WO2020137347A1 - Method for producing polyurethane, method for producing curable composition, method for producing cured product, method for producing overcoat film and method for producing flexible wiring board - Google Patents

Method for producing polyurethane, method for producing curable composition, method for producing cured product, method for producing overcoat film and method for producing flexible wiring board Download PDF

Info

Publication number
WO2020137347A1
WO2020137347A1 PCT/JP2019/046663 JP2019046663W WO2020137347A1 WO 2020137347 A1 WO2020137347 A1 WO 2020137347A1 JP 2019046663 W JP2019046663 W JP 2019046663W WO 2020137347 A1 WO2020137347 A1 WO 2020137347A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
curable composition
polyol compound
producing
compound
Prior art date
Application number
PCT/JP2019/046663
Other languages
French (fr)
Japanese (ja)
Inventor
圭孝 石橋
和弥 木村
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020137347A1 publication Critical patent/WO2020137347A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a method for producing polyurethane, a method for producing a curable composition, a method for producing a cured product, a method for producing an overcoat film, and a method for producing a flexible wiring board.
  • the flexible wiring board is covered with an overcoat film for surface protection.
  • This overcoat film is formed by applying a curable composition to the surface of the flexible substrate on which the wiring is formed by a printing method or the like and curing it.
  • This curable composition is required to have low stringiness and excellent defoaming property in order to increase printing speed and improve productivity. The stringing property and the defoaming property will be described below.
  • the curable composition After the curable composition is applied in a film form on the surface of the flexible substrate using the printing plate, when the printing plate is separated from the surface of the flexible substrate, a fiber is present between the printing plate and the film-shaped curable composition.
  • a stringing phenomenon occurs in which the curable composition in the shape of a line remains.
  • the peripheral parts of the printing plate and the flexible substrate are contaminated, and the flexible substrate coated with the curable composition cannot be transferred to the next step.
  • the flexible substrate coated with the composition needs to be allowed to stand.
  • the stringing phenomenon occurs, workability and productivity in the printing process are deteriorated, so that the curable composition has been required to be hard to cause the stringing phenomenon (low stringing property).
  • bubbles of the curable composition may remain on the surface of the film-shaped curable composition applied to the flexible substrate. If bubbles remain, the appearance of the flexible wiring board deteriorates, so it is necessary to leave the flexible substrate coated with the curable composition still until the bubbles disappear. As described above, when bubbles remain, workability and productivity in the printing process are deteriorated, and therefore the curable composition has been required to be easy to eliminate bubbles (excellent defoaming property).
  • Patent Document 1 contains a polyurethane obtained by reacting a diisocyanate compound with a plurality of diol compounds.
  • a curable composition is disclosed.
  • the curable composition disclosed in Patent Document 1 it is possible to obtain an overcoat film for a flexible wiring board, which is excellent in low warpage, flexibility, long-term insulation reliability, and wiring disconnection suppression.
  • the present invention provides a method for producing a polyurethane capable of imparting low stringiness and excellent defoaming property to a curable composition, and a curable composition having low stringiness and excellent defoaming property.
  • the challenge is to provide a method.
  • Another object of the present invention is to provide a method for producing a cured product excellent in workability and productivity, a method for producing an overcoat film, and a method for producing a flexible wiring board.
  • Polyisocyanate compound I having two or more isocyanato groups in one molecule, a first polyol compound H1 having two or more hydroxy groups in one molecule, and two or more hydroxy in one molecule A method for producing a polyurethane by reacting a second polyol compound H2 having a group with a third polyol compound H3 having two or more hydroxy groups in one molecule, The aromatic ring concentration of the first polyol compound H1 is higher than the aromatic ring concentration of the second polyol compound H2, The reaction rate constant of the reaction for forming a urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the first polyol compound H1 is K1, and the isocyanato group of the polyisocyanate compound I and the second polyol compound H2.
  • K2 is the reaction rate constant of the reaction of forming a urethane bond from the hydroxy group of the above, and the reaction rate constant of the reaction of forming a urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the third polyol compound H3 is
  • K3 is satisfied, both the expression K1/K3>50 and the expression K2/K3>50 are satisfied,
  • a polymerization reaction for forming a urethane bond from an isocyanato group and a hydroxy group a first polymerization step for obtaining an intermediate polymer
  • the weight average molecular weight of the intermediate polymer is not less than twice the sum of the molecular weights of the polyisocyanate compound I, the first polyol compound H1, the second polyol compound H2, and the third polyol compound H3.
  • the remaining part of the total amount of the third polyol compound H3 used in the production of the polyurethane is added to the intermediate polymer to carry out a polymerization reaction for forming a urethane bond from an isocyanato group and a hydroxy group.
  • a second polymerization step further performed, A method for producing a polyurethane comprising:
  • the total number of isocyanato groups in the total amount of the polyisocyanate compound I used for producing the polyurethane is F I
  • the total number of hydroxy groups in the total amount of the first polyol compound H1 is F H1
  • the second Of the total amount of hydroxy groups contained in the total amount of the polyol compound H2 , F H2 , among the total amount of the third polyol compound H3, the total number of hydroxy groups contained in the part is Fa H3 , and among the total amount of the third polyol compound H3
  • the total number of hydroxy groups contained in the balance to be additionally charged is Fb H3
  • 0.4 ⁇ (F H1 +F H2 )/F I ⁇ 0.6 0.01 ⁇ Fa H3 /F I ⁇ 0.2 0.25 ⁇ Fb H3 /F I ⁇ 0.5 0.8 ⁇ (F H1 +F H2 +Fa H3 +Fb H3 )/F I ⁇ 1.2
  • the method for producing a polyurethane according to [1] where
  • the aromatic ring concentration of the first polyol compound H1 is 5.0 mmol/g or more and 15.0 mmol/g or less
  • the aromatic ring concentration of the second polyol compound H2 is 0.5 mmol/g or more and 5.0 mmol/g
  • the second polyol compound H2 is a polyester diol represented by the following formula (2), and R 1 in the following formula (2) is independently a divalent group having 6 to 14 carbon atoms. And R 2 each independently represent a divalent hydrocarbon group having 3 to 9 carbon atoms, and n is an integer of 1 to 50, which is any one of [1] to [5].
  • the third polyol compound H3 is a carboxy group-containing diol represented by the following formula (3), and R 3 in the following formula (3) is a methyl group or an ethyl group [1] to [1] [6] The method for producing the polyurethane according to any one of [6].
  • a method for producing a curable composition which comprises mixing the compound (c) and the composition.
  • the ratio of the content of the solvent (b) to the total amount of the curable composition is 25% by mass or more and 75% by mass or less, and the ratio to the total amount of the polyurethane (a) and the epoxy compound (c) is The method for producing a curable composition according to [10], wherein the content ratio of the polyurethane (a) is 40% by mass or more and 99% by mass or less.
  • a method for producing a curable composition which comprises mixing a compound (c) and fine particles (d) to form a composition.
  • the ratio of the content of the solvent (b) to the total amount of the curable composition is 25% by mass or more and 75% by mass or less, and the content of the fine particles (d) relative to the total amount of the curable composition is The ratio is 0.1% by mass or more and 60% by mass or less, and the ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) is 40% by mass or more and 99% by mass or less.
  • a method for producing a cured product which comprises curing the curable composition produced by the method for producing a curable composition according to any one of [10] to [13].
  • the curable composition produced by the method for producing a curable composition according to any one of [10] to [13] is used to form the wiring on the surface of a flexible substrate on which the wiring is formed.
  • a method for producing an overcoat film wherein the curable composition in the form of a film is cured to form a cured product in the form of a film after the film-shaped curable composition is disposed on a portion where the film is formed.
  • the wiring is formed on the surface of the flexible substrate on which the wiring is formed, by using the curable composition manufactured by the method for manufacturing the curable composition according to any one of [10] to [13].
  • a polyurethane capable of imparting low stringiness and excellent defoaming property to a curable composition.
  • a curable composition having low stringiness and excellent defoaming property can be produced.
  • a cured product, an overcoat film, and a flexible wiring board can be manufactured with excellent workability and productivity.
  • the present embodiment shows an example of the present invention, and the present invention is not limited to this embodiment.
  • various changes or improvements can be added to the present embodiment, and a mode in which such changes or improvements are added can be included in the present invention.
  • the present inventors have conducted extensive studies to solve the above problems, and as a result, as a polyol compound which is a monomer of polyurethane, reactivity with an isocyanato group of a polyisocyanate compound (that is, an isocyanate group and a polyol compound of a polyisocyanate compound).
  • an isocyanato group of a polyisocyanate compound that is, an isocyanate group and a polyol compound of a polyisocyanate compound.
  • polyurethane and Manufacturing Method Thereof The polyurethane of the present embodiment and the manufacturing method thereof will be described in detail below.
  • (1) Polyurethane Monomer The monomers used for producing polyurethane will be described.
  • a polyisocyanate compound and a polyol compound are used as a polyurethane monomer, and a polyurethane is produced by reacting an isocyanato group of the polyisocyanate compound with a hydroxy group of the polyol compound.
  • polyisocyanate compound I polyisocyanate compound I having two or more isocyanato groups in one molecule is used.
  • polyol compound a first polyol compound H1 having two or more hydroxy groups in one molecule, a second polyol compound H2 having two or more hydroxy groups in one molecule, and one molecule Is used as the third polyol compound H3 having two or more hydroxy groups.
  • the first polyol compound H1, the second polyol compound H2, and the third polyol compound H3 are compounds having different aromatic ring concentrations and reactivity with the isocyanato group of the polyisocyanate compound I.
  • the aromatic ring concentrations of the first polyol compound H1 and the second polyol compound H2 are different, and the aromatic ring concentration of the first polyol compound H1 is higher than the aromatic ring concentration of the second polyol compound H2.
  • the aromatic ring concentration of the first polyol compound H1 is preferably 5.0 mmol/g or more and 15.0 mmol/g or less, and more preferably 8.0 mmol/g or more and 12.0 mmol/g or less.
  • the aromatic ring concentration of the second polyol compound H2 is preferably 0.5 mmol/g or more and 5.0 mmol/g or less, more preferably 1.0 mmol/g or more and 4.0 mmol/g or less.
  • the aromatic ring concentration means the number (moles) of aromatic rings contained in 1 g of the compound. For example, if a polyol compound having a molecular weight of 438.5 has four aromatic rings (for example, phenyl groups) per molecule, 1 g of this polyol compound is 2.28 mmol, so the aromatic ring concentration is 9.12 mmol/g. (4 ⁇ 2.28 mmol/1 g).
  • the kind of aromatic ring is not particularly limited as long as it is a cyclic functional group having 3 or more ring members and having aromaticity, and examples thereof include a monocyclic aromatic hydrocarbon group such as a phenyl group, a biphenyl group, and a fluorene group. And polycyclic aromatic hydrocarbon groups such as, naphthalene groups, condensed cyclic aromatic hydrocarbon groups such as indenyl groups, and heteroaromatic hydrocarbon groups such as pyridyl groups.
  • the number of aromatic rings is not one and To do.
  • a fluorene group has two benzene rings, which are cyclic structure sites
  • the number of aromatic rings in the polyol compound is two per molecule. To do.
  • the reaction rate constant of the reaction of forming a urethane bond from the hydroxy groups of H1, H2 and H3 is different.
  • the reaction rate constant of the reaction for forming a urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the first polyol compound H1 is K1
  • the isocyanato group of the polyisocyanate compound I and the second polyol compound H2 are K2 is the reaction rate constant of the reaction of forming a urethane bond from the hydroxy group of OH
  • K3 is the reaction rate constant of the reaction of forming the urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the third polyol compound H3.
  • reaction rate constants K1 and K2 may be the same or different. Also, the above two equations are preferably K1/K3>100 and K2/K3>100.
  • reaction rate constants K1, K2, and K3 the method of measuring the reaction rate constants K1, K2, and K3 will be described.
  • polyurethane is synthesized by a polymerization reaction by reacting a polyisocyanate compound having two or more isocyanato groups in one molecule with a polyol compound having two or more hydroxy groups in one molecule.
  • the analysis for measuring the reaction rate constant becomes complicated.
  • the polyisocyanate compound is replaced with a monoisocyanate compound having one isocyanato group in one molecule, and a monoisocyanate compound and a polyol compound H1,
  • the reaction rate constant is measured by analyzing the reaction with H2 and H3.
  • a monoisocyanate compound is used, the polymerization reaction does not proceed and a low molecular weight compound is obtained, which facilitates the analysis.
  • the types of monoisocyanate compounds used when measuring the reaction rate constants K1, K2, and K3 are as follows. That is, when the polyisocyanate compound I used in the polymerization reaction is a primary isocyanate compound, a primary monoisocyanate compound is used, and when the polyisocyanate compound I is a secondary isocyanate compound, a secondary monoisocyanate compound is used. When the polyisocyanate compound I is a tertiary isocyanate compound, the reaction rate can be qualitatively evaluated by using the tertiary monoisocyanate compound.
  • Dodecyl isocyanate is used as the primary monoisocyanate compound, cyclohexyl isocyanate is used as the secondary monoisocyanate compound, and tert-butyl isocyanate is used as the tertiary monoisocyanate compound.
  • a monoisocyanate having lower reactivity is selected. That is, when the polyisocyanate compound I used in the polymerization reaction has a primary isocyanate and a secondary isocyanate, a secondary monoisocyanate compound is used, and when the polyisocyanate compound I has a primary isocyanate or a secondary isocyanate and a tertiary isocyanate, it is 3 A grade monoisocyanate compound is used.
  • reaction rate constants K1, K2, and K3 can be calculated using the formula below.
  • C 0 is the initial concentration of the polyol compound
  • C is the concentration of the polyol compound
  • t is the reaction elapsed time
  • K is the reaction rate constant.
  • 1/C-1/C 0 K ⁇ t
  • the method for measuring the concentration of the polyol compound in the reaction is not particularly limited, but 1 H-NMR, 13 C-NMR, IR and other spectroscopic techniques can be used. For example, a portion of a reaction solution of a reaction between a monoisocyanate compound and a polyol compound is sampled, and the reaction is stopped by diluting with a solvent for NMR measurement, and then subjected to NMR analysis to measure the concentration of the polyol compound. can do.
  • the type of the first polyol compound H1 is not particularly limited as long as the conditions such as the aromatic ring concentration and the reaction rate constant described above are satisfied, but a diol having a fluorene structure is preferable, and it is represented by the above formula (1).
  • the represented 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene is more preferred.
  • the type of the second polyol compound H2 is not particularly limited as long as it satisfies the conditions such as the aromatic ring concentration and the reaction rate constant described above, but the polyester diol represented by the above formula (2) is preferable.
  • R 1 in the above formula (2) each independently represents a divalent organic group having 6 to 14 carbon atoms
  • R 2 each independently represents a divalent hydrocarbon group having 3 to 9 carbon atoms. Represents a group
  • n is an integer of 1 or more and 50 or less.
  • the polyester diol represented by the above formula (2) can be synthesized by esterification of a dicarboxylic acid and a diol.
  • the dicarboxylic acid include orthophthalic acid, isophthalic acid, terephthalic acid, 3-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1, Examples thereof include 3-dicarboxylic acid, 5-methyl-benzene-1,3-dicarboxylic acid and 2-methyl-benzene-1,4-dicarboxylic acid.
  • the dicarboxylic acid one of these may be used alone, or two or more thereof may be used in combination.
  • diol examples include 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and 3-methyl-1,5. -Pentanediol, 1,8-octanediol, 1,9-nonanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol and the like. it can.
  • the diol one of these may be used alone, or two or more thereof may be used in combination.
  • Preferred dicarboxylic acids are phthalic acid, isophthalic acid, terephthalic acid, 3-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1,2-dicarboxylic acid, and particularly preferred is phthalic acid. is there.
  • the preferred diols are 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and 3-methyl-1,5-pentanediol, and Preferred are 1,6-hexanediol and 3-methyl-1,5-pentanediol.
  • the number average molecular weight of the polyester diol represented by the above formula (2) is preferably 800 or more and 5000 or less, more preferably 800 or more and 4000 or less, and further preferably 900 or more and 3500 or less.
  • the polyester diol represented by the above formula (2) may be used alone or in combination of two or more.
  • a low molecular weight polyol can be used as the second polyol compound H2.
  • 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neo Pentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, etc. can be used.
  • the type of the third polyol compound H3 is not particularly limited as long as it satisfies the conditions such as the reaction rate constants described above, but has at least one carboxy group and two hydroxy groups in the molecule.
  • Carboxyl group-containing diols are preferred.
  • the kind of the carboxy group-containing diol is not particularly limited, and examples thereof include dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, and N,N-bis(hydroxyethyl)glycine. As the carboxy group-containing diol, one of these may be used alone, or two or more may be used in combination.
  • the carboxy group-containing diol represented by the above formula (3) is more preferable from the viewpoint of solubility in a reaction solvent during the production of polyurethane.
  • R 3 in the above formula (3) represents a methyl group or an ethyl group. That is, as the carboxy group-containing diol, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are particularly preferable.
  • a low molecular weight polyol can be used as the third polyol compound H3.
  • 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neo Pentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, etc. can be used.
  • polyisocyanate Compound I The type of the polyisocyanate compound I is not particularly limited, and examples thereof include a cycloaliphatic polyisocyanate, an aromatic ring-containing polyisocyanate, a chain aliphatic polyisocyanate, and a heterocyclic polyisocyanate.
  • cycloaliphatic polyisocyanate examples include 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis(4-cyclohexyl isocyanate), 1,3-bis(isocyanatomethyl)cyclohexane, 1,4 -Bisettes of bis(isocyanatomethyl)cyclohexane, norbornene diisocyanate and isophorone diisocyanate.
  • polyisocyanate having an aromatic ring examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate and 1,4-xylylene diisocyanate. Isocyanate may be mentioned.
  • chain aliphatic polyisocyanate examples include biuret of hexamethylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexane methylene diisocyanate. Are listed.
  • polyisocyanate having a heterocycle examples include an isocyanurate body of isophorone diisocyanate and an isocyanurate body of hexamethylene diisocyanate. These polyisocyanates may be used alone or in combination of two or more.
  • At least one of the polyol compounds H1, H2, and H3, which is a monomer of polyurethane, has an aromatic ring.
  • the polyisocyanate compound I preferably has no aromatic ring.
  • the method for producing a polyurethane includes a first polymerization step for obtaining an intermediate polymer (prepolymer) and a second polymerization step for obtaining a final polymer.
  • the first polymerization step the total amount of polyisocyanate compound I, the total amount of first polyol compound H1, the total amount of second polyol compound H2, and a part of the total amount of third polyol compound H3 are mixed.
  • a polymerization reaction for forming a urethane bond from the isocyanato group and the hydroxy group is performed to obtain an intermediate polymer.
  • the remaining part of the total amount of the third polyol compound H3 used for the production of polyurethane is additionally added to the intermediate polymer to further carry out a polymerization reaction for forming a urethane bond from an isocyanato group and a hydroxy group. This is the step of obtaining the final polymer.
  • total amount means the total amount of each monomer to be used to obtain the final polymer. That is, the polyisocyanate compound I, the first polyol compound H1, and the second polyol compound H2 are subjected to the polymerization reaction in the first polymerization step, but the third polyol compound H3 is subjected to the first polymerization step. Then, only a part is subjected to the polymerization reaction, and the rest is subjected to the polymerization reaction in the second polymerization step to complete the polymerization reaction.
  • the timing of adding the remaining part of the total amount of the third polyol compound H3 used for the production of polyurethane to the intermediate polymer (that is, the timing of starting the second polymerization step) is as follows. Although the polymerization proceeds in the first polymerization step and the weight average molecular weight of the intermediate polymer increases, the weight average molecular weight of the intermediate polymer is the polyisocyanate compound I, the first polyol compound H1, and the second polyol compound. When the total of the molecular weights of H2 and the third polyol compound H3 is twice or more, the balance of the total amount of the third polyol compound H3 is additionally charged to start the second polymerization step.
  • a polyurethane having a narrow molecular weight distribution can be obtained by first subjecting all of the polyol compounds H1 and H2 having a large reaction rate constant to the polymerization reaction and then subjecting the polyol compound H3 having the smallest reaction rate constant to the polymerization reaction later.
  • the curable composition is produced using polyurethane having a narrow molecular weight distribution, the obtained curable composition has low stringiness when applied to a flexible substrate and is excellent in defoaming property.
  • the total amount of isocyanato groups contained in the total amount of polyisocyanate compound I used for the production of polyurethane is F I
  • the total number of hydroxy groups contained in the total amount of first polyol compound H1 is F H1
  • the total amount of second polyol compound H2 is The total number of hydroxy groups is F H2
  • the total number of hydroxy groups in the first polymerization step of the total amount of the third polyol compound H3 is Fa H3
  • the total amount of the third polyol compound H3 is Let Fb H3 be the total number of hydroxy groups in the remainder that is additionally charged in the second polymerization step.
  • the first polymerization step and the second polymerization step can be performed by mixing the respective monomers so as to satisfy all of the following four formulas. 0.4 ⁇ (F H1 +F H2 )/F I ⁇ 0.6 0.01 ⁇ Fa H3 /F I ⁇ 0.2 0.25 ⁇ Fb H3 /F I ⁇ 0.5 0.8 ⁇ (F H1 +F H2 +Fa H3 +Fb H3 )/F I ⁇ 1.2
  • the respective monomers are blended so as to satisfy all of the following four formulas, and the first polymerization step and the second polymerization step are performed.
  • 0.4 ⁇ (F H1 +F H2 )/F I ⁇ 0.6 0.01 ⁇ Fa H3 /F I ⁇ 0.2 0.3 ⁇ Fb H3 /F I ⁇ 0.5 0.8 ⁇ (F H1 +F H2 +Fa H3 +Fb H3 )/F I ⁇ 1.2
  • the polymerization reaction may be stopped and the polyurethane may be taken out from the polymerization product (for example, polyurethane solution).
  • the polymerization method used in the method for producing the polyurethane of the present embodiment is not particularly limited, but for example, in the presence or absence of a urethane-forming catalyst such as dibutyltin dilaurylate, the polyisocyanate compound I, the first A method of reacting the polyol compound H1, the second polyol compound H2, and the third polyol compound H3 in a solvent may be used.
  • a urethane-forming catalyst such as dibutyltin dilaurylate, the polyisocyanate compound I, the first A method of reacting the polyol compound H1, the second polyol compound H2, and the third polyol compound H3 in a solvent
  • the polymerization reaction for synthesizing polyurethane may be carried out in a solvent.
  • the solid content concentration is preferably 10% by mass or more and 90% by mass or less, and 15% by mass or more and 70% by mass or less. More preferably, 20 mass% or more and 60 mass% or less are still more
  • the type of solvent used as the polymerization solvent is not particularly limited as long as it can dissolve the polyurethane of the present embodiment, for example, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dibutyl ether, Ether-based solvents such as diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, ethylene Glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether a
  • a curable composition described below is produced using a polyurethane solution having a solid content concentration of 20% by mass or more and 60% by mass or less
  • the solution viscosity of the polyurethane solution is measured under the measurement conditions described below in the section of Examples.
  • it is preferably 5,000 mPa ⁇ s or more and 1 million mPa ⁇ s or less from the viewpoint of uniform dispersion.
  • a polyurethane may be produced by subjecting a monoisocyanate compound having one isocyanato group in one molecule or a monohydroxy compound having one hydroxy group in one molecule to a reaction.
  • the type of monoisocyanate compound that can be used is not particularly limited, but cyclohexyl isocyanate, octadecyl isocyanate, phenyl isocyanate, toluyl isocyanate, etc. can be used. Considering the discoloration resistance of the curable composition containing the polyurethane of the present embodiment when heated, cyclohexyl isocyanate and octadecyl isocyanate are preferable.
  • the type of monohydroxy compound that can be used is not particularly limited as long as it is a compound that does not have a substituent that has a higher reactivity with an isocyanato group than a hydroxy group, and may be methanol, ethanol, n-propanol, Isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monoisobutyl ether, dipropylene glycol monopropyl ether, methyl ethyl ketoxime, etc. are used. be able to. These monohydroxy compounds may be used alone or in combination of two or more.
  • the order of charging the monomers into the reaction vessel when carrying out the polymerization reaction for synthesizing polyurethane is no particular restriction on the order of charging the monomers into the reaction vessel when carrying out the polymerization reaction for synthesizing polyurethane, but for example, the following order may be used. That is, the polyol compounds H1, H2, and H3 are first charged into a reaction vessel and dissolved in a solvent. The temperature of the solution of the polyol compounds H1, H2, H3 is usually 20° C. to 160° C., preferably 60° C. to 140° C., and then the polyisocyanate compound I is added little by little to the reaction vessel at 50° C. to 180° C. Preferably, the above monomers are reacted at 60° C. to 170° C. to carry out polymerization.
  • the molar ratio of the charged monomers is adjusted according to the molecular weight and acid value of the desired polyurethane.
  • the molecular weight of the target polyurethane can be adjusted. For example, when the molecular weight of the polyurethane reaches the target number average molecular weight (or when it approaches the target number average molecular weight), a monohydroxy compound is added to seal the isocyanate terminal group at the molecular end of the polymerization product, Suppress further increase in number average molecular weight.
  • the total amount of hydroxy groups possessed by the total amount of polyol compounds H1, H2, H3 used in the production of polyurethane is higher than the total amount of hydroxy groups possessed by the polyisocyanate compound I used in the production of polyurethane.
  • the total number may be smaller, the same or larger.
  • the excess monohydroxy compound may be used as it is as a part of the solvent. Alternatively, it may be removed by an operation such as distillation.
  • the total amount of polyol compounds H1, H2, and H3 used in the production of polyurethane is adjusted so that the molecular end of the polymerization product at the time of adding the monoisocyanate compound becomes a hydroxy group. It is necessary to reduce the total number of isocyanato groups contained in the total amount of the polyisocyanate compound I used for producing the polyurethane, compared to the total number of hydroxy groups contained in.
  • the temperature of the polyurethane solution during the production of the polyurethane is adjusted to 30° C. to 150° C., preferably 70° C. to 140° C., the monoisocyanate compound is added little by little to the polyurethane solution, and the temperature is maintained at the above temperature to complete the reaction.
  • the polyurethane of the present embodiment is a polyurethane obtained by reacting the polyol compounds H1, H2, H3 and the polyisocyanate compound I
  • the first polyol compound H1 reacts with the polyisocyanate compound I.
  • a third urethane structural unit is a third urethane structural unit.
  • the number average molecular weight of the polyurethane of the present embodiment is not particularly limited, but is preferably 3000 or more and 100000 or less, more preferably 5000 or more and 50000 or less, and further preferably 5000 or more and 30000 or less. ..
  • the number average molecular weight is within the above range, the solvent solubility of polyurethane is good, and since the viscosity of the polyurethane solution is unlikely to be high, the curable composition described below is used to produce an overcoat film or a flexible wiring board described below. It is suitable for use in. Furthermore, the elongation, flexibility, and strength of the cured product or overcoat film described later tend to be good.
  • the "number average molecular weight” here is a polystyrene equivalent number average molecular weight measured by gel permeation chromatography (hereinafter referred to as "GPC").
  • GPC gel permeation chromatography
  • Device name HPLC unit HSS-2000 manufactured by JASCO Corporation
  • Mobile phase Tetrahydrofuran Flow rate: 1.0 mL/min Detector: RI-2031Plus manufactured by JASCO Corporation Temperature: 40.0°C
  • Sample volume Sample loop 100 ⁇ L Sample concentration: approx. 0.1% by mass
  • the acid value of the polyurethane of the present embodiment is not particularly limited, but is preferably 10 mgKOH/g or more and 70 mgKOH/g or less, and more preferably 15 mgKOH/g or more and 50 mgKOH/g or less.
  • the acid value is within the above range, the polyurethane has sufficient reactivity with the epoxy group. Therefore, in the curable composition described below, reactivity with other components such as an epoxy compound having two or more epoxy groups in one molecule is unlikely to be insufficient, and thus the heat resistance of the cured product of the curable composition Of the curable composition does not become too hard and brittle. Further, it becomes easy to balance the solvent resistance of the overcoat film described later and the warp of the flexible wiring board described later.
  • the acid value of polyurethane is the value of the acid value measured by the potentiometric titration method defined in JIS K0070.
  • Curable composition and its manufacturing method A curable composition can be obtained using the polyurethane of this embodiment manufactured as mentioned above.
  • the curable composition is a composition obtained by mixing the polyurethane (a) of the present embodiment, a solvent (b), and an epoxy compound (c) having two or more epoxy groups in one molecule. Can be manufactured by.
  • Solvent (b) The type of the solvent (b) which is one of the essential components of the curable composition of the present embodiment is not particularly limited, but it is preferable that the polyurethane (a) of the present embodiment can be dissolved, Further, it is more preferable that it has a boiling point of 150°C or higher and 250°C or lower under atmospheric pressure. In order to balance the solubility of the polyurethane (a) of the present embodiment, the volatility of the solvent, and the like, it is more preferable to use two or more kinds of solvents having a boiling point of 150° C. or higher and 250° C. or lower under atmospheric pressure in combination. It is particularly preferable to use a solvent having a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure and a solvent having a boiling point of 200° C. or more and 220° C. or less under atmospheric pressure in combination.
  • Examples of the solvent having a boiling point of 150° C. or higher and 250° C. or lower under atmospheric pressure include the following.
  • Examples of the solvent having a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure include diethylene glycol diethyl ether (boiling point 189° C.), diethylene glycol ethyl methyl ether (boiling point 176° C.), dipropylene glycol dimethyl ether (boiling point 171° C.), 3 -Methoxybutyl acetate (boiling point 171°C), ethylene glycol monobutyl ether acetate (boiling point 192°C), ethylene glycol mono-n-butyl ether (boiling point 171°C), dimethyl sulfoxide (boiling point 189°C) and the like can be mentioned.
  • diethylene glycol butyl methyl ether (boiling point 212° C.), tripropylene glycol dimethyl ether (boiling point 215° C.), triethylene glycol dimethyl ether (boiling point 216° C.), ethylene glycol
  • dibutyl ether (boiling point 203° C.), diethylene glycol monoethyl ether acetate (boiling point 217° C.), ⁇ -butyrolactone (boiling point 204° C.), acetophenone (boiling point 202° C.), N-methylpyrrolidone (boiling point 202° C.) and the like.
  • Examples of the solvent having a boiling point of 150° C. or higher under atmospheric pressure include methylcyclohexanone (boiling point 163° C.), N,N-dimethylformamide (boiling point 153° C.), ethylene glycol monoethyl ether acetate (boiling point 156° C.) and the like. You can
  • It has a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure because it has low volatility due to its high volatility and can efficiently carry out the production reaction of the polyurethane of this embodiment in a homogeneous system. It is preferable to use a solvent in combination with a solvent having a boiling point of 200° C. or higher and 220° C. or lower under atmospheric pressure. And, as a solvent having a boiling point of 170° C. or more and less than 200° C.
  • diethylene glycol diethyl ether (boiling point 189° C.) is used as a solvent having a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure, and ⁇ -butyrolactone (solvent having a boiling point of 200° C. or more and 220° C. or less under atmospheric pressure is used. It is further preferred to use a boiling point of 204° C.).
  • the curable composition of the present embodiment can be suitably used as an ink for screen printing because it has low hygroscopicity, high boiling point, and low volatility.
  • the use ratio of the solvent having a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure and the solvent having a boiling point of 200° C. or more under 220° C. under atmospheric pressure is a mass ratio. Then, it is preferably within the range of 5:95 to 80:20, and more preferably within the range of 10:90 to 60:40.
  • the solvent (b) contained in the curable composition of the present embodiment it is possible to directly use the solvent for synthesis used when producing the polyurethane (a) of the present embodiment. Which is preferable in terms of process since the curable composition of the present embodiment can be easily produced. Further, as long as the solubility of the polyurethane (a) of the present embodiment is not impaired, a solvent other than a solvent having a boiling point of 170°C or higher and lower than 200°C under atmospheric pressure or 200°C or higher and 220°C under atmospheric pressure. A solvent other than the solvents having the following boiling points can be used together. Reactive monomers and reactive diluents can also be used as the solvent (b).
  • the content of the solvent (b) in the curable composition of the present embodiment is preferably 25% by mass or more and 75% by mass or less, more preferably 35% by mass, with respect to the total amount of the curable composition of the present embodiment. % To 70% by mass, more preferably 35% to 65% by mass.
  • the total amount of the curable composition of the present embodiment is the total amount of the polyurethane (a), the solvent (b), and the epoxy compound (c) having two or more epoxy groups in one molecule. ..
  • the total amount of the curable composition of the present embodiment means polyurethane (a) and solvent.
  • the viscosity of the curable composition is printed by the screen printing method.
  • the viscosity of the curable composition after screen printing is not so large due to bleeding.
  • the printed area of the curable composition actually printed is larger than the area where the curable composition is desired to be applied (that is, the shape of the printing plate), which is preferable.
  • Epoxy compound (c) having two or more epoxy groups in one molecule The epoxy compound (c) which is one of the essential components of the curable composition of the present embodiment functions as a curing agent in the curable composition, and is a compound having two or more epoxy groups in one molecule. If so, it is not particularly limited.
  • the epoxy compound (c) having two or more epoxy groups in one molecule include a novolac type epoxy resin obtained by epoxidizing a novolac resin.
  • Specific examples of the novolac type epoxy resin include a phenol novolac type epoxy resin. Resin, ortho-cresol novolac type epoxy resin, etc. may be mentioned.
  • the novolak resin means phenols such as phenol, cresol, xylenol, resorcin, and catechol and/or naphthols such as ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene, and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde.
  • a compound having an aldehyde group such as, for example, are condensed or co-condensed under an acidic catalyst.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include diglycidyl ethers of phenols and glycidyl ethers of alcohols.
  • examples of the above-mentioned phenols include bisphenol A, bisphenol F, bisphenol S, alkyl-substituted or unsubstituted biphenol, and stilbene-based phenols. That is, diglycidyl ethers of these phenols are bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, biphenyl type epoxy compounds, and stilbene type epoxy compounds.
  • examples of the alcohol include butanediol, polyethylene glycol, polypropylene glycol and the like.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include glycidyl ester type epoxy resins of carboxylic acids such as phthalic acid, isophthalic acid, and tetrahydrophthalic acid, aniline, and bis(4 -Aminophenyl) glycidyl-type or methylglycidyl-type epoxy resin, which is a compound obtained by substituting the active hydrogen bonded to the nitrogen atom of methane, isocyanuric acid, etc., with a glycidyl group, and nitrogen contained in aminophenols such as p-aminophenol Examples thereof include a glycidyl-type or methylglycidyl-type epoxy resin, which is a compound in which active hydrogen bonded to an atom and active hydrogen contained in a phenolic hydroxy group are each substituted with a glycidyl group.
  • carboxylic acids such as phthalic acid, isophthalic acid, and tetrahydrophthal
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include vinylcyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and 2-(3 Alicyclic epoxy resins such as ,4-epoxy)cyclohexyl-5,5-spiro(3,4-epoxy)cyclohexane-m-dioxane. These alicyclic epoxy resins are obtained by epoxidizing an olefin bond of an alicyclic hydrocarbon compound having an olefin bond in the molecule.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include, for example, glycidyl ether of paraxylylene and/or metaxylylene modified phenol resin, glycidyl ether of terpene modified phenol resin, and dicyclopentadiene modified phenol resin. And glycidyl ether of cyclopentadiene-modified phenol resin, glycidyl ether of polycyclic aromatic ring-modified phenol resin, and glycidyl ether of naphthalene ring-containing phenol resin.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include halogenated phenol novolac type epoxy resin, hydroquinone type epoxy resin, trimethylolpropane type epoxy resin, and linear aliphatic epoxy resin. (Obtained by oxidizing an olefin bond of a linear aliphatic hydrocarbon compound having an olefin bond in the molecule with a peracid such as peracetic acid), and a diphenylmethane type epoxy resin.
  • examples of the epoxy compound (c) having two or more epoxy groups in one molecule include epoxidized aralkyl type phenolic resins such as phenol aralkyl resin and naphthol aralkyl resin, sulfur atom-containing epoxy resin, and tricyclo Examples include [5.2.1.0 2,6 ]decane dimethanol diglycidyl ether and epoxy resins having an adamantane structure.
  • Examples of the epoxy resin having an adamantane structure include 1,3-bis(1-adamantyl)-4,6-bis(glycidyloyl)benzene, 1-[2′,4′-bis(glycidyloyl)phenyl]adamantane, 1 , 3-bis(4′-glycidyloylphenyl)adamantane, 1,3-bis[2′,4′-bis(glycidyloyl)phenyl]adamantane, and the like.
  • These epoxy compounds (c) may be used alone or in combination of two or more.
  • an epoxy compound having two or more epoxy groups in one molecule and having an aromatic ring structure and/or an alicyclic structure is preferable.
  • a cured product having a low water absorption rate is obtained, and therefore, it has two or more epoxy groups in one molecule and has an aromatic ring structure and/or
  • a compound having a tricyclodecane structure and an aromatic ring structure and having two or more epoxy groups is preferable.
  • the compound having a tricyclodecane structure and an aromatic ring structure and having two or more epoxy groups include a glycidyl ether of a dicyclopentadiene-modified phenol resin (that is, tricyclo[5.2.1.0 2, 6 ] a compound having a decane structure and an aromatic ring structure and having two or more epoxy groups), 1,3-bis(1-adamantyl)-4,6-bis(glycidyloyl)benzene, 1-[2′ ,4'-bis(glycidyloyl)phenyl]adamantane, 1,3-bis(4'-glycidyloylphenyl)adamantane, and 1,3-bis[2',4'-bis(glycidyloyl)phenyl]adamantane
  • An epoxy resin having an adamantane structure that is, a compound having a tricyclo[3.3.1.1 3,7 ]decane structure and an aromatic
  • an amino group and an aromatic ring structure among epoxy compounds having two or more epoxy groups in one molecule and having an aromatic ring structure and/or an alicyclic structure And a compound having two or more epoxy groups are preferred.
  • Specific examples of the compound having an amino group and an aromatic ring structure and having two or more epoxy groups include aniline and bis(4-aminophenyl)methane in which active hydrogen bonded to a nitrogen atom is substituted with a glycidyl group.
  • Examples include epoxy resins of the type and compounds represented by the following formula (5). Among these, the compound represented by the following formula (5) is particularly preferable.
  • the preferable content of the epoxy compound (c) with respect to the content of the polyurethane (a) is that of the functional group (for example, carboxy group) capable of reacting with the epoxy group, which polyurethane (a) has. Since it depends on the amount, it cannot be said unequivocally.
  • the ratio of the number of functional groups capable of reacting with the epoxy group of the polyurethane (a) to the number of epoxy groups of the epoxy compound (c) is preferably in the range of 1/3 to 2/1, and more preferably in the range of 1/2.5 to 1.5/1.
  • the ratio is within the range of 1/3 to 2/1, when the curable composition of the present embodiment is cured, there is no large amount of unreacted epoxy compound remaining, and the epoxy compound does not remain. There are not so many functional groups capable of reacting with the group, and the functional group capable of reacting with the epoxy group and the epoxy group in the epoxy compound can react in a well-balanced manner.
  • the ratio of the content of the epoxy compound (c) to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable composition of the present embodiment is 1% by mass or more and 60% by mass or less. It is more preferably 2% by mass or more and 50% by mass or less, further preferably 3% by mass or more and 40% by mass or less. That is, the ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable composition of the present embodiment is preferably 40% by mass or more and 99% by mass or less. Is more preferably 50% by mass or more and 98% by mass or less, further preferably 60% by mass or more and 97% by mass or less.
  • the ratio of the content of the epoxy compound (c) to the total amount of the polyurethane (a) and the epoxy compound (c) is 1% by mass or more and 60% by mass or less, the solvent resistance of the overcoat film described later is excellent and Thus, it is possible to balance the low warpage property of the flexible wiring board, which will be described later, covered with the overcoat film and the wire disconnection suppression property.
  • Fine particles (d) At least one kind of fine particles (d) selected from the group consisting of inorganic fine particles and organic fine particles may be added to the curable composition of the present embodiment.
  • the inorganic fine particles include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ).
  • the organic fine particles are preferably fine particles of a heat resistant resin having an amide bond, an imide bond, an ester bond or an ether bond.
  • these resins include a polyimide resin or a precursor thereof, a polyamideimide resin or a precursor thereof, or a polyamide resin from the viewpoint of heat resistance and mechanical properties.
  • silica fine particles and hydrotalcite fine particles are preferable, and the curable composition of the present embodiment preferably contains at least one selected from silica fine particles and hydrotalcite fine particles.
  • the silica fine particles used in the curable composition of the present embodiment are powdery, and may be silica fine particles having a coating on the surface or silica fine particles chemically surface-treated with an organic compound.
  • the silica fine particles used in the curable composition of the present embodiment is not particularly limited as long as it is dispersed in the curable composition to form a paste, for example, from Nippon Aerosil Co., Ltd.
  • the offered Aerosil (brand name) etc. can be mentioned.
  • Silica fine particles represented by Aerosil (trade name) are sometimes used to impart printability to the curable composition during screen printing, and in that case, they are used for the purpose of imparting thixotropy. ..
  • the hydrotalcite fine particles used in the curable composition of the present embodiment is a kind of naturally occurring clay mineral represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, and has a layered structure. It is an inorganic compound. Further, hydrotalcite can be obtained by synthesis, and for example, Mg 1-x Al x (OH) 2 (CO 3 ) x/2 ⁇ mH 2 O can be obtained by synthesis. That is, hydrotalcite is a Mg/Al-based layered compound, and anions such as chloride ions (Cl ⁇ ) and/or sulfate ions (SO 4 ⁇ ) are immobilized by ion exchange with carbonic acid groups between layers. it can. By using this function, chloride ions (Cl ⁇ ) and sulfate ions (SO 4 ⁇ ) that cause migration of copper and tin can be captured, and the insulation reliability of the cured product can be improved.
  • hydrotalcite can be obtained by synthesis, and for example
  • Examples of commercial products of hydrotalcite include Sakai Chemical Co., Ltd.'s STABACE HT-1, STAVIACE HT-7, STABACE HT-P, and Kyowa Chemical Co., Ltd.'s DHT-4A, DHT-4A2, DHT-4C, etc. Are listed.
  • the mass average particle diameter of these inorganic fine particles and organic fine particles is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the content of the fine particles (d) in the curable composition of the present embodiment is the total amount of the curable composition containing the polyurethane (a), the solvent (b), the epoxy compound (c), and the fine particles (d). On the other hand, it is preferably 0.1% by mass or more and 60% by mass or less, more preferably 0.3% by mass or more and 55% by mass or less, and 0.5% by mass or more and 40% by mass or less. More preferable.
  • the curable composition When the content of the fine particles (d) in the curable composition of the present embodiment is within the above range, the curable composition has a good viscosity for printing by the screen printing method, and The spread of the curable composition after printing due to bleeding does not become so large. As a result, it is less likely that the printed area of the curable composition actually printed is larger than the area where the curable composition is desired to be applied (that is, the shape of the printing plate), which is preferable.
  • a curing accelerator may be added to the curable composition of the present embodiment.
  • the type of the curing accelerator is not particularly limited as long as it is a compound that promotes the reaction between the carboxy group of the polyurethane (a) and the epoxy group of the epoxy compound (c), and examples thereof include the following compounds.
  • examples of the curing accelerator include melamine, acetoguanamine, benzoguanamine, 2,4-diamino-6-methacryloyloxyethyl-s-triazine, 2,4-methacryloyloxyethyl-s-triazine and 2,4-diamino.
  • examples thereof include triazine compounds such as -6-vinyl-s-triazine and 2,4-diamino-6-vinyl-s-triazine/isocyanuric acid adduct.
  • curing accelerators examples include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1-benzyl-2-methyl.
  • Imidazole 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-aminoethyl-2-ethyl-4-methylimidazole, 1-amino Ethyl-2-methylimidazole, 1-(cyanoethylaminoethyl)-2-methylimidazole, N-[2-(2-methyl-1-imidazolyl)ethyl]urea, 1-cyanoethyl-2-undecylimidazole, 1- Cyanoethyl-2-methylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimellitate, 1-cyanoethyl-2-undecylimidazo Lithium trimellitate, 2,4-diamino-6
  • examples of the curing accelerator include cycloamidine compounds such as diazabicycloalkene and salts thereof and derivatives thereof.
  • examples of the diazabicycloalkene include 1,5-diazabicyclo(4.3.0)nonene-5 and 1,8-diazabicyclo(5.4.0)undecene-7.
  • curing accelerator examples include triphenylphosphine, diphenyl(p-tolyl)phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkylalkoxyphenyl)phosphine, tris(dialkylphenyl).
  • Phosphine tris(trialkylphenyl)phosphine, tris(tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialkylarylphosphine, Examples include organic phosphine compounds such as alkyldiarylphosphine.
  • examples of the curing accelerator include triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, and other tertiary amino group-containing compounds, and dicyandiazide. These curing accelerators may be used alone or in combination of two or more.
  • melamine an imidazole compound, a cycloamidine compound and a derivative thereof, a phosphine compound, and a tertiary compound are considered in consideration of both the curing acceleration action and the electrical insulation performance of the cured product of the present embodiment described later.
  • Amino group-containing compounds are preferable, and melamine, 1,5-diazabicyclo(4.3.0)nonene-5 and salts thereof, 1,8-diazabicyclo(5.4.0)undecene-7 and salts thereof are more preferable.
  • the content of the curing accelerator in the curable composition of the present embodiment is not particularly limited as long as the curing acceleration effect is exhibited, but the curability of the curable composition of the present embodiment and the book described below.
  • the total amount of the polyurethane (a) and the epoxy compound (c) is 100 parts by mass, and the curing accelerator is in a range of 0.05 parts by mass or more and 5 parts by mass or less. It is preferable to mix within the range of 0.1 to 3 parts by mass. If the content of the curing accelerator in the curable composition of the present embodiment is within the above range, the curable composition of the present embodiment can be cured in a short time, and the curing of the present embodiment described later. Good electrical insulation properties and water resistance.
  • the curable composition of the present embodiment can be used, for example, as a resist ink application for insulation protection of wiring. It can be used as a composition.
  • the curable composition of the present embodiment is used as a composition for use as a resist ink for insulation protection of wiring (that is, an overcoat agent for flexible wiring boards), it prevents or suppresses the occurrence of bubbles during printing.
  • An antifoaming agent may be added for the purpose.
  • the type of the defoaming agent is such that, when the curable composition of the present embodiment is printed and applied on the surface of the flexible substrate during the production of the flexible wiring board, the generation of bubbles can be prevented or suppressed.
  • the following defoaming agents are listed.
  • BYK-077 (manufactured by Big Chemie Japan Co., Ltd.), SN Deformer 470 (manufactured by San Nopco Co., Ltd.), TSA750S (manufactured by Momentive Performance Materials Co., Ltd.), silicone oil SH-203 ( Silicone-based defoaming agents such as Toray Dow Corning Co., Ltd., Dappo SN-348 (San Nopco Co., Ltd.), Dappo SN-354 (San Nopco Co., Ltd.), Dappo SN-368 (San Nopco Co., Ltd.), Acrylic polymer defoaming agents such as Disparlon 230HF (Kusumoto Kasei Co., Ltd.), Surfynol DF-110D (Nisshin Chemical Industry Co., Ltd.), Surfynol DF-37 (Nisshin Chemical Industry Co., Ltd.), etc. Examples thereof include acety
  • the content of the defoaming agent in the curable composition of the present embodiment is not particularly limited, but the total amount of polyurethane (a), solvent (b), epoxy compound (c), and fine particles (d). Is preferably 100 parts by mass, and the antifoaming agent is preferably blended in the range of 0.01 parts by mass or more and 5 parts by mass or less, and more preferably in the range of 0.05 parts by mass or more and 4 parts by mass or less. Further, it is more preferable to mix within a range of 0.1 part by mass or more and 3 parts by mass or less.
  • a surfactant such as a leveling agent, phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, carbon black, naphthalene black.
  • a colorant such as can be added.
  • antioxidants such as phenol-based antioxidants, phosphite-based antioxidants and thioether-based antioxidants should be used. It is preferably added to the curable composition of the embodiment. Furthermore, a flame retardant or a lubricant may be added to the curable composition of the present embodiment, if necessary.
  • some or all of the components to be blended are roll mills, bead mills, etc. It can be obtained by uniformly kneading and mixing.
  • the remaining components can be mixed when the curable composition of the present embodiment is actually used.
  • the viscosity of the curable composition of the present embodiment at 25° C. is preferably 10,000 mPa ⁇ s or more and 100000 mPa ⁇ s or less, more preferably 20,000 mPa ⁇ s or more and 60,000 mPa ⁇ s or less.
  • the viscosity of the curable composition of the present embodiment at 25° C. is measured by using a cone/plate type viscometer (manufactured by Brookfield, model DV-II+Pro, spindle model CPE-52). The viscosity was measured 7 minutes after the start of rotation under the condition of a rotation speed of 10 rpm.
  • ⁇ Thixotropic index of curable composition> When the curable composition of the present embodiment is used as a composition for resist ink application for wiring insulation protection (that is, an overcoating agent for flexible wiring boards), the printability of the curable composition of the present embodiment is improved. In order to make it good, it is preferable to set the thixotropy index of the curable composition of the present embodiment within a certain range.
  • the thixotropy index of the curable composition of the present embodiment is preferably 1.1 or more, more preferably 1.1 or more and 3.0 or less, and further preferably 1.1 or more and 2.5 or less.
  • the curable composition of this embodiment is used as an overcoating agent for flexible wiring boards, if the thixotropy index of the curable composition of this embodiment is in the range of 1.1 or more and 3.0 or less, printing Since it is possible to maintain the curable composition of the present embodiment in the form of a film having a constant thickness, it is easy to maintain a printing pattern, and at the same time, a printed film of the curable composition of the present embodiment is formed. The defoaming property is also good.
  • the thixotropy index of the curable composition of the present embodiment is a ratio of the viscosity measured at a rotation speed of 1 rpm at 25° C. and the viscosity measured at a rotation speed of 10 rpm at 25° C. ([rotation speed 1 rpm In the case of []/[viscosity in the case of a rotation speed of 10 rpm]].
  • These viscosities can be measured using a cone/plate viscometer (Model DV-III+Pro, spindle model CPE-52, manufactured by Brookfield).
  • the curable composition of the present embodiment has good handleability and low threading property when the curable composition is applied to a substrate such as a flexible substrate by a printing method or the like. In addition, it has excellent defoaming properties. In addition, the curable composition of the present embodiment is unlikely to cause shrinkage during curing.
  • cured material of this embodiment is hardened
  • the method for curing the curable composition of the present embodiment is not particularly limited, and the curable composition can be cured by heat or active energy rays (for example, ultraviolet rays, electron beams, X rays). Therefore, a polymerization initiator such as a heat radical generator or a photo radical generator may be added to the curable composition of the present embodiment.
  • the cured product of the present embodiment can be manufactured with excellent workability and productivity because the curable composition of the present embodiment has low stringiness and excellent defoaming property. Further, the cured product of the present embodiment has good flexibility and moisture resistance, and also has excellent long-term insulation reliability. Furthermore, the cured product of this embodiment has good adhesion to a substrate such as a flexible substrate. Furthermore, the cured product of the present embodiment is unlikely to cause a tack phenomenon on the surface.
  • the overcoat film of the present embodiment contains the cured product of the present embodiment, and can be produced by curing the curable composition of the present embodiment. More specifically, the overcoat film of the present embodiment is a film obtained by arranging the curable composition of the present embodiment in a film shape on the portion of the surface of the flexible substrate on which the wiring is formed, where the wiring is formed. It can be produced by curing the curable composition in the form of a film by heating to give a cured product in the form of a film.
  • the method for producing an overcoat film according to the present embodiment includes a printing step of printing the curable composition of the present embodiment on the surface of a flexible substrate to obtain a printed film, and a printing film obtained in the printing step at 100° C. And a curing step of obtaining an overcoat film by heat curing in an atmosphere at 170° C. or lower.
  • a solvent removing step may be provided between the printing step and the curing step.
  • the solvent removal process is a printing process in which the solvent is removed by evaporating a part or all of the solvent in the printing film by placing the printing film obtained in the printing process in an atmosphere of 40° C. or higher and 100° C.
  • the method for printing the curable composition in the printing step is not particularly limited, and for example, the curable composition of the present embodiment is applied to a flexible substrate by a screen printing method, a roll coater method, a spray method, a curtain coater method, or the like.
  • the printed film can be obtained.
  • the solvent removal step is an operation that is performed as necessary, and the curing step may be performed immediately after the printing step, and the curing reaction and solvent removal may be performed simultaneously in the curing step.
  • the temperature is preferably 40° C. or higher and 100° C. or lower, and is 60° C. or higher and 100° C. or lower, in consideration of the evaporation rate of the solvent and a rapid shift to the heat curing operation. It is more preferable that the temperature is 70° C. or higher and 90° C. or lower.
  • the time for evaporating the solvent in the curing step and the solvent removing step is not particularly limited, but it is preferably 10 minutes or more and 120 minutes or less, and more preferably 20 minutes or more and 100 minutes or less.
  • the thermosetting temperature in the curing step is preferably 100° C. or higher and 170° C. or lower, more preferably 105° C. or higher and 160° C. or lower, and further preferably 110° C. or higher and 150° C. or lower.
  • the time of heat curing performed in the curing step is not particularly limited, but is preferably 20 minutes or more and 4 hours or less, and more preferably 30 minutes or more and 2 hours or less.
  • the overcoat film of the present embodiment thus obtained can be produced with excellent workability and productivity because the curable composition of the present embodiment has low stringiness and excellent defoaming property. It is possible. Further, the overcoat film of this embodiment is excellent in flexibility, flexibility, adhesion to a flexible substrate, and long-term insulation reliability. Furthermore, the overcoat film of the present embodiment is unlikely to cause a tack phenomenon on the surface. As a result, the flexible wiring board on which the overcoat film is formed has excellent performance described later.
  • the curable composition of the present embodiment can be used, for example, as a resist ink for insulation protection of wiring, and the cured product of the present embodiment can be used as an insulation protection film.
  • the cured product of this embodiment can be used as an insulating protective film for wiring.
  • the flexible wiring board of this embodiment can be manufactured from the curable composition of this embodiment and a flexible substrate. More specifically, the flexible wiring board of the present embodiment is a film after the curable composition of the present embodiment is arranged in a film shape on the portion of the surface of the flexible substrate on which the wiring is formed, in which the wiring is formed. It can be produced by curing the curable composition in the form of a strip to form an overcoat film.
  • the wiring covered with the overcoat film is preferably tin-plated copper wiring in consideration of oxidation prevention and economical aspects of the wiring.
  • the specific method for manufacturing the flexible wiring board of the present embodiment is not particularly limited, but an example is shown below. That is, in the method for manufacturing a flexible wiring board of the present embodiment, the curable composition of the present embodiment is printed on the surface of the flexible substrate to obtain a printed film, and the printed film obtained in the printing step is heated to 100° C. And a curing step of obtaining a protective film (overcoat film) of the flexible wiring board by heat curing in an atmosphere of 170° C. or less. A solvent removing step may be provided between the printing step and the curing step.
  • the solvent removal process is a printing process in which the solvent is removed by evaporating a part or all of the solvent in the printing film by placing the printing film obtained in the printing process in an atmosphere of 40° C.
  • the method for printing the curable composition in the printing step is not particularly limited, and for example, the curable composition of the present embodiment is applied to a flexible substrate by a screen printing method, a roll coater method, a spray method, a curtain coater method, or the like.
  • the printed film can be obtained.
  • the solvent removal step is an operation that is performed as necessary, and the curing step may be performed immediately after the printing step, and the curing reaction and solvent removal may be performed simultaneously in the curing step.
  • the temperature is preferably 40° C. or higher and 150° C. or lower, and is 60° C. or higher and 100° C. or lower, in consideration of the evaporation rate of the solvent and a rapid shift to the operation of heat curing. It is more preferable that the temperature is 70° C. or higher and 90° C. or lower.
  • the time for evaporating the solvent in the curing step and the solvent removing step is not particularly limited, but it is preferably 10 minutes or more and 120 minutes or less, and more preferably 20 minutes or more and 100 minutes or less.
  • the temperature of thermosetting in the curing step is preferably 100° C. or higher and 170° C. or lower, and 105° C. or higher and 160° C. or lower, from the viewpoint of preventing diffusion of the plated layer and obtaining low warpage and flexibility suitable as a protective film. Is more preferable, and it is further preferable that the temperature is 110° C. or higher and 150° C. or lower.
  • the time of heat curing performed in the curing step is not particularly limited, but is preferably 10 minutes or more and 150 minutes or less, and more preferably 15 minutes or more and 120 minutes or less. In addition, when performing a solvent removal process and a hardening process simultaneously, it can perform, for example at 120 to 150 degreeC.
  • the flexible wiring board of this embodiment thus obtained can be manufactured with excellent workability and productivity because the curable composition of this embodiment has low stringiness and excellent defoaming properties. It is possible. Moreover, since the flexibility and flexibility of the overcoat film are excellent, the flexible wiring board of the present embodiment is also excellent in flexibility and flexibility, and even if the flexible wiring board is shaken, the wiring is disconnected. Is less likely to occur (excellent in suppressing wire disconnection). Therefore, the flexible wiring board of the present embodiment hardly causes cracks, and is suitable for a flexible printed wiring board used for a technology such as chip-on-film (COF).
  • COF chip-on-film
  • the flexible wiring board of the present embodiment since the curable composition of the present embodiment is less likely to shrink during curing, the flexible wiring board of the present embodiment has less warpage. Therefore, in the process of mounting the IC chip on the flexible wiring board of the present embodiment, it is easy to align the mounting position of the IC chip. Furthermore, the flexible wiring board of this embodiment has excellent adhesion between the overcoat film and the flexible substrate. Furthermore, since the long-term insulation reliability of the overcoat film is excellent, the flexible wiring board of this embodiment is also excellent in long-term insulation reliability. Furthermore, in the flexible wiring board of the present embodiment, the tack phenomenon is unlikely to occur on the surface of the overcoat film.
  • polyester diol ( ⁇ ) the hydroxyl value of the obtained polyester diol
  • reaction rate constant of the reaction for forming a urethane bond from the isocyanato group of the isocyanate compound and the hydroxy group of the polyol compound was measured.
  • the reaction rate constant of the model compound was measured instead of the reaction rate constant of the polymerization reaction. That is, the reaction rate constant of the reaction between cyclohexyl isocyanate (manufactured by Tokyo Kasei Co., Ltd.), which is a monoisocyanate compound, and various polyol compounds is measured, and the urethane bond is determined from the isocyanato group of the polyisocyanate compound and the hydroxy group of the polyol compound.
  • cyclohexyl isocyanate manufactured by Tokyo Kasei Co., Ltd.
  • the solvent used in the reaction between cyclohexyl isocyanate and the polyol compound was ⁇ -butyrolactone, which was the same as the solvent used for polyurethane synthesis, and the reaction substrate concentration was the same as that used during polyurethane synthesis. Then, the reaction solution during the reaction was sequentially analyzed to calculate the reaction conversion rate, and the reaction rate constant was calculated therefrom. The analysis method of the reaction solution is shown below.
  • reaction solution A part of the reaction solution (about 0.05 mL) was sampled using a Pasteur pipette under an inert atmosphere such as nitrogen, and diluted with deuterated chloroform (Aldrich) as an NMR measurement solvent to stop the reaction. Then, using a nuclear magnetic resonance spectrometer (JNM-AL400 manufactured by JEOL Ltd., frequency 400 MHz), 1 H-NMR analysis of the diluted reaction solution was performed.
  • JNM-AL400 nuclear magnetic resonance spectrometer manufactured by JEOL Ltd., frequency 400 MHz
  • the concentration of the polyol compound for each elapsed time is calculated from the reaction conversion rate for each elapsed time, and the calculated value for the concentration of the polyol compound is plotted on a graph with the reaction elapsed time t as the X axis and 1/C as the Y axis. To do. Then, the slope of the straight line drawn in the graph becomes the reaction rate constant K.
  • C 0 is the initial concentration of the polyol compound
  • C is the concentration of the polyol compound
  • t is the reaction elapsed time
  • K is the reaction rate constant.
  • reaction rate constants of various polyol compounds were as follows.
  • the reaction rate constant K1 of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (manufactured by Osaka Gas Chemicals Co., Ltd., trade name BPEF) is 250 at a reaction temperature of 115° C. and is 145° C. at a reaction temperature of 145° C. It is 1000.
  • the aromatic ring concentration is 9.12 mmol/g.
  • the reaction rate constant K2 of polyester diol P-2030 (polyester polyol consisting of isophthalic acid and 3-methyl-1,5-pentanediol) manufactured by Kuraray Co., Ltd. is 500 at a reaction temperature of 115° C. and at a reaction temperature of 145° C. 2000.
  • the aromatic ring concentration is 3.52 mmol/g.
  • the reaction rate constant K2 of polyester diol P-2050 (polyester polyol composed of sebacic acid and 3-methyl-1,5-pentanediol) manufactured by Kuraray Co., Ltd. is 550 at a reaction temperature of 115° C. and at a reaction temperature of 145° C. 2200.
  • the aromatic ring concentration is 0 mmol/g.
  • the reaction rate constant K2 of polycarbonate diol (trade name: Duranol T5652) manufactured by Asahi Kasei Co., Ltd. is 550 at a reaction temperature of 115° C. and 3100 at a reaction temperature of 145° C.
  • the aromatic ring concentration is 0 mmol/g.
  • the reaction rate constant K2 of the polyester diol ( ⁇ ) of Reference Synthesis Example 1 is 480 at a reaction temperature of 115° C. and 2200 at a reaction temperature of 145° C.
  • the aromatic ring concentration is 2.00 mmol/g.
  • the reaction rate constant K2 of the polyester diol ( ⁇ ) of Reference Synthesis Example 2 is 460 at a reaction temperature of 115° C. and 1800 at a reaction temperature of 145° C.
  • the aromatic ring concentration is 2.00 mmol/g.
  • the reaction rate constant K3 of 2,2-dimethylolpropionic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) is 1.6 at a reaction temperature of 115° C. and 7.2 at a reaction temperature of 145° C.
  • the aromatic ring concentration is 0 mmol/g. It can be seen that 2,2-dimethylolpropionic acid having a carboxy group and a diol structure has a smaller reaction rate constant and a lower reaction rate than the other five diols.
  • the total amount of isocyanato groups F I in the total amount of polyisocyanate compound I used in the production of polyurethane, the total number of hydroxy groups F H1 in the total amount of first polyol compound H1, and the total amount of second polyol compound H2 have The total number F H2 of hydroxy groups, the total number Fa H3 of hydroxy groups possessed from the initial amount of the total amount of the third polyol compound H3 , and the additional amount of the total amount of the third polyol compound H3.
  • the ratio of the total number Fb H3 of hydroxy groups possessed by each is as follows.
  • polyurethane solution A1 a solution containing a polyurethane having a carboxy group
  • the viscosity of the obtained polyurethane solution A1 was 100,000 mPa ⁇ s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution A1 (hereinafter referred to as “polyurethane AU1”) was 12,000 and the weight average molecular weight (Mw) was 73,000.
  • the acid value of polyurethane AU1 was 25.0 mgKOH/g.
  • the solid content concentration of the polyurethane solution A1 was 43.4% by mass.
  • the total amount of isocyanato groups F I in the total amount of polyisocyanate compound I used in the production of polyurethane, the total number of hydroxy groups F H1 in the total amount of first polyol compound H1, and the total amount of second polyol compound H2 have The ratio of the total number F H2 of hydroxy groups and the total number F H3 of hydroxy groups contained in the total amount of the third polyol compound H3 is as follows.
  • polyurethane solution B1 a solution containing a polyurethane having a carboxy group
  • the viscosity of the obtained polyurethane solution B1 was 120,000 mPa ⁇ s.
  • the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution B1 (hereinafter referred to as “polyurethane BU1”) was 14,000 and the weight average molecular weight (Mw) was 104,000.
  • the acid value of polyurethane BU1 was 25.0 mgKOH/g.
  • the solid content concentration of the polyurethane solution B1 was 39.6% by mass.
  • polyurethane AU1 has a lower molecular weight dispersity in the high molecular weight region with a shorter retention time than that of polyurethane BU1, and therefore it can be seen that polymer chains exhibiting a narrow molecular weight distribution are obtained.
  • the molecular weight distribution of the generated polyurethane can be controlled by performing the polymerization reaction of the low-reactivity third polyol compound H3 at once or in a plurality of times.
  • polyurethane having a narrow molecular weight distribution it is possible to obtain a curable composition having a low stringiness when applied to a substrate such as a flexible substrate and having good defoaming property.
  • the method for measuring the acid value of the synthesized polyurethane will be described.
  • the solvent in the polyurethane solution was distilled off under reduced pressure with heating to obtain polyurethane, and the acid value was measured according to the potentiometric titration method specified in JIS K0070.
  • the potentiometric titration method for example, an automatic potentiometric titrator AT-510 manufactured by Kyoto Electronics Manufacturing Co., Ltd. and a composite glass electrode C-173 can be used.
  • the number average molecular weight and weight average molecular weight of polyurethane are the polystyrene equivalent number average molecular weight and weight average molecular weight measured by GPC, and the GPC measurement conditions are as follows.
  • Device name HPLC unit HSS-2000 manufactured by JASCO Corporation Column: Shodex column LF-804
  • Mobile phase Tetrahydrofuran Flow rate: 1.0 mL/min Detector: RI-2031Plus manufactured by JASCO Corporation Temperature: 40.0°C
  • Sample volume Sample loop 100 ⁇ L Sample concentration: approx. 0.1% by mass
  • the viscosity of the polyurethane solution was measured using a cone/plate type viscometer (Model DV-II+Pro, spindle model CPE-52, manufactured by Brookfield) at a temperature of 25.0° C. and a rotation speed of 5 rpm. The measured value is the viscosity measured 7 minutes after the start of rotation of the spindle. Further, in measuring the viscosity, about 0.8 g of a polyurethane solution was used.
  • ⁇ Manufacture of base compound > 160.0 parts by mass of a polyurethane solution A1 having a solid content concentration adjusted to 40% by mass by adding ⁇ -butyrolactone, and 6.3 parts by mass of silica powder (manufactured by Nippon Aerosil Co., Ltd., trade name Aerosil R-974). 0.72 parts by mass of melamine (manufactured by Nissan Chemical Industries, Ltd.), which is an accelerator, and 8.4 parts by mass of diethylene glycol diethyl ether were added to a three-roll mill (manufactured by Inoue Co., Ltd., model S-4 3/4 ⁇ 11). ) was used for mixing.
  • ⁇ Production of curable composition 90.0 parts by mass of the base compound C1 and 4.0 parts by mass of the curing agent solution E were placed in a plastic container, and 5.0 parts by mass of diethylene glycol diethyl ether and 1.5 parts by mass of diethylene glycol ethyl ether acetate as a solvent were placed therein. Was added. The mixture was stirred at room temperature for 5 minutes using a spatula to obtain a curable composition F1. The viscosity of the curable composition F1 at 25° C. was 37,000 mPa ⁇ s.
  • the viscosity of the curable composition is measured by using a cone/plate type viscometer (Model DV-II+Pro, spindle model CPE-52, manufactured by Brookfield) at a temperature of 25.0° C. and a rotation speed of 10 rpm. did. The measured value is the viscosity measured 7 minutes after the start of rotation of the spindle. Further, in measuring the viscosity, about 0.6 g of the curable composition was used. Curable compositions F2 to F14 were obtained in the same manner as in the case of the curable composition F1 except that any of the main agent formulations C2 to C7 and D1 to D7 was used in place of the main agent formulation C1. See Table 4). The viscosities of the curable compositions F2 to F14 at 25° C. are as shown in Table 4.
  • the screen printing plate used was a stainless mesh plate having a wire diameter of 60 ⁇ m and a mesh number of 150/inch (SUS#150-wire diameter 60).
  • Flexible copper clad laminate (Sumitomo Metal Mining Co., Ltd., grade name: Esperflex, copper thickness 8 ⁇ m, polyimide thickness 38 ⁇ m) on copper, width 75 mm, length 110 mm, and film thickness after curing Of 15 ⁇ m was applied to the curable composition by screen printing.
  • the flexible copper-clad laminate having the curable composition printed thereon was kept at room temperature for 10 minutes and then placed in a hot air circulation dryer at a temperature of 120° C. for 60 minutes to cure the curable composition.
  • JPCA Japan Electronic Circuits Association
  • the curable composition was applied onto this flexible wiring board by screen printing.
  • the thickness of the printed film of the curable composition was such that the thickness of the film of the curable composition on the polyimide surface after drying was 10 ⁇ m.
  • the flexible wiring board thus obtained was placed in a hot air circulation dryer at a temperature of 80° C. for 30 minutes, and then placed in a hot air circulation dryer at a temperature of 120° C. for 120 minutes to cure the flexible wiring board.
  • the film of the volatile composition was cured.
  • an MIT test was performed by the method described in JIS C5016 to evaluate the wire breakage suppressing property of the flexible wiring board.
  • the test conditions of the MIT test are as follows.
  • MIT tester BE202 manufactured by Tester Sangyo Co., Ltd. Bending speed: 10 times/min Load: 200g Bending angle: ⁇ 90° Radius of gripper tip: 0.5 mm
  • the MIT test was conducted under the above-mentioned test conditions, and the presence or absence of cracks in the wiring was visually observed after every 10 bendings, and the breakage suppressing property was evaluated by the number of times the crack was bent. The results are shown in Table 5.
  • JPCA Japan Electronic Circuits Association
  • the thickness of the printed film of the curable composition was such that the thickness of the film of the curable composition on the polyimide surface after drying was 15 ⁇ m.
  • the flexible wiring board thus obtained was placed in a hot air circulation dryer at a temperature of 80° C. for 30 minutes, and then placed in a hot air circulation dryer at a temperature of 120° C. for 120 minutes to cure the flexible wiring board.
  • the film of the volatile composition was cured.
  • a bias voltage of 60 V was applied to this test piece using a MIGRATION TESTER MODEL MIG-8600 manufactured by IMV, and a steady temperature/humidity test was performed under the conditions of a temperature of 120° C. and a humidity of 85% RH.
  • the resistance value of the flexible wiring board was measured at the initial stage of the temperature and humidity steady state test, and at 100 hours, 250 hours, and 400 hours after the start. The results are shown in Table 5.
  • the flexible wiring boards (Examples 1 to 7) having the overcoat film made of the cured products of the curable compositions F1 to F7 were found to be the overcoat film made of the cured products of the curable compositions F8 to F14. It can be seen that the flexible wiring boards (Comparative Examples 1 to 7) having the above-mentioned properties have excellent flexibility, breakage controllability, warpage, and long-term insulation reliability. Therefore, the film formed of the cured product of the curable compositions F1 to F7 is useful as an insulating protective film for a flexible wiring board.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Provided is a method for producing a polyurethane, by which it is possible to impart a curable composition with low stringiness and excellent defoaming properties. A polyurethane is produced by reacting a polyisocyanate compound I, a first polyol compound H1, a second polyol compound H2 and a third polyol compound H3. The first polyol compound H1 has a higher aromatic ring concentration than the second polyol compound H2. The first polyol compound H1 and the second polyol compound H2 have a higher reaction rate constant for a urethane bond-forming reaction than the third polyol compound H3. The entire amount of the polyisocyanate compound I, the entire amount of the first polyol compound H1, the entire amount of the second polyol compound H2 and some of the entire amount of the third polyol compound H3 are mixed, a polymerization reaction is carried out to obtain an intermediate polymer, the remainder of the third polyol compound H3 is then added to the intermediate polymer, and a further polymerization reaction is carried out.

