WO2020137352A1 - Biosensing method, map data generation method, program, computer-readable medium, and biosensing device - Google Patents

Biosensing method, map data generation method, program, computer-readable medium, and biosensing device Download PDF

Info

Publication number
WO2020137352A1
WO2020137352A1 PCT/JP2019/046732 JP2019046732W WO2020137352A1 WO 2020137352 A1 WO2020137352 A1 WO 2020137352A1 JP 2019046732 W JP2019046732 W JP 2019046732W WO 2020137352 A1 WO2020137352 A1 WO 2020137352A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
light
signal
component
brain activity
Prior art date
Application number
PCT/JP2019/046732
Other languages
French (fr)
Japanese (ja)
Inventor
仁 村岡
優美子 大野
聡 有本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019206341A external-priority patent/JP2020103879A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020137352A1 publication Critical patent/WO2020137352A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present disclosure relates to a biometric method, a map data creation method, a program, a computer-readable recording medium, and a biometric device.
  • Patent Document 1 discloses a method in which a light source and a photodetector are separated from each other at a predetermined interval, and they are brought into close contact with a target portion to acquire biometric information.
  • Patent Document 2 discloses a technique of acquiring information on a subject's cerebral blood flow in a non-contact manner and estimating a psychological state such as a degree of concentration or emotion of the subject.
  • Patent Literature 3 discloses a system that measures brain activity signals of a plurality of subjects and displays the analysis result of the biometric information of each subject and the position information in association with each other based on the positional relationship of the plurality of subjects. ing.
  • the present disclosure provides a novel technique that allows a user to determine whether they are proficient in entering a mindfulness state.
  • a biometric method detects a component of light propagating in the brain of the user, of reflected light from the head generated by irradiating the user's head with irradiation light. And acquiring at least one brain activity signal generated by the method and indicating the activity status of the brain, and indicating the user's proficiency level of being in a mindfulness state based on the at least one brain activity signal. Generating and outputting a signal.
  • the comprehensive or specific aspects of the present disclosure may be realized by a recording medium such as a system, a device, a method, an integrated circuit, a computer program or a computer-readable recording disk, and the system, the device, the method, the integrated circuit, It may be realized by any combination of a computer program and a recording medium.
  • the computer-readable recording medium may include a nonvolatile recording medium such as a CD-ROM (Compact Disc-Read Only Memory).
  • the device may be composed of one or more devices. When the device is composed of two or more devices, the two or more devices may be arranged in one device or may be separately arranged in two or more separate devices.
  • "device" can mean not only one device, but also a system composed of a plurality of devices.
  • FIG. 1A is a diagram schematically showing an example of a biometric device.
  • FIG. 1B is a diagram showing an example of a temporal change in the intensity of light reaching the photodetector.
  • FIG. 1C is a diagram in which the width of the input light pulse is shown on the horizontal axis and the amount of light detected by the photodetector is shown on the vertical axis.
  • FIG. 1D is a diagram showing an example of a schematic configuration of one pixel of the photodetector.
  • FIG. 1E is a diagram showing an example of the configuration of a photodetector.
  • FIG. 1F is a diagram showing an example of the operation within one frame.
  • FIG. 1G is a flowchart showing an outline of the operation of the control circuit.
  • FIG. 1G is a flowchart showing an outline of the operation of the control circuit.
  • FIG. 2 is a diagram for explaining a method of detecting an internal scattering component of a light pulse.
  • FIG. 3A is a diagram schematically showing an example of a timing chart when detecting a surface reflection component.
  • FIG. 3B is a diagram schematically showing an example of a timing chart when detecting an internal scattering component.
  • FIG. 4A is a diagram schematically showing an example of a method for detecting a change in cerebral blood flow.
  • FIG. 4B is a diagram schematically illustrating an example of a method of simultaneously performing measurement at a plurality of locations within the target portion of the user.
  • FIG. 5A is a diagram schematically showing an example of a light irradiation area.
  • FIG. 5B is a diagram schematically showing a change in the measurement result due to the lateral movement of the user's head.
  • FIG. 6 is a diagram showing on a time axis the flow of one determination operation of the proficiency level of mindfulness.
  • FIG. 7 is a flow chart showing the flow of the determination operation of the proficiency level.
  • FIG. 8A is a diagram showing an example of three histograms obtained for an unskilled person.
  • FIG. 8B is a diagram showing an example of three histograms obtained for the expert.
  • FIG. 9 is a conceptual diagram of a system for collecting and utilizing brain activity signals and position data from mobile devices of a plurality of users.
  • FIG. 10 is a diagram showing a schematic configuration of a server and a plurality of mobile devices.
  • FIG. 11 is a diagram showing an example of an image displayed on the display of the mobile device based on the map data.
  • FIG. 12 is a diagram schematically showing an example of the head mount device.
  • all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram may be, for example, a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (large scale integration). ) Can be implemented by one or more electronic circuits including.
  • the LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips.
  • the functional blocks other than the memory element may be integrated on one chip.
  • the name may be changed depending on the degree of integration, and may be referred to as a system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration).
  • the Field Programmable Gate Array (FPGA), which is programmed after the LSI is manufactured, or the reconfigurable logic device that can reconfigure the bonding relation inside the LSI or set up the circuit section inside the LSI can be used for the same purpose.
  • FPGA Field Programmable Gate Array
  • the functions or operations of all or some of the circuits, units, devices, members or parts can be executed by software processing.
  • the software is recorded on a non-transitory recording medium such as one or more ROMs, optical discs, hard disk drives, etc., and when the software is executed by a processor, the functions specified by the software are recorded. It is performed by the processor and peripherals.
  • the system or apparatus may include one or more non-transitory storage media having software recorded on it, a processor, and any required hardware devices, such as interfaces.
  • Such content is also provided as an application for mobile devices such as smartphones or tablet computers.
  • Such applications provide the user with audio and/or video that guides them to a state of mindfulness. The user can obtain a high relaxing effect by meditating according to the guidance, for example.
  • Easiness of becoming a mindfulness state varies depending on the user. Some users are proficient in mindfulness and can move to a mindfulness state with relative ease. However, other users are not proficient in mindfulness, and it is relatively difficult to shift to a mindfulness state.
  • Easiness of becoming a mindfulness state also depends on the surrounding environment. For example, in a place where you can experience nature, or in a historic building such as a fantasy temple, temple, or temple, people are likely to be mindful. In addition, people are more likely to be in a state of mindfulness in cozy places, such as places with excellent works of art, or places with pleasant music. It can be said that people who are proficient in mindfulness easily gather in such places.
  • a biometric method includes the following steps (a) and (b).
  • Obtaining at least one brain activity signal may be performed in the state where a stimulus including at least one selected from the group consisting of audio and video is given to the user.
  • the at least one selected from the group consisting of the audio and the video may guide the user to the mindfulness state.
  • the “stimulus including at least one selected from the group consisting of audio and video that guides the user to a mindfulness state” is, for example, a publicly available audio for mindfulness meditation and
  • the content may include at least one of videos.
  • audio and video for mindfulness meditation is not limited to audio and video that are intended to be used for mindfulness meditation, but it does not mean that the user is mindfulness.
  • Such audio and video may be provided, for example, as relaxing audio and video.
  • the stimulus may be presented to the user as the user views such audio and video content.
  • the component of the light that propagates in the user's brain depends on the state of the user's brain activity.
  • the brain activity state of the user can be estimated by detecting the light component.
  • the “light” is not limited to visible light, and may be infrared light, for example. In this specification, the term “light” is used not only for visible light but also for infrared light.
  • the user's proficiency level in becoming a mindfulness state can be determined by analyzing the acquired brain activity signal, as described in detail later.
  • Brain activity signal means a biological signal that changes depending on the brain activity of the user or the subject. For example, a signal indicating any of the oxygenated hemoglobin concentration in cerebral blood, the deoxygenated hemoglobin concentration in cerebral blood, and the oxygen saturation level in cerebral blood corresponds to a brain activity signal.
  • the brain activity signal is, for example, from the light intensity of the reflected light pulse of the reflected light pulse from the head generated by irradiating the user's head with the light pulse until the reduction ends. It can be generated by detecting at least a part of the components of the reflected light pulse included in the period (hereinafter, referred to as “falling period”). As will be described later, the light component included in the falling period of the reflected light pulse reflects the brain activity of the user. The state of the brain activity of the user can be estimated by detecting the light component. Furthermore, it can be determined whether the user is proficient in mindfulness.
  • the stimulus may be presented to the user by the user viewing the content, such as audio or video created to guide a mindfulness state.
  • the stimuli are not limited to visual and auditory stimuli, but may be other types of stimuli, such as olfactory, tactile, or taste stimuli.
  • the at least one brain activity signal is a first period immediately before the user is stimulated, a second period when the user is stimulated, or a third period immediately after the user is stimulated. It may be generated more than once for each of the at least two time periods, including the second time period.
  • a signal indicating the proficiency level may be generated based on the brain activity signal acquired for each of the at least two time periods.
  • a person who is proficient in becoming mindfulness (hereinafter, referred to as “proficiency”) and a person who is not proficient (hereinafter, referred to as “non-proficiency”) are provided with images. Or, the tendency of the brain activity signal is different before and after the stimulation such as voice is given. More accurate estimation of mindfulness proficiency by analyzing not only brain activity signal during stimulation but also brain activity signal before and/or after stimulation can do.
  • the at least one brain activity signal includes a plurality of brain activity signals, and the plurality of brain activity signals may be obtained by detecting the light component a plurality of times in each of the first to third periods.
  • the brain activity signal may be repeatedly acquired at regular intervals.
  • the signal indicating the proficiency level may be generated based on the plurality of brain activity signals acquired for each of the first to third periods. In this way, the proficiency level of mindfulness can be estimated more accurately by acquiring multiple brain activity signals during and before and after a stimulus such as video or audio is given. be able to.
  • the signal indicating the proficiency level can be generated, for example, based on the degree of variation in the plurality of brain activity signals acquired for each of the first to third periods.
  • the at least one brain activity signal may be, for example, a signal that depends on the concentration of deoxygenated hemoglobin in blood in the brain. According to the experiments conducted by the present inventors, it has been found that the proficiency and the non-proficiency are significantly different in the tendency of the concentration change of deoxygenated hemoglobin depending on the presence or absence of stimulation. The proficiency level can be more accurately estimated by analyzing a signal depending on the concentration of deoxygenated hemoglobin in blood in the brain.
  • the brain activity signal may be generated based on two signals acquired by using two types of light having different wavelengths.
  • the brain activity signal is the first reflected light pulse of the first reflected light pulse from the head generated by irradiating the user's head with the light pulse of the first wavelength longer than 805 nm.
  • the first signal generated by detecting at least a part of the components included in the falling period of the pulse and the second signal from the head generated by irradiating the optical pulse of the second wavelength shorter than 805 nm.
  • a second signal generated by detecting at least a part of the component included in the falling period of the reflected light pulse.
  • Oxygenated hemoglobin absorbs near-infrared rays with a wavelength of more than about 805 nm relatively well. In contrast, deoxygenated hemoglobin relatively well absorbs near infrared or red light with wavelengths shorter than 805 nm.
  • the first signal can be a signal that is dependent on the concentration of oxygenated hemoglobin in cerebral blood.
  • the second signal can be a signal that depends on the concentration of deoxygenated hemoglobin in cerebral blood. The oxygen saturation in the cerebral blood can also be determined using these two signals. By combining these two signals, the proficiency can be estimated more accurately.
  • a biometric device includes a stimulator, a light source, a photodetector, and a signal processing circuit.
  • the stimulator provides a stimulus to the user.
  • the light source is configured to emit light toward the user's head while the stimulus is being applied to the user.
  • the photodetector is configured to detect a component of the light that has propagated in the brain of the user in the reflected light from the head and output a brain activity signal according to the intensity of the component.
  • the signal processing circuit is configured to generate and output, based on the brain activity signal, a signal indicating a user's level of proficiency with respect to becoming a mindfulness state.
  • the present disclosure also includes a program executed by a computer mounted on a biometric device that includes a stimulator, a light source, and a photodetector.
  • the program causes a computer to execute the following operations (a) to (d).
  • (A) Cause the stimulator to give a stimulus to the user.
  • (B) The light source emits light toward the head of the user while the stimulus is presented to the user.
  • (C) The photodetector is caused to detect the component of the light propagating in the brain of the user in the reflected light from the head, and to output the brain activity signal according to the intensity of the component.
  • D Based on the brain activity signal, a signal indicating the user's proficiency level for becoming a mindfulness state is generated and output.
  • a computer-readable recording medium stores a program that is executed by a computer installed in a biometric device that includes a stimulator, a light source, and a photodetector.
  • the stimulator is caused to give a stimulus to a user
  • the stimulus is given to the user
  • the light source is set to By emitting light toward the head and causing the photodetector to detect the component of the light that has propagated in the brain of the user among the reflected light from the head, the intensity of the component can be increased.
  • the technology of the present disclosure can be applied to, for example, an application for a mobile device such as a smartphone or a tablet computer.
  • a server computer connected to a plurality of mobile devices via a network such as the Internet may execute the above method.
  • the server computer may collect a brain activity signal of each user via a network, and generate and output a signal indicating the proficiency level of each user with respect to becoming mindfulness.
  • the signal indicating the proficiency level of each user may be transmitted to the mobile device of the user, and the determination result may be displayed on the display of the device.
  • a map data generation method a signal indicating the proficiency level of each of the plurality of users generated by the biometric method according to any one of the above from a computer of a plurality of users, and Acquiring position information of each of a plurality of users via a network, and based on the position information, generates and outputs map data in which the proficiency level of each of the plurality of users is associated with a map. And that.
  • the server computer may acquire the signal indicating the proficiency level generated by the mobile device of each user and the position information from the computers of the plurality of users via the network. Further, the server computer may generate and output map data in which the determination result of the mindfulness proficiency level of each user and the map are associated with each other based on the position information.
  • map data may represent a heat map showing the distribution of mindfulness masters. For example, a heat map may be generated in which areas with high levels of proficiency are shown in red, areas with low proficiency are shown in blue, and areas with a medium number of proficiency are shown in green.
  • the map data may be transmitted to the mobile device of each user, and the heat map may be displayed on the display of the device.
  • each user can know in which place many experts are gathered.
  • the place where many skilled people gather is likely to be a place where they are likely to be in a state of mindfulness, in other words, a place where they can feel comfortable and relax.
  • the user can know a place where he/she can feel comfortable and relax. Further, as will be described later, by utilizing the information collected from the mobile devices of a plurality of users for marketing, it becomes possible to create a new business opportunity.
  • FIG. 1A is a schematic diagram illustrating a biometric device 100 according to an exemplary embodiment of the present disclosure.
  • the biometric device 100 includes a stimulator 10, a light source 20, a photodetector 30, a control circuit 60, and a signal processing circuit 70.
  • FIG. 1A also shows a user 500 who uses the biometric device 100.
  • the stimulator 10 is a device that gives a stimulus to the user 500 to induce a mindfulness state.
  • the light source 20 is a device that emits pulsed light with which the head of the user 500 is irradiated.
  • the light source 20 is not limited to a single light emitting device, and may be realized by a combination of a plurality of light emitting devices.
  • the photodetector 30 is a device that detects at least a part of the reflected pulsed light returning from the head of the user 500.
  • the photodetector 30 may be, for example, an image sensor including a plurality of photodetector cells arranged two-dimensionally.
  • the control circuit 60 is a circuit that controls the stimulator 10, the light source 20, and the photodetector 30.
  • the signal processing circuit 70 is a circuit that processes the signal output from the photodetector 30.
  • the control circuit 60 in the present embodiment includes a stimulation control unit 61 that controls the stimulation device 10, a light source control unit 62 that controls the light source 20, and a detector control unit 63 that controls the photodetector 30.
  • the stimulation control unit 61, the light source control unit 62, and the detector control unit 63 may be realized by three separate circuits or may be realized by a single circuit.
  • the stimulus control unit 61, the light source control unit 62, and the detector control unit 63 may be realized by the control circuit 60 executing a control program stored in a memory (not shown).
  • the functions of the control circuit 60 and the signal processing circuit 70 may be realized by a single circuit.
  • the stimulus control unit 61 controls, for example, at least one of hue, saturation, and brightness of a video given as a stimulus, or at least one of sound quality and loudness of sound.
  • the light source control unit 62 controls, for example, the intensity, pulse width, emission timing, and/or wavelength of the pulsed light emitted from the light source 20.
  • the detector control unit 63 controls the timing of signal accumulation in each photodetecting cell of the photodetector 30.
  • biometric information means a measurable amount of a living body that changes due to stimulation.
  • Biological information for example, blood flow, blood pressure, heart rate, pulse rate, respiratory rate, body temperature, EEG, oxygenated hemoglobin concentration in blood, deoxygenated hemoglobin concentration in blood, blood oxygen saturation, skin Various quantities are included, such as reflectance spectra.
  • a part of biometric information is sometimes called a vital sign.
  • the stimulator 10 presents a stimulus to the user 500.
  • the stimulation causes a biological reaction of the user 500.
  • the stimulator 10 may include at least one of a display and a speaker.
  • the stimulator 10 provides the user 500 with a stimulus including at least one of audio and video that guides the user 500 to a mindfulness state.
  • the stimulus that induces the mindfulness state may be, for example, a stimulus such as audio and/or video that has been published for mindfulness meditation.
  • the stimulator 10 may be, for example, a mobile device such as a smartphone or a tablet computer. In that case, the stimulus that induces the mindfulness state may be provided by an application installed on the mobile device.
  • the stimulator 10 may be a device such as a head mounted device.
  • the stimulation device 10 has different structures and functions depending on the type of stimulation given to the user 500.
  • the stimulator 10 may include a device that generates vibration or heat.
  • the stimulating device 10 may include a device that generates an odor.
  • the light source 20 emits light toward the target part of the user 500.
  • the target part may be, for example, the head of the user 500, and more specifically, the forehead of the user 500.
  • the light emitted from the light source 20 and reaching the user 500 is divided into a surface reflection component I1 reflected on the surface of the user 500 and an internal scattering component I2 scattered inside the user 500.
  • the internal scattering component I2 is a component that is reflected or scattered once or multiple-scattered inside the living body.
  • the internal scattered component I2 reaches a site 8 mm to 16 mm deep from the surface of the head of the user 500, for example, the brain, and returns to the biometric device 100 again.
  • the surface reflection component I1 includes three components, a direct reflection component, a diffuse reflection component, and a scattered reflection component.
  • the direct reflection component is a reflection component having the same incident angle and reflection angle.
  • the diffuse reflection component is a component that is diffused and reflected by the uneven shape of the surface.
  • the scattered reflection component is a component that is scattered and reflected by the internal tissue near the surface. When light is emitted toward the head of the user 500, the scattered reflection component is a component that is scattered and reflected inside the epidermis.
  • the surface reflection component I1 that reflects off the surface of the user 500 may include these three components.
  • the traveling directions of the surface reflection component I1 and the internal scattering component I2 change due to reflection or scattering, and part of them reaches the photodetector 30.
  • the internal scattering component I2 is detected from the reflected light that is the light returning from the head of the user 500.
  • the intensity of the internal scattered component I2 varies, reflecting the brain activity of the user 500. Therefore, the state of the brain activity of the user 500 can be estimated by analyzing the change over time of the internal scattering component I2.
  • the light source 20 repeatedly emits an optical pulse a plurality of times at a predetermined time interval or a predetermined timing according to an instruction from the control circuit 60.
  • the light pulse emitted from the light source 20 may be, for example, a rectangular wave having a fall period close to zero.
  • the “falling period” means a period from when the intensity of the light pulse starts to decrease to when the decrease ends.
  • the light incident on the user 500 propagates in the user 500 through various routes and exits from the surface of the user 500 with a time difference. Therefore, the rear end of the internal scattering component I2 of the light pulse has a spread.
  • the falling period of the optical pulse can be set to, for example, 2 ns or less, which is half or less of that.
  • the fall period may be half that, or 1 ns or less.
  • the length of the rising period of the light pulse emitted from the light source 20 is arbitrary.
  • the “rising period” is a period from when the intensity of the light pulse starts to increase to when the increase ends.
  • the falling portion of the light pulse is used and the rising portion is not used.
  • the rising portion of the light pulse can be used for detecting the surface reflection component I1.
  • the light source 20 can be, for example, a laser such as an LD.
  • the light emitted from the laser has a steep time response characteristic in which the falling portion of the light pulse is substantially perpendicular to the time axis.
  • the wavelength of the light emitted from the light source 20 may be any wavelength included in the wavelength range of 650 nm or more and 950 nm or less, for example. This wavelength range is included in the wavelength range from red to near infrared.
  • the above wavelength range is called "living body window" and has a property that light is relatively hard to be absorbed by moisture and skin in the living body.
  • the detection sensitivity can be increased by using light in the above wavelength range.
  • the light used is mainly absorbed by oxygenated hemoglobin (HbO 2 ) and deoxygenated hemoglobin (Hb). ..
  • Oxygenated hemoglobin and deoxygenated hemoglobin have different wavelength dependence of light absorption. Generally, when blood flow changes, the concentrations of oxygenated hemoglobin and deoxygenated hemoglobin change. Along with this change, the degree of light absorption also changes. Therefore, when the blood flow changes, the detected light amount also changes with time.
  • the light source 20 may emit light of a single wavelength included in the above wavelength range, or may emit light of two or more wavelengths. Light of a plurality of wavelengths may be emitted from each of a plurality of light sources. When two lights having different wavelengths are emitted from the two light sources, the optical paths of the lights having the two wavelengths returned to the photodetector 30 via the target portion of the user 500 are designed to be substantially equal to each other. obtain. In this design, for example, the distance between the photodetector 30 and one light source and the distance between the photodetector 30 and the other light source are the same, and the two light sources are centered on the photodetector 30. It may be arranged in a rotationally symmetrical position.
  • the cerebral blood flow of the user 500 is measured without contact. Therefore, the light source 20 designed in consideration of the influence on the retina can be used.
  • the light source 20 that satisfies Class 1 of the laser safety standard established in each country may be used.
  • the class 1 is satisfied, the user 500 is irradiated with light having low illuminance such that the exposure limit (AEL) is less than 1 mW.
  • the light source 20 itself does not have to satisfy Class 1.
  • a laser safety standard Class 1 may be met by placing a diffuser or ND filter in front of the light source 20 to diffuse or attenuate the light.
  • the amount of light of the internal scattering component I2 is several thousandth to several tens of thousands, which is very small. It can be a small value. Furthermore, considering the safety standards of lasers, the amount of light that can be emitted is extremely small. Therefore, the detection of the internal scattered component I2 is very difficult. Even in that case, if the light source 20 emits a light pulse having a relatively large pulse width, the integrated amount of the internal scattering component I2 with a time delay can be increased. Thereby, the amount of detected light can be increased and the SN ratio can be improved.
  • the light source 20 emits an optical pulse having a pulse width of 3 ns or more, for example.
  • the temporal spread of light scattered in a living tissue such as the brain is about 4 ns.
  • FIG. 1B is a diagram showing an example of a temporal change in the intensity of light reaching the photodetector 30.
  • FIG. 1B shows an example of three cases in which the width of the input light pulse emitted from the light source 20 is 0 ns, 3 ns, and 10 ns. As shown in FIG. 1B, as the width of the light pulse from the light source 20 is increased, the light amount of the internal scattered component I2 that appears at the rear end of the light pulse returned from the user 500 increases.
  • FIG. 1C is a diagram in which the horizontal axis represents the width of the input light pulse and the vertical axis represents the amount of light detected by the photodetector 30.
  • the photodetector 30 includes an electronic shutter.
  • the result of FIG. 1C was obtained under the condition that the electronic shutter was opened 1 ns after the time when the trailing edge of the light pulse was reflected by the surface of the user 500 and reached the photodetector 30.
  • the reason for selecting this condition is that the ratio of the surface reflection component I1 is higher than that of the internal scattering component I2 immediately after the rear end of the light pulse arrives.
  • the pulse width of the light pulse emitted from the light source 20 is 3 ns or more, the detected light amount can be maximized.
  • the light source 20 may emit an optical pulse having a pulse width of 5 ns or more, and further 10 ns or more. On the other hand, if the pulse width is too large, the amount of unused light increases and it is wasted. Therefore, the light source 20 emits an optical pulse having a pulse width of 50 ns or less, for example. Alternatively, the light source 20 may emit a light pulse having a pulse width of 30 ns or less, further 20 ns or less.
  • the irradiation pattern of the light source 20 may be, for example, a pattern having a uniform intensity distribution in the irradiation area.
  • the present embodiment differs from the conventional biometric device disclosed in Patent Document 1.
  • the detector and the light source are separated by about 3 cm, and the surface reflection component is spatially separated from the internal scattering component. Therefore, there is no choice but to use discrete light irradiation.
  • the biometric device 100 according to the present embodiment can reduce the surface reflection component I1 by temporally separating it from the internal scattering component I2. Therefore, the light source 20 having an irradiation pattern having a uniform intensity distribution can be used.
  • the irradiation pattern having a uniform intensity distribution may be formed by diffusing the light emitted from the light source 20 with a diffusion plate.
  • the internal scattered component I2 can be detected even just below the irradiation point of the user 500.
  • the measurement resolution can also be increased by illuminating the user 500 with light over a wide spatial range.
  • the photodetector 30 outputs a signal indicating the amount of a part of the light emitted from the light source 20 and returned from the target portion of the user 500.
  • the signal may be a signal according to the intensity included in at least a part of the falling period of the reflected light pulse.
  • the photodetector 30 may include a plurality of photoelectric conversion elements 32 and a plurality of charge storage sections 34. Specifically, the photodetector 30 may include a plurality of photodetector cells arranged two-dimensionally. Such a photodetector 30 can acquire the two-dimensional biometric information of the user 500 at one time.
  • the light detection cell may be referred to as a "pixel".
  • the photodetector 30 can be, for example, any image sensor such as a CCD image sensor or a CMOS image sensor. More generally, the photodetector 30 includes at least one photoelectric conversion element 32 and at least one charge storage section 34.
  • the photodetector 30 may include an electronic shutter.
  • the electronic shutter is a circuit that controls the timing of image capturing.
  • the detector control unit 63 in the control circuit 60 has a function of an electronic shutter.
  • the electronic shutter controls a single signal accumulation period in which the received light is converted into an effective electric signal and accumulated, and a period in which the signal accumulation is stopped.
  • the signal accumulation period can also be referred to as an “exposure period”.
  • the width of the exposure period may be referred to as the “shutter width”.
  • the time from the end of one exposure period to the start of the next exposure period may be referred to as the "non-exposure period”.
  • the exposure state may be referred to as “OPEN”, and the exposure stop state may be referred to as “CLOSE”.
  • the photodetector 30 can adjust the exposure period and the non-exposure period by sub-nanosecond, for example, in the range of 30 ps to 1 ns by using the electronic shutter.
  • the conventional TOF camera whose purpose is to measure the distance detects all the light emitted from the light source 20 and reflected by the subject and returned.
  • the shutter width needs to be larger than the pulse width of light.
  • the shutter width can be set to a value of 1 ns or more and 30 ns or less, for example. According to the biometric device 100 in the present embodiment, the shutter width can be reduced, so that the influence of the dark current included in the detection signal can be reduced.
  • the light attenuation rate inside the living body is very large.
  • the emitted light may be attenuated to about one millionth of the incident light.
  • the light amount may be insufficient by irradiating only one pulse.
  • the light amount is particularly weak.
  • the light source 20 emits the light pulse a plurality of times, and the photodetector 30 is also exposed a plurality of times by the electronic shutter in response thereto, whereby the detection signals can be integrated to improve the sensitivity.
  • the photodetector 30 may include a plurality of pixels arranged two-dimensionally on the imaging surface. Each pixel may include a photoelectric conversion element such as a photodiode and one or more charge storage units. Hereinafter, each pixel has a photoelectric conversion element that generates a signal charge according to the amount of received light by photoelectric conversion, a charge storage unit that stores the signal charge generated by the surface reflection component I1 of the light pulse, and an internal scattering component of the light pulse. An example including a charge storage unit that stores the signal charge generated by I2 will be described.
  • the control circuit 60 causes the photodetector 30 to detect the surface reflection component I1 by detecting the portion of the optical pulse returned from the head of the user 500 before the start of the fall.
  • the control circuit 60 also causes the photodetector 30 to detect the internal scattered component I2 by detecting the portion of the optical pulse returning from the head of the user 500 after the start of the falling.
  • the light source 20 in this example emits light of two types of wavelengths.
  • FIG. 1D is a diagram showing an example of a schematic configuration of one pixel 201 of the photodetector 30. Note that FIG. 1D schematically illustrates the structure of one pixel 201, and does not necessarily reflect the actual structure.
  • the pixel 201 in this example includes a photodiode 203 that performs photoelectric conversion, a first floating diffusion layer (Floating Diffusion) 204 that is a charge storage unit, a second floating diffusion layer 205, a third floating diffusion layer 206, and It includes a fourth floating diffusion layer 207 and a drain 202 that drains signal charges.
  • Floating Diffusion floating diffusion layer
  • Photons that have entered each pixel due to one emission of a light pulse are converted by the photodiode 203 into signal electrons that are signal charges.
  • the converted signal electrons are discharged to the drain 202 or distributed to either the first floating diffusion layer 204 to the fourth floating diffusion layer 207 according to the control signal input from the control circuit 60.
  • the discharge of the signal charge to the drain 202 is repeated in this order.
  • This repetitive operation is fast, and can be repeated tens of thousands to hundreds of millions of times within one frame of a moving image, for example.
  • the time for one frame is, for example, about 1/30 second.
  • the pixel 201 finally generates and outputs four image signals based on the signal charges accumulated in the first floating diffusion layer 204 to the fourth floating diffusion layer 207.
  • the control circuit 60 in this example causes the light source 20 to repeatedly emit the first light pulse having the first wavelength and the second light pulse having the second wavelength in order.
  • the state of the user 500 can be analyzed. For example, a wavelength longer than 805 nm may be selected as the first wavelength and a wavelength shorter than 805 nm may be selected as the second wavelength. This makes it possible to detect changes in the oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration in the blood of the user 500.
  • the control circuit 60 first causes the light source 20 to emit the first light pulse.
  • the control circuit 60 accumulates the signal charge in the first floating diffusion layer 204 during the first period in which the surface reflection component I1 of the first light pulse is incident on the photodiode 203.
  • the control circuit 60 accumulates signal charges in the second floating diffusion layer 205 during the second period in which the internal scattered component I2 of the first light pulse is incident on the photodiode 203.
  • the control circuit 60 causes the light source 20 to emit the second light pulse.
  • the control circuit 60 accumulates signal charges in the third floating diffusion layer 206 during the third period in which the surface reflection component I1 of the second light pulse is incident on the photodiode 203.
  • the control circuit 60 accumulates signal charges in the fourth floating diffusion layer 207 during the fourth period in which the internal scattering component I2 of the second light pulse is incident on the photodiode 203.
  • the control circuit 60 starts the emission of the first optical pulse, and then leaves the first floating diffusion layer 204 and the second floating diffusion layer 205 from the photodiode 203 with a predetermined time difference.
  • the signal charges are sequentially accumulated.
  • the control circuit 60 starts the emission of the second light pulse, and then makes a predetermined time difference to the third floating diffusion layer 206 and the fourth floating diffusion layer 207, and outputs the signal from the photodiode 203.
  • the charges are accumulated in sequence. The above operation is repeated a plurality of times.
  • a period during which signal charges are accumulated in another floating diffusion layer may be provided with the light source 20 turned off.
  • the number of charge storage units is four, but it may be designed to be two or more depending on the purpose.
  • the number of charge accumulating portions may be two.
  • the number of wavelengths to be used is one and the surface reflection component I1 is not detected
  • the number of charge storage units for each pixel may be one.
  • the number of charge storage units may be one if the imaging using each wavelength is performed in another frame.
  • the number of charge accumulating portions may be 1 in a configuration in which they are detected in different frames.
  • FIG. 1E is a diagram showing an example of the configuration of the photodetector 30.
  • a region surrounded by a two-dot chain line frame corresponds to one pixel 201.
  • the pixel 201 includes one photodiode.
  • FIG. 1E shows only four pixels arranged in two rows and two columns, a larger number of pixels may be actually arranged.
  • the pixel 201 includes a first floating diffusion layer 204 to a fourth floating diffusion layer 207.
  • the signals accumulated in the first floating diffusion layer 204 to the fourth floating diffusion layer 207 are treated as if they were signals of four pixels of a general CMOS image sensor and output from the photodetector 30.
  • Each pixel 201 has four signal detection circuits.
  • Each signal detection circuit includes a source follower transistor 309, a row selection transistor 308, and a reset transistor 310.
  • the reset transistor 310 corresponds to the drain 202 shown in FIG. 1D
  • the pulse input to the gate of the reset transistor 310 corresponds to the drain discharge pulse.
  • Each transistor is, for example, a field effect transistor formed on a semiconductor substrate, but is not limited to this.
  • one of the input terminal and the output terminal of the source follower transistor 309 is connected to one of the input terminal and the output terminal of the row selection transistor 308.
  • the one of the input terminal and the output terminal of the source follower transistor 309 is typically the source.
  • the one of the input terminal and the output terminal of the row selection transistor 308 is typically the drain.
  • the gate which is the control terminal of the source follower transistor 309, is connected to the photodiode 203.
  • the signal charge of holes or electrons generated by the photodiode 203 is stored in the floating diffusion layer which is a charge storage unit between the photodiode 203 and the source follower transistor 309.
  • the first floating diffusion layer 204 to the fourth floating diffusion layer 207 are connected to the photodiode 203.
  • a switch may be provided between the photodiode 203 and each of the first floating diffusion layer 204 to the fourth floating diffusion layer 207. This switch switches the conduction state between the photodiode 203 and each of the first floating diffusion layer 204 to the fourth floating diffusion layer 207 in response to the signal accumulation pulse from the control circuit 60. This controls the start and stop of the accumulation of the signal charges from the first floating diffusion layer 204 to each of the fourth floating diffusion layers 207.
