。 The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the block copolymer [C] to be subjected to hydrogenation reaction (hydrogenation reaction), hydrogenation temperature (hydrogenation temperature), and hydrogenation reaction time By appropriately adjusting the (hydrogenation reaction time) and the hydrogen supply stop time in the hydrogenation reaction (hydrogenation reaction), a predetermined first peak and a predetermined peak are obtained in the elution curve measured by gel permeation chromatography (GPC). A block copolymer hydride [D] having a second peak of
〔ブロック共重合体[C]〕
 ブロック共重合体[C]は、芳香族ビニル単量体単位を主成分とする重合体ブロック[A]を1個以上と、鎖状共役ジエン単量体単位を主成分とする重合体ブロック[B]を1個以上有する高分子であるが、重合体ブロック[A]2個以上と、重合体ブロック[B]1個以上とからなる高分子であることが好ましい。
 ここで、ブロック共重合体[C]中における重合体ブロック[A]の数は、3個以下であることが好ましく、2個であることがより好ましい。
 また、ブロック共重合体[C]中における重合体ブロック[B]の数は、2個以下であることが好ましく、1個であることがより好ましい。
 ブロック共重合体[C]中における重合体ブロック[A]および重合体ブロック[B]の数をそれぞれ上記範囲内にすることにより、ブロック共重合体[C]を用いて得られるブロック共重合体水素化物[D]にアルコキシシリル基を導入してなる変性ブロック共重合体水素化物[E]を含む樹脂組成物において、重合体ブロック[A]由来の水素化重合体ブロック(以下、「水素化重合体ブロック[Ah]」ということがある。)と重合体ブロック[B]由来の水素化重合体ブロックとの相分離が不明瞭となるのを防止して、水素化重合体ブロック[Ah]に基づく高温側のガラス転移温度が低下するのを防止し、ひいては、樹脂被覆層の耐熱性が低下するのを防止することができる。
[Block copolymer [C]]
The block copolymer [C] includes at least one polymer block [A] containing an aromatic vinyl monomer unit as a main component and a polymer block [A] containing a chain conjugated diene monomer unit as a main component. Although it is a polymer having one or more B], it is preferably a polymer composed of two or more polymer blocks [A] and one or more polymer blocks [B].
Here, the number of polymer blocks [A] in the block copolymer [C] is preferably 3 or less, and more preferably 2.
Further, the number of polymer blocks [B] in the block copolymer [C] is preferably 2 or less, and more preferably 1.
A block copolymer obtained by using the block copolymer [C] by adjusting the numbers of the polymer block [A] and the polymer block [B] in the block copolymer [C] to the above ranges, respectively. In a resin composition containing a modified block copolymer hydride [E] obtained by introducing an alkoxysilyl group into a hydride [D], a hydrogenated polymer block derived from the polymer block [A] (hereinafter referred to as "hydrogenation The polymer block [A h ]") and the hydrogenated polymer block derived from the polymer block [B] are prevented from becoming unclear, and the hydrogenated polymer block [A h ] It is possible to prevent the glass transition temperature on the high temperature side based on [ h ] from lowering, and thus to prevent the heat resistance of the resin coating layer from lowering.
 ブロック共重合体[C]のブロックの形態は、特に制限はなく、鎖状型ブロックであっても、ラジアル型ブロックであってもよいが、樹脂被覆層の機械的強度を向上させる観点から、鎖状型ブロックであることが好ましい。ここで、ブロック共重合体[C]の特に好ましい形態は、重合体ブロック[B]の両端に重合体ブロック[A]が結合したトリブロック共重合体([A]-[B]-[A])である。ブロック共重合体である共重合体は、ブロック重合後水素化前の段階では、末端変性がなされていないことが好ましい。
 ブロック共重合体が、2つの重合体ブロック[A](第1の重合体ブロック[A1]、第2の重合体ブロック[A2])と、1つの重合体ブロック[B]とにより構成されたトリブロック共重合体([A1]-[B]-[A2])である場合において、第1の重合体ブロック[A1]由来の芳香族ビニル単量体単位がブロック共重合体全体に占める質量分率、および、第2の重合体ブロック[A2]由来の芳香族ビニル単量体単位がブロック共重合体全体に占める質量分率のうち、一方をSt1とし、他方をSt2(ただし、St1≦St2)としたとき、St1とSt2との比(St1/St2)は20/80以上であることが好ましく、50/50以下であることが好ましい。
The block form of the block copolymer [C] is not particularly limited and may be a chain block or a radial block, but from the viewpoint of improving the mechanical strength of the resin coating layer, It is preferably a chain block. Here, a particularly preferable form of the block copolymer [C] is a triblock copolymer ([A]-[B]-[A] in which the polymer blocks [A] are bonded to both ends of the polymer block [B]. ]). The block copolymer is preferably not subjected to terminal modification at the stage after block polymerization and before hydrogenation.
The block copolymer is composed of two polymer blocks [A] (first polymer block [A1], second polymer block [A2]) and one polymer block [B]. In the case of a triblock copolymer ([A1]-[B]-[A2]), the mass of the aromatic vinyl monomer unit derived from the first polymer block [A1] in the entire block copolymer Of the mass fraction and the mass fraction of the aromatic vinyl monomer unit derived from the second polymer block [A2] in the entire block copolymer, one is St1 and the other is St2 (where St1≦ When it is St2), the ratio (St1/St2) of St1 and St2 is preferably 20/80 or more, and preferably 50/50 or less.
 ブロック共重合体[C]中の全芳香族ビニル単量体単位がブロック共重合体[C]全体に占める質量分率をwAとし、ブロック共重合体[C]中の全鎖状共役ジエン単量体単位がブロック共重合体[C]全体に占める質量分率をwBとしたときに、wAは60%以下であることが好ましく、55%以下であることがより好ましく、50%以下であることが更に好ましく、20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることが更に好ましく、wBは80%以下であることが好ましく、70%以下であることがより好ましく、60%以下であることが更に好ましく、40%以上であることが好ましく、45%以上であることがより好ましく、50%以上であることが更に好ましい。
 ブロック共重合体[C]中の全芳香族ビニル単量体単位がブロック共重合体[C]全体に占める質量分率(wA)を60%以下にすることにより、得られる樹脂被覆層の接着性を確保することができる。一方、ブロック共重合体[C]中の全芳香族ビニル単量体単位がブロック共重合体[C]全体に占める質量分率(wA)を20%以上にすることにより、樹脂被覆層の耐熱性を確保することができる。
The mass fraction of all aromatic vinyl monomer units in the block copolymer [C] in the entire block copolymer [C] is wA, and the whole chain conjugated diene monomer in the block copolymer [C] is When the mass fraction of the monomer unit in the entire block copolymer [C] is wB, wA is preferably 60% or less, more preferably 55% or less, and 50% or less. More preferably, it is preferably 20% or more, more preferably 30% or more, further preferably 40% or more, wB is preferably 80% or less, and 70% or less. More preferably, it is more preferably 60% or less, further preferably 40% or more, more preferably 45% or more, still more preferably 50% or more.
Adhesion of the resin coating layer obtained by setting the mass fraction (wA) of all the aromatic vinyl monomer units in the block copolymer [C] in the entire block copolymer [C] to 60% or less. It is possible to secure the sex. On the other hand, by setting the mass fraction (wA) of all aromatic vinyl monomer units in the block copolymer [C] in the entire block copolymer [C] to be 20% or more, the heat resistance of the resin coating layer can be improved. It is possible to secure the sex.
 ブロック共重合体[C]の分子量は、特に制限はないが、樹脂被覆層の耐熱性や機械的強度を向上させる観点から、テトラヒドロフラン(THF)を溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、35,000以上であることが好ましく、38,000以上であることがより好ましく、40,000以上であることが更に好ましく、200,000以下であることが好ましく、150,000以下であることがより好ましく、100,000以下であることが更に好ましい。
 また、ブロック共重合体[C]の分子量分布(Mw/Mn)は、特に制限はないが、樹脂被覆層の耐熱性や機械的強度を向上させる観点から、3以下であることが好ましく、2以下であることがより好ましく、1.7以下であることが更に好ましい。
The molecular weight of the block copolymer [C] is not particularly limited, but from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer, the polystyrene equivalent weight measured by GPC using tetrahydrofuran (THF) as a solvent. The average molecular weight (Mw) is preferably 35,000 or more, more preferably 38,000 or more, further preferably 40,000 or more, and preferably 200,000 or less, 150 It is more preferably 2,000 or less, still more preferably 100,000 or less.
The molecular weight distribution (Mw/Mn) of the block copolymer [C] is not particularly limited, but is preferably 3 or less from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer. It is more preferably not more than 1.7, still more preferably not more than 1.7.
 ブロック共重合体[C]の製造方法は特に限定されず、例えば、国際公開第2003/018656号、国際公開第2011/096389号、等に記載の方法を採用することができる。 The method for producing the block copolymer [C] is not particularly limited, and for example, the methods described in International Publication No. 2003/018656, International Publication No. 2011/096389 and the like can be adopted.
〔〔重合体ブロック[A]〕〕
 重合体ブロック[A]は、芳香族ビニル単量体単位を主成分とする重合体ブロックである。重合体ブロック[A]中における芳香族ビニル単量体単位の含有割合は、重合体ブロック[A]を構成する全構造単位を100質量%として、50質量%超であることが必要であり、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であることが更に好ましい。なお、重合体ブロック[A]中における芳香族ビニル単量体単位の含有割合の上限は特に限定されず、100質量%以下とすることができる。
 重合体ブロック[A]中における芳香族ビニル単量体単位の含有割合が50質量%超であると、樹脂被覆層の耐熱性を確保することができる。
[[Polymer block [A]]]
The polymer block [A] is a polymer block containing an aromatic vinyl monomer unit as a main component. The content ratio of the aromatic vinyl monomer unit in the polymer block [A] needs to be more than 50% by mass based on 100% by mass of all structural units constituting the polymer block [A], It is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more. The upper limit of the content ratio of the aromatic vinyl monomer unit in the polymer block [A] is not particularly limited and can be 100% by mass or less.
When the content ratio of the aromatic vinyl monomer unit in the polymer block [A] is more than 50% by mass, the heat resistance of the resin coating layer can be secured.
 重合体ブロック[A]は、芳香族ビニル単量体単位以外の単量体単位(その他の単量体単位)を含有していてもよい。 The polymer block [A] may contain a monomer unit (other monomer unit) other than the aromatic vinyl monomer unit.
 重合体ブロック[A]が含有しうるその他の単量体単位としては、後述する鎖状共役ジエン単量体単位および/またはその他のビニル単量体単位などが挙げられる。重合体ブロック[A]中における鎖状共役ジエン単量体単位およびその他のビニル単量体単位の含有割合の合計は、重合体ブロック[A]を構成する全単量体単位を100質量%として、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。重合体ブロック[A]中における鎖状共役ジエン単量体単位およびその他のビニル単量体単位の含有割合の合計が10質量%以下であると、樹脂被覆層の耐熱性を確保することができる。 Examples of other monomer units that can be contained in the polymer block [A] include a chain conjugated diene monomer unit described below and/or other vinyl monomer units. The total content of the chain conjugated diene monomer units and the other vinyl monomer units in the polymer block [A] is 100% by mass based on all the monomer units constituting the polymer block [A]. It is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 1% by mass or less. When the total content ratio of the chain conjugated diene monomer unit and the other vinyl monomer unit in the polymer block [A] is 10% by mass or less, the heat resistance of the resin coating layer can be secured. ..
 なお、重合体ブロック[A]が鎖状共役ジエン単量体単位および/またはその他のビニル単量体単位を含む場合は、重合体ブロック[A]は、通常、芳香族ビニル単量体単位、鎖状共役ジエン単量体単位、およびその他のビニル単量体単位を不規則的に繰り返してなる部分を有することが好ましい。 When the polymer block [A] contains a chain conjugated diene monomer unit and/or another vinyl monomer unit, the polymer block [A] is usually an aromatic vinyl monomer unit, It is preferable to have a portion in which a chain conjugated diene monomer unit and other vinyl monomer units are irregularly repeated.
 また、ブロック共重合体[C]が複数の重合体ブロック[A]を有する場合、重合体ブロック[A]同士は、互いに同一であってもよく、相異していてもよい。 Further, when the block copolymer [C] has a plurality of polymer blocks [A], the polymer blocks [A] may be the same as or different from each other.
 芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、例えば、スチレン;α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン等の、置換基として炭素数1以上6以下のアルキル基を有するスチレン類;4-メトキシスチレン等の、置換基として炭素数1以上6以下のアルコキシ基を有するスチレン類;4-フェニルスチレン等の、置換基としてアリール基を有するスチレン類;1-ビニルナフタレン、2-ビニルナフタレン等の、ビニルナフタレン類;が挙げられる。これらは、1種単独で、あるいは2種以上を組み合わせて使用してもよい。
 そしてこれらの中でも、樹脂被覆層の吸湿性を低下させる観点から、スチレンや、置換基として炭素数1以上6以下のアルキル基を有するスチレン類などの、極性基を含有しない芳香族ビニル単量体が好ましく、さらに、工業的な入手の容易さから、スチレンがより好ましい。
Examples of the aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit include styrene; α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene. Styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, such as 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene; 4-methoxystyrene, etc. A styrene having an alkoxy group having 1 to 6 carbon atoms as a substituent; a styrene having an aryl group as a substituent such as 4-phenylstyrene; a vinylnaphthalene such as 1-vinylnaphthalene or 2-vinylnaphthalene And the like; You may use these individually by 1 type or in combination of 2 or more type.
Among these, aromatic vinyl monomers containing no polar group, such as styrene and styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, from the viewpoint of reducing the hygroscopicity of the resin coating layer. Is preferred, and styrene is more preferred because of its industrial availability.
 その他のビニル単量体単位を形成し得るその他のビニル単量体としては、芳香族ビニル単量体および鎖状共役ジエン単量体以外のビニル化合物、例えば、鎖状ビニル化合物、環状ビニル化合物、不飽和の環状酸無水物、不飽和イミド化合物、などが挙げられる。これらの化合物は、ニトリル基、アルコキシカルボニル基、ヒドロキシカルボニル基、ハロゲン原子等の置換基を有していてもよい。また、これらの化合物は、1種単独で、あるいは2種以上を組み合わせて使用してもよい。そしてこれらの中でも、樹脂被覆層の吸湿性を低下させる観点から、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-エイコセン、4-メチル-1-ペンテン、4,6-ジメチル-1-ヘプテン等の、炭素数2以上20以下の鎖状ビニル化合物(鎖状オレフィン);ビニルシクロヘキサン、ノルボルネン等の炭素数5以上20以下の環状ビニル化合物(環状オレフィン);1,3-シクロヘキサジエン、ノルボルナジエン等の環状ジエン化合物;などであって、極性基を含有しないものが好ましい。 Other vinyl monomers capable of forming other vinyl monomer units include vinyl compounds other than aromatic vinyl monomers and chain conjugated diene monomers, for example, chain vinyl compounds, cyclic vinyl compounds, Examples thereof include unsaturated cyclic acid anhydrides and unsaturated imide compounds. These compounds may have a substituent such as a nitrile group, an alkoxycarbonyl group, a hydroxycarbonyl group and a halogen atom. These compounds may be used alone or in combination of two or more. Among these, from the viewpoint of reducing the hygroscopicity of the resin coating layer, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1 -Chain vinyl compounds having 2 to 20 carbon atoms (chain olefins) such as dodecene, 1-eicosene, 4-methyl-1-pentene, 4,6-dimethyl-1-heptene; vinylcyclohexane, norbornene, etc. A cyclic vinyl compound having 5 to 20 carbon atoms (cyclic olefin); a cyclic diene compound such as 1,3-cyclohexadiene or norbornadiene; and the like, which does not contain a polar group, are preferable.