Description

ポリウレタンの製造方法、硬化性組成物の製造方法、硬化物の製造方法、オーバーコート膜の製造方法、及びフレキシブル配線板の製造方法Polyurethane production method, curable composition production method, cured product production method, overcoat film production method, and flexible wiring board production method
 本発明は、ポリウレタンの製造方法、硬化性組成物の製造方法、硬化物の製造方法、オーバーコート膜の製造方法、及びフレキシブル配線板の製造方法に関する。 The present invention relates to a method for producing polyurethane, a method for producing a curable composition, a method for producing a cured product, a method for producing an overcoat film, and a method for producing a flexible wiring board.
 フレキシブル配線板には、表面保護のためにオーバーコート膜が被覆される。このオーバーコート膜は、配線が形成されたフレキシブル基板の表面に硬化性組成物を印刷法等によって塗工し硬化させることによって形成される。この硬化性組成物には、印刷速度を高め生産性を向上するために、低い糸引き性と優れた消泡性が求められる。糸引き性と消泡性について、以下に説明する。 The flexible wiring board is covered with an overcoat film for surface protection. This overcoat film is formed by applying a curable composition to the surface of the flexible substrate on which the wiring is formed by a printing method or the like and curing it. This curable composition is required to have low stringiness and excellent defoaming property in order to increase printing speed and improve productivity. The stringing property and the defoaming property will be described below.
 印刷版を用いてフレキシブル基板の表面に硬化性組成物を膜状に塗工した後、印刷版をフレキシブル基板の表面から離す際に、印刷版と膜状の硬化性組成物との間に繊維状の硬化性組成物が残存する糸引き現象が生じる場合がある。糸引き現象が生じると、印刷版やフレキシブル基板の周辺機材が汚染され、硬化性組成物を塗工したフレキシブル基板を次工程へ移行させることができないため、糸引き現象が消失するまで、硬化性組成物を塗工したフレキシブル基板を静置する必要がある。このように、糸引き現象が生じると、印刷工程の作業性や生産性が低下するため、硬化性組成物には糸引き現象の生じにくさ(低い糸引き性)が求められていた。 After the curable composition is applied in a film form on the surface of the flexible substrate using the printing plate, when the printing plate is separated from the surface of the flexible substrate, a fiber is present between the printing plate and the film-shaped curable composition. In some cases, a stringing phenomenon occurs in which the curable composition in the shape of a line remains. When the stringing phenomenon occurs, the peripheral parts of the printing plate and the flexible substrate are contaminated, and the flexible substrate coated with the curable composition cannot be transferred to the next step. The flexible substrate coated with the composition needs to be allowed to stand. As described above, when the stringing phenomenon occurs, workability and productivity in the printing process are deteriorated, so that the curable composition has been required to be hard to cause the stringing phenomenon (low stringing property).
 また、フレキシブル基板に塗工された膜状の硬化性組成物の表面には、硬化性組成物の泡が残存する場合がある。泡が残存すると、フレキシブル配線板の外観が悪化するので、泡が消失するまで、硬化性組成物を塗工したフレキシブル基板を静置する必要がある。このように、泡が残存すると、印刷工程の作業性や生産性が低下するため、硬化性組成物には泡の消失しやすさ(優れた消泡性)が求められていた。 Also, bubbles of the curable composition may remain on the surface of the film-shaped curable composition applied to the flexible substrate. If bubbles remain, the appearance of the flexible wiring board deteriorates, so it is necessary to leave the flexible substrate coated with the curable composition still until the bubbles disappear. As described above, when bubbles remain, workability and productivity in the printing process are deteriorated, and therefore the curable composition has been required to be easy to eliminate bubbles (excellent defoaming property).
 フレキシブル配線板のオーバーコート膜を形成するための硬化性組成物が従来多数提案されており、例えば特許文献1には、ジイソシアネート化合物と複数種のジオール化合物とを反応させて得られるポリウレタンを含有する硬化性組成物が開示されている。特許文献1に開示の硬化性組成物を用いれば、低反り性、可撓性、長期絶縁信頼性、及び配線断線抑制性に優れたフレキシブル配線板用オーバーコート膜を得ることができる。 A large number of curable compositions for forming an overcoat film of a flexible wiring board have been proposed in the past. For example, Patent Document 1 contains a polyurethane obtained by reacting a diisocyanate compound with a plurality of diol compounds. A curable composition is disclosed. When the curable composition disclosed in Patent Document 1 is used, it is possible to obtain an overcoat film for a flexible wiring board, which is excellent in low warpage, flexibility, long-term insulation reliability, and wiring disconnection suppression.
国際公開第2017/110591号International Publication No. 2017/110591
 しかしながら、特許文献1に開示の硬化性組成物は、糸引き性と消泡性については、十分に満足できる特性を有しておらず、特性の向上が求められていた。
 本発明は、低い糸引き性と優れた消泡性を硬化性組成物に付与することができるポリウレタンの製造方法、及び、低い糸引き性と優れた消泡性を有する硬化性組成物の製造方法を提供することを課題とする。また、本発明は、作業性及び生産性に優れた硬化物の製造方法、オーバーコート膜の製造方法、及びフレキシブル配線板の製造方法を提供することを併せて課題とする。
However, the curable composition disclosed in Patent Document 1 does not have sufficiently satisfactory properties with respect to stringiness and defoaming properties, and improvements in properties have been demanded.
The present invention provides a method for producing a polyurethane capable of imparting low stringiness and excellent defoaming property to a curable composition, and a curable composition having low stringiness and excellent defoaming property. The challenge is to provide a method. Another object of the present invention is to provide a method for producing a cured product excellent in workability and productivity, a method for producing an overcoat film, and a method for producing a flexible wiring board.
 本発明の一態様は、以下の[1]~[16]の通りである。
[1] 1分子中に2個以上のイソシアナト基を有するポリイソシアネート化合物Iと、1分子中に2個以上のヒドロキシ基を有する第1のポリオール化合物H1と、1分子中に2個以上のヒドロキシ基を有する第2のポリオール化合物H2と、1分子中に2個以上のヒドロキシ基を有する第3のポリオール化合物H3と、を反応させてポリウレタンを製造する方法であって、
 前記第1のポリオール化合物H1の芳香環濃度は前記第2のポリオール化合物H2の芳香環濃度よりも高く、
 前記ポリイソシアネート化合物Iのイソシアナト基と前記第1のポリオール化合物H1のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数をK1、前記ポリイソシアネート化合物Iのイソシアナト基と前記第2のポリオール化合物H2のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数をK2、前記ポリイソシアネート化合物Iのイソシアナト基と前記第3のポリオール化合物H3のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数をK3としたとき、K1/K3>50なる式及びK2/K3>50なる式をいずれも満たし、
 前記ポリウレタンの製造に使用する前記ポリイソシアネート化合物Iの全量と、前記第1のポリオール化合物H1の全量と、前記第2のポリオール化合物H2の全量と、前記第3のポリオール化合物H3の全量のうち一部と、を混合し、イソシアナト基とヒドロキシ基とからウレタン結合を形成させる重合反応を行い、中間重合体を得る第一重合工程と、
 前記中間重合体の重量平均分子量が、前記ポリイソシアネート化合物I、前記第1のポリオール化合物H1、前記第2のポリオール化合物H2、及び前記第3のポリオール化合物H3の各分子量の総和の2倍以上となったときに、前記ポリウレタンの製造に使用する前記第3のポリオール化合物H3の全量のうち残部を前記中間重合体に追加投入して、イソシアナト基とヒドロキシ基とからウレタン結合を形成させる重合反応をさらに行う第二重合工程と、
を備えるポリウレタンの製造方法。
One aspect of the present invention is as described in [1] to [16] below.
[1] Polyisocyanate compound I having two or more isocyanato groups in one molecule, a first polyol compound H1 having two or more hydroxy groups in one molecule, and two or more hydroxy in one molecule A method for producing a polyurethane by reacting a second polyol compound H2 having a group with a third polyol compound H3 having two or more hydroxy groups in one molecule,
The aromatic ring concentration of the first polyol compound H1 is higher than the aromatic ring concentration of the second polyol compound H2,
The reaction rate constant of the reaction for forming a urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the first polyol compound H1 is K1, and the isocyanato group of the polyisocyanate compound I and the second polyol compound H2. K2 is the reaction rate constant of the reaction of forming a urethane bond from the hydroxy group of the above, and the reaction rate constant of the reaction of forming a urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the third polyol compound H3 is When K3 is satisfied, both the expression K1/K3>50 and the expression K2/K3>50 are satisfied,
One of the total amount of the polyisocyanate compound I used in the production of the polyurethane, the total amount of the first polyol compound H1, the total amount of the second polyol compound H2, and the total amount of the third polyol compound H3. Part, and mixing, a polymerization reaction for forming a urethane bond from an isocyanato group and a hydroxy group, a first polymerization step for obtaining an intermediate polymer,
The weight average molecular weight of the intermediate polymer is not less than twice the sum of the molecular weights of the polyisocyanate compound I, the first polyol compound H1, the second polyol compound H2, and the third polyol compound H3. Then, the remaining part of the total amount of the third polyol compound H3 used in the production of the polyurethane is added to the intermediate polymer to carry out a polymerization reaction for forming a urethane bond from an isocyanato group and a hydroxy group. A second polymerization step further performed,
A method for producing a polyurethane comprising:
[2] 前記ポリウレタンの製造に使用する前記ポリイソシアネート化合物Iの全量が有するイソシアナト基の総数をFI、前記第1のポリオール化合物H1の全量が有するヒドロキシ基の総数をFH1、前記第2のポリオール化合物H2の全量が有するヒドロキシ基の総数をFH2、前記第3のポリオール化合物H3の全量のうち前記一部が有するヒドロキシ基の総数をFaH3、前記第3のポリオール化合物H3の全量のうち追加投入される前記残部が有するヒドロキシ基の総数をFbH3としたとき、
   0.4≦(FH1+FH2)/FI≦0.6
   0.01≦FaH3/FI≦0.2
   0.25≦FbH3/FI≦0.5
   0.8≦(FH1+FH2+FaH3+FbH3)/FI≦1.2
なる4つの式を全て満たすようにして前記第一重合工程及び前記第二重合工程を行う[1]に記載のポリウレタンの製造方法。
[2] The total number of isocyanato groups in the total amount of the polyisocyanate compound I used for producing the polyurethane is F I , the total number of hydroxy groups in the total amount of the first polyol compound H1 is F H1 , and the second Of the total amount of hydroxy groups contained in the total amount of the polyol compound H2 , F H2 , among the total amount of the third polyol compound H3, the total number of hydroxy groups contained in the part is Fa H3 , and among the total amount of the third polyol compound H3 When the total number of hydroxy groups contained in the balance to be additionally charged is Fb H3 ,
0.4≦(F H1 +F H2 )/F I ≦0.6
0.01≦Fa H3 /F I ≦0.2
0.25≦Fb H3 /F I ≦0.5
0.8≦(F H1 +F H2 +Fa H3 +Fb H3 )/F I ≦1.2
The method for producing a polyurethane according to [1], wherein the first polymerization step and the second polymerization step are performed so as to satisfy all of the following four formulas.
[3] 前記第1のポリオール化合物H1の芳香環濃度が5.0mmol/g以上15.0mmol/g以下、前記第2のポリオール化合物H2の芳香環濃度が0.5mmol/g以上5.0mmol/g以下であり、且つ、前記第1のポリオール化合物H1の芳香環濃度は前記第2のポリオール化合物H2の芳香環濃度よりも高い[1]又は[2]に記載のポリウレタンの製造方法。 [3] The aromatic ring concentration of the first polyol compound H1 is 5.0 mmol/g or more and 15.0 mmol/g or less, and the aromatic ring concentration of the second polyol compound H2 is 0.5 mmol/g or more and 5.0 mmol/g The method for producing a polyurethane according to [1] or [2], wherein the concentration is not more than g and the aromatic ring concentration of the first polyol compound H1 is higher than the aromatic ring concentration of the second polyol compound H2.
[4] 前記第1のポリオール化合物H1が、フルオレン構造を有するジオールである[1]~[3]のいずれか一項に記載のポリウレタンの製造方法。
[5] 前記フルオレン構造を有するジオールが、下記式(1)で表される9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンである[4]に記載のポリウレタンの製造方法。
[4] The method for producing a polyurethane according to any one of [1] to [3], wherein the first polyol compound H1 is a diol having a fluorene structure.
[5] The method for producing a polyurethane according to [4], wherein the diol having a fluorene structure is 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[6] 前記第2のポリオール化合物H2が、下記式(2)で表されるポリエステルジオールであり、下記式(2)中のR1は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、R2は、それぞれ独立して炭素数3以上9以下の2価の炭化水素基を示し、nは1以上50以下の整数である[1]~[5]のいずれか一項に記載のポリウレタンの製造方法。 [6] The second polyol compound H2 is a polyester diol represented by the following formula (2), and R 1 in the following formula (2) is independently a divalent group having 6 to 14 carbon atoms. And R 2 each independently represent a divalent hydrocarbon group having 3 to 9 carbon atoms, and n is an integer of 1 to 50, which is any one of [1] to [5]. The method for producing a polyurethane according to the item 1.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[7] 前記第3のポリオール化合物H3が、下記式(3)で表されるカルボキシ基含有ジオールであり、下記式(3)中のR3はメチル基又はエチル基を示す[1]~[6]のいずれか一項に記載のポリウレタンの製造方法。 [7] The third polyol compound H3 is a carboxy group-containing diol represented by the following formula (3), and R 3 in the following formula (3) is a methyl group or an ethyl group [1] to [1] [6] The method for producing the polyurethane according to any one of [6].
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[8] 前記ポリウレタンの数平均分子量が3000以上100000以下である[1]~[7]のいずれか一項に記載のポリウレタンの製造方法。
[9] 前記ポリウレタンの酸価が10mgKOH/g以上70mgKOH/g以下である[1]~[8]のいずれか一項に記載のポリウレタンの製造方法。
[8] The method for producing a polyurethane according to any one of [1] to [7], wherein the number average molecular weight of the polyurethane is 3,000 or more and 100,000 or less.
[9] The method for producing a polyurethane according to any one of [1] to [8], wherein the acid value of the polyurethane is 10 mgKOH/g or more and 70 mgKOH/g or less.
[10] [1]~[9]のいずれか一項に記載のポリウレタンの製造方法で製造したポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、を混合して組成物とする硬化性組成物の製造方法。
[11] 前記硬化性組成物の総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下である[10]に記載の硬化性組成物の製造方法。
[10] A polyurethane (a) produced by the method for producing a polyurethane according to any one of [1] to [9], a solvent (b), and an epoxy having two or more epoxy groups in one molecule. A method for producing a curable composition, which comprises mixing the compound (c) and the composition.
[11] The ratio of the content of the solvent (b) to the total amount of the curable composition is 25% by mass or more and 75% by mass or less, and the ratio to the total amount of the polyurethane (a) and the epoxy compound (c) is The method for producing a curable composition according to [10], wherein the content ratio of the polyurethane (a) is 40% by mass or more and 99% by mass or less.
[12] [1]~[9]のいずれか一項に記載のポリウレタンの製造方法で製造したポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、微粒子(d)と、を混合して組成物とする硬化性組成物の製造方法。
[13] 前記硬化性組成物の総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下であり、前記硬化性組成物の総量に対する前記微粒子(d)の含有量の割合が0.1質量%以上60質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下である[12]に記載の硬化性組成物の製造方法。
[12] A polyurethane (a) produced by the method for producing a polyurethane according to any one of [1] to [9], a solvent (b), and an epoxy having two or more epoxy groups in one molecule. A method for producing a curable composition, which comprises mixing a compound (c) and fine particles (d) to form a composition.
[13] The ratio of the content of the solvent (b) to the total amount of the curable composition is 25% by mass or more and 75% by mass or less, and the content of the fine particles (d) relative to the total amount of the curable composition is The ratio is 0.1% by mass or more and 60% by mass or less, and the ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) is 40% by mass or more and 99% by mass or less. The method for producing a curable composition according to [12].
[14] [10]~[13]のいずれか一項に記載の硬化性組成物の製造方法で製造された硬化性組成物を硬化させて硬化物とする硬化物の製造方法。
[15] [10]~[13]のいずれか一項に記載の硬化性組成物の製造方法で製造された硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分に膜状に配した後に、前記膜状の硬化性組成物を硬化させて膜状の硬化物とするオーバーコート膜の製造方法。
[16] [10]~[13]のいずれか一項に記載の硬化性組成物の製造方法で製造された硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分に膜状に配した後に、前記膜状の硬化性組成物を硬化させてオーバーコート膜とするフレキシブル配線板の製造方法。
[14] A method for producing a cured product, which comprises curing the curable composition produced by the method for producing a curable composition according to any one of [10] to [13].
[15] The curable composition produced by the method for producing a curable composition according to any one of [10] to [13] is used to form the wiring on the surface of a flexible substrate on which the wiring is formed. A method for producing an overcoat film, wherein the curable composition in the form of a film is cured to form a cured product in the form of a film after the film-shaped curable composition is disposed on a portion where the film is formed.
[16] The wiring is formed on the surface of the flexible substrate on which the wiring is formed, by using the curable composition manufactured by the method for manufacturing the curable composition according to any one of [10] to [13]. A method for manufacturing a flexible wiring board, in which the curable composition in the form of a film is cured to form an overcoat film after being arranged in a film form on the portion where the film is formed.
 本発明によれば、低い糸引き性と優れた消泡性を硬化性組成物に付与することができるポリウレタンを製造することができる。また、本発明によれば、低い糸引き性と優れた消泡性を有する硬化性組成物を製造することができる。さらに、本発明によれば、硬化物、オーバーコート膜、及びフレキシブル配線板を、優れた作業性と生産性で製造することができる。 According to the present invention, it is possible to manufacture a polyurethane capable of imparting low stringiness and excellent defoaming property to a curable composition. Further, according to the present invention, a curable composition having low stringiness and excellent defoaming property can be produced. Furthermore, according to the present invention, a cured product, an overcoat film, and a flexible wiring board can be manufactured with excellent workability and productivity.
ポリウレタンの分子量分布を示すGPCチャート図である。It is a GPC chart figure which shows the molecular weight distribution of polyurethane.
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described below. The present embodiment shows an example of the present invention, and the present invention is not limited to this embodiment. In addition, various changes or improvements can be added to the present embodiment, and a mode in which such changes or improvements are added can be included in the present invention.
 本発明者らは、上記課題を解決するべく鋭意研究を重ねた結果、ポリウレタンのモノマーであるポリオール化合物として、ポリイソシアネート化合物のイソシアナト基との反応性(すなわち、ポリイソシアネート化合物のイソシアナト基とポリオール化合物のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数)が異なる複数種のポリオール化合物を使用し、その中で反応性が最も低いポリオール化合物を重合反応に供するタイミングを規定することにより、分子量分布が狭いポリウレタンを製造することができること、及び、そのポリウレタンを含有させることにより、塗工時の糸引き性が低く且つ消泡性が優れる硬化性組成物を得ることができることを見出し、本発明を完成するに至った。 The present inventors have conducted extensive studies to solve the above problems, and as a result, as a polyol compound which is a monomer of polyurethane, reactivity with an isocyanato group of a polyisocyanate compound (that is, an isocyanate group and a polyol compound of a polyisocyanate compound). By using multiple types of polyol compounds with different reaction rate constants of the reaction to form a urethane bond from the hydroxy group of the above, and by specifying the timing of the polyol compound with the lowest reactivity among them, the molecular weight is determined. The present invention found that a polyurethane having a narrow distribution can be produced, and that by containing the polyurethane, a curable composition having low stringiness during coating and excellent defoaming property can be obtained, and the present invention Has been completed.
I.ポリウレタン及びその製造方法
 本実施形態のポリウレタン及びその製造方法について、以下に詳細に説明する。
(1)ポリウレタンのモノマー
 ポリウレタンの製造に使用するモノマーについて説明する。本実施形態においては、ポリウレタンのモノマーとしてポリイソシアネート化合物とポリオール化合物とを用い、ポリイソシアネート化合物のイソシアナト基とポリオール化合物のヒドロキシ基とを反応させてポリウレタンを製造する。
I. Polyurethane and Manufacturing Method Thereof The polyurethane of the present embodiment and the manufacturing method thereof will be described in detail below.
(1) Polyurethane Monomer The monomers used for producing polyurethane will be described. In this embodiment, a polyisocyanate compound and a polyol compound are used as a polyurethane monomer, and a polyurethane is produced by reacting an isocyanato group of the polyisocyanate compound with a hydroxy group of the polyol compound.
 ポリイソシアネート化合物としては、1分子中に2個以上のイソシアナト基を有するポリイソシアネート化合物Iを用いる。また、ポリオール化合物としては、1分子中に2個以上のヒドロキシ基を有する第1のポリオール化合物H1と、1分子中に2個以上のヒドロキシ基を有する第2のポリオール化合物H2と、1分子中に2個以上のヒドロキシ基を有する第3のポリオール化合物H3とを用いる。 As the polyisocyanate compound, polyisocyanate compound I having two or more isocyanato groups in one molecule is used. As the polyol compound, a first polyol compound H1 having two or more hydroxy groups in one molecule, a second polyol compound H2 having two or more hydroxy groups in one molecule, and one molecule Is used as the third polyol compound H3 having two or more hydroxy groups.
 第1のポリオール化合物H1、第2のポリオール化合物H2、及び第3のポリオール化合物H3は、芳香環濃度及びポリイソシアネート化合物Iのイソシアナト基との反応性が異なる化合物である。
 まず、第1のポリオール化合物H1と第2のポリオール化合物H2とでは、芳香環濃度が異なり、第1のポリオール化合物H1の芳香環濃度は第2のポリオール化合物H2の芳香環濃度よりも高い。
The first polyol compound H1, the second polyol compound H2, and the third polyol compound H3 are compounds having different aromatic ring concentrations and reactivity with the isocyanato group of the polyisocyanate compound I.
First, the aromatic ring concentrations of the first polyol compound H1 and the second polyol compound H2 are different, and the aromatic ring concentration of the first polyol compound H1 is higher than the aromatic ring concentration of the second polyol compound H2.
 第1のポリオール化合物H1の芳香環濃度は5.0mmol/g以上15.0mmol/g以下であることが好ましく、8.0mmol/g以上12.0mmol/g以下であることがより好ましい。また、第2のポリオール化合物H2の芳香環濃度は0.5mmol/g以上5.0mmol/g以下であることが好ましく、1.0mmol/g以上4.0mmol/g以下であることがより好ましい。第1のポリオール化合物H1と第2のポリオール化合物H2の芳香環濃度が、上記の数値範囲内であれば、後述するオーバーコート膜の耐溶剤性と後述するフレキシブル配線板の反りとのバランスが良好となりやすい。 The aromatic ring concentration of the first polyol compound H1 is preferably 5.0 mmol/g or more and 15.0 mmol/g or less, and more preferably 8.0 mmol/g or more and 12.0 mmol/g or less. The aromatic ring concentration of the second polyol compound H2 is preferably 0.5 mmol/g or more and 5.0 mmol/g or less, more preferably 1.0 mmol/g or more and 4.0 mmol/g or less. When the aromatic ring concentrations of the first polyol compound H1 and the second polyol compound H2 are within the above numerical range, the balance between the solvent resistance of the overcoat film described later and the warp of the flexible wiring board described later is good. It is easy to become.
 なお、芳香環濃度とは、1gの化合物が有する芳香環の個数(モル数)を意味する。例えば、分子量が438.5のポリオール化合物が1分子当たり芳香環(例えばフェニル基)を4個有しているとすると、このポリオール化合物1gは2.28mmolなので、芳香環濃度は9.12mmol/g(4×2.28mmol/1g)となる。
 芳香環の種類は、環員数3以上の芳香族性を有する環状官能基であれば特に限定されるものではなく、例えば、フェニル基等の単環式芳香族炭化水素基、ビフェニル基、フルオレン基等の多環式芳香族炭化水素基、ナフタレン基、インデニル基等の縮合環式芳香族炭化水素基、ピリジル基等の複素芳香族炭化水素基が挙げられる。
The aromatic ring concentration means the number (moles) of aromatic rings contained in 1 g of the compound. For example, if a polyol compound having a molecular weight of 438.5 has four aromatic rings (for example, phenyl groups) per molecule, 1 g of this polyol compound is 2.28 mmol, so the aromatic ring concentration is 9.12 mmol/g. (4×2.28 mmol/1 g).
The kind of aromatic ring is not particularly limited as long as it is a cyclic functional group having 3 or more ring members and having aromaticity, and examples thereof include a monocyclic aromatic hydrocarbon group such as a phenyl group, a biphenyl group, and a fluorene group. And polycyclic aromatic hydrocarbon groups such as, naphthalene groups, condensed cyclic aromatic hydrocarbon groups such as indenyl groups, and heteroaromatic hydrocarbon groups such as pyridyl groups.
 ただし、多環式芳香族炭化水素基、縮合環式芳香族炭化水素基のように、環状構造部位を複数有する官能基の場合は、芳香環の個数は1個ではなく環状構造部位の個数とする。例えば、フルオレン基は環状構造部位であるベンゼン環を2個有するので、フルオレン基を1個有するポリオール化合物の場合であれば、ポリオール化合物が有している芳香環の個数は1分子当たり2個とする。 However, in the case of a functional group having a plurality of cyclic structure moieties such as a polycyclic aromatic hydrocarbon group or a condensed cyclic aromatic hydrocarbon group, the number of aromatic rings is not one and To do. For example, since a fluorene group has two benzene rings, which are cyclic structure sites, in the case of a polyol compound having one fluorene group, the number of aromatic rings in the polyol compound is two per molecule. To do.
 また、第1のポリオール化合物H1、第2のポリオール化合物H2と、第3のポリオール化合物H3とでは、ポリイソシアネート化合物Iのイソシアナト基との反応性(すなわち、ポリイソシアネート化合物Iのイソシアナト基とポリオール化合物H1、H2、H3のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数)が異なる。 Further, in the first polyol compound H1, the second polyol compound H2, and the third polyol compound H3, the reactivity with the isocyanato group of the polyisocyanate compound I (that is, the isocyanate group of the polyisocyanate compound I and the polyol compound The reaction rate constant of the reaction of forming a urethane bond from the hydroxy groups of H1, H2 and H3 is different.
 詳述すると、ポリイソシアネート化合物Iのイソシアナト基と第1のポリオール化合物H1のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数をK1、ポリイソシアネート化合物Iのイソシアナト基と第2のポリオール化合物H2のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数をK2、ポリイソシアネート化合物Iのイソシアナト基と第3のポリオール化合物H3のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数をK3としたとき、K1/K3>50なる式及びK2/K3>50なる式をいずれも満たす。 More specifically, the reaction rate constant of the reaction for forming a urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the first polyol compound H1 is K1, the isocyanato group of the polyisocyanate compound I and the second polyol compound H2 are K2 is the reaction rate constant of the reaction of forming a urethane bond from the hydroxy group of OH and K3 is the reaction rate constant of the reaction of forming the urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the third polyol compound H3. Then, both the equations K1/K3>50 and the equations K2/K3>50 are satisfied.
 上記2つの式を満たすポリオール化合物H1、H2、H3を用いるとともに、反応速度定数が最も小さい第3のポリオール化合物H3を後述のタイミングで重合反応に供すれば、分子量分布の狭いポリウレタンが得られやすい。なお、反応速度定数K1とK2は、同じであってもよいし異なっていてもよい。また、上記2つの式は、K1/K3>100及びK2/K3>100であることが好ましい。 By using the polyol compounds H1, H2 and H3 satisfying the above two formulas and subjecting the third polyol compound H3 having the smallest reaction rate constant to the polymerization reaction at the timing described below, a polyurethane having a narrow molecular weight distribution can be easily obtained. .. The reaction rate constants K1 and K2 may be the same or different. Also, the above two equations are preferably K1/K3>100 and K2/K3>100.
 ここで、反応速度定数K1、K2、K3の測定方法について説明する。通常、ポリウレタンは、1分子中に2個以上のイソシアナト基を有するポリイソシアネート化合物と、1分子中に2個以上のヒドロキシ基を有するポリオール化合物とを反応させ、重合反応により合成する。しかしながら、重合反応による生成物は多様であるため、反応速度定数を測定するための分析が煩雑となる。 Here, the method of measuring the reaction rate constants K1, K2, and K3 will be described. Usually, polyurethane is synthesized by a polymerization reaction by reacting a polyisocyanate compound having two or more isocyanato groups in one molecule with a polyol compound having two or more hydroxy groups in one molecule. However, since the products of the polymerization reaction are diverse, the analysis for measuring the reaction rate constant becomes complicated.
 そこで、重合反応の生成物の多様化による分析の煩雑さを回避するため、ポリイソシアネート化合物を、1分子中に1個のイソシアナト基を有するモノイソシアネート化合物に置き換え、モノイソシアネート化合物とポリオール化合物H1、H2、H3との反応について分析することにより、反応速度定数を測定する。モノイソシアネート化合物を用いれば、重合反応が進行せず、低分子量化合物が得られるため、分析が容易となる。 Therefore, in order to avoid the complexity of the analysis due to the diversification of the products of the polymerization reaction, the polyisocyanate compound is replaced with a monoisocyanate compound having one isocyanato group in one molecule, and a monoisocyanate compound and a polyol compound H1, The reaction rate constant is measured by analyzing the reaction with H2 and H3. When a monoisocyanate compound is used, the polymerization reaction does not proceed and a low molecular weight compound is obtained, which facilitates the analysis.
 反応速度定数K1、K2、K3を測定する際に使用するモノイソシアネート化合物の種類は、以下の通りである。すなわち、重合反応に使用するポリイソシアネート化合物Iが1級イソシアネート化合物である場合には1級モノイソシアネート化合物を使用し、ポリイソシアネート化合物Iが2級イソシアネート化合物である場合には2級モノイソシアネート化合物を使用し、ポリイソシアネート化合物Iが3級イソシアネート化合物である場合には3級モノイソシアネート化合物を使用することにより、反応速度を定性的に評価することができる。1級モノイソシアネート化合物としてはドデシルイソシアネート、2級モノイソシアネート化合物としてはイソシアン酸シクロヘキシル、3級モノイソシアネート化合物としてはイソシアン酸tert-ブチルを使用する。 The types of monoisocyanate compounds used when measuring the reaction rate constants K1, K2, and K3 are as follows. That is, when the polyisocyanate compound I used in the polymerization reaction is a primary isocyanate compound, a primary monoisocyanate compound is used, and when the polyisocyanate compound I is a secondary isocyanate compound, a secondary monoisocyanate compound is used. When the polyisocyanate compound I is a tertiary isocyanate compound, the reaction rate can be qualitatively evaluated by using the tertiary monoisocyanate compound. Dodecyl isocyanate is used as the primary monoisocyanate compound, cyclohexyl isocyanate is used as the secondary monoisocyanate compound, and tert-butyl isocyanate is used as the tertiary monoisocyanate compound.
 重合反応に使用するポリイソシアネート化合物Iが、1級イソシアネート、2級イソシアネート及び3級イソシアネートのいずれか2種以上を有する場合には、より反応性の低いモノイソシアネートを選択する。つまり、重合反応に使用するポリイソシアネート化合物Iが1級イソシアネートと2級イソシアネートを有する場合は2級モノイソシアネート化合物を使用し、1級イソシアネート又は2級イソシアネートとさらに3級イソシアネートを有する場合には3級モノイソシアネート化合物を使用する。 When the polyisocyanate compound I used in the polymerization reaction has at least two kinds of primary isocyanate, secondary isocyanate and tertiary isocyanate, a monoisocyanate having lower reactivity is selected. That is, when the polyisocyanate compound I used in the polymerization reaction has a primary isocyanate and a secondary isocyanate, a secondary monoisocyanate compound is used, and when the polyisocyanate compound I has a primary isocyanate or a secondary isocyanate and a tertiary isocyanate, it is 3 A grade monoisocyanate compound is used.
 モノイソシアネート化合物とポリオール化合物との反応においては、下記式が成り立つので、下記式を利用して反応速度定数K1、K2、K3を算出することができる。なお、下記式中のC0はポリオール化合物の初期濃度、Cはポリオール化合物の濃度、tは反応経過時間、Kは反応速度定数である。
   1/C-1/C0=K・t
 モノイソシアネート化合物とポリオール化合物との反応中にポリオール化合物の濃度を逐次測定し、その測定値を、反応経過時間tをX軸、1/CをY軸とするグラフにプロットする。すると、そのグラフに描かれる直線の傾きが反応速度定数Kとなる。
In the reaction between the monoisocyanate compound and the polyol compound, the following formula is established, and therefore the reaction rate constants K1, K2, and K3 can be calculated using the formula below. In the following formula, C 0 is the initial concentration of the polyol compound, C is the concentration of the polyol compound, t is the reaction elapsed time, and K is the reaction rate constant.
1/C-1/C 0 =K·t
The concentration of the polyol compound is sequentially measured during the reaction between the monoisocyanate compound and the polyol compound, and the measured value is plotted on a graph with the reaction elapsed time t as the X axis and 1/C as the Y axis. Then, the slope of the straight line drawn in the graph becomes the reaction rate constant K.
 反応中のポリオール化合物の濃度の測定方法は特に限定されるものではないが、1H-NMR、13C-NMR、IR等の分光学的手法を用いることができる。例えば、モノイソシアネート化合物とポリオール化合物との反応の反応溶液の一部をサンプリングし、NMR測定用溶剤で希釈することによって反応を停止させた後に、NMR分析に供することによって、ポリオール化合物の濃度を測定することができる。 The method for measuring the concentration of the polyol compound in the reaction is not particularly limited, but 1 H-NMR, 13 C-NMR, IR and other spectroscopic techniques can be used. For example, a portion of a reaction solution of a reaction between a monoisocyanate compound and a polyol compound is sampled, and the reaction is stopped by diluting with a solvent for NMR measurement, and then subjected to NMR analysis to measure the concentration of the polyol compound. can do.
〔第1のポリオール化合物H1〕
 第1のポリオール化合物H1の種類は、上記した芳香環濃度、反応速度定数等の条件を満たしていれば特に限定されるものではないが、フルオレン構造を有するジオールが好ましく、上記式(1)で表される9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンがより好ましい。
[First polyol compound H1]
The type of the first polyol compound H1 is not particularly limited as long as the conditions such as the aromatic ring concentration and the reaction rate constant described above are satisfied, but a diol having a fluorene structure is preferable, and it is represented by the above formula (1). The represented 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene is more preferred.
〔第2のポリオール化合物H2〕
 第2のポリオール化合物H2の種類は、上記した芳香環濃度、反応速度定数等の条件を満たしていれば特に限定されるものではないが、上記式(2)で表されるポリエステルジオールが好ましい。上記式(2)中のR1は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、R2は、それぞれ独立して炭素数3以上9以下の2価の炭化水素基を示し、nは1以上50以下の整数である。
[Second polyol compound H2]