  • the electronic shutter in this embodiment has a mechanism for such exposure control.
  • the signal charge accumulated in the first floating diffusion layer 204 to the fourth floating diffusion layer 207 is read out by turning on the gate of the row selection transistor 308 by the row selection circuit 302. At this time, the current flowing from the source follower power source 305 to the source follower transistor 309 and the source follower load 306 is amplified according to the signal potentials of the first floating diffusion layer 204 to the fourth floating diffusion layer 207.
  • the analog signal based on this current read from the vertical signal line 304 is converted into digital signal data by the analog-digital (AD) conversion circuit 307 connected for each column. This digital signal data is read out for each column by the column selection circuit 303 and output from the photodetector 30.
  • AD analog-digital
  • the row selection circuit 302 and the column selection circuit 303 after reading one row, read the next row, and similarly, read the information of the signal charges of the floating diffusion layers of all the rows.
  • the control circuit 60 resets all floating diffusion layers by turning on the gate of the reset transistor 310 after reading all the signal charges. This completes the imaging of one frame. Similarly, the high-speed imaging of the frames is repeated to complete the imaging of a series of frames by the photodetector 30.
  • the photodetector 30 may be another type of image sensor.
  • the photodetector 30 may be, for example, a CCD type, a single photon counting type element, or an amplification type image sensor such as an EMCCD or ICCD.
  • FIG. 1F is a diagram showing an example of an operation within one frame in the present embodiment.
  • the emission of the first optical pulse and the emission of the second optical pulse may be alternately switched a plurality of times within one frame. By doing so, the time difference between the acquisition timings of the detected images due to the two types of wavelengths can be reduced, and even a user who is moving can take images with the first light pulse and the second light pulse almost at the same time.
  • the photodetector 30 can detect the surface reflection component I1 and/or the internal scattering component I2 of the light pulse.
  • the first biometric information of the user 500 can be acquired from the temporal or spatial change of the surface reflection component I1.
  • the first biometric information may be, for example, the pulse of the user 500.
  • the brain activity information that is the second biometric information of the user 500 can be acquired from the temporal or spatial change of the internal scattering component I2.
  • the first biometric information may be acquired by a method different from the method of detecting the surface reflection component I1 or may not be acquired in the first place.
  • another type of detector different from the photodetector 30 may be used to acquire the first biometric information.
  • the photodetector 30 detects only the internal scattering component I2.
  • Other types of detectors may be radar or thermography, for example.
  • the first biometric information may be, for example, at least one selected from the group consisting of the pulse rate, sweating, respiration, and body temperature of the user 500.
  • the first biometric information is biometric information other than the brain activity information obtained by detecting the internal scattered component I2 of the light pulse applied to the head of the user 500.
  • the first biometric information includes biometric information resulting from a bioactivity different from the brain activity.
  • the first biometric information may be, for example, biometric information due to autonomous or reflexive bioactivity.
  • the control circuit 60 adjusts the time difference between the emission timing of the light pulse of the light source 20 and the shutter timing of the photodetector 30.
  • the time difference may be referred to as “phase difference”.
  • the “emission timing” of the light source 20 is the timing at which the light pulse emitted from the light source 20 starts rising.
  • “Shutter timing” is the timing at which exposure is started.
  • the control circuit 60 may change the emission timing to adjust the phase difference, or may change the shutter timing to adjust the phase difference.
  • the control circuit 60 may be configured to remove the offset component from the signal detected by each pixel of the photodetector 30.
  • the offset component is a signal component due to ambient light such as sunlight or fluorescent light, or ambient light.
  • An offset component due to ambient light or ambient light is estimated by detecting a signal with the photodetector 30 in a state where the light source 20 is turned off and no light is emitted from the light source 20.
  • the control circuit 60 may be, for example, a combination of a processor and a memory, or an integrated circuit such as a microcontroller including the processor and the memory.
  • the control circuit 60 adjusts the emission timing and the shutter timing, for example, by the processor executing a program recorded in the memory, for example.
  • the signal processing circuit 70 is a circuit that processes the image signal output from the photodetector 30.
  • the signal processing circuit 70 performs arithmetic processing such as image processing.
  • the signal processing circuit 70 includes, for example, a digital signal processor (DSP), a programmable logic device (PLD) such as a field programmable gate array (FPGA), a central processing unit (CPU) or an image processing arithmetic processor (GPU), and a computer program. Can be realized in combination with.
  • the control circuit 60 and the signal processing circuit 70 may be one integrated circuit or may be separate and independent circuits.
  • the signal processing circuit 70 may be a component of an external device such as a server provided in a remote place. In this case, an external device such as a server mutually transmits/receives data to/from the light source 20, the photodetector 30, and the control circuit 60 by wireless communication or wired communication.
  • the signal processing circuit 70 can generate moving image data indicating temporal changes in blood flow on the skin surface and cerebral blood flow based on the signal output from the photodetector 30.
  • the signal processing circuit 70 is not limited to such moving image data, and may generate other information.
  • biological information such as blood flow in the brain, blood pressure, blood oxygen saturation, or heart rate may be generated by synchronizing with other devices.
  • the signal processing circuit 70 may estimate an offset component due to ambient light and remove the offset component.
  • the psychological state of the user 500 means, for example, mood, emotion, health, or temperature sensation.
  • Mood may include moods such as pleasant or unpleasant.
  • Emotions may include, for example, feelings of security, anxiety, sadness, or resentment.
  • the health condition can include, for example, a condition such as healthy or tired.
  • the temperature sensation may include, for example, a sensation of being hot, cold, or sultry.
  • Derivatives of these may include indexes indicating the degree of brain activity, such as skill level, proficiency level, and concentration level, in the psychological state.
  • the signal processing circuit 70 can estimate the psychological state of the user 500, such as the degree of concentration, based on, for example, a change in cerebral blood flow.
  • the cerebral blood flow in the forehead corresponding to the prefrontal cortex region of the brain is considered to reflect the state of concentration.
  • Mindfulness is closely related to the state of concentration.
  • the degree of concentration or mindfulness of the user 500 can be estimated.
  • FIG. 1G is a flowchart showing an outline of the operation regarding the light source 20 and the photodetector 30 by the control circuit 60.
  • the control circuit 60 generally performs the operations shown in FIG. 1G. Here, the operation when only the internal scattered component I2 is detected will be described.
  • step S101 the control circuit 60 first causes the light source 20 to emit an optical pulse for a predetermined time. At this time, the electronic shutter of the photodetector 30 is in a state where exposure is stopped. The control circuit 60 causes the electronic shutter to stop the exposure until the period when a part of the light pulse is reflected by the surface of the user 500 and reaches the photodetector 30 is completed. Next, in step S102, the control circuit 60 causes the electronic shutter to start exposure at the timing when the other part of the light pulse is scattered inside the user 500 and reaches the photodetector 30. After the elapse of the predetermined time, in step S103, the control circuit 60 causes the electronic shutter to stop the exposure.
  • step S104 the control circuit 60 determines whether or not the number of times of executing the signal accumulation reaches a predetermined number. When the determination in step S104 is No, steps S101 to S103 are repeated until Yes is determined. When the determination in step S104 is Yes, in step S105, the control circuit 60 causes the photodetector 30 to generate and output a signal indicating an image based on the signal charges accumulated in each floating diffusion layer.
  • the components of the light scattered inside the measurement target can be detected with high sensitivity.
  • the light emission and the exposure are performed a plurality of times, and they are performed as needed.
  • the biometric device 100 may include an imaging optical system that forms a two-dimensional image of the user 500 on the light receiving surface of the photodetector 30.
  • the optical axis of the imaging optical system is substantially orthogonal to the light receiving surface of the photodetector 30.
  • the imaging optical system may include a zoom lens. When the position of the zoom lens changes, the magnification of the two-dimensional image of the user 500 changes, and the resolution of the two-dimensional image on the photodetector 30 changes. Therefore, even if the distance to the user 500 is long, it is possible to enlarge a desired measurement region and observe it in detail.
  • the biometric device 100 may include, between the user 500 and the photodetector 30, a bandpass filter that passes only light in the wavelength band emitted from the light source 20 or light in the vicinity thereof.
  • the bandpass filter can be constituted by, for example, a multilayer filter or an absorption filter.
  • the bandpass filter may have a bandwidth of about 20 to 100 nm.
  • the biometric device 100 may include polarizing plates between the light source 20 and the user 500 and between the photodetector 30 and the user 500, respectively.
  • the polarization directions of the polarizing plate arranged on the light source 20 side and the polarizing plate arranged on the photodetector 30 side may have a crossed Nicol relationship. This prevents the specular reflection component of the surface reflection component I1 of the user 500, that is, the component having the same incident angle and reflection angle from reaching the photodetector 30. That is, the amount of light that the surface reflection component I1 reaches the photodetector 30 can be reduced.
  • the biometric device 100 in the present embodiment can detect the surface reflection component I1 and the internal scattering component I2 separately.
  • the signal intensity due to the internal scattered component I2 to be detected becomes very small.
  • the scattering and absorption of light by the scalp, cerebrospinal fluid, skull, gray matter, white matter and blood flow are large. ..
  • the change in the signal intensity due to the change in the blood flow rate or the component in the blood flow during brain activity is very small, which corresponds to a magnitude of several tens of minutes. Therefore, when detecting the internal scattering component I2, the surface reflection component I1, which is thousands to tens of thousands times the signal component to be detected, is removed as much as possible during imaging.
  • a surface reflection component I1 and an internal scattering component I2 are generated. Part of each of the surface reflection component I1 and the internal scattering component I2 reaches the photodetector 30.
  • the internal scattered component I2 is emitted from the light source 20 and passes through the inside of the target portion of the user 500 before reaching the photodetector 30. Therefore, the optical path length of the internal scattering component I2 is longer than the optical path length of the surface reflection component I1. Therefore, the time for the internal scattering component I2 to reach the photodetector 30 lags behind the time for the surface reflection component I1 to reach the photodetector 30 on average.
  • FIG. 2 is a diagram schematically showing a waveform of the light intensity of the reflected light pulse returned from the head of the user 500 when the light pulse of the rectangular wave is emitted from the light source 20.
  • the horizontal axis represents time (t) in each of the waveforms (a) to (d) in FIG.
  • the vertical axis represents intensity in the waveforms (a) to (c) of FIG. 2, and the waveform (d) represents the state of OPEN or CLOSE of the electronic shutter.
  • the waveform (a) in FIG. 2 shows the surface reflection component I1.
  • the waveform (b) in FIG. 2 shows the internal scattering component I2.
  • the waveform (c) in FIG. 2 shows the total component of the surface reflection component I1 and the internal scattering component I2.
  • the waveform of the surface reflection component I1 maintains a substantially rectangular shape.
  • the internal scattering component I2 is the sum of lights having various optical path lengths. Therefore, as shown in the waveform (b) of FIG. 2, the internal scattered component I2 has a characteristic that the rear end of the optical pulse is tailed. In other words, the falling period of the internal scattering component I2 is longer than the falling period of the surface reflection component I1.
  • the waveform (d) of FIG. 2 in order to extract the optical signal shown in the waveform (c) of FIG. 2 while increasing the ratio of the internal scattering component I2, after the time when the rear end of the surface reflection component I1 arrives, The exposure of the electronic shutter is started. In other words, the exposure is started when the waveform of the surface reflection component I1 falls or after that.
  • the shutter timing is adjusted by the control circuit 60.
  • the timing of light arrival differs depending on the pixel of the photodetector 30.
  • the shutter timing shown in the waveform (d) of FIG. 2 may be individually determined for each pixel.
  • the direction perpendicular to the light receiving surface of the photodetector 30 is the z direction.
  • the control circuit 60 may previously acquire data indicating the two-dimensional distribution of the z coordinate on the surface of the target portion, and change the shutter timing for each pixel based on this data. Accordingly, even when the surface of the target portion is curved, it is possible to determine the optimum shutter timing at each position.
  • the rear end of the surface reflection component I1 falls vertically. In other words, the time from the start of the fall of the surface reflection component I1 to the end thereof is zero. However, in reality, the rear end of the surface reflection component I1 may not fall vertically. For example, when the falling edge of the waveform of the light pulse emitted from the light source 20 is not completely vertical, when the surface of the target portion has fine irregularities, or when scattering occurs in the epidermis, the surface reflection component I1 The rear edge does not fall vertically. Further, since the user 500 is an opaque object, the amount of light of the surface reflection component I1 is much larger than the amount of light of the internal scattering component I2.
  • the control circuit 60 may slightly delay the shutter start timing of the electronic shutter from immediately after the fall of the surface reflection component I1. For example, it may be delayed by about 0.5 ns to 5 ns. Instead of adjusting the shutter timing of the electronic shutter, the control circuit 60 may adjust the emission timing of the light source 20.
  • control circuit 60 may adjust the time difference between the shutter timing of the electronic shutter and the emission timing of the light source 20.
  • the shutter timing may be kept near the rear end of the surface reflection component I1.
  • the time delay due to scattering inside the forehead is about 4 ns.
  • the maximum delay amount of shutter timing may be about 4 ns.
  • the signals may be accumulated by exposing each of the plurality of light pulses emitted from the light source 20 at shutter timings with the same time difference. As a result, the detected light amount of the internal scattering component I2 is amplified.
  • the offset component may be estimated by photographing in the same exposure period with the light source 20 not emitting light. Good. The estimated offset component is subtracted by the difference from the signal detected by each pixel of the photodetector 30. Thereby, the dark current component generated on the photodetector 30 can be removed.
  • the internal scattered component I2 includes internal characteristic information of the user 500, for example, cerebral blood flow information.
  • the amount of light absorbed by the blood changes according to the temporal change in the cerebral blood flow of the user 500.
  • the amount of light detected by the photodetector 30 also increases or decreases correspondingly. Therefore, by monitoring the internal scattered component I2, the brain activity state can be estimated from the change in the cerebral blood flow of the user 500.
  • the surface reflection component I1 includes surface characteristic information of the user 500, for example, blood flow information of the face and scalp.
  • the information on the surface reflection component I1 does not necessarily have to be acquired, and may be acquired as needed.
  • FIG. 3A is a diagram schematically showing an example of a timing chart when detecting the surface reflection component I1.
  • the shutter is opened before the light pulse reaches the photodetector 30, and the shutter is opened before the rear end of the light pulse arrives. It may be CLOSE.
  • CLOSE By controlling the shutter in this manner, it is possible to reduce mixing of the internal scattering component I2. As a result, it is possible to increase the proportion of light that has passed near the surface of the user 500.
  • the timing of the shutter CLOSE may be set immediately after the light reaches the photodetector 30. As a result, it becomes possible to detect a signal in which the ratio of the surface reflection component I1 having a relatively short optical path length is increased.
  • the photodetector 30 may detect the entire light pulse or the continuous light emitted from the light source 20.
  • FIG. 3B is a diagram schematically showing an example of a timing chart when detecting the internal scattering component I2.
  • control circuit 60 performs the following operations.
  • the control circuit 60 causes the light source 20 to emit one or more light pulses.
  • the control circuit 60 causes the photodetector 30 to detect a component included in the falling period of each optical pulse from the optical pulses returned from the target section of the user 500.
  • the component includes the internal scattering component I2.
  • the control circuit 60 causes the photodetector 30 to output a signal obtained by the detection.
  • the signal processing circuit 70 generates a signal indicating the brain activity state of the user 500 based on the signal.
  • the surface reflection component I1 may be detected by a device other than the biometric device 100 that acquires the internal scattering component I2.
  • An apparatus other than the apparatus for acquiring the internal scattered component I2, or another device such as a pulse wave meter or a Doppler blood flow meter may be used.
  • the separate device is used in consideration of timing synchronization between devices, light interference, and alignment of detection points. If time-division imaging is performed by the same camera or the same sensor as in the present embodiment, temporal and spatial deviations are unlikely to occur.
  • the components to be acquired may be switched for each frame as shown in FIGS. 3A and 3B. Alternatively, as described with reference to FIGS. 1D to 1F, the components to be acquired at high speed within one frame may be switched alternately. In that case, the detection time difference between the surface reflection component I1 and the internal scattering component I2 can be reduced.
  • the respective signals of the surface reflection component I1 and the internal scattering component I2 may be acquired using light of two wavelengths.
  • light pulses with two wavelengths of 750 nm and 850 nm may be used.
  • the change in the concentration of oxygenated hemoglobin and the change in the concentration of deoxygenated hemoglobin can be calculated from the change in the detected light amount at each wavelength.
  • a method of rapidly switching four types of charge accumulation within one frame is used. Can be done. With such a method, it is possible to reduce the time shift of the detection signal.
  • About 100 g of hemoglobin is present in 100 ml of blood.
  • Hemoglobin bound to oxygen is oxygenated hemoglobin
  • hemoglobin not bound to oxygen is deoxygenated hemoglobin.
  • the light absorption characteristics of oxygenated hemoglobin and deoxygenated hemoglobin are different.
  • Oxygenated hemoglobin absorbs near-infrared rays having a wavelength of more than about 805 nm relatively well.
  • deoxygenated hemoglobin relatively well absorbs near infrared or red light with wavelengths shorter than 805 nm.
  • the absorptances of both are similar. Therefore, a first wavelength longer than 600 nm and shorter than 805 nm and a second wavelength longer than 805 nm and shorter than 1000 nm may be used.
  • the above-mentioned light having two wavelengths of 750 nm and 850 nm can be used. Based on the detected light amounts of these lights, it is possible to detect the time change of the respective concentrations of oxygenated hemoglobin and deoxygenated hemoglobin in blood. Furthermore, the oxygen saturation level of hemoglobin can be obtained. The oxygen saturation is a value indicating how much of hemoglobin in blood is associated with oxygen.
  • the living body contains components that absorb red light and near infrared light.
  • the temporal fluctuation of the light absorption rate is mainly due to the hemoglobin in the arterial blood. Therefore, the blood oxygen saturation can be measured with high accuracy based on the change in the absorption rate.
  • the signal processing circuit 70 may perform a process of subtracting the surface reflection component I1 from the internal scattering component I2 detected by the photodetector 30. Thereby, pure cerebral blood flow information excluding blood flow information of the scalp and face can be acquired.
  • the subtraction method for example, a method of subtracting a value obtained by multiplying the signal of the surface reflection component I1 by a coefficient of 1 or more determined in consideration of the optical path length difference from the signal of the internal scattering component I2 can be used.
  • This coefficient can be calculated by simulation or experiment, for example, based on the average value of the optical constants of the head of a general person.
  • Such subtraction processing can be easily performed when measurement is performed using light of the same wavelength by the same camera or sensor. This is because it is easy to reduce the temporal and spatial shifts, and it is easy to match the characteristics of the scalp blood flow component included in the internal scattering component I2 and the surface reflection component I1.
  • the two-dimensional distribution of cerebral blood flow and the two-dimensional distribution of blood flow of the scalp and face are independent. Therefore, based on the signal detected by the photodetector 30, the two-dimensional distribution of the internal scattering component I2 and the two-dimensional distribution of the surface reflection component I1 are separated using a statistical method such as independent component analysis or principal component analysis. You may.
  • FIG. 4A is a diagram schematically showing an example of temporal changes in cerebral blood flow.
  • the target portion 500t of the user 500 is illuminated with the light from the light source 20, and the returned light is detected.
  • the surface reflection component I1 is much larger than the internal scattering component I2.
  • the graph shown in FIG. 4A shows an example of changes over time in the concentrations of oxygenated hemoglobin (HbO 2 ) and deoxygenated hemoglobin (Hb) in cerebral blood.
  • the internal scattering component I2 in this example is acquired using light of two wavelengths.
  • the density shown in FIG. 4A indicates the amount of change based on the amount in normal times.
  • This change amount is calculated by the signal processing circuit 70 based on the light intensity signal.
  • Cerebral blood flow changes depending on the brain activity state such as normal state, concentration state, or relaxed state. For example, there is a difference in brain activity or a difference in absorption coefficient or scattering coefficient depending on the location of the target portion. Therefore, the temporal change in cerebral blood flow is measured at the same position in the target portion 500t of the user 500.
  • FIG. 4B is a diagram schematically showing an example in which measurement is simultaneously performed at a plurality of locations in the target section 500t of the user 500.
  • the irradiation pattern of the light source 20 may be, for example, a uniform distribution of uniform intensity, a dot-shaped distribution, or a donut-shaped distribution. If the irradiation has a uniform distribution with a uniform intensity, it is unnecessary or easy to adjust the irradiation position on the target portion 500t. If the irradiation has a uniform distribution, the light enters the target portion of the user 500 from a wide range.
  • the signal detected by the photodetector 30 can be enhanced. Further, it can be measured at any position within the irradiation area. In the case of partial irradiation such as a dot-shaped distribution or a donut-shaped distribution, the influence of the surface reflection component I1 can be reduced only by removing the target portion 500t from the irradiation area.
  • FIG. 5A is a diagram schematically showing an example of the light irradiation area 22.
  • the detected light amount attenuates in inverse proportion to the square of the distance from the device to the target portion. Therefore, the signal of each pixel detected by the photodetector 30 may be enhanced by integrating the signals of a plurality of neighboring pixels. By doing so, the number of integrated pulses can be reduced while maintaining the SN ratio. Thereby, the frame rate can be improved.
  • FIG. 5B is a diagram schematically showing a change in signal when the target portion 500t of the user 500 shifts in the horizontal direction.
  • the change in brain activity can be read by detecting the difference between the cerebral blood flow when the brain activity changes from the normal state and the cerebral blood flow in the normal state.
  • the photodetector 30 including a plurality of photoelectric conversion elements arranged two-dimensionally is used, a two-dimensional brain activity distribution can be acquired as shown in the upper diagram of FIG. 5B. In this case, it is possible to detect a region where brain activity is active from the relative intensity distribution within the two-dimensional distribution without acquiring the signal in the normal state in advance.
  • the position of the target portion 500t may change during the measurement as shown in the lower diagram of FIG. 5B. This may occur, for example, when the user 500 has moved slightly due to breathing. Generally, the two-dimensional distribution of cerebral blood flow does not change rapidly within a very short time. Therefore, for example, the positional deviation of the target portion 500t can be corrected by pattern matching between the detected two-dimensional distribution frames. Alternatively, if it is a periodical movement such as breathing, only its frequency component may be extracted and corrected or removed.
  • the target portion 500t does not have to be a single area, but may be a plurality of areas. The plurality of regions may be, for example, one on the left and one on the right, or may have a 2 ⁇ 6 matrix dot distribution.
  • the brain activity of the user 500 can be estimated based on the internal scattered component I2 of the reflected light. This property can be used to estimate how proficient the user 500 is in being in a mindfulness state.
  • a voice guide for mindfulness meditation is used as an example of a stimulus that guides the user 500 to a mindfulness state.
  • the user 500 performs meditation according to the voice guide output from the speaker of the stimulator 10.
  • the light source 20 While the voice guide is being reproduced, the light source 20 repeatedly emits a light pulse toward the head of the user 500 at regular time intervals, and the photodetector 30 causes the signal of the internal scattered component of the reflected light pulse to be pixelated. Accumulate for each.
  • the same operation is performed in each period immediately before and immediately after the voice guide is reproduced.
  • FIG. 6 is a diagram showing, on a time axis, the flow of one determination operation of the proficiency level of mindfulness in the present embodiment.
  • One determination operation in this embodiment is composed of three periods.
  • the first period is a period of a predetermined time length immediately before the voice guide is reproduced.
  • the first period is referred to as a "rest A period”.
  • the second period is a period in which the voice guide is reproduced.
  • the second period is called a "task period”.
  • the “task” refers to a task such as mindfulness meditation presented to the user 500.
  • the third period is a period of a predetermined time length immediately after the reproduction of the voice guide is completed.
  • the third period is referred to as a "rest B period”.
  • the biometric device 100 repeatedly generates the brain activity signal of the user 500 over the first to third periods.
  • the user 500 performs meditation according to the voice guide.
  • the length of each of the rest A period and the rest B period is 120 seconds, and the length of the task period period is 392 seconds.
  • the length of each period is not limited to this example and can be adjusted as appropriate.
  • the lengths of the rest A period and the rest B period may be different.
  • FIG. 7 is a flowchart showing the flow of the determination operation by the biometric device 100.
  • the biometric device 100 starts measuring the brain activity signal of the user 500 (step S701).
  • the audio guide for mindfulness has not yet been played.
  • the brain activity signal is repeatedly acquired for a predetermined time (for example, 120 seconds) while the user 500 is not doing anything. This is performed in order to acquire the normal brain activity signal of the user 500. This period is the above-mentioned rest A period.
  • the measurement is performed by repeating the operation in which the light source 20 emits a light pulse toward the head of the user 500 and the photodetector 30 detects the rear end portion of the reflected light pulse.
  • the photodetector 30 outputs a signal corresponding to the accumulated amount of reflected light pulses for each pixel.
  • the signal processing circuit 70 repeatedly generates a brain activity signal based on the signal output from the photodetector 30.
  • the brain activity signal may be generated, for example, for each pixel or for each pixel group.
  • the control circuit 60 causes the stimulator 10 to start the reproduction of the voice guide (step S702). Thereafter, the user 500 practices the mindfulness meditation, that is, the task according to the voice guide. During the task, the measurement of the brain activity signal is continued as it is.
  • the signal processing circuit 70 repeatedly generates a brain activity signal based on the signal output from the photodetector 30 while the user 500 is performing a task.
  • the voice guide ends (step S703). Even after the voice guide is finished, the measurement is continued as it is for a certain period of time (for example, 120 seconds). As a result, the brain activity signal is repeatedly acquired even after the task is completed. This period is the rest B period described above.
  • the signal processing circuit 70 ends the measurement of the brain activity signal (step S704).
  • the signal processing circuit 70 analyzes a plurality of brain activity signals acquired during the rest A period, the task period, and the rest B period, and determines the proficiency level of the user 500.
  • the signal processing circuit 70 creates a histogram of the difference between the acquired brain activity signal value and the average value thereof for each of the rest A, the task, and the rest B (step S705). Specifically, the signal processing circuit 70 performs the following processing. (1) Calculate the average value of the brain activity signal values acquired during the rest A, task, and rest B periods. (2) Calculate the difference between each value of the brain activity signal and the average value. (3) Obtain the frequency for each calculated difference class.
  • the signal processing circuit 70 tests the significant difference between the three histograms using the existing test method (step S706). If there is a significant difference, the signal processing circuit 70 determines the user 500 as an inexpert (step S708). On the contrary, when there is no significant difference, the signal processing circuit 70 determines that the user 500 is an expert (step S709). The determination result may be displayed on the display of the stimulation device 10, for example.
  • FIGS. 8A and 8B show examples of three histograms created in step S705.
  • FIG. 8A shows an example of the histogram obtained for the unskilled person.
  • FIG. 8B shows an example of the histogram obtained for the expert.
  • the notations “before”, “mindfulness”, and “after” in FIGS. 8A and 8B correspond to rest A, task, and rest B, respectively.
  • the illustrated histogram was created using the averaged brain activity signal every 5 seconds during each period.
  • the degree of variation in the brain activity signal is different between the rest period and the task period before and after the mindfulness task. It is considered that this is because the brain activity state of the unskilled person changes greatly by performing the task.
  • the skilled person does not see a significant difference in the degree of variation in brain activity signals between the rest period before and after the task and the task period. It is considered that this is because the skilled person maintains the mindfulness state and the brain activity state is stable regardless of the presence or absence of the task.
  • the expert and the non-expert are discriminated based on whether there is a significant difference in the degree of variation in brain activity signals between the rest A period or the rest B period and the task period. be able to.
  • the brain activity signal is acquired in both the rest A period and the rest B period, but either the rest A period or the rest B period may be omitted.
  • the significant difference between the rest period and the task period histogram can be tested by using a known test method such as t-test.
  • the determination method shown in FIG. 7 is merely an example, and there are various methods for determining the proficiency level from the acquired brain activity signal.
  • the proficiency level may be determined by applying a pre-trained model trained by a machine learning algorithm to a plurality of acquired brain activity signals.
  • a two-level evaluation of whether or not the user is proficient in mindfulness is performed, but an evaluation of three or more levels may be performed depending on the proficiency level.
  • the user practices the task and determines the proficiency level according to the voice that guides the user to the mindfulness state, but the present disclosure is not limited to such a determination method.
  • the voice may be a stimulus that interferes with the mindfulness state.
  • the proficiency may be determined by having the user perform a task in the absence of stimulation such as voice.
  • FIG. 9 is a conceptual diagram of a system for collecting and utilizing brain activity signals and position data from mobile devices 400 of a plurality of users.
  • This system includes a plurality of mobile devices 400 and a server computer 200.
  • the server computer 200 is connected to a plurality of mobile devices 400 via a network such as the Internet. Although three mobile devices 400 are illustrated in FIG. 9, a larger number of mobile devices 400 may be connected to the server computer 200.
  • the server computer 200 may be, for example, a cloud server managed by a business.
  • FIG. 10 is a diagram showing a schematic configuration of the server computer 200 and the plurality of mobile devices 400.
  • Each mobile device 400 may be a mobile information device such as a smartphone, a tablet computer, or a laptop PC.
  • Each mobile device 400 includes a stimulator 410, a light source 420, a photodetector 430, a memory 450, a processor 460, and a communication circuit 480.
  • the stimulator 410, the light source 420, and the photodetector 430 have the same functions as the stimulator 10, the light source 20, and the photodetector 30 shown in FIG. 1A, respectively.
  • the processor 460 has the same functions as the control circuit 60 and the signal processing circuit 70 shown in FIG. 1A.
  • the memory 450 includes RAM and ROM, and stores various programs executed by the processor 460 and generated data.
  • the stimulator 410 can be realized by a combination of a display and a speaker included in the mobile device 400, for example.
  • the light source 420 may be built in the mobile device 400 or may be a device externally attached to the mobile device 400.
  • the photodetector 430 may be an image sensor built in the mobile device 400 or a device externally attached to the mobile device 400.
  • the communication circuit 480 performs wireless communication with the server computer 200.
  • the communication circuit 480 can receive position signals from GPS satellites. Based on the position signals obtained from the GPS satellites, the processor 460 can calculate the latitude and longitude of the current location.
  • Each mobile device 400 can download and install the aforementioned application for mindfulness from the server computer 200.
  • the program of the application is recorded in the memory 450 and executed by the processor 460.
  • the user of each mobile device 400 can start the application and perform mindfulness meditation according to the guidance reproduced.
  • processor 460 controls light source 420 and photodetector 430 to measure brain activity in the manner described above. The measurement can be repeated, for example, at regular time intervals. This time interval can be set arbitrarily in the range of, for example, several microseconds to several seconds.
  • the processor 460 generates a brain activity signal in a predetermined region of the target part of the user based on the signal repeatedly output from the photodetector 430.
  • the brain activity signal can be, for example, a signal that depends on the concentration of deoxygenated hemoglobin in cerebral blood.
  • the processor 460 determines the user's level of proficiency with respect to becoming mindfulness, for example, by executing the process shown in FIG.
  • the mobile device 400 transmits data that associates the determination result of the skill level and the position information to the server computer 200 via the network.
  • This data may include, for example, the ID of the mobile device 400 or other information such as a user's comment. Such data can be collected as big data from the terminals of many users.
  • the server computer 200 includes a signal processing circuit 210 and a recording medium 220.
  • the recording medium 220 stores the program executed by the signal processing circuit 210 and the generated data.
  • the recording medium 220 may include a memory and a hard disk, for example.
  • the signal processing circuit 210 collects the above-mentioned data from a plurality of mobile devices 400, and outputs information indicating the determination result of the proficiency level of each user included in the data and map information recorded in advance in the recording medium 220. Generate the associated map data.
  • the signal processing circuit 210 transmits the generated map data to each mobile device 400.
  • FIG. 11 is a diagram showing an example of an image displayed on the display of the mobile device 400 based on the map data.
  • the map data in this example represents a heat map in which a number of mindfulness masters are represented by a plurality of different colors. For example, places with a high level of proficiency are displayed in red (R), places with a moderate number of proficiency are displayed in green (G), and places with a low level of proficiency are displayed in blue (B). Places with no sign are displayed without coloring.
  • R red
  • G places with a moderate number of proficiency
  • B places with a low level of proficiency
  • Places with no sign are displayed without coloring.
  • the visualization method is not limited to the heat map, and may be a method of displaying information such as a mark or a character indicating that there are many experts on the map, for example.
  • a place where many skilled people gather is likely to be a place where a mindfulness state is likely to occur.
  • the user can easily know the place suitable for mindfulness.
  • the user can actually go to a place where many skilled people gather, and can provide the server computer 200 with the impressions, comments, recommendations, etc. via the portable device 400. Utilizing the information collected from multiple users for marketing may lead to the creation of new business opportunities.
  • the biometric device is not limited to a portable computer such as a smartphone, but may be mounted on another device, for example, a head mount device.
  • FIG. 12 is a diagram schematically showing an example of the head mount device 300.
  • the head mount device 300 includes a display and a speaker that function as a stimulator, a light source, and a photodetector. Even when such a head mount device 300 is used, the same effect as described above can be obtained.
  • the technology of the present disclosure can acquire the brain activity information of the user without contact.
  • the technology of the present disclosure can be used for various devices such as a camera, a measuring device, a smartphone, a tablet computer, and a head mount device.
  • Stimulator 20 Light source 30 Photodetector 60 Control circuit 62 Light source control unit 63 Detector control unit 70 Signal processing circuit 100 Biometric device 200 Server computer 201 Pixel 202 Drain 203 Photodiode 204 First floating diffusion layer 205 Second Floating diffusion layer 206 Third floating diffusion layer 207 Fourth floating diffusion layer 210 Signal processing circuit 220 Recording medium 300 Head mount device 302 Row selection circuit 303 Column selection circuit 304 Vertical signal line 305 Source follower power supply 306 Source follower load 307 Analog -Digital conversion circuit 308 Row selection transistor 309 Source follower transistor 310 Reset transistor 400 Portable device 410 Stimulator 420 Light source 430 Photodetector 450 Memory 460 Processor 480 Communication circuit