〔〔重合体ブロック[B]〕〕
 重合体ブロック[B]は、鎖状共役ジエン単量体単位を主成分とする重合体ブロックである。重合体ブロック[B]中における鎖状共役ジエン単量体単位の含有割合は、重合体ブロック[B]を構成する全構造単位を100質量%として、50質量%超であることが必要であり、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。なお、重合体ブロック[B]中における鎖状共役ジエン単量体単位の含有割合の上限は特に限定されず、100質量%以下とすることができる。
 重合体ブロック[B]中における鎖状共役ジエン単量体単位の含有割合が50質量%超であると、樹脂被覆層の柔軟性が高まり、例えば、樹脂被覆層が、環境の急激な温度変化に対しても割れ等の不具合を発生し難いため、好ましい。
[[Polymer block [B]]]
The polymer block [B] is a polymer block containing a chain conjugated diene monomer unit as a main component. The content ratio of the chain conjugated diene monomer unit in the polymer block [B] needs to be more than 50% by mass based on 100% by mass of all structural units constituting the polymer block [B]. , 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more. The upper limit of the content of the chain conjugated diene monomer unit in the polymer block [B] is not particularly limited and can be 100% by mass or less.
When the content ratio of the chain conjugated diene monomer unit in the polymer block [B] is more than 50% by mass, the flexibility of the resin coating layer is increased, and for example, the resin coating layer has a sharp temperature change in the environment. However, it is difficult to cause defects such as cracks, which is preferable.
 重合体ブロック[B]は、鎖状共役ジエン単量体単位以外の単量体単位(その他の単量体単位)を含有していてもよい。重合体ブロック[B]が含有しうるその他の単量体単位としては、上述した芳香族ビニル単量体単位および/または上述したその他のビニル単量体単位などが挙げられる。重合体ブロック[B]中における芳香族ビニル単量体単位およびその他のビニル単量体単位の含有割合の合計は、重合体ブロック[B]を構成する全構造単位を100質量%として、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。重合体ブロック[B]中における芳香族ビニル単量体単位およびその他の単量体単位の含有割合の合計が30質量%以下であると、樹脂被覆層の柔軟性が高まり、例えば、樹脂被覆層が、環境の急激な温度変化に対して割れ等の不具合を発生し難いため、好ましい。 The polymer block [B] may contain a monomer unit (other monomer unit) other than the chain conjugated diene monomer unit. Examples of the other monomer unit that can be contained in the polymer block [B] include the above-mentioned aromatic vinyl monomer unit and/or the above-mentioned other vinyl monomer unit. The total content of the aromatic vinyl monomer units and the other vinyl monomer units in the polymer block [B] is 30% by mass based on 100% by mass of all the structural units constituting the polymer block [B]. % Or less, more preferably 20% by mass or less, still more preferably 10% by mass or less. When the total content ratio of the aromatic vinyl monomer unit and the other monomer unit in the polymer block [B] is 30% by mass or less, the flexibility of the resin coating layer increases, and for example, the resin coating layer However, it is difficult to cause a defect such as cracking due to a rapid temperature change in the environment, which is preferable.
 なお、重合体ブロック[B]が芳香族ビニル単量体単位および/またはその他のビニル単量体単位を含む場合は、重合体ブロック[B]は、通常、鎖状共役ジエン単量体単位、芳香族ビニル単量体単位、およびその他のビニル単量体単位を不規則的に繰り返してなる部分を有することが好ましい。 When the polymer block [B] contains an aromatic vinyl monomer unit and/or another vinyl monomer unit, the polymer block [B] is usually a chain conjugated diene monomer unit, It is preferable to have a portion in which an aromatic vinyl monomer unit and other vinyl monomer units are irregularly repeated.
 また、ブロック共重合体[C]が重合体ブロック[B]を複数有する場合、重合体ブロック[B]同士は、互いに同一であってもよく、相異なっていてもよい。 When the block copolymer [C] has a plurality of polymer blocks [B], the polymer blocks [B] may be the same or different from each other.
 ここで、重合体ブロック[B]は、鎖状共役ジエン単量体単位の一部が、1,2-結合および/または3,4-結合で重合した構造単位(1,2-および3,4-付加重合由来の構造単位)を有し、鎖状共役ジエン単量体単位の残部が、1,4-結合(1,4-付加重合由来の構造単位)で重合した構造単位を有していてもよい。重合体ブロック[B]中の鎖状共役ジエン単量体単位により構成される鎖状共役ジエン部分において、「1,2-結合(3,4-結合)」と「1,4-結合」との合計に対する「1,4-結合」の比率は、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが特に好ましい。 Here, the polymer block [B] is a structural unit (1,2- and 3, in which a part of a chain conjugated diene monomer unit is polymerized with 1,2-bond and/or 3,4-bond). 4-addition polymerization-derived structural units), and the rest of the chain conjugated diene monomer units have structural units polymerized with 1,4-bonds (1,4-addition polymerization-derived structural units) May be In the chain conjugated diene portion composed of the chain conjugated diene monomer units in the polymer block [B], “1,2-bond (3,4-bond)” and “1,4-bond” The ratio of “1,4-bond” to the total of the above is preferably 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
 1,2-結合および/または3,4-結合で重合した鎖状共役ジエン単量体に由来する構造単位を含有する重合体ブロック[B]は、鎖状共役ジエン単量体、必要に応じて、芳香族ビニル単量体、その他のビニル単量体を、ランダム化剤として電子供与原子を有する特定の化合物の存在下で重合させることにより得ることができる。1,2-結合および/または3,4-結合で重合した鎖状共役ジエン単量体に由来する構造単位の含有量は、ランダム化剤の添加量により制御することができる。 The polymer block [B] containing a structural unit derived from a chain conjugated diene monomer polymerized by 1,2-bond and/or 3,4-bond is a chain conjugated diene monomer, if necessary. Then, the aromatic vinyl monomer and other vinyl monomers are polymerized in the presence of a specific compound having an electron donating atom as a randomizing agent. The content of the structural unit derived from the chain conjugated diene monomer polymerized by 1,2-bond and/or 3,4-bond can be controlled by the addition amount of the randomizing agent.
 電子供与原子(例えば、酸素(O)、窒素(N))を有する化合物としては、エーテル化合物、アミン化合物、ホスフィン化合物、などが挙げられる。これらの中でも、ランダム共重合体ブロックの分子量分布を小さくすることができ、その水素添加反応を阻害し難いという観点から、エーテル化合物が好ましい。 Examples of the compound having an electron donating atom (for example, oxygen (O) and nitrogen (N)) include ether compounds, amine compounds, phosphine compounds, and the like. Among these, ether compounds are preferable from the viewpoints that the molecular weight distribution of the random copolymer block can be made small and the hydrogenation reaction is difficult to be inhibited.
 電子供与原子を有する化合物の具体例としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジイソプロピルエーテル、エチレングリコールジブチルエーテル、エチレングリコールメチルフェニルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジイソプロピルエーテル、プロピレングリコールジブチルエーテル、ジ(2-テトラヒドロフリル)メタン、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジブチルエーテル、テトラメチルエチレンジアミン、などが挙げられる。これらは、1種単独で、あるいは2種以上を組み合わせて使用してもよい。これらの電子供与原子を有する化合物の含有量は、鎖状共役ジエン単量体100質量部に対して、0.001質量部以上であることが好ましく、0.01質量部以上であることがより好ましく、10質量部以下であることが好ましく、1質量部以下であることがより好ましい。 Specific examples of the compound having an electron donating atom include, for example, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol diisopropyl ether, ethylene glycol dibutyl ether, ethylene glycol methylphenyl ether, Examples thereof include propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol diisopropyl ether, propylene glycol dibutyl ether, di(2-tetrahydrofuryl)methane, diethylene glycol dibutyl ether, dipropylene glycol dibutyl ether, and tetramethylethylene diamine. You may use these individually by 1 type or in combination of 2 or more type. The content of the compound having these electron-donating atoms is preferably 0.001 part by mass or more, and more preferably 0.01 part by mass or more, relative to 100 parts by mass of the chain conjugated diene monomer. It is preferably 10 parts by mass or less, more preferably 1 part by mass or less.
 鎖状共役ジエン単量体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレン、などが挙げられる。これらは、1種単独で、あるいは2種以上を組み合わせて使用してもよい。そしてこれらの中でも、樹脂被覆層の吸湿性を低下させる観点から、極性基を含有しない鎖状共役ジエン単量体が好ましく、さらに、工業的な入手の容易さから、1,3-ブタジエン、イソプレンがより好ましい。 Examples of the chain conjugated diene monomer include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene and the like. You may use these individually by 1 type or in combination of 2 or more type. Among these, from the viewpoint of reducing the hygroscopicity of the resin coating layer, a chain conjugated diene monomer containing no polar group is preferable, and further, 1,3-butadiene and isoprene are preferred because of their industrial availability. Is more preferable.
――ブロック共重合体水素化物[D]へのアルコキシシリル基の導入――
 上述したブロック共重合体水素化物[D]に導入するアルコキシシリル基としては、例えば、トリメトキシシリル基、トリエトキシシリル基等の、トリ(炭素数1~6アルコキシ)シリル基;メチルジメトキシシリル基、メチルジエトキシシリル基、エチルジメトキシシリル基、エチルジエトキシシリル基、プロピルジメトキシシリル基、プロピルジエトキシシリル基等の、(炭素数1~20アルキル)ジ(炭素数1~6アルコキシ)シリル基;フェニルジメトキシシリル基、フェニルジエトキシシリル基等の、(アリール)ジ(炭素数1~6アルコキシ)シリル基;などが挙げられる。
 また、アルコキシシリル基は、ブロック共重合体水素化物[D]に、炭素数1以上20以下のアルキレン基や、炭素数2以上20以下のアルキレンオキシカルボニルアルキレン基等の2価の有機基を介して結合していてもよい。
--Introduction of alkoxysilyl group into hydride block copolymer [D]--
Examples of the alkoxysilyl group to be introduced into the above hydrogenated block copolymer [D] include, for example, trimethoxysilyl group, triethoxysilyl group and the like, tri(C 1-6 alkoxy)silyl group; methyldimethoxysilyl group. (C1-C20 alkyl)di(C1-C6 alkoxy)silyl groups such as, methyldiethoxysilyl group, ethyldimethoxysilyl group, ethyldiethoxysilyl group, propyldimethoxysilyl group and propyldiethoxysilyl group And (aryl)di(C 1-6 alkoxy)silyl groups such as phenyldimethoxysilyl group and phenyldiethoxysilyl group;
In addition, the alkoxysilyl group is bonded to the block copolymer hydride [D] through a divalent organic group such as an alkylene group having 1 to 20 carbon atoms or an alkyleneoxycarbonylalkylene group having 2 to 20 carbon atoms. May be combined with each other.
〔アルコキシシリル基の導入量〕
 ブロック共重合体水素化物[D]100質量部に対するアルコキシシリル基の導入量としては、特に制限はなく、0.5質量部以上であることが好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましい。
 アルコキシシリル基の導入量が5質量部以下であると、得られる変性ブロック共重合体水素化物[E]を成形する前に微量の水分等で分解されたアルコキシシリル基同士の架橋を抑制して、ゲル化したり、溶融時の流動性が低下して成形性が低下したりするのを防止することができる。一方、アルコキシシリル基の導入量が0.5質量部以上であると、樹脂被覆層の接着性が向上し、例えば、金属基材と樹脂被覆層との初期接着強度を更に高めることができる。
 なお、アルコキシシリル基が導入されたことは、アルコキシシリル基が導入された変性ブロック共重合体水素化物[E]のIRスペクトルで確認することができる。また、その導入量は、アルコキシシリル基が導入された変性ブロック共重合体水素化物[E]の1H-NMRスペクトルにて算出することができる。
[Introduction amount of alkoxysilyl group]
The introduction amount of the alkoxysilyl group to 100 parts by mass of the block copolymer hydride [D] is not particularly limited and is preferably 0.5 parts by mass or more, and preferably 5 parts by mass or less. It is more preferably less than or equal to parts by mass.
When the introduced amount of the alkoxysilyl group is 5 parts by mass or less, the crosslinking of the alkoxysilyl groups decomposed with a small amount of water or the like is suppressed before molding the obtained modified block copolymer hydride [E]. It is possible to prevent gelation and deterioration of moldability due to deterioration of fluidity during melting. On the other hand, when the introduction amount of the alkoxysilyl group is 0.5 parts by mass or more, the adhesiveness of the resin coating layer is improved, and for example, the initial adhesive strength between the metal base material and the resin coating layer can be further increased.
The introduction of the alkoxysilyl group can be confirmed by the IR spectrum of the modified block copolymer hydride [E] having the alkoxysilyl group introduced. The amount of introduction can be calculated from the 1 H-NMR spectrum of the modified block copolymer hydride [E] having an alkoxysilyl group introduced.
〔アルコキシシリル基の導入方法〕
 ブロック共重合体水素化物[D]にアルコキシシリル基を導入する方法としては、特に制限はなく、例えば、ブロック共重合体水素化物[D]に、有機過酸化物の存在下で、エチレン性不飽和シラン化合物を反応(グラフト化反応)させることにより、アルコキシシリル基を導入する方法、より詳細には、ブロック共重合体水素化物[D]、エチレン性不飽和シラン化合物および有機過酸化物からなる混合物を、二軸混練機、二軸押出機等にて溶融状態で所望の時間混練する方法、などが挙げられる。
[Method for introducing alkoxysilyl group]
The method for introducing an alkoxysilyl group into the block copolymer hydride [D] is not particularly limited, and for example, the block copolymer hydride [D] may be added with an ethylenic monomer in the presence of an organic peroxide. A method of introducing an alkoxysilyl group by reacting (grafting reaction) with a saturated silane compound, more specifically, a block copolymer hydride [D], an ethylenically unsaturated silane compound and an organic peroxide. Examples thereof include a method of kneading the mixture in a molten state for a desired time with a twin-screw kneader, a twin-screw extruder, or the like.
 前述した導入方法で用いるエチレン性不飽和シラン化合物としては、ブロック共重合体水素化物[D]とグラフト化反応し、ブロック共重合体水素化物[D]にアルコキシシリル基を導入可能なものであれば、特に制限はなく、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、などが好適に挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The ethylenically unsaturated silane compound used in the above-described introduction method may be one that is capable of introducing an alkoxysilyl group into the block copolymer hydride [D] through a graft reaction with the block copolymer hydride [D]. If there is no particular limitation, for example, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, p-styryltrimethoxysilane, 3-acryloxypropyl. Trimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, Preferable is 3-acryloxypropyltrimethoxysilane. These may be used alone or in combination of two or more.