The type of the second polyol compound H2 is not particularly limited as long as it satisfies the conditions such as the aromatic ring concentration and the reaction rate constant described above, but the polyester diol represented by the above formula (2) is preferable. R 1 in the above formula (2) each independently represents a divalent organic group having 6 to 14 carbon atoms, and R 2 each independently represents a divalent hydrocarbon group having 3 to 9 carbon atoms. Represents a group, and n is an integer of 1 or more and 50 or less.
 上記式(2)で表されるポリエステルジオールは、ジカルボン酸とジオールとのエステル化によって合成することができる。
 ジカルボン酸としては、例えば、オルトフタル酸、イソフタル酸、テレフタル酸、3-メチル-ベンゼン-1,2-ジカルボン酸、4-メチル-ベンゼン-1,2-ジカルボン酸、4-メチル-ベンゼン-1,3-ジカルボン酸、5-メチル-ベンゼン-1,3-ジカルボン酸、2-メチル-ベンゼン-1,4-ジカルボン酸等を挙げることができる。ジカルボン酸は、これらの中の1種を単独で使用してもよいし、2種以上を併用してもよい。
The polyester diol represented by the above formula (2) can be synthesized by esterification of a dicarboxylic acid and a diol.
Examples of the dicarboxylic acid include orthophthalic acid, isophthalic acid, terephthalic acid, 3-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1, Examples thereof include 3-dicarboxylic acid, 5-methyl-benzene-1,3-dicarboxylic acid and 2-methyl-benzene-1,4-dicarboxylic acid. As the dicarboxylic acid, one of these may be used alone, or two or more thereof may be used in combination.
 また、ジオールとしては、例えば、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール等を挙げることができる。ジオールは、これらの中の1種を単独で使用してもよいし、2種以上を併用してもよい。 Examples of the diol include 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and 3-methyl-1,5. -Pentanediol, 1,8-octanediol, 1,9-nonanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol and the like. it can. As the diol, one of these may be used alone, or two or more thereof may be used in combination.
 ジカルボン酸として好ましいものは、フタル酸、イソフタル酸、テレフタル酸、3-メチル-ベンゼン-1、2-ジカルボン酸、4-メチル-ベンゼン-1、2-ジカルボン酸であり、特に好ましくはフタル酸である。
 また、ジオールとして好ましいものは、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオールであり、特に好ましくは1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオールである。
Preferred dicarboxylic acids are phthalic acid, isophthalic acid, terephthalic acid, 3-methyl-benzene-1,2-dicarboxylic acid, 4-methyl-benzene-1,2-dicarboxylic acid, and particularly preferred is phthalic acid. is there.
The preferred diols are 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and 3-methyl-1,5-pentanediol, and Preferred are 1,6-hexanediol and 3-methyl-1,5-pentanediol.
 上記式(2)で表されるポリエステルジオールの数平均分子量は、800以上5000以下であることが好ましく、800以上4000以下であることがより好ましく、900以上3500以下であることがさらに好ましい。
 上記式(2)で表されるポリエステルジオールは、1種を単独で使用してもよいし、2種以上を併用してもよい。
The number average molecular weight of the polyester diol represented by the above formula (2) is preferably 800 or more and 5000 or less, more preferably 800 or more and 4000 or less, and further preferably 900 or more and 3500 or less.
The polyester diol represented by the above formula (2) may be used alone or in combination of two or more.
 なお、第2のポリオール化合物H2として、低分子量のポリオールを用いることもできる。例えば、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等を用いることができる。 Note that a low molecular weight polyol can be used as the second polyol compound H2. For example, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neo Pentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, etc. can be used.
〔第3のポリオール化合物H3〕
 第3のポリオール化合物H3の種類は、上記した反応速度定数等の条件を満たしていれば特に限定されるものではないが、分子中にカルボキシ基を1個以上有し且つヒドロキシ基を2個有するカルボキシ基含有ジオールが好ましい。
 カルボキシ基含有ジオールの種類は特に限定されるものではないが、例えば、ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、N,N-ビス(ヒドロキシエチル)グリシン等を挙げることができる。カルボキシ基含有ジオールは、これらの中の1種を単独で使用してもよいし、2種以上を併用してもよい。
[Third Polyol Compound H3]
The type of the third polyol compound H3 is not particularly limited as long as it satisfies the conditions such as the reaction rate constants described above, but has at least one carboxy group and two hydroxy groups in the molecule. Carboxyl group-containing diols are preferred.
The kind of the carboxy group-containing diol is not particularly limited, and examples thereof include dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, and N,N-bis(hydroxyethyl)glycine. As the carboxy group-containing diol, one of these may be used alone, or two or more may be used in combination.
 これらのカルボキシ基含有ジオールの中では、ポリウレタン製造時の反応溶媒への溶解性の点から、上記式(3)で表されるカルボキシ基含有ジオールがより好ましい。上記式(3)中のR3はメチル基又はエチル基を示す。すなわち、カルボキシ基含有ジオールとしては、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸が特に好ましい。 Among these carboxy group-containing diols, the carboxy group-containing diol represented by the above formula (3) is more preferable from the viewpoint of solubility in a reaction solvent during the production of polyurethane. R 3 in the above formula (3) represents a methyl group or an ethyl group. That is, as the carboxy group-containing diol, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are particularly preferable.
 なお、第3のポリオール化合物H3として、低分子量のポリオールを用いることもできる。例えば、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等を用いることができる。 Note that a low molecular weight polyol can be used as the third polyol compound H3. For example, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neo Pentyl glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, etc. can be used.
〔ポリイソシアネート化合物I〕
 ポリイソシアネート化合物Iの種類は特に限定されるものではないが、例えば、環状脂肪族ポリイソシアネート、芳香環を有するポリイソシアネート、鎖状脂肪族ポリイソシアネート、複素環を有するポリイソシアネート等が挙げられる。
 環状脂肪族ポリイソシアネートとしては、例えば、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサンや、ノルボルネンジイソシアネート及びイソホロンジイソシアネートのビウレット体が挙げられる。
[Polyisocyanate Compound I]
The type of the polyisocyanate compound I is not particularly limited, and examples thereof include a cycloaliphatic polyisocyanate, an aromatic ring-containing polyisocyanate, a chain aliphatic polyisocyanate, and a heterocyclic polyisocyanate.
Examples of the cycloaliphatic polyisocyanate include 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis(4-cyclohexyl isocyanate), 1,3-bis(isocyanatomethyl)cyclohexane, 1,4 -Bisettes of bis(isocyanatomethyl)cyclohexane, norbornene diisocyanate and isophorone diisocyanate.
 芳香環を有するポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネートが挙げられる。
 鎖状脂肪族ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネートのビウレット体、リシントリイソシアネート、リシンジイソシアネート、ヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンメチレンジイソシアネートが挙げられる。
Examples of the polyisocyanate having an aromatic ring include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate and 1,4-xylylene diisocyanate. Isocyanate may be mentioned.
Examples of the chain aliphatic polyisocyanate include biuret of hexamethylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexane methylene diisocyanate. Are listed.
 複素環を有するポリイソシアネートとしては、例えば、イソホロンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのイソシアヌレート体が挙げられる。
 これらのポリイソシアネートは、1種を単独で使用してもよいし、2種以上を併用してもよい。
Examples of the polyisocyanate having a heterocycle include an isocyanurate body of isophorone diisocyanate and an isocyanurate body of hexamethylene diisocyanate.
These polyisocyanates may be used alone or in combination of two or more.
 なお、後述する硬化性組成物の硬化物の電気絶縁性能及び耐熱性を高く維持するためには、ポリウレタンのモノマーであるポリオール化合物H1、H2、H3の少なくとも一つが芳香環を有していることが好ましく、ポリイソシアネート化合物Iは芳香環を有していないことが好ましい。 In order to maintain high electrical insulation performance and heat resistance of the cured product of the curable composition described later, at least one of the polyol compounds H1, H2, and H3, which is a monomer of polyurethane, has an aromatic ring. Is preferred, and the polyisocyanate compound I preferably has no aromatic ring.
(2)ポリウレタンの重合方法
 上記モノマーを重合させてポリウレタンを製造する方法を説明する。本実施形態のポリウレタンの製造方法は、中間重合体(プレポリマー)を得る第一重合工程と、最終重合体を得る第二重合工程と、を備える。
 第一重合工程は、ポリイソシアネート化合物Iの全量と、第1のポリオール化合物H1の全量と、第2のポリオール化合物H2の全量と、第3のポリオール化合物H3の全量のうち一部と、を混合し、イソシアナト基とヒドロキシ基とからウレタン結合を形成させる重合反応を行い、中間重合体を得る工程である。
 第二重合工程は、ポリウレタンの製造に使用する第3のポリオール化合物H3の全量のうち残部を中間重合体に追加投入して、イソシアナト基とヒドロキシ基とからウレタン結合を形成させる重合反応をさらに行い、最終重合体を得る工程である。
(2) Polymerization Method of Polyurethane A method of polymerizing the above monomers to produce polyurethane will be described. The method for producing a polyurethane according to this embodiment includes a first polymerization step for obtaining an intermediate polymer (prepolymer) and a second polymerization step for obtaining a final polymer.
In the first polymerization step, the total amount of polyisocyanate compound I, the total amount of first polyol compound H1, the total amount of second polyol compound H2, and a part of the total amount of third polyol compound H3 are mixed. Then, a polymerization reaction for forming a urethane bond from the isocyanato group and the hydroxy group is performed to obtain an intermediate polymer.
In the second polymerization step, the remaining part of the total amount of the third polyol compound H3 used for the production of polyurethane is additionally added to the intermediate polymer to further carry out a polymerization reaction for forming a urethane bond from an isocyanato group and a hydroxy group. This is the step of obtaining the final polymer.
 ここで上記の「全量」とは、最終重合体を得るために供すべき各モノマーの使用量の全量を意味する。すなわち、ポリイソシアネート化合物I、第1のポリオール化合物H1、及び第2のポリオール化合物H2については、第一重合工程において全量を重合反応に供するが、第3のポリオール化合物H3については、第一重合工程では一部しか重合反応に供せず、第二重合工程で残部を重合反応に供して重合反応を完了させることとなる。 The above-mentioned "total amount" means the total amount of each monomer to be used to obtain the final polymer. That is, the polyisocyanate compound I, the first polyol compound H1, and the second polyol compound H2 are subjected to the polymerization reaction in the first polymerization step, but the third polyol compound H3 is subjected to the first polymerization step. Then, only a part is subjected to the polymerization reaction, and the rest is subjected to the polymerization reaction in the second polymerization step to complete the polymerization reaction.
 ポリウレタンの製造に使用する第3のポリオール化合物H3の全量のうち残部を中間重合体に追加投入するタイミング(すなわち、第二重合工程を開始するタイミング)は、以下の通りである。第一重合工程で重合が進行して中間重合体の重量平均分子量が増加していくが、この中間重合体の重量平均分子量がポリイソシアネート化合物I、第1のポリオール化合物H1、第2のポリオール化合物H2、及び第3のポリオール化合物H3の各分子量の総和の2倍以上となったときに、第3のポリオール化合物H3の全量のうち残部を追加投入して第二重合工程を開始する。 The timing of adding the remaining part of the total amount of the third polyol compound H3 used for the production of polyurethane to the intermediate polymer (that is, the timing of starting the second polymerization step) is as follows. Although the polymerization proceeds in the first polymerization step and the weight average molecular weight of the intermediate polymer increases, the weight average molecular weight of the intermediate polymer is the polyisocyanate compound I, the first polyol compound H1, and the second polyol compound. When the total of the molecular weights of H2 and the third polyol compound H3 is twice or more, the balance of the total amount of the third polyol compound H3 is additionally charged to start the second polymerization step.
 反応速度定数が大きいポリオール化合物H1、H2の全量を先に重合反応に供し、反応速度定数が最も小さいポリオール化合物H3を後から重合反応に供することにより、分子量分布の狭いポリウレタンを得ることができる。分子量分布の狭いポリウレタンを用いて硬化性組成物を製造すれば、得られた硬化性組成物は、フレキシブル基板に塗工する際の糸引き性が低く且つ消泡性が優れる。 A polyurethane having a narrow molecular weight distribution can be obtained by first subjecting all of the polyol compounds H1 and H2 having a large reaction rate constant to the polymerization reaction and then subjecting the polyol compound H3 having the smallest reaction rate constant to the polymerization reaction later. When the curable composition is produced using polyurethane having a narrow molecular weight distribution, the obtained curable composition has low stringiness when applied to a flexible substrate and is excellent in defoaming property.
 次に、本実施形態のポリウレタンの製造方法における各モノマーの配合比について説明する。ポリウレタンの製造に使用するポリイソシアネート化合物Iの全量が有するイソシアナト基の総数をFI、第1のポリオール化合物H1の全量が有するヒドロキシ基の総数をFH1、第2のポリオール化合物H2の全量が有するヒドロキシ基の総数をFH2、第3のポリオール化合物H3の全量のうち第一重合工程に供される前記一部が有するヒドロキシ基の総数をFaH3、第3のポリオール化合物H3の全量のうち第二重合工程において追加投入される前記残部が有するヒドロキシ基の総数をFbH3とする。 Next, the compounding ratio of each monomer in the polyurethane production method of the present embodiment will be described. The total amount of isocyanato groups contained in the total amount of polyisocyanate compound I used for the production of polyurethane is F I , the total number of hydroxy groups contained in the total amount of first polyol compound H1 is F H1 , and the total amount of second polyol compound H2 is The total number of hydroxy groups is F H2 , the total number of hydroxy groups in the first polymerization step of the total amount of the third polyol compound H3 is Fa H3 , and the total amount of the third polyol compound H3 is Let Fb H3 be the total number of hydroxy groups in the remainder that is additionally charged in the second polymerization step.
 このとき、本実施形態のポリウレタンの製造方法においては、下記の4つの式を全て満たすように各モノマーを配合して、第一重合工程及び第二重合工程を行うことができる。
   0.4≦(FH1+FH2)/FI≦0.6
   0.01≦FaH3/FI≦0.2
   0.25≦FbH3/FI≦0.5
   0.8≦(FH1+FH2+FaH3+FbH3)/FI≦1.2
At this time, in the method for producing the polyurethane of the present embodiment, the first polymerization step and the second polymerization step can be performed by mixing the respective monomers so as to satisfy all of the following four formulas.
0.4≦(F H1 +F H2 )/F I ≦0.6
0.01≦Fa H3 /F I ≦0.2
0.25≦Fb H3 /F I ≦0.5
0.8≦(F H1 +F H2 +Fa H3 +Fb H3 )/F I ≦1.2
 本実施形態のポリウレタンの製造方法においては、下記の4つの式を全て満たすように各モノマーを配合して、第一重合工程及び第二重合工程を行うことが好ましい。
   0.4≦(FH1+FH2)/FI≦0.6
   0.01≦FaH3/FI≦0.2
   0.3≦FbH3/FI≦0.5
   0.8≦(FH1+FH2+FaH3+FbH3)/FI≦1.2
 これにより、分子量分布の狭いポリウレタンを得ることができる。所望の分子量分布のポリウレタンが得られたら重合反応を停止させて、重合生成物(例えばポリウレタン溶液)からポリウレタンを取り出せばよい。
In the method for producing the polyurethane of the present embodiment, it is preferable that the respective monomers are blended so as to satisfy all of the following four formulas, and the first polymerization step and the second polymerization step are performed.
0.4≦(F H1 +F H2 )/F I ≦0.6
0.01≦Fa H3 /F I ≦0.2
0.3≦Fb H3 /F I ≦0.5
0.8≦(F H1 +F H2 +Fa H3 +Fb H3 )/F I ≦1.2
Thereby, polyurethane having a narrow molecular weight distribution can be obtained. When a polyurethane having a desired molecular weight distribution is obtained, the polymerization reaction may be stopped and the polyurethane may be taken out from the polymerization product (for example, polyurethane solution).
 なお、上記4つの式は、下記の通りとすることがより好ましい。
   0.45≦(FH1+FH2)/FI≦0.55
   0.05≦FaH3/FI≦0.15
   0.31≦FbH3/FI≦0.40
   0.90≦(FH1+FH2+FaH3+FbH3)/FI≦1.10
The above four equations are more preferably as follows.
0.45≦(F H1 +F H2 )/F I ≦0.55
0.05≦Fa H3 /F I ≦0.15
0.31≦Fb H3 /F I ≦0.40
0.90≦(F H1 +F H2 +Fa H3 +Fb H3 )/F I ≦1.10.
 また、上記4つの式は、下記の通りとすることがさらに好ましい。
   0.48≦(FH1+FH2)/FI≦0.52
   0.08≦FaH3/FI≦0.12
   0.32≦FbH3/FI≦0.35
   0.95≦(FH1+FH2+FaH3+FbH3)/FI≦1.05
Further, it is more preferable that the above four expressions are as follows.
0.48≦(F H1 +F H2 )/F I ≦0.52
0.08≦Fa H3 /F I ≦0.12
0.32≦Fb H3 /F I ≦0.35
0.95≦(F H1 +F H2 +Fa H3 +Fb H3 )/F I ≦1.05
 本実施形態のポリウレタンの製造方法において使用される重合方法は特に限定されるものではないが、例えば、ジブチル錫ジラウリレート等のウレタン化触媒の存在下又は非存在下で、ポリイソシアネート化合物I、第1のポリオール化合物H1、第2のポリオール化合物H2、及び第3のポリオール化合物H3を溶媒中で反応させる方法が挙げられる。ただし、重合反応を無触媒で実施した方が、後述するオーバーコート膜の長期絶縁信頼性が向上するため好ましい。
 ポリウレタンを合成する重合反応は溶媒中で行われることがあるが、溶媒中で行われる場合には、固形分濃度は10質量%以上90質量%以下が好ましく、15質量%以上70質量%以下がより好ましく、20質量%以上60質量%以下がさらに好ましい。
The polymerization method used in the method for producing the polyurethane of the present embodiment is not particularly limited, but for example, in the presence or absence of a urethane-forming catalyst such as dibutyltin dilaurylate, the polyisocyanate compound I, the first A method of reacting the polyol compound H1, the second polyol compound H2, and the third polyol compound H3 in a solvent may be used. However, it is preferable to carry out the polymerization reaction without a catalyst because the long-term insulation reliability of the overcoat film described later is improved.
The polymerization reaction for synthesizing polyurethane may be carried out in a solvent. When carried out in a solvent, the solid content concentration is preferably 10% by mass or more and 90% by mass or less, and 15% by mass or more and 70% by mass or less. More preferably, 20 mass% or more and 60 mass% or less are still more preferable.
 重合溶媒として使用される溶剤の種類は、本実施形態のポリウレタンを溶解できる溶剤であれば特に限定されるものではないが、例えば、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル系溶剤や、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、γ-ブチロラクトン等のエステル系溶剤や、デカヒドロナフタリン等の炭化水素系溶剤や、シクロヘキサノン等のケトン系溶剤が挙げられる。これらの溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。 The type of solvent used as the polymerization solvent is not particularly limited as long as it can dissolve the polyurethane of the present embodiment, for example, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dibutyl ether, Ether-based solvents such as diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, ethylene Glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, methyl methoxypropionate, Examples thereof include ester solvents such as ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate and γ-butyrolactone, hydrocarbon solvents such as decahydronaphthalene, and ketone solvents such as cyclohexanone. These solvents may be used alone or in combination of two or more.
 また、固形分濃度が20質量%以上60質量%以下のポリウレタン溶液を使用して、後述の硬化性組成物を製造する場合は、ポリウレタン溶液の溶液粘度は、実施例の項に後述する測定条件において、例えば5千mPa・s以上百万mPa・s以下であることが、均一分散の観点から好ましい。
 また、必要に応じて、1分子中に1個のイソシアナト基を有するモノイソシアネート化合物や1分子中に1個のヒドロキシ基を有するモノヒドロキシ化合物を反応に供して、ポリウレタンを製造してもよい。
Further, when a curable composition described below is produced using a polyurethane solution having a solid content concentration of 20% by mass or more and 60% by mass or less, the solution viscosity of the polyurethane solution is measured under the measurement conditions described below in the section of Examples. In the above, for example, it is preferably 5,000 mPa·s or more and 1 million mPa·s or less from the viewpoint of uniform dispersion.
If necessary, a polyurethane may be produced by subjecting a monoisocyanate compound having one isocyanato group in one molecule or a monohydroxy compound having one hydroxy group in one molecule to a reaction.
 使用可能なモノイソシアネート化合物の種類は特に限定されるものではないが、シクロヘキシルイソシアネート、オクタデシルイソシアネート、フェニルイソシアネート、トルイルイソシアネート等を用いることができる。本実施形態のポリウレタンを含有する硬化性組成物の加熱時の変色耐性を考慮すると、シクロヘキシルイソシアネート、オクタデシルイソシアネートが好ましい。 The type of monoisocyanate compound that can be used is not particularly limited, but cyclohexyl isocyanate, octadecyl isocyanate, phenyl isocyanate, toluyl isocyanate, etc. can be used. Considering the discoloration resistance of the curable composition containing the polyurethane of the present embodiment when heated, cyclohexyl isocyanate and octadecyl isocyanate are preferable.
 使用可能なモノヒドロキシ化合物の種類は、イソシアナト基との反応性がヒドロキシ基よりも高い置換基を有していない化合物であれば特に限定されるものではないが、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノイソブチルエーテル、ジプロピレングリコールモノプロピルエーテル、メチルエチルケトオキシム等を用いることができる。これらのモノヒドロキシ化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。 The type of monohydroxy compound that can be used is not particularly limited as long as it is a compound that does not have a substituent that has a higher reactivity with an isocyanato group than a hydroxy group, and may be methanol, ethanol, n-propanol, Isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monoisobutyl ether, dipropylene glycol monopropyl ether, methyl ethyl ketoxime, etc. are used. be able to. These monohydroxy compounds may be used alone or in combination of two or more.
 ポリウレタンを合成する重合反応を行う際にモノマーを反応容器へ仕込む順序については、特に制約はないが、例えば、以下の順序で仕込んでもよい。すなわち、ポリオール化合物H1、H2、H3を先に反応容器に仕込み、溶媒に溶解させる。ポリオール化合物H1、H2、H3の溶液の温度を、通常は20℃~160℃、好ましくは60℃~140℃とした後に、反応容器にポリイソシアネート化合物Iを少量ずつ加え、50℃~180℃で、好ましくは60℃~170℃で上記各モノマーを反応させ重合を行う。 There is no particular restriction on the order of charging the monomers into the reaction vessel when carrying out the polymerization reaction for synthesizing polyurethane, but for example, the following order may be used. That is, the polyol compounds H1, H2, and H3 are first charged into a reaction vessel and dissolved in a solvent. The temperature of the solution of the polyol compounds H1, H2, H3 is usually 20° C. to 160° C., preferably 60° C. to 140° C., and then the polyisocyanate compound I is added little by little to the reaction vessel at 50° C. to 180° C. Preferably, the above monomers are reacted at 60° C. to 170° C. to carry out polymerization.
 モノマーの仕込みモル比は、目的とするポリウレタンの分子量及び酸価に応じて調節する。
 モノヒドロキシ化合物又はモノイソシアネート化合物を使用することによって、目的とするポリウレタンの分子量を調節することもできる。例えば、ポリウレタンの分子量が目的とする数平均分子量になったら(あるいは、目的とする数平均分子量に近づいたら)、モノヒドロキシ化合物を添加して重合生成物の分子末端のイソシアナト基を封止し、数平均分子量の更なる上昇を抑制する。
The molar ratio of the charged monomers is adjusted according to the molecular weight and acid value of the desired polyurethane.
By using a monohydroxy compound or a monoisocyanate compound, the molecular weight of the target polyurethane can be adjusted. For example, when the molecular weight of the polyurethane reaches the target number average molecular weight (or when it approaches the target number average molecular weight), a monohydroxy compound is added to seal the isocyanate terminal group at the molecular end of the polymerization product, Suppress further increase in number average molecular weight.
 モノヒドロキシ化合物を使用する場合は、ポリウレタンの製造に使用するポリオール化合物H1、H2、H3の全量が有するヒドロキシ基の総数よりも、ポリウレタンの製造に使用するポリイソシアネート化合物Iの全量が有するイソシアナト基の総数を少なくしてもよいし、同じにしてもよいし、あるいは多くしてもよい。
 過剰量のモノヒドロキシ化合物を使用した場合には、未反応のモノヒドロキシ化合物が残存する結果となるが、この場合には、過剰のモノヒドロキシ化合物をそのまま溶媒の一部として使用してもよいし、あるいは、蒸留等の操作により除去してもよい。
When a monohydroxy compound is used, the total amount of hydroxy groups possessed by the total amount of polyol compounds H1, H2, H3 used in the production of polyurethane is higher than the total amount of hydroxy groups possessed by the polyisocyanate compound I used in the production of polyurethane. The total number may be smaller, the same or larger.
When an excessive amount of monohydroxy compound is used, unreacted monohydroxy compound remains, but in this case, the excess monohydroxy compound may be used as it is as a part of the solvent. Alternatively, it may be removed by an operation such as distillation.
 ポリウレタンの原料としてモノイソシアネート化合物を用いるためには、モノイソシアネート化合物を添加する時点の重合生成物の分子末端がヒドロキシ基となるように、ポリウレタンの製造に使用するポリオール化合物H1、H2、H3の全量が有するヒドロキシ基の総数よりも、ポリウレタンの製造に使用するポリイソシアネート化合物Iの全量が有するイソシアナト基の総数を少なくする必要がある。 In order to use a monoisocyanate compound as a raw material for polyurethane, the total amount of polyol compounds H1, H2, and H3 used in the production of polyurethane is adjusted so that the molecular end of the polymerization product at the time of adding the monoisocyanate compound becomes a hydroxy group. It is necessary to reduce the total number of isocyanato groups contained in the total amount of the polyisocyanate compound I used for producing the polyurethane, compared to the total number of hydroxy groups contained in.
 ポリオール化合物H1、H2、H3とポリイソシアネート化合物Iとの反応がほぼ終了した時点で、重合生成物の分子末端に残存しているヒドロキシ基とモノイソシアネート化合物のイソシアナト基とを反応させる。そのためには、ポリウレタン製造中のポリウレタン溶液の温度を30℃~150℃、好ましくは70℃~140℃とした後に、ポリウレタン溶液にモノイソシアネート化合物を少量ずつ加え、上記温度で保持して反応を完結させる。 When the reaction between the polyol compounds H1, H2, and H3 and the polyisocyanate compound I is almost completed, the hydroxy group remaining at the molecular end of the polymerization product is reacted with the isocyanato group of the monoisocyanate compound. To this end, the temperature of the polyurethane solution during the production of the polyurethane is adjusted to 30° C. to 150° C., preferably 70° C. to 140° C., the monoisocyanate compound is added little by little to the polyurethane solution, and the temperature is maintained at the above temperature to complete the reaction. Let
(3)ポリウレタン
 本実施形態のポリウレタンは、ポリオール化合物H1、H2、H3とポリイソシアネート化合物Iとの反応により得られるポリウレタンであるので、第1のポリオール化合物H1とポリイソシアネート化合物Iとが反応してなる第1のウレタン構造単位と、第2のポリオール化合物H2とポリイソシアネート化合物Iとが反応してなる第2のウレタン構造単位と、第3のポリオール化合物H3とポリイソシアネート化合物Iとが反応してなる第3のウレタン構造単位と、を有している。
(3) Polyurethane Since the polyurethane of the present embodiment is a polyurethane obtained by reacting the polyol compounds H1, H2, H3 and the polyisocyanate compound I, the first polyol compound H1 reacts with the polyisocyanate compound I. And a second urethane structural unit formed by the reaction of the second polyol compound H2 with the polyisocyanate compound I, and a reaction of the third polyol compound H3 with the polyisocyanate compound I. And a third urethane structural unit.
 本実施形態のポリウレタンの数平均分子量は特に限定されるものではないが、3000以上100000以下であることが好ましく、5000以上50000以下であることがより好ましく、5000以上30000以下であることがさらに好ましい。
 数平均分子量が上記範囲内であると、ポリウレタンの溶剤溶解性が良好であるとともに、ポリウレタン溶液の粘度が高くなりにくいので、後述する硬化性組成物を後述するオーバーコート膜やフレキシブル配線板の製造に使用する際に好適である。さらに、後述する硬化物やオーバーコート膜の伸度、可撓性、及び強度が良好となりやすい。
The number average molecular weight of the polyurethane of the present embodiment is not particularly limited, but is preferably 3000 or more and 100000 or less, more preferably 5000 or more and 50000 or less, and further preferably 5000 or more and 30000 or less. ..
When the number average molecular weight is within the above range, the solvent solubility of polyurethane is good, and since the viscosity of the polyurethane solution is unlikely to be high, the curable composition described below is used to produce an overcoat film or a flexible wiring board described below. It is suitable for use in. Furthermore, the elongation, flexibility, and strength of the cured product or overcoat film described later tend to be good.
 ここで言う「数平均分子量」とは、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と記す。)で測定したポリスチレン換算の数平均分子量である。なお、本明細書においては、特に断りのない限り、GPCの測定条件は以下の通りである。
   装置名:日本分光株式会社製HPLCユニット HSS-2000
   カラム:昭和電工株式会社製ShodexカラムLF-804
   移動相:テトラヒドロフラン
   流速 :1.0mL/min
   検出器:日本分光株式会社製RI-2031Plus
   温度 :40.0℃
   試料量:サンプルループ 100μL
   試料濃度:約0.1質量%
The "number average molecular weight" here is a polystyrene equivalent number average molecular weight measured by gel permeation chromatography (hereinafter referred to as "GPC"). In addition, in this specification, the measurement conditions of GPC are as follows unless otherwise specified.
Device name: HPLC unit HSS-2000 manufactured by JASCO Corporation
Column: Shodex column LF-804 manufactured by Showa Denko KK
Mobile phase: Tetrahydrofuran Flow rate: 1.0 mL/min
Detector: RI-2031Plus manufactured by JASCO Corporation
Temperature: 40.0°C
Sample volume: Sample loop 100 μL
Sample concentration: approx. 0.1% by mass
 本実施形態のポリウレタンの酸価は特に限定されるものではないが、10mgKOH/g以上70mgKOH/g以下であることが好ましく、15mgKOH/g以上50mgKOH/g以下であることがより好ましい。
 酸価が上記範囲内であれば、ポリウレタンはエポキシ基との十分な反応性を有する。よって、後述する硬化性組成物において、1分子中に2個以上のエポキシ基を有するエポキシ化合物等の他の成分との反応性が不十分となりにくいので、硬化性組成物の硬化物の耐熱性が低くなりにくく、且つ、硬化性組成物の硬化物が硬く脆くなりすぎることがない。また、後述するオーバーコート膜の耐溶剤性と後述するフレキシブル配線板の反りのバランスをとることが容易になる。
 なお、本明細書においては、ポリウレタンの酸価は、JIS K0070に規定された電位差滴定法で測定された酸価の値である。
The acid value of the polyurethane of the present embodiment is not particularly limited, but is preferably 10 mgKOH/g or more and 70 mgKOH/g or less, and more preferably 15 mgKOH/g or more and 50 mgKOH/g or less.
When the acid value is within the above range, the polyurethane has sufficient reactivity with the epoxy group. Therefore, in the curable composition described below, reactivity with other components such as an epoxy compound having two or more epoxy groups in one molecule is unlikely to be insufficient, and thus the heat resistance of the cured product of the curable composition Of the curable composition does not become too hard and brittle. Further, it becomes easy to balance the solvent resistance of the overcoat film described later and the warp of the flexible wiring board described later.
In addition, in this specification, the acid value of polyurethane is the value of the acid value measured by the potentiometric titration method defined in JIS K0070.
II.硬化性組成物及びその製造方法
 上記のようにして製造した本実施形態のポリウレタンを使用して、硬化性組成物を得ることができる。硬化性組成物は、本実施形態のポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、を混合して組成物とすることにより製造することができる。
II. Curable composition and its manufacturing method A curable composition can be obtained using the polyurethane of this embodiment manufactured as mentioned above. The curable composition is a composition obtained by mixing the polyurethane (a) of the present embodiment, a solvent (b), and an epoxy compound (c) having two or more epoxy groups in one molecule. Can be manufactured by.
(1)溶剤(b)
 本実施形態の硬化性組成物の必須成分の1つである溶剤(b)の種類は、特に限定されるものではないが、本実施形態のポリウレタン(a)を溶解可能であることが好ましく、なおかつ大気圧下で150℃以上250℃以下の沸点を有するものであることがより好ましい。本実施形態のポリウレタン(a)の溶解性や溶剤の揮発性等のバランスをとる目的で、大気圧下で150℃以上250℃以下の沸点を有する溶剤を2種類以上併用することがさらに好ましく、大気圧下で170℃以上200℃未満の沸点を有する溶剤と大気圧下で200℃以上220℃以下の沸点を有する溶剤とを併用することが特に好ましい。
(1) Solvent (b)
The type of the solvent (b) which is one of the essential components of the curable composition of the present embodiment is not particularly limited, but it is preferable that the polyurethane (a) of the present embodiment can be dissolved, Further, it is more preferable that it has a boiling point of 150°C or higher and 250°C or lower under atmospheric pressure. In order to balance the solubility of the polyurethane (a) of the present embodiment, the volatility of the solvent, and the like, it is more preferable to use two or more kinds of solvents having a boiling point of 150° C. or higher and 250° C. or lower under atmospheric pressure in combination. It is particularly preferable to use a solvent having a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure and a solvent having a boiling point of 200° C. or more and 220° C. or less under atmospheric pressure in combination.
 大気圧下で150℃以上250℃以下の沸点を有する溶剤としては、例えば、次のものを挙げることができる。
 大気圧下で170℃以上200℃未満の沸点を有する溶剤としては、例えば、ジエチレングリコールジエチルエーテル(沸点189℃)、ジエチレングリコールエチルメチルエーテル(沸点176℃)、ジプロピレングリコールジメチルエーテル(沸点171℃)、3-メトキシブチルアセテート(沸点171℃)、エチレングリコールモノブチルエーテルアセテート(沸点192℃)、エチレングリコールモノ-n-ブチルエーテル(沸点171℃)、ジメチルスルホキシド(沸点189℃)等を挙げることができる。
Examples of the solvent having a boiling point of 150° C. or higher and 250° C. or lower under atmospheric pressure include the following.
Examples of the solvent having a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure include diethylene glycol diethyl ether (boiling point 189° C.), diethylene glycol ethyl methyl ether (boiling point 176° C.), dipropylene glycol dimethyl ether (boiling point 171° C.), 3 -Methoxybutyl acetate (boiling point 171°C), ethylene glycol monobutyl ether acetate (boiling point 192°C), ethylene glycol mono-n-butyl ether (boiling point 171°C), dimethyl sulfoxide (boiling point 189°C) and the like can be mentioned.
 大気圧下で200℃以上220℃以下の沸点を有する溶剤としては、ジエチレングリコールブチルメチルエーテル(沸点212℃)、トリプロピレングリコールジメチルエーテル(沸点215℃)、トリエチレングリコールジメチルエーテル(沸点216℃)、エチレングリコールジブチルエーテル(沸点203℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点217℃)、γ-ブチロラクトン(沸点204℃)、アセトフェノン(沸点202℃)、N-メチルピロリドン(沸点202℃)等を挙げることができる。
 大気圧下で150℃以上の沸点を有する溶剤としては、メチルシクロヘキサノン(沸点163℃)、N,N-ジメチルホルムアミド(沸点153℃)、エチレングリコールモノエチルエーテルアセテート(沸点156℃)等を挙げることができる。
As a solvent having a boiling point of 200° C. or more and 220° C. or less under atmospheric pressure, diethylene glycol butyl methyl ether (boiling point 212° C.), tripropylene glycol dimethyl ether (boiling point 215° C.), triethylene glycol dimethyl ether (boiling point 216° C.), ethylene glycol Examples include dibutyl ether (boiling point 203° C.), diethylene glycol monoethyl ether acetate (boiling point 217° C.), γ-butyrolactone (boiling point 204° C.), acetophenone (boiling point 202° C.), N-methylpyrrolidone (boiling point 202° C.) and the like. ..
Examples of the solvent having a boiling point of 150° C. or higher under atmospheric pressure include methylcyclohexanone (boiling point 163° C.), N,N-dimethylformamide (boiling point 153° C.), ethylene glycol monoethyl ether acetate (boiling point 156° C.) and the like. You can