Abstract

A biosensing method according to an embodiment of the present invention includes the steps of: acquiring at least one brain activity signal indicating the activity state of the brain of the user, said brain activity signal being generated upon detection of the light component of illumination light projected on and reflected from the head of the user that has traveled through the brain of the user; and generating and outputting a signal that indicates proficiency of the user with respect to being in a mindfulness state on the basis of the least one brain activity signal.

Description

生体計測方法、地図データ生成方法、プログラム、コンピュータ読み取り可能な記録媒体、および生体計測装置Biometric method, map data generation method, program, computer-readable recording medium, and biometric device
 本開示は、生体計測方法、地図データ作成方法、プログラム、コンピュータ読み取り可能な記録媒体、および生体計測装置に関する。 The present disclosure relates to a biometric method, a map data creation method, a program, a computer-readable recording medium, and a biometric device.
 近年、マインドフルネスに関する研究が、心理学、医学、産業、スポーツ、福祉、教育等の様々な分野において進められている。日本マインドフルネス学会によれば、マインドフルネスは、「今、この瞬間に意図的に意識を向け、評価をせずに、とらわれのない状態で、ただ観ること」と定義される。例えば、非特許文献1に開示されているように、マインドフルネスを実践することにより、ストレスの低減、疾病のリスクの低減、および集中力の向上等の様々な効果があると言われている。マインドフルネスの技法は、例えば、鬱病の治療に取り入られることがある。産業界においても、マインドフルネスは、例えばリーダーシップの涵養に効果的であると言われ、近年注目されている。マインドフルネス状態になるためのエクササイズとして、マインドフルネス瞑想が広く知られている。マインドフルネス瞑想を実践するための音声または映像などのコンテンツが、例えばインターネットで広く公開されている。 In recent years, research on mindfulness has been advanced in various fields such as psychology, medicine, industry, sports, welfare, and education. According to the Japan Mindfulness Society, mindfulness is defined as "just watching at this moment, without intention and without intentionally directing consciousness, evaluation." For example, as disclosed in Non-Patent Document 1, practicing mindfulness is said to have various effects such as stress reduction, disease risk reduction, and concentration improvement. .. Mindfulness techniques may be incorporated into the treatment of depression, for example. Mindfulness, which is said to be effective for the development of leadership in the industrial world, has been attracting attention in recent years. Mindfulness meditation is widely known as an exercise for achieving a state of mindfulness. Content such as audio or video for practicing mindfulness meditation is widely published, for example, on the Internet.
 一方で、光を用いて対象者の生体内部の情報を取得する種々の方法が知られている。 On the other hand, various methods for obtaining information inside the living body of a subject using light are known.
 特許文献1は、光源と光検出器とを所定の間隔で離した状態で、それらを対象部に密着させて生体情報を取得する方法を開示している。 Patent Document 1 discloses a method in which a light source and a photodetector are separated from each other at a predetermined interval, and they are brought into close contact with a target portion to acquire biometric information.
 特許文献2は、対象者の脳血流に関する情報を非接触で取得し、対象者の集中度または感情などの心理状態を推定する技術を開示している。 [Patent Document 2] discloses a technique of acquiring information on a subject's cerebral blood flow in a non-contact manner and estimating a psychological state such as a degree of concentration or emotion of the subject.
 特許文献3は、複数の対象者の脳活動信号を計測し、複数の対象者の位置関係に基づいて、各対象者の生体情報の解析結果と位置情報とを関連付けて表示するシステムを開示している。 Patent Literature 3 discloses a system that measures brain activity signals of a plurality of subjects and displays the analysis result of the biometric information of each subject and the position information in association with each other based on the positional relationship of the plurality of subjects. ing.
特開平11-164826号公報JP-A-11-164826 特開2017-124153号公報JP, 2017-124153, A 特開2013-17734号公報JP, 2013-17734, A
 従来、ユーザがマインドフルネス状態に熟達しているかを判定する技術は存在しなかった。本開示は、ユーザがマインドフルネス状態になることに熟達しているか否かを判定することを可能にする新規な技術を提供する。 Previously, there was no technology to determine whether a user is proficient in mindfulness. The present disclosure provides a novel technique that allows a user to determine whether they are proficient in entering a mindfulness state.
 本開示の一態様に係る生体計測方法は、ユーザの頭部に照射光を照射することによって生じた前記頭部からの反射光のうち、前記ユーザの脳内を伝播した光の成分を検出することによって生成され、前記脳の活動状態を示す少なくとも1つの脳活動信号を取得することと、前記少なくとも1つの脳活動信号に基づき、マインドフルネス状態になることについての前記ユーザの熟達度を示す信号を生成して出力することと、を含む。 A biometric method according to an aspect of the present disclosure detects a component of light propagating in the brain of the user, of reflected light from the head generated by irradiating the user's head with irradiation light. And acquiring at least one brain activity signal generated by the method and indicating the activity status of the brain, and indicating the user's proficiency level of being in a mindfulness state based on the at least one brain activity signal. Generating and outputting a signal.
 本開示の包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能な記録ディスク等の記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。コンピュータ読み取り可能な記録媒体は、例えばCD-ROM(Compact Disc‐Read Only Memory)等の不揮発性の記録媒体を含み得る。装置は、1つ以上の装置で構成されてもよい。装置が2つ以上の装置で構成される場合、当該2つ以上の装置は、1つの機器内に配置されてもよく、分離した2つ以上の機器内に分かれて配置されてもよい。本明細書および特許請求の範囲では、「装置」とは、1つの装置を意味し得るだけでなく、複数の装置からなるシステムも意味し得る。 The comprehensive or specific aspects of the present disclosure may be realized by a recording medium such as a system, a device, a method, an integrated circuit, a computer program or a computer-readable recording disk, and the system, the device, the method, the integrated circuit, It may be realized by any combination of a computer program and a recording medium. The computer-readable recording medium may include a nonvolatile recording medium such as a CD-ROM (Compact Disc-Read Only Memory). The device may be composed of one or more devices. When the device is composed of two or more devices, the two or more devices may be arranged in one device or may be separately arranged in two or more separate devices. In this specification and claims, "device" can mean not only one device, but also a system composed of a plurality of devices.
 本開示の一態様によれば、ユーザがマインドフルネス状態になることに熟達しているか否かを判定することができる。 According to an aspect of the present disclosure, it is possible to determine whether or not a user is proficient in becoming a mindfulness state.
図1Aは、生体計測装置の例を模式的に示す図である。FIG. 1A is a diagram schematically showing an example of a biometric device. 図1Bは、光検出器に到達する光の強度の時間変化の例を示す図である。FIG. 1B is a diagram showing an example of a temporal change in the intensity of light reaching the photodetector. 図1Cは、入力光パルスの幅を横軸に、光検出器での検出光量を縦軸に表した図である。FIG. 1C is a diagram in which the width of the input light pulse is shown on the horizontal axis and the amount of light detected by the photodetector is shown on the vertical axis. 図1Dは、光検出器の1つの画素の概略的な構成の例を示す図である。FIG. 1D is a diagram showing an example of a schematic configuration of one pixel of the photodetector. 図1Eは、光検出器の構成の一例を示す図である。FIG. 1E is a diagram showing an example of the configuration of a photodetector. 図1Fは、1フレーム内の動作の例を示す図である。FIG. 1F is a diagram showing an example of the operation within one frame. 図1Gは、制御回路による動作の概略を示すフローチャートである。FIG. 1G is a flowchart showing an outline of the operation of the control circuit. 図2は、光パルスの内部散乱成分の検出方法を説明するための図である。FIG. 2 is a diagram for explaining a method of detecting an internal scattering component of a light pulse. 図3Aは、表面反射成分を検出する場合のタイミングチャートの一例を模式的に示す図である。FIG. 3A is a diagram schematically showing an example of a timing chart when detecting a surface reflection component. 図3Bは、内部散乱成分を検出する場合のタイミングチャートの一例を模式的に示す図である。FIG. 3B is a diagram schematically showing an example of a timing chart when detecting an internal scattering component. 図4Aは、脳血流量の変化を検出する方法の例を模式的に示す図である。FIG. 4A is a diagram schematically showing an example of a method for detecting a change in cerebral blood flow. 図4Bは、ユーザの対象部内の複数箇所での計測を同時に行う方法の一例を模式的に示す図である。FIG. 4B is a diagram schematically illustrating an example of a method of simultaneously performing measurement at a plurality of locations within the target portion of the user. 図5Aは、光の照射領域の一例を模式的に示す図である。FIG. 5A is a diagram schematically showing an example of a light irradiation area. 図5Bは、ユーザの頭部の横方向の動きに起因する計測結果の変化を模式的に示す図である。FIG. 5B is a diagram schematically showing a change in the measurement result due to the lateral movement of the user's head. 図6は、マインドフルネスの熟達度の1回の判定動作の流れを時間軸上に表した図である。FIG. 6 is a diagram showing on a time axis the flow of one determination operation of the proficiency level of mindfulness. 図7は、熟達度の判定動作の流れを示すフローチャートである。FIG. 7 is a flow chart showing the flow of the determination operation of the proficiency level. 図8Aは、非熟達者について得られた3つのヒストグラムの例を示す図である。FIG. 8A is a diagram showing an example of three histograms obtained for an unskilled person. 図8Bは、熟達者について得られた3つのヒストグラムの例を示す図である。FIG. 8B is a diagram showing an example of three histograms obtained for the expert. 図9は、複数のユーザの携帯機器から脳活動信号および位置データを収集して活用するシステムの概念図である。FIG. 9 is a conceptual diagram of a system for collecting and utilizing brain activity signals and position data from mobile devices of a plurality of users. 図10は、サーバおよび複数の携帯機器の概略的な構成を示す図である。FIG. 10 is a diagram showing a schematic configuration of a server and a plurality of mobile devices. 図11は、地図データに基づいて携帯機器のディスプレイが表示する画像の一例を示す図である。FIG. 11 is a diagram showing an example of an image displayed on the display of the mobile device based on the map data. 図12は、ヘッドマウント装置の例を模式的に示す図である。FIG. 12 is a diagram schematically showing an example of the head mount device.
 以下で説明される実施形態は、いずれも包括的または具体的な例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、およびステップの順序は、一例であり、本開示の技術を限定する趣旨ではない。以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。各図は模式図であり、必ずしも厳密に図示されたものではない。さらに、各図において、実質的に同一または類似の構成要素には同一の符号を付している。重複する説明は省略または簡略化されることがある。 Each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, steps, and order of steps shown in the following embodiments are examples, and are not intended to limit the technology of the present disclosure. Among the constituent elements in the following embodiments, the constituent elements that are not described in the independent claim indicating the highest concept are described as arbitrary constituent elements. Each drawing is a schematic view, and is not necessarily an exact illustration. Further, in each of the drawings, substantially the same or similar components are designated by the same reference numerals. Overlapping explanations may be omitted or simplified.
 本開示において、回路、ユニット、装置、部材または部の全部または一部、またはブロック図における機能ブロックの全部または一部は、例えば、半導体装置、半導体集積回路(IC)、またはLSI(large scale integration)を含む1つまたは複数の電子回路によって実行され得る。LSIまたはICは、1つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、1つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、もしくはULSI(ultra large scale integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、またはLSI内部の接合関係の再構成またはLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。 In the present disclosure, all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram may be, for example, a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (large scale integration). ) Can be implemented by one or more electronic circuits including. The LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips. For example, the functional blocks other than the memory element may be integrated on one chip. Although referred to as an LSI or an IC here, the name may be changed depending on the degree of integration, and may be referred to as a system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration). The Field Programmable Gate Array (FPGA), which is programmed after the LSI is manufactured, or the reconfigurable logic device that can reconfigure the bonding relation inside the LSI or set up the circuit section inside the LSI can be used for the same purpose.
 さらに、回路、ユニット、装置、部材または部の全部または一部の機能または操作は、ソフトウェア処理によって実行することが可能である。この場合、ソフトウェアは1つまたは複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウェアが処理装置(processor)によって実行されたときに、そのソフトウェアで特定された機能が処理装置(processor)および周辺装置によって実行される。システムまたは装置は、ソフトウェアが記録されている1つまたは複数の非一時的記録媒体、処理装置(processor)、および必要とされるハードウェアデバイス、例えばインターフェースを備えていてもよい。 Furthermore, the functions or operations of all or some of the circuits, units, devices, members or parts can be executed by software processing. In this case, the software is recorded on a non-transitory recording medium such as one or more ROMs, optical discs, hard disk drives, etc., and when the software is executed by a processor, the functions specified by the software are recorded. It is performed by the processor and peripherals. The system or apparatus may include one or more non-transitory storage media having software recorded on it, a processor, and any required hardware devices, such as interfaces.
 本開示の実施形態を説明する前に、本開示の基礎となった知見を説明する。 Before describing the embodiments of the present disclosure, the knowledge on which the present disclosure is based will be described.
 前述のように、マインドフルネスを実践するための各種のコンテンツが、例えばインターネットに公開されている。そのようなコンテンツは、スマートフォンまたはタブレットコンピュータなどの携帯機器用のアプリケーションとしても提供されている。そのようなアプリケーションは、ユーザに、マインドフルネス状態に誘導する音声および/または映像を提供する。ユーザは、例えばガイダンスに従って瞑想することにより、高いリラックス効果を得ることができる。 As mentioned above, various contents for practicing mindfulness are published on the Internet, for example. Such content is also provided as an application for mobile devices such as smartphones or tablet computers. Such applications provide the user with audio and/or video that guides them to a state of mindfulness. The user can obtain a high relaxing effect by meditating according to the guidance, for example.
 マインドフルネス状態へのなり易さは、ユーザによって様々である。あるユーザは、マインドフルネスに熟達しており、比較的容易にマインドフルネス状態に移行できる。しかし、他のユーザは、マインドフルネスに熟達しておらず、マインドフルネス状態に移行することが比較的難しい。 Easiness of becoming a mindfulness state varies depending on the user. Some users are proficient in mindfulness and can move to a mindfulness state with relative ease. However, other users are not proficient in mindfulness, and it is relatively difficult to shift to a mindfulness state.
 マインドフルネス状態へのなり易さは、周囲の環境にも依存する。例えば、自然を体感できる場所、または荘厳な寺社、仏閣、もしくは神殿などの歴史的建造物の中では、人々はマインドフルネス状態になり易いといえる。他にも、優れた芸術作品が設置されている場所、または心地よい音楽が流れている場所など、居心地の良い場所では、人々はマインドフルネス状態になり易いといえる。そのような場所には、マインドフルネスに熟達した人々が集まり易いともいえる。 Easiness of becoming a mindfulness state also depends on the surrounding environment. For example, in a place where you can experience nature, or in a historic building such as a majestic temple, temple, or temple, people are likely to be mindful. In addition, people are more likely to be in a state of mindfulness in cozy places, such as places with excellent works of art, or places with pleasant music. It can be said that people who are proficient in mindfulness easily gather in such places.
 マインドフルネスの熟達者と非熟達者とを判別することができれば、その判別結果を様々な用途に応用できる可能性がある。しかし、従来、熟達者と非熟達者とを判別する有効な方法は知られていなかった。そこで、本発明者らは、熟達者と非熟達者とを判別する方法を検討し、本開示の実施形態の構成に想到した。 If it is possible to distinguish between those who are skilled in mindfulness and those who are not skilled in mindfulness, there is a possibility that the results of that determination can be applied to various purposes. However, heretofore, an effective method for discriminating between an expert and an inexperienced person has not been known. Therefore, the present inventors have studied a method for discriminating between an expert and an inexperienced person, and have come up with the configuration of the embodiment of the present disclosure.
 以下、本開示の実施形態の概要を説明する。 The outline of the embodiments of the present disclosure will be described below.
 本開示の一態様に係る生体計測方法は、以下の(a)および(b)のステップを含む。
(a)ユーザの頭部に照射光を照射することによって生じた前記頭部からの反射光のうち、前記ユーザの脳内を伝播した光の成分を検出することによって生成され、前記脳の活動状態を示す少なくとも1つの脳活動信号を取得する。
(b)少なくとも1つの脳活動信号に基づき、マインドフルネス状態になることについてのユーザの熟達度を示す信号を生成して出力する。
A biometric method according to one aspect of the present disclosure includes the following steps (a) and (b).
(A) Activity of the brain generated by detecting a component of light propagating in the brain of the user among reflected light from the head generated by irradiating the user's head with irradiation light. At least one brain activity signal indicative of a condition is acquired.
(B) Generating and outputting a signal indicating the user's proficiency level for becoming a mindfulness state based on at least one brain activity signal.
 少なくとも1つの脳活動信号を取得することは、音声および映像からなる群から選択される少なくとも1つを含む刺激が前記ユーザに与えられている状態で行われてもよい。 Obtaining at least one brain activity signal may be performed in the state where a stimulus including at least one selected from the group consisting of audio and video is given to the user.
 前記音声および前記映像からなる群から選択される前記少なくとも1つは、前記ユーザを前記マインドフルネス状態に誘導してもよい。 The at least one selected from the group consisting of the audio and the video may guide the user to the mindfulness state.
 ここで、「ユーザをマインドフルネス状態に誘導する、音声および映像からなる群から選択される少なくとも1つを含む刺激」は、例えば、一般に公開されている、マインドフルネス瞑想のための音声および映像の少なくとも一方を含むコンテンツであり得る。また、「マインドフルネス瞑想のための音声および映像」とは、マインドフルネス瞑想のための使用を意図していることが明記された音声および映像に限らず、実質的にユーザをマインドフルネス瞑想へと誘導する効果が期待できる音声および映像を含む。そのような音声および映像は、例えば、リラックス効果のある音声および映像として提供される場合もあり得る。ユーザがそのような音声および映像のコンテンツを視聴することにより、上記刺激がユーザに提示され得る。 Here, the “stimulus including at least one selected from the group consisting of audio and video that guides the user to a mindfulness state” is, for example, a publicly available audio for mindfulness meditation and The content may include at least one of videos. In addition, "audio and video for mindfulness meditation" is not limited to audio and video that are intended to be used for mindfulness meditation, but it does not mean that the user is mindfulness. Includes audio and video that can be expected to induce meditation. Such audio and video may be provided, for example, as relaxing audio and video. The stimulus may be presented to the user as the user views such audio and video content.
 「ユーザの脳内を伝播した光の成分」は、ユーザの脳活動の状態に依存する。当該光の成分を検出することにより、ユーザの脳活動状態を推定することができる。ここで、「光」は、可視光に限らず、例えば赤外線であってもよい。本明細書では、可視光のみならず、赤外線についても「光」の用語を使用する。 "The component of the light that propagates in the user's brain" depends on the state of the user's brain activity. The brain activity state of the user can be estimated by detecting the light component. Here, the “light” is not limited to visible light, and may be infrared light, for example. In this specification, the term "light" is used not only for visible light but also for infrared light.
 「マインドフルネス状態になることについてのユーザの熟達度」は、後に詳しく説明するように、取得された脳活動信号を解析することによって決定することができる。 “The user's proficiency level in becoming a mindfulness state” can be determined by analyzing the acquired brain activity signal, as described in detail later.
 「脳活動信号」とは、ユーザまたは対象者の脳活動に依存して変化する生体信号を意味する。例えば、脳血液中の酸素化ヘモグロビン濃度、脳血液中の脱酸素化ヘモグロビン濃度、および脳血液中の酸素飽和度のいずれかを示す信号は、脳活動信号に該当する。 "Brain activity signal" means a biological signal that changes depending on the brain activity of the user or the subject. For example, a signal indicating any of the oxygenated hemoglobin concentration in cerebral blood, the deoxygenated hemoglobin concentration in cerebral blood, and the oxygen saturation level in cerebral blood corresponds to a brain activity signal.
 脳活動信号は、例えば、ユーザの頭部に光パルスを照射することによって生じた頭部からの反射光パルスのうち、反射光パルスの光強度が減少を開始してから減少が終了するまでの期間(以下、「立ち下がり期間」と称する。)に含まれる反射光パルスの成分の少なくとも一部を検出することによって生成され得る。後述するように、反射光パルスの立ち下がり期間に含まれる光の成分は、ユーザの脳活動を反映する。当該光の成分を検出することにより、ユーザの脳活動の状態を推定することができる。さらには、ユーザがマインドフルネスに熟達しているか否かを判定することができる。 The brain activity signal is, for example, from the light intensity of the reflected light pulse of the reflected light pulse from the head generated by irradiating the user's head with the light pulse until the reduction ends. It can be generated by detecting at least a part of the components of the reflected light pulse included in the period (hereinafter, referred to as “falling period”). As will be described later, the light component included in the falling period of the reflected light pulse reflects the brain activity of the user. The state of the brain activity of the user can be estimated by detecting the light component. Furthermore, it can be determined whether the user is proficient in mindfulness.
 刺激は、例えば、マインドフルネス状態に誘導するために作成された音声または映像などのコンテンツをユーザが視聴することによってユーザに提示され得る。刺激は、視覚および聴覚の刺激に限定されず、他の種類の刺激、例えば嗅覚、触覚、または味覚などの刺激であってもよい。少なくとも1つの脳活動信号は、ユーザに刺激が与えられる直前の第1の期間、ユーザに刺激が与えられている第2の期間、ユーザに刺激が与えられた直後の第3の期間のうち、第2の期間を含む少なくとも2つの期間のそれぞれについて、1回以上生成され得る。熟達度を示す信号は、当該少なくとも2つの期間のそれぞれについて取得された脳活動信号に基づいて生成され得る。 The stimulus may be presented to the user by the user viewing the content, such as audio or video created to guide a mindfulness state. The stimuli are not limited to visual and auditory stimuli, but may be other types of stimuli, such as olfactory, tactile, or taste stimuli. The at least one brain activity signal is a first period immediately before the user is stimulated, a second period when the user is stimulated, or a third period immediately after the user is stimulated. It may be generated more than once for each of the at least two time periods, including the second time period. A signal indicating the proficiency level may be generated based on the brain activity signal acquired for each of the at least two time periods.
 後述するように、マインドフルネスになることに熟達している者(以下、「熟達者」と称する。)と熟達していない者(以下、「非熟達者」と称する。)とでは、映像または音声などの刺激が与えられている最中、およびその前後における脳活動信号の傾向が異なる。刺激が与えられている最中の脳活動信号だけでなく、刺激が与えられる前および後の少なくとも一方における脳活動信号も利用して解析することにより、マインドフルネスの熟達度をより正確に推定することができる。 As will be described later, a person who is proficient in becoming mindfulness (hereinafter, referred to as “proficiency”) and a person who is not proficient (hereinafter, referred to as “non-proficiency”) are provided with images. Or, the tendency of the brain activity signal is different before and after the stimulation such as voice is given. More accurate estimation of mindfulness proficiency by analyzing not only brain activity signal during stimulation but also brain activity signal before and/or after stimulation can do.
 少なくとも1つの脳活動信号は、複数の脳活動信号を含み、複数の脳活動信号は、上記第1から第3の期間のそれぞれにおいて、前記光の成分を複数回検出することによって取得されてもよい。例えば、一定時間毎に、繰り返し脳活動信号が取得されていてもよい。その場合、熟達度を示す信号は、上記第1から第3の期間のそれぞれについて取得された複数の脳活動信号に基づいて生成され得る。このように、映像または音声などの刺激が与えられている最中と、その前後の各々の期間で、複数の脳活動信号を取得することにより、マインドフルネスの熟達度をより正確に推定することができる。 The at least one brain activity signal includes a plurality of brain activity signals, and the plurality of brain activity signals may be obtained by detecting the light component a plurality of times in each of the first to third periods. Good. For example, the brain activity signal may be repeatedly acquired at regular intervals. In that case, the signal indicating the proficiency level may be generated based on the plurality of brain activity signals acquired for each of the first to third periods. In this way, the proficiency level of mindfulness can be estimated more accurately by acquiring multiple brain activity signals during and before and after a stimulus such as video or audio is given. be able to.
 熟達度を示す信号は、例えば、上記第1から第3の期間のそれぞれについて取得された複数の脳活動信号のばらつき度合に基づいて生成され得る。 The signal indicating the proficiency level can be generated, for example, based on the degree of variation in the plurality of brain activity signals acquired for each of the first to third periods.
 少なくとも1つの脳活動信号は、例えば、脳内の血液中の脱酸素化ヘモグロビンの濃度に依存する信号であり得る。本発明者らの実験によれば、熟達者と非熟達者とで、刺激の有無による脱酸素化ヘモグロビンの濃度変化の傾向が顕著に異なることがわかった。脳内の血液中の脱酸素化ヘモグロビンの濃度に依存する信号を解析することにより、熟達度をより正確に推定することができる。 The at least one brain activity signal may be, for example, a signal that depends on the concentration of deoxygenated hemoglobin in blood in the brain. According to the experiments conducted by the present inventors, it has been found that the proficiency and the non-proficiency are significantly different in the tendency of the concentration change of deoxygenated hemoglobin depending on the presence or absence of stimulation. The proficiency level can be more accurately estimated by analyzing a signal depending on the concentration of deoxygenated hemoglobin in blood in the brain.
 脳活動信号は、波長の異なる2種類の光を利用して取得された2つの信号に基づいて生成されてもよい。例えば、脳活動信号は、ユーザの頭部に、805nmよりも長い第1の波長の光パルスを照射することによって生じた頭部からの第1の反射光パルスのうち、第1の反射光パルスの立ち下がり期間に含まれる成分の少なくとも一部を検出することによって生成された第1の信号と、805nmよりも短い第2の波長の光パルスを照射することによって生じた頭部からの第2の反射光パルスの立ち下がり期間に含まれる成分の少なくとも一部を検出することによって生成された第2の信号とを用いた演算によって生成され得る。 The brain activity signal may be generated based on two signals acquired by using two types of light having different wavelengths. For example, the brain activity signal is the first reflected light pulse of the first reflected light pulse from the head generated by irradiating the user's head with the light pulse of the first wavelength longer than 805 nm. The first signal generated by detecting at least a part of the components included in the falling period of the pulse and the second signal from the head generated by irradiating the optical pulse of the second wavelength shorter than 805 nm. And a second signal generated by detecting at least a part of the component included in the falling period of the reflected light pulse.
 酸素化ヘモグロビンは約805nmを超える波長の近赤外線を比較的よく吸収する。これに対し、脱酸素化ヘモグロビンは、805nmよりも短い波長の近赤外線または赤色光を比較的よく吸収する。第1の信号は、脳血液中の酸素化ヘモグロビンの濃度に依存する信号であり得る。第2の信号は、脳血液中の脱酸素化ヘモグロビンの濃度に依存する信号であり得る。これらの2つの信号を用いて脳血液中の酸素飽和度を求めることもできる。これらの2つの信号を組み合わせることにより、熟達度をより正確に推定することができる。 Oxygenated hemoglobin absorbs near-infrared rays with a wavelength of more than about 805 nm relatively well. In contrast, deoxygenated hemoglobin relatively well absorbs near infrared or red light with wavelengths shorter than 805 nm. The first signal can be a signal that is dependent on the concentration of oxygenated hemoglobin in cerebral blood. The second signal can be a signal that depends on the concentration of deoxygenated hemoglobin in cerebral blood. The oxygen saturation in the cerebral blood can also be determined using these two signals. By combining these two signals, the proficiency can be estimated more accurately.
 本開示の他の態様による生体計測装置は、刺激装置と、光源と、光検出器と、信号処理回路とを備える。刺激装置は、刺激をユーザに与える。光源は、刺激がユーザに与えられている状態で、ユーザの頭部に向けて光を出射するように構成される。光検出器は、頭部からの反射光のうち、ユーザの脳内を伝播した光の成分を検出し、当該成分の強度に応じた脳活動信号を出力するように構成される。信号処理回路は、当該脳活動信号に基づき、マインドフルネス状態になることについてのユーザの熟達度を示す信号を生成して出力するように構成される。 A biometric device according to another aspect of the present disclosure includes a stimulator, a light source, a photodetector, and a signal processing circuit. The stimulator provides a stimulus to the user. The light source is configured to emit light toward the user's head while the stimulus is being applied to the user. The photodetector is configured to detect a component of the light that has propagated in the brain of the user in the reflected light from the head and output a brain activity signal according to the intensity of the component. The signal processing circuit is configured to generate and output, based on the brain activity signal, a signal indicating a user's level of proficiency with respect to becoming a mindfulness state.
 本開示は、刺激装置と、光源と、光検出器とを備える生体計測装置に搭載されるコンピュータによって実行されるプログラムも含む。当該プログラムは、以下の(a)から(d)の動作をコンピュータに実行させる。
(a)刺激装置に、刺激をユーザに与えさせる。
(b)刺激がユーザに提示されている状態で、光源に、ユーザの頭部に向けて光を出射させる。
(c)光検出器に、前記頭部からの反射光のうち、前記ユーザの脳内を伝播した光の成分を検出させ、前記成分の強度に応じた脳活動信号を出力させる。
(d)脳活動信号に基づき、マインドフルネス状態になることについてのユーザの熟達度を示す信号を生成して出力する。
The present disclosure also includes a program executed by a computer mounted on a biometric device that includes a stimulator, a light source, and a photodetector. The program causes a computer to execute the following operations (a) to (d).
(A) Cause the stimulator to give a stimulus to the user.
(B) The light source emits light toward the head of the user while the stimulus is presented to the user.
(C) The photodetector is caused to detect the component of the light propagating in the brain of the user in the reflected light from the head, and to output the brain activity signal according to the intensity of the component.
(D) Based on the brain activity signal, a signal indicating the user's proficiency level for becoming a mindfulness state is generated and output.
 本開示の一態様に係るコンピュータ読み取り可能な記録媒体は、刺激装置と、光源と、光検出器とを備える生体計測装置に搭載されるコンピュータによって実行されるプログラムを格納したコンピュータ読み取り可能な記録媒体であって、前記プログラムが前記コンピュータによって実行されるときに、前記刺激装置に、刺激をユーザに与えさせることと、前記刺激が前記ユーザに与えられている状態で、前記光源に、前記ユーザの頭部に向けて光を出射させることと、前記光検出器に、前記頭部からの反射光のうち、前記ユーザの脳内を伝播した光の成分を検出させることにより、前記成分の強度に応じた、前記脳の活動状態を示す脳活動信号を出力させることと、前記脳活動信号に基づき、マインドフルネス状態になることについての前記ユーザの熟達度を示す信号を生成して出力することと、が実行される。 A computer-readable recording medium according to an aspect of the present disclosure stores a program that is executed by a computer installed in a biometric device that includes a stimulator, a light source, and a photodetector. When the program is executed by the computer, the stimulator is caused to give a stimulus to a user, and the stimulus is given to the user, the light source is set to By emitting light toward the head and causing the photodetector to detect the component of the light that has propagated in the brain of the user among the reflected light from the head, the intensity of the component can be increased. And outputting a brain activity signal indicating the activity state of the brain, and generating and outputting a signal indicating the user's proficiency level for becoming a mindfulness state based on the brain activity signal. And are executed.
 本開示の技術は、例えば、スマートフォンまたはタブレットコンピュータなどの携帯機器用のアプリケーションに適用することができる。インターネットなどのネットワークを介して複数の携帯機器に接続されたサーバコンピュータに、上記の方法を実行させてもよい。当該サーバコンピュータは、各ユーザの脳活動信号を、ネットワークを介して収集し、マインドフルネスになることについての各ユーザの熟達度を示す信号を生成して出力してもよい。各ユーザの熟達度を示す信号は、そのユーザの携帯機器に送信され、当該機器のディスプレイに判定結果が表示され得る。 The technology of the present disclosure can be applied to, for example, an application for a mobile device such as a smartphone or a tablet computer. A server computer connected to a plurality of mobile devices via a network such as the Internet may execute the above method. The server computer may collect a brain activity signal of each user via a network, and generate and output a signal indicating the proficiency level of each user with respect to becoming mindfulness. The signal indicating the proficiency level of each user may be transmitted to the mobile device of the user, and the determination result may be displayed on the display of the device.
 本開示の一態様に係る地図データ生成方法は、複数のユーザのコンピュータから、上記のいずれかに記載の生体計測方法によって生成された前記複数のユーザの各々の前記熟達度を示す信号と、前記複数のユーザの各々の位置情報とを、ネットワークを介して取得することと、前記位置情報に基づき、前記複数のユーザの各々の前記熟達度と地図とを関連付けた地図データを生成して出力することと、を含む。 A map data generation method according to an aspect of the present disclosure, a signal indicating the proficiency level of each of the plurality of users generated by the biometric method according to any one of the above from a computer of a plurality of users, and Acquiring position information of each of a plurality of users via a network, and based on the position information, generates and outputs map data in which the proficiency level of each of the plurality of users is associated with a map. And that.
 あるいは、サーバコンピュータは、各ユーザの携帯機器が生成した熟達度を示す信号と、位置情報とを、ネットワークを介して複数のユーザのコンピュータから取得してもよい。さらに、サーバコンピュータは、当該位置情報に基づき、各ユーザのマインドフルネスの熟達度の判定結果と地図とを関連付けた地図データを生成して出力してもよい。そのような地図データは、マインドフルネスの熟達者の分布を示すヒートマップを表していてもよい。例えば、熟達者の多い場所が赤色で示され、熟達者の少ない場所が青色で示され、熟達者の人数が中程度の場所が緑色で示されたヒートマップを生成してもよい。地図データは、各ユーザの携帯機器に送信され、当該機器のディスプレイにヒートマップが表示され得る。 Alternatively, the server computer may acquire the signal indicating the proficiency level generated by the mobile device of each user and the position information from the computers of the plurality of users via the network. Further, the server computer may generate and output map data in which the determination result of the mindfulness proficiency level of each user and the map are associated with each other based on the position information. Such map data may represent a heat map showing the distribution of mindfulness masters. For example, a heat map may be generated in which areas with high levels of proficiency are shown in red, areas with low proficiency are shown in blue, and areas with a medium number of proficiency are shown in green. The map data may be transmitted to the mobile device of each user, and the heat map may be displayed on the display of the device.
 このような構成によれば、各ユーザは、どの場所に多くの熟達者が集まっているかを知ることができる。多くの熟達者が集まる場所は、マインドフルネス状態になり易い場所、言い替えれば、居心地が良くリラックスできる場所である可能性が高い。上記のアプリケーションを利用することにより、ユーザは、居心地が良くリラックスできる場所を知ることができる。さらに、後述するように、複数のユーザの携帯機器から収集した情報をマーケティングに活用することにより、新たなビジネス機会の創出につなげることも可能になる。 With such a configuration, each user can know in which place many experts are gathered. The place where many skilled people gather is likely to be a place where they are likely to be in a state of mindfulness, in other words, a place where they can feel comfortable and relax. By using the above application, the user can know a place where he/she can feel comfortable and relax. Further, as will be described later, by utilizing the information collected from the mobile devices of a plurality of users for marketing, it becomes possible to create a new business opportunity.
 以下、添付の図面を参照して、本開示の実施形態をより具体的に説明する。 Hereinafter, embodiments of the present disclosure will be described more specifically with reference to the accompanying drawings.
 (実施形態)
 [1.生体計測装置100]
 図1Aは、本開示の例示的な実施形態における生体計測装置100を示す模式図である。生体計測装置100は、刺激装置10と、光源20と、光検出器30と、制御回路60と、信号処理回路70とを備える。図1Aは、生体計測装置100を使用するユーザ500も示されている。
(Embodiment)
[1. Biometric device 100]
FIG. 1A is a schematic diagram illustrating a biometric device 100 according to an exemplary embodiment of the present disclosure. The biometric device 100 includes a stimulator 10, a light source 20, a photodetector 30, a control circuit 60, and a signal processing circuit 70. FIG. 1A also shows a user 500 who uses the biometric device 100.
 刺激装置10は、ユーザ500にマインドフルネス状態へと誘導する刺激を与えるする装置である。光源20は、ユーザ500の頭部に照射されるパルス光を出射する装置である。光源20は、単一の発光装置に限らず、複数の発光装置の組み合わせによって実現されていてもよい。光検出器30は、ユーザ500の頭部から戻ってきた反射パルス光の少なくとも一部を検出する装置である。光検出器30は、例えば、2次元的に配列された複数の光検出セルを含むイメージセンサであり得る。制御回路60は、刺激装置10、光源20、光検出器30を制御する回路である。信号処理回路70は、光検出器30から出力された信号を処理する回路である。 The stimulator 10 is a device that gives a stimulus to the user 500 to induce a mindfulness state. The light source 20 is a device that emits pulsed light with which the head of the user 500 is irradiated. The light source 20 is not limited to a single light emitting device, and may be realized by a combination of a plurality of light emitting devices. The photodetector 30 is a device that detects at least a part of the reflected pulsed light returning from the head of the user 500. The photodetector 30 may be, for example, an image sensor including a plurality of photodetector cells arranged two-dimensionally. The control circuit 60 is a circuit that controls the stimulator 10, the light source 20, and the photodetector 30. The signal processing circuit 70 is a circuit that processes the signal output from the photodetector 30.
 本実施形態における制御回路60は、刺激装置10を制御する刺激制御部61と、光源20を制御する光源制御部62と、光検出器30を制御する検出器制御部63とを含む。刺激制御部61、光源制御部62、および検出器制御部63は、分離された3つの回路によって実現されていてもよいし、単一の回路によって実現されていてもよい。刺激制御部61、光源制御部62、および検出器制御部63は、制御回路60が不図示のメモリに格納された制御用のプログラムを実行することによって実現されてもよい。制御回路60と信号処理回路70の機能が、単一の回路によって実現されていてもよい。 The control circuit 60 in the present embodiment includes a stimulation control unit 61 that controls the stimulation device 10, a light source control unit 62 that controls the light source 20, and a detector control unit 63 that controls the photodetector 30. The stimulation control unit 61, the light source control unit 62, and the detector control unit 63 may be realized by three separate circuits or may be realized by a single circuit. The stimulus control unit 61, the light source control unit 62, and the detector control unit 63 may be realized by the control circuit 60 executing a control program stored in a memory (not shown). The functions of the control circuit 60 and the signal processing circuit 70 may be realized by a single circuit.