 グラフト化反応に使用する有機過酸化物としては、特に制限はないが、1分間半減期温度が170℃以上190℃以下のものが好ましく、例えば、t-ブチルクミルパーオキシド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシド、1,4-ビス(2-t-ブチルパーオキシイソプロピル)ベンゼン、などが好適に挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The organic peroxide used in the grafting reaction is not particularly limited, but one having a one-minute half-life temperature of 170° C. or higher and 190° C. or lower is preferable, and examples thereof include t-butyl cumyl peroxide, dicumyl peroxide, Di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, di-t-butyl peroxide, 1,4-bis(2-t-butylperoxyisopropyl) ) Benzene and the like are preferable. These may be used alone or in combination of two or more.
 例えば、二軸押出機による混練温度としては、特に制限はないが、180℃以上であることが好ましく、185℃以上であることがより好ましく、190℃以上であることが更に好ましく、220℃以下であることが好ましく、210℃以下であることがより好ましく、200℃以下であることが更に好ましい。
 また、加熱混練時間としては、特に制限はないが、0.1分間以上であることが好ましく、0.2分間以上であることがより好ましく、0.3分間以上であることが更に好ましく、10分間以下であることが好ましく、5分間以下であることがより好ましく、2分間以下であることが更に好ましい。
 加熱混練温度および加熱混練時間(滞留時間)を上記好ましい範囲内にすることにより、連続的な混練および押出しを効率的に行うことができる。
For example, the kneading temperature by the twin-screw extruder is not particularly limited, but is preferably 180° C. or higher, more preferably 185° C. or higher, further preferably 190° C. or higher, and 220° C. or lower. Is preferable, 210° C. or lower is more preferable, and 200° C. or lower is further preferable.
The heating and kneading time is not particularly limited, but is preferably 0.1 minutes or longer, more preferably 0.2 minutes or longer, still more preferably 0.3 minutes or longer. It is preferably not more than minutes, more preferably not more than 5 minutes, further preferably not more than 2 minutes.
By setting the heating and kneading temperature and the heating and kneading time (residence time) within the above preferable ranges, continuous kneading and extrusion can be efficiently performed.
 得られた変性ブロック共重合体水素化物[E]の形態としては、特に制限はないが、通常は、ペレット形状にして、その後の成形加工や添加剤の配合に供することが好ましい。 The form of the obtained modified block copolymer hydride [E] is not particularly limited, but it is usually preferable to make it into a pellet shape and then use it for the subsequent molding processing and compounding of additives.
――変性ブロック共重合体水素化物[E]の性状――
 変性ブロック共重合体水素化物[E]の分子量としては、導入されるアルコキシシリル基の分子量が、通常、小さいため、原料として用いたブロック共重合体水素化物[D]の分子量と実質的には変わらない。ただし、ブロック共重合体水素化物[D]に、有機過酸化物の存在下で、エチレン性不飽和シラン化合物を反応(グラフト化反応)させるため、重合体の架橋反応および切断反応が併発し、変性ブロック共重合体水素化物[E]の分子量分布の値は大きくなる。
--Properties of modified block copolymer hydride [E]--
Regarding the molecular weight of the modified block copolymer hydride [E], since the molecular weight of the introduced alkoxysilyl group is usually small, it is substantially the same as the molecular weight of the block copolymer hydride [D] used as a raw material. does not change. However, in order to react the ethylenically unsaturated silane compound with the block copolymer hydride [D] in the presence of an organic peroxide (grafting reaction), a crosslinking reaction and a cleavage reaction of the polymer occur simultaneously, The value of the molecular weight distribution of the modified block copolymer hydride [E] becomes large.
 変性ブロック共重合体水素化物[E]の分子量としては、特に制限はないが、樹脂被覆層の耐熱性や機械的強度を向上させる観点から、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、20,000以上であることが好ましく、25,000以上であることがより好ましく、30,000以上であることが更に好ましく、200,000以下であることが好ましく、150,000以下であることがより好ましく、100,000以下であることが更に好ましい。
 また、変性ブロック共重合体水素化物[E]の分子量分布(Mw/Mn)としては、特に制限はないが樹脂被覆層の耐熱性や機械的強度を向上させる観点から、3.5以下であることが好ましく、3.0以下であることがより好ましく、2.5以下であることが更に好ましい。
The molecular weight of the hydride of the modified block copolymer [E] is not particularly limited, but from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer, it can be converted into polystyrene by GPC using THF as a solvent. The weight average molecular weight (Mw) is preferably 20,000 or more, more preferably 25,000 or more, further preferably 30,000 or more, and preferably 200,000 or less, It is more preferably 150,000 or less, still more preferably 100,000 or less.
The molecular weight distribution (Mw/Mn) of the modified block copolymer hydride [E] is not particularly limited, but is 3.5 or less from the viewpoint of improving the heat resistance and mechanical strength of the resin coating layer. Preferably, it is 3.0 or less, more preferably 2.5 or less.
〔ゲルパーミエーションクロマトグラフィー(GPC)で測定した溶出曲線〕
 変性ブロック共重合体水素化物[E]を含有する試料のゲルパーミエーションクロマトグラフィー(GPC)で測定した溶出曲線における変性ブロック共重合体水素化物[E]由来ピークの数は、特に制限はないが、樹脂被覆層の形状追従性を高め、金属基材と樹脂被覆層との初期接着強度を更に高める観点から、2つ以上であることが好ましく、4つ以下であることが好ましく、3つ以下であることがより好ましく、2つであることが特に好ましい。
 ここで、溶出曲線は、変性ブロック共重合体水素化物[E]由来ピークを検出可能なものであればよく、変性ブロック共重合体水素化物[E]のみをGPC測定することにより得られた溶出曲線だけでなく、変性ブロック共重合体水素化物[E]を含む組成物より得られた溶出曲線(例えば、老化防止剤と変性ブロック共重合体水素化物[E]とを含む組成物)であってもよい。
 なお、本明細書において、「ピーク」とは「ベースラインに対して突出した部分」を意味し、「ピークトップ」とは「示差屈折計(RI)の検出感度(mV)が一番高い頂点」を意味する。
 ここで、GPCで測定した溶出曲線における変性ブロック共重合体水素化物[E]由来ピークの数が2つ以上である場合、少なくとも2つの変性ブロック共重合体水素化物[E]由来ピークのうち、最も検出感度の高いピークトップを示す変性ブロック共重合体水素化物[E]由来ピークを第1ピークとし、前記第1ピークのピークトップの溶出時間の次に溶出時間の早いピークトップを示す変性ブロック共重合体水素化物[E]由来ピークを第2ピークとする。
[Elution curve measured by gel permeation chromatography (GPC)]
The number of peaks derived from the modified block copolymer hydride [E] in the elution curve measured by gel permeation chromatography (GPC) of the sample containing the modified block copolymer hydride [E] is not particularly limited. From the viewpoints of improving the shape conformability of the resin coating layer and further increasing the initial adhesive strength between the metal substrate and the resin coating layer, it is preferably 2 or more, preferably 4 or less, and 3 or less. Is more preferable, and it is particularly preferable that it is two.
Here, the elution curve may be any as long as the peak derived from the modified block copolymer hydride [E] can be detected, and the elution curve obtained by GPC measurement of only the modified block copolymer hydride [E]. Not only the curve but also the elution curve obtained from the composition containing the modified block copolymer hydride [E] (for example, the composition containing the antioxidant and the modified block copolymer hydride [E]). May be.
In the present specification, "peak" means "a portion protruding from the baseline", and "peak top" is a peak at which the differential refractometer (RI) has the highest detection sensitivity (mV). Means.
Here, when the number of modified block copolymer hydride [E]-derived peaks in the elution curve measured by GPC is two or more, among at least two modified block copolymer hydride [E]-derived peaks, A modified block copolymer hydride [E]-derived peak exhibiting the highest peak of detection sensitivity is defined as the first peak, and a modified block exhibiting a peak top with the shortest elution time after the elution time of the peak top of the first peak. The peak derived from the copolymer hydride [E] is designated as the second peak.
〔〔第1ピーク〕〕
 第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)は、特に制限はないが、15000以上であることが好ましく、20000以上であることがより好ましく、25000以上であることが更に好ましく、200000以下であることが好ましく、170000以下であることがより好ましく、140000以下であることが更に好ましい。第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)が、15000以上であれば、樹脂被覆層の衝撃強度を確保することができ、200,000以下であれば、樹脂被覆層の形状追従性を更に高め、金属基材と樹脂被覆層との初期接着強度を一層高めることができる。
[[First peak]]
The standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak is not particularly limited, but is preferably 15,000 or more, more preferably 20,000 or more, and further preferably 25,000 or more. It is preferably 200,000 or less, more preferably 170000 or less, still more preferably 140000 or less. If the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak is 15,000 or more, the impact strength of the resin coating layer can be secured, and if it is 200,000 or less, the resin coating layer. It is possible to further improve the shape following property and to further increase the initial adhesive strength between the metal base material and the resin coating layer.
〔〔第2ピーク〕〕
 第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)は、特に制限はないが、1000以上であることが好ましく、1200以上であることがより好ましく、1500以上であることが更に好ましく、1800以上であることが一層好ましく、153800以下であることが好ましく、100000以下であることがより好ましく、50000以下であることが更に好ましい。第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)が、1000以上であり、かつ、153800以下であれば、樹脂被覆層の形状追従性を更に高め、金属基材と樹脂被覆層との初期接着強度を一層高めることができる。
[[Second peak]]
The standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the elution time of the second peak is not particularly limited, but is preferably 1000 or more, more preferably 1200 or more, and further preferably 1500 or more. It is preferably 1800 or more, more preferably 153800 or less, more preferably 100000 or less, and further preferably 50000 or less. When the standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the elution time of the second peak is 1000 or more and 153800 or less, the shape-following property of the resin coating layer is further enhanced, and the metal base material and the resin coating The initial adhesive strength with the layer can be further increased.
 第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)に対する第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)の比(第1ピーク分子量/第2ピーク分子量)は、特に制限はないが、1.50以上であることが好ましく、2.0以上であることがより好ましく、4.0以上であることが更に好ましく、200以下であることが好ましく、150以下であることがより好ましく、100以下であることが更に好ましい。第2ピーク分子量に対する第1ピーク分子量の比が、1.50以上であり、かつ、200以下であれば、樹脂被覆層の形状追従性を更に高め、金属基材と樹脂被覆層との初期接着強度を一層高めることができる。 Ratio of standard polystyrene reduced molecular weight (first peak molecular weight) based on elution time of first peak to standard polystyrene reduced molecular weight (second peak molecular weight) based on elution time of second peak (first peak molecular weight/second peak molecular weight) Is not particularly limited, but is preferably 1.50 or more, more preferably 2.0 or more, further preferably 4.0 or more, preferably 200 or less, and 150 or less. Is more preferable, and 100 or less is further preferable. When the ratio of the first peak molecular weight to the second peak molecular weight is 1.50 or more and 200 or less, the shape following property of the resin coating layer is further enhanced, and the initial adhesion between the metal base material and the resin coating layer is performed. The strength can be further increased.
 第2ピークのピークトップが示す示差屈折計(RI)の検出感度(第2ピークトップ感度)(mV)に対する第1ピークのピークトップが示す示差屈折計(RI)の検出感度(第1ピークトップ感度)(mV)の比(第1ピークトップ感度(mV)/第2ピークトップ感度(mV))は、特に制限はないが、1.0以上であることが好ましく、1.5以上であることがより好ましく、2.0以上であることが更に好ましく、99以下であることが好ましく、70以下であることがより好ましく、50以下であることが更に好ましい。第2ピークトップ感度(mV)に対する第1ピークトップ感度(mV)の比が、1.0以上であれば、樹脂被覆層の形状追従性を更に高め、金属基材と樹脂被覆層との初期接着強度を一層高めることができ、99以下であれば、樹脂被覆層の膜厚ムラを改良することができる。 The detection sensitivity of the differential refractometer (RI) indicated by the peak top of the second peak (second peak top sensitivity) (mV) to the detection sensitivity of the differential refractometer (RI) indicated by the peak top of the first peak (first peak top) The ratio of (sensitivity) (mV) (first peak top sensitivity (mV)/second peak top sensitivity (mV)) is not particularly limited, but is preferably 1.0 or more, and is 1.5 or more. More preferably, it is more preferably 2.0 or more, further preferably 99 or less, more preferably 70 or less, and further preferably 50 or less. If the ratio of the first peak top sensitivity (mV) to the second peak top sensitivity (mV) is 1.0 or more, the shape following property of the resin coating layer is further enhanced, and the initial stage of the metal base material and the resin coating layer. The adhesive strength can be further increased, and if it is 99 or less, the unevenness of the film thickness of the resin coating layer can be improved.
 なお、水素化反応(水添反応)に供するブロック共重合体[C]の重量平均分子量(Mw)および分子量分布(Mw/Mn)と、水素化温度(水添温度)と、水素化反応時間(水添反応時間)と、水素化反応(水添反応)における水素供給停止時間とを適宜調整することにより、ゲルパーミエーションクロマトグラフィー(GPC)で測定した溶出曲線において所定の第1ピークと所定の第2ピークとを有する変性ブロック共重合体水素化物[E]が得られる。 The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the block copolymer [C] to be subjected to hydrogenation reaction (hydrogenation reaction), hydrogenation temperature (hydrogenation temperature), and hydrogenation reaction time By appropriately adjusting the (hydrogenation reaction time) and the hydrogen supply stop time in the hydrogenation reaction (hydrogenation reaction), a predetermined first peak and a predetermined peak are obtained in the elution curve measured by gel permeation chromatography (GPC). A modified block copolymer hydride [E] having a second peak of
―添加剤―
 樹脂被覆層が任意に含み得る添加剤としては、酸化防止剤、ブロッキング防止剤、光安定剤、加工助剤などが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。また、樹脂被覆層における上記の各添加剤の含有割合は、本発明の所望の効果が得られる範囲内で適宜調整することができる。
-Additive-
Examples of additives that the resin coating layer may optionally include include antioxidants, antiblocking agents, light stabilizers, and processing aids. These may be used alone or in combination of two or more. Further, the content ratio of each of the above-mentioned additives in the resin coating layer can be appropriately adjusted within a range in which the desired effects of the present invention can be obtained.
―酸化防止剤―
 酸化防止剤を配合することで、樹脂被覆層の加工性等を高めることができる。
 酸化防止剤の具体例としては、リン系酸化防止剤、フェノ-ル系酸化防止剤、硫黄系酸化防止剤、などが挙げられる。
-Antioxidant-
By blending an antioxidant, the processability of the resin coating layer can be improved.
Specific examples of the antioxidant include phosphorus-based antioxidants, phenol-based antioxidants, sulfur-based antioxidants and the like.