 高揮発性であることから低温硬化性を付与でき、且つ、本実施形態のポリウレタンの製造反応を効率良く均一系で行うことができることから、大気圧下で170℃以上200℃未満の沸点を有する溶剤と大気圧下で200℃以上220℃以下の沸点を有する溶剤とを併用することが好ましい。そして、大気圧下で170℃以上200℃未満の沸点を有する溶剤として、ジエチレングリコールジエチルエーテル(沸点189℃)、ジエチレングリコールエチルメチルエーテル(沸点176℃)、ジプロピレングリコールジメチルエーテル(沸点171℃)の中から選ばれる少なくとも1種を使用し、大気圧下で200℃以上220℃以下の沸点を有する溶剤としてγ-ブチロラクトン(沸点204℃)を使用することが好ましい。 It has a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure because it has low volatility due to its high volatility and can efficiently carry out the production reaction of the polyurethane of this embodiment in a homogeneous system. It is preferable to use a solvent in combination with a solvent having a boiling point of 200° C. or higher and 220° C. or lower under atmospheric pressure. And, as a solvent having a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure, from among diethylene glycol diethyl ether (boiling point 189° C.), diethylene glycol ethyl methyl ether (boiling point 176° C.) and dipropylene glycol dimethyl ether (boiling point 171° C.) It is preferable to use at least one selected and use γ-butyrolactone (boiling point 204° C.) as a solvent having a boiling point of 200° C. or more and 220° C. or less under atmospheric pressure.
 また、大気圧下で170℃以上200℃未満の沸点を有する溶剤としてジエチレングリコールジエチルエーテル(沸点189℃)を使用し、大気圧下で200℃以上220℃以下の沸点を有する溶剤としてγ-ブチロラクトン(沸点204℃)を使用することがさらに好ましい。
 これら好ましい溶剤の組み合わせを用いると、吸湿性が低く、沸点が高く、且つ揮発性が小さいことから、本実施形態の硬化性組成物をスクリーン印刷用のインクとして好適に用いることができる。
In addition, diethylene glycol diethyl ether (boiling point 189° C.) is used as a solvent having a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure, and γ-butyrolactone (solvent having a boiling point of 200° C. or more and 220° C. or less under atmospheric pressure is used. It is further preferred to use a boiling point of 204° C.).
When the combination of these preferable solvents is used, the curable composition of the present embodiment can be suitably used as an ink for screen printing because it has low hygroscopicity, high boiling point, and low volatility.
 上記の効果を十分に発現させるためには、大気圧下で170℃以上200℃未満の沸点を有する溶剤と大気圧下で200℃以上220℃以下の沸点を有する溶剤の使用比率は、質量比で、5:95~80:20の範囲内とすることが好ましく、10:90~60:40の範囲内とすることがさらに好ましい。 In order to sufficiently develop the above effects, the use ratio of the solvent having a boiling point of 170° C. or more and less than 200° C. under atmospheric pressure and the solvent having a boiling point of 200° C. or more under 220° C. under atmospheric pressure is a mass ratio. Then, it is preferably within the range of 5:95 to 80:20, and more preferably within the range of 10:90 to 60:40.
 また、本実施形態の硬化性組成物が含有する溶剤(b)の一部又は全部として、本実施形態のポリウレタン(a)を製造する際に使用する合成用の溶剤をそのまま使用することが可能であり、その方が本実施形態の硬化性組成物の製造が容易となるためプロセス的に好ましい。
 また、本実施形態のポリウレタン(a)の溶解性を損なわない範囲内であれば、大気圧下で170℃以上200℃未満の沸点を有する溶剤以外の溶剤や大気圧下で200℃以上220℃以下の沸点を有する溶剤以外の溶剤を併用することができる。反応性モノマーや反応性希釈剤も溶剤(b)として使用することができる。
Further, as a part or all of the solvent (b) contained in the curable composition of the present embodiment, it is possible to directly use the solvent for synthesis used when producing the polyurethane (a) of the present embodiment. Which is preferable in terms of process since the curable composition of the present embodiment can be easily produced.
Further, as long as the solubility of the polyurethane (a) of the present embodiment is not impaired, a solvent other than a solvent having a boiling point of 170°C or higher and lower than 200°C under atmospheric pressure or 200°C or higher and 220°C under atmospheric pressure. A solvent other than the solvents having the following boiling points can be used together. Reactive monomers and reactive diluents can also be used as the solvent (b).
 本実施形態の硬化性組成物における溶剤(b)の含有量は、本実施形態の硬化性組成物の総量に対して、好ましくは25質量%以上75質量%以下であり、より好ましくは35質量%以上70質量%以下であり、さらに好ましくは35質量%以上65質量%以下である。ここで、本実施形態の硬化性組成物の総量とは、ポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)との総量である。ただし、本実施形態の硬化性組成物が、後述する微粒子(d)等のその他の成分を含有する場合には、本実施形態の硬化性組成物の総量とは、ポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、その他の成分との総量である。 The content of the solvent (b) in the curable composition of the present embodiment is preferably 25% by mass or more and 75% by mass or less, more preferably 35% by mass, with respect to the total amount of the curable composition of the present embodiment. % To 70% by mass, more preferably 35% to 65% by mass. Here, the total amount of the curable composition of the present embodiment is the total amount of the polyurethane (a), the solvent (b), and the epoxy compound (c) having two or more epoxy groups in one molecule. .. However, when the curable composition of the present embodiment contains other components such as fine particles (d) described below, the total amount of the curable composition of the present embodiment means polyurethane (a) and solvent. The total amount of (b), the epoxy compound (c) having two or more epoxy groups in one molecule, and other components.
 溶剤(b)の含有量が、本実施形態の硬化性組成物の総量に対して25質量%以上75質量%以下の範囲内であると、硬化性組成物の粘度がスクリーン印刷法での印刷に対して良好な粘度となり、且つ、スクリーン印刷後の硬化性組成物のにじみによる広がりがそれほど大きくならない。その結果、硬化性組成物を塗工したい部位(すなわち印刷版の形状)よりも、実際に印刷した硬化性組成物の印刷面積の方が大きくなるという現象が生じにくく、好適である。 When the content of the solvent (b) is in the range of 25% by mass or more and 75% by mass or less with respect to the total amount of the curable composition of the present embodiment, the viscosity of the curable composition is printed by the screen printing method. However, the viscosity of the curable composition after screen printing is not so large due to bleeding. As a result, it is less likely that the printed area of the curable composition actually printed is larger than the area where the curable composition is desired to be applied (that is, the shape of the printing plate), which is preferable.
(2)1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)
 本実施形態の硬化性組成物の必須成分の1つであるエポキシ化合物(c)は、硬化性組成物において硬化剤として機能するものであり、1分子中に2個以上のエポキシ基を有する化合物であれば、特に限定されるものではない。
 1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、ノボラック樹脂をエポキシ化したノボラック型エポキシ樹脂が挙げられ、ノボラック型エポキシ樹脂の具体例としては、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等が挙げられる。
(2) Epoxy compound (c) having two or more epoxy groups in one molecule
The epoxy compound (c) which is one of the essential components of the curable composition of the present embodiment functions as a curing agent in the curable composition, and is a compound having two or more epoxy groups in one molecule. If so, it is not particularly limited.
Examples of the epoxy compound (c) having two or more epoxy groups in one molecule include a novolac type epoxy resin obtained by epoxidizing a novolac resin. Specific examples of the novolac type epoxy resin include a phenol novolac type epoxy resin. Resin, ortho-cresol novolac type epoxy resin, etc. may be mentioned.
 なお、ノボラック樹脂とは、フェノール、クレゾール、キシレノール、レゾルシン、カテコール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを、酸性触媒下で縮合又は共縮合させて得られる樹脂である。 The novolak resin means phenols such as phenol, cresol, xylenol, resorcin, and catechol and/or naphthols such as α-naphthol, β-naphthol, and dihydroxynaphthalene, and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde. And a compound having an aldehyde group such as, for example, are condensed or co-condensed under an acidic catalyst.
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、フェノール類のジグリシジルエーテルやアルコールのグリシジルエーテルが挙げられる。ここで、上記のフェノール類としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール、スチルベン系フェノール類等が挙げられる。すなわち、これらフェノール類のジグリシジルエーテルは、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビフェニル型エポキシ化合物、スチルベン型エポキシ化合物である。また、上記のアルコールとしては、ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。 Furthermore, examples of the epoxy compound (c) having two or more epoxy groups in one molecule include diglycidyl ethers of phenols and glycidyl ethers of alcohols. Examples of the above-mentioned phenols include bisphenol A, bisphenol F, bisphenol S, alkyl-substituted or unsubstituted biphenol, and stilbene-based phenols. That is, diglycidyl ethers of these phenols are bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, biphenyl type epoxy compounds, and stilbene type epoxy compounds. Examples of the alcohol include butanediol, polyethylene glycol, polypropylene glycol and the like.
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸のグリシジルエステル型エポキシ樹脂や、アニリン、ビス(4-アミノフェニル)メタン、イソシアヌル酸等が有する窒素原子に結合した活性水素をグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂や、p-アミノフェノール等のアミノフェノール類が有する窒素原子に結合した活性水素及びフェノール性ヒドロキシ基が有する活性水素をそれぞれグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂が挙げられる。 Furthermore, examples of the epoxy compound (c) having two or more epoxy groups in one molecule include glycidyl ester type epoxy resins of carboxylic acids such as phthalic acid, isophthalic acid, and tetrahydrophthalic acid, aniline, and bis(4 -Aminophenyl) glycidyl-type or methylglycidyl-type epoxy resin, which is a compound obtained by substituting the active hydrogen bonded to the nitrogen atom of methane, isocyanuric acid, etc., with a glycidyl group, and nitrogen contained in aminophenols such as p-aminophenol Examples thereof include a glycidyl-type or methylglycidyl-type epoxy resin, which is a compound in which active hydrogen bonded to an atom and active hydrogen contained in a phenolic hydroxy group are each substituted with a glycidyl group.
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、ビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂が挙げられる。これら脂環型エポキシ樹脂は、分子内にオレフィン結合を有する脂環式炭化水素化合物のオレフィン結合をエポキシ化して得られる。 Furthermore, examples of the epoxy compound (c) having two or more epoxy groups in one molecule include vinylcyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and 2-(3 Alicyclic epoxy resins such as ,4-epoxy)cyclohexyl-5,5-spiro(3,4-epoxy)cyclohexane-m-dioxane. These alicyclic epoxy resins are obtained by epoxidizing an olefin bond of an alicyclic hydrocarbon compound having an olefin bond in the molecule.
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル、テルペン変性フェノール樹脂のグリシジルエーテル、ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテル、シクロペンタジエン変性フェノール樹脂のグリシジルエーテル、多環芳香環変性フェノール樹脂のグリシジルエーテル、ナフタレン環含有フェノール樹脂のグリシジルエーテルが挙げられる。 Further, examples of the epoxy compound (c) having two or more epoxy groups in one molecule include, for example, glycidyl ether of paraxylylene and/or metaxylylene modified phenol resin, glycidyl ether of terpene modified phenol resin, and dicyclopentadiene modified phenol resin. And glycidyl ether of cyclopentadiene-modified phenol resin, glycidyl ether of polycyclic aromatic ring-modified phenol resin, and glycidyl ether of naphthalene ring-containing phenol resin.
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、ハロゲン化フェノールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、線状脂肪族エポキシ樹脂(分子内にオレフィン結合を有する線状脂肪族炭化水素化合物のオレフィン結合を過酢酸等の過酸で酸化して得られる)、ジフェニルメタン型エポキシ樹脂が挙げられる。 Furthermore, examples of the epoxy compound (c) having two or more epoxy groups in one molecule include halogenated phenol novolac type epoxy resin, hydroquinone type epoxy resin, trimethylolpropane type epoxy resin, and linear aliphatic epoxy resin. (Obtained by oxidizing an olefin bond of a linear aliphatic hydrocarbon compound having an olefin bond in the molecule with a peracid such as peracetic acid), and a diphenylmethane type epoxy resin.
 さらに、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)としては、例えば、フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物や、硫黄原子含有エポキシ樹脂や、トリシクロ[5.2.1.02,6]デカンジメタノールのジグリシジルエーテルや、アダマンタン構造を有するエポキシ樹脂が挙げられる。アダマンタン構造を有するエポキシ樹脂の例としては、1,3-ビス(1-アダマンチル)-4,6-ビス(グリシジロイル)ベンゼン、1-[2’,4’-ビス(グリシジロイル)フェニル]アダマンタン、1,3-ビス(4’-グリシジロイルフェニル)アダマンタン、及び1,3-ビス[2’,4’-ビス(グリシジロイル)フェニル]アダマンタン等が挙げられる。
 これらのエポキシ化合物(c)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
Furthermore, examples of the epoxy compound (c) having two or more epoxy groups in one molecule include epoxidized aralkyl type phenolic resins such as phenol aralkyl resin and naphthol aralkyl resin, sulfur atom-containing epoxy resin, and tricyclo Examples include [5.2.1.0 2,6 ]decane dimethanol diglycidyl ether and epoxy resins having an adamantane structure. Examples of the epoxy resin having an adamantane structure include 1,3-bis(1-adamantyl)-4,6-bis(glycidyloyl)benzene, 1-[2′,4′-bis(glycidyloyl)phenyl]adamantane, 1 , 3-bis(4′-glycidyloylphenyl)adamantane, 1,3-bis[2′,4′-bis(glycidyloyl)phenyl]adamantane, and the like.
These epoxy compounds (c) may be used alone or in combination of two or more.
 これらのエポキシ化合物(c)の中でも、1分子中に2個以上のエポキシ基を有し且つ芳香環構造及び/又は脂環構造を有するエポキシ化合物が好ましい。
 後述する本実施形態の硬化物の長期絶縁性能を重視する場合には、吸水率の低い硬化物が得られることから、1分子中に2個以上のエポキシ基を有し且つ芳香環構造及び/又は脂環構造を有するエポキシ化合物の中でも、トリシクロデカン構造及び芳香環構造を有し且つ2個以上のエポキシ基を有する化合物が好ましい。
Among these epoxy compounds (c), an epoxy compound having two or more epoxy groups in one molecule and having an aromatic ring structure and/or an alicyclic structure is preferable.
When the long-term insulation performance of the cured product of the present embodiment described below is emphasized, a cured product having a low water absorption rate is obtained, and therefore, it has two or more epoxy groups in one molecule and has an aromatic ring structure and/or Alternatively, among epoxy compounds having an alicyclic structure, a compound having a tricyclodecane structure and an aromatic ring structure and having two or more epoxy groups is preferable.
 トリシクロデカン構造及び芳香環構造を有し且つ2個以上のエポキシ基を有する化合物の具体例としては、ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテル(すなわち、トリシクロ[5.2.1.02,6]デカン構造及び芳香環構造を有し且つ2個以上のエポキシ基を有する化合物)や、1,3-ビス(1-アダマンチル)-4,6-ビス(グリシジロイル)ベンゼン、1-[2’,4’-ビス(グリシジロイル)フェニル]アダマンタン、1,3-ビス(4’-グリシジロイルフェニル)アダマンタン、及び1,3-ビス[2’,4’-ビス(グリシジロイル)フェニル]アダマンタン等のアダマンタン構造を有するエポキシ樹脂(すなわち、トリシクロ[3.3.1.13,7]デカン構造及び芳香環構造を有し且つ2個以上のエポキシ基を有する化合物)や、下記式(4)で表される化合物が挙げられる。これらの中では、下記式(4)で表される化合物が特に好ましい。なお、下記式(4)中のkは1以上の整数である。下記式(4)中のkは、10以下の整数であることが好ましい。 Specific examples of the compound having a tricyclodecane structure and an aromatic ring structure and having two or more epoxy groups include a glycidyl ether of a dicyclopentadiene-modified phenol resin (that is, tricyclo[5.2.1.0 2, 6 ] a compound having a decane structure and an aromatic ring structure and having two or more epoxy groups), 1,3-bis(1-adamantyl)-4,6-bis(glycidyloyl)benzene, 1-[2′ ,4'-bis(glycidyloyl)phenyl]adamantane, 1,3-bis(4'-glycidyloylphenyl)adamantane, and 1,3-bis[2',4'-bis(glycidyloyl)phenyl]adamantane An epoxy resin having an adamantane structure (that is, a compound having a tricyclo[3.3.1.1 3,7 ]decane structure and an aromatic ring structure and having two or more epoxy groups), or the following formula (4) The compounds represented may be mentioned. Among these, the compound represented by the following formula (4) is particularly preferable. Note that k in the following formula (4) is an integer of 1 or more. K in the following formula (4) is preferably an integer of 10 or less.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一方、ポリウレタンとの反応性を重視する場合には、1分子中に2個以上のエポキシ基を有し且つ芳香環構造及び/又は脂環構造を有するエポキシ化合物の中でも、アミノ基及び芳香環構造を有し且つ2個以上のエポキシ基を有する化合物が好ましい。
 アミノ基及び芳香環構造を有し且つ2個以上のエポキシ基を有する化合物の具体例としては、アニリン、ビス(4-アミノフェニル)メタンが有する窒素原子に結合した活性水素をグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂や、アミノフェノール類が有する窒素原子に結合した活性水素及びフェノール性ヒドロキシ基が有する活性水素をそれぞれグリシジル基で置換した化合物であるグリシジル型又はメチルグリシジル型のエポキシ樹脂や、下記式(5)で表される化合物が挙げられる。これらの中では、下記式(5)で表される化合物が特に好ましい。
On the other hand, when importance is attached to reactivity with polyurethane, an amino group and an aromatic ring structure among epoxy compounds having two or more epoxy groups in one molecule and having an aromatic ring structure and/or an alicyclic structure And a compound having two or more epoxy groups are preferred.
Specific examples of the compound having an amino group and an aromatic ring structure and having two or more epoxy groups include aniline and bis(4-aminophenyl)methane in which active hydrogen bonded to a nitrogen atom is substituted with a glycidyl group. A glycidyl-type or methylglycidyl-type epoxy resin that is a compound, or a glycidyl-type or methylglycidyl that is a compound in which the active hydrogens bound to the nitrogen atom of aminophenols and the active hydrogens of a phenolic hydroxy group are each substituted with a glycidyl group Examples include epoxy resins of the type and compounds represented by the following formula (5). Among these, the compound represented by the following formula (5) is particularly preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本実施形態の硬化性組成物において、ポリウレタン(a)の含有量に対するエポキシ化合物(c)の好ましい含有量は、ポリウレタン(a)が有する、エポキシ基と反応可能な官能基(例えばカルボキシ基)の量によって異なるため、一概には言えない。
 しかし、ポリウレタン(a)が有する、エポキシ基と反応可能な官能基の数と、エポキシ化合物(c)が有するエポキシ基の数との比([エポキシ基と反応可能な官能基の数]/[エポキシ基の数])は、1/3~2/1の範囲内であることが好ましく、1/2.5~1.5/1の範囲内であることがより好ましい。
In the curable composition of the present embodiment, the preferable content of the epoxy compound (c) with respect to the content of the polyurethane (a) is that of the functional group (for example, carboxy group) capable of reacting with the epoxy group, which polyurethane (a) has. Since it depends on the amount, it cannot be said unequivocally.
However, the ratio of the number of functional groups capable of reacting with the epoxy group of the polyurethane (a) to the number of epoxy groups of the epoxy compound (c) ([the number of functional groups capable of reacting with the epoxy group]/[ The number of epoxy groups]) is preferably in the range of 1/3 to 2/1, and more preferably in the range of 1/2.5 to 1.5/1.
 前記比が1/3~2/1の範囲内である場合には、本実施形態の硬化性組成物を硬化させた場合に、未反応のエポキシ化合物が多く残存するようなこともなく且つエポキシ基と反応可能な官能基もそれほど多く残ることもなく、エポキシ基と反応可能な官能基とエポキシ化合物中のエポキシ基がバランスよく反応することができる。 When the ratio is within the range of 1/3 to 2/1, when the curable composition of the present embodiment is cured, there is no large amount of unreacted epoxy compound remaining, and the epoxy compound does not remain. There are not so many functional groups capable of reacting with the group, and the functional group capable of reacting with the epoxy group and the epoxy group in the epoxy compound can react in a well-balanced manner.
 また、本実施形態の硬化性組成物中のポリウレタン(a)とエポキシ化合物(c)との総量に対するエポキシ化合物(c)の含有量の割合は、1質量%以上60質量%以下であることが好ましく、2質量%以上50質量%以下であることがより好ましく、3質量%以上40質量%以下であることがさらに好ましい。すなわち、本実施形態の硬化性組成物中のポリウレタン(a)とエポキシ化合物(c)との総量に対するポリウレタン(a)の含有量の割合は、40質量%以上99質量%以下であることが好ましく、50質量%以上98質量%以下であることがより好ましく、60質量%以上97質量%以下であることがさらに好ましい。 Further, the ratio of the content of the epoxy compound (c) to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable composition of the present embodiment is 1% by mass or more and 60% by mass or less. It is more preferably 2% by mass or more and 50% by mass or less, further preferably 3% by mass or more and 40% by mass or less. That is, the ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) in the curable composition of the present embodiment is preferably 40% by mass or more and 99% by mass or less. Is more preferably 50% by mass or more and 98% by mass or less, further preferably 60% by mass or more and 97% by mass or less.
 ポリウレタン(a)とエポキシ化合物(c)との総量に対するエポキシ化合物(c)の含有量の割合が、1質量%以上60質量%以下であると、後述するオーバーコート膜の耐溶剤性が優れるとともに、オーバーコート膜が被覆されている後述のフレキシブル配線板の低反り性と配線の断線抑制性とのバランスをとることができる。 When the ratio of the content of the epoxy compound (c) to the total amount of the polyurethane (a) and the epoxy compound (c) is 1% by mass or more and 60% by mass or less, the solvent resistance of the overcoat film described later is excellent and Thus, it is possible to balance the low warpage property of the flexible wiring board, which will be described later, covered with the overcoat film and the wire disconnection suppression property.
(3)微粒子(d)
 本実施形態の硬化性組成物には、無機微粒子及び有機微粒子からなる群より選ばれる少なくとも1種の微粒子(d)を添加してもよい。
 無機微粒子としては、例えば、シリカ(SiO2)、アルミナ(Al23)、チタニア(TiO2)、酸化タンタル(Ta25)、ジルコニア(ZrO2)、窒化珪素(Si34)、チタン酸バリウム(BaO・TiO2)、炭酸バリウム(BaCO3)、チタン酸鉛(PbO・TiO2)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸、ランタン鉛(PLZT)、酸化ガリウム(Ga23)、スピネル(MgO・Al23)、ムライト(3Al23・2SiO2)、コーディエライト(2MgO・2Al23・5SiO2)、タルク(3MgO・4SiO2・H2O)、チタン酸アルミニウム(TiO2-Al23)、イットリア含有ジルコニア(Y23-ZrO2)、珪酸バリウム(BaO・8SiO2)、窒化ホウ素(BN)、炭酸カルシウム(CaCO3)、硫酸カルシウム(CaSO4)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO2)、硫酸バリウム(BaSO4)、有機ベントナイト、カーボン(C)、ハイドロタルサイトなどが挙げられ、これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
(3) Fine particles (d)
At least one kind of fine particles (d) selected from the group consisting of inorganic fine particles and organic fine particles may be added to the curable composition of the present embodiment.
Examples of the inorganic fine particles include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ). , Barium titanate (BaO.TiO 2 ), barium carbonate (BaCO 3 ), lead titanate (PbO.TiO 2 ), lead zirconate titanate (PZT), zirconate titanate, lead lanthanum (PLZT), gallium oxide (Ga 2 O 3), spinel (MgO · Al 2 O 3) , mullite (3Al 2 O 3 · 2SiO 2 ), cordierite (2MgO · 2Al 2 O 3 · 5SiO 2), talc (3MgO · 4SiO 2 · H 2 O), aluminum titanate (TiO 2 -Al 2 O 3) , yttria-containing zirconia (Y 2 O 3 -ZrO 2) , barium silicate (BaO · 8SiO 2), boron nitride (BN), calcium carbonate (CaCO 3 ), calcium sulfate (CaSO 4 ), zinc oxide (ZnO), magnesium titanate (MgO·TiO 2 ), barium sulfate (BaSO 4 ), organic bentonite, carbon (C), hydrotalcite, and the like. May be used alone or in combination of two or more.
 有機微粒子としては、アミド結合、イミド結合、エステル結合又はエーテル結合を有する耐熱性樹脂の微粒子が好ましい。これらの樹脂の例としては、耐熱性及び機械特性の観点から、ポリイミド樹脂若しくはその前駆体、ポリアミドイミド樹脂若しくはその前駆体、又はポリアミド樹脂が挙げられる。
 これらの微粒子の中でもシリカ微粒子、ハイドロタルサイト微粒子が好ましく、本実施形態の硬化性組成物は、シリカ微粒子及びハイドロタルサイト微粒子から選ばれる少なくとも一方を含有することが好ましい。
The organic fine particles are preferably fine particles of a heat resistant resin having an amide bond, an imide bond, an ester bond or an ether bond. Examples of these resins include a polyimide resin or a precursor thereof, a polyamideimide resin or a precursor thereof, or a polyamide resin from the viewpoint of heat resistance and mechanical properties.
Among these fine particles, silica fine particles and hydrotalcite fine particles are preferable, and the curable composition of the present embodiment preferably contains at least one selected from silica fine particles and hydrotalcite fine particles.
 本実施形態の硬化性組成物に使用されるシリカ微粒子は、粉末状であり、表面に被覆物を設けたシリカ微粒子や有機化合物により化学的に表面処理を施したシリカ微粒子でもよい。
 本実施形態の硬化性組成物に使用されるシリカ微粒子は、硬化性組成物中で分散してペーストを形成するものであれば、特に限定されるものではないが、例えば、日本アエロジル株式会社より提供されているアエロジル(商品名)等を挙げることができる。アエロジル(商品名)に代表されるシリカ微粒子は、硬化性組成物にスクリーン印刷時の印刷性を付与するために使用されることもあり、その場合にはチクソ性の付与を目的として使用される。
The silica fine particles used in the curable composition of the present embodiment are powdery, and may be silica fine particles having a coating on the surface or silica fine particles chemically surface-treated with an organic compound.
The silica fine particles used in the curable composition of the present embodiment is not particularly limited as long as it is dispersed in the curable composition to form a paste, for example, from Nippon Aerosil Co., Ltd. The offered Aerosil (brand name) etc. can be mentioned. Silica fine particles represented by Aerosil (trade name) are sometimes used to impart printability to the curable composition during screen printing, and in that case, they are used for the purpose of imparting thixotropy. ..
 本実施形態の硬化性組成物に使用されるハイドロタルサイト微粒子は、Mg6Al2(OH)16CO3・4H2O等に代表される天然に産出する粘土鉱物の一種であり、層状の無機化合物である。また、ハイドロタルサイトは合成でも得ることができ、例えばMg1-xAlx(OH)2(CO3x/2・mH2O等は合成で得ることができる。すなわち、ハイドロタルサイトは、Mg/Al系層状化合物であり、層間にある炭酸基とのイオン交換により、塩化物イオン(Cl-)及び/又は硫酸イオン(SO4 -)の陰イオンを固定化できる。この機能を使用して、銅や錫のマイグレーションの原因となる塩化物イオン(Cl-)や硫酸イオン(SO4 -)を捕捉し、硬化物の絶縁信頼性を向上することができる。 The hydrotalcite fine particles used in the curable composition of the present embodiment is a kind of naturally occurring clay mineral represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, and has a layered structure. It is an inorganic compound. Further, hydrotalcite can be obtained by synthesis, and for example, Mg 1-x Al x (OH) 2 (CO 3 ) x/2 ·mH 2 O can be obtained by synthesis. That is, hydrotalcite is a Mg/Al-based layered compound, and anions such as chloride ions (Cl ) and/or sulfate ions (SO 4 ) are immobilized by ion exchange with carbonic acid groups between layers. it can. By using this function, chloride ions (Cl ) and sulfate ions (SO 4 ) that cause migration of copper and tin can be captured, and the insulation reliability of the cured product can be improved.
 ハイドロタルサイトの市販品としては、例えば、堺化学株式会社のSTABIACE HT-1、STABIACE HT-7、STABIACE HT-Pや、協和化学工業株式会社のDHT-4A、DHT-4A2、DHT-4C等が挙げられる。
 これらの無機微粒子、有機微粒子の質量平均粒子径は、好ましくは0.01~10μm、さらに好ましくは0.1~5μmである。
Examples of commercial products of hydrotalcite include Sakai Chemical Co., Ltd.'s STABACE HT-1, STAVIACE HT-7, STABACE HT-P, and Kyowa Chemical Co., Ltd.'s DHT-4A, DHT-4A2, DHT-4C, etc. Are listed.
The mass average particle diameter of these inorganic fine particles and organic fine particles is preferably 0.01 to 10 μm, more preferably 0.1 to 5 μm.
 本実施形態の硬化性組成物中の微粒子(d)の含有量は、ポリウレタン(a)と溶剤(b)とエポキシ化合物(c)と微粒子(d)とを含有する硬化性組成物の総量に対して、0.1質量%以上60質量%以下であることが好ましく、0.3質量%以上55質量%以下であることがより好ましく、0.5質量%以上40質量%以下であることがさらに好ましい。 The content of the fine particles (d) in the curable composition of the present embodiment is the total amount of the curable composition containing the polyurethane (a), the solvent (b), the epoxy compound (c), and the fine particles (d). On the other hand, it is preferably 0.1% by mass or more and 60% by mass or less, more preferably 0.3% by mass or more and 55% by mass or less, and 0.5% by mass or more and 40% by mass or less. More preferable.
 本実施形態の硬化性組成物中の微粒子(d)の含有量が上記の範囲内であれば、硬化性組成物の粘度がスクリーン印刷法での印刷に対して良好な粘度となり、且つ、スクリーン印刷後の硬化性組成物のにじみによる広がりがそれほど大きくならない。その結果、硬化性組成物を塗工したい部位(すなわち印刷版の形状)よりも、実際に印刷した硬化性組成物の印刷面積の方が大きくなるという現象が生じにくく、好適である。 When the content of the fine particles (d) in the curable composition of the present embodiment is within the above range, the curable composition has a good viscosity for printing by the screen printing method, and The spread of the curable composition after printing due to bleeding does not become so large. As a result, it is less likely that the printed area of the curable composition actually printed is larger than the area where the curable composition is desired to be applied (that is, the shape of the printing plate), which is preferable.
(4)硬化促進剤
 本実施形態の硬化性組成物には硬化促進剤を添加してもよい。硬化促進剤の種類は、ポリウレタン(a)が有するカルボキシ基とエポキシ化合物(c)が有するエポキシ基との反応を促進する化合物であれば特に限定されるものではないが、例えば下記の化合物が挙げられる。
(4) Curing accelerator A curing accelerator may be added to the curable composition of the present embodiment. The type of the curing accelerator is not particularly limited as long as it is a compound that promotes the reaction between the carboxy group of the polyurethane (a) and the epoxy group of the epoxy compound (c), and examples thereof include the following compounds. To be
 すなわち、硬化促進剤の例としては、メラミン、アセトグアナミン、ベンゾグアナミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-s-トリアジン、2,4-メタクリロイルオキシエチル-s-トリアジン、2,4-ジアミノ-6-ビニル-s-トリアジン、2,4-ジアミノ-6-ビニル-s-トリアジン・イソシアヌル酸付加物等のトリアジン化合物が挙げられる。 That is, examples of the curing accelerator include melamine, acetoguanamine, benzoguanamine, 2,4-diamino-6-methacryloyloxyethyl-s-triazine, 2,4-methacryloyloxyethyl-s-triazine and 2,4-diamino. Examples thereof include triazine compounds such as -6-vinyl-s-triazine and 2,4-diamino-6-vinyl-s-triazine/isocyanuric acid adduct.
 また、硬化促進剤の例としては、イミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-アミノエチル-2-エチル-4-メチルイミダゾール、1-アミノエチル-2-メチルイミダゾール、1-(シアノエチルアミノエチル)-2-メチルイミダゾール、N-[2-(2-メチル-1-イミダゾリル)エチル]尿素、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、1-シアノエチル-2-エチル-4-メチルイミダゾリウムトリメリテート、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、N,N’-ビス(2-メチル-1-イミダゾリルエチル)尿素、N,N’-ビス(2-メチル-1-イミダゾリルエチル)アジポアミド、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-メチルイミダゾール・イソシアヌル酸付加物、2-フェニルイミダゾール・イソシアヌル酸付加物、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン・イソシアヌル酸付加物、2-メチル-4-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチルフォルミルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-(2-ヒドロキシエチル)イミダゾール、ビニルイミダゾール、1-メチルイミダゾール、1-アリルイミダゾール、2-エチルイミダゾール、2-ブチルイミダゾール、2-ブチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ベンジル-2-フェニルイミダゾール臭化水素塩、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド等のイミダゾール化合物が挙げられる。 Examples of curing accelerators include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1-benzyl-2-methyl. Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-aminoethyl-2-ethyl-4-methylimidazole, 1-amino Ethyl-2-methylimidazole, 1-(cyanoethylaminoethyl)-2-methylimidazole, N-[2-(2-methyl-1-imidazolyl)ethyl]urea, 1-cyanoethyl-2-undecylimidazole, 1- Cyanoethyl-2-methylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimellitate, 1-cyanoethyl-2-undecylimidazo Lithium trimellitate, 2,4-diamino-6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-undecylimidazolyl-(1 ')]-Ethyl-s-triazine, 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-s-triazine, 1-dodecyl-2-methyl- 3-benzylimidazolium chloride, N,N'-bis(2-methyl-1-imidazolylethyl)urea, N,N'-bis(2-methyl-1-imidazolylethyl)adipamide, 2-phenyl-4-methyl -5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-methylimidazole-isocyanuric acid adduct, 2-phenylimidazole-isocyanuric acid adduct, 2,4-diamino-6-[2' -Methylimidazolyl-(1')]-ethyl-s-triazine/isocyanuric acid adduct, 2-methyl-4-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4 -Methylformylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-(2-hydroxyethyl)imidazole, vinylimidazole, 1-methylimidazole, 1-allylimidazole, 2-ethylimidazole, 2-buchi Ruimidazole, 2-butyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole, 1-benzyl-2-phenylimidazole hydrobromide, 1-dodecyl-2 Examples include imidazole compounds such as -methyl-3-benzylimidazolium chloride.
 さらに、硬化促進剤の例としては、ジアザビシクロアルケン及びその塩等のシクロアミジン化合物及びその誘導体が挙げられる。ジアザビシクロアルケンとしては、例えば、1,5-ジアザビシクロ(4.3.0)ノネン-5や1,8-ジアザビシクロ(5.4.0)ウンデセン-7が挙げられる。 Further, examples of the curing accelerator include cycloamidine compounds such as diazabicycloalkene and salts thereof and derivatives thereof. Examples of the diazabicycloalkene include 1,5-diazabicyclo(4.3.0)nonene-5 and 1,8-diazabicyclo(5.4.0)undecene-7.
 さらに、硬化促進剤の例としては、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の有機ホスフィン化合物が挙げられる。 Further, examples of the curing accelerator include triphenylphosphine, diphenyl(p-tolyl)phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkylalkoxyphenyl)phosphine, tris(dialkylphenyl). Phosphine, tris(trialkylphenyl)phosphine, tris(tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialkylarylphosphine, Examples include organic phosphine compounds such as alkyldiarylphosphine.
 さらに、硬化促進剤の例としては、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミノ基含有化合物や、ジシアンジアジドが挙げられる。
 これらの硬化促進剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
Further, examples of the curing accelerator include triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, and other tertiary amino group-containing compounds, and dicyandiazide.
These curing accelerators may be used alone or in combination of two or more.
 これらの硬化促進剤の中では、その硬化促進作用及び後述する本実施形態の硬化物の電気絶縁性能の両立を考慮すると、メラミン、イミダゾール化合物、シクロアミジン化合物及びその誘導体、ホスフィン化合物、及び3級アミノ基含有化合物が好ましく、メラミン、1,5-ジアザビシクロ(4.3.0)ノネン-5及びその塩、1,8-ジアザビシクロ(5.4.0)ウンデセン-7及びその塩がより好ましい。 Among these curing accelerators, melamine, an imidazole compound, a cycloamidine compound and a derivative thereof, a phosphine compound, and a tertiary compound are considered in consideration of both the curing acceleration action and the electrical insulation performance of the cured product of the present embodiment described later. Amino group-containing compounds are preferable, and melamine, 1,5-diazabicyclo(4.3.0)nonene-5 and salts thereof, 1,8-diazabicyclo(5.4.0)undecene-7 and salts thereof are more preferable.