 刺激制御部61は、例えば、刺激として与えられる映像の色相、彩度、および輝度の少なくとも1つ、または音声の音質および大きさの少なくとも1つを制御する。光源制御部62は、例えば、光源20から出射されるパルス光の強度、パルス幅、出射タイミング、および/または波長を制御する。検出器制御部63は、光検出器30の各光検出セルにおける信号蓄積のタイミングを制御する。 The stimulus control unit 61 controls, for example, at least one of hue, saturation, and brightness of a video given as a stimulus, or at least one of sound quality and loudness of sound. The light source control unit 62 controls, for example, the intensity, pulse width, emission timing, and/or wavelength of the pulsed light emitted from the light source 20. The detector control unit 63 controls the timing of signal accumulation in each photodetecting cell of the photodetector 30.
 本明細書において、「生体情報」とは、刺激によって変化する生体の計測可能な量を意味する。生体情報には、例えば、血流量、血圧、心拍数、脈拍数、呼吸数、体温、脳波、血液中の酸素化ヘモグロビン濃度、血液中の脱酸素化ヘモグロビン濃度、血中酸素飽和度、皮膚の反射スペクトルなどの、種々の量が含まれる。生体情報の一部は、バイタルサインと呼ばれることがある。 In the present specification, “biological information” means a measurable amount of a living body that changes due to stimulation. Biological information, for example, blood flow, blood pressure, heart rate, pulse rate, respiratory rate, body temperature, EEG, oxygenated hemoglobin concentration in blood, deoxygenated hemoglobin concentration in blood, blood oxygen saturation, skin Various quantities are included, such as reflectance spectra. A part of biometric information is sometimes called a vital sign.
 以下に、生体計測装置100の各構成要素をより具体的に説明する。 Below, each component of the biometric device 100 will be described more specifically.
 [1-1.刺激装置10]
 刺激装置10は、ユーザ500に刺激を提示する。刺激は、ユーザ500の生体反応を引き起こす。刺激装置10は、ディスプレイおよびスピーカの少なくとも一方を含み得る。刺激装置10は、ユーザ500をマインドフルネス状態に誘導する音声および映像の少なくとも一方を含む刺激を、ユーザ500に与える。
[1-1. Stimulator 10]
The stimulator 10 presents a stimulus to the user 500. The stimulation causes a biological reaction of the user 500. The stimulator 10 may include at least one of a display and a speaker. The stimulator 10 provides the user 500 with a stimulus including at least one of audio and video that guides the user 500 to a mindfulness state.
 マインドフルネス状態へと誘導する刺激は、例えば、マインドフルネス瞑想のために公開されている音声および/または映像などの刺激であり得る。 The stimulus that induces the mindfulness state may be, for example, a stimulus such as audio and/or video that has been published for mindfulness meditation.
 刺激装置10は、例えば、スマートフォンまたはタブレットコンピュータなどの携帯機器であってもよい。その場合、マインドフルネス状態へと誘導する刺激は、当該携帯機器にインストールされるアプリケーションによって提供されてもよい。刺激装置10は、ヘッドマウント装置のような装置であってもよい。 The stimulator 10 may be, for example, a mobile device such as a smartphone or a tablet computer. In that case, the stimulus that induces the mindfulness state may be provided by an application installed on the mobile device. The stimulator 10 may be a device such as a head mounted device.
 本実施形態では視覚および/または聴覚に対する刺激が使用される。しかし、これらに限定されず、触覚、嗅覚、または味覚に対する刺激が使用されてもよい。刺激装置10は、ユーザ500に与える刺激の種類に応じて異なる構造および機能を有する。例えば、ユーザ500に触覚刺激を与える場合、刺激装置10は、振動または熱を発生させる装置を含み得る。ユーザ500に嗅覚を与える場合、刺激装置10は、匂いを発生させる装置を含み得る。 In this embodiment, visual and/or auditory stimuli are used. However, the present invention is not limited to these, and tactile, olfactory, or taste stimuli may be used. The stimulation device 10 has different structures and functions depending on the type of stimulation given to the user 500. For example, when applying a tactile stimulus to the user 500, the stimulator 10 may include a device that generates vibration or heat. When giving the user 500 a sense of smell, the stimulating device 10 may include a device that generates an odor.
 [1-2.光源20]
 光源20は、ユーザ500の対象部に向けて光を出射する。対象部は、例えば、ユーザ500の頭部であり、より具体的にはユーザ500の額であり得る。光源20から出射されてユーザ500に到達した光は、ユーザ500の表面で反射される表面反射成分I1と、ユーザ500の内部で散乱される内部散乱成分I2とに分かれる。内部散乱成分I2は、生体内部で1回反射もしくは散乱、または多重散乱する成分である。ユーザ500の頭部に向けて光を出射する場合、内部散乱成分I2は、ユーザ500の頭部の表面から奥に8mmから16mmほどの部位、例えば脳に到達し、再び生体計測装置100に戻る成分を指す。表面反射成分I1は、直接反射成分、拡散反射成分、および散乱反射成分の3つの成分を含む。直接反射成分は、入射角と反射角とが等しい反射成分である。拡散反射成分は、表面の凹凸形状によって拡散して反射する成分である。散乱反射成分は、表面近傍の内部組織によって散乱して反射する成分である。ユーザ500の頭部に向けて光を出射する場合、散乱反射成分は、表皮内部で散乱して反射する成分である。ユーザ500の表面で反射する表面反射成分I1は、これら3つの成分を含み得る。表面反射成分I1および内部散乱成分I2は、反射または散乱によって進行方向が変化し、その一部が光検出器30に到達する。
[1-2. Light source 20]
The light source 20 emits light toward the target part of the user 500. The target part may be, for example, the head of the user 500, and more specifically, the forehead of the user 500. The light emitted from the light source 20 and reaching the user 500 is divided into a surface reflection component I1 reflected on the surface of the user 500 and an internal scattering component I2 scattered inside the user 500. The internal scattering component I2 is a component that is reflected or scattered once or multiple-scattered inside the living body. When the light is emitted toward the head of the user 500, the internal scattered component I2 reaches a site 8 mm to 16 mm deep from the surface of the head of the user 500, for example, the brain, and returns to the biometric device 100 again. Refers to ingredients. The surface reflection component I1 includes three components, a direct reflection component, a diffuse reflection component, and a scattered reflection component. The direct reflection component is a reflection component having the same incident angle and reflection angle. The diffuse reflection component is a component that is diffused and reflected by the uneven shape of the surface. The scattered reflection component is a component that is scattered and reflected by the internal tissue near the surface. When light is emitted toward the head of the user 500, the scattered reflection component is a component that is scattered and reflected inside the epidermis. The surface reflection component I1 that reflects off the surface of the user 500 may include these three components. The traveling directions of the surface reflection component I1 and the internal scattering component I2 change due to reflection or scattering, and part of them reaches the photodetector 30.
 本実施形態では、ユーザ500の頭部から戻って来る光である反射光のうち、少なくとも内部散乱成分I2の少なくとも一部が検出される。内部散乱成分I2は、ユーザ500の脳活動を反映してその強度が変動する。このため、内部散乱成分I2の経時変化を解析することによってユーザ500の脳活動の状態を推定することができる。 In the present embodiment, at least a part of the internal scattering component I2 is detected from the reflected light that is the light returning from the head of the user 500. The intensity of the internal scattered component I2 varies, reflecting the brain activity of the user 500. Therefore, the state of the brain activity of the user 500 can be estimated by analyzing the change over time of the internal scattering component I2.
 以下、内部散乱成分I2の検出方法の例を説明する。光源20は、制御回路60からの指示に従い、光パルスを所定の時間間隔または所定のタイミングで複数回繰り返し出射する。光源20から出射される光パルスは、例えば立ち下がり期間がゼロに近い矩形波であり得る。本明細書において、「立ち下がり期間」とは、光パルスの強度が減少を開始してから減少が終了するまでの期間を意味する。一般に、ユーザ500に入射した光は、様々な経路でユーザ500内を伝播し、時間差を伴ってユーザ500の表面から出射する。このため、光パルスの内部散乱成分I2の後端は、広がりを有する。ユーザ500の対象部が額である場合、内部散乱成分I2の後端の広がりは、4ns程度である。このことを考慮すると、光パルスの立ち下がり期間は、例えばその半分以下である2ns以下に設定され得る。立ち下がり期間は、さらにその半分の1ns以下であってもよい。光源20から出射される光パルスの立ち上がり期間の長さは任意である。本明細書において、「立ち上がり期間」とは、光パルスの強度が増加を開始してから増加が終了するまでの期間である。本実施形態における内部散乱成分I2の検出では、光パルスの立ち下がり部分が使用され、立ち上がり部分は使用されない。光パルスの立ち上がり部分は、表面反射成分I1の検出に用いられ得る。光源20は、例えば、LDなどのレーザであり得る。レーザから出射される光は、光パルスの立ち下がり部分が時間軸に略直角である、急峻な時間応答特性を有する。 Below, an example of a method for detecting the internal scattering component I2 will be described. The light source 20 repeatedly emits an optical pulse a plurality of times at a predetermined time interval or a predetermined timing according to an instruction from the control circuit 60. The light pulse emitted from the light source 20 may be, for example, a rectangular wave having a fall period close to zero. In the present specification, the “falling period” means a period from when the intensity of the light pulse starts to decrease to when the decrease ends. In general, the light incident on the user 500 propagates in the user 500 through various routes and exits from the surface of the user 500 with a time difference. Therefore, the rear end of the internal scattering component I2 of the light pulse has a spread. When the target part of the user 500 is the forehead, the spread of the rear end of the internal scattering component I2 is about 4 ns. Considering this, the falling period of the optical pulse can be set to, for example, 2 ns or less, which is half or less of that. The fall period may be half that, or 1 ns or less. The length of the rising period of the light pulse emitted from the light source 20 is arbitrary. In the present specification, the “rising period” is a period from when the intensity of the light pulse starts to increase to when the increase ends. In the detection of the internal scattered component I2 in the present embodiment, the falling portion of the light pulse is used and the rising portion is not used. The rising portion of the light pulse can be used for detecting the surface reflection component I1. The light source 20 can be, for example, a laser such as an LD. The light emitted from the laser has a steep time response characteristic in which the falling portion of the light pulse is substantially perpendicular to the time axis.
 光源20から出射される光の波長は、例えば650nm以上950nm以下の波長範囲に含まれる任意の波長であり得る。この波長範囲は、赤色から近赤外線の波長範囲に含まれる。上記の波長範囲は、「生体の窓」と呼ばれており、光が生体内の水分および皮膚に比較的吸収されにくいという性質を有する。生体を検出対象にする場合、上記の波長範囲の光を使用することにより、検出感度を高くすることができる。本実施形態のように、ユーザ500の脳の血流変化を検出する場合、使用される光は、主に酸素化ヘモグロビン(HbO)および脱酸素化ヘモグロビン(Hb)に吸収されると考えられる。酸素化ヘモグロビンと脱酸素化ヘモグロビンとでは、光吸収の波長依存性が異なる。一般に、血流に変化が生じると、酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの濃度が変化する。この変化に伴い、光の吸収度合いも変化する。したがって、血流が変化すると、検出される光量も時間的に変化する。 The wavelength of the light emitted from the light source 20 may be any wavelength included in the wavelength range of 650 nm or more and 950 nm or less, for example. This wavelength range is included in the wavelength range from red to near infrared. The above wavelength range is called "living body window" and has a property that light is relatively hard to be absorbed by moisture and skin in the living body. When a living body is to be detected, the detection sensitivity can be increased by using light in the above wavelength range. When detecting a change in the blood flow in the brain of the user 500 as in the present embodiment, it is considered that the light used is mainly absorbed by oxygenated hemoglobin (HbO 2 ) and deoxygenated hemoglobin (Hb). .. Oxygenated hemoglobin and deoxygenated hemoglobin have different wavelength dependence of light absorption. Generally, when blood flow changes, the concentrations of oxygenated hemoglobin and deoxygenated hemoglobin change. Along with this change, the degree of light absorption also changes. Therefore, when the blood flow changes, the detected light amount also changes with time.
 光源20は、上記の波長範囲に含まれる単一の波長の光を出射してもよいし、2つ以上の波長の光を出射してもよい。複数の波長の光は、複数の光源からそれぞれ出射されてもよい。2つの光源から異なる2つの波長の光がそれぞれ出射される場合、ユーザ500の対象部を経由して光検出器30に戻った2つの波長の光の光路長は、ほぼ等しくなるように設計され得る。この設計では、例えば、光検出器30と一方の光源との距離、および光検出器30と他方の光源との距離が一致しており、かつ、2つの光源が、光検出器30を中心として回転対称になる位置に配置され得る。 The light source 20 may emit light of a single wavelength included in the above wavelength range, or may emit light of two or more wavelengths. Light of a plurality of wavelengths may be emitted from each of a plurality of light sources. When two lights having different wavelengths are emitted from the two light sources, the optical paths of the lights having the two wavelengths returned to the photodetector 30 via the target portion of the user 500 are designed to be substantially equal to each other. obtain. In this design, for example, the distance between the photodetector 30 and one light source and the distance between the photodetector 30 and the other light source are the same, and the two light sources are centered on the photodetector 30. It may be arranged in a rotationally symmetrical position.
 本実施形態における生体計測装置100では、非接触でユーザ500の脳血流が計測される。このため、網膜への影響を考慮して設計された光源20が用いられ得る。例えば、各国で策定されているレーザ安全基準のクラス1を満足する光源20が用いられ得る。クラス1が満足されている場合、被爆放出限界(AEL)が1mWを下回るほどの低照度の光が、ユーザ500に照射される。なお、光源20自体はクラス1を満たしていなくてもよい。例えば、拡散板またはNDフィルタを光源20の前に設置して光を拡散または減衰することにより、レーザ安全基準のクラス1が満たされていてもよい。 With the biometric device 100 according to the present embodiment, the cerebral blood flow of the user 500 is measured without contact. Therefore, the light source 20 designed in consideration of the influence on the retina can be used. For example, the light source 20 that satisfies Class 1 of the laser safety standard established in each country may be used. When the class 1 is satisfied, the user 500 is irradiated with light having low illuminance such that the exposure limit (AEL) is less than 1 mW. The light source 20 itself does not have to satisfy Class 1. For example, a laser safety standard Class 1 may be met by placing a diffuser or ND filter in front of the light source 20 to diffuse or attenuate the light.
 脳血流を計測するためにユーザ500の頭部を光で照射する場合、内部散乱成分I2の光量は、表面反射成分I1の光量の数千分の1から数万分の1程度の非常に小さい値になり得る。さらに、レーザの安全基準を考慮すると、照射できる光の光量は、極めて小さくなる。したがって、内部散乱成分I2の検出は非常に難しい。その場合でも、光源20が、比較的パルス幅の大きい光パルスを出射すれば、時間遅れを伴う内部散乱成分I2の積算量を増加させることができる。それにより、検出光量を増やし、SN比を向上させることができる。 When irradiating the head of the user 500 with light in order to measure cerebral blood flow, the amount of light of the internal scattering component I2 is several thousandth to several tens of thousands, which is very small. It can be a small value. Furthermore, considering the safety standards of lasers, the amount of light that can be emitted is extremely small. Therefore, the detection of the internal scattered component I2 is very difficult. Even in that case, if the light source 20 emits a light pulse having a relatively large pulse width, the integrated amount of the internal scattering component I2 with a time delay can be increased. Thereby, the amount of detected light can be increased and the SN ratio can be improved.
 光源20は、例えばパルス幅が3ns以上の光パルスを出射する。一般に、脳などの生体組織内で散乱された光の時間的な広がりは4ns程度である。図1Bは、光検出器30に到達する光の強度の時間変化の例を示す図である。図1Bには、光源20から出射される入力光パルスの幅が、0ns、3ns、および10nsである3つの場合の例が示されている。図1Bに示すように、光源20からの光パルスの幅を広げるにつれて、ユーザ500から戻った光パルスの後端部に現れる内部散乱成分I2の光量が増加する。 The light source 20 emits an optical pulse having a pulse width of 3 ns or more, for example. In general, the temporal spread of light scattered in a living tissue such as the brain is about 4 ns. FIG. 1B is a diagram showing an example of a temporal change in the intensity of light reaching the photodetector 30. FIG. 1B shows an example of three cases in which the width of the input light pulse emitted from the light source 20 is 0 ns, 3 ns, and 10 ns. As shown in FIG. 1B, as the width of the light pulse from the light source 20 is increased, the light amount of the internal scattered component I2 that appears at the rear end of the light pulse returned from the user 500 increases.
 図1Cは、入力光パルスの幅を横軸に、光検出器30での検出光量を縦軸に表した図である。光検出器30は、電子シャッタを備える。図1Cの結果は、光パルスの後端がユーザ500の表面で反射されて光検出器30に到達した時刻から1ns経過した後に電子シャッタを開いた条件で得られた。この条件を選択した理由は、光パルスの後端が到達した直後は、内部散乱成分I2と比較して、表面反射成分I1の比率が高いためである。図1Cに示すように、光源20から出射される光パルスのパルス幅を3ns以上にすると、検出光量を最大化することができる。 FIG. 1C is a diagram in which the horizontal axis represents the width of the input light pulse and the vertical axis represents the amount of light detected by the photodetector 30. The photodetector 30 includes an electronic shutter. The result of FIG. 1C was obtained under the condition that the electronic shutter was opened 1 ns after the time when the trailing edge of the light pulse was reflected by the surface of the user 500 and reached the photodetector 30. The reason for selecting this condition is that the ratio of the surface reflection component I1 is higher than that of the internal scattering component I2 immediately after the rear end of the light pulse arrives. As shown in FIG. 1C, when the pulse width of the light pulse emitted from the light source 20 is 3 ns or more, the detected light amount can be maximized.
 光源20は、パルス幅5ns以上、さらには10ns以上の光パルスを出射してもよい。一方、パルス幅が大きすぎても使用しない光が増えて無駄となる。このため、光源20は、例えば、パルス幅50ns以下の光パルスを出射する。あるいは、光源20は、パルス幅30ns以下、さらには20ns以下の光パルスを出射してもよい。 The light source 20 may emit an optical pulse having a pulse width of 5 ns or more, and further 10 ns or more. On the other hand, if the pulse width is too large, the amount of unused light increases and it is wasted. Therefore, the light source 20 emits an optical pulse having a pulse width of 50 ns or less, for example. Alternatively, the light source 20 may emit a light pulse having a pulse width of 30 ns or less, further 20 ns or less.
 光源20の照射パターンは、例えば、照射領域内において、均一な強度分布をもつパターンであってもよい。この点で、本実施形態は、特許文献1に開示された従来の生体計測装置とは異なる。特許文献1に開示された装置では、検出器と光源とを3cm程度離し、表面反射成分が、空間的に内部散乱成分から分離される。このため、離散的な光照射とせざるを得ない。これに対し、本実施形態における生体計測装置100は、表面反射成分I1を時間的に内部散乱成分I2から分離して低減することができる。このため、均一な強度分布を有する照射パターンの光源20を用いることができる。均一な強度分布を有する照射パターンは、光源20から出射される光を拡散板で拡散することによって形成してもよい。 The irradiation pattern of the light source 20 may be, for example, a pattern having a uniform intensity distribution in the irradiation area. In this respect, the present embodiment differs from the conventional biometric device disclosed in Patent Document 1. In the device disclosed in Patent Document 1, the detector and the light source are separated by about 3 cm, and the surface reflection component is spatially separated from the internal scattering component. Therefore, there is no choice but to use discrete light irradiation. In contrast, the biometric device 100 according to the present embodiment can reduce the surface reflection component I1 by temporally separating it from the internal scattering component I2. Therefore, the light source 20 having an irradiation pattern having a uniform intensity distribution can be used. The irradiation pattern having a uniform intensity distribution may be formed by diffusing the light emitted from the light source 20 with a diffusion plate.
 本実施形態では、ユーザ500の照射点直下でも、内部散乱成分I2を検出することができる。ユーザ500を空間的に広い範囲にわたって光で照射することにより、計測解像度を高めることもできる。 In the present embodiment, the internal scattered component I2 can be detected even just below the irradiation point of the user 500. The measurement resolution can also be increased by illuminating the user 500 with light over a wide spatial range.
 [1-3.光検出器30]
 光検出器30は、光源20から出射され、ユーザ500の対象部から戻ってきた光の一部の光量を示す信号を出力する。当該信号は、反射光パルスのうち、立ち下がり期間の少なくとも一部に含まれる強度に応じた信号であり得る。
[1-3. Photodetector 30]
The photodetector 30 outputs a signal indicating the amount of a part of the light emitted from the light source 20 and returned from the target portion of the user 500. The signal may be a signal according to the intensity included in at least a part of the falling period of the reflected light pulse.
 光検出器30は、複数の光電変換素子32と、複数の電荷蓄積部34とを含み得る。具体的には、光検出器30は、2次元的に配置された複数の光検出セルを備え得る。そのような光検出器30は、ユーザ500の2次元的な生体情報を一度に取得し得る。本明細書において、光検出セルを「画素」と称することがある。光検出器30は、例えば、CCDイメージセンサまたはCMOSイメージセンサなどの任意の撮像素子であり得る。より一般的には、光検出器30は、少なくとも1つの光電変換素子32と、少なくとも1つの電荷蓄積部34とを含む。 The photodetector 30 may include a plurality of photoelectric conversion elements 32 and a plurality of charge storage sections 34. Specifically, the photodetector 30 may include a plurality of photodetector cells arranged two-dimensionally. Such a photodetector 30 can acquire the two-dimensional biometric information of the user 500 at one time. In the present specification, the light detection cell may be referred to as a "pixel". The photodetector 30 can be, for example, any image sensor such as a CCD image sensor or a CMOS image sensor. More generally, the photodetector 30 includes at least one photoelectric conversion element 32 and at least one charge storage section 34.
 光検出器30は、電子シャッタを備え得る。電子シャッタは、撮像のタイミングを制御する回路である。本実施形態では、制御回路60における検出器制御部63が、電子シャッタの機能を有する。電子シャッタは、受光した光を有効な電気信号に変換して蓄積する1回の信号蓄積の期間と、信号蓄積を停止する期間とを制御する。信号蓄積期間は、「露光期間」と称することもできる。以下の説明では、露光期間の幅を、「シャッタ幅」と称することがある。1回の露光期間が終了し次の露光期間が開始するまでの時間を、「非露光期間」と称することがある。以下、露光している状態を「OPEN」、露光を停止している状態を「CLOSE」と称することがある。 The photodetector 30 may include an electronic shutter. The electronic shutter is a circuit that controls the timing of image capturing. In this embodiment, the detector control unit 63 in the control circuit 60 has a function of an electronic shutter. The electronic shutter controls a single signal accumulation period in which the received light is converted into an effective electric signal and accumulated, and a period in which the signal accumulation is stopped. The signal accumulation period can also be referred to as an “exposure period”. In the following description, the width of the exposure period may be referred to as the “shutter width”. The time from the end of one exposure period to the start of the next exposure period may be referred to as the "non-exposure period". Hereinafter, the exposure state may be referred to as “OPEN”, and the exposure stop state may be referred to as “CLOSE”.
 光検出器30は、電子シャッタにより、露光期間および非露光期間を、サブナノ秒、例えば30psから1nsの範囲で調整することができる。距離の計測が目的である従来のTOFカメラは、光源20から出射され被写体で反射されて戻ってきた光の全てを検出する。従来のTOFカメラでは、シャッタ幅が光のパルス幅よりも大きい必要があった。これに対し、本実施形態における生体計測装置100では、被写体の光量を補正する必要がない。このため、シャッタ幅がパルス幅よりも大きい必要はない。シャッタ幅を、例えば、1ns以上30ns以下の値に設定することができる。本実施形態における生体計測装置100によれば、シャッタ幅を縮小できるため、検出信号に含まれる暗電流の影響を低減することができる。 The photodetector 30 can adjust the exposure period and the non-exposure period by sub-nanosecond, for example, in the range of 30 ps to 1 ns by using the electronic shutter. The conventional TOF camera whose purpose is to measure the distance detects all the light emitted from the light source 20 and reflected by the subject and returned. In the conventional TOF camera, the shutter width needs to be larger than the pulse width of light. On the other hand, in the biometric device 100 according to the present embodiment, it is not necessary to correct the light amount of the subject. Therefore, the shutter width need not be larger than the pulse width. The shutter width can be set to a value of 1 ns or more and 30 ns or less, for example. According to the biometric device 100 in the present embodiment, the shutter width can be reduced, so that the influence of the dark current included in the detection signal can be reduced.
 ユーザ500の頭部を光で照射して脳血流などの情報を検出する場合、生体内部での光の減衰率が非常に大きい。例えば、入射光に対して出射光が、100万分の1程度にまで減衰し得る。このため、内部散乱成分I2を検出するには、1パルスの照射だけでは光量が不足する場合がある。レーザ安全性基準のクラス1での照射では、特に光量が微弱である。この場合、光源20が光パルスを複数回出射し、それに応じて光検出器30も電子シャッタによって複数回露光することにより、検出信号を積算して感度を向上することができる。 When illuminating the head of the user 500 with light to detect information such as cerebral blood flow, the light attenuation rate inside the living body is very large. For example, the emitted light may be attenuated to about one millionth of the incident light. For this reason, in order to detect the internal scattered component I2, the light amount may be insufficient by irradiating only one pulse. In the case of irradiation in Class 1 of the laser safety standard, the light amount is particularly weak. In this case, the light source 20 emits the light pulse a plurality of times, and the photodetector 30 is also exposed a plurality of times by the electronic shutter in response thereto, whereby the detection signals can be integrated to improve the sensitivity.
 以下、光検出器30の構成例を説明する。 Hereinafter, a configuration example of the photodetector 30 will be described.
 光検出器30は、撮像面上に2次元的に配列された複数の画素を備え得る。各画素は、例えばフォトダイオードなどの光電変換素子と、1つまたは複数の電荷蓄積部とを備え得る。以下、各画素が、光電変換によって受光量に応じた信号電荷を発生させる光電変換素子と、光パルスの表面反射成分I1によって生じた信号電荷を蓄積する電荷蓄積部と、光パルスの内部散乱成分I2によって生じた信号電荷を蓄積する電荷蓄積部とを備える例を説明する。以下の例では、制御回路60は、光検出器30に、ユーザ500の頭部から戻ってきた光パルス中の立ち下がり開始前の部分を検出させることにより、表面反射成分I1を検出させる。制御回路60はまた、光検出器30に、ユーザ500の頭部から戻ってきた光パルス中の立ち下がり開始後の部分を検出させることにより、内部散乱成分I2を検出させる。この例における光源20は2種類の波長の光を出射する。 The photodetector 30 may include a plurality of pixels arranged two-dimensionally on the imaging surface. Each pixel may include a photoelectric conversion element such as a photodiode and one or more charge storage units. Hereinafter, each pixel has a photoelectric conversion element that generates a signal charge according to the amount of received light by photoelectric conversion, a charge storage unit that stores the signal charge generated by the surface reflection component I1 of the light pulse, and an internal scattering component of the light pulse. An example including a charge storage unit that stores the signal charge generated by I2 will be described. In the following example, the control circuit 60 causes the photodetector 30 to detect the surface reflection component I1 by detecting the portion of the optical pulse returned from the head of the user 500 before the start of the fall. The control circuit 60 also causes the photodetector 30 to detect the internal scattered component I2 by detecting the portion of the optical pulse returning from the head of the user 500 after the start of the falling. The light source 20 in this example emits light of two types of wavelengths.
 図1Dは、光検出器30の1つの画素201の概略的な構成の例を示す図である。なお、図1Dは、1つの画素201の構成を模式的に示しており、実際の構造を必ずしも反映していない。この例における画素201は、光電変換を行うフォトダイオード203と、電荷蓄積部である第1の浮遊拡散層(Floating Diffusion)204、第2の浮遊拡散層205、第3の浮遊拡散層206、および第4の浮遊拡散層207と、信号電荷を排出するドレイン202とを含む。 FIG. 1D is a diagram showing an example of a schematic configuration of one pixel 201 of the photodetector 30. Note that FIG. 1D schematically illustrates the structure of one pixel 201, and does not necessarily reflect the actual structure. The pixel 201 in this example includes a photodiode 203 that performs photoelectric conversion, a first floating diffusion layer (Floating Diffusion) 204 that is a charge storage unit, a second floating diffusion layer 205, a third floating diffusion layer 206, and It includes a fourth floating diffusion layer 207 and a drain 202 that drains signal charges.
 1回の光パルスの出射に起因して各画素に入射したフォトンは、フォトダイオード203によって信号電荷である信号エレクトロンに変換される。変換された信号エレクトロンは、制御回路60から入力される制御信号に従って、ドレイン202に排出されるか、第1の浮遊拡散層204から第4の浮遊拡散層207のいずれかに振り分けられる。 Photons that have entered each pixel due to one emission of a light pulse are converted by the photodiode 203 into signal electrons that are signal charges. The converted signal electrons are discharged to the drain 202 or distributed to either the first floating diffusion layer 204 to the fourth floating diffusion layer 207 according to the control signal input from the control circuit 60.
 光源20からの光パルスの出射と、第1の浮遊拡散層204、第2の浮遊拡散層205、第3の浮遊拡散層206、および第4の浮遊拡散層207への信号電荷の蓄積と、ドレイン202への信号電荷の排出が、この順序で繰り返し行われる。この繰り返し動作は高速であり、例えば動画像の1フレームの時間内に数万回から数億回繰り返され得る。1フレームの時間は、例えば約1/30秒である。画素201は、最終的に、第1の浮遊拡散層204から第4の浮遊拡散層207に蓄積された信号電荷に基づく4つの画像信号を生成して出力する。 Emission of an optical pulse from the light source 20 and accumulation of signal charges in the first floating diffusion layer 204, the second floating diffusion layer 205, the third floating diffusion layer 206, and the fourth floating diffusion layer 207, The discharge of the signal charge to the drain 202 is repeated in this order. This repetitive operation is fast, and can be repeated tens of thousands to hundreds of millions of times within one frame of a moving image, for example. The time for one frame is, for example, about 1/30 second. The pixel 201 finally generates and outputs four image signals based on the signal charges accumulated in the first floating diffusion layer 204 to the fourth floating diffusion layer 207.
 この例における制御回路60は、光源20に、第1の波長を有する第1の光パルスと、第2の波長を有する第2の光パルスとを、順に繰り返し出射させる。第1の波長および第2の波長として、ユーザ500の内部組織での吸収率が異なる2波長を選択することにより、ユーザ500の状態を分析することができる。例えば、第1の波長として805nmよりも長い波長を選択し、第2の波長として805nmよりも短い波長を選択してもよい。これにより、ユーザ500の血液中の酸素化ヘモグロビン濃度および脱酸素化ヘモグロビン濃度のそれぞれの変化を検出することが可能になる。 The control circuit 60 in this example causes the light source 20 to repeatedly emit the first light pulse having the first wavelength and the second light pulse having the second wavelength in order. By selecting two wavelengths having different absorption rates in the internal tissue of the user 500 as the first wavelength and the second wavelength, the state of the user 500 can be analyzed. For example, a wavelength longer than 805 nm may be selected as the first wavelength and a wavelength shorter than 805 nm may be selected as the second wavelength. This makes it possible to detect changes in the oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration in the blood of the user 500.
 制御回路60は、まず、光源20に、第1の光パルスを出射させる。制御回路60は、第1の光パルスの表面反射成分I1がフォトダイオード203に入射している第1の期間に、第1の浮遊拡散層204に信号電荷を蓄積させる。続いて、制御回路60は、第1の光パルスの内部散乱成分I2がフォトダイオード203に入射している第2の期間に、第2の浮遊拡散層205に信号電荷を蓄積させる。次に、制御回路60は、光源20に、第2の光パルスを出射させる。制御回路60は、第2の光パルスの表面反射成分I1がフォトダイオード203に入射している第3の期間に、第3の浮遊拡散層206に信号電荷を蓄積させる。続いて、制御回路60は、第2の光パルスの内部散乱成分I2がフォトダイオード203に入射している第4の期間に、第4の浮遊拡散層207に信号電荷を蓄積させる。 The control circuit 60 first causes the light source 20 to emit the first light pulse. The control circuit 60 accumulates the signal charge in the first floating diffusion layer 204 during the first period in which the surface reflection component I1 of the first light pulse is incident on the photodiode 203. Subsequently, the control circuit 60 accumulates signal charges in the second floating diffusion layer 205 during the second period in which the internal scattered component I2 of the first light pulse is incident on the photodiode 203. Next, the control circuit 60 causes the light source 20 to emit the second light pulse. The control circuit 60 accumulates signal charges in the third floating diffusion layer 206 during the third period in which the surface reflection component I1 of the second light pulse is incident on the photodiode 203. Subsequently, the control circuit 60 accumulates signal charges in the fourth floating diffusion layer 207 during the fourth period in which the internal scattering component I2 of the second light pulse is incident on the photodiode 203.
 このように、制御回路60は、第1の光パルスの出射を開始した後、所定の時間差を空けて、第1の浮遊拡散層204および第2の浮遊拡散層205に、フォトダイオード203からの信号電荷を順次蓄積させる。その後、制御回路60は、第2の光パルスの出射を開始した後、上記所定の時間差を空けて、第3の浮遊拡散層206および第4の浮遊拡散層207に、フォトダイオード203からの信号電荷を順次蓄積させる。以上の動作が、複数回繰り返される。外乱光および環境光の光量を推定するために、光源20を消灯した状態で、不図示の他の浮遊拡散層に信号電荷を蓄積する期間を設けてもよい。第1の浮遊拡散層204から第4の浮遊拡散層207の信号電荷量から、上記他の浮遊拡散層の信号電荷量を差し引くことにより、外乱光および環境光成分を除去した信号を得ることができる。 As described above, the control circuit 60 starts the emission of the first optical pulse, and then leaves the first floating diffusion layer 204 and the second floating diffusion layer 205 from the photodiode 203 with a predetermined time difference. The signal charges are sequentially accumulated. After that, the control circuit 60 starts the emission of the second light pulse, and then makes a predetermined time difference to the third floating diffusion layer 206 and the fourth floating diffusion layer 207, and outputs the signal from the photodiode 203. The charges are accumulated in sequence. The above operation is repeated a plurality of times. In order to estimate the amounts of ambient light and ambient light, a period during which signal charges are accumulated in another floating diffusion layer (not shown) may be provided with the light source 20 turned off. By subtracting the signal charge amount of the other floating diffusion layer from the signal charge amount of the first floating diffusion layer 204 to the fourth floating diffusion layer 207, a signal from which ambient light and ambient light components are removed can be obtained. it can.
 なお、本実施形態では、電荷蓄積部の数を4としているが、目的に応じて2以上の複数の数に設計してよい。例えば、1種類の波長のみを用いて、表面反射成分I1と内部散乱成分I2とを検出する場合には、電荷蓄積部の数は2であってよい。また、使用する波長が1種類であり、表面反射成分I1が検出されない場合には、画素ごとの電荷蓄積部の数は1であってもよい。また、2種類以上の波長を用いる場合であっても、それぞれの波長を用いた撮像を別のフレームで行えば、電荷蓄積部の数は1であってもよい。同様に、表面反射成分I1および内部散乱成分I2の両方の検出を行う場合であっても、両者をそれぞれ別のフレームで検出する構成では、電荷蓄積部の数は1であってもよい。 In this embodiment, the number of charge storage units is four, but it may be designed to be two or more depending on the purpose. For example, when the surface reflection component I1 and the internal scattering component I2 are detected by using only one type of wavelength, the number of charge accumulating portions may be two. In addition, when the number of wavelengths to be used is one and the surface reflection component I1 is not detected, the number of charge storage units for each pixel may be one. Further, even when two or more types of wavelengths are used, the number of charge storage units may be one if the imaging using each wavelength is performed in another frame. Similarly, even in the case of detecting both the surface reflection component I1 and the internal scattering component I2, the number of charge accumulating portions may be 1 in a configuration in which they are detected in different frames.
 図1Eは、光検出器30の構成の一例を示す図である。図1Eにおいて、二点鎖線の枠によって囲まれた領域が1つの画素201に相当する。画素201には1つのフォトダイオードが含まれる。図1Eでは2行2列に配列された4画素のみを示しているが、実際にはさらに多数の画素が配置され得る。画素201は、第1の浮遊拡散層204から第4の浮遊拡散層207を含む。第1の浮遊拡散層204から第4の浮遊拡散層207に蓄積される信号は、あたかも一般的なCMOSイメージセンサの4画素の信号のように取り扱われ、光検出器30から出力される。 FIG. 1E is a diagram showing an example of the configuration of the photodetector 30. In FIG. 1E, a region surrounded by a two-dot chain line frame corresponds to one pixel 201. The pixel 201 includes one photodiode. Although FIG. 1E shows only four pixels arranged in two rows and two columns, a larger number of pixels may be actually arranged. The pixel 201 includes a first floating diffusion layer 204 to a fourth floating diffusion layer 207. The signals accumulated in the first floating diffusion layer 204 to the fourth floating diffusion layer 207 are treated as if they were signals of four pixels of a general CMOS image sensor and output from the photodetector 30.
 各画素201は、4つの信号検出回路を有する。各信号検出回路は、ソースフォロワトランジスタ309と、行選択トランジスタ308と、リセットトランジスタ310とを含む。この例では、リセットトランジスタ310が図1Dに示すドレイン202に対応し、リセットトランジスタ310のゲートに入力されるパルスがドレイン排出パルスに対応する。各トランジスタは、例えば半導体基板に形成された電界効果トランジスタであるが、これに限定されない。図示されるように、ソースフォロワトランジスタ309の入力端子および出力端子の一方と、行選択トランジスタ308の入力端子および出力端子のうちの一方とが接続されている。ソースフォロワトランジスタ309の入力端子および出力端子の上記一方は、典型的にはソースである。行選択トランジスタ308の入力端子および出力端子の上記一方は、典型的にはドレインである。ソースフォロワトランジスタ309の制御端子であるゲートは、フォトダイオード203に接続されている。フォトダイオード203によって生成された正孔または電子の信号電荷は、フォトダイオード203とソースフォロワトランジスタ309との間の電荷蓄積部である浮遊拡散層に蓄積される。 Each pixel 201 has four signal detection circuits. Each signal detection circuit includes a source follower transistor 309, a row selection transistor 308, and a reset transistor 310. In this example, the reset transistor 310 corresponds to the drain 202 shown in FIG. 1D, and the pulse input to the gate of the reset transistor 310 corresponds to the drain discharge pulse. Each transistor is, for example, a field effect transistor formed on a semiconductor substrate, but is not limited to this. As shown, one of the input terminal and the output terminal of the source follower transistor 309 is connected to one of the input terminal and the output terminal of the row selection transistor 308. The one of the input terminal and the output terminal of the source follower transistor 309 is typically the source. The one of the input terminal and the output terminal of the row selection transistor 308 is typically the drain. The gate, which is the control terminal of the source follower transistor 309, is connected to the photodiode 203. The signal charge of holes or electrons generated by the photodiode 203 is stored in the floating diffusion layer which is a charge storage unit between the photodiode 203 and the source follower transistor 309.