―ブロッキング防止剤―
 ブロッキング防止剤を配合することで、熱可塑性樹脂を主成分とするペレットのブロッキングを防止することができる。
 ブロッキング防止剤の具体例としては、ステアリン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸バリウム、ラウリン酸カルシウム、ラウリン酸亜鉛、ラウリン酸バリウム、ミリスチン酸亜鉛、リシノール酸カルシウム、リシノール酸亜鉛、リシノール酸バリウム、ベヘン酸亜鉛、モンタン酸ナトリウム、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸カルシウム、12-ヒドロキシステアリン酸亜鉛、などが挙げられる。
-Antiblocking agent-
By blending the anti-blocking agent, it is possible to prevent the pellet containing the thermoplastic resin as a main component from blocking.
Specific examples of the antiblocking agent include lithium stearate, sodium stearate, potassium stearate, magnesium stearate, calcium stearate, aluminum stearate, zinc stearate, barium stearate, calcium laurate, zinc laurate, barium laurate. , Zinc myristate, calcium ricinoleate, zinc ricinoleate, barium ricinoleate, zinc behenate, sodium montanate, magnesium 12-hydroxystearate, calcium 12-hydroxystearate, zinc 12-hydroxystearate, and the like.
―光安定剤―
 光安定剤を配合することで、樹脂被覆層の耐久性を高めることができる。
 光安定剤の具体例としては、ヒンダードアミン系光安定剤、などが挙げられる。
-Light stabilizer-
By incorporating a light stabilizer, the durability of the resin coating layer can be increased.
Specific examples of the light stabilizer include hindered amine light stabilizers.
―加工助剤―
 加工助剤としては、変性ブロック共重合体水素化物[E]に均一に溶解ないし分散できるものが好ましく、数平均分子量が300以上5,000以下の炭化水素系重合体がより好ましい。
-Processing aid-
The processing aid is preferably one that can be uniformly dissolved or dispersed in the modified block copolymer hydride [E], and more preferably a hydrocarbon polymer having a number average molecular weight of 300 or more and 5,000 or less.
 炭化水素系重合体の具体例としては、ポリイソブチレン、ポリブテン、ポリ-4-メチルペンテン、ポリ-1-オクテン、ポリイソプレン、エチレン・α-オレフィン共重合体、ポリイソプレン-ブタジエン共重合体等の低分子量体及びその水素化物;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、透明性、耐光性を維持し、軟化効果に優れている点で、低分子量(数平均分子量が、好ましくは500以上3,000以下、より好ましくは500以上2,500以下)のポリイソブチレン水素化物、低分子量(数平均分子量が、好ましくは500以上3,000以下、より好ましくは500以上2,500以下)のポリブテン水素化物が好ましい。
Specific examples of the hydrocarbon-based polymer include polyisobutylene, polybutene, poly-4-methylpentene, poly-1-octene, polyisoprene, ethylene/α-olefin copolymer, polyisoprene-butadiene copolymer and the like. Low molecular weight substances and hydrides thereof; and the like. These may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
Among these, transparency, light resistance are maintained, and in terms of excellent softening effect, a low molecular weight (number average molecular weight is preferably 500 or more and 3,000 or less, more preferably 500 or more and 2,500 or less). Polyisobutylene hydride and low molecular weight (number average molecular weight is preferably 500 or more and 3,000 or less, more preferably 500 or more and 2,500 or less) polybutene hydride.
 低分子量の炭化水素系重合体の配合量は、共重合体水素化物100質量部に対して、通常、40質量部以下、好ましくは30質量部以下、より好ましくは20質量部以下である。低分子量の炭化水素系重合体の配合量を多くすると、合わせガラス用の中間膜とした場合に、耐熱性が低下したり、溶出物が増加し易くなる傾向がある。 The blending amount of the low-molecular weight hydrocarbon polymer is usually 40 parts by mass or less, preferably 30 parts by mass or less, and more preferably 20 parts by mass or less with respect to 100 parts by mass of the copolymer hydride. When the blending amount of the low molecular weight hydrocarbon polymer is increased, the heat resistance tends to decrease and the eluate tends to increase easily when the interlayer film for laminated glass is used.
<<樹脂被覆層による被覆方法>>
 上述した変性ブロック共重合体水素化物[E]を含む樹脂被覆層で、金属基材の表面上に形成された中間層の表面を被覆する方法としては、例えば、
(i)上記変性ブロック共重合体水素化物[E]を含む樹脂組成物を、金属基材の表面上に形成された中間層の表面を被覆する形状に成形しながら、樹脂被覆層を形成する方法(即ち、樹脂組成物の成形と被覆とを同時に行なう方法)、および、
(ii)上記変性ブロック共重合体水素化物[E]を含む樹脂組成物をシート状に予め成形して樹脂被覆層を得た後、当該シート状の樹脂被覆層を、任意に変形させながら、金属基材の表面上に形成された中間層の表面に貼り付ける方法(即ち、樹脂組成物を成形した後に被覆を行なう方法)
のいずれを採用してもよい。
<<Coating method with resin coating layer>>
Examples of the method for coating the surface of the intermediate layer formed on the surface of the metal substrate with the resin coating layer containing the modified block copolymer hydride [E] described above include:
(I) A resin coating layer is formed while molding the resin composition containing the modified block copolymer hydride [E] into a shape that covers the surface of the intermediate layer formed on the surface of the metal substrate. A method (that is, a method of simultaneously molding and coating a resin composition), and
(Ii) A resin composition containing the modified block copolymer hydride [E] is preformed into a sheet to obtain a resin coating layer, and the sheet resin coating layer is optionally deformed, Method of sticking to the surface of the intermediate layer formed on the surface of the metal substrate (that is, method of coating after molding the resin composition)
Either of these may be adopted.
 なお、上記(i)および(ii)の方法で用いる樹脂組成物が変性ブロック共重合体水素化物[E]以外の添加剤を含む場合、変性ブロック共重合体水素化物[E]に添加剤を配合する方法としては、一般に用いられる公知の方法が適用でき、例えば、(a)変性ブロック共重合体水素化物[E]のペレットおよび添加剤を、タンブラー、リボンブレンダー、ヘンシェルタイプミキサー等の混合機を使用して均等に混合した後、二軸押出機等の連続式溶融混練機により溶融混合し、押出すことで、ペレット状にする方法や、(b)変性ブロック共重合体水素化物[E]を、サイドフィーダーを備えた二軸押出機により、サイドフィーダーから各種添加剤を連続的に添加しながら、溶融混練し、押出すことで、ペレット状にする方法、が挙げられる。これらの方法によって、添加剤を変性ブロック共重合体水素化物[E]に均一に分散させた樹脂組成物を製造することができる。 When the resin composition used in the above methods (i) and (ii) contains an additive other than the modified block copolymer hydride [E], the additive is added to the modified block copolymer hydride [E]. As a method of blending, a generally used known method can be applied. For example, (a) pellets of the modified block copolymer hydride [E] and additives are mixed with a mixer such as a tumbler, a ribbon blender or a Henschel type mixer. And then uniformly mixing, and then melt-mixing with a continuous melt-kneader such as a twin-screw extruder and extruding to form pellets, or (b) modified block copolymer hydride [E] ] Is melt-kneaded and extruded while continuously adding various additives from the side feeder with a twin-screw extruder equipped with a side feeder, thereby forming a pellet. By these methods, a resin composition in which the additive is uniformly dispersed in the modified block copolymer hydride [E] can be produced.
 そして、上記変性ブロック共重合体水素化物[E]を含む樹脂組成物を、上記(i)および(ii)の方法における所望の形状に成形する方法としては、特に制限はなく、例えば、溶融押出し成形法、インフレーション成形法、カレンダー成形法、などの成形方法が挙げられる。 The method for molding the resin composition containing the modified block copolymer hydride [E] into a desired shape in the above methods (i) and (ii) is not particularly limited, and examples thereof include melt extrusion. Examples of the molding method include a molding method, an inflation molding method, a calender molding method, and the like.
 例えば、溶融押出し成形法により樹脂被覆層を成形する場合、樹脂組成物の温度を、170℃以上とすることが好ましく、180℃以上とすることがより好ましく、190℃以上とすることが更に好ましく、250℃以下とすることが好ましく、240℃以下とすることがより好ましく、230℃以下とすることが更に好ましい。樹脂組成物の温度を170℃以上とすることにより、流動性が悪化するのを防止して、樹脂被覆層の表面にゆず肌やダイライン等の不良を生じるのを防止すると共に、押出し速度を上げて、工業的に有利に成形することができる。一方、樹脂組成物の温度を250℃以下とすることにより、樹脂組成物の流動性が高くなり過ぎることを抑制して、均等な厚みの樹脂被覆層を成形することができる。 For example, when the resin coating layer is molded by the melt extrusion molding method, the temperature of the resin composition is preferably 170° C. or higher, more preferably 180° C. or higher, and further preferably 190° C. or higher. The temperature is preferably 250° C. or lower, more preferably 240° C. or lower, still more preferably 230° C. or lower. By setting the temperature of the resin composition to 170° C. or higher, it is possible to prevent the fluidity from deteriorating and prevent the surface of the resin coating layer from causing defects such as orange peel and die lines, while increasing the extrusion speed. Thus, it can be molded industrially advantageously. On the other hand, by setting the temperature of the resin composition to 250° C. or less, it is possible to suppress the fluidity of the resin composition from becoming too high and form a resin coating layer having a uniform thickness.
 なお、上記(i)の方法において、「金属基材の表面上に形成された中間層の表面を被覆する形状」とは、例えば、管状の金属基材を使用する場合、中間層を介して管状の金属基材の外表面もしくは内表面を被覆する管の形状、または、当該管の一部に相当する形状などを指す。 In the above method (i), the “shape of covering the surface of the intermediate layer formed on the surface of the metal substrate” means, for example, when a tubular metal substrate is used, It refers to the shape of a tube covering the outer surface or the inner surface of a tubular metal substrate, or the shape corresponding to a part of the tube.
 また、上記(ii)の方法において、シート状の樹脂被覆層を任意に変形させながら、金属基材の表面上に形成された中間層の表面に貼り付ける方法としては、例えば、平板プレス、ロールプレス、真空ラミネータ装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、仮圧着後にオートクレーブで加圧する方法、TOM工法(Three-dimension Over-lay Method)などを使用することができる。 In the method (ii), a method of attaching the sheet-shaped resin coating layer to the surface of the intermediate layer formed on the surface of the metal substrate while arbitrarily deforming the resin coating layer is, for example, flat plate press or roll. A method using a press, a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, a method of pressurizing with an autoclave after temporary pressure bonding, a TOM method (Three-dimension Over-lay Method), etc. can be used.
 例えば、仮圧着後にオートクレーブで加圧する方法では、金属基材の表面上に形成された中間層の表面上にシート状の樹脂被覆層を重ねて得られる積層物を、耐熱バッグに入れて脱気することで仮圧着した後、オートクレーブで加熱加圧し、樹脂被覆層を溶融させて、樹脂被覆層を中間層の表面に貼り付けることができる。
 なお、耐熱バックを用いて脱気する際の減圧条件およびオートクレーブでの加熱温度および加圧条件は、本発明の所望の効果が得られる範囲内で適宜設定することができる。
For example, in the method of pressurizing with an autoclave after temporary pressure bonding, a laminate obtained by stacking a sheet-shaped resin coating layer on the surface of an intermediate layer formed on the surface of a metal substrate is placed in a heat-resistant bag and degassed. By doing so, after temporary pressure bonding, the resin coating layer can be melted by heating and pressurizing in an autoclave, and the resin coating layer can be attached to the surface of the intermediate layer.
The depressurizing condition when degassing using a heat resistant bag and the heating temperature and pressurizing condition in the autoclave can be appropriately set within the range where the desired effect of the present invention can be obtained.
 上述のようにして得られる樹脂被覆層の厚みは、特に限定されることはなく、積層体の用途に応じて適宜設定することができる。 The thickness of the resin coating layer obtained as described above is not particularly limited and can be appropriately set according to the application of the laminate.
<その他の工程>
 本発明の積層体の製造方法は、上述した中間層形成工程および樹脂被覆工程以外のその他の工程を含んでいてもよい。
<Other processes>
The method for manufacturing a laminate of the present invention may include other steps than the above-mentioned intermediate layer forming step and resin coating step.
 本発明の積層体の製造方法が、例えば、樹脂被覆工程の後に、樹脂被覆層の表面上に中間層および樹脂被覆層以外の他の層を形成する工程を含むことにより、製造される積層体において、樹脂被覆層の外側(即ち、中間層と隣接する側とは反対側)に当該他の層が配置されていてもよい。 A laminate produced by the method for producing a laminate of the present invention including, for example, a step of forming an intermediate layer and a layer other than the resin coating layer on the surface of the resin coating layer after the resin coating step. In, the other layer may be arranged outside the resin coating layer (that is, on the side opposite to the side adjacent to the intermediate layer).
 また、本発明の積層体の製造方法が、例えば、中間層形成工程と樹脂被覆工程との間に、中間層の表面上に中間層および樹脂被覆層以外の他の層を形成する工程を含むことにより、製造される積層体において、中間層と樹脂被覆層との間に当該他の層が介在配置されていてもよい。 Further, the method for producing a laminate of the present invention includes, for example, a step of forming an intermediate layer and a layer other than the resin coating layer on the surface of the intermediate layer between the intermediate layer forming step and the resin coating step. As a result, the other layer may be interposed between the intermediate layer and the resin coating layer in the manufactured laminate.
 さらに、本発明の積層体の製造方法が、例えば、中間層形成工程の前に、金属基材の表面上に中間層および樹脂被覆層以外の他の層を形成する工程を含むことにより、製造される積層体において、金属基材の表面と中間層との間に当該他の層が介在配置されてもよい。 Furthermore, the manufacturing method of the laminate of the present invention, for example, by including a step of forming an intermediate layer and a layer other than the resin coating layer on the surface of the metal substrate before the intermediate layer forming step, In the laminated body, the other layer may be interposed between the surface of the metal base material and the intermediate layer.
 より具体的に、本発明の積層体の製造方法は、中間層形成工程の前に、金属基材の表面上に有機接着層を形成する有機接着層形成工程を含むことにより、製造される積層体において、金属基材の表面と中間層との間に有機接着層が介在配置されてもよい。
 また、本発明の積層体の製造方法は、中間層形成工程と樹脂被覆工程との間に、中間層の表面上に有機接着層を形成する有機接着層形成工程を含むことにより、製造される積層体において、中間層と樹脂被覆層との間に有機接着層が介在配置されてもよい。
More specifically, the method for producing a laminate of the present invention comprises a laminate produced by including an organic adhesive layer forming step of forming an organic adhesive layer on the surface of the metal substrate before the intermediate layer forming step. In the body, an organic adhesive layer may be disposed between the surface of the metal base material and the intermediate layer.
Further, the method for producing a laminate of the present invention is produced by including an organic adhesive layer forming step of forming an organic adhesive layer on the surface of the intermediate layer between the intermediate layer forming step and the resin coating step. In the laminate, an organic adhesive layer may be interposed between the intermediate layer and the resin coating layer.