 本実施形態の硬化性組成物中の硬化促進剤の含有量は、硬化促進効果が奏されれば特に限定されるものではないが、本実施形態の硬化性組成物の硬化性及び後述する本実施形態の硬化物の電気絶縁特性や耐水性の観点から、ポリウレタン(a)とエポキシ化合物(c)の総量を100質量部として、硬化促進剤を0.05質量部以上5質量部以下の範囲内で配合することが好ましく、0.1質量部以上3質量部以下の範囲内で配合することがより好ましい。
 本実施形態の硬化性組成物中の硬化促進剤の含有量が上記範囲内であれば、本実施形態の硬化性組成物を短時間で硬化させることができるとともに、後述する本実施形態の硬化物の電気絶縁特性や耐水性が良好である。
The content of the curing accelerator in the curable composition of the present embodiment is not particularly limited as long as the curing acceleration effect is exhibited, but the curability of the curable composition of the present embodiment and the book described below. From the viewpoint of electrical insulation properties and water resistance of the cured product of the embodiment, the total amount of the polyurethane (a) and the epoxy compound (c) is 100 parts by mass, and the curing accelerator is in a range of 0.05 parts by mass or more and 5 parts by mass or less. It is preferable to mix within the range of 0.1 to 3 parts by mass.
If the content of the curing accelerator in the curable composition of the present embodiment is within the above range, the curable composition of the present embodiment can be cured in a short time, and the curing of the present embodiment described later. Good electrical insulation properties and water resistance.
(5)その他の添加剤
 本実施形態の硬化性組成物には、微粒子(d)、硬化促進剤の他に各種添加剤を添加してもよい。本実施形態の硬化性組成物に配合可能な添加剤について、以下に説明する。
 本実施形態の硬化性組成物を硬化させると、電気絶縁特性の良好な硬化物を得ることができるため、本実施形態の硬化性組成物は、例えば、配線の絶縁保護用レジストインキ用途などの組成物として使用可能である。本実施形態の硬化性組成物を配線の絶縁保護用レジストインキ用途の組成物(すなわち、フレキシブル配線板用オーバーコート剤)として使用する場合には、印刷の際に泡の発生を防止又は抑制する目的で、消泡剤を添加してもよい。
(5) Other additives Various additives may be added to the curable composition of the present embodiment in addition to the fine particles (d) and the curing accelerator. The additives that can be added to the curable composition of this embodiment will be described below.
When the curable composition of the present embodiment is cured, a cured product having good electric insulation properties can be obtained. Therefore, the curable composition of the present embodiment can be used, for example, as a resist ink application for insulation protection of wiring. It can be used as a composition. When the curable composition of the present embodiment is used as a composition for use as a resist ink for insulation protection of wiring (that is, an overcoat agent for flexible wiring boards), it prevents or suppresses the occurrence of bubbles during printing. An antifoaming agent may be added for the purpose.
 消泡剤の種類は、フレキシブル配線板の製造時においてフレキシブル基板の表面に本実施形態の硬化性組成物を印刷して塗工する際に、泡の発生を防止又は抑制することができるならば特に限定されるものではないが、例えば下記の消泡剤が例として挙げられる。
 すなわち、消泡剤の例としては、BYK-077(ビックケミー・ジャパン株式会社製)、SNデフォーマー470(サンノプコ株式会社製)、TSA750S(モメンティブ・パフォーマンス・マテリアルズ社製)、シリコーンオイルSH-203(東レ・ダウコーニング株式会社製)等のシリコーン系消泡剤や、ダッポーSN-348(サンノプコ株式会社製)、ダッポーSN-354(サンノプコ株式会社製)、ダッポーSN-368(サンノプコ株式会社製)、ディスパロン230HF(楠本化成株式会社製)等のアクリル重合体系消泡剤や、サーフィノールDF-110D(日信化学工業株式会社製)、サーフィノールDF-37(日信化学工業株式会社製)等のアセチレンジオール系消泡剤や、FA-630等のフッ素含有シリコーン系消泡剤等を挙げることができる。
The type of the defoaming agent is such that, when the curable composition of the present embodiment is printed and applied on the surface of the flexible substrate during the production of the flexible wiring board, the generation of bubbles can be prevented or suppressed. Although not particularly limited, for example, the following defoaming agents are listed.
That is, as an example of the defoaming agent, BYK-077 (manufactured by Big Chemie Japan Co., Ltd.), SN Deformer 470 (manufactured by San Nopco Co., Ltd.), TSA750S (manufactured by Momentive Performance Materials Co., Ltd.), silicone oil SH-203 ( Silicone-based defoaming agents such as Toray Dow Corning Co., Ltd., Dappo SN-348 (San Nopco Co., Ltd.), Dappo SN-354 (San Nopco Co., Ltd.), Dappo SN-368 (San Nopco Co., Ltd.), Acrylic polymer defoaming agents such as Disparlon 230HF (Kusumoto Kasei Co., Ltd.), Surfynol DF-110D (Nisshin Chemical Industry Co., Ltd.), Surfynol DF-37 (Nisshin Chemical Industry Co., Ltd.), etc. Examples thereof include acetylene diol-based defoaming agents and fluorine-containing silicone-based defoaming agents such as FA-630.
 本実施形態の硬化性組成物中の消泡剤の含有量は、特に限定されるものではないが、ポリウレタン(a)、溶剤(b)、エポキシ化合物(c)、及び微粒子(d)の総量を100質量部として、消泡剤を0.01質量部以上5質量部以下の範囲内で配合することが好ましく、0.05質量部以上4質量部以下の範囲内で配合することがより好ましく、0.1質量部以上3質量部以下の範囲内で配合することがさらに好ましい。 The content of the defoaming agent in the curable composition of the present embodiment is not particularly limited, but the total amount of polyurethane (a), solvent (b), epoxy compound (c), and fine particles (d). Is preferably 100 parts by mass, and the antifoaming agent is preferably blended in the range of 0.01 parts by mass or more and 5 parts by mass or less, and more preferably in the range of 0.05 parts by mass or more and 4 parts by mass or less. Further, it is more preferable to mix within a range of 0.1 part by mass or more and 3 parts by mass or less.
 さらに、本実施形態の硬化性組成物には、必要に応じて、レベリング剤等の界面活性剤や、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、カーボンブラック、ナフタレンブラック等の着色剤を添加することができる。 Further, the curable composition of the present embodiment, if necessary, a surfactant such as a leveling agent, phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, carbon black, naphthalene black. A colorant such as can be added.
 また、ポリウレタン(a)の酸化劣化及び加熱時の変色を抑制することが必要な場合には、フェノール系酸化防止剤、ホスファイト系酸化防止剤、チオエーテル系酸化防止剤等の酸化防止剤を本実施形態の硬化性組成物に添加することが好ましい。
 さらに、本実施形態の硬化性組成物には、必要に応じて、難燃剤や滑剤を添加することもできる。
When it is necessary to suppress oxidative deterioration of the polyurethane (a) and discoloration during heating, antioxidants such as phenol-based antioxidants, phosphite-based antioxidants and thioether-based antioxidants should be used. It is preferably added to the curable composition of the embodiment.
Furthermore, a flame retardant or a lubricant may be added to the curable composition of the present embodiment, if necessary.
 本実施形態の硬化性組成物は、配合する成分(すなわち、ポリウレタン(a)、溶剤(b)、エポキシ化合物(c)、及び微粒子(d)等)のうち一部又は全部をロールミル、ビーズミル等で均一に混練、混合することによって得ることができる。配合する成分の一部を混合した場合には、本実施形態の硬化性組成物を実際に使用するときに、残りの成分を混合することができる。 In the curable composition of the present embodiment, some or all of the components to be blended (that is, polyurethane (a), solvent (b), epoxy compound (c), fine particles (d), etc.) are roll mills, bead mills, etc. It can be obtained by uniformly kneading and mixing. When some of the components to be mixed are mixed, the remaining components can be mixed when the curable composition of the present embodiment is actually used.
<硬化性組成物の粘度>
 本実施形態の硬化性組成物の25℃における粘度は、10000mPa・s以上100000mPa・s以下が好ましく、20000mPa・s以上60000mPa・s以下がより好ましい。
 なお、本明細書においては、本実施形態の硬化性組成物の25℃における粘度は、コーン/プレート型粘度計(Brookfield社製、型式DV-II+Pro、スピンドルの型番CPE-52)を用いて、回転速度10rpmの条件で、回転開始から7分経過後に測定した粘度である。
<Viscosity of curable composition>
The viscosity of the curable composition of the present embodiment at 25° C. is preferably 10,000 mPa·s or more and 100000 mPa·s or less, more preferably 20,000 mPa·s or more and 60,000 mPa·s or less.
In addition, in the present specification, the viscosity of the curable composition of the present embodiment at 25° C. is measured by using a cone/plate type viscometer (manufactured by Brookfield, model DV-II+Pro, spindle model CPE-52). The viscosity was measured 7 minutes after the start of rotation under the condition of a rotation speed of 10 rpm.
<硬化性組成物のチクソトロピー指数>
 本実施形態の硬化性組成物を、配線の絶縁保護用レジストインキ用途の組成物(すなわち、フレキシブル配線板用オーバーコート剤)として使用する場合は、本実施形態の硬化性組成物の印刷性を良好にするために、本実施形態の硬化性組成物のチクソトロピー指数を一定の範囲内とすることが好ましい。
<Thixotropic index of curable composition>
When the curable composition of the present embodiment is used as a composition for resist ink application for wiring insulation protection (that is, an overcoating agent for flexible wiring boards), the printability of the curable composition of the present embodiment is improved. In order to make it good, it is preferable to set the thixotropy index of the curable composition of the present embodiment within a certain range.
 本実施形態の硬化性組成物をフレキシブル配線板用オーバーコート剤として使用する場合は、本実施形態の硬化性組成物の印刷性を良好するために、本実施形態の硬化性組成物のチクソトロピー指数は、1.1以上であることが好ましく、1.1以上3.0以下の範囲内であることがより好ましく、1.1以上2.5以下の範囲内であることがさらに好ましい。 When using the curable composition of the present embodiment as an overcoating agent for a flexible wiring board, in order to improve the printability of the curable composition of the present embodiment, the thixotropy index of the curable composition of the present embodiment. Is preferably 1.1 or more, more preferably 1.1 or more and 3.0 or less, and further preferably 1.1 or more and 2.5 or less.
 本実施形態の硬化性組成物をフレキシブル配線板用オーバーコート剤として使用する場合に、本実施形態の硬化性組成物のチクソトロピー指数が1.1以上3.0以下の範囲内であれば、印刷した本実施形態の硬化性組成物を一定の厚さの膜状に維持することができるので、印刷パターンを維持することが容易であるとともに、印刷した本実施形態の硬化性組成物の膜の消泡性も良好となる。 When the curable composition of this embodiment is used as an overcoating agent for flexible wiring boards, if the thixotropy index of the curable composition of this embodiment is in the range of 1.1 or more and 3.0 or less, printing Since it is possible to maintain the curable composition of the present embodiment in the form of a film having a constant thickness, it is easy to maintain a printing pattern, and at the same time, a printed film of the curable composition of the present embodiment is formed. The defoaming property is also good.
 なお、本明細書においては、本実施形態の硬化性組成物のチクソトロピー指数は、25℃において回転速度1rpmで測定した粘度と25℃において回転速度10rpmで測定した粘度との比([回転速度1rpmの場合の粘度]/[回転速度10rpmの場合の粘度])である。これら粘度は、コーン/プレート型粘度計(Brookfield社製、型式DV-III+Pro、スピンドルの型番CPE-52)を用いて測定することができる。 In addition, in the present specification, the thixotropy index of the curable composition of the present embodiment is a ratio of the viscosity measured at a rotation speed of 1 rpm at 25° C. and the viscosity measured at a rotation speed of 10 rpm at 25° C. ([rotation speed 1 rpm In the case of []/[viscosity in the case of a rotation speed of 10 rpm]]. These viscosities can be measured using a cone/plate viscometer (Model DV-III+Pro, spindle model CPE-52, manufactured by Brookfield).
 以上説明したように、本実施形態の硬化性組成物はハンドリング性が良好であるとともに、フレキシブル基板等の基材へ硬化性組成物を印刷法等により塗工する際に、糸引き性が低く且つ消泡性が優れる。また、本実施形態の硬化性組成物は、硬化時に収縮が生じにくい。 As described above, the curable composition of the present embodiment has good handleability and low threading property when the curable composition is applied to a substrate such as a flexible substrate by a printing method or the like. In addition, it has excellent defoaming properties. In addition, the curable composition of the present embodiment is unlikely to cause shrinkage during curing.
III.硬化物及びその製造方法
 本実施形態の硬化物は、本実施形態の硬化性組成物を硬化させて得られる硬化物である。本実施形態の硬化性組成物を硬化させる方法は特に限定されるものではなく、熱や活性エネルギー線(例えば紫外線、電子線、X線)によって硬化させることができる。よって、本実施形態の硬化性組成物には、熱ラジカル発生剤、光ラジカル発生剤等の重合開始剤を添加してもよい。
III. Hardened|cured material and its manufacturing method The hardened|cured material of this embodiment is hardened|cured material obtained by hardening the curable composition of this embodiment. The method for curing the curable composition of the present embodiment is not particularly limited, and the curable composition can be cured by heat or active energy rays (for example, ultraviolet rays, electron beams, X rays). Therefore, a polymerization initiator such as a heat radical generator or a photo radical generator may be added to the curable composition of the present embodiment.
 本実施形態の硬化物は、本実施形態の硬化性組成物の糸引き性が低く且つ消泡性が優れるため、優れた作業性と生産性で製造することが可能である。また、本実施形態の硬化物は、可撓性及び耐湿性が良好で、しかも長期絶縁信頼性が優れている。さらに、本実施形態の硬化物は、フレキシブル基板等の基材との密着性が良好である。さらに、本実施形態の硬化物は、表面にタック現象が生じにくい。 The cured product of the present embodiment can be manufactured with excellent workability and productivity because the curable composition of the present embodiment has low stringiness and excellent defoaming property. Further, the cured product of the present embodiment has good flexibility and moisture resistance, and also has excellent long-term insulation reliability. Furthermore, the cured product of this embodiment has good adhesion to a substrate such as a flexible substrate. Furthermore, the cured product of the present embodiment is unlikely to cause a tack phenomenon on the surface.
IV.オーバーコート膜及びその製造方法
 本実施形態のオーバーコート膜は、本実施形態の硬化物を含有しており、本実施形態の硬化性組成物を硬化させることによって製造することができる。詳述すると、本実施形態のオーバーコート膜は、本実施形態の硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分に膜状に配した後に、膜状の硬化性組成物を加熱等により硬化させて膜状の硬化物とすることによって製造することができる。
IV. Overcoat Film and Method for Producing the Same The overcoat film of the present embodiment contains the cured product of the present embodiment, and can be produced by curing the curable composition of the present embodiment. More specifically, the overcoat film of the present embodiment is a film obtained by arranging the curable composition of the present embodiment in a film shape on the portion of the surface of the flexible substrate on which the wiring is formed, where the wiring is formed. It can be produced by curing the curable composition in the form of a film by heating to give a cured product in the form of a film.
 本実施形態のオーバーコート膜の具体的な製造方法は特に限定されるものではないが、一例を以下に示す。すなわち、本実施形態のオーバーコート膜の製造方法は、本実施形態の硬化性組成物をフレキシブル基板の表面に印刷して印刷膜を得る印刷工程と、印刷工程で得られた印刷膜を100℃以上170℃以下の雰囲気下で熱硬化させてオーバーコート膜を得る硬化工程と、を有する。印刷工程と硬化工程との間に、溶剤除去工程を設けてもよい。溶剤除去工程とは、印刷工程で得られた印刷膜を40℃以上100℃以下の雰囲気下におくことで、印刷膜中の溶剤の一部又は全部を蒸発させて、溶剤が除去された印刷膜を得る工程である。
 印刷工程での硬化性組成物の印刷方法に特に制限はなく、例えば、スクリーン印刷法、ロールコーター法、スプレー法、カーテンコーター法などにより、本実施形態の硬化性組成物をフレキシブル基板に塗工して印刷膜を得ることができる。
The specific method for producing the overcoat film of the present embodiment is not particularly limited, but one example is shown below. That is, the method for producing an overcoat film according to the present embodiment includes a printing step of printing the curable composition of the present embodiment on the surface of a flexible substrate to obtain a printed film, and a printing film obtained in the printing step at 100° C. And a curing step of obtaining an overcoat film by heat curing in an atmosphere at 170° C. or lower. A solvent removing step may be provided between the printing step and the curing step. The solvent removal process is a printing process in which the solvent is removed by evaporating a part or all of the solvent in the printing film by placing the printing film obtained in the printing process in an atmosphere of 40° C. or higher and 100° C. or lower. This is the step of obtaining a film.
The method for printing the curable composition in the printing step is not particularly limited, and for example, the curable composition of the present embodiment is applied to a flexible substrate by a screen printing method, a roll coater method, a spray method, a curtain coater method, or the like. The printed film can be obtained.
 溶剤除去工程は必要に応じて行われる操作であり、印刷工程の後にすぐに硬化工程を行い、硬化工程において硬化反応と溶剤の除去とを同時に行ってもよい。溶剤除去工程を行う場合は、その温度は、溶剤の蒸発速度及び熱硬化の操作への速やかな移行を考慮すると、40℃以上100℃以下であることが好ましく、60℃以上100℃以下であることがより好ましく、70℃以上90℃以下であることがさらに好ましい。硬化工程や溶剤除去工程において溶剤を蒸発させる時間は特に限定されるものではないが、10分以上120分以下であることが好ましく、20分以上100分以下であることがより好ましい。 The solvent removal step is an operation that is performed as necessary, and the curing step may be performed immediately after the printing step, and the curing reaction and solvent removal may be performed simultaneously in the curing step. When the solvent removal step is performed, the temperature is preferably 40° C. or higher and 100° C. or lower, and is 60° C. or higher and 100° C. or lower, in consideration of the evaporation rate of the solvent and a rapid shift to the heat curing operation. It is more preferable that the temperature is 70° C. or higher and 90° C. or lower. The time for evaporating the solvent in the curing step and the solvent removing step is not particularly limited, but it is preferably 10 minutes or more and 120 minutes or less, and more preferably 20 minutes or more and 100 minutes or less.
 硬化工程における熱硬化の温度は、100℃以上170℃以下であることが好ましく、105℃以上160℃以下であることがより好ましく、110℃以上150℃以下であることがさらに好ましい。硬化工程で行われる熱硬化の時間は、特に限定されるものではないが、20分以上4時間以下であることが好ましく、30分以上2時間以下であることがより好ましい。 The thermosetting temperature in the curing step is preferably 100° C. or higher and 170° C. or lower, more preferably 105° C. or higher and 160° C. or lower, and further preferably 110° C. or higher and 150° C. or lower. The time of heat curing performed in the curing step is not particularly limited, but is preferably 20 minutes or more and 4 hours or less, and more preferably 30 minutes or more and 2 hours or less.
 このようにして得られた本実施形態のオーバーコート膜は、本実施形態の硬化性組成物の糸引き性が低く且つ消泡性が優れるため、優れた作業性と生産性で製造することが可能である。また、本実施形態のオーバーコート膜は、柔軟性、可撓性、フレキシブル基板との密着性、長期絶縁信頼性が優れている。さらに、本実施形態のオーバーコート膜は、表面にタック現象が生じにくい。その結果、オーバーコート膜が形成されたフレキシブル配線板は、後述する優れた性能を有することとなる。 The overcoat film of the present embodiment thus obtained can be produced with excellent workability and productivity because the curable composition of the present embodiment has low stringiness and excellent defoaming property. It is possible. Further, the overcoat film of this embodiment is excellent in flexibility, flexibility, adhesion to a flexible substrate, and long-term insulation reliability. Furthermore, the overcoat film of the present embodiment is unlikely to cause a tack phenomenon on the surface. As a result, the flexible wiring board on which the overcoat film is formed has excellent performance described later.
V.フレキシブル配線板及びその製造方法
 本実施形態の硬化性組成物は、例えば、配線の絶縁保護用レジストインキとして使用することができ、本実施形態の硬化物は、絶縁保護膜として用いることができる。特に、例えばチップオンフィルムのようなフレキシブル配線板の配線の全部又は一部を被覆することにより、本実施形態の硬化物を配線の絶縁保護膜として用いることができる。
V. Flexible Wiring Board and Manufacturing Method Thereof The curable composition of the present embodiment can be used, for example, as a resist ink for insulation protection of wiring, and the cured product of the present embodiment can be used as an insulation protection film. In particular, by coating all or part of the wiring of a flexible wiring board such as a chip-on-film, the cured product of this embodiment can be used as an insulating protective film for wiring.
 本実施形態のフレキシブル配線板は、本実施形態の硬化性組成物とフレキシブル基板から製造することができる。詳述すると、本実施形態のフレキシブル配線板は、本実施形態の硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち配線が形成されている部分に膜状に配した後に、膜状の硬化性組成物を硬化させてオーバーコート膜とすることによって製造することができる。なお、オーバーコート膜によって被覆される配線は、配線の酸化防止及び経済的な面を考慮すると、錫メッキ銅配線であることが好ましい。 The flexible wiring board of this embodiment can be manufactured from the curable composition of this embodiment and a flexible substrate. More specifically, the flexible wiring board of the present embodiment is a film after the curable composition of the present embodiment is arranged in a film shape on the portion of the surface of the flexible substrate on which the wiring is formed, in which the wiring is formed. It can be produced by curing the curable composition in the form of a strip to form an overcoat film. The wiring covered with the overcoat film is preferably tin-plated copper wiring in consideration of oxidation prevention and economical aspects of the wiring.
 本実施形態のフレキシブル配線板の具体的な製造方法は特に限定されるものではないが、一例を以下に示す。すなわち、本実施形態のフレキシブル配線板の製造方法は、本実施形態の硬化性組成物をフレキシブル基板の表面に印刷して印刷膜を得る印刷工程と、印刷工程で得られた印刷膜を100℃以上170℃以下の雰囲気下で熱硬化させて、フレキシブル配線板の保護膜(オーバーコート膜)を得る硬化工程と、を有する。印刷工程と硬化工程との間に、溶剤除去工程を設けてもよい。溶剤除去工程とは、印刷工程で得られた印刷膜を40℃以上100℃以下の雰囲気下におくことで、印刷膜中の溶剤の一部又は全部を蒸発させて、溶剤が除去された印刷膜を得る工程である。
 印刷工程での硬化性組成物の印刷方法に特に制限はなく、例えば、スクリーン印刷法、ロールコーター法、スプレー法、カーテンコーター法などにより、本実施形態の硬化性組成物をフレキシブル基板に塗工して印刷膜を得ることができる。
The specific method for manufacturing the flexible wiring board of the present embodiment is not particularly limited, but an example is shown below. That is, in the method for manufacturing a flexible wiring board of the present embodiment, the curable composition of the present embodiment is printed on the surface of the flexible substrate to obtain a printed film, and the printed film obtained in the printing step is heated to 100° C. And a curing step of obtaining a protective film (overcoat film) of the flexible wiring board by heat curing in an atmosphere of 170° C. or less. A solvent removing step may be provided between the printing step and the curing step. The solvent removal process is a printing process in which the solvent is removed by evaporating a part or all of the solvent in the printing film by placing the printing film obtained in the printing process in an atmosphere of 40° C. or higher and 100° C. or lower. This is the step of obtaining a film.
The method for printing the curable composition in the printing step is not particularly limited, and for example, the curable composition of the present embodiment is applied to a flexible substrate by a screen printing method, a roll coater method, a spray method, a curtain coater method, or the like. The printed film can be obtained.
 溶剤除去工程は必要に応じて行われる操作であり、印刷工程の後にすぐに硬化工程を行い、硬化工程において硬化反応と溶剤の除去とを同時に行ってもよい。溶剤除去工程を行う場合は、その温度は、溶剤の蒸発速度及び熱硬化の操作への速やかな移行を考慮すると、40℃以上150℃以下であることが好ましく、60℃以上100℃以下であることがより好ましく、70℃以上90℃以下であることがさらに好ましい。硬化工程や溶剤除去工程において溶剤を蒸発させる時間は特に限定されるものではないが、10分以上120分以下であることが好ましく、20分以上100分以下であることがより好ましい。 The solvent removal step is an operation that is performed as necessary, and the curing step may be performed immediately after the printing step, and the curing reaction and solvent removal may be performed simultaneously in the curing step. When the solvent removal step is performed, the temperature is preferably 40° C. or higher and 150° C. or lower, and is 60° C. or higher and 100° C. or lower, in consideration of the evaporation rate of the solvent and a rapid shift to the operation of heat curing. It is more preferable that the temperature is 70° C. or higher and 90° C. or lower. The time for evaporating the solvent in the curing step and the solvent removing step is not particularly limited, but it is preferably 10 minutes or more and 120 minutes or less, and more preferably 20 minutes or more and 100 minutes or less.
 硬化工程における熱硬化の温度は、メッキ層の拡散を防ぎ且つ保護膜として好適な低反り性、柔軟性を得る観点から、100℃以上170℃以下であることが好ましく、105℃以上160℃以下であることがより好ましく、110℃以上150℃以下であることがさらに好ましい。硬化工程で行われる熱硬化の時間は、特に限定されるものではないが、10分以上150分以下であることが好ましく、15分以上120分以下であることがより好ましい。
 なお、溶剤除去工程と硬化工程とを同時に行う場合には、例えば120℃以上150℃以下で行うことができる。
The temperature of thermosetting in the curing step is preferably 100° C. or higher and 170° C. or lower, and 105° C. or higher and 160° C. or lower, from the viewpoint of preventing diffusion of the plated layer and obtaining low warpage and flexibility suitable as a protective film. Is more preferable, and it is further preferable that the temperature is 110° C. or higher and 150° C. or lower. The time of heat curing performed in the curing step is not particularly limited, but is preferably 10 minutes or more and 150 minutes or less, and more preferably 15 minutes or more and 120 minutes or less.
In addition, when performing a solvent removal process and a hardening process simultaneously, it can perform, for example at 120 to 150 degreeC.
 このようにして得られた本実施形態のフレキシブル配線板は、本実施形態の硬化性組成物の糸引き性が低く且つ消泡性が優れるため、優れた作業性と生産性で製造することが可能である。また、オーバーコート膜の柔軟性、可撓性が優れているため、本実施形態のフレキシブル配線板も柔軟性、可撓性が優れているとともに、フレキシブル配線板が揺り動かされたとしても配線の断線が生じにくい(配線の断線抑制性に優れる)。よって、本実施形態のフレキシブル配線板は、クラックが生じにくく、例えばチップオンフィルム(COF)等の技術に用いられるフレキシブルプリント配線板に好適である。 The flexible wiring board of this embodiment thus obtained can be manufactured with excellent workability and productivity because the curable composition of this embodiment has low stringiness and excellent defoaming properties. It is possible. Moreover, since the flexibility and flexibility of the overcoat film are excellent, the flexible wiring board of the present embodiment is also excellent in flexibility and flexibility, and even if the flexible wiring board is shaken, the wiring is disconnected. Is less likely to occur (excellent in suppressing wire disconnection). Therefore, the flexible wiring board of the present embodiment hardly causes cracks, and is suitable for a flexible printed wiring board used for a technology such as chip-on-film (COF).
 さらに、本実施形態の硬化性組成物は硬化時に収縮が生じにくいので、本実施形態のフレキシブル配線板は反りが小さい。よって、本実施形態のフレキシブル配線板にICチップを搭載する工程において、ICチップの搭載位置の位置合わせが容易である。さらに、本実施形態のフレキシブル配線板は、オーバーコート膜とフレキシブル基板との密着性が優れている。さらに、オーバーコート膜の長期絶縁信頼性が優れているため、本実施形態のフレキシブル配線板も長期絶縁信頼性が優れている。さらに、本実施形態のフレキシブル配線板は、オーバーコート膜の表面にタック現象が生じにくい。 Furthermore, since the curable composition of the present embodiment is less likely to shrink during curing, the flexible wiring board of the present embodiment has less warpage. Therefore, in the process of mounting the IC chip on the flexible wiring board of the present embodiment, it is easy to align the mounting position of the IC chip. Furthermore, the flexible wiring board of this embodiment has excellent adhesion between the overcoat film and the flexible substrate. Furthermore, since the long-term insulation reliability of the overcoat film is excellent, the flexible wiring board of this embodiment is also excellent in long-term insulation reliability. Furthermore, in the flexible wiring board of the present embodiment, the tack phenomenon is unlikely to occur on the surface of the overcoat film.
 以下に実施例及び比較例を示して、本発明をより詳細に説明する。
<ポリエステルジオールの合成>
(参考合成例1)
 攪拌装置、温度計及び蒸留装置付きコンデンサーを備えた反応容器に、無水フタル酸983.5g(6.74mol)、1,6-ヘキサンジオール879.2g(7.44mol)を投入し、オイルバスを用いて反応容器の内温を140℃に昇温して、攪拌を4時間継続した。その後、攪拌を継続しながら、モノ-n-ブチル錫オキサイド1.74gを添加した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
<Synthesis of polyester diol>
(Reference synthesis example 1)
983.5 g (6.74 mol) of phthalic anhydride and 879.2 g (7.44 mol) of phthalic anhydride were put into a reaction vessel equipped with a stirrer, a thermometer and a condenser with a distillation device, and an oil bath was added. The internal temperature of the reaction vessel was raised to 140° C. by using and stirring was continued for 4 hours. Then, with continued stirring, 1.74 g of mono-n-butyltin oxide was added.
 そして、徐々に反応容器の内温を昇温しながら、真空ポンプによって少しずつ反応容器内の圧力を減圧していき、減圧蒸留により水を反応容器外に除去していった。最終的には、内温を220℃まで昇温し、圧力を133.32Paまで減圧した。15時間経過して水が完全に留去しなくなったのを確認して、反応を終了した。
 得られたポリエステルジオール(以下、「ポリエステルジオール(α)」と記す。)の水酸基価を測定したところ、水酸基価は53.1mgKOH/gであった。
Then, while gradually raising the internal temperature of the reaction container, the pressure inside the reaction container was gradually reduced by a vacuum pump, and water was removed to the outside of the reaction container by vacuum distillation. Finally, the internal temperature was raised to 220° C. and the pressure was reduced to 133.32 Pa. After 15 hours, it was confirmed that water was not completely distilled off, and the reaction was terminated.
When the hydroxyl value of the obtained polyester diol (hereinafter referred to as “polyester diol (α)”) was measured, the hydroxyl value was 53.1 mgKOH/g.
(反応速度定数の測定)
 イソシアネート化合物のイソシアナト基とポリオール化合物のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数を測定した。ただし、重合反応の反応速度定数ではなく、モデル化合物の反応速度定数を測定した。すなわち、モノイソシアネート化合物であるイソシアン酸シクロヘキシル(東京化成株式会社製)と各種ポリオール化合物との反応の反応速度定数を測定し、これをポリイソシアネート化合物のイソシアナト基とポリオール化合物のヒドロキシ基とからウレタン結合を形成する重合反応の反応速度定数とした。
(Measurement of reaction rate constant)
The reaction rate constant of the reaction for forming a urethane bond from the isocyanato group of the isocyanate compound and the hydroxy group of the polyol compound was measured. However, the reaction rate constant of the model compound was measured instead of the reaction rate constant of the polymerization reaction. That is, the reaction rate constant of the reaction between cyclohexyl isocyanate (manufactured by Tokyo Kasei Co., Ltd.), which is a monoisocyanate compound, and various polyol compounds is measured, and the urethane bond is determined from the isocyanato group of the polyisocyanate compound and the hydroxy group of the polyol compound. Was used as the reaction rate constant of the polymerization reaction for forming.
 イソシアン酸シクロヘキシルとポリオール化合物との反応において使用する溶媒は、ポリウレタンの合成に使用した溶媒と同じγ-ブチロラクトンとし、反応基質濃度は、ポリウレタンの合成時と同一の反応基質濃度とした。そして、反応中の反応溶液を逐次分析して反応変換率を算出し、そこから反応速度定数を算出した。反応溶液の分析方法を以下に示す。 The solvent used in the reaction between cyclohexyl isocyanate and the polyol compound was γ-butyrolactone, which was the same as the solvent used for polyurethane synthesis, and the reaction substrate concentration was the same as that used during polyurethane synthesis. Then, the reaction solution during the reaction was sequentially analyzed to calculate the reaction conversion rate, and the reaction rate constant was calculated therefrom. The analysis method of the reaction solution is shown below.
 窒素等の不活性雰囲気下においてパスツールピペットを用いて反応溶液の一部(約0.05mL)をサンプリングし、NMR測定溶媒である重クロロホルム(Aldrich社製)で希釈して反応を停止した。そして、核磁気共鳴分光装置(日本電子株式会社製のJNM-AL400、周波数400MHz)を用いて、希釈した反応溶液の1H-NMR分析を行った。 A part of the reaction solution (about 0.05 mL) was sampled using a Pasteur pipette under an inert atmosphere such as nitrogen, and diluted with deuterated chloroform (Aldrich) as an NMR measurement solvent to stop the reaction. Then, using a nuclear magnetic resonance spectrometer (JNM-AL400 manufactured by JEOL Ltd., frequency 400 MHz), 1 H-NMR analysis of the diluted reaction solution was performed.
 1H-NMR分析では、イソシアン酸シクロヘキシルのイソシアナト基が連結する炭素が有するメチン水素を検出し、原料のプロトンに由来する信号と生成物のプロトンに由来する信号との積分強度比によって、反応変換率を算出した。そして、下記式を利用して、経過時間ごとの反応変換率から反応速度定数を算出した。
   1/C-1/C0=K・t
In 1 H-NMR analysis, methine hydrogen contained in the carbon linked to the isocyanato group of cyclohexyl isocyanate is detected, and the reaction conversion is performed by the integrated intensity ratio of the signal derived from the raw material proton and the signal derived from the product proton. The rate was calculated. Then, using the following formula, the reaction rate constant was calculated from the reaction conversion rate for each elapsed time.
1/C-1/C 0 =K·t
 すなわち、経過時間ごとの反応変換率から経過時間ごとのポリオール化合物の濃度を算出し、ポリオール化合物の濃度の算出値を、反応経過時間tをX軸、1/CをY軸とするグラフにプロットする。すると、そのグラフに描かれる直線の傾きが反応速度定数Kとなる。
 なお、上記式中のC0はポリオール化合物の初期濃度、Cはポリオール化合物の濃度、tは反応経過時間、Kは反応速度定数である。
That is, the concentration of the polyol compound for each elapsed time is calculated from the reaction conversion rate for each elapsed time, and the calculated value for the concentration of the polyol compound is plotted on a graph with the reaction elapsed time t as the X axis and 1/C as the Y axis. To do. Then, the slope of the straight line drawn in the graph becomes the reaction rate constant K.
In the above formula, C 0 is the initial concentration of the polyol compound, C is the concentration of the polyol compound, t is the reaction elapsed time, and K is the reaction rate constant.
 上記の方法で算出した結果、各種ポリオール化合物の反応速度定数は以下の通りとなった。
 9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製、商品名BPEF)の反応速度定数K1は、反応温度115℃では250であり、反応温度145℃では1000である。なお、芳香環濃度は9.12mmol/gである。
As a result of calculation by the above method, the reaction rate constants of various polyol compounds were as follows.
The reaction rate constant K1 of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (manufactured by Osaka Gas Chemicals Co., Ltd., trade name BPEF) is 250 at a reaction temperature of 115° C. and is 145° C. at a reaction temperature of 145° C. It is 1000. The aromatic ring concentration is 9.12 mmol/g.
 株式会社クラレ製のポリエステルジオールP-2030(イソフタル酸と3-メチル-1,5-ペンタンジオールからなるポリエステルポリオール)の反応速度定数K2は、反応温度115℃では500であり、反応温度145℃では2000である。なお、芳香環濃度は3.52mmol/gである。
 株式会社クラレ製のポリエステルジオールP-2050(セバシン酸と3-メチル-1,5-ペンタンジオールからなるポリエステルポリオール)の反応速度定数K2は、反応温度115℃では550であり、反応温度145℃では2200である。なお、芳香環濃度は0mmol/gである。
The reaction rate constant K2 of polyester diol P-2030 (polyester polyol consisting of isophthalic acid and 3-methyl-1,5-pentanediol) manufactured by Kuraray Co., Ltd. is 500 at a reaction temperature of 115° C. and at a reaction temperature of 145° C. 2000. The aromatic ring concentration is 3.52 mmol/g.