 図1Eには示されていないが、第1の浮遊拡散層204から第4の浮遊拡散層207はフォトダイオード203に接続される。フォトダイオード203と、第1の浮遊拡散層204から第4の浮遊拡散層207の各々との間には、スイッチが設けられ得る。このスイッチは、制御回路60からの信号蓄積パルスに応じて、フォトダイオード203と第1の浮遊拡散層204から第4の浮遊拡散層207の各々との間の導通状態を切り替える。これにより、第1の浮遊拡散層204から第4の浮遊拡散層207の各々への信号電荷の蓄積の開始と停止とが制御される。本実施形態における電子シャッタは、このような露光制御のための機構を有する。 Although not shown in FIG. 1E, the first floating diffusion layer 204 to the fourth floating diffusion layer 207 are connected to the photodiode 203. A switch may be provided between the photodiode 203 and each of the first floating diffusion layer 204 to the fourth floating diffusion layer 207. This switch switches the conduction state between the photodiode 203 and each of the first floating diffusion layer 204 to the fourth floating diffusion layer 207 in response to the signal accumulation pulse from the control circuit 60. This controls the start and stop of the accumulation of the signal charges from the first floating diffusion layer 204 to each of the fourth floating diffusion layers 207. The electronic shutter in this embodiment has a mechanism for such exposure control.
 第1の浮遊拡散層204から第4の浮遊拡散層207に蓄積された信号電荷は、行選択回路302によって行選択トランジスタ308のゲートがONにされることにより、読み出される。この際、第1の浮遊拡散層204から第4の浮遊拡散層207の信号電位に応じて、ソースフォロワ電源305からソースフォロワトランジスタ309およびソースフォロワ負荷306へ流入する電流が増幅される。垂直信号線304から読み出されるこの電流によるアナログ信号は、列ごとに接続されたアナログ-デジタル(AD)変換回路307によってデジタル信号データに変換される。このデジタル信号データは、列選択回路303によって列ごとに読み出され、光検出器30から出力される。行選択回路302および列選択回路303は、1つの行の読出しを行った後、次の行の読み出しを行い、以下同様に、全ての行の浮遊拡散層の信号電荷の情報を読み出す。制御回路60は、全ての信号電荷を読み出した後、リセットトランジスタ310のゲートをオンにすることにより、全ての浮遊拡散層をリセットする。これにより、1つのフレームの撮像が完了する。以下同様に、フレームの高速撮像を繰り返すことにより、光検出器30による一連のフレームの撮像が完結する。 The signal charge accumulated in the first floating diffusion layer 204 to the fourth floating diffusion layer 207 is read out by turning on the gate of the row selection transistor 308 by the row selection circuit 302. At this time, the current flowing from the source follower power source 305 to the source follower transistor 309 and the source follower load 306 is amplified according to the signal potentials of the first floating diffusion layer 204 to the fourth floating diffusion layer 207. The analog signal based on this current read from the vertical signal line 304 is converted into digital signal data by the analog-digital (AD) conversion circuit 307 connected for each column. This digital signal data is read out for each column by the column selection circuit 303 and output from the photodetector 30. The row selection circuit 302 and the column selection circuit 303, after reading one row, read the next row, and similarly, read the information of the signal charges of the floating diffusion layers of all the rows. The control circuit 60 resets all floating diffusion layers by turning on the gate of the reset transistor 310 after reading all the signal charges. This completes the imaging of one frame. Similarly, the high-speed imaging of the frames is repeated to complete the imaging of a series of frames by the photodetector 30.
 本実施形態では、CMOS型の光検出器30の例を説明したが、光検出器30は他の種類の撮像素子であってもよい。光検出器30は、例えば、CCD型であっても、単一光子計数型素子であっても、EMCCDまたはICCDなどの増幅型イメージセンサであってもよい。 In the present embodiment, an example of the CMOS type photodetector 30 has been described, but the photodetector 30 may be another type of image sensor. The photodetector 30 may be, for example, a CCD type, a single photon counting type element, or an amplification type image sensor such as an EMCCD or ICCD.
 図1Fは、本実施形態における1フレーム内の動作の例を示す図である。図1Fに示すように、1フレーム内で、第1の光パルスの出射と第2の光パルスの出射とを交互に複数回切り替えてもよい。このようにすると、2種類の波長による検出画像の取得タイミングの時間差を低減でき、動きがあるユーザであっても、ほぼ同時に第1の光パルスおよび第2の光パルスによる撮影が可能である。 FIG. 1F is a diagram showing an example of an operation within one frame in the present embodiment. As shown in FIG. 1F, the emission of the first optical pulse and the emission of the second optical pulse may be alternately switched a plurality of times within one frame. By doing so, the time difference between the acquisition timings of the detected images due to the two types of wavelengths can be reduced, and even a user who is moving can take images with the first light pulse and the second light pulse almost at the same time.
 本実施形態では、光検出器30は、光パルスの表面反射成分I1および/または内部散乱成分I2を検出することができる。表面反射成分I1の時間的または空間的な変化から、ユーザ500の第1の生体情報を取得することができる。第1の生体情報は、例えば、ユーザ500の脈拍であり得る。一方、内部散乱成分I2の時間的または空間的な変化から、ユーザ500の第2の生体情報である脳活動情報を取得することができる。 In the present embodiment, the photodetector 30 can detect the surface reflection component I1 and/or the internal scattering component I2 of the light pulse. The first biometric information of the user 500 can be acquired from the temporal or spatial change of the surface reflection component I1. The first biometric information may be, for example, the pulse of the user 500. On the other hand, the brain activity information that is the second biometric information of the user 500 can be acquired from the temporal or spatial change of the internal scattering component I2.
 第1の生体情報は、表面反射成分I1を検出する方法とは異なる方法によって取得してもよいし、そもそも取得されなくてもよい。例えば、光検出器30とは異なる他の種類の検出器を利用して、第1の生体情報を取得してもよい。その場合、光検出器30は、内部散乱成分I2のみを検出する。他の種類の検出器は、例えばレーダまたはサーモグラフィであってもよい。第1の生体情報は、例えば、ユーザ500の脈拍、発汗、呼吸、および体温からなる群から選択される少なくとも1つであり得る。第1の生体情報は、ユーザ500の頭部に照射された光パルスの内部散乱成分I2を検出することにより得られる脳活動情報以外の生体情報である。ここで、「脳活動情報以外」とは、第1の生体情報中に脳活動に起因する情報が一切含まれないことを意味するものではない。第1の生体情報は、脳活動とは別の生体活動に起因する生体情報が含まれている。第1の生体情報は、例えば、自律的または反射的な生体活動に起因する生体情報であり得る。 The first biometric information may be acquired by a method different from the method of detecting the surface reflection component I1 or may not be acquired in the first place. For example, another type of detector different from the photodetector 30 may be used to acquire the first biometric information. In that case, the photodetector 30 detects only the internal scattering component I2. Other types of detectors may be radar or thermography, for example. The first biometric information may be, for example, at least one selected from the group consisting of the pulse rate, sweating, respiration, and body temperature of the user 500. The first biometric information is biometric information other than the brain activity information obtained by detecting the internal scattered component I2 of the light pulse applied to the head of the user 500. Here, “other than brain activity information” does not mean that the first biological information does not include any information due to brain activity. The first biometric information includes biometric information resulting from a bioactivity different from the brain activity. The first biometric information may be, for example, biometric information due to autonomous or reflexive bioactivity.
 [1-4.制御回路60および信号処理回路70]
 制御回路60は、光源20の光パルスの出射タイミングと、光検出器30のシャッタタイミングとの時間差を調整する。本明細書では、当該時間差を「位相差」と称することがある。光源20の「出射タイミング」とは、光源20から出射される光パルスが立ち上がりを開始するタイミングである。「シャッタタイミング」とは、露光を開始するタイミングである。制御回路60は、出射タイミングを変化させて位相差を調整してもよいし、シャッタタイミングを変化させて位相差を調整してもよい。
[1-4. Control circuit 60 and signal processing circuit 70]
The control circuit 60 adjusts the time difference between the emission timing of the light pulse of the light source 20 and the shutter timing of the photodetector 30. In this specification, the time difference may be referred to as “phase difference”. The “emission timing” of the light source 20 is the timing at which the light pulse emitted from the light source 20 starts rising. "Shutter timing" is the timing at which exposure is started. The control circuit 60 may change the emission timing to adjust the phase difference, or may change the shutter timing to adjust the phase difference.
 制御回路60は、光検出器30の各画素によって検出された信号からオフセット成分を取り除くように構成されてもよい。オフセット成分は、太陽光もしくは蛍光灯などの環境光、または外乱光による信号成分である。光源20の駆動をOFFにして光源20から光が出射されない状態で、光検出器30によって信号を検出することにより、環境光または外乱光によるオフセット成分が見積もられる。 The control circuit 60 may be configured to remove the offset component from the signal detected by each pixel of the photodetector 30. The offset component is a signal component due to ambient light such as sunlight or fluorescent light, or ambient light. An offset component due to ambient light or ambient light is estimated by detecting a signal with the photodetector 30 in a state where the light source 20 is turned off and no light is emitted from the light source 20.
 制御回路60は、例えばプロセッサおよびメモリの組み合わせ、またはプロセッサおよびメモリを内蔵するマイクロコントローラなどの集積回路であり得る。制御回路60は、例えばプロセッサがメモリに記録されたプログラムを実行することにより、例えば出射タイミングとシャッタタイミングとの調整を行う。 The control circuit 60 may be, for example, a combination of a processor and a memory, or an integrated circuit such as a microcontroller including the processor and the memory. The control circuit 60 adjusts the emission timing and the shutter timing, for example, by the processor executing a program recorded in the memory, for example.
 信号処理回路70は、光検出器30から出力された画像信号を処理する回路である。信号処理回路70は、画像処理などの演算処理を行う。信号処理回路70は、例えばデジタルシグナルプロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)などのプログラマブルロジックデバイス(PLD)、または中央演算処理装置(CPU)もしくは画像処理用演算プロセッサ(GPU)とコンピュータプログラムとの組み合わせによって実現され得る。制御回路60および信号処理回路70は、統合された1つの回路であってもよいし、分離された個別の回路であってもよい。信号処理回路70は、例えば遠隔地に設けられたサーバなどの外部の装置の構成要素であってもよい。この場合、サーバなどの外部の装置は、無線通信または有線通信により、光源20、光検出器30、および制御回路60と相互にデータの送受信を行う。 The signal processing circuit 70 is a circuit that processes the image signal output from the photodetector 30. The signal processing circuit 70 performs arithmetic processing such as image processing. The signal processing circuit 70 includes, for example, a digital signal processor (DSP), a programmable logic device (PLD) such as a field programmable gate array (FPGA), a central processing unit (CPU) or an image processing arithmetic processor (GPU), and a computer program. Can be realized in combination with. The control circuit 60 and the signal processing circuit 70 may be one integrated circuit or may be separate and independent circuits. The signal processing circuit 70 may be a component of an external device such as a server provided in a remote place. In this case, an external device such as a server mutually transmits/receives data to/from the light source 20, the photodetector 30, and the control circuit 60 by wireless communication or wired communication.
 本実施形態における信号処理回路70は、光検出器30から出力された信号に基づき、皮膚表面の血流および脳血流の時間変化を示す動画像データを生成することができる。信号処理回路70は、そのような動画像データに限らず、他の情報を生成してもよい。例えば、他の機器と同期させることにより、脳における血流量、血圧、血中酸素飽和度、または心拍数などの生体情報を生成してもよい。信号処理回路70は、外乱光によるオフセット成分の見積り、およびオフセット成分の除去を行ってもよい。 The signal processing circuit 70 according to the present embodiment can generate moving image data indicating temporal changes in blood flow on the skin surface and cerebral blood flow based on the signal output from the photodetector 30. The signal processing circuit 70 is not limited to such moving image data, and may generate other information. For example, biological information such as blood flow in the brain, blood pressure, blood oxygen saturation, or heart rate may be generated by synchronizing with other devices. The signal processing circuit 70 may estimate an offset component due to ambient light and remove the offset component.
 脳血流量またはヘモグロビンなどの血液内成分の変化と、人間の神経活動との間には密接な関係があることが知られている。例えば、人間の感情の変化に応じて神経細胞の活動が変化することにより、脳血流量または血液内の成分が変化する。したがって、脳血流量または血液内成分の変化などの生体情報を計測できれば、ユーザ500の心理状態を推定することができる。ユーザ500の心理状態は、例えば、気分、感情、健康状態、または温度感覚を意味する。気分は、例えば、快、または不快といった気分を含み得る。感情は、例えば、安心、不安、悲しみ、または憤りといった感情を含み得る。健康状態は、例えば、元気、または倦怠といった状態を含み得る。温度感覚は、例えば、暑い、寒い、または蒸し暑いといった感覚を含み得る。これらに派生して、脳活動の程度を表す指標、例えば熟練度、習熟度、および集中度も、心理状態に含まれ得る。信号処理回路70は、例えば脳血流量の変化に基づいて、ユーザ500の集中度などの心理状態を推定することができる。特に、脳の前頭前野領域に相当する額部の脳血流は、集中の状態を反映していると考えられる。マインドフルネスは、集中の状態と密接に関連する。額部の脳血流量またはその成分を計測することにより、ユーザ500の集中度あるいはマインドフルネスの度合いを推定することができる。 It is known that there is a close relationship between changes in cerebral blood flow or blood components such as hemoglobin and human neural activity. For example, cerebral blood flow or components in blood change due to changes in nerve cell activity in response to changes in human emotions. Therefore, if biological information such as changes in cerebral blood flow or changes in blood components can be measured, the psychological state of the user 500 can be estimated. The psychological state of the user 500 means, for example, mood, emotion, health, or temperature sensation. Mood may include moods such as pleasant or unpleasant. Emotions may include, for example, feelings of security, anxiety, sadness, or resentment. The health condition can include, for example, a condition such as healthy or tired. The temperature sensation may include, for example, a sensation of being hot, cold, or sultry. Derivatives of these may include indexes indicating the degree of brain activity, such as skill level, proficiency level, and concentration level, in the psychological state. The signal processing circuit 70 can estimate the psychological state of the user 500, such as the degree of concentration, based on, for example, a change in cerebral blood flow. In particular, the cerebral blood flow in the forehead corresponding to the prefrontal cortex region of the brain is considered to reflect the state of concentration. Mindfulness is closely related to the state of concentration. By measuring the cerebral blood flow in the forehead or its components, the degree of concentration or mindfulness of the user 500 can be estimated.
 図1Gは、制御回路60による光源20および光検出器30に関する動作の概略を示すフローチャートである。制御回路60は、概略的には図1Gに示す動作を実行する。なお、ここでは内部散乱成分I2の検出のみを行う場合の動作を説明する。 FIG. 1G is a flowchart showing an outline of the operation regarding the light source 20 and the photodetector 30 by the control circuit 60. The control circuit 60 generally performs the operations shown in FIG. 1G. Here, the operation when only the internal scattered component I2 is detected will be described.
 ステップS101では、制御回路60は、まず、光源20に所定時間だけ光パルスを出射させる。このとき、光検出器30の電子シャッタは露光を停止した状態にある。制御回路60は、光パルスの一部がユーザ500の表面で反射されて光検出器30に到達する期間が完了するまで、電子シャッタに露光を停止させる。次に、ステップS102では、制御回路60は、当該光パルスの他の一部がユーザ500の内部で散乱されて光検出器30に到達するタイミングで、電子シャッタに露光を開始させる。所定時間経過後、ステップS103において、制御回路60は、電子シャッタに露光を停止させる。続いて、ステップS104では、制御回路60は、上記の信号蓄積を実行した回数が所定の回数に達したか否かを判定する。ステップS104での判定がNoの場合、Yesと判定するまで、ステップS101からステップS103が繰り返される。ステップS104での判定がYesの場合、ステップS105では、制御回路60は、各浮遊拡散層に蓄積された信号電荷に基づく画像を示す信号を光検出器30に生成させて出力させる。 In step S101, the control circuit 60 first causes the light source 20 to emit an optical pulse for a predetermined time. At this time, the electronic shutter of the photodetector 30 is in a state where exposure is stopped. The control circuit 60 causes the electronic shutter to stop the exposure until the period when a part of the light pulse is reflected by the surface of the user 500 and reaches the photodetector 30 is completed. Next, in step S102, the control circuit 60 causes the electronic shutter to start exposure at the timing when the other part of the light pulse is scattered inside the user 500 and reaches the photodetector 30. After the elapse of the predetermined time, in step S103, the control circuit 60 causes the electronic shutter to stop the exposure. Succeedingly, in a step S104, the control circuit 60 determines whether or not the number of times of executing the signal accumulation reaches a predetermined number. When the determination in step S104 is No, steps S101 to S103 are repeated until Yes is determined. When the determination in step S104 is Yes, in step S105, the control circuit 60 causes the photodetector 30 to generate and output a signal indicating an image based on the signal charges accumulated in each floating diffusion layer.
 以上の動作により、計測対象の内部で散乱された光の成分を高い感度で検出することができる。なお、複数回の光出射および露光は必須ではなく、必要に応じて行われる。 By the above operation, the components of the light scattered inside the measurement target can be detected with high sensitivity. In addition, the light emission and the exposure are performed a plurality of times, and they are performed as needed.
 [1-5.その他]
 生体計測装置100は、ユーザ500の2次元像を光検出器30の受光面上に形成する結像光学系を備えてもよい。結像光学系の光軸は、光検出器30の受光面に略直交する。結像光学系は、ズームレンズを含んでいてもよい。ズームレンズの位置が変化するとユーザ500の2次元像の拡大率が変化し、光検出器30上の2次元像の解像度が変化する。したがって、ユーザ500までの距離が遠くても、所望の計測領域を拡大して詳細に観察することが可能である。
[1-5. Other]
The biometric device 100 may include an imaging optical system that forms a two-dimensional image of the user 500 on the light receiving surface of the photodetector 30. The optical axis of the imaging optical system is substantially orthogonal to the light receiving surface of the photodetector 30. The imaging optical system may include a zoom lens. When the position of the zoom lens changes, the magnification of the two-dimensional image of the user 500 changes, and the resolution of the two-dimensional image on the photodetector 30 changes. Therefore, even if the distance to the user 500 is long, it is possible to enlarge a desired measurement region and observe it in detail.
 生体計測装置100は、ユーザ500と光検出器30との間に、光源20から出射される波長帯域の光、またはその近傍の光のみを通過させる帯域通過フィルタを備えていてもよい。これにより、環境光などの外乱成分の影響を低減することができる。帯域通過フィルタは、例えば多層膜フィルタまたは吸収フィルタによって構成され得る。光源20の温度変化およびフィルタへの斜入射に伴う帯域シフトを考慮して、帯域通過フィルタの帯域幅は、20から100nm程度の幅を持たせてもよい。 The biometric device 100 may include, between the user 500 and the photodetector 30, a bandpass filter that passes only light in the wavelength band emitted from the light source 20 or light in the vicinity thereof. As a result, the influence of disturbance components such as ambient light can be reduced. The bandpass filter can be constituted by, for example, a multilayer filter or an absorption filter. In consideration of the temperature shift of the light source 20 and the band shift caused by oblique incidence on the filter, the bandpass filter may have a bandwidth of about 20 to 100 nm.
 生体計測装置100は、光源20とユーザ500との間、および光検出器30とユーザ500との間に、それぞれ偏光板を備えてもよい。この場合、光源20側に配置される偏光板と、光検出器30側に配置される偏光板との偏光方向は、直交ニコルの関係であり得る。これにより、ユーザ500の表面反射成分I1のうち正反射成分、すなわち入射角と反射角が同じ成分が光検出器30に到達することを防ぐことができる。つまり、表面反射成分I1が光検出器30に到達する光量を低減させることができる。 The biometric device 100 may include polarizing plates between the light source 20 and the user 500 and between the photodetector 30 and the user 500, respectively. In this case, the polarization directions of the polarizing plate arranged on the light source 20 side and the polarizing plate arranged on the photodetector 30 side may have a crossed Nicol relationship. This prevents the specular reflection component of the surface reflection component I1 of the user 500, that is, the component having the same incident angle and reflection angle from reaching the photodetector 30. That is, the amount of light that the surface reflection component I1 reaches the photodetector 30 can be reduced.
 [2.光源および光検出器の動作]
 本実施形態における生体計測装置100は、表面反射成分I1と内部散乱成分I2とを区別して検出することができる。ユーザ500の対象部が額である場合、検出したい内部散乱成分I2による信号強度は、非常に小さくなる。前述のように、レーザ安全基準を満たす非常に小さな光量の光が照射されることに加えて、頭皮、脳髄液、頭蓋骨、灰白質、白質および血流による光の散乱および吸収が大きいためである。さらに、脳活動時の血流量または血流内成分の変化による信号強度の変化は、さらに数十分の1の大きさに相当し非常に小さくなる。したがって、内部散乱成分I2を検出する場合、撮像の際、検出したい信号成分の数千倍から数万倍である表面反射成分I1は、可能な限り除去される。
[2. Operation of light source and photodetector]
The biometric device 100 in the present embodiment can detect the surface reflection component I1 and the internal scattering component I2 separately. When the target part of the user 500 is the forehead, the signal intensity due to the internal scattered component I2 to be detected becomes very small. As described above, in addition to the irradiation of a very small amount of light that meets the laser safety standards, the scattering and absorption of light by the scalp, cerebrospinal fluid, skull, gray matter, white matter and blood flow are large. .. Furthermore, the change in the signal intensity due to the change in the blood flow rate or the component in the blood flow during brain activity is very small, which corresponds to a magnitude of several tens of minutes. Therefore, when detecting the internal scattering component I2, the surface reflection component I1, which is thousands to tens of thousands times the signal component to be detected, is removed as much as possible during imaging.
 以下、内部散乱成分I2を検出する生体計測装置100における光源20および光検出器30の動作の例を説明する。 Hereinafter, an example of the operation of the light source 20 and the photodetector 30 in the biometric device 100 that detects the internal scattered component I2 will be described.
 図1Aに示すように、光源20がユーザ500の対象部を光パルスで照射すると、表面反射成分I1および内部散乱成分I2が発生する。表面反射成分I1および内部散乱成分I2は各々の一部が光検出器30に到達する。内部散乱成分I2は、光源20から出射して、光検出器30に到達するまでにユーザ500の対象部の内部を通過する。このため、内部散乱成分I2の光路長は、表面反射成分I1の光路長よりも長くなる。したがって、内部散乱成分I2が光検出器30に到達する時間は、表面反射成分I1が光検出器30に到達する時間よりも平均的に遅れる。 As shown in FIG. 1A, when the light source 20 irradiates the target portion of the user 500 with a light pulse, a surface reflection component I1 and an internal scattering component I2 are generated. Part of each of the surface reflection component I1 and the internal scattering component I2 reaches the photodetector 30. The internal scattered component I2 is emitted from the light source 20 and passes through the inside of the target portion of the user 500 before reaching the photodetector 30. Therefore, the optical path length of the internal scattering component I2 is longer than the optical path length of the surface reflection component I1. Therefore, the time for the internal scattering component I2 to reach the photodetector 30 lags behind the time for the surface reflection component I1 to reach the photodetector 30 on average.
 図2は、光源20から矩形波の光パルスが出射された場合において、ユーザ500の頭部から戻ってきた反射光パルスの光強度の波形を模式的に示す図である。横軸は、図2の波形(a)から波形(d)ではいずれも時間(t)を表す。縦軸は、図2の波形(a)から波形(c)では強度を表し、波形(d)では電子シャッタのOPENまたはCLOSEの状態を表す。図2の波形(a)は、表面反射成分I1を示す。図2の波形(b)は、内部散乱成分I2を示す。図2の波形(c)は、表面反射成分I1および内部散乱成分I2の合算成分を示す。図2の波形(a)に示すように、表面反射成分I1の波形は、ほぼ矩形を維持する。一方、内部散乱成分I2は、さまざまな光路長の光の合算である。このため、図2の波形(b)に示すように、内部散乱成分I2は、光パルスの後端が尾を引いたような特性を示す。言い換えれば、内部散乱成分I2の立ち下がり期間は、表面反射成分I1の立ち下がり期間よりも長くなる。図2の波形(c)に示す光信号から内部散乱成分I2の割合を高めて抽出するために、図2の波形(d)に示す通り、表面反射成分I1の後端が到達する時点以降に、電子シャッタの露光が開始される。言い換えれば、表面反射成分I1の波形が立ち下がった時またはその後に露光が開始される。このシャッタタイミングは、制御回路60によって調整される。 FIG. 2 is a diagram schematically showing a waveform of the light intensity of the reflected light pulse returned from the head of the user 500 when the light pulse of the rectangular wave is emitted from the light source 20. The horizontal axis represents time (t) in each of the waveforms (a) to (d) in FIG. The vertical axis represents intensity in the waveforms (a) to (c) of FIG. 2, and the waveform (d) represents the state of OPEN or CLOSE of the electronic shutter. The waveform (a) in FIG. 2 shows the surface reflection component I1. The waveform (b) in FIG. 2 shows the internal scattering component I2. The waveform (c) in FIG. 2 shows the total component of the surface reflection component I1 and the internal scattering component I2. As shown in the waveform (a) of FIG. 2, the waveform of the surface reflection component I1 maintains a substantially rectangular shape. On the other hand, the internal scattering component I2 is the sum of lights having various optical path lengths. Therefore, as shown in the waveform (b) of FIG. 2, the internal scattered component I2 has a characteristic that the rear end of the optical pulse is tailed. In other words, the falling period of the internal scattering component I2 is longer than the falling period of the surface reflection component I1. As shown in the waveform (d) of FIG. 2, in order to extract the optical signal shown in the waveform (c) of FIG. 2 while increasing the ratio of the internal scattering component I2, after the time when the rear end of the surface reflection component I1 arrives, The exposure of the electronic shutter is started. In other words, the exposure is started when the waveform of the surface reflection component I1 falls or after that. The shutter timing is adjusted by the control circuit 60.
 測定対象物が平面的でない場合、光検出器30の画素によって光が到達するタイミングが異なる。この場合、画素ごとに図2の波形(d)に示すシャッタタイミングを個別に決定してもよい。例えば、光検出器30の受光面に垂直な方向をz方向とする。制御回路60は、対象部の表面におけるz座標の2次元分布を示すデータを予め取得し、このデータに基づいてシャッタタイミングを画素ごとに変化させてもよい。これにより、対象部の表面が湾曲している場合でも、それぞれの位置で最適なシャッタタイミングを決定することができる。 When the measurement target is not planar, the timing of light arrival differs depending on the pixel of the photodetector 30. In this case, the shutter timing shown in the waveform (d) of FIG. 2 may be individually determined for each pixel. For example, the direction perpendicular to the light receiving surface of the photodetector 30 is the z direction. The control circuit 60 may previously acquire data indicating the two-dimensional distribution of the z coordinate on the surface of the target portion, and change the shutter timing for each pixel based on this data. Accordingly, even when the surface of the target portion is curved, it is possible to determine the optimum shutter timing at each position.
 図2の波形(a)に示す例では、表面反射成分I1の後端が垂直に立ち下がっている。言い換えると、表面反射成分I1が立ち下がりを開始してから終了するまでの時間がゼロである。しかし、現実には、表面反射成分I1の後端が垂直に立ち下がらない場合がある。例えば、光源20から出射される光パルスの波形の立下りが完全に垂直でない場合、対象部の表面に微細な凹凸がある場合、または表皮内で散乱が生じる場合には、表面反射成分I1の後端が垂直に立ち下がらない。また、ユーザ500は不透明な物体であることから、表面反射成分I1の光量は、内部散乱成分I2の光量よりも非常に大きい。したがって、表面反射成分I1の後端が垂直な立ち下がりの時点からわずかにはみ出した場合であっても、内部散乱成分I2が埋もれてしまう可能性がある。さらに、電子シャッタの読み出し期間中に、電子の移動に伴う時間遅れが発生する場合もある。以上のことから、図2の波形(d)に示すような理想的なバイナリの読み出しを実現できないことがある。その場合には、制御回路60は、電子シャッタのシャッタ開始のタイミングを表面反射成分I1の立ち下がり直後よりやや遅らせてもよい。例えば、0.5nsから5ns程度遅らせてもよい。電子シャッタのシャッタタイミングを調整する代わりに、制御回路60は、光源20の出射タイミングを調整してもよい。言い換えれば、制御回路60は、電子シャッタのシャッタタイミングと光源20の出射タイミングとの時間差を調整してもよい。非接触で脳内の血流量または血流内成分の変化を計測する場合、あまりにもシャッタタイミングを遅らせすぎると、もともと小さい内部散乱成分I2がさらに減少してしまう。このため、表面反射成分I1の後端近傍にシャッタタイミングを留めておいてもよい。前述のように、額内部の散乱による時間遅れは、4ns程度である。この場合、シャッタタイミングの最大の遅らせ量は、4ns程度であり得る。 In the example shown in the waveform (a) of FIG. 2, the rear end of the surface reflection component I1 falls vertically. In other words, the time from the start of the fall of the surface reflection component I1 to the end thereof is zero. However, in reality, the rear end of the surface reflection component I1 may not fall vertically. For example, when the falling edge of the waveform of the light pulse emitted from the light source 20 is not completely vertical, when the surface of the target portion has fine irregularities, or when scattering occurs in the epidermis, the surface reflection component I1 The rear edge does not fall vertically. Further, since the user 500 is an opaque object, the amount of light of the surface reflection component I1 is much larger than the amount of light of the internal scattering component I2. Therefore, even if the rear end of the surface reflection component I1 slightly protrudes from the time of the vertical fall, the internal scattering component I2 may be buried. In addition, a time delay may occur due to the movement of electrons during the reading period of the electronic shutter. From the above, it may not be possible to realize ideal binary reading as shown in the waveform (d) of FIG. In that case, the control circuit 60 may slightly delay the shutter start timing of the electronic shutter from immediately after the fall of the surface reflection component I1. For example, it may be delayed by about 0.5 ns to 5 ns. Instead of adjusting the shutter timing of the electronic shutter, the control circuit 60 may adjust the emission timing of the light source 20. In other words, the control circuit 60 may adjust the time difference between the shutter timing of the electronic shutter and the emission timing of the light source 20. When measuring changes in the blood flow volume or blood flow component in the brain without contact, if the shutter timing is delayed too much, the originally small internal scattering component I2 is further reduced. Therefore, the shutter timing may be kept near the rear end of the surface reflection component I1. As described above, the time delay due to scattering inside the forehead is about 4 ns. In this case, the maximum delay amount of shutter timing may be about 4 ns.
 光源20から出射された複数の光パルスの各々を、同じ時間差のシャッタタイミングで露光して信号を蓄積してもよい。これにより、内部散乱成分I2の検出光量が増幅される。 The signals may be accumulated by exposing each of the plurality of light pulses emitted from the light source 20 at shutter timings with the same time difference. As a result, the detected light amount of the internal scattering component I2 is amplified.
 ユーザ500と光検出器30の間に帯域通過フィルタを配置することに替えて、またはそれに加えて、光源20に光を出射させない状態で、同じ露光期間で撮影することによってオフセット成分を見積もってもよい。見積もったオフセット成分は、光検出器30の各画素によって検出された信号から差分によって除去される。これにより、光検出器30上で発生する暗電流成分を除去することができる。 Instead of, or in addition to, disposing a bandpass filter between the user 500 and the photodetector 30, the offset component may be estimated by photographing in the same exposure period with the light source 20 not emitting light. Good. The estimated offset component is subtracted by the difference from the signal detected by each pixel of the photodetector 30. Thereby, the dark current component generated on the photodetector 30 can be removed.
 内部散乱成分I2には、ユーザ500の内部特性情報、例えば、脳血流情報が含まれる。ユーザ500の脳血流量の時間的な変動に応じて、血液に吸収される光の量が変化する。その結果、光検出器30による検出光量も、相応に増減する。したがって、内部散乱成分I2をモニタリングすることにより、ユーザ500の脳血流量の変化から脳活動状態を推定することが可能になる。 The internal scattered component I2 includes internal characteristic information of the user 500, for example, cerebral blood flow information. The amount of light absorbed by the blood changes according to the temporal change in the cerebral blood flow of the user 500. As a result, the amount of light detected by the photodetector 30 also increases or decreases correspondingly. Therefore, by monitoring the internal scattered component I2, the brain activity state can be estimated from the change in the cerebral blood flow of the user 500.
 次に、表面反射成分I1の検出方法の例を説明する。表面反射成分I1には、ユーザ500の表面特性情報、例えば、顔および頭皮の血流情報が含まれる。なお、表面反射成分I1の情報は、必ずしも取得される必要はなく、必要に応じて取得される。 Next, an example of a method for detecting the surface reflection component I1 will be described. The surface reflection component I1 includes surface characteristic information of the user 500, for example, blood flow information of the face and scalp. The information on the surface reflection component I1 does not necessarily have to be acquired, and may be acquired as needed.
 図3Aは、表面反射成分I1を検出する場合のタイミングチャートの一例を模式的に示す図である。表面反射成分I1の検出のために、例えば、図3Aに示すように、光パルスが光検出器30に到達する前にシャッタをOPENにし、光パルスの後端が到達するよりも前にシャッタをCLOSEにしてもよい。このようにシャッタを制御することにより、内部散乱成分I2の混入を少なくすることができる。その結果、ユーザ500の表面近傍を通過した光の割合を大きくすることができる。シャッタCLOSEのタイミングを、光検出器30への光の到達直後にしてもよい。これにより、光路長が比較的短い表面反射成分I1の割合を高めた信号検出が可能になる。表面反射成分I1の信号を取得することにより、ユーザ500の脈拍、または顔血流の酸素化度を検出することも可能になる。表面反射成分I1の他の取得方法として、光検出器30が光パルス全体を検出したり、光源20から出射された連続光を検出したりしてもよい。 FIG. 3A is a diagram schematically showing an example of a timing chart when detecting the surface reflection component I1. To detect the surface reflection component I1, for example, as shown in FIG. 3A, the shutter is opened before the light pulse reaches the photodetector 30, and the shutter is opened before the rear end of the light pulse arrives. It may be CLOSE. By controlling the shutter in this manner, it is possible to reduce mixing of the internal scattering component I2. As a result, it is possible to increase the proportion of light that has passed near the surface of the user 500. The timing of the shutter CLOSE may be set immediately after the light reaches the photodetector 30. As a result, it becomes possible to detect a signal in which the ratio of the surface reflection component I1 having a relatively short optical path length is increased. By acquiring the signal of the surface reflection component I1, it becomes possible to detect the pulse of the user 500 or the oxygenation degree of the facial blood flow. As another acquisition method of the surface reflection component I1, the photodetector 30 may detect the entire light pulse or the continuous light emitted from the light source 20.
 図3Bは、内部散乱成分I2を検出する場合のタイミングチャートの一例を模式的に示す図である。パルスの後端部分が光検出器30に到達する期間にシャッタをOPENにすることにより、内部散乱成分I2の信号を取得することができる。 FIG. 3B is a diagram schematically showing an example of a timing chart when detecting the internal scattering component I2. By setting the shutter to OPEN during the period when the trailing end of the pulse reaches the photodetector 30, the signal of the internal scattered component I2 can be acquired.
 図3Bに示す動作をまとめると、制御回路60は、以下の動作を行う。制御回路60は、光源20に、1つ以上の光パルスを出射させる。制御回路60は、光検出器30に、ユーザ500の対象部から戻ってきた各光パルスのうち、各光パルスの立ち下がり期間に含まれる成分を検出させる。当該成分は、内部散乱成分I2を含む。制御回路60は、光検出器30に、当該検出によって得られる信号を出力させる。信号処理回路70は、当該信号に基づいて、ユーザ500の脳活動の状態を示す信号を生成する。 3B is summarized, the control circuit 60 performs the following operations. The control circuit 60 causes the light source 20 to emit one or more light pulses. The control circuit 60 causes the photodetector 30 to detect a component included in the falling period of each optical pulse from the optical pulses returned from the target section of the user 500. The component includes the internal scattering component I2. The control circuit 60 causes the photodetector 30 to output a signal obtained by the detection. The signal processing circuit 70 generates a signal indicating the brain activity state of the user 500 based on the signal.
 表面反射成分I1を、内部散乱成分I2を取得する生体計測装置100以外の装置によって検出してもよい。内部散乱成分I2を取得する装置とは別の装置、または脈波計もしくはドップラ血流計といった別デバイスを用いてもよい。その場合、当該別デバイスは、デバイス間のタイミング同期、光の干渉、および検出箇所の合わせこみを考慮して使用される。本実施形態のように、同一カメラまたは同一センサによる時分割撮像を行えば、時間的および空間的なずれが発生しにくい。同一のセンサによって表面反射成分I1および内部散乱成分I2の両方の信号を取得する場合、図3Aおよび図3Bに示すように、1フレームごとに取得する成分を切り替えてもよい。あるいは、図1Dから図1Fを参照して説明したように、1フレーム内で高速に取得する成分を交互に切り替えてもよい。その場合、表面反射成分I1と内部散乱成分I2との検出時間差を低減することができる。 The surface reflection component I1 may be detected by a device other than the biometric device 100 that acquires the internal scattering component I2. An apparatus other than the apparatus for acquiring the internal scattered component I2, or another device such as a pulse wave meter or a Doppler blood flow meter may be used. In this case, the separate device is used in consideration of timing synchronization between devices, light interference, and alignment of detection points. If time-division imaging is performed by the same camera or the same sensor as in the present embodiment, temporal and spatial deviations are unlikely to occur. When acquiring the signals of both the surface reflection component I1 and the internal scattering component I2 by the same sensor, the components to be acquired may be switched for each frame as shown in FIGS. 3A and 3B. Alternatively, as described with reference to FIGS. 1D to 1F, the components to be acquired at high speed within one frame may be switched alternately. In that case, the detection time difference between the surface reflection component I1 and the internal scattering component I2 can be reduced.
 さらに、表面反射成分I1および内部散乱成分I2のそれぞれの信号を、2つの波長の光を用いて取得してもよい。例えば、750nmおよび850nmの2波長の光パルスを利用してもよい。これにより、それぞれの波長での検出光量の変化から、酸素化ヘモグロビンの濃度変化および脱酸素化ヘモグロビンの濃度変化を算出することができる。表面反射成分I1および内部散乱成分I2を、それぞれ2波長で取得する場合、例えば図1Dから図1Fを参照して説明したように、4種類の電荷蓄積を1フレーム内で高速に切り替える方法が利用され得る。そのような方法により、検出信号の時間的なずれを低減することができる。 Furthermore, the respective signals of the surface reflection component I1 and the internal scattering component I2 may be acquired using light of two wavelengths. For example, light pulses with two wavelengths of 750 nm and 850 nm may be used. Thereby, the change in the concentration of oxygenated hemoglobin and the change in the concentration of deoxygenated hemoglobin can be calculated from the change in the detected light amount at each wavelength. When acquiring the surface reflection component I1 and the internal scattering component I2 at two wavelengths, for example, as described with reference to FIGS. 1D to 1F, a method of rapidly switching four types of charge accumulation within one frame is used. Can be done. With such a method, it is possible to reduce the time shift of the detection signal.
 ここで、脳血流情報の取得方法のより具体的な例を説明する。 Here, a more specific example of a method of acquiring cerebral blood flow information will be described.