<<有機接着層形成工程>>
 有機接着層形成工程では、上述した中間層形成工程の前に金属基材の表面上に有機接着層を形成、および/もしくは、中間層形成工程と樹脂被覆工程との間に中間層の表面上に有機接着層を形成する。
 ここで、有機接着層形成工程で形成される有機接着層の成分組成は、上述した中間層および樹脂被覆層のいずれの成分組成とも異なるものとする。
 有機接着層は、特に限定されないが、例えば、3-アクリロキシプロピルトリメトキシシランなどの有機ケイ素化合物を含む。
 そして、有機接着層形成工程では、例えば、上述した有機ケイ素化合物を含む水溶液または水分散液を処理液として調製し、浸漬および塗布等の既知の方法により、金属基材または中間層の表面上に当該処理液の被膜を形成し、形成された被膜を加熱した後、洗浄、再加熱および乾燥等の処理を適宜行なって、水を除去することにより、金属基材の表面上に有機接着層を形成することができる。
<< Organic Adhesive Layer Forming Step >>
In the organic adhesive layer forming step, an organic adhesive layer is formed on the surface of the metal substrate before the intermediate layer forming step described above, and/or on the surface of the intermediate layer between the intermediate layer forming step and the resin coating step. An organic adhesive layer is formed on.
Here, the component composition of the organic adhesive layer formed in the organic adhesive layer forming step is different from any of the component compositions of the intermediate layer and the resin coating layer described above.
The organic adhesive layer includes, but is not particularly limited to, an organosilicon compound such as 3-acryloxypropyltrimethoxysilane.
Then, in the organic adhesive layer forming step, for example, an aqueous solution or an aqueous dispersion containing the above-mentioned organosilicon compound is prepared as a treatment liquid, and by a known method such as dipping and coating, on the surface of the metal substrate or the intermediate layer. After forming a coating film of the treatment liquid and heating the formed coating film, appropriate treatments such as washing, reheating and drying are performed to remove water to form an organic adhesive layer on the surface of the metal substrate. Can be formed.
 なお、金属基材と樹脂被覆層との長期接着強度および積層体の耐湿性を高める観点から、金属基材の表面に中間層を直接形成することが好ましいため、金属基材の表面上には有機接着層を形成しないことが好ましい。即ち、本発明の積層体の製造方法は、中間層形成工程の前に、上述した有機接着層形成工程を含まないことが好ましい。 From the viewpoint of enhancing the long-term adhesive strength between the metal base material and the resin coating layer and the moisture resistance of the laminate, it is preferable to directly form the intermediate layer on the surface of the metal base material, and thus the surface of the metal base material is not formed. It is preferable not to form the organic adhesive layer. That is, it is preferable that the method for producing a laminate of the present invention does not include the above-mentioned organic adhesive layer forming step before the intermediate layer forming step.
<積層体>
 本発明の積層体の製造方法により製造される積層体は、金属基材と、ケイ素酸化物を含む中間層と、上述した所定の変性ブロック共重合体水素化物[E]を含む樹脂被覆層と、を有し、中間層が、金属基材の表面と樹脂被覆層との間に介在配置されてなる積層体である。
 このように、金属基材と、ケイ素酸化物を含む中間層と、所定の変性ブロック共重合体水素化物[E]を含む樹脂被覆層と、を有し、中間層が金属基材の表面と樹脂被覆層との間に介在配置されてなる積層体であれば、金属基材と樹脂被覆層との初期接着強度に優れている。
<Laminate>
A laminate produced by the method for producing a laminate of the present invention comprises a metal substrate, an intermediate layer containing silicon oxide, and a resin coating layer containing the above-mentioned predetermined modified block copolymer hydride [E]. And the intermediate layer is disposed between the surface of the metal base material and the resin coating layer.
Thus, it has a metal base material, an intermediate layer containing silicon oxide, and a resin coating layer containing a predetermined modified block copolymer hydride [E], and the intermediate layer is the surface of the metal base material. A laminate having an interposition between the resin coating layer and the resin coating layer has excellent initial adhesive strength between the metal base material and the resin coating layer.
 そして、本発明の積層体の製造方法により製造される積層体は、医薬品用包装材、食品用包装材、電子部品用包装材、太陽電池モジュール用裏面保護シート、水道管、ガス輸送管、燃料輸送管、およびケーブル保護管などとして好適に使用することができる。また、本発明の積層体の製造方法により製造される積層体は、LED素子、有機EL素子、および電子基板配線などの金属基材と、ケイ素酸化物を含む中間層と、封止材としての樹脂被覆層と、を有し、中間層が、金属基材の表面と樹脂被覆層(封止材)との間に介在配置されてなる積層体であってもよい。 The laminate produced by the method for producing a laminate of the present invention is a packaging material for pharmaceuticals, a packaging material for foods, a packaging material for electronic parts, a solar cell module rear surface protection sheet, a water pipe, a gas transportation pipe, a fuel. It can be suitably used as a transportation pipe, a cable protection pipe, and the like. Further, the laminate produced by the method for producing a laminate of the present invention has a metal base material such as an LED element, an organic EL element, and an electronic substrate wiring, an intermediate layer containing silicon oxide, and a sealing material. And a resin coating layer, and the intermediate layer may be a laminate in which the intermediate layer is interposed between the surface of the metal base material and the resin coating layer (sealing material).
 なお、本発明の積層体の製造方法により製造される積層体は、任意で、上述した金属基材、中間層、および樹脂被覆層以外のその他の部材を更に有していてもよい。 The laminate produced by the method for producing a laminate of the present invention may optionally further include other members other than the above-mentioned metal base material, intermediate layer, and resin coating layer.
 例えば、本発明の積層体の製造方法により製造される積層体は、その他の部材として、金属基材の表面と中間層との間に介在配置される有機接着層を更に有していてもよい。 For example, the laminated body produced by the method for producing a laminated body of the present invention may further have, as another member, an organic adhesive layer interposed between the surface of the metal base material and the intermediate layer. ..
 ここで、有機接着層は、例えば、上述した有機接着層の形成方法により形成することができる。 Here, the organic adhesive layer can be formed, for example, by the method for forming the organic adhesive layer described above.
 なお、金属基材と樹脂被覆層との長期接着強度および積層体の耐湿性を高める観点から、金属基材の表面は中間層に直接接着していることが好ましいため、金属基材の表面と中間層との間には有機接着層が介在配置されていないことが好ましい。即ち、製造される積層体は、金属基材の表面と中間層との間に介在配置される有機接着層を有しないことが好ましい。 From the viewpoint of increasing the long-term adhesive strength between the metal base material and the resin coating layer and the moisture resistance of the laminate, it is preferable that the surface of the metal base material is directly adhered to the intermediate layer. It is preferable that no organic adhesive layer is interposed between the intermediate layer and the intermediate layer. That is, it is preferable that the produced laminate does not have an organic adhesive layer interposed between the surface of the metal base material and the intermediate layer.
 以下、本発明について、実施例および比較例を挙げて、より具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。以下の実施例および比較例において、「部」および「%」は、特に断りがない限り、質量基準である。
 なお、複数種類の単量体を共重合して調製される重合体において、ある単量体単位の当該重合体全体に占める質量分率は、別に断らない限り、通常は、その重合体の調製時に重合する全単量体の総質量に占める当該ある単量体の質量の比率(仕込み比)と一致する。
 本実施例における測定および評価は、以下の方法に従って行なった。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In the following Examples and Comparative Examples, "parts" and "%" are based on mass unless otherwise specified.
Incidentally, in a polymer prepared by copolymerizing a plurality of types of monomers, the mass fraction of the whole polymer of a certain monomer unit is usually the preparation of the polymer unless otherwise specified. It coincides with the ratio (charge ratio) of the mass of a certain monomer to the total mass of all the monomers that are sometimes polymerized.
The measurement and evaluation in this example were performed according to the following methods.
<重量平均分子量(Mw)および分子量分布(Mw/Mn)>
 ブロック共重合体[C]、ブロック共重合体水素化物[D]、および変性ブロック共重合体水素化物[E]の重量平均分子量(Mw)は、テトラヒドロフランを溶離液とするゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算値として、40℃において、0.6cc/分の速度で測定した。測定装置としては、東ソー社製「HLC8320GPC」を用い、測定カラムとしては、東ソー社製「TSKgel SuperH G5000HLX」、東ソー社製「G4000HLX」、東ソー社製「G2000HLX」の3本を直列につないで使用した。また、ポリマー量は4mg/1ccの濃度に調整した。
 さらに上記と同様にして、数平均分子量(Mn)を測定した後、ブロック共重合体[C]、ブロック共重合体水素化物[D]、および変性ブロック共重合体水素化物[E]の分子量分布(Mw/Mn)を求めた。
<Weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn)>
The weight average molecular weight (Mw) of the block copolymer [C], the block copolymer hydride [D], and the modified block copolymer hydride [E] was determined by gel permeation chromatography (GPC) using tetrahydrofuran as an eluent. ) Was measured at 40° C. at a rate of 0.6 cc/min. Tosoh "HLC8320GPC" is used as a measuring device, and Tosoh "TSKgel SuperH G5000HLX", Tosoh "G4000HLX", Tosoh "G2000HLX" are connected in series as a measuring column. did. The amount of polymer was adjusted to a concentration of 4 mg/1 cc.
Further, in the same manner as above, after measuring the number average molecular weight (Mn), the molecular weight distribution of the block copolymer [C], the block copolymer hydride [D], and the modified block copolymer hydride [E] (Mw/Mn) was determined.
<水素化率>
 ブロック共重合体水素化物[D]の水素化率(モル%)は、1H-NMR測定(測定溶媒:CDCl3)を実施し、共重合体中に存在した全不飽和結合のうち消失した不飽和結合の割合を算出することで導出した。
<Hydrogenation rate>
Regarding the hydrogenation rate (mol %) of the block copolymer hydride [D], 1 H-NMR measurement (measurement solvent: CDCl 3 ) was carried out, and all the unsaturated bonds existing in the copolymer disappeared. It was derived by calculating the ratio of unsaturated bonds.
<中間層表面のケイ素割合>
 各実施例および比較例で形成した中間層について、XPS(アルバック・ファイ社製、「PHI5000 VersaProbeII」)を用いて、X線の照射径を100μmにして表面の元素分析を実施することで、中間層表面のケイ素割合を測定した。分析対象元素はケイ素、酸素、炭素、窒素、鉄、クロム、ニッケル、銅、アルミニウムの9元素とした。
<Silicon ratio on intermediate layer surface>
The intermediate layer formed in each of the Examples and Comparative Examples was subjected to elemental analysis of the surface by using XPS (“PHI5000 VersaProbe II” manufactured by ULVAC-PHI, Inc.) with the irradiation diameter of X-ray being 100 μm. The silicon ratio on the layer surface was measured. The elements to be analyzed were 9 elements of silicon, oxygen, carbon, nitrogen, iron, chromium, nickel, copper and aluminum.
<初期接着強度>
 各実施例および比較例で作製した評価用試験片(幅100mm×長さ150mm×厚み7mm)の樹脂被覆層側の面に、カッターナイフを用いて、樹脂被覆層を完全に貫通するように、且つ、評価用試験片の長さ方向と平行に、10mm間隔で2本の切り込みを入れた。次いで、2本の切り込みの間に形成された帯状部分の一方の端部側において、樹脂被覆層と金属片とを一部引き剥がした状態にした。上記処理を施した評価用試験片を、樹脂被覆層のみを引っ張れるように、引っ張り試験機(島津製作所社製「AGS-10KNX」)に固定し、JIS G3477-1に準じて、23℃で、180°ピール強度試験を行ない、得られた値を、金属基材と樹脂被覆層との初期接着強度として、下記の基準により評価を行なった。なお、初期接着強度の値が高いほど、金属基材と樹脂被覆層との初期接着強度が優れていることを示す。
 A:初期接着強度が100N/10mm以上
 B:初期接着強度が50N/10mm以上100N/10mm未満
 C:初期接着強度が30N/10mm以上50N/10mm未満
 D:初期接着強度が30N/10mm未満
<Initial adhesive strength>
Using a cutter knife on the resin coating layer side surface of the test piece for evaluation (width 100 mm x length 150 mm x thickness 7 mm) produced in each example and comparative example, so as to completely penetrate the resin coating layer, In addition, two cuts were made at intervals of 10 mm in parallel with the length direction of the evaluation test piece. Next, the resin coating layer and the metal piece were partially peeled off on one end side of the strip-shaped portion formed between the two cuts. The evaluation test piece subjected to the above treatment was fixed to a tensile tester (“AGS-10KNX” manufactured by Shimadzu Corporation) so that only the resin coating layer could be pulled, and at 23° C. according to JIS G3477-1. A 180° peel strength test was performed, and the obtained value was evaluated as the initial adhesive strength between the metal substrate and the resin coating layer according to the following criteria. The higher the initial adhesive strength value, the better the initial adhesive strength between the metal base material and the resin coating layer.
A: Initial adhesive strength of 100 N/10 mm or more B: Initial adhesive strength of 50 N/10 mm or more and less than 100 N/10 mm C: Initial adhesive strength of 30 N/10 mm or more and less than 50 N/10 mm D: Initial adhesive strength of less than 30 N/10 mm
<温度サイクル試験後の接着強度>
 各実施例および比較例で作製した評価用試験片について、-50℃で12時間保管した後、60℃で12時間保管することを1サイクルとする温度サイクル試験を30サイクル繰り返した。その後、各評価用試験片を更に23℃で24時間保管した後に、上述した初期接着強度と同様の処理および操作により180°ピール強度試験を行ない、得られた値を、金属基材と樹脂被覆層との温度サイクル試験後の接着強度とした。なお、温度サイクル試験後の接着強度の値が高いほど、金属基材と樹脂被覆層との長期接着強度が優れていることを示す。
 A:温度サイクル試験後の接着強度が100N/10mm以上
 B:温度サイクル試験後の接着強度が50N/10mm以上100N/10mm未満
 C:温度サイクル試験後の接着強度が30N/10mm以上50N/10mm未満
 D:温度サイクル試験後の接着強度が30N/10mm未満
<Adhesive strength after temperature cycle test>
With respect to the test pieces for evaluation produced in each of the examples and the comparative examples, a temperature cycle test in which one cycle of storing at −50° C. for 12 hours and then at 60° C. for 12 hours was repeated 30 times. Then, after each test piece for evaluation was further stored at 23° C. for 24 hours, a 180° peel strength test was performed by the same treatment and operation as the above-mentioned initial adhesive strength, and the obtained value was used as the metal base material and the resin coating. It was taken as the adhesive strength after the temperature cycle test with the layer. The higher the value of the adhesive strength after the temperature cycle test, the better the long-term adhesive strength between the metal substrate and the resin coating layer.
