WO2020137332A1 - Heat-conductive silicone composition and semiconductor device - Google Patents

Heat-conductive silicone composition and semiconductor device Download PDF

Info

Publication number
WO2020137332A1
WO2020137332A1 PCT/JP2019/046493 JP2019046493W WO2020137332A1 WO 2020137332 A1 WO2020137332 A1 WO 2020137332A1 JP 2019046493 W JP2019046493 W JP 2019046493W WO 2020137332 A1 WO2020137332 A1 WO 2020137332A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
heat
powder
amount
Prior art date
Application number
PCT/JP2019/046493
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 秋場
謙一 辻
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018240943A external-priority patent/JP6965869B2/en
Priority claimed from JP2018240944A external-priority patent/JP6965870B2/en
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2020137332A1 publication Critical patent/WO2020137332A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a silicone composition having excellent thermal conductivity and a semiconductor device.
  • Patent Document 1 discloses a silicone grease composition in which a specific organopolysiloxane is mixed with spherical hexagonal aluminum nitride powder having a certain particle size range.
  • Patent Document 3 discloses a thermally conductive organosiloxane composition in which an aluminum nitride powder having a small particle size and an aluminum nitride powder having a coarse particle size are combined.
  • a heat conductive silicone grease in which aluminum powder and zinc oxide powder are combined is disclosed in Japanese Patent Laid-Open No.
  • Patent Document 4 is a heat conductive grease composition using aluminum nitride powder surface-treated with organosilane. It is disclosed.
  • Aluminum nitride has a thermal conductivity of 70 to 270 W/mK, and a material having a higher thermal conductivity than this is diamond having a thermal conductivity of 900 to 2,000 W/mK.
  • Patent Document 5 discloses a heat conductive silicone composition using diamond, zinc oxide and a dispersant in a silicone resin.
  • JP-A-2000-63873 Patent Document 6
  • JP-A-2008-222776 Patent Document 7
  • a heat conductive grease composition obtained by mixing metal aluminum powder with a base oil such as silicone oil. It is disclosed.
  • Japanese Patent No. 3130193 Patent Document 8
  • Japanese Patent No. 3677671 Patent Document 9
  • any of the heat conductive materials and heat conductive greases have recently become insufficient in heat radiation effect with respect to the heat generation amount of integrated circuit elements such as CPUs.
  • a thermally conductive silicone composition obtained by blending a thermally conductive filler in an organopolysiloxane containing an alkenyl group bonded to a silicon atom and an organohydrogensiloxane containing a hydrogen atom bonded to a silicon atom is a platinum-based compound. It is known that an elastic cured product exhibits excellent reliability by being subjected to an addition reaction in the presence of a catalyst to give an elastic cured product (Patent Document 10).
  • the composition described in Patent Document 10 or the like is a catalyst that promotes hydrosilylation represented by water present in the system, an organohydrogenpolysiloxane containing a hydrogen atom (SiH group) bonded to a silicon atom, and a platinum catalyst.
  • SiH group a hydrogen atom
  • platinum catalyst a platinum catalyst.
  • the hydrogen of the SiH group is desorbed, whereby bubbles of hydrogen gas are generated in the system, which may impair the appearance and physical properties of the cured product.
  • hydrogen in the SiH group is desorbed, and bubbles of hydrogen gas are generated in the system to improve the appearance and physical properties of the cured product. In some cases, it may be damaged.
  • an object of the present invention is to provide a heat conductive silicone composition that exhibits a good heat dissipation effect, effectively suppresses bubbles in the system, and gives a cured product having good appearance and physical properties. ..
  • the present inventors have conducted extensive studies in order to achieve the above objects, and a specific tap density, a specific surface area, and a silver powder having an aspect ratio, and a fine powder of palladium powder or silica carrying the same, etc. It was found that the thermal conductivity of the composition is remarkably improved by mixing the compound with a specific organopolysiloxane, and the present invention has been completed. That is, the present invention provides the following thermally conductive silicone composition and the like.
  • a thermally conductive silicone composition containing the following components (A), (B), (C), (D) and (E).
  • (A) Organopolysiloxane containing at least two alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass
  • (B) At least two hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule
  • Organohydrogenpolysiloxane An amount
  • C hydrosilylation reaction in which the amount of hydrogen atoms bonded to silicon atoms in the component (B) is 0.2 to 10 mol, based on 1 mol of alkenyl groups in the entire composition.
  • Catalyst Effective amount
  • D Silver powder having a tap density of 3.0 g/cm 3 or more, a specific surface area of 2.0 m 2 /g or less, and an aspect ratio of 1 to 30:
  • A 300 to 11,000 parts by mass
  • E Palladium powder having an average particle diameter of 1 nm to 100 nm, or crystalline silica, amorphous silica or carbon:(A ) Amount of palladium powder in an amount of 0.00001 to 0.05 parts by mass relative to 100 parts by mass of component ⁇ 2>
  • a semiconductor device comprising a heat-generating electronic component and a heat radiator, wherein the heat-conductive silicone composition according to ⁇ 1