 血液の大きな役割は、酸素を肺から受け取って組織へと運び、組織からは二酸化炭素を受け取ってこれを肺に循環させることである。血液100mlの中には約15gのヘモグロビンが存在している。酸素と結合したヘモグロビンが酸素化ヘモグロビンであり、酸素と結合していないヘモグロビンが脱酸素化ヘモグロビンである。前述のように、酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの光吸収特性は異なる。酸素化ヘモグロビンは約805nmを超える波長の近赤外線を比較的よく吸収する。これに対し、脱酸素化ヘモグロビンは、805nmよりも短い波長の近赤外線または赤色光を比較的よく吸収する。805nmの波長の近赤外線については、両者の吸収率は同程度である。そこで、600nmよりも長く805nmよりも短い第1の波長と、805nmよりも長く1000nmよりも短い第2の波長とが用いられ得る。例えば、上記の750nmおよび850nmの2波長の光が用いられ得る。これらの光の検出光量に基づいて、血液中の酸素化ヘモグロビンおよび脱酸素化ヘモグロビンのそれぞれの濃度の時間変化を検出することができる。さらに、ヘモグロビンの酸素飽和度を求めることもできる。酸素飽和度とは、血液中のヘモグロビンのうち、どれだけの割合が酸素と結びついているかを示す値である。酸素飽和度は、脱酸素化ヘモグロビンの濃度をC(Hb)、酸素化ヘモグロビンの濃度をC(HbO)として、以下の数式で定義される。
 酸素飽和度=C(HbO)/[C(HbO)+C(Hb)]×100(%)
Blood plays a major role in receiving oxygen from the lungs and transporting it to tissues, and receiving carbon dioxide from tissues and circulating it in the lungs. About 100 g of hemoglobin is present in 100 ml of blood. Hemoglobin bound to oxygen is oxygenated hemoglobin, and hemoglobin not bound to oxygen is deoxygenated hemoglobin. As mentioned above, the light absorption characteristics of oxygenated hemoglobin and deoxygenated hemoglobin are different. Oxygenated hemoglobin absorbs near-infrared rays having a wavelength of more than about 805 nm relatively well. In contrast, deoxygenated hemoglobin relatively well absorbs near infrared or red light with wavelengths shorter than 805 nm. Regarding the near-infrared ray having a wavelength of 805 nm, the absorptances of both are similar. Therefore, a first wavelength longer than 600 nm and shorter than 805 nm and a second wavelength longer than 805 nm and shorter than 1000 nm may be used. For example, the above-mentioned light having two wavelengths of 750 nm and 850 nm can be used. Based on the detected light amounts of these lights, it is possible to detect the time change of the respective concentrations of oxygenated hemoglobin and deoxygenated hemoglobin in blood. Furthermore, the oxygen saturation level of hemoglobin can be obtained. The oxygen saturation is a value indicating how much of hemoglobin in blood is associated with oxygen. The oxygen saturation is defined by the following mathematical formula, where C(Hb) is the concentration of deoxygenated hemoglobin and C(HbO 2 ) is the concentration of oxygenated hemoglobin.
Oxygen saturation=C(HbO 2 )/[C(HbO 2 )+C(Hb)]×100(%)
 生体内には、血液以外にも赤色光および近赤外光を吸収する成分が含まれている。しかし、光の吸収率が時間的に変動するのは、主に動脈血中のヘモグロビンに起因する。よって、吸収率の変動に基づいて、高い精度で血中酸素飽和度を測定することができる。 In addition to blood, the living body contains components that absorb red light and near infrared light. However, the temporal fluctuation of the light absorption rate is mainly due to the hemoglobin in the arterial blood. Therefore, the blood oxygen saturation can be measured with high accuracy based on the change in the absorption rate.
 脳まで到達した光は、頭皮および顔表面も通過する。このため、頭皮および顔の血流の変動も重畳されて検出される。その影響を除去または低減するために、信号処理回路70は、光検出器30によって検出された内部散乱成分I2から表面反射成分I1を減算する処理を行ってもよい。これにより、頭皮および顔の血流情報を除いた純粋な脳血流情報を取得することができる。減算方法には、例えば、内部散乱成分I2の信号から、光路長差を考慮して決定された1以上のある係数を表面反射成分I1の信号に掛けた値を減算する方法が用いられ得る。この係数は、例えば、一般的な人の頭部光学定数の平均値に基づいて、シミュレーションまたは実験によって算出され得る。このような減算処理は、同一のカメラまたはセンサにより、同一の波長の光を用いて計測する場合に容易に行うことができる。時間的および空間的なずれを低減しやすく、内部散乱成分I2に含まれる頭皮血流成分と、表面反射成分I1の特性とを一致させやすいからである。 Light that reaches the brain also passes through the scalp and face surface. Therefore, changes in blood flow in the scalp and face are also detected in a superimposed manner. In order to remove or reduce the influence, the signal processing circuit 70 may perform a process of subtracting the surface reflection component I1 from the internal scattering component I2 detected by the photodetector 30. Thereby, pure cerebral blood flow information excluding blood flow information of the scalp and face can be acquired. As the subtraction method, for example, a method of subtracting a value obtained by multiplying the signal of the surface reflection component I1 by a coefficient of 1 or more determined in consideration of the optical path length difference from the signal of the internal scattering component I2 can be used. This coefficient can be calculated by simulation or experiment, for example, based on the average value of the optical constants of the head of a general person. Such subtraction processing can be easily performed when measurement is performed using light of the same wavelength by the same camera or sensor. This is because it is easy to reduce the temporal and spatial shifts, and it is easy to match the characteristics of the scalp blood flow component included in the internal scattering component I2 and the surface reflection component I1.
 脳と頭皮との間には頭蓋骨が存在する。このため、脳血流の2次元分布と、頭皮および顔の血流の2次元分布とは独立である。したがって、光検出器30によって検出される信号に基づいて、内部散乱成分I2の2次元分布と表面反射成分I1の2次元分布とを、独立成分分析または主成分分析などの統計手法を用いて分離してもよい。 There is a skull between the brain and the scalp. Therefore, the two-dimensional distribution of cerebral blood flow and the two-dimensional distribution of blood flow of the scalp and face are independent. Therefore, based on the signal detected by the photodetector 30, the two-dimensional distribution of the internal scattering component I2 and the two-dimensional distribution of the surface reflection component I1 are separated using a statistical method such as independent component analysis or principal component analysis. You may.
 [3.脳血流量の変化の検出例]
 次に、ユーザ500の脳血流量の変化を検出する方法の例を説明する。
[3. Example of detection of changes in cerebral blood flow]
Next, an example of a method for detecting a change in the cerebral blood flow of the user 500 will be described.
 図4Aは、脳血流量の時間変化の一例を模式的に示す図である。図4Aに示すように、ユーザ500の対象部500tが光源20からの光で照射され、その戻り光が検出される。この場合、表面反射成分I1は、内部散乱成分I2に比べ非常に大きい。しかし、前述したシャッタ調整により、内部散乱成分I2のみを抽出することができる。図4Aに示すグラフは、脳血液中の酸素化ヘモグロビン(HbO)および脱酸素化ヘモグロビン(Hb)のそれぞれの濃度の経時変化の例を示している。この例における内部散乱成分I2は、2波長の光を用いて取得される。図4Aに示す濃度は、平常時における量を基準とする変化量を示している。この変化量は、光の強度信号に基づいて、信号処理回路70によって算出される。平常状態、集中状態、またはリラックス状態などの脳活動状態に応じて、脳血流量に変化が見られる。対象部の場所ごとに、例えば、脳活動の違い、または吸収係数もしくは散乱係数の違いがある。このため、ユーザ500の対象部500t内の同じ位置で脳血流の経時変化が計測される。脳活動の経時変化を見る場合、脳血流の絶対量がわからなくても、脳血流の時間的な相対変化から、対象者の状態を推定することが可能である。 FIG. 4A is a diagram schematically showing an example of temporal changes in cerebral blood flow. As shown in FIG. 4A, the target portion 500t of the user 500 is illuminated with the light from the light source 20, and the returned light is detected. In this case, the surface reflection component I1 is much larger than the internal scattering component I2. However, only the internal scattering component I2 can be extracted by the shutter adjustment described above. The graph shown in FIG. 4A shows an example of changes over time in the concentrations of oxygenated hemoglobin (HbO 2 ) and deoxygenated hemoglobin (Hb) in cerebral blood. The internal scattering component I2 in this example is acquired using light of two wavelengths. The density shown in FIG. 4A indicates the amount of change based on the amount in normal times. This change amount is calculated by the signal processing circuit 70 based on the light intensity signal. Cerebral blood flow changes depending on the brain activity state such as normal state, concentration state, or relaxed state. For example, there is a difference in brain activity or a difference in absorption coefficient or scattering coefficient depending on the location of the target portion. Therefore, the temporal change in cerebral blood flow is measured at the same position in the target portion 500t of the user 500. When observing changes in brain activity over time, it is possible to estimate the state of the subject from the relative changes in cerebral blood flow over time, without knowing the absolute amount of cerebral blood flow.
 図4Bは、ユーザ500の対象部500t内の複数箇所で計測を同時に行う場合の例を模式的に示す図である。この例では、2次元照射または2次元撮像のため、脳血流量の2次元分布を取得することが可能である。この場合、光源20の照射パターンは、例えば、均一強度の一様な分布、ドット状の分布、またはドーナツ状の分布であってもよい。均一強度の一様な分布の照射であれば、対象部500t上の照射位置の調整が不要、または簡便にできる。一様な分布の照射であれば、広範囲からユーザ500の対象部に光が入射する。このため、光検出器30によって検出される信号を増強することができる。さらに、照射領域内であれば任意の位置で計測できる。ドット状の分布、またはドーナツ状の分布のような部分的な照射であれば、対象部500tをその照射領域から外すだけで表面反射成分I1の影響を低減できる。 FIG. 4B is a diagram schematically showing an example in which measurement is simultaneously performed at a plurality of locations in the target section 500t of the user 500. In this example, since the two-dimensional irradiation or the two-dimensional imaging is performed, it is possible to acquire the two-dimensional distribution of the cerebral blood flow. In this case, the irradiation pattern of the light source 20 may be, for example, a uniform distribution of uniform intensity, a dot-shaped distribution, or a donut-shaped distribution. If the irradiation has a uniform distribution with a uniform intensity, it is unnecessary or easy to adjust the irradiation position on the target portion 500t. If the irradiation has a uniform distribution, the light enters the target portion of the user 500 from a wide range. Therefore, the signal detected by the photodetector 30 can be enhanced. Further, it can be measured at any position within the irradiation area. In the case of partial irradiation such as a dot-shaped distribution or a donut-shaped distribution, the influence of the surface reflection component I1 can be reduced only by removing the target portion 500t from the irradiation area.
 図5Aは、光の照射領域22の例を模式的に示す図である。非接触での脳血流測定では、装置から対象部までの距離の2乗に反比例して検出光量が減衰する。そこで、光検出器30によって検出される各画素の信号を近傍の複数の画素の信号を積算することによって増強してもよい。このようにすることでSN比を維持したまま積算パルス数を低減できる。これにより、フレームレートを向上させることができる。 FIG. 5A is a diagram schematically showing an example of the light irradiation area 22. In the non-contact measurement of cerebral blood flow, the detected light amount attenuates in inverse proportion to the square of the distance from the device to the target portion. Therefore, the signal of each pixel detected by the photodetector 30 may be enhanced by integrating the signals of a plurality of neighboring pixels. By doing so, the number of integrated pulses can be reduced while maintaining the SN ratio. Thereby, the frame rate can be improved.
 図5Bは、ユーザ500の対象部500tが横方向にシフトした場合における信号の変化を模式的に示す図である。前述のように、平常状態から脳活動状態が変化したときの脳血流量と、平常状態における脳血流量との差分を検出することにより、脳活動の変化が読み取られる。2次元的に配列された複数の光電変換素子を備える光検出器30を使用する場合、図5Bの上の図に示すように、2次元の脳活動分布を取得することができる。この場合、平常状態における信号を事前に取得しなくても、2次元分布内での相対的な強度分布から脳活動が活発な部位を検出することができる。本実施形態では非接触で計測が行われるため、図5Bの下の図に示すように、対象部500tの位置が計測中に変化してしまうことがある。これは、例えばユーザ500が呼吸のために僅かに動いた場合に生じ得る。一般に、脳血流量の2次元分布は微小時間内で急激に変化しない。このため、例えば、検出された2次元分布のフレーム間でのパターンマッチングにより、対象部500tの位置ずれを補正することができる。あるいは、呼吸のような周期的な動きであれば、その周波数成分のみを抽出し補正または除去してもよい。対象部500tは、単一の領域である必要はなく、複数の領域であってもよい。当該複数の領域は、例えば、左右1個ずつ、あるいは、2×6のマトリックス状のドット分布であってもよい。 FIG. 5B is a diagram schematically showing a change in signal when the target portion 500t of the user 500 shifts in the horizontal direction. As described above, the change in brain activity can be read by detecting the difference between the cerebral blood flow when the brain activity changes from the normal state and the cerebral blood flow in the normal state. When the photodetector 30 including a plurality of photoelectric conversion elements arranged two-dimensionally is used, a two-dimensional brain activity distribution can be acquired as shown in the upper diagram of FIG. 5B. In this case, it is possible to detect a region where brain activity is active from the relative intensity distribution within the two-dimensional distribution without acquiring the signal in the normal state in advance. Since the measurement is performed in a non-contact manner in the present embodiment, the position of the target portion 500t may change during the measurement as shown in the lower diagram of FIG. 5B. This may occur, for example, when the user 500 has moved slightly due to breathing. Generally, the two-dimensional distribution of cerebral blood flow does not change rapidly within a very short time. Therefore, for example, the positional deviation of the target portion 500t can be corrected by pattern matching between the detected two-dimensional distribution frames. Alternatively, if it is a periodical movement such as breathing, only its frequency component may be extracted and corrected or removed. The target portion 500t does not have to be a single area, but may be a plurality of areas. The plurality of regions may be, for example, one on the left and one on the right, or may have a 2×6 matrix dot distribution.
 [4.マインドフルネスの熟達度の判定]
 次に、生体計測装置100を用いてマインドフルネス状態になることについてのユーザ500の熟達度を判定する方法の例を説明する。
[4. Judgment of Mindfulness Proficiency]
Next, an example of a method of determining the proficiency level of the user 500 for becoming a mindfulness state using the biometric device 100 will be described.
 前述のように、反射光の内部散乱成分I2に基づいて、ユーザ500の脳活動を推定することができる。この特性を利用して、ユーザ500がマインドフルネス状態になることについてどの程度熟達しているかを推定することができる。 As described above, the brain activity of the user 500 can be estimated based on the internal scattered component I2 of the reflected light. This property can be used to estimate how proficient the user 500 is in being in a mindfulness state.
 本実施形態では、ユーザ500をマインドフルネス状態に誘導する刺激の一例として、マインドフルネス瞑想のための音声ガイドが使用される。ユーザ500は、刺激装置10のスピーカから出力される音声ガイドに従って瞑想を行う。音声ガイドが再生されている間、光源20は、ユーザ500の頭部に向けて光パルスを一定の時間間隔で繰り返し出射し、光検出器30は、反射光パルスの内部散乱成分の信号を画素ごとに蓄積する。本実施形態では、同様の動作が、音声ガイドが再生される直前および直後の各期間においても行われる。 In the present embodiment, a voice guide for mindfulness meditation is used as an example of a stimulus that guides the user 500 to a mindfulness state. The user 500 performs meditation according to the voice guide output from the speaker of the stimulator 10. While the voice guide is being reproduced, the light source 20 repeatedly emits a light pulse toward the head of the user 500 at regular time intervals, and the photodetector 30 causes the signal of the internal scattered component of the reflected light pulse to be pixelated. Accumulate for each. In the present embodiment, the same operation is performed in each period immediately before and immediately after the voice guide is reproduced.
 図6は、本実施形態におけるマインドフルネスの熟達度の1回の判定動作の流れを時間軸上に表した図である。本実施形態における1回の判定動作は、3つの期間から構成される。第1の期間は、音声ガイドが再生される直前の所定の時間長の期間である。第1の期間を「レストA期間」と称する。第2の期間は、音声ガイドが再生される期間である。第2の期間を「タスク期間」と称する。「タスク」とは、ユーザ500に提示されるマインドフルネス瞑想などの課題を指す。第3の期間は、音声ガイドの再生が終了した直後の所定の時間長の期間である。第3の期間を「レストB期間」と称する。第1から第3の期間にわたって、生体計測装置100は、ユーザ500の脳活動信号を繰り返し生成する。タスク期間中、ユーザ500は、音声ガイドに従い、瞑想を行う。図6に示す例では、レストA期間およびレストB期間の各々の長さは120秒であり、タスク期間の期間の長さは392秒である。この例に限定されず、各期間の長さは適宜調整可能である。レストA期間とレストB期間の長さが異なっていてもよい。 FIG. 6 is a diagram showing, on a time axis, the flow of one determination operation of the proficiency level of mindfulness in the present embodiment. One determination operation in this embodiment is composed of three periods. The first period is a period of a predetermined time length immediately before the voice guide is reproduced. The first period is referred to as a "rest A period". The second period is a period in which the voice guide is reproduced. The second period is called a "task period". The “task” refers to a task such as mindfulness meditation presented to the user 500. The third period is a period of a predetermined time length immediately after the reproduction of the voice guide is completed. The third period is referred to as a "rest B period". The biometric device 100 repeatedly generates the brain activity signal of the user 500 over the first to third periods. During the task period, the user 500 performs meditation according to the voice guide. In the example shown in FIG. 6, the length of each of the rest A period and the rest B period is 120 seconds, and the length of the task period period is 392 seconds. The length of each period is not limited to this example and can be adjusted as appropriate. The lengths of the rest A period and the rest B period may be different.
 図7は、生体計測装置100による判定動作の流れを示すフローチャートである。ユーザ500が計測開始の操作を行うと、生体計測装置100は、ユーザ500の脳活動信号の計測を開始する(ステップS701)。この段階では、マインドフルネスのための音声ガイドはまだ再生されない。ユーザ500が何もしていない状態で、所定時間(例えば120秒)にわたって、脳活動信号が繰り返し取得される。これは、ユーザ500の平常時の脳活動信号を取得するために行われる。この期間は、前述のレストA期間である。計測は、前述のように、光源20がユーザ500の頭部に向けて光パルスを出射し、光検出器30が反射光パルスの後端部分を検出する動作を繰り返すことによって行われる。これにより、反射光パルスの内部散乱成分I2が繰り返し検出される。光検出器30は、画素ごとに、反射光パルスの蓄積量に応じた信号を出力する。信号処理回路70は、光検出器30から出力された信号に基づいて、脳活動信号を繰り返し生成する。脳活動信号は、例えば画素ごとに、または画素群ごとに生成され得る。 FIG. 7 is a flowchart showing the flow of the determination operation by the biometric device 100. When the user 500 performs a measurement start operation, the biometric device 100 starts measuring the brain activity signal of the user 500 (step S701). At this stage, the audio guide for mindfulness has not yet been played. The brain activity signal is repeatedly acquired for a predetermined time (for example, 120 seconds) while the user 500 is not doing anything. This is performed in order to acquire the normal brain activity signal of the user 500. This period is the above-mentioned rest A period. As described above, the measurement is performed by repeating the operation in which the light source 20 emits a light pulse toward the head of the user 500 and the photodetector 30 detects the rear end portion of the reflected light pulse. As a result, the internal scattering component I2 of the reflected light pulse is repeatedly detected. The photodetector 30 outputs a signal corresponding to the accumulated amount of reflected light pulses for each pixel. The signal processing circuit 70 repeatedly generates a brain activity signal based on the signal output from the photodetector 30. The brain activity signal may be generated, for example, for each pixel or for each pixel group.
 計測を開始してから所定時間が経過すると、制御回路60は、刺激装置10に、音声ガイドの再生を開始させる(ステップS702)。以後、ユーザ500は、音声ガイドに従って、マインドフルネス瞑想、すなわちタスクを実践する。タスクの間も、脳活動信号の計測はそのまま継続される。信号処理回路70は、ユーザ500がタスクを行っている間、光検出器30から出力された信号に基づいて、脳活動信号を繰り返し生成する。 After a lapse of a predetermined time from the start of measurement, the control circuit 60 causes the stimulator 10 to start the reproduction of the voice guide (step S702). Thereafter, the user 500 practices the mindfulness meditation, that is, the task according to the voice guide. During the task, the measurement of the brain activity signal is continued as it is. The signal processing circuit 70 repeatedly generates a brain activity signal based on the signal output from the photodetector 30 while the user 500 is performing a task.
 音声ガイドの開始から一定の時間(図6の例では392秒)が経過すると、音声ガイドが終了する(ステップS703)。音声ガイドが終了した後も、一定の時間(例えば、120秒)にわたって、計測がそのまま継続される。これにより、タスク終了後も脳活動信号が繰り返し取得される。この期間は、前述のレストB期間である。 When a certain time (392 seconds in the example of FIG. 6) has elapsed from the start of the voice guide, the voice guide ends (step S703). Even after the voice guide is finished, the measurement is continued as it is for a certain period of time (for example, 120 seconds). As a result, the brain activity signal is repeatedly acquired even after the task is completed. This period is the rest B period described above.
 音声ガイドの終了から上記一定の時間が経過すると、信号処理回路70は、脳活動信号の計測を終了する(ステップS704)。次に信号処理回路70は、レストA期間、タスク期間、レストB期間のそれぞれの期間で取得した複数の脳活動信号を解析し、ユーザ500の熟達度を判定する。まず、信号処理回路70は、レストA、タスク、レストBのそれぞれについて、取得した脳活動信号の値と、その平均値との差のヒストグラムを作成する(ステップS705)。具体的には、信号処理回路70は、以下の処理を行う。
(1)レストA、タスク、レストBの全ての期間で取得した脳活動信号の値の平均値を計算する。
(2)脳活動信号のそれぞれの値と平均値との差を計算する。
(3)計算した差の階級ごとに度数を求める。
When the above-mentioned certain time has elapsed from the end of the voice guide, the signal processing circuit 70 ends the measurement of the brain activity signal (step S704). Next, the signal processing circuit 70 analyzes a plurality of brain activity signals acquired during the rest A period, the task period, and the rest B period, and determines the proficiency level of the user 500. First, the signal processing circuit 70 creates a histogram of the difference between the acquired brain activity signal value and the average value thereof for each of the rest A, the task, and the rest B (step S705). Specifically, the signal processing circuit 70 performs the following processing.
(1) Calculate the average value of the brain activity signal values acquired during the rest A, task, and rest B periods.
(2) Calculate the difference between each value of the brain activity signal and the average value.
(3) Obtain the frequency for each calculated difference class.
 これにより、3つのヒストグラムのデータが作成される。信号処理回路70は、既存の検定方法を用いて、3つのヒストグラムの間の有意差を検定する(ステップS706)。有意差がある場合、信号処理回路70は、そのユーザ500を非熟達者と判定する(ステップS708)。逆に、有意差がない場合、信号処理回路70は、そのユーザ500を熟達者と判定する(ステップS709)。判定結果は、例えば刺激装置10のディスプレイに表示され得る。 This will create three histogram data. The signal processing circuit 70 tests the significant difference between the three histograms using the existing test method (step S706). If there is a significant difference, the signal processing circuit 70 determines the user 500 as an inexpert (step S708). On the contrary, when there is no significant difference, the signal processing circuit 70 determines that the user 500 is an expert (step S709). The determination result may be displayed on the display of the stimulation device 10, for example.
 図8Aおよび図8Bは、ステップS705において作成される3つのヒストグラムの例を示している。図8Aは、非熟達者について得られたヒストグラムの一例を示している。図8Bは、熟達者について得られたヒストグラムの一例を示している。図8Aおよび図8Bにおける"before"、"mindfulness"、"after"の表記は、それぞれ、レストA、タスク、レストBに対応している。図示されるヒストグラムは、それぞれの期間において、5秒ごとに脳活動信号を平均化した値を用いて作成された。 8A and 8B show examples of three histograms created in step S705. FIG. 8A shows an example of the histogram obtained for the unskilled person. FIG. 8B shows an example of the histogram obtained for the expert. The notations “before”, “mindfulness”, and “after” in FIGS. 8A and 8B correspond to rest A, task, and rest B, respectively. The illustrated histogram was created using the averaged brain activity signal every 5 seconds during each period.
 図8Aに示すように、非熟達者では、マインドフルネスタスクの前後のレスト期間とタスク期間とで、脳活動信号のばらつきの度合いが異なる。これは、非熟達者は、タスクの実施によって脳活動状態が大きく変化するからであると考えられる。これに対し、図8Bに示すように、熟達者では、タスク前後のレスト期間とタスク期間とで、脳活動信号のばらつきの度合いに有意差が見られない。これは、熟達者は、タスクの有無に関わらず、マインドフルネス状態が維持されており、脳活動状態が安定しているからであると考えられる。 As shown in FIG. 8A, in the non-skilled person, the degree of variation in the brain activity signal is different between the rest period and the task period before and after the mindfulness task. It is considered that this is because the brain activity state of the unskilled person changes greatly by performing the task. On the other hand, as shown in FIG. 8B, the skilled person does not see a significant difference in the degree of variation in brain activity signals between the rest period before and after the task and the task period. It is considered that this is because the skilled person maintains the mindfulness state and the brain activity state is stable regardless of the presence or absence of the task.
 以上のことから、レストA期間またはレストB期間と、タスク期間との間で、脳活動信号のばらつきの度合いに有意差があるか否かに基づいて、熟達者と非熟達者とを判別することができる。本実施形態では、レストA期間およびレストB期間の両方で脳活動信号が取得されるが、レストA期間またはレストB期間の一方を省略してもよい。レスト期間とタスク期間のヒストグラムの有意差の検定は、例えばt検定などの公知の検定手法を用いて行うことができる。 From the above, the expert and the non-expert are discriminated based on whether there is a significant difference in the degree of variation in brain activity signals between the rest A period or the rest B period and the task period. be able to. In the present embodiment, the brain activity signal is acquired in both the rest A period and the rest B period, but either the rest A period or the rest B period may be omitted. The significant difference between the rest period and the task period histogram can be tested by using a known test method such as t-test.
 図7に示す判定方法は、一例に過ぎず、取得した脳活動信号から熟達度を判定する方法は様々である。例えば、機械学習アルゴリズムによって予め訓練された学習済みモデルを、取得した複数の脳活動信号に適用することによって熟達度を判定してもよい。本実施形態では、ユーザがマインドフルネスに熟達しているか否かという2段階の評価が行われるが、熟達度に応じて3段階以上の評価が行われてもよい。 The determination method shown in FIG. 7 is merely an example, and there are various methods for determining the proficiency level from the acquired brain activity signal. For example, the proficiency level may be determined by applying a pre-trained model trained by a machine learning algorithm to a plurality of acquired brain activity signals. In the present embodiment, a two-level evaluation of whether or not the user is proficient in mindfulness is performed, but an evaluation of three or more levels may be performed depending on the proficiency level.
 また、本実施形態においては、マインドフルネス状態に誘導する音声に従って、ユーザがタスクを実践し、熟達度の判定が行われるが、本開示はこのような判定方法に限られない。例えば、音声はマインドフルネス状態を阻害する刺激であってもよい。あるいは、音声などの刺激がない状態において、ユーザにタスクを実践させ、熟達度の判定を行ってもよい。 Further, in the present embodiment, the user practices the task and determines the proficiency level according to the voice that guides the user to the mindfulness state, but the present disclosure is not limited to such a determination method. For example, the voice may be a stimulus that interferes with the mindfulness state. Alternatively, the proficiency may be determined by having the user perform a task in the absence of stimulation such as voice.
 [5.複数の携帯機器からデータを収集するシステム]
 次に、複数のユーザの携帯機器から脳活動信号および位置データを収集して活用するシステムの例を説明する。
[5. System that collects data from multiple mobile devices]
Next, an example of a system for collecting and utilizing brain activity signals and position data from mobile devices of a plurality of users will be described.
 図9は、複数のユーザの携帯機器400から脳活動信号および位置データを収集して活用するシステムの概念図である。このシステムは、複数の携帯機器400と、サーバコンピュータ200とを含む。サーバコンピュータ200は、複数の携帯機器400にインターネットなどのネットワークを介して接続されている。図9には3つの携帯機器400が例示されているが、さらに多数の携帯機器400がサーバコンピュータ200に接続されていてもよい。サーバコンピュータ200は、例えば事業者が管理するクラウドサーバであり得る。 FIG. 9 is a conceptual diagram of a system for collecting and utilizing brain activity signals and position data from mobile devices 400 of a plurality of users. This system includes a plurality of mobile devices 400 and a server computer 200. The server computer 200 is connected to a plurality of mobile devices 400 via a network such as the Internet. Although three mobile devices 400 are illustrated in FIG. 9, a larger number of mobile devices 400 may be connected to the server computer 200. The server computer 200 may be, for example, a cloud server managed by a business.
 図10は、サーバコンピュータ200、および複数の携帯機器400の概略的な構成を示す図である。 FIG. 10 is a diagram showing a schematic configuration of the server computer 200 and the plurality of mobile devices 400.
 各携帯機器400は、例えばスマートフォン、タブレットコンピュータ、またはラップトップPCなどの携帯情報機器であり得る。各携帯機器400は、刺激装置410と、光源420と、光検出器430と、メモリ450と、プロセッサ460と、通信回路480とを備える。刺激装置410、光源420、および光検出器430は、それぞれ、図1Aに示す刺激装置10、光源20、および光検出器30と同様の機能を備える。プロセッサ460は、図1Aに示す制御回路60および信号処理回路70と同様の機能を備える。メモリ450は、RAMおよびROMを含み、プロセッサ460によって実行される各種のプログラムおよび生成されたデータを格納する。刺激装置410は、例えば携帯機器400が備えるディスプレイおよびスピーカの組み合わせによって実現され得る。 Each mobile device 400 may be a mobile information device such as a smartphone, a tablet computer, or a laptop PC. Each mobile device 400 includes a stimulator 410, a light source 420, a photodetector 430, a memory 450, a processor 460, and a communication circuit 480. The stimulator 410, the light source 420, and the photodetector 430 have the same functions as the stimulator 10, the light source 20, and the photodetector 30 shown in FIG. 1A, respectively. The processor 460 has the same functions as the control circuit 60 and the signal processing circuit 70 shown in FIG. 1A. The memory 450 includes RAM and ROM, and stores various programs executed by the processor 460 and generated data. The stimulator 410 can be realized by a combination of a display and a speaker included in the mobile device 400, for example.
 光源420は、携帯機器400に内蔵されていてもよいし、携帯機器400に外付けされる機器であってもよい。光検出器430は、携帯機器400に内蔵されたイメージセンサであってもよいし、携帯機器400に外付けされる機器であってもよい。 The light source 420 may be built in the mobile device 400 or may be a device externally attached to the mobile device 400. The photodetector 430 may be an image sensor built in the mobile device 400 or a device externally attached to the mobile device 400.
 通信回路480は、サーバコンピュータ200との間で無線通信を行う。通信回路480は、GPS衛星から位置信号を受信することができる。GPS衛星から取得した位置信号に基づき、プロセッサ460は、現在地の緯度および経度を計算することができる。 The communication circuit 480 performs wireless communication with the server computer 200. The communication circuit 480 can receive position signals from GPS satellites. Based on the position signals obtained from the GPS satellites, the processor 460 can calculate the latitude and longitude of the current location.
 各携帯機器400は、前述のマインドフルネスのためのアプリケーションをサーバコンピュータ200からダウンロードしてインストールすることができる。当該アプリケーションのプログラムは、メモリ450に記録され、プロセッサ460によって実行される。 Each mobile device 400 can download and install the aforementioned application for mindfulness from the server computer 200. The program of the application is recorded in the memory 450 and executed by the processor 460.
 各携帯機器400のユーザは、アプリケーションを起動し、再生されるガイダンスに従ってマインドフルネス瞑想を行うことができる。その間、プロセッサ460は、光源420および光検出器430を制御して、前述の方法で脳活動の計測を行う。計測は、例えば一定の時間間隔で繰り返し行われ得る。この時間間隔は、例えば数マイクロ秒から数秒の範囲で任意に設定され得る。プロセッサ460は、光検出器430から繰り返し出力される信号に基づき、ユーザの対象部の所定の領域における脳活動信号を生成する。脳活動信号は、例えば、脳血液中の脱酸素化ヘモグロビンの濃度に依存する信号であり得る。プロセッサ460は、例えば図7に示す処理を実行することにより、マインドフルネスになることについてのユーザの熟達度を判定する。携帯機器400は、熟達度の判定結果と位置情報とを関連付けたデータを、ネットワークを介してサーバコンピュータ200に送信する。このデータには、例えば、携帯機器400のIDまたはユーザのコメントなどの他の情報が含まれていてもよい。そのようなデータが、多数のユーザの端末からビッグデータとして収集され得る。 The user of each mobile device 400 can start the application and perform mindfulness meditation according to the guidance reproduced. Meanwhile, processor 460 controls light source 420 and photodetector 430 to measure brain activity in the manner described above. The measurement can be repeated, for example, at regular time intervals. This time interval can be set arbitrarily in the range of, for example, several microseconds to several seconds. The processor 460 generates a brain activity signal in a predetermined region of the target part of the user based on the signal repeatedly output from the photodetector 430. The brain activity signal can be, for example, a signal that depends on the concentration of deoxygenated hemoglobin in cerebral blood. The processor 460 determines the user's level of proficiency with respect to becoming mindfulness, for example, by executing the process shown in FIG. 7. The mobile device 400 transmits data that associates the determination result of the skill level and the position information to the server computer 200 via the network. This data may include, for example, the ID of the mobile device 400 or other information such as a user's comment. Such data can be collected as big data from the terminals of many users.
 サーバコンピュータ200は、信号処理回路210と、記録媒体220とを備える。記録媒体220は、信号処理回路210が実行するプログラム、および生成されたデータを格納する。記録媒体220は、例えばメモリおよびハードディスクを含み得る。信号処理回路210は、複数の携帯機器400から、上記のデータを収集し、当該データに含まれる各ユーザの熟達度の判定結果を示す情報と、記録媒体220に予め記録された地図情報とを関連付けた地図データを生成する。信号処理回路210は、生成した地図データを、各携帯機器400に送信する。 The server computer 200 includes a signal processing circuit 210 and a recording medium 220. The recording medium 220 stores the program executed by the signal processing circuit 210 and the generated data. The recording medium 220 may include a memory and a hard disk, for example. The signal processing circuit 210 collects the above-mentioned data from a plurality of mobile devices 400, and outputs information indicating the determination result of the proficiency level of each user included in the data and map information recorded in advance in the recording medium 220. Generate the associated map data. The signal processing circuit 210 transmits the generated map data to each mobile device 400.
 図11は、地図データに基づいて携帯機器400のディスプレイが表示する画像の一例を示す図である。この例における地図データは、マインドフルネスの熟達者の多寡が、異なる複数の色で表現されたヒートマップを表す。例えば、熟達者が多い場所は赤(R)で表示され、熟達者の数が中程度の場所は緑(G)で表示され、熟達者が少ない場所は青(B)で表示され、熟達者が全くいない場所は着色されずに表示される。このような地図データにより、ユーザは、どの場所にマインドフルネスの熟達者が多く集まっているかを視覚的に知ることができる。可視化の方法は、ヒートマップに限らず、例えば熟達者が多いことを示すマークまたは文字などの情報を地図に重ねて表示するような方法でもよい。前述のように、熟達者が多く集まる場所は、マインドフルネス状態になり易い場所である可能性が高い。本実施形態のように、熟達者の集積度を可視化するアプリケーションを利用することにより、ユーザは、マインドフルネスに適した場所を容易に知ることができる。ユーザは、表示された地図情報を参考に、熟達者が多く集まる場所に実際に赴き、感想、コメント、レコメンデーションなどを、携帯機器400を介してサーバコンピュータ200に提供することができる。複数のユーザから収集した情報をマーケティングに活用することにより、新たなビジネス機会の創出につなげられる可能性がある。 FIG. 11 is a diagram showing an example of an image displayed on the display of the mobile device 400 based on the map data. The map data in this example represents a heat map in which a number of mindfulness masters are represented by a plurality of different colors. For example, places with a high level of proficiency are displayed in red (R), places with a moderate number of proficiency are displayed in green (G), and places with a low level of proficiency are displayed in blue (B). Places with no sign are displayed without coloring. With such map data, the user can visually know where the many mindfulness masters are gathering. The visualization method is not limited to the heat map, and may be a method of displaying information such as a mark or a character indicating that there are many experts on the map, for example. As described above, a place where many skilled people gather is likely to be a place where a mindfulness state is likely to occur. By using the application that visualizes the degree of concentration of the expert as in the present embodiment, the user can easily know the place suitable for mindfulness. With reference to the displayed map information, the user can actually go to a place where many skilled people gather, and can provide the server computer 200 with the impressions, comments, recommendations, etc. via the portable device 400. Utilizing the information collected from multiple users for marketing may lead to the creation of new business opportunities.
 生体計測装置は、スマートフォンなどの携帯型のコンピュータに限らず、他の装置、例えばヘッドマウント装置に搭載されていてもよい。図12は、ヘッドマウント装置300の例を模式的に示す図である。ヘッドマウント装置300は、刺激装置として機能するディスプレイおよびスピーカと、光源と、光検出器とを備える。このようなヘッドマウント装置300を用いた場合であっても、上記と同様の効果を得ることができる。 The biometric device is not limited to a portable computer such as a smartphone, but may be mounted on another device, for example, a head mount device. FIG. 12 is a diagram schematically showing an example of the head mount device 300. The head mount device 300 includes a display and a speaker that function as a stimulator, a light source, and a photodetector. Even when such a head mount device 300 is used, the same effect as described above can be obtained.
 本開示の技術は、非接触でユーザの脳活動の情報を取得することができる。本開示の技術は、カメラ、計測機器、スマートフォン、タブレットコンピュータ、ヘッドマウント装置などの、種々の装置に利用することができる。 The technology of the present disclosure can acquire the brain activity information of the user without contact. The technology of the present disclosure can be used for various devices such as a camera, a measuring device, a smartphone, a tablet computer, and a head mount device.
  10   刺激装置
  20   光源
  30   光検出器
  60   制御回路
  62   光源制御部
  63   検出器制御部
  70   信号処理回路
  100  生体計測装置
  200  サーバコンピュータ
  201  画素
  202  ドレイン
  203  フォトダイオード
  204  第1の浮遊拡散層
  205  第2の浮遊拡散層
  206  第3の浮遊拡散層
  207  第4の浮遊拡散層
  210  信号処理回路
  220  記録媒体
  300  ヘッドマウント装置
  302  行選択回路
  303  列選択回路
  304  垂直信号線
  305  ソースフォロワ電源
  306  ソースフォロワ負荷
  307  アナログ-デジタル変換回路
  308  行選択トランジスタ
  309  ソースフォロワトランジスタ
  310  リセットトランジスタ
  400  携帯機器
  410  刺激装置
  420  光源
  430  光検出器
  450  メモリ
  460  プロセッサ
  480  通信回路
10 Stimulator 20 Light source 30 Photodetector 60 Control circuit 62 Light source control unit 63 Detector control unit 70 Signal processing circuit 100 Biometric device 200 Server computer 201 Pixel 202 Drain 203 Photodiode 204 First floating diffusion layer 205 Second Floating diffusion layer 206 Third floating diffusion layer 207 Fourth floating diffusion layer 210 Signal processing circuit 220 Recording medium 300 Head mount device 302 Row selection circuit 303 Column selection circuit 304 Vertical signal line 305 Source follower power supply 306 Source follower load 307 Analog -Digital conversion circuit 308 Row selection transistor 309 Source follower transistor 310 Reset transistor 400 Portable device 410 Stimulator 420 Light source 430 Photodetector 450 Memory 460 Processor 480 Communication circuit