A: Adhesive strength after the temperature cycle test is 100 N/10 mm or more B: Adhesive strength after the temperature cycle test is 50 N/10 mm or more and less than 100 N/10 mm C: Adhesive strength after the temperature cycle test is 30 N/10 mm or more and less than 50 N/10 mm D: Adhesive strength after the temperature cycle test is less than 30 N/10 mm
<耐湿性>
 作製した評価用試験片を用いて、85℃、85%RHの恒温槽内で1000時間保管した後に取出し、23℃で24時間保管後に、上述した初期接着強度と同様の処理および操作により180°ピール強度試験を行い、得られた値から耐湿性の評価を行なった。
 A:保管後の接着強度が100N/10mm以上
 B:保管後の接着強度が50N/10mm以上100N/10mm未満
 C:保管後の接着強度が30N/10mm以上50N/10mm未満
 D:保管後の接着強度が30N/10mm未満
<Moisture resistance>
Using the produced test piece for evaluation, it was stored in a thermostatic chamber at 85° C. and 85% RH for 1000 hours, then taken out and stored at 23° C. for 24 hours, and then subjected to the same treatment and operation as the above-mentioned initial adhesive strength to 180°. A peel strength test was conducted, and moisture resistance was evaluated from the obtained values.
A: Adhesive strength after storage is 100 N/10 mm or more B: Adhesive strength after storage is 50 N/10 mm or more and less than 100 N/10 mm C: Adhesive strength after storage is 30 N/10 mm or more and less than 50 N/10 mm D: Adhesion after storage Strength is less than 30N/10mm
(製造例1)
<ブロック共重合体[C]-1の合成>
 攪拌装置を備え、内部が十分に窒素置換された反応器に、脱水シクロヘキサン550部、脱水スチレン25.0部、n-ジブチルエーテル0.475部を入れ、60℃で攪拌しながらn-ブチルリチウム(15%n-ヘキサン溶液)2.93部を加え、重合を開始し、65℃で60分間重合反応させた。反応液をガスクロマトグラフィー(GC)により分析したところ、この時点での重合転化率は99.9%であった。
 次に、反応液に脱水イソプレン50.0部を加え、そのまま40分間攪拌を続けた。反応液をGCにより分析したところ、この時点で重合転化率は99.6%であった。
 その後、更に、脱水スチレンを25.0部加え、60分間反応させた。反応液をGCにより分析したところ、この時点での重合転化率はほぼ100%であった。ここで、メタノール2.0部を加えて反応を停止した。得られたブロック共重合体[C]-1の重量平均分子量(Mw)は42,900、分子量分布(Mw/Mn)は1.03であった。
 なお、得られたブロック共重合体[C]-1は、スチレン単量体単位からなる重合体ブロック[A]とイソプレン単量体単位からなる重合体ブロック[B]とが[A]-[B]-[A]の順に並んでなるトリブロック共重合体であった。
(Production Example 1)
<Synthesis of Block Copolymer [C]-1>
In a reactor equipped with a stirrer and whose inside was sufficiently replaced with nitrogen, 550 parts of dehydrated cyclohexane, 25.0 parts of dehydrated styrene and 0.475 part of n-dibutyl ether were charged, and n-butyllithium was stirred at 60°C. (15% n-hexane solution) (2.93 parts) was added to initiate polymerization, and a polymerization reaction was carried out at 65°C for 60 minutes. When the reaction liquid was analyzed by gas chromatography (GC), the polymerization conversion rate at this time was 99.9%.
Next, 50.0 parts of dehydrated isoprene was added to the reaction solution, and stirring was continued for 40 minutes as it was. When the reaction liquid was analyzed by GC, the polymerization conversion ratio was 99.6% at this point.
After that, 25.0 parts of dehydrated styrene was further added and reacted for 60 minutes. When the reaction solution was analyzed by GC, the polymerization conversion rate at this point was almost 100%. Here, 2.0 parts of methanol was added to stop the reaction. The weight average molecular weight (Mw) of the obtained block copolymer [C]-1 was 42,900, and the molecular weight distribution (Mw/Mn) was 1.03.
The obtained block copolymer [C]-1 had a polymer block [A] composed of styrene monomer units and a polymer block [B] composed of isoprene monomer units [A]-[ It was a triblock copolymer which was arranged in the order of B]-[A].
<ブロック共重合体水素化物[D]-1の合成>
 次に、上記で得られたブロック共重合体[C]-1の溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒としてのシリカーアルミナ担持型ニッケル触媒(クラリアント触媒(株)社製「T-8400RL」)4.0部および脱水シクロヘキサン100部を添加して混合した。常温状態にて、反応器内部を水素ガスで置換し、反応器内部をゲージ圧力で2.0MPaまで加圧した状態で、180℃まで昇温した。耐圧反応器の内部温度が180℃になったところで、水素の供給はせずに60分間180℃の温度を保った。60分後、水素圧を4.5MPaまで加圧し、6時間水素化反応を行なった。水素化反応により得られた反応溶液に含まれるブロック共重合体水素化物[D]-1の重量平均分子量(Mw)は43,900、分子量分布(Mw/Mn)は1.45であった。また、ブロック共重合体水素化物[D]-1のGPC溶出曲線において、第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)が45,000であり、第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)が9,200であった。さらに、第1ピーク分子量/第2ピーク分子量が4.89であり、第1ピークのピークトップが示す示差屈折計(RI)の検出感度(第1ピークトップ感度)(mV)/第2ピークのピークトップが示す示差屈折計(RI)の検出感度(第2ピークトップ感度)(mV)が10.18であった。
 また、ブロック共重合体水素化物[D]-1の水素化率は99.9%であった。
<Synthesis of block copolymer hydride [D]-1>
Next, the solution of the block copolymer [C]-1 obtained above was transferred to a pressure resistant reactor equipped with a stirrer, and a silica-alumina-supported nickel catalyst (Clariant catalyst (stock) ) "T-8400RL") and 4.0 parts of dehydrated cyclohexane were added and mixed. At room temperature, the inside of the reactor was replaced with hydrogen gas, and the inside of the reactor was heated to 180° C. with the gauge pressure increased to 2.0 MPa. When the internal temperature of the pressure-resistant reactor reached 180°C, the temperature was kept at 180°C for 60 minutes without supplying hydrogen. After 60 minutes, the hydrogen pressure was increased to 4.5 MPa and the hydrogenation reaction was performed for 6 hours. The block copolymer hydride [D]-1 contained in the reaction solution obtained by the hydrogenation reaction had a weight average molecular weight (Mw) of 43,900 and a molecular weight distribution (Mw/Mn) of 1.45. In the GPC elution curve of the block copolymer hydride [D]-1, the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak was 45,000, and the elution time of the second peak was The standard polystyrene-equivalent molecular weight (second peak molecular weight) based on the above was 9,200. Furthermore, the first peak molecular weight/second peak molecular weight is 4.89, and the detection sensitivity (first peak top sensitivity) (mV)/second peak of the differential refractometer (RI) indicated by the peak top of the first peak. The detection sensitivity (second peak top sensitivity) (mV) of the differential refractometer (RI) indicated by the peak top was 10.18.
The hydrogenation rate of the block copolymer hydride [D]-1 was 99.9%.
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、得られた溶液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](松原産業社製「Songnox1010」)0.1部を溶解したキシレン溶液2.0部を添加して溶解させた。
 次いで、円筒型濃縮乾燥器(日立製作所社製「コントロ」)を用いて、温度260℃、圧力0.001MPa以下で、上記溶液から、溶媒であるシクロヘキサン、キシレンおよびその他の揮発成分を除去し、濃縮乾燥器に直結したダイから溶融状態でストランド状に押出し、冷却後、ペレタイザーでカットしてブロック共重合体水素化物[D]-1からなるペレットを得た。
After completion of the hydrogenation reaction, the reaction solution was filtered to remove the hydrogenation catalyst, and the resulting solution was mixed with pentaerythrityl tetrakis[3-(3,5-di-t- Butyl-4-hydroxyphenyl)propionate] (“Songnox 1010” manufactured by Matsubara Sangyo Co., Ltd.) was dissolved in 2.0 parts of xylene solution.
Then, using a cylindrical concentrating dryer (“Contro” manufactured by Hitachi, Ltd.), at a temperature of 260° C. and a pressure of 0.001 MPa or less, the solvents cyclohexane, xylene and other volatile components are removed from the solution, A die directly connected to the concentrating dryer was extruded in a molten state into a strand, cooled, and cut with a pelletizer to obtain pellets of the block copolymer hydride [D]-1.
<変性ブロック共重合体水素化物[E]-1の調製>
 得られたブロック共重合体水素化物[D]-1のペレット100部に対して、エチレン性不飽和シラン化合物としてのビニルトリメトキシシラン3.0部、および、有機過酸化物としての2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(日油社製「パーヘキサ(登録商標)25B」)0.1部を添加した。この混合物を、二軸押出し機を用いて、樹脂温度200℃、滞留時間60~70秒間で混練した。得られた混練物を、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、アルコキシシリル基を有する変性ブロック共重合体水素化物[E]-1のペレットを得た。
<Preparation of modified block copolymer hydride [E]-1>
To 100 parts of the obtained pellets of the block copolymer hydride [D]-1, 3.0 parts of vinyltrimethoxysilane as an ethylenically unsaturated silane compound and 2,5 as an organic peroxide. 0.1 part of dimethyl-2,5-di(t-butylperoxy)hexane (“Perhexa® 25B” manufactured by NOF CORPORATION) was added. This mixture was kneaded using a twin-screw extruder at a resin temperature of 200° C. and a residence time of 60 to 70 seconds. The obtained kneaded product was extruded in a strand shape, air-cooled, and then cut with a pelletizer to obtain pellets of a modified block copolymer hydride [E]-1 having an alkoxysilyl group.
 得られたブロック共重合体水素化物[E]-1のペレット10部をシクロヘキサン100部に溶解させた後、得られた溶液を脱水メタノール400部中に注いで、変性ブロック共重合体水素化物[E]-1を凝固させた。得られた凝固物を25℃で真空乾燥して、変性ブロック共重合体水素化物[E]-1のクラム9.0部を単離した。 After dissolving 10 parts of the pellets of the obtained block copolymer hydride [E]-1 in 100 parts of cyclohexane, the obtained solution was poured into 400 parts of dehydrated methanol to obtain a modified block copolymer hydride [[ E]-1 solidified. The obtained coagulated product was vacuum dried at 25° C. to isolate 9.0 parts of crumb of the modified block copolymer hydride [E]-1.
 得られた変性ブロック共重合体水素化物[E]-1のクラムを用いて、FT-IRスペクトルを測定したところ、1090cm-1にSi-OCH3基、825cm-1と739cm-1にSi-CH2基に由来する新たな吸収帯が、ビニルトリメトキシシランのSi-OCH3基、Si-CH基に由来する吸収帯(1075cm-1、808cm-1および766cm-1)と異なる位置に観察された。
 また、変性ブロック共重合体水素化物[E]-1の1H-NMRスペクトル(重クロロホルム中)を測定したところ、3.6ppmにメトキシ基のプロトンに基づくピークが観察された。ピーク面積比からブロック共重合体水素化物[D]-1の100部に対してビニルトリメトキシシラン2.6部が結合したことが確認された。
The FT-IR spectrum of the obtained modified block copolymer hydride [E]-1 crumb was measured. Si-OCH 3 group was found at 1090 cm -1 , Si-OCH 3 was found at 825 cm -1 and 739 cm -1 . A new absorption band derived from the CH 2 group is observed at a position different from the absorption bands (1075 cm -1 , 808 cm -1 and 766 cm -1 ) derived from the Si-OCH 3 group and Si-CH group of vinyltrimethoxysilane. Was done.
Further, the 1 H-NMR spectrum (in deuterated chloroform) of the hydrogenated modified block copolymer [E]-1 was measured, and a peak based on the proton of the methoxy group was observed at 3.6 ppm. From the peak area ratio, it was confirmed that 2.6 parts of vinyltrimethoxysilane was bound to 100 parts of the block copolymer hydride [D]-1.
 なお、変性ブロック共重合体水素化物[E]-1の重量平均分子量(Mw)は40,000、分子量分布(Mw/Mn)は2.38であった。また、変性ブロック共重合体水素化物[E]-1のGPC溶出曲線において、第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)が45,000であり、第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)が9,200であった。さらに、第1ピーク分子量/第2ピーク分子量が4.89であり、第1ピークのピークトップが示す示差屈折計(RI)の検出感度(第1ピークトップ感度)(mV)/第2ピークのピークトップが示す示差屈折計(RI)の検出感度(第2ピークトップ感度)(mV)が11.35であった。 The modified block copolymer hydride [E]-1 had a weight average molecular weight (Mw) of 40,000 and a molecular weight distribution (Mw/Mn) of 2.38. Further, in the GPC elution curve of the modified block copolymer hydride [E]-1, the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak was 45,000, and the second peak was eluted. The standard polystyrene-equivalent molecular weight (second peak molecular weight) based on time was 9,200. Furthermore, the first peak molecular weight/second peak molecular weight is 4.89, and the detection sensitivity (first peak top sensitivity) (mV)/second peak of the differential refractometer (RI) indicated by the peak top of the first peak. The detection sensitivity (second peak top sensitivity) (mV) of the differential refractometer (RI) indicated by the peak top was 11.35.
(製造例2)
<ブロック共重合体水素化物[D]-2の合成>
 製造例1で得られたブロック共重合体[C]-1の溶液を、攪拌装置を備えた耐圧反応容器に移送し、水素化触媒としてのシリカーアルミナ担持型ニッケル触媒(製品名:T-8400RL、クラリアント触媒(株)社製)4部および脱水シクロヘキサン100部を添加して混合した。常温状態にて反応内部を水素ガスにて置換しゲージ圧力で2MPa加圧した状態で170℃まで昇温した。耐圧反応容器の内部温度が170℃となったところで、20分間水素の供給をせず、170℃の温度を一定に保った。20分後、水素圧を4.5MPaまで加圧し7時間水素化反応を行った。水素化反応後に得られたブロック共重合体水素化物[D]-2の重量平均分子量(Mw)は39,500、分子量分布(Mw/Mn)が1.76であった。また、ブロック共重合体水素化物[D]-2のGPC溶出曲線において、第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)が45,000であり、第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)が31,200であった。さらに、第1ピーク分子量/第2ピーク分子量が1.44であり、第1ピークのピークトップが示す示差屈折計(RI)の検出感度(第1ピークトップ感度)(mV)/第2ピークのピークトップが示す示差屈折計(RI)の検出感度(第2ピークトップ感度)(mV)が2.36であった。
 また、ブロック共重合体水素化物[D]-2の水素化率は99.8%であった。
(Production Example 2)
<Synthesis of block copolymer hydride [D]-2>
The solution of the block copolymer [C]-1 obtained in Production Example 1 was transferred to a pressure-resistant reaction vessel equipped with a stirrer, and a silica-alumina-supported nickel catalyst (product name: T- 8400RL, 4 parts of Clariant Catalyst Co., Ltd.) and 100 parts of dehydrated cyclohexane were added and mixed. At room temperature, the inside of the reaction was replaced with hydrogen gas, and the pressure was raised to 170° C. with a gauge pressure of 2 MPa. When the internal temperature of the pressure resistant reactor reached 170°C, hydrogen was not supplied for 20 minutes and the temperature of 170°C was kept constant. After 20 minutes, the hydrogen pressure was increased to 4.5 MPa to carry out a hydrogenation reaction for 7 hours. The block copolymer hydride [D]-2 obtained after the hydrogenation reaction had a weight average molecular weight (Mw) of 39,500 and a molecular weight distribution (Mw/Mn) of 1.76. In the GPC elution curve of the block copolymer hydride [D]-2, the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak was 45,000, and the elution time of the second peak was Based on the standard polystyrene equivalent molecular weight (second peak molecular weight) was 31,200. Further, the first peak molecular weight/second peak molecular weight is 1.44, and the detection sensitivity (first peak top sensitivity) (mV)/second peak of the differential refractometer (RI) indicated by the peak top of the first peak. The detection sensitivity (second peak top sensitivity) (mV) of the differential refractometer (RI) indicated by the peak top was 2.36.