The reaction rate constant K2 of polyester diol P-2050 (polyester polyol composed of sebacic acid and 3-methyl-1,5-pentanediol) manufactured by Kuraray Co., Ltd. is 550 at a reaction temperature of 115° C. and at a reaction temperature of 145° C. 2200. The aromatic ring concentration is 0 mmol/g.
 旭化成株式会社製のポリカーボネートジオール(商品名デュラノールT5652)の反応速度定数K2は、反応温度115℃では550であり、反応温度145℃では3100である。なお、芳香環濃度は0mmol/gである。
 参考合成例1のポリエステルジオール(α)の反応速度定数K2は、反応温度115℃では480であり、反応温度145℃では2200である。なお、芳香環濃度は2.00mmol/gである。
The reaction rate constant K2 of polycarbonate diol (trade name: Duranol T5652) manufactured by Asahi Kasei Co., Ltd. is 550 at a reaction temperature of 115° C. and 3100 at a reaction temperature of 145° C. The aromatic ring concentration is 0 mmol/g.
The reaction rate constant K2 of the polyester diol (α) of Reference Synthesis Example 1 is 480 at a reaction temperature of 115° C. and 2200 at a reaction temperature of 145° C. The aromatic ring concentration is 2.00 mmol/g.
 参考合成例2のポリエステルジオール(β)の反応速度定数K2は、反応温度115℃では460であり、反応温度145℃では1800である。なお、芳香環濃度は2.00mmol/gである。
 2,2-ジメチロールプロピオン酸(東京化成工業株式会社製)の反応速度定数K3は、反応温度115℃では1.6であり、反応温度145℃では7.2である。なお、芳香環濃度は0mmol/gである。
 カルボキシ基とジオール構造を有する2,2-ジメチロールプロピオン酸は、他の5種のジオールに比べて、反応速度定数が小さく、反応速度が低いことが分かる。
The reaction rate constant K2 of the polyester diol (β) of Reference Synthesis Example 2 is 460 at a reaction temperature of 115° C. and 1800 at a reaction temperature of 145° C. The aromatic ring concentration is 2.00 mmol/g.
The reaction rate constant K3 of 2,2-dimethylolpropionic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) is 1.6 at a reaction temperature of 115° C. and 7.2 at a reaction temperature of 145° C. The aromatic ring concentration is 0 mmol/g.
It can be seen that 2,2-dimethylolpropionic acid having a carboxy group and a diol structure has a smaller reaction rate constant and a lower reaction rate than the other five diols.
<ポリウレタンの合成>
(実施合成例1:分子量分布を狭く制御してポリウレタンを合成する方法)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、第1のポリオール化合物H1である9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製、商品名BPEF)10.7gと、第2のポリオール化合物H2であるポリエステルジオールP-2030(株式会社クラレ製)61.52gと、第3のポリオール化合物H3である2,2-ジメチロールプロピオン酸(東京化成工業株式会社製)1.62gと、溶媒であるγ-ブチロラクトン137.7gとを仕込み、100℃に加熱して全ての原料を溶解した。
<Synthesis of polyurethane>
(Practical Synthesis Example 1: Method of Synthesizing Polyurethane by Controlling Narrow Molecular Weight Distribution)
In a reaction vessel equipped with a stirrer, a thermometer, and a condenser, the first polyol compound H1 was 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (Osaka Gas Chemical Co., Ltd., trade name BPEF ) 10.7 g, polyester diol P-2030 (manufactured by Kuraray Co., Ltd.) which is the second polyol compound H2, and 2,2-dimethylolpropionic acid (Tokyo Kasei Kogyo Co., Ltd.) which is the third polyol compound H3 1.62 g (produced by KK) and 137.7 g of γ-butyrolactone as a solvent were charged and heated to 100° C. to dissolve all the raw materials.
 反応溶液の温度を90℃まで下げた後に、ポリイソシアネート化合物Iであるメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製、商品名デスモジュール-W)28.31gを、滴下ロートで30分間かけて滴下した。145℃~150℃で1時間反応を行った後に、2,2-ジメチロールプロピオン酸(東京化成工業株式会社製)4.86gを追加投入した。2,2-ジメチロールプロピオン酸を追加投入する時点のポリウレタン(すなわち中間重合体)の重量平均分子量は、7500であった。 After the temperature of the reaction solution was lowered to 90° C., 28.31 g of polyisocyanate compound I, methylenebis(4-cyclohexylisocyanate) (manufactured by Sumika Bayer Urethane Co., Ltd., trade name Desmodur-W) was added with a dropping funnel at 30 It was dripped over a period of minutes. After the reaction was carried out at 145° C. to 150° C. for 1 hour, 4.86 g of 2,2-dimethylolpropionic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was additionally charged. The weight average molecular weight of the polyurethane (that is, the intermediate polymer) at the time of additionally adding 2,2-dimethylolpropionic acid was 7,500.
 なお、ポリウレタンの製造に使用するポリイソシアネート化合物Iの全量が有するイソシアナト基の総数FI、第1のポリオール化合物H1の全量が有するヒドロキシ基の総数FH1、第2のポリオール化合物H2の全量が有するヒドロキシ基の総数FH2、第3のポリオール化合物H3の全量のうち初期から投入されていた分が有するヒドロキシ基の総数FaH3、及び、第3のポリオール化合物H3の全量のうち追加投入された分が有するヒドロキシ基の総数FbH3の比率は、それぞれ以下の通りである。 The total amount of isocyanato groups F I in the total amount of polyisocyanate compound I used in the production of polyurethane, the total number of hydroxy groups F H1 in the total amount of first polyol compound H1, and the total amount of second polyol compound H2 have The total number F H2 of hydroxy groups, the total number Fa H3 of hydroxy groups possessed from the initial amount of the total amount of the third polyol compound H3 , and the additional amount of the total amount of the third polyol compound H3. The ratio of the total number Fb H3 of hydroxy groups possessed by each is as follows.
   FH1/FI=0.22
   FH2/FI=0.29
   FaH3/FI=0.11
   (FH1+FH2)/FI=0.51
   (FH1+FH2+FaH3)/FI=0.62
   FbH3/FI=0.33
   (FH1+FH2+FaH3+FbH3)/FI=0.95
F H1 /F I =0.22
F H2 /F I =0.29
Fa H3 /F I =0.11
(F H1 +F H2 )/F I =0.51
(F H1 +F H2 +Fa H3 )/F I =0.62
Fb H3 /F I =0.33
(F H1 +F H2 +Fa H3 +Fb H3 )/F I =0.95
 145℃~150℃で反応を継続した後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、メチルエチルオキシム(宇部興産株式会社製)1.5gを反応溶液に滴下し、さらに80℃で3時間反応を行った。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液A1」と記す。)を得た。 After the reaction was continued at 145°C to 150°C, it was confirmed by infrared spectroscopy (IR) that the absorption derived from the C=O stretching vibration of the isocyanato group was almost not observed, and methyl ethyl oxime (Ube Industries, Ltd. 1.5 g (manufactured by the company) was added dropwise to the reaction solution, and the reaction was further performed at 80° C. for 3 hours. As a result, a solution containing a polyurethane having a carboxy group (hereinafter referred to as “polyurethane solution A1”) was obtained.
 得られたポリウレタン溶液A1の粘度は100000mPa・sであった。また、ポリウレタン溶液A1中に含有されるカルボキシ基を有するポリウレタン(以下、「ポリウレタンAU1」と記す。)の数平均分子量(Mn)は12000、重量平均分子量(Mw)は73000であった。ポリウレタンAU1の酸価は25.0mgKOH/gであった。また、ポリウレタン溶液A1中の固形分濃度は43.4質量%であった。 The viscosity of the obtained polyurethane solution A1 was 100,000 mPa·s. Further, the number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution A1 (hereinafter referred to as “polyurethane AU1”) was 12,000 and the weight average molecular weight (Mw) was 73,000. The acid value of polyurethane AU1 was 25.0 mgKOH/g. The solid content concentration of the polyurethane solution A1 was 43.4% by mass.
(比較合成例1:分子量分布を制御せずにポリウレタンを合成する方法)
 攪拌装置、温度計及びコンデンサーを備えた反応容器に、第1のポリオール化合物H1である9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製、商品名BPEF)10.7gと、第2のポリオール化合物H2であるポリエステルジオールP-2030(株式会社クラレ製)61.52gと、第3のポリオール化合物H3である2,2-ジメチロールプロピオン酸(東京化成工業株式会社製)6.48gと、溶媒であるγ-ブチロラクトン137.7gとを仕込み、100℃に加熱して全ての原料を溶解した。
(Comparative Synthesis Example 1: Method of synthesizing polyurethane without controlling molecular weight distribution)
In a reaction vessel equipped with a stirrer, a thermometer, and a condenser, the first polyol compound H1 was 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (Osaka Gas Chemical Co., Ltd., trade name BPEF ) 10.7 g, polyester diol P-2030 (manufactured by Kuraray Co., Ltd.) which is the second polyol compound H2, and 2,2-dimethylolpropionic acid (Tokyo Kasei Kogyo Co., Ltd.) which is the third polyol compound H3 6.48 g (produced by Co., Ltd.) and 137.7 g of γ-butyrolactone as a solvent were charged and heated to 100° C. to dissolve all the raw materials.
 反応溶液の温度を90℃まで下げた後に、ポリイソシアネート化合物Iであるメチレンビス(4-シクロヘキシルイソシアネート)(住化バイエルウレタン株式会社製、商品名デスモジュール-W)28.31gを、滴下ロートで30分間かけて滴下した。
 なお、ポリウレタンの製造に使用するポリイソシアネート化合物Iの全量が有するイソシアナト基の総数FI、第1のポリオール化合物H1の全量が有するヒドロキシ基の総数FH1、第2のポリオール化合物H2の全量が有するヒドロキシ基の総数FH2、第3のポリオール化合物H3の全量が有するヒドロキシ基の総数FH3の比率は、それぞれ以下の通りである。
After the temperature of the reaction solution was lowered to 90° C., 28.31 g of polyisocyanate compound I, methylenebis(4-cyclohexylisocyanate) (manufactured by Sumika Bayer Urethane Co., Ltd., trade name Desmodur-W) was added with a dropping funnel at 30 It was dripped over a period of minutes.
The total amount of isocyanato groups F I in the total amount of polyisocyanate compound I used in the production of polyurethane, the total number of hydroxy groups F H1 in the total amount of first polyol compound H1, and the total amount of second polyol compound H2 have The ratio of the total number F H2 of hydroxy groups and the total number F H3 of hydroxy groups contained in the total amount of the third polyol compound H3 is as follows.
   FH1/FI=0.22
   FH2/FI=0.29
   FH3/FI=0.44
   (FH1+FH2)/FI=0.51
   (FH1+FH2+FH3)/FI=0.95
F H1 /F I =0.22
F H2 /F I =0.29
F H3 /F I =0.44
(F H1 +F H2 )/F I =0.51
(F H1 +F H2 +F H3 )/F I =0.95
 120℃で8時間反応を行った後に、イソシアナト基のC=O伸縮振動に由来する吸収がほぼ観測されなくなったことを赤外分光法(IR)により確認したら、エタノール(和光純薬工業株式会社製)1.5gを反応溶液に滴下し、さらに80℃で3時間反応を行った。これにより、カルボキシ基を有するポリウレタンを含有する溶液(以下、「ポリウレタン溶液B1」と記す。)を得た。 After carrying out the reaction at 120° C. for 8 hours, it was confirmed by infrared spectroscopy (IR) that absorption due to C═O stretching vibration of the isocyanato group was almost not observed, and then ethanol (Wako Pure Chemical Industries, Ltd.) 1.5 g) was added dropwise to the reaction solution, and the mixture was further reacted at 80° C. for 3 hours. As a result, a solution containing a polyurethane having a carboxy group (hereinafter referred to as “polyurethane solution B1”) was obtained.
 得られたポリウレタン溶液B1の粘度は120000mPa・sであった。また、ポリウレタン溶液B1中に含有されるカルボキシ基を有するポリウレタン(以下、「ポリウレタンBU1」と記す。)の数平均分子量(Mn)は14000、重量平均分子量(Mw)は104000であった。ポリウレタンBU1の酸価は25.0mgKOH/gであった。また、ポリウレタン溶液B1中の固形分濃度は39.6質量%であった。 The viscosity of the obtained polyurethane solution B1 was 120,000 mPa·s. The number average molecular weight (Mn) of the polyurethane having a carboxy group contained in the polyurethane solution B1 (hereinafter referred to as “polyurethane BU1”) was 14,000 and the weight average molecular weight (Mw) was 104,000. The acid value of polyurethane BU1 was 25.0 mgKOH/g. The solid content concentration of the polyurethane solution B1 was 39.6% by mass.
 ポリウレタンAU1とポリウレタンBU1のGPCチャートを図1に示す。ポリウレタンAU1は、ポリウレタンBU1に比べて、リテンションタイムが短い高分子量領域において分子量分散度が低いことから、狭い分子量分布を示す高分子鎖が得られていることが分かる。
 このように、反応性の低い第3のポリオール化合物H3の重合反応を一度に行うか、複数回に分けて行うかで、生成するポリウレタンの分子量分布を制御することが可能である。そして、分子量分布の狭いポリウレタンを用いれば、フレキシブル基板等の基材への塗工時の糸引き性が低く、消泡性が良好な硬化性組成物を得ることができる。
The GPC charts of polyurethane AU1 and polyurethane BU1 are shown in FIG. Polyurethane AU1 has a lower molecular weight dispersity in the high molecular weight region with a shorter retention time than that of polyurethane BU1, and therefore it can be seen that polymer chains exhibiting a narrow molecular weight distribution are obtained.
As described above, the molecular weight distribution of the generated polyurethane can be controlled by performing the polymerization reaction of the low-reactivity third polyol compound H3 at once or in a plurality of times. When polyurethane having a narrow molecular weight distribution is used, it is possible to obtain a curable composition having a low stringiness when applied to a substrate such as a flexible substrate and having good defoaming property.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(実施合成例2~7及び比較合成例2~7)
 原料の第2のポリオール化合物H2の種類を表1、2に示す通り種々変更して、実施合成例1又は比較合成例1と同様の条件にて反応を実施し、ポリウレタン溶液(ポリウレタンAU2~AU7、ポリウレタンBU2~BU7)をそれぞれ得た。結果を表1、2に示す。
(Practical Synthesis Examples 2 to 7 and Comparative Synthesis Examples 2 to 7)
The type of the second polyol compound H2 as a raw material was variously changed as shown in Tables 1 and 2, and the reaction was carried out under the same conditions as those in Example Synthesis 1 or Comparative Synthesis Example 1 to obtain a polyurethane solution (polyurethanes AU2 to AU7). , Polyurethanes BU2 to BU7) were obtained. The results are shown in Tables 1 and 2.
(酸価の測定)
 合成したポリウレタンの酸価の測定方法について説明する。ポリウレタン溶液中の溶媒を加熱下で減圧留去してポリウレタンを得て、JIS K0070に規定された電位差滴定法に準拠して酸価を測定した。電位差滴定法による酸価の測定には、例えば、京都電子工業社製の電位差自動滴定装置AT-510と複合ガラス電極C-173を用いることができる。
(Measurement of acid value)
The method for measuring the acid value of the synthesized polyurethane will be described. The solvent in the polyurethane solution was distilled off under reduced pressure with heating to obtain polyurethane, and the acid value was measured according to the potentiometric titration method specified in JIS K0070. For measuring the acid value by the potentiometric titration method, for example, an automatic potentiometric titrator AT-510 manufactured by Kyoto Electronics Manufacturing Co., Ltd. and a composite glass electrode C-173 can be used.
(ポリウレタンの数平均分子量、重量平均分子量の測定)
 ポリウレタンの数平均分子量、重量平均分子量は、GPCで測定したポリスチレン換算の数平均分子量、重量平均分子量であり、GPCの測定条件は以下の通りである。
   装置名:日本分光株式会社製HPLCユニット HSS-2000
   カラム:ShodexカラムLF-804
   移動相:テトラヒドロフラン
   流速 :1.0mL/min
   検出器:日本分光株式会社製RI-2031Plus
   温度 :40.0℃
   試料量:サンプルループ 100μL
   試料濃度:約0.1質量%
(Measurement of number average molecular weight and weight average molecular weight of polyurethane)
The number average molecular weight and weight average molecular weight of polyurethane are the polystyrene equivalent number average molecular weight and weight average molecular weight measured by GPC, and the GPC measurement conditions are as follows.
Device name: HPLC unit HSS-2000 manufactured by JASCO Corporation
Column: Shodex column LF-804
Mobile phase: Tetrahydrofuran Flow rate: 1.0 mL/min
Detector: RI-2031Plus manufactured by JASCO Corporation
Temperature: 40.0°C
Sample volume: Sample loop 100 μL
Sample concentration: approx. 0.1% by mass
(ポリウレタン溶液の粘度の測定)
 ポリウレタン溶液の粘度は、コーン/プレート型粘度計(Brookfield社製、型式DV-II+Pro、スピンドルの型番CPE-52)を用いて、温度25.0℃、回転速度5rpmの条件で測定した。なお、測定値は、スピンドルの回転開始から7分経過後に測定した粘度である。また、粘度の測定においては、ポリウレタン溶液を約0.8g使用した。
(Measurement of viscosity of polyurethane solution)
The viscosity of the polyurethane solution was measured using a cone/plate type viscometer (Model DV-II+Pro, spindle model CPE-52, manufactured by Brookfield) at a temperature of 25.0° C. and a rotation speed of 5 rpm. The measured value is the viscosity measured 7 minutes after the start of rotation of the spindle. Further, in measuring the viscosity, about 0.8 g of a polyurethane solution was used.
<主剤配合物の製造>
 γ-ブチロラクトンの添加により固形分濃度を40質量%に調整したポリウレタン溶液A1 160.0質量部と、シリカ粉(日本アエロジル株式会社製、商品名アエロジルR-974)6.3質量部と、硬化促進剤であるメラミン(日産化学工業株式会社製)0.72質量部と、ジエチレングリコールジエチルエーテル8.4質量部とを、三本ロールミル(株式会社井上製作所製、型式S-4 3/4×11)を用いて混合した。そこに、消泡剤(モメンティブ・パフォーマンス・マテリアルズ社製、商品名TSA750S)2.0質量部を添加して、スパチュラを用いて混合して、主剤配合物C1を得た(表3を参照)。
 主剤配合物C1と同様にして、ポリウレタン溶液A2~A7及びB1~B7と上記の他の成分とを、表3に示す配合組成に従って混合して、主剤配合物C2~C7及びD1~D7をそれぞれ得た。なお、表3中の数値は「質量部」を表す。
<Manufacture of base compound>
160.0 parts by mass of a polyurethane solution A1 having a solid content concentration adjusted to 40% by mass by adding γ-butyrolactone, and 6.3 parts by mass of silica powder (manufactured by Nippon Aerosil Co., Ltd., trade name Aerosil R-974). 0.72 parts by mass of melamine (manufactured by Nissan Chemical Industries, Ltd.), which is an accelerator, and 8.4 parts by mass of diethylene glycol diethyl ether were added to a three-roll mill (manufactured by Inoue Co., Ltd., model S-4 3/4×11). ) Was used for mixing. 2.0 parts by mass of an antifoaming agent (manufactured by Momentive Performance Materials Co., Ltd., trade name TSA750S) was added thereto and mixed using a spatula to obtain a base compound C1 (see Table 3). ).
Polyurethane solutions A2 to A7 and B1 to B7 and the above-mentioned other components were mixed in the same manner as the base compound C1 according to the composition shown in Table 3 to prepare the base compounds C2 to C7 and D1 to D7, respectively. Obtained. In addition, the numerical value in Table 3 represents a "mass part."
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<硬化剤溶液の製造>
 攪拌機、温度計及びコンデンサーを備えた容器に、上記式(5)で表されるエポキシ化合物(三菱化学株式会社製、グレード名JER604、エポキシ当量120g/eqv)16.85質量部と、ジエチレングリコールジエチルエーテル18.25質量部を投入し、攪拌しながら容器の内温を40℃に昇温した後、30分間攪拌を継続した。エポキシ化合物が完全に溶解したことを確認したら、室温まで冷却し、濃度48質量%のエポキシ化合物溶液を得た。このエポキシ化合物溶液を硬化剤溶液Eとする。
<Production of curing agent solution>
In a container equipped with a stirrer, a thermometer and a condenser, 16.85 parts by mass of an epoxy compound represented by the above formula (5) (manufactured by Mitsubishi Chemical Corporation, grade name JER604, epoxy equivalent 120 g/eqv) and diethylene glycol diethyl ether. After adding 18.25 parts by mass and raising the inner temperature of the container to 40° C. with stirring, stirring was continued for 30 minutes. After confirming that the epoxy compound was completely dissolved, it was cooled to room temperature to obtain an epoxy compound solution having a concentration of 48% by mass. This epoxy compound solution is referred to as a curing agent solution E.
<硬化性組成物の製造>
 主剤配合物C1 90.0質量部と硬化剤溶液E 4.0質量部とをプラスチック容器に入れ、そこに、溶媒としてジエチレングリコールジエチルエーテル5.0質量部及びジエチレングリコールエチルエーテルアセテート1.5質量部を添加した。スパーテルを用いて室温で5分間攪拌して、硬化性組成物F1を得た。硬化性組成物F1の25℃での粘度は、37000mPa・sであった。
<Production of curable composition>
90.0 parts by mass of the base compound C1 and 4.0 parts by mass of the curing agent solution E were placed in a plastic container, and 5.0 parts by mass of diethylene glycol diethyl ether and 1.5 parts by mass of diethylene glycol ethyl ether acetate as a solvent were placed therein. Was added. The mixture was stirred at room temperature for 5 minutes using a spatula to obtain a curable composition F1. The viscosity of the curable composition F1 at 25° C. was 37,000 mPa·s.
 なお、硬化性組成物の粘度は、コーン/プレート型粘度計(Brookfield社製、型式DV-II+Pro、スピンドルの型番CPE-52)を用いて、温度25.0℃、回転速度10rpmの条件で測定した。なお、測定値は、スピンドルの回転開始から7分経過後に測定した粘度である。また、粘度の測定においては、硬化性組成物を約0.6g使用した。
 主剤配合物C1に代えて、主剤配合物C2~C7、D1~D7のいずれかを用いる点以外は、硬化性組成物F1の場合と同様にして、硬化性組成物F2~F14を得た(表4を参照)。硬化性組成物F2~F14の25℃での粘度は、表4に示す通りである。
The viscosity of the curable composition is measured by using a cone/plate type viscometer (Model DV-II+Pro, spindle model CPE-52, manufactured by Brookfield) at a temperature of 25.0° C. and a rotation speed of 10 rpm. did. The measured value is the viscosity measured 7 minutes after the start of rotation of the spindle. Further, in measuring the viscosity, about 0.6 g of the curable composition was used.
Curable compositions F2 to F14 were obtained in the same manner as in the case of the curable composition F1 except that any of the main agent formulations C2 to C7 and D1 to D7 was used in place of the main agent formulation C1. See Table 4). The viscosities of the curable compositions F2 to F14 at 25° C. are as shown in Table 4.
<硬化性組成物の消泡性の評価>
 次に、硬化性組成物F1~F14の印刷時の消泡性を評価した。評価方法を以下に説明する。
 ポリイミド基材(東レ・デュポン社製のカプトン(登録商標))上にスクリーン印刷版を載置し、さらにスクリーン印刷版上に硬化性組成物15gを乗せて、ステージ移動時間0.5秒の条件で仮印刷を行った。その後、別のポリイミド基材上にスクリーン印刷版を移し、さらにスクリーン印刷版上に硬化性組成物15gを乗せて、ステージ移動時間0.5秒の条件で本印刷を行った。このとき、ポリイミド基材上に印刷された硬化性組成物に生じた泡が消失するまでの時間(消泡時間)を、目視により測定した。
<Evaluation of defoaming property of curable composition>
Next, the defoaming properties of the curable compositions F1 to F14 during printing were evaluated. The evaluation method will be described below.
A screen printing plate was placed on a polyimide base material (Kapton (registered trademark) manufactured by Toray-Dupont Co., Ltd.), 15 g of the curable composition was placed on the screen printing plate, and the stage moving time was 0.5 seconds. I made a temporary print. Thereafter, the screen printing plate was transferred onto another polyimide substrate, 15 g of the curable composition was further placed on the screen printing plate, and main printing was performed under the condition that the stage moving time was 0.5 seconds. At this time, the time until the bubbles generated in the curable composition printed on the polyimide substrate disappeared (foaming time) was visually measured.
 消泡時間の測定が終わったら、さらに別のポリイミド基材上にスクリーン印刷版を移し、同様に印刷を行って消泡時間を測定した。この操作を繰り返して、消泡時間の測定を合計9回行い、これらの平均値をその硬化性組成物の消泡時間とし、消泡時間の長さで硬化性組成物の消泡性を評価した。結果を表4に示す。
 なお、使用したスクリーン印刷版は、線径60μm、メッシュ数150本/インチのステンレスメッシュ版(SUS#150-線径60番)である。
After the measurement of the defoaming time was completed, the screen printing plate was transferred onto another polyimide substrate and printing was performed in the same manner to measure the defoaming time. By repeating this operation, the defoaming time was measured 9 times in total, and the average value of these was taken as the defoaming time of the curable composition, and the defoaming property of the curable composition was evaluated by the length of the defoaming time. did. The results are shown in Table 4.
The screen printing plate used was a stainless mesh plate having a wire diameter of 60 μm and a mesh number of 150/inch (SUS#150-wire diameter 60).
<硬化性組成物の糸引き性の評価>
 次に、硬化性組成物F1~F14の印刷時の糸引き性を評価した。評価方法を以下に説明する。
 上記の消泡性の評価の印刷時において、スクリーン印刷版をポリイミド基材から引き離すステージ移動の際に、ポリイミド基材上に印刷された硬化性組成物とスクリーン印刷版との間に、繊維状の硬化性組成物が残存する糸引き現象が発生するか否かを観察した。本印刷を9回行うが、糸引き現象が発生するまでの印刷回数により、糸引き性を評価した。結果を表4に示す。
<Evaluation of stringiness of curable composition>
Next, the stringiness of the curable compositions F1 to F14 during printing was evaluated. The evaluation method will be described below.
When printing the evaluation of the above defoaming property, when moving the stage to separate the screen printing plate from the polyimide substrate, between the curable composition and the screen printing plate printed on the polyimide substrate, fibrous It was observed whether or not the stringing phenomenon in which the curable composition of No. 1 remained occurred. The main printing is performed 9 times, and the threading property was evaluated by the number of times of printing until the threading phenomenon occurred. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<オーバーコート膜とフレキシブル配線板の評価>
 硬化性組成物F1~F14を用いて、オーバーコート膜を有するフレキシブル配線板(実施例1~7及び比較例1~7)を製造し、可撓性、断線抑制性、反り性、及び長期絶縁信頼性の評価を行った。
<Evaluation of overcoat film and flexible wiring board>
By using the curable compositions F1 to F14, flexible wiring boards (Examples 1 to 7 and Comparative Examples 1 to 7) having an overcoat film are produced, and flexibility, disconnection controllability, warpability, and long-term insulation are obtained. The reliability was evaluated.
(可撓性の評価)
 フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックス、銅厚8μm、ポリイミド厚38μm)の銅上に、幅75mm、長さ110mmの大きさで、且つ、硬化後の膜厚が15μmになるように、硬化性組成物をスクリーン印刷により塗工した。硬化性組成物が印刷されたフレキシブル銅張り積層板を、室温で10分間保持した後に、温度120℃の熱風循環式乾燥機に60分間入れて、硬化性組成物を硬化させた。
(Evaluation of flexibility)
Flexible copper clad laminate (Sumitomo Metal Mining Co., Ltd., grade name: Esperflex, copper thickness 8 μm, polyimide thickness 38 μm) on copper, width 75 mm, length 110 mm, and film thickness after curing Of 15 μm was applied to the curable composition by screen printing. The flexible copper-clad laminate having the curable composition printed thereon was kept at room temperature for 10 minutes and then placed in a hot air circulation dryer at a temperature of 120° C. for 60 minutes to cure the curable composition.
 フレキシブル銅張り積層板の裏打ちのPETフィルムを剥離した後、カッターナイフで切り出して幅10mmの短冊状の試験片を作製した。硬化物の膜が形成された面が外側になるように試験片を約180度折り曲げ、圧縮機を用いて0.5±0.2MPaの圧力で3秒間圧縮した。そして、試験片の屈曲部を曲げた状態で、顕微鏡を用いて30倍に拡大して硬化物の膜を観察し、クラックの発生の有無を確認した。結果を表5に記す。 After peeling off the PET film lining the flexible copper-clad laminate, it was cut with a cutter knife to prepare a strip-shaped test piece with a width of 10 mm. The test piece was bent about 180° so that the surface on which the film of the cured product was formed was on the outside, and was compressed for 3 seconds at a pressure of 0.5±0.2 MPa using a compressor. Then, in a state in which the bent portion of the test piece was bent, the film of the cured product was observed by enlarging it 30 times using a microscope, and the presence or absence of cracks was confirmed. The results are shown in Table 5.
(断線抑制性の評価)
 フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックスUS、銅厚8μm、ポリイミド厚38μm)をエッチングして、一般社団法人日本電子回路工業会(JPCA)の規格であるJPCA-ET01に記載の微細くし形パターン形状の基板(銅配線幅/銅配線間隔=15μm/15μm)とし、さらにこの微細くし形パターン形状の基板に錫メッキ処理を施してフレキシブル配線板を製造した。
(Evaluation of breaking control)
A flexible copper-clad laminate (made by Sumitomo Metal Mining Co., Ltd., grade name: Esperflex US, copper thickness 8 μm, polyimide thickness 38 μm) is etched, and the Japan Electronic Circuits Association (JPCA) standard JPCA- A substrate having a fine comb-shaped pattern described in ET01 (copper wiring width/copper wiring interval=15 μm/15 μm) was used, and the substrate having the fine comb-shaped pattern was tin-plated to manufacture a flexible wiring board.
 次に、このフレキシブル配線板上に硬化性組成物をスクリーン印刷により塗工した。印刷された硬化性組成物の膜の厚さは、ポリイミド面上の硬化性組成物の膜の乾燥後の厚さが10μmとなるような厚さとした。
 こうして得られたフレキシブル配線板を、温度80℃の熱風循環式乾燥機に30分間入れ、その後、温度120℃の熱風循環式乾燥機に120分間入れることにより、フレキシブル配線板上に形成された硬化性組成物の膜を硬化させた。そして、この試験片を用いて、JIS C5016に記載の方法によりMIT試験を行って、フレキシブル配線板の配線の断線抑制性を評価した。MIT試験の試験条件は以下の通りである。
Next, the curable composition was applied onto this flexible wiring board by screen printing. The thickness of the printed film of the curable composition was such that the thickness of the film of the curable composition on the polyimide surface after drying was 10 μm.
The flexible wiring board thus obtained was placed in a hot air circulation dryer at a temperature of 80° C. for 30 minutes, and then placed in a hot air circulation dryer at a temperature of 120° C. for 120 minutes to cure the flexible wiring board. The film of the volatile composition was cured. Then, using this test piece, an MIT test was performed by the method described in JIS C5016 to evaluate the wire breakage suppressing property of the flexible wiring board. The test conditions of the MIT test are as follows.
  試験機:テスター産業株式会社製MITテスターBE202
  折り曲げ速度:10回/分
  荷重:200g
  折り曲げ角度:±90°
  つかみ具先端部の半径:0.5mm
 上記試験条件でMIT試験を行い、10回折り曲げるごとに目視にて配線のクラックの有無を観察し、クラックが発生した折り曲げ回数により断線抑制性を評価した。結果を表5に記す。
Testing machine: MIT tester BE202 manufactured by Tester Sangyo Co., Ltd.
Bending speed: 10 times/min Load: 200g
Bending angle: ±90°
Radius of gripper tip: 0.5 mm
The MIT test was conducted under the above-mentioned test conditions, and the presence or absence of cracks in the wiring was visually observed after every 10 bendings, and the breakage suppressing property was evaluated by the number of times the crack was bent. The results are shown in Table 5.
(反り性の評価)
 #180メッシュポリエステル印刷版を用いてスクリーン印刷を行い、ポリイミド基材(東レ・デュポン社製のカプトン(登録商標)100EN、厚さ25μm)上に硬化性組成物を塗工した。
 こうして得られた、硬化性組成物が塗工された基材を、温度80℃の熱風循環式乾燥機に30分間入れ、その後、温度120℃の熱風循環式乾燥機に60分間入れることにより、基材上に形成された硬化性組成物の塗工膜を硬化させた。
 硬化膜を有する基材を、サークルカッターを用いてカットして、直径50mmの円形の硬化膜を有する基材を得た。硬化膜を有する円形の基材は、中心付近が凸状又は凹状に反る形の変形を呈する。
(Evaluation of warpage)
Screen-printing was performed using a #180 mesh polyester printing plate, and the curable composition was applied onto a polyimide base material (Kapton (registered trademark) 100EN manufactured by Toray-Dupont Co., Ltd., thickness 25 μm).
The thus obtained base material coated with the curable composition was put in a hot air circulation dryer having a temperature of 80° C. for 30 minutes, and then put in a hot air circulation dryer having a temperature of 120° C. for 60 minutes. The coating film of the curable composition formed on the substrate was cured.
The substrate having the cured film was cut with a circle cutter to obtain a substrate having a circular cured film with a diameter of 50 mm. A circular base material having a cured film exhibits a convex or concave warp near the center.
 硬化膜を有する円形の基材を23℃で1時間放置した後に、基材を下に凸の状態で平板上に載置する。すなわち、反った基材の中心付近の凸状部を下方に向けて平板上に載置し、反った基材の凸状部が平板の水平面に接するようにする。そして、反った基材の周縁部のうち平板の水平面から最も離れた部分の距離と、最も近い部分の距離とを測定し、その平均値を求め、この平均値によって反り性を評価した。結果を表5に記す。 After leaving the circular base material with the cured film at 23°C for 1 hour, place the base material on the flat plate in a convex state. That is, the convex portion near the center of the warped base material is placed downward on the flat plate so that the convex portion of the warped base material contacts the horizontal surface of the flat plate. Then, the distance of the portion farthest from the horizontal plane of the flat plate and the distance of the closest portion in the peripheral portion of the warped substrate were measured, the average value thereof was obtained, and the warpage property was evaluated by this average value. The results are shown in Table 5.
 表5に示す数値の符号は反りの方向を表し、下に凸の状態で基材を静置した際に、ポリイミド基材に対し硬化膜が上側になる場合は「+」、下側になる場合は「-」とした。そして、反りの大きさが-3.0mm超過+3.0mm未満の場合を「反り性が良好」とした。 The symbols of the numerical values shown in Table 5 represent the warp direction, and when the base material is left standing in a convex state downward, “+” is given when the cured film is on the upper side of the polyimide base material, and it is the lower side. In the case, "-" was used. And, when the magnitude of the warp is more than −3.0 mm and less than +3.0 mm, the “warp property is good”.
(長期絶縁信頼性の評価)
 フレキシブル銅張り積層板(住友金属鉱山株式会社製、グレード名:エスパーフレックスUS、銅厚8μm、ポリイミド厚38μm)をエッチングして、一般社団法人日本電子回路工業会(JPCA)の規格であるJPCA-ET01に記載の微細くし形パターン形状の基板(銅配線幅/銅配線間隔=15μm/15μm)とし、さらにこの微細くし形パターン形状の基板に錫メッキ処理を施してフレキシブル配線板を製造した。
(Evaluation of long-term insulation reliability)
A flexible copper-clad laminate (made by Sumitomo Metal Mining Co., Ltd., grade name: Esperflex US, copper thickness 8 μm, polyimide thickness 38 μm) is etched, and the Japan Electronic Circuits Association (JPCA) standard JPCA- A substrate having a fine comb-shaped pattern described in ET01 (copper wiring width/copper wiring interval=15 μm/15 μm) was used, and the substrate having the fine comb-shaped pattern was tin-plated to manufacture a flexible wiring board.
 次に、このフレキシブル配線板上に硬化性組成物をスクリーン印刷により塗工した。印刷された硬化性組成物の膜の厚さは、ポリイミド面上の硬化性組成物の膜の乾燥後の厚さが15μmとなるような厚さとした。
 こうして得られたフレキシブル配線板を、温度80℃の熱風循環式乾燥機に30分間入れ、その後、温度120℃の熱風循環式乾燥機に120分間入れることにより、フレキシブル配線板上に形成された硬化性組成物の膜を硬化させた。
Next, the curable composition was applied onto this flexible wiring board by screen printing. The thickness of the printed film of the curable composition was such that the thickness of the film of the curable composition on the polyimide surface after drying was 15 μm.
The flexible wiring board thus obtained was placed in a hot air circulation dryer at a temperature of 80° C. for 30 minutes, and then placed in a hot air circulation dryer at a temperature of 120° C. for 120 minutes to cure the flexible wiring board. The film of the volatile composition was cured.
 そして、この試験片に、IMV社製のMIGRATION TESTER MODEL MIG-8600を用いてバイアス電圧60Vを印加し、温度120℃、湿度85%RHの条件で温湿度定常試験を行った。
 温湿度定常試験のスタート初期、スタートしてから100時間後、250時間後、400時間後に、フレキシブル配線板の抵抗値をそれぞれ測定した。結果を表5に示す。
Then, a bias voltage of 60 V was applied to this test piece using a MIGRATION TESTER MODEL MIG-8600 manufactured by IMV, and a steady temperature/humidity test was performed under the conditions of a temperature of 120° C. and a humidity of 85% RH.
The resistance value of the flexible wiring board was measured at the initial stage of the temperature and humidity steady state test, and at 100 hours, 250 hours, and 400 hours after the start. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表5の結果より、硬化性組成物F1~F7の硬化物からなるオーバーコート膜を有するフレキシブル配線板(実施例1~7)は、硬化性組成物F8~F14の硬化物からなるオーバーコート膜を有するフレキシブル配線板(比較例1~7)と同等以上の優れた可撓性、断線抑制性、反り性、及び長期絶縁信頼性を有することが分かる。よって、硬化性組成物F1~F7の硬化物からなる膜は、フレキシブル配線板用の絶縁保護膜として有用である。 From the results of Table 5, the flexible wiring boards (Examples 1 to 7) having the overcoat film made of the cured products of the curable compositions F1 to F7 were found to be the overcoat film made of the cured products of the curable compositions F8 to F14. It can be seen that the flexible wiring boards (Comparative Examples 1 to 7) having the above-mentioned properties have excellent flexibility, breakage controllability, warpage, and long-term insulation reliability. Therefore, the film formed of the cured product of the curable compositions F1 to F7 is useful as an insulating protective film for a flexible wiring board.