Claims (13)

  1.  ユーザの頭部に照射光を照射することによって生じた前記頭部からの反射光のうち、前記ユーザの脳内を伝播した光の成分を検出することによって生成され、前記脳の活動状態を示す少なくとも1つの脳活動信号を取得することと、
     前記少なくとも1つの脳活動信号に基づき、マインドフルネス状態になることについての前記ユーザの熟達度を示す信号を生成して出力することと、
    を含む、生体計測方法。
    The reflected light from the head generated by irradiating the user's head with irradiation light is generated by detecting the component of the light propagating in the brain of the user, and indicates the activity state of the brain. Acquiring at least one brain activity signal;
    Generating and outputting a signal indicative of the user's proficiency in becoming a mindfulness state based on the at least one brain activity signal;
    A biometric method including:
  2.  前記少なくとも1つの脳活動信号を取得することは、音声および映像からなる群から選択される少なくとも1つを含む刺激が前記ユーザに与えられている状態で行われる、
     請求項1に記載の生体計測方法。
    Obtaining the at least one brain activity signal is performed with a stimulus including at least one selected from the group consisting of audio and video being given to the user.
    The biometric method according to claim 1.
  3.  前記音声および前記映像からなる群から選択される前記少なくとも1つは、前記ユーザを前記マインドフルネス状態に誘導する、
     請求項2に記載の生体計測方法。
    The at least one selected from the group consisting of the audio and the video guides the user to the mindfulness state,
    The biometric method according to claim 2.
  4.  前記照射光は光パルスであり、
     前記反射光は反射光パルスであり、
     前記光の成分は、前記反射光パルスの光強度が減少を開始してから減少が終了するまでの期間の少なくとも一部において検出される、
     請求項1から3のいずれかに記載の生体計測方法。
    The irradiation light is a light pulse,
    The reflected light is a reflected light pulse,
    The light component is detected in at least a part of a period from when the light intensity of the reflected light pulse starts decreasing to when the decrease ends.
    The biometric method according to any one of claims 1 to 3.
  5.  前記少なくとも1つの脳活動信号は、
     前記ユーザに前記刺激が与えられる直前の第1の期間、
     前記ユーザに前記刺激が与えられている第2の期間、
     前記ユーザに前記刺激が与えられた直後の第3の期間
    のうち、前記第2の期間を含む少なくとも2つの期間のそれぞれについて取得される、
     請求項2から4のいずれかに記載の生体計測方法。
    The at least one brain activity signal is
    A first period immediately before the stimulus is given to the user,
    A second period in which the stimulus is being given to the user,
    Of the third period immediately after the stimulus is given to the user, acquired for each of at least two periods including the second period,
    The biometric method according to any one of claims 2 to 4.
  6.  前記少なくとも1つの脳活動信号は、複数の脳活動信号を含み、
     前記複数の脳活動信号は、
     前記ユーザに前記刺激が与えられる直前の第1の期間、
     前記ユーザに前記刺激が与えられている第2の期間、および
     前記ユーザに前記刺激が与えられた直後の第3の期間
    のそれぞれにおいて、前記光の成分を複数回検出することによって取得される、
    請求項2から4のいずれかに記載の生体計測方法。
    The at least one brain activity signal comprises a plurality of brain activity signals,
    The plurality of brain activity signals are
    A first period immediately before the stimulus is given to the user,
    In each of the second period in which the stimulus is given to the user and the third period immediately after the stimulus is given to the user, it is acquired by detecting the component of the light a plurality of times.
    The biometric method according to any one of claims 2 to 4.
  7.  前記熟達度を示す前記信号は、前記複数の脳活動信号のばらつき度合に基づいて生成される、
     請求項6に記載の生体計測方法。
    The signal indicating the proficiency level is generated based on the degree of variation of the plurality of brain activity signals,
    The biometric method according to claim 6.
  8.  前記少なくとも1つの脳活動信号は、前記脳内の血液中の脱酸素化ヘモグロビンの濃度に依存する、
     請求項1から7のいずれかに記載の生体計測方法。
    The at least one brain activity signal is dependent on the concentration of deoxygenated hemoglobin in the blood in the brain,
    The biometric method according to any one of claims 1 to 7.
  9.  前記照射光は、805nmよりも長い第1の波長の第1の光パルス、および805nmよりも短い第2の波長の第2の光パルスを含み、
     前記反射光は、前記頭部に前記第1の光パルスを照射することによって生じた第1の反射光パルス、および前記頭部に前記第2の光パルスを照射することによって生じた第2の反射光パルスを含み、
     前記少なくとも1つの脳活動信号は、
     前記第1の反射光パルスのうち、前記第1の反射光パルスの光強度が減少を開始してから減少が終了するまでの期間に含まれる成分の少なくとも一部を検出することによって生成された第1の信号と、
     前記第2の反射光パルスのうち、前記第2の反射光パルスの光強度が減少を開始してから減少が終了するまでの期間に含まれる成分の少なくとも一部を検出することによって生成された第2の信号と、
    を用いた演算によって生成される、
     請求項1から8のいずれかに記載の生体計測方法。
    The irradiation light includes a first light pulse having a first wavelength longer than 805 nm, and a second light pulse having a second wavelength shorter than 805 nm,
    The reflected light includes a first reflected light pulse generated by irradiating the head with the first light pulse and a second reflected light pulse generated by irradiating the head with the second light pulse. Including reflected light pulses,
    The at least one brain activity signal is
    The first reflected light pulse is generated by detecting at least a part of a component included in a period from when the light intensity of the first reflected light pulse starts to decrease to when the light intensity of the first reflected light pulse ends. The first signal, and
    The second reflected light pulse is generated by detecting at least a part of a component included in a period from when the light intensity of the second reflected light pulse starts to decrease to when the decrease ends. The second signal,
    Generated by the operation using
    The biometric method according to any one of claims 1 to 8.
  10.  複数のユーザのコンピュータから、請求項1から9のいずれかに記載の生体計測方法によって生成された前記複数のユーザの各々の前記熟達度を示す信号と、前記複数のユーザの各々の位置情報とを、ネットワークを介して取得することと、
     前記位置情報に基づき、前記複数のユーザの各々の前記熟達度と地図とを関連付けた地図データを生成して出力することと、
    を含む、地図データ生成方法。
    A signal indicating the proficiency level of each of the plurality of users generated from the computers of the plurality of users by the biometric method according to claim 1, and position information of each of the plurality of users. Is obtained via the network,
    Generating and outputting map data in which the master level and the map of each of the plurality of users are associated with each other based on the position information;
    A method for generating map data, including:
  11.  刺激装置と、光源と、光検出器とを備える生体計測装置に搭載されるコンピュータによって実行されるプログラムであって、
     前記刺激装置に、刺激をユーザに与えさせることと、
     前記刺激が前記ユーザに与えられている状態で、前記光源に、前記ユーザの頭部に向けて光を出射させることと、
     前記光検出器に、前記頭部からの反射光のうち、前記ユーザの脳内を伝播した光の成分を検出させることにより、前記成分の強度に応じた、前記脳の活動状態を示す脳活動信号を出力させることと、
     前記脳活動信号に基づき、マインドフルネス状態になることについての前記ユーザの熟達度を示す信号を生成して出力することと、
    を前記コンピュータに実行させる、プログラム。
    A program executed by a computer mounted on a biometric device including a stimulator, a light source, and a photodetector,
    Causing the stimulator to provide a stimulus to the user;
    Causing the light source to emit light toward the user's head while the stimulus is being applied to the user;
    A brain activity indicating the activity state of the brain according to the intensity of the component by causing the photodetector to detect a component of light that has propagated in the brain of the user among the reflected light from the head. To output a signal,
    Generating and outputting a signal indicating the proficiency level of the user with respect to becoming a mindfulness state based on the brain activity signal;
    A program that causes the computer to execute.
  12.  刺激装置と、光源と、光検出器とを備える生体計測装置に搭載されるコンピュータによって実行されるプログラムを格納したコンピュータ読み取り可能な記録媒体であって、
     前記プログラムが前記コンピュータによって実行されるときに、
     前記刺激装置に、刺激をユーザに与えさせることと、
     前記刺激が前記ユーザに与えられている状態で、前記光源に、前記ユーザの頭部に向けて光を出射させることと、
     前記光検出器に、前記頭部からの反射光のうち、前記ユーザの脳内を伝播した光の成分を検出させることにより、前記成分の強度に応じた、前記脳の活動状態を示す脳活動信号を出力させることと、
     前記脳活動信号に基づき、マインドフルネス状態になることについての前記ユーザの熟達度を示す信号を生成して出力することと、
    が実行される、コンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium that stores a program executed by a computer mounted on a biometric device that includes a stimulator, a light source, and a photodetector.
    When the program is executed by the computer,
    Causing the stimulator to provide a stimulus to the user;
    Causing the light source to emit light toward the user's head while the stimulus is being applied to the user;
    A brain activity indicating the activity state of the brain according to the intensity of the component by causing the photodetector to detect a component of light that has propagated in the brain of the user among the reflected light from the head. To output a signal,
    Generating and outputting a signal indicating the proficiency level of the user with respect to becoming a mindfulness state based on the brain activity signal;
    A computer-readable recording medium on which is executed.
  13.  刺激をユーザに与える刺激装置と、
     前記刺激が前記ユーザに与えられている状態で、前記ユーザの頭部に向けて光を出射する光源と、
     前記頭部からの反射光のうち、前記ユーザの脳内を伝播した光の成分を検出し、前記成分の強度に応じた、前記脳の活動状態を示す脳活動信号を出力する光検出器と、
     前記脳活動信号に基づき、マインドフルネス状態になることについての前記ユーザの熟達度を示す信号を生成して出力する信号処理回路と、
    を備える、生体計測装置。
    A stimulator for giving a stimulus to a user,
    A light source that emits light toward the user's head while the stimulus is being applied to the user;
    Of the light reflected from the head, a photodetector that detects a component of light that has propagated in the brain of the user and outputs a brain activity signal indicating the activity state of the brain according to the intensity of the component. ,
    A signal processing circuit which, based on the brain activity signal, generates and outputs a signal indicating the degree of proficiency of the user for becoming a mindfulness state;
    A biometric device comprising:
PCT/JP2019/046732 2018-12-27 2019-11-29 Biosensing method, map data generation method, program, computer-readable medium, and biosensing device WO2020137352A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-245735 2018-12-27
JP2018245735 2018-12-27
JP2019-206341 2019-11-14
JP2019206341A JP2020103879A (en) 2018-12-27 2019-11-14 Biological measurement method, map data generation method, program, computer readable recording medium, and biological measurement device