The hydrogenation rate of the block copolymer hydride [D]-2 was 99.8%.
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、得られた溶液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](松原産業社製「Songnox1010」)0.1部を溶解したキシレン溶液2.0部を添加して溶解させた。
 次いで、円筒型濃縮乾燥器(日立製作所社製「コントロ」)を用いて、温度260℃、圧力0.001MPa以下で、上記溶液から、溶媒であるシクロヘキサン、キシレンおよびその他の揮発成分を除去し、濃縮乾燥器に直結したダイから溶融状態でストランド状に押出し、冷却後、ペレタイザーでカットしてブロック共重合体水素化物[D]-2からなるペレットを得た。
After completion of the hydrogenation reaction, the reaction solution was filtered to remove the hydrogenation catalyst, and the resulting solution was mixed with pentaerythrityl tetrakis[3-(3,5-di-t- Butyl-4-hydroxyphenyl)propionate] (“Songnox 1010” manufactured by Matsubara Sangyo Co., Ltd.) was dissolved in 2.0 parts of xylene solution.
Then, using a cylindrical concentrating dryer (“Contro” manufactured by Hitachi, Ltd.), at a temperature of 260° C. and a pressure of 0.001 MPa or less, the solvents cyclohexane, xylene and other volatile components are removed from the solution, A die directly connected to the concentrating dryer was extruded in a molten state into a strand, cooled, and cut with a pelletizer to obtain pellets of the block copolymer hydride [D]-2.
<変性ブロック共重合体水素化物[E]-2の調製>
 得られたブロック共重合体水素化物[D]-2のペレット100部に対して、エチレン性不飽和シラン化合物としてのビニルトリメトキシシラン3.0部、および、有機過酸化物としての2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(日油社製「パーヘキサ(登録商標)25B」)0.1部を添加した。この混合物を、二軸押出し機を用いて、樹脂温度200℃、滞留時間60~70秒間で混練した。得られた混練物を、ストランド状に押出し、空冷した後、ペレタイザーによりカッティングし、アルコキシシリル基を有する変性ブロック共重合体水素化物[E]-2のペレットを得た。
<Preparation of modified block copolymer hydride [E]-2>
To 100 parts of the obtained pellets of the block copolymer hydride [D]-2, 3.0 parts of vinyltrimethoxysilane as an ethylenically unsaturated silane compound and 2,5 as an organic peroxide. 0.1 part of dimethyl-2,5-di(t-butylperoxy)hexane (“Perhexa® 25B” manufactured by NOF CORPORATION) was added. This mixture was kneaded using a twin-screw extruder at a resin temperature of 200° C. and a residence time of 60 to 70 seconds. The obtained kneaded product was extruded into a strand shape, air-cooled, and then cut with a pelletizer to obtain pellets of a modified block copolymer hydride [E]-2 having an alkoxysilyl group.
 得られたブロック共重合体水素化物[E]-2のペレット10部をシクロヘキサン100部に溶解させた後、得られた溶液を脱水メタノール400部中に注いで、変性ブロック共重合体水素化物[E]-2を凝固させた。得られた凝固物を25℃で真空乾燥して、変性ブロック共重合体水素化物[E]-2のクラム9.0部を単離した。 After dissolving 10 parts of the pellet of the obtained block copolymer hydride [E]-2 in 100 parts of cyclohexane, the obtained solution was poured into 400 parts of dehydrated methanol to obtain a modified block copolymer hydride [[ E]-2 solidified. The obtained coagulated product was vacuum dried at 25° C. to isolate 9.0 parts of crumb of the modified block copolymer hydride [E]-2.
 得られた変性ブロック共重合体水素化物[E]-2のクラムを用いて、FT-IRスペクトルを測定したところ、1090cm-1にSi-OCH3基、825cm-1と739cm-1にSi-CH2基に由来する新たな吸収帯が、ビニルトリメトキシシランのSi-OCH3基、Si-CH基に由来する吸収帯(1075cm-1、808cm-1および766cm-1)と異なる位置に観察された。
 また、変性ブロック共重合体水素化物[E]-2の1H-NMRスペクトル(重クロロホルム中)を測定したところ、3.6ppmにメトキシ基のプロトンに基づくピークが観察された。ピーク面積比からブロック共重合体水素化物[D]の100部に対してビニルトリメトキシシラン2.6部が結合したことが確認された。
The FT-IR spectrum of the obtained modified block copolymer hydride [E]-2 crumb was measured. Si-OCH 3 group was found at 1090 cm -1 and Si-at 825 cm -1 and 739 cm -1 . A new absorption band derived from the CH 2 group is observed at a position different from the absorption bands (1075 cm -1 , 808 cm -1 and 766 cm -1 ) derived from the Si-OCH 3 group and Si-CH group of vinyltrimethoxysilane. Was done.
Further, the 1 H-NMR spectrum (in deuterated chloroform) of the hydride of the modified block copolymer [E]-2 was measured, and a peak based on the proton of the methoxy group was observed at 3.6 ppm. From the peak area ratio, it was confirmed that 2.6 parts of vinyltrimethoxysilane was bonded to 100 parts of the block copolymer hydride [D].
 なお、変性ブロック共重合体水素化物[E]-2の重量平均分子量(Mw)は35,900、分子量分布(Mw/Mn)は2.79であった。また、変性ブロック共重合体水素化物[E]-2のGPC溶出曲線において、第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)が45,000であり、第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)が31,200であった。さらに、第1ピーク分子量/第2ピーク分子量が1.44であり、第1ピークのピークトップが示す示差屈折計(RI)の検出感度(第1ピークトップ感度)(mV)/第2ピークのピークトップが示す示差屈折計(RI)の検出感度(第2ピークトップ感度)(mV)が5.14であった。 The modified block copolymer hydride [E]-2 had a weight average molecular weight (Mw) of 35,900 and a molecular weight distribution (Mw/Mn) of 2.79. Further, in the GPC elution curve of the modified block copolymer hydride [E]-2, the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak was 45,000, and the second peak was eluted. The standard polystyrene-equivalent molecular weight (second peak molecular weight) based on time was 31,200. Further, the first peak molecular weight/second peak molecular weight is 1.44, and the detection sensitivity (first peak top sensitivity) (mV)/second peak of the differential refractometer (RI) indicated by the peak top of the first peak. The detection sensitivity (second peak top sensitivity) (mV) of the differential refractometer (RI) indicated by the peak top was 5.14.
(実施例1)
<中間層形成工程>
 金属基材として、ブラスト処理により除錆された金属片(材質:銅(Cu)、幅100mm×長さ150mm×厚み5mm)を用意した。当該金属片をアセトンで洗浄して乾燥した後、イトロ処理(以下、「イトロ処理(1)」と称することがある。)により、金属片の一方の表面上にケイ素酸化物を含む中間層を形成した。なお、イトロ処理(1)は、下記の装置および条件により行なった。そして、形成された中間層表面のケイ素割合を測定した。結果を表1に示す。
<<イトロ処理(1)における使用装置および条件>>
  装置:イトロ社製「イトロ処理装置」
  バーナーノズルと金属片との間の距離:5mm
  ケイ素供給源(イトロ社製「イトロ処理剤<A>」)流量:1.2NL/min
  エアー流量:150NL/min
  可燃性ガス(LPG)流量:8NL/min
  テーブル速度:750mm/sec
  処理回数:1往復
(Example 1)
<Intermediate layer forming step>
As the metal base material, a metal piece (material: copper (Cu), width 100 mm x length 150 mm x thickness 5 mm) that was removed by blast treatment was prepared. After washing the metal piece with acetone and drying it, an intermediate layer containing silicon oxide is formed on one surface of the metal piece by the itro treatment (hereinafter, may be referred to as “itro treatment (1)”). Formed. The itro process (1) was performed using the following apparatus and conditions. Then, the silicon ratio on the surface of the formed intermediate layer was measured. The results are shown in Table 1.
<<Devices and Conditions Used in Itro Process (1)>>
Device: "ITRO processing device" manufactured by Itro
Distance between burner nozzle and metal piece: 5 mm
Silicon supply source (“ITRO treatment agent <A>” manufactured by Itro) Flow rate: 1.2 NL/min
Air flow rate: 150 NL/min
Flammable gas (LPG) flow rate: 8 NL/min
Table speed: 750 mm/sec
Number of processing times: 1 round trip
<樹脂被覆工程>
<<シート状の樹脂被覆層の作製>>
 製造例1で得られた変性ブロック共重合体水素化物[E]-1を、直径37mmのスクリューを備えた二軸混練機を有するTダイ式フィルム溶融押出し成形機(Tダイ幅400mm)、キャストロール、ゴム製ニップロール、および、シート引き取り装置を備えた押出しシート成形機を使用して、溶融樹脂温度200℃、Tダイ温度200℃、キャストロール温度90℃の条件にて押出し成形し、ブロック共重合体水素化物[E]-1を含むシート状の樹脂被覆層(幅:330mm、厚み:0.5mm)を得た。得られたシート状の樹脂被覆層は、ロールに巻き取って回収した。
<<樹脂被覆層による被覆>>
 次いで、上記で作製したシート状の樹脂被覆層(厚み:0.5mm)を、幅100mm×長さ150mmに切り出し、金属片の一方の表面上に形成された中間層の表面上に4枚重ねた。得られた積層物を、NY(ナイロン)/PP(ポリプロピレン)製の厚み75μmの耐熱バッグに入れ、耐熱バッグの開口部の中央部を200mm幅残して、両側をヒートシーラーでヒートシールした後、密封パック器(パナソニック社製「BH-951」)を使用し、耐熱バッグ内を脱気しながら開口部をヒートシールして、積層物を密封包装することで仮圧着した。その後、密封包装された積層物をオートクレーブに入れて、温度125℃、30分間、圧力0.8MPaで加熱加圧することで、金属片と、中間層と、樹脂被覆層とを備え、中間層が金属片の表面と樹脂被覆層との間に介在配置されてなる積層体である評価用試験片(金属片/中間層/樹脂被覆層の順に積層、幅100mm×長さ150mm×厚み7mm)を得た。
 得られた評価用試験片を用いて、初期接着強度、長期接着強度、および耐湿性の評価を行なった。結果を表1に示す。
<Resin coating process>
<<Preparation of sheet-shaped resin coating layer>>
The modified block copolymer hydride [E]-1 obtained in Production Example 1 was cast using a T-die type film melt extrusion molding machine (T-die width 400 mm) having a biaxial kneader equipped with a screw having a diameter of 37 mm. Using an extrusion sheet molding machine equipped with a roll, a rubber nip roll, and a sheet take-up device, extrusion molding is performed under the conditions of a molten resin temperature of 200° C., a T die temperature of 200° C., and a cast roll temperature of 90° C. A sheet-shaped resin coating layer (width: 330 mm, thickness: 0.5 mm) containing the polymer hydride [E]-1 was obtained. The obtained sheet-shaped resin coating layer was wound on a roll and collected.
<<Coating with resin coating layer>>
Next, the sheet-shaped resin coating layer (thickness: 0.5 mm) produced above is cut into a width of 100 mm and a length of 150 mm, and four sheets are stacked on the surface of the intermediate layer formed on one surface of the metal piece. It was The obtained laminate was put in a heat-resistant bag made of NY (nylon)/PP (polypropylene) having a thickness of 75 μm, and the both sides of the heat-resistant bag were heat-sealed with a heat sealer while leaving the center of the opening of the heat-resistant bag at a width of 200 mm. Using a sealed pack device (“BH-951” manufactured by Panasonic Corporation), the opening was heat-sealed while the inside of the heat-resistant bag was deaerated, and the laminate was hermetically sealed for temporary pressure bonding. Then, the hermetically-sealed laminate is put into an autoclave and heated and pressurized at a temperature of 125° C. for 30 minutes at a pressure of 0.8 MPa to provide a metal piece, an intermediate layer, and a resin coating layer. A test piece for evaluation (a metal piece/intermediate layer/resin coating layer, laminated in this order, width 100 mm×length 150 mm×thickness 7 mm), which is a laminate formed by being interposed between the surface of the metal piece and the resin coating layer, Obtained.
Using the obtained test pieces for evaluation, initial adhesive strength, long-term adhesive strength, and moisture resistance were evaluated. The results are shown in Table 1.