Claims (16)

  1.  1分子中に2個以上のイソシアナト基を有するポリイソシアネート化合物Iと、1分子中に2個以上のヒドロキシ基を有する第1のポリオール化合物H1と、1分子中に2個以上のヒドロキシ基を有する第2のポリオール化合物H2と、1分子中に2個以上のヒドロキシ基を有する第3のポリオール化合物H3と、を反応させてポリウレタンを製造する方法であって、
     前記第1のポリオール化合物H1の芳香環濃度は前記第2のポリオール化合物H2の芳香環濃度よりも高く、
     前記ポリイソシアネート化合物Iのイソシアナト基と前記第1のポリオール化合物H1のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数をK1、前記ポリイソシアネート化合物Iのイソシアナト基と前記第2のポリオール化合物H2のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数をK2、前記ポリイソシアネート化合物Iのイソシアナト基と前記第3のポリオール化合物H3のヒドロキシ基とからウレタン結合を形成する反応の反応速度定数をK3としたとき、K1/K3>50なる式及びK2/K3>50なる式をいずれも満たし、
     前記ポリウレタンの製造に使用する前記ポリイソシアネート化合物Iの全量と、前記第1のポリオール化合物H1の全量と、前記第2のポリオール化合物H2の全量と、前記第3のポリオール化合物H3の全量のうち一部と、を混合し、イソシアナト基とヒドロキシ基とからウレタン結合を形成させる重合反応を行い、中間重合体を得る第一重合工程と、
     前記中間重合体の重量平均分子量が、前記ポリイソシアネート化合物I、前記第1のポリオール化合物H1、前記第2のポリオール化合物H2、及び前記第3のポリオール化合物H3の各分子量の総和の2倍以上となったときに、前記ポリウレタンの製造に使用する前記第3のポリオール化合物H3の全量のうち残部を前記中間重合体に追加投入して、イソシアナト基とヒドロキシ基とからウレタン結合を形成させる重合反応をさらに行う第二重合工程と、
    を備えるポリウレタンの製造方法。
    Polyisocyanate compound I having two or more isocyanato groups in one molecule, a first polyol compound H1 having two or more hydroxy groups in one molecule, and two or more hydroxy groups in one molecule A method for producing a polyurethane by reacting a second polyol compound H2 with a third polyol compound H3 having two or more hydroxy groups in one molecule,
    The aromatic ring concentration of the first polyol compound H1 is higher than the aromatic ring concentration of the second polyol compound H2,
    The reaction rate constant of the reaction for forming a urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the first polyol compound H1 is K1, and the isocyanato group of the polyisocyanate compound I and the second polyol compound H2. K2 is the reaction rate constant of the reaction of forming a urethane bond from the hydroxy group of the above, and the reaction rate constant of the reaction of forming a urethane bond from the isocyanato group of the polyisocyanate compound I and the hydroxy group of the third polyol compound H3 is When K3 is satisfied, both the expression K1/K3>50 and the expression K2/K3>50 are satisfied,
    One of the total amount of the polyisocyanate compound I used in the production of the polyurethane, the total amount of the first polyol compound H1, the total amount of the second polyol compound H2, and the total amount of the third polyol compound H3. Part, and mixing, a polymerization reaction for forming a urethane bond from an isocyanato group and a hydroxy group, a first polymerization step for obtaining an intermediate polymer,
    The weight average molecular weight of the intermediate polymer is not less than twice the sum of the molecular weights of the polyisocyanate compound I, the first polyol compound H1, the second polyol compound H2, and the third polyol compound H3. Then, the remaining part of the total amount of the third polyol compound H3 used in the production of the polyurethane is added to the intermediate polymer to carry out a polymerization reaction for forming a urethane bond from an isocyanato group and a hydroxy group. A second polymerization step further performed,
    A method for producing a polyurethane comprising:
  2.  前記ポリウレタンの製造に使用する前記ポリイソシアネート化合物Iの全量が有するイソシアナト基の総数をFI、前記第1のポリオール化合物H1の全量が有するヒドロキシ基の総数をFH1、前記第2のポリオール化合物H2の全量が有するヒドロキシ基の総数をFH2、前記第3のポリオール化合物H3の全量のうち前記一部が有するヒドロキシ基の総数をFaH3、前記第3のポリオール化合物H3の全量のうち追加投入される前記残部が有するヒドロキシ基の総数をFbH3としたとき、
       0.4≦(FH1+FH2)/FI≦0.6
       0.01≦FaH3/FI≦0.2
       0.25≦FbH3/FI≦0.5
       0.8≦(FH1+FH2+FaH3+FbH3)/FI≦1.2
    なる4つの式を全て満たすようにして前記第一重合工程及び前記第二重合工程を行う請求項1に記載のポリウレタンの製造方法。
    The total number of isocyanato groups in the total amount of the polyisocyanate compound I used in the production of the polyurethane is F I , the total number of hydroxy groups in the total amount of the first polyol compound H1 is F H1 , and the second polyol compound H2 is The total number of hydroxy groups in the total amount of F H2 , the total number of hydroxy groups in the part of the total amount of the third polyol compound H3 in Fa H3 , and the total amount of the third polyol compound H3 in total. When the total number of hydroxy groups contained in the rest is Fb H3 ,
    0.4≦(F H1 +F H2 )/F I ≦0.6
    0.01≦Fa H3 /F I ≦0.2
    0.25≦Fb H3 /F I ≦0.5
    0.8≦(F H1 +F H2 +Fa H3 +Fb H3 )/F I ≦1.2
    The method for producing a polyurethane according to claim 1, wherein the first polymerization step and the second polymerization step are performed so as to satisfy all of the following four expressions.
  3.  前記第1のポリオール化合物H1の芳香環濃度が5.0mmol/g以上15.0mmol/g以下、前記第2のポリオール化合物H2の芳香環濃度が0.5mmol/g以上5.0mmol/g以下であり、且つ、前記第1のポリオール化合物H1の芳香環濃度は前記第2のポリオール化合物H2の芳香環濃度よりも高い請求項1又は請求項2に記載のポリウレタンの製造方法。 When the aromatic ring concentration of the first polyol compound H1 is 5.0 mmol/g or more and 15.0 mmol/g or less and the aromatic ring concentration of the second polyol compound H2 is 0.5 mmol/g or more and 5.0 mmol/g or less. The method for producing a polyurethane according to claim 1 or 2, wherein the aromatic ring concentration of the first polyol compound H1 is higher than the aromatic ring concentration of the second polyol compound H2.
  4.  前記第1のポリオール化合物H1が、フルオレン構造を有するジオールである請求項1~3のいずれか一項に記載のポリウレタンの製造方法。 The method for producing a polyurethane according to any one of claims 1 to 3, wherein the first polyol compound H1 is a diol having a fluorene structure.
  5.  前記フルオレン構造を有するジオールが、下記式(1)で表される9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンである請求項4に記載のポリウレタンの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    The method for producing a polyurethane according to claim 4, wherein the diol having a fluorene structure is 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
  6.  前記第2のポリオール化合物H2が、下記式(2)で表されるポリエステルジオールであり、下記式(2)中のR1は、それぞれ独立して炭素数6以上14以下の2価の有機基を示し、R2は、それぞれ独立して炭素数3以上9以下の2価の炭化水素基を示し、nは1以上50以下の整数である請求項1~5のいずれか一項に記載のポリウレタンの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    The second polyol compound H2 is a polyester diol represented by the following formula (2), and R 1 in the following formula (2) is independently a divalent organic group having 6 to 14 carbon atoms. And R 2 each independently represents a divalent hydrocarbon group having 3 or more and 9 or less carbon atoms, and n is an integer of 1 or more and 50 or less. Method for producing polyurethane.
    Figure JPOXMLDOC01-appb-C000002
  7.  前記第3のポリオール化合物H3が、下記式(3)で表されるカルボキシ基含有ジオールであり、下記式(3)中のR3はメチル基又はエチル基を示す請求項1~6のいずれか一項に記載のポリウレタンの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    7. The third polyol compound H3 is a carboxy group-containing diol represented by the following formula (3), and R 3 in the following formula (3) represents a methyl group or an ethyl group. The method for producing a polyurethane according to the item 1.
    Figure JPOXMLDOC01-appb-C000003
  8.  前記ポリウレタンの数平均分子量が3000以上100000以下である請求項1~7のいずれか一項に記載のポリウレタンの製造方法。 The method for producing a polyurethane according to any one of claims 1 to 7, wherein the number average molecular weight of the polyurethane is 3,000 or more and 100,000 or less.
  9.  前記ポリウレタンの酸価が10mgKOH/g以上70mgKOH/g以下である請求項1~8のいずれか一項に記載のポリウレタンの製造方法。 The method for producing a polyurethane according to any one of claims 1 to 8, wherein the acid value of the polyurethane is 10 mgKOH/g or more and 70 mgKOH/g or less.
  10.  請求項1~9のいずれか一項に記載のポリウレタンの製造方法で製造したポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、を混合して組成物とする硬化性組成物の製造方法。 A polyurethane (a) produced by the method for producing a polyurethane according to any one of claims 1 to 9, a solvent (b), and an epoxy compound (c) having two or more epoxy groups in one molecule. A method for producing a curable composition, comprising:
  11.  前記硬化性組成物の総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下である請求項10に記載の硬化性組成物の製造方法。 The ratio of the content of the solvent (b) to the total amount of the curable composition is 25% by mass or more and 75% by mass or less, and the polyurethane (a) relative to the total amount of the polyurethane (a) and the epoxy compound (c). The method for producing a curable composition according to claim 10, wherein the content ratio of () is 40% by mass or more and 99% by mass or less.
  12.  請求項1~9のいずれか一項に記載のポリウレタンの製造方法で製造したポリウレタン(a)と、溶剤(b)と、1分子中に2個以上のエポキシ基を有するエポキシ化合物(c)と、微粒子(d)と、を混合して組成物とする硬化性組成物の製造方法。 A polyurethane (a) produced by the method for producing a polyurethane according to any one of claims 1 to 9, a solvent (b), and an epoxy compound (c) having two or more epoxy groups in one molecule. And a fine particle (d) are mixed to obtain a composition, which is a curable composition.
  13.  前記硬化性組成物の総量に対する前記溶剤(b)の含有量の割合が25質量%以上75質量%以下であり、前記硬化性組成物の総量に対する前記微粒子(d)の含有量の割合が0.1質量%以上60質量%以下であり、前記ポリウレタン(a)と前記エポキシ化合物(c)との総量に対する前記ポリウレタン(a)の含有量の割合が40質量%以上99質量%以下である請求項12に記載の硬化性組成物の製造方法。 The ratio of the content of the solvent (b) to the total amount of the curable composition is 25% by mass or more and 75% by mass or less, and the ratio of the content of the fine particles (d) to the total amount of the curable composition is 0. 1 mass% or more and 60 mass% or less, and the ratio of the content of the polyurethane (a) to the total amount of the polyurethane (a) and the epoxy compound (c) is 40 mass% or more and 99 mass% or less. Item 13. A method for producing a curable composition according to item 12.
  14.  請求項10~13のいずれか一項に記載の硬化性組成物の製造方法で製造された硬化性組成物を硬化させて硬化物とする硬化物の製造方法。 A method for producing a cured product, which comprises curing the curable composition produced by the method for producing a curable composition according to any one of claims 10 to 13 to obtain a cured product.
  15.  請求項10~13のいずれか一項に記載の硬化性組成物の製造方法で製造された硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分に膜状に配した後に、前記膜状の硬化性組成物を硬化させて膜状の硬化物とするオーバーコート膜の製造方法。 The curable composition produced by the method for producing a curable composition according to any one of claims 10 to 13 is applied to a portion of the surface of a flexible substrate on which the wiring is formed, on which the wiring is formed. A method for producing an overcoat film, which comprises arranging in a film shape and then curing the film-like curable composition to obtain a film-like cured product.
  16.  請求項10~13のいずれか一項に記載の硬化性組成物の製造方法で製造された硬化性組成物を、配線が形成されたフレキシブル基板の表面のうち前記配線が形成されている部分に膜状に配した後に、前記膜状の硬化性組成物を硬化させてオーバーコート膜とするフレキシブル配線板の製造方法。 The curable composition produced by the method for producing a curable composition according to any one of claims 10 to 13 is applied to a portion of the surface of a flexible substrate on which the wiring is formed, on which the wiring is formed. A method for manufacturing a flexible wiring board, which comprises forming a film-like curable composition and then curing the film-like curable composition to form an overcoat film.
PCT/JP2019/046663 2018-12-25 2019-11-28 Method for producing polyurethane, method for producing curable composition, method for producing cured product, method for producing overcoat film and method for producing flexible wiring board WO2020137347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-241205 2018-12-25
JP2018241205 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137347A1 true WO2020137347A1 (en) 2020-07-02