Publications (1)

Publication Number Publication Date
WO2020137352A1 true WO2020137352A1 (en) 2020-07-02

Family

ID=71127067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046732 WO2020137352A1 (en) 2018-12-27 2019-11-29 Biosensing method, map data generation method, program, computer-readable medium, and biosensing device

Country Status (1)

Country Link
WO (1) WO2020137352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112138262A (en) * 2020-09-25 2020-12-29 悟能(深圳)科技有限公司 Sleep aiding method, system and device based on environmental isolation and sensory transfer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024830A (en) * 2009-07-27 2011-02-10 Emprie Technology Development LLC Information processing system and information processing method
JP2017220926A (en) * 2016-06-07 2017-12-14 パナソニックIpマネジメント株式会社 Imaging apparatus
CN107890349A (en) * 2017-12-14 2018-04-10 上海惠诚科教器械股份有限公司 It is a kind of that training system is concentrated the mind on breathing based on brain wave Real-time Feedback

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024830A (en) * 2009-07-27 2011-02-10 Emprie Technology Development LLC Information processing system and information processing method
JP2017220926A (en) * 2016-06-07 2017-12-14 パナソニックIpマネジメント株式会社 Imaging apparatus
CN107890349A (en) * 2017-12-14 2018-04-10 上海惠诚科教器械股份有限公司 It is a kind of that training system is concentrated the mind on breathing based on brain wave Real-time Feedback

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJII, SEIKA ET AL.: "Analysis of frontal brain activity during meditation by fNIRS, non-official translation, 2. Analysis of Frontal Brain Activity during Meditation, 5. Conclusion", PROCEEDINGS OF THE ANNUAL CONFERENCE OF THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, vol. 31, no. 3E1-OS- lla-3, 2017, ISSN: 1347-9881, Retrieved from the Internet <URL:URL:https://www.ai-gakkai.or.jp/jsai2017/webprogram/2017/pdf/441.pdf> *
GUNDEL, FRIEDERIKE ET AL.: "Meditation and the brain - Neuronal correlates of mindfulness as assessed with near-infrared spectroscopy", PSYCHIATRY RESEARCH: NEUROIMAGING, vol. 271, 30 January 2018 (2018-01-30), pages 24 - 33, XP085310793, ISSN: 0925-4927, DOI: 10.1016/j.pscychresns.2017.04.002 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112138262A (en) * 2020-09-25 2020-12-29 悟能(深圳)科技有限公司 Sleep aiding method, system and device based on environmental isolation and sensory transfer

Similar Documents

Publication Publication Date Title
JP2020103879A (en) Biological measurement method, map data generation method, program, computer readable recording medium, and biological measurement device
JP7386440B2 (en) Biometric device, operating method of biometric device, and determination device
JP7065421B2 (en) How to get information inside the imager and the object
O'doherty et al. Sub‐epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation
JP2023126820A (en) System and method for estimating user&#39;s psychological state
JP7386438B2 (en) Biometric device, biometric method, computer readable recording medium, and program
Wilcox et al. Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration
CN106943117A (en) Biometric information measuring device
US20210085229A1 (en) Biometric measurement apparatus and biometric measurement method
JP2024016142A (en) Information processing method in computer and biological measurement system
Ewerlöf et al. Estimation of skin microcirculatory hemoglobin oxygen saturation and red blood cell tissue fraction using a multispectral snapshot imaging system: a validation study
Logger et al. Evaluation of a simple image‐based tool to quantify facial erythema in rosacea during treatment
WO2020137352A1 (en) Biosensing method, map data generation method, program, computer-readable medium, and biosensing device
Hejtmánek et al. Forest digital twin as a relaxation environment: a pilot study
CN111050667B (en) Cognitive function determination method
WO2022202057A1 (en) Method and device for estimating emotional state of user
US11963772B2 (en) System, computer-readable non-transitory recording medium, and method for estimating psychological state of user
WO2020137276A1 (en) Imaging device
WO2022138063A1 (en) Biological measurement device, biological measurement method, and computer program
WO2021182018A1 (en) Measuring apparatus and method for controlling measuring apparatus
JP7417867B2 (en) Optical measurement device
WO2023090188A1 (en) Light detecting system, processing device, method for controlling light detecting system, and program
Wabnitz et al. Depth selectivity in time-domain optical brain imaging based on time windows and moments of time-of-flight distributions
Pinti et al. Non-invasive optical imaging of brain function with fNIRS: Current status and way forward
Kelsey et al. Variability in functional brain network connectivity is associated with differences in newborn infants’ affect and behavior

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903388

Country of ref document: EP

Kind code of ref document: A1