(実施例2)
 実施例1の中間層形成工程において、金属基材としての金属片の材質を銅(Cu)からアルミニウム(Al)に変更し、イトロ処理(1)の条件のうち、ケイ素供給源流量を、1.2NL/minから0.6NL/minに変更したイトロ処理(2)により中間層を形成すると共に、実施例1の樹脂被覆工程におけるシート状の樹脂被覆層の作製において、製造例1で得られた変性ブロック共重合体水素化物[E]-1に代えて、製造例2で得られた変性ブロック共重合体水素化物[E]-2を使用したこと以外は、実施例1と同様にして、評価用試験片を作製した。そして、実施例1と同様にして評価を行なった。結果を表1に示す。
(Example 2)
In the intermediate layer forming step of Example 1, the material of the metal piece as the metal base material was changed from copper (Cu) to aluminum (Al), and the silicon source flow rate was set to 1 in the condition of the itro treatment (1). The intermediate layer was formed by the itro treatment (2) in which the pressure was changed from 2 NL/min to 0.6 NL/min, and the sheet-shaped resin coating layer was obtained in Production Example 1 in the resin coating step of Example 1. In the same manner as in Example 1 except that the modified block copolymer hydride [E]-1 obtained in Production Example 2 was used in place of the modified block copolymer hydride [E]-1. A test piece for evaluation was prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
 実施例1の中間層形成工程において、金属基材としての金属片の材質を銅(Cu)から炭素鋼(S55C)に変更したこと以外は、実施例1と同様にして、評価用試験片を作製した。そして、実施例1と同様にして評価を行なった。結果を表1に示す。
(Example 3)
In the intermediate layer forming step of Example 1, an evaluation test piece was prepared in the same manner as in Example 1 except that the material of the metal piece as the metal base material was changed from copper (Cu) to carbon steel (S55C). It was made. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
 実施例1の中間層形成工程において、中間層を形成する前に、下記の有機接着層形成工程を実施して、金属片の一方の表面上に有機接着層を形成すると共に、中間層を形成する際に、イトロ処理(1)に代えて、下記の装置および条件下での大気圧プラズマコーティング処理により、金属片の一方の表面上に形成された有機接着層の表面上にケイ素酸化物を含む中間層を形成することで、金属片/有機接着層/中間層/樹脂被覆層の順に積層された評価用試験片を作製したこと以外は、実施例1と同様にして、評価用試験片を作製した。そして、実施例1と同様にして評価を行なった。結果を表1に示す。
<有機接着層形成工程>
 3-アクリロキシプロピルトリメトキシシラン(信越化学社製「KBM-5103」)の1質量%水溶液を調製した。次いで、金属片を、当該水分散液に23℃の環境下で5分間浸漬した。その後、金属片を希釈液から取り出して、40℃のオーブン中で5分間保持した。金属片をオーブンから取り出し、23℃の環境下で純水に5分間浸漬した。純水から取り出した金属片を、40℃のオーブン中で120分間保持して、溶媒としての水を蒸発させることにより、金属片の表面上に有機接着層を形成した。
<大気圧プラズマコーティング処理における使用装置および条件>
  装置:大気圧プラズマ処理装置(AcXys Technologies社製「UL-Coat」)
  出力:0.2kW
  ノズルと金属片との間の距離:15mm
  空気流量:5NL/min
  ケイ素供給源(ヘキサメチルジシラン)流量:120μL/min
  テーブル速度:320mm/min
(Example 4)
In the intermediate layer forming step of Example 1, before forming the intermediate layer, the following organic adhesive layer forming step is performed to form the organic adhesive layer on one surface of the metal piece and to form the intermediate layer. In doing so, instead of itro treatment (1), silicon oxide was formed on the surface of the organic adhesive layer formed on one surface of the metal piece by atmospheric pressure plasma coating treatment under the following apparatus and conditions. An evaluation test piece was prepared in the same manner as in Example 1 except that an evaluation test piece in which metal pieces/organic adhesive layer/intermediate layer/resin coating layer were laminated in this order was formed by forming an intermediate layer containing the same. Was produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
<Organic adhesive layer forming step>
A 1 mass% aqueous solution of 3-acryloxypropyltrimethoxysilane (“KBM-5103” manufactured by Shin-Etsu Chemical Co., Ltd.) was prepared. Then, the metal piece was immersed in the aqueous dispersion for 5 minutes in an environment of 23°C. Then, the metal piece was taken out from the diluent and kept in an oven at 40° C. for 5 minutes. The metal piece was taken out of the oven and immersed in pure water for 5 minutes in an environment of 23°C. The metal piece taken out from the pure water was kept in an oven at 40° C. for 120 minutes to evaporate water as a solvent to form an organic adhesive layer on the surface of the metal piece.
<Apparatus and conditions used in atmospheric plasma coating>
Equipment: Atmospheric pressure plasma processing equipment ("UL-Coat" manufactured by AcXys Technologies)
Output: 0.2kW
Distance between nozzle and metal piece: 15mm
Air flow rate: 5NL/min
Flow rate of silicon supply source (hexamethyldisilane): 120 μL/min
Table speed: 320 mm/min
(比較例1)
 実施例1において、中間層形成工程でイトロ処理(1)を行なわず、樹脂被覆工程で、一方の表面上に中間層が形成された金属片に代えて、表面上に中間層が形成されていない金属片の一方の表面上に、シート状の樹脂被覆層を直接重ねることで、金属片の表面と樹脂被覆層との間に中間層が介在配置されていない評価用試験片(金属片/樹脂被覆層の順に積層)を作製したこと以外は、実施例1と同様にして、評価用試験片を作製した。そして、実施例1と同様にして評価を行なった。結果を表1に示す。
(Comparative Example 1)
In Example 1, the itro treatment (1) was not performed in the intermediate layer forming step, and in the resin coating step, the intermediate layer was formed on the surface instead of the metal piece having the intermediate layer formed on one surface. By directly laying a sheet-shaped resin coating layer on one surface of the metal piece that does not exist, an intermediate test piece is not placed between the surface of the metal piece and the resin coating layer. A test piece for evaluation was prepared in the same manner as in Example 1 except that the resin coating layer was laminated in this order). Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 実施例1の樹脂被覆工程におけるシート状の樹脂被覆層の作製において、製造例1で得られた変性ブロック共重合体水素化物[E]-1に代えて、アルコキシシリル基が導入されていないブロック共重合体水素化物[D]-1を使用したこと以外は、実施例1と同様にして、評価用試験片を作製した。そして、実施例1と同様にして評価を行なった。結果を表1に示す。
(Comparative example 2)
In the production of a sheet-shaped resin coating layer in the resin coating step of Example 1, a block in which an alkoxysilyl group is not introduced is substituted for the modified block copolymer hydride [E]-1 obtained in Production Example 1. A test piece for evaluation was prepared in the same manner as in Example 1 except that the copolymer hydride [D]-1 was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、金属基材の表面上にケイ素酸化物を含む中間層を形成する中間層形成工程と、アルコキシシリル基が導入されてなる所定の変性ブロック共重合体水素化物を含む樹脂被覆層で前記中間層の表面を被覆する樹脂被覆工程と、を含む実施例1~4の積層体の製造方法によれば、金属基材と樹脂被覆層との初期接着強度に優れる積層体を製造できることがわかる。 From Table 1, an intermediate layer forming step of forming an intermediate layer containing a silicon oxide on the surface of a metal substrate, and a resin coating layer containing a predetermined modified block copolymer hydride in which an alkoxysilyl group is introduced. According to the method for producing a laminate of Examples 1 to 4 including the step of coating the surface of the intermediate layer with a resin, it is possible to produce a laminate having excellent initial adhesion strength between the metal substrate and the resin coating layer. Recognize.
 一方、金属基材の表面上にケイ素酸化物を含む中間層を形成しなかった比較例1の積層体の製造方法により製造される積層体は、金属基材と樹脂被覆層との初期接着強度に劣ることがわかる。 On the other hand, the laminate produced by the method for producing a laminate of Comparative Example 1 in which the intermediate layer containing silicon oxide was not formed on the surface of the metal substrate had an initial adhesive strength between the metal substrate and the resin coating layer. It turns out that it is inferior to.
 また、アルコキシシリル基が導入されてなる所定の変性ブロック共重合体水素化物に代えて、アルコキシシリル基が導入されていないブロック共重合体水素化物を含む樹脂被覆層で中間層の表面を被覆した比較例2の積層体の製造方法により製造される積層体も、金属基材と樹脂被覆層との初期接着強度に劣ることがわかる。 Further, the surface of the intermediate layer was coated with a resin coating layer containing a block copolymer hydride in which an alkoxysilyl group was not introduced, instead of a predetermined modified block copolymer hydride in which an alkoxysilyl group was introduced. It can be seen that the laminate produced by the method for producing a laminate of Comparative Example 2 is also inferior in the initial adhesive strength between the metal base material and the resin coating layer.
 本発明によれば、金属基材と樹脂被覆層との初期接着強度に優れる積層体を提供することができる。 According to the present invention, it is possible to provide a laminate having excellent initial adhesive strength between the metal base material and the resin coating layer.

Claims (5)

  1.  金属基材の表面上にケイ素酸化物を含む中間層を形成する中間層形成工程と、
     樹脂被覆層で前記中間層の表面を被覆する樹脂被覆工程と、を含み、
     前記樹脂被覆層が、芳香族ビニル単量体単位を主成分とする重合体ブロック[A]と、鎖状共役ジエン単量体単位を主成分とする重合体ブロック[B]とからなるブロック共重合体[C]を水素化して得られるブロック共重合体水素化物[D]にアルコキシシリル基が導入されてなる変性ブロック共重合体水素化物[E]を含む、積層体の製造方法。
    An intermediate layer forming step of forming an intermediate layer containing silicon oxide on the surface of the metal substrate,
    A resin coating step of coating the surface of the intermediate layer with a resin coating layer,
    The resin coating layer is a block copolymer composed of a polymer block [A] containing an aromatic vinyl monomer unit as a main component and a polymer block [B] containing a chain conjugated diene monomer unit as a main component. A process for producing a laminate, comprising a modified block copolymer hydride [E] obtained by introducing an alkoxysilyl group into a block copolymer hydride [D] obtained by hydrogenating a polymer [C].
  2.  前記金属基材の表面に前記中間層を直接形成する、請求項1に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 1, wherein the intermediate layer is directly formed on the surface of the metal base material.
  3.  前記中間層表面のケイ素割合が、2.0atom%以上30.0atom%以下である、請求項1または2に記載の積層体の製造方法。 The method for producing a laminate according to claim 1 or 2, wherein the silicon ratio on the surface of the intermediate layer is 2.0 atom% or more and 30.0 atom% or less.
  4.  イトロ処理および/または大気圧プラズマコーティング処理により前記中間層を形成する、請求項1~3のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 3, wherein the intermediate layer is formed by itro treatment and/or atmospheric pressure plasma coating treatment.
  5.  前記変性ブロック共重合体水素化物[E]を含有する試料のゲルパーミエーションクロマトグラフィー(GPC)で測定した溶出曲線が、少なくとも2つの変性ブロック共重合体水素化物[E]由来ピークを有し、前記少なくとも2つの変性ブロック共重合体水素化物[E]由来ピークのうち、最も検出感度の高いピークトップを示す変性ブロック共重合体水素化物[E]由来ピークを第1ピークとし、前記第1ピークのピークトップの溶出時間の次に溶出時間の早いピークトップを示す変性ブロック共重合体水素化物[E]由来ピークを第2ピークとしたときに、前記第2ピークの溶出時間に基づく標準ポリスチレン換算分子量(第2ピーク分子量)に対する前記第1ピークの溶出時間に基づく標準ポリスチレン換算分子量(第1ピーク分子量)の比(第1ピーク分子量/第2ピーク分子量)が、1.50以上である、請求項1~4のいずれかに記載の積層体の製造方法。 The elution curve of the sample containing the modified block copolymer hydride [E] measured by gel permeation chromatography (GPC) has at least two peaks derived from the modified block copolymer hydride [E], Among the at least two modified block copolymer hydride [E]-derived peaks, the modified block copolymer hydride [E]-derived peak exhibiting the highest peak detection sensitivity is defined as the first peak, and the first peak When the peak derived from the modified block copolymer hydride [E] showing a peak top with the next shortest elution time after the elution time of the second peak is defined as the second peak, the standard polystyrene conversion based on the elution time of the second peak is performed. The ratio of the standard polystyrene-equivalent molecular weight (first peak molecular weight) based on the elution time of the first peak to the molecular weight (second peak molecular weight) (first peak molecular weight/second peak molecular weight) is 1.50 or more. Item 5. A method for producing a laminate according to any one of Items 1 to 4.
PCT/JP2019/048151 2018-12-28 2019-12-09 Method for producing laminate WO2020137497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563028A JP7380593B2 (en) 2018-12-28 2019-12-09 Method for manufacturing laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-247732 2018-12-28
JP2018247732 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137497A1 true WO2020137497A1 (en) 2020-07-02

Family

ID=71127201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048151 WO2020137497A1 (en) 2018-12-28 2019-12-09 Method for producing laminate

Country Status (2)

Country Link
JP (1) JP7380593B2 (en)
WO (1) WO2020137497A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557194B2 (en) * 1975-04-26 1980-02-22
JP2001260275A (en) * 2000-03-14 2001-09-25 Mitsubishi Chemicals Corp Laminated body
JP2009078434A (en) * 2007-09-26 2009-04-16 Toyoda Gosei Co Ltd Metal-resin composite molding and its manufacturing method
JP4408879B2 (en) * 2006-08-22 2010-02-03 株式会社イトロ Surface modification device for solid substance and surface modification method using the same
JP2010189732A (en) * 2009-02-19 2010-09-02 Dental Frontier:Kk Metal surface modification method
WO2012043708A1 (en) * 2010-09-29 2012-04-05 日本ゼオン株式会社 Hydrogenated block copolymer having alkoxysilyl group, and use therefor
WO2015137376A1 (en) * 2014-03-13 2015-09-17 日本ゼオン株式会社 Composite multi-layer sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557194B2 (en) 2002-02-13 2004-08-25 泰浩 森 Surface modification method of solid substance, surface-modified solid substance and surface modification apparatus for solid substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557194B2 (en) * 1975-04-26 1980-02-22
JP2001260275A (en) * 2000-03-14 2001-09-25 Mitsubishi Chemicals Corp Laminated body
JP4408879B2 (en) * 2006-08-22 2010-02-03 株式会社イトロ Surface modification device for solid substance and surface modification method using the same
JP2009078434A (en) * 2007-09-26 2009-04-16 Toyoda Gosei Co Ltd Metal-resin composite molding and its manufacturing method
JP2010189732A (en) * 2009-02-19 2010-09-02 Dental Frontier:Kk Metal surface modification method
WO2012043708A1 (en) * 2010-09-29 2012-04-05 日本ゼオン株式会社 Hydrogenated block copolymer having alkoxysilyl group, and use therefor
WO2015137376A1 (en) * 2014-03-13 2015-09-17 日本ゼオン株式会社 Composite multi-layer sheet

Also Published As

Publication number Publication date
JP7380593B2 (en) 2023-11-15
JPWO2020137497A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US20170037157A1 (en) Hydrogenated block copolymer having alkoxysilyl group and use therefor
TW201408615A (en) Glass laminate, and method for using block copolymer hydrogenation product as binder for glass laminate
JP6690552B2 (en) Block copolymer hydride and laminated glass
WO2011068188A1 (en) Sealing material, laminated sheet for solar cell module, and solar cell module
WO2015137376A1 (en) Composite multi-layer sheet
WO2018097146A1 (en) Adhesive sheet and laminated glass
WO2017155068A1 (en) Pellets comprising specific hydrogenated block copolymer, method for preventing pellets from suffering blocking, and process for producing molded object
CN107531565B (en) Laminated glass
JPWO2018180427A1 (en) Resin composition, molded article and method for producing the same
WO2020137497A1 (en) Method for producing laminate
JP2020105619A (en) Resin-coated metal tube, and method of manufacturing the same
JP2018048236A (en) Antiblocking agent, molding material and molded body
WO2019082385A1 (en) Anti-blocking agent, molding material, and molded article
JPWO2020175339A1 (en) Laminated glass interlayer film and its manufacturing method, and laminated glass
JP7196604B2 (en) molding material
CN111052354B (en) Laminate and method for producing same
JPWO2020080202A1 (en) Copolymer hydride and its production method, copolymer hydride-containing composition, laminated glass interlayer film, laminated glass interlayer film laminate, encapsulant, optical film, medical molded body and its manufacturing method, adhesion Agent, bonded body and method for manufacturing the same
WO2021221103A1 (en) Laminate and product
JP7443699B2 (en) Manufacturing method of joined body
JP2019172910A (en) Resin composition and laminated glass
TWI833700B (en) Stacked body and manufacturing method thereof
JP2018002763A (en) Modified block copolymer hydride having alkoxysilyl group and use thereof
JPWO2019058953A1 (en) Thermoplastic resin sheet and laminate
JP2021070269A (en) Laminate and method for producing laminate
JPWO2020009064A1 (en) Laminates and laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904956

Country of ref document: EP

Kind code of ref document: A1