Family

ID=71125837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046663 WO2020137347A1 (en) 2018-12-25 2019-11-28 Method for producing polyurethane, method for producing curable composition, method for producing cured product, method for producing overcoat film and method for producing flexible wiring board

Country Status (2)

Country Link
TW (1) TW202028275A (en)
WO (1) WO2020137347A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201877A (en) * 2007-02-19 2008-09-04 Adeka Corp Aqueous polyurethane resin composition for coating non-chromium-treated metal material, and aqueous coating for non-chromium-treated metal material containing the polyurethane resin composition
JP2008208281A (en) * 2007-02-28 2008-09-11 Toyo Ink Mfg Co Ltd Urethane resin, method for production of the same, and pressure sensitive adhesive containing urethane resin
JP2009280686A (en) * 2008-05-21 2009-12-03 Hitachi Chem Co Ltd Thermosetting resin composition
JP2014189746A (en) * 2013-03-28 2014-10-06 Dic Corp Urethane resin composition, primer, laminate and image display device
WO2017110326A1 (en) * 2015-12-25 2017-06-29 昭和電工株式会社 Curable composition, cured object, overcoat film, coated flexible wiring board, and process for producing same
WO2017110591A1 (en) * 2015-12-25 2017-06-29 昭和電工株式会社 Novel polyurethane, curable composition, overcoat film, and flexible wiring board and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201877A (en) * 2007-02-19 2008-09-04 Adeka Corp Aqueous polyurethane resin composition for coating non-chromium-treated metal material, and aqueous coating for non-chromium-treated metal material containing the polyurethane resin composition
JP2008208281A (en) * 2007-02-28 2008-09-11 Toyo Ink Mfg Co Ltd Urethane resin, method for production of the same, and pressure sensitive adhesive containing urethane resin
JP2009280686A (en) * 2008-05-21 2009-12-03 Hitachi Chem Co Ltd Thermosetting resin composition
JP2014189746A (en) * 2013-03-28 2014-10-06 Dic Corp Urethane resin composition, primer, laminate and image display device
WO2017110326A1 (en) * 2015-12-25 2017-06-29 昭和電工株式会社 Curable composition, cured object, overcoat film, coated flexible wiring board, and process for producing same
WO2017110591A1 (en) * 2015-12-25 2017-06-29 昭和電工株式会社 Novel polyurethane, curable composition, overcoat film, and flexible wiring board and production method therefor

Also Published As

Publication number Publication date
TW202028275A (en) 2020-08-01

Similar Documents

Publication Publication Date Title
CN108368336B (en) Curable composition, cured product, overcoat film, covered flexible wiring board, and method for producing same
EP2390277B1 (en) (poly)carbonate polyol and carboxyl group-containing polyurethane using the (poly)carbonate polyol as starting material
US11044807B2 (en) Polyurethane, curable composition, overcoat film, and flexible wiring board and production method therefor
JP6882264B2 (en) Curable composition, cured film and overcoat film using the composition
EP2390276B1 (en) Carboxyl group-containing polyurethane
WO2020137347A1 (en) Method for producing polyurethane, method for producing curable composition, method for producing cured product, method for producing overcoat film and method for producing flexible wiring board
JP2021012123A (en) Cured product characteristic value estimation method
WO2020246154A1 (en) Method of producing polyurethane and method of producing overcoat film for flexible wiring board
WO2020246221A1 (en) Method of producing polyurethane and method of producing overcoat film for flexible wiring board
TWI757764B (en) Polyurethane and curable composition
CN114080408B (en) Cured product, overcoat film, and flexible wiring board
WO2017183496A1 (en) Curable composition, cured film using said composition and overcoat film
WO2021005913A1 (en) Curable composition, cured object, overcoat film, and flexible wiring board and production method therefor
JP2021011545A (en) Polyurethane and curable composition
JP2021095478A (en) Polyurethane and curable composition
JP2021095458A (en) Polyurethane and curable composition
JP2021127375A (en) Polyurethane and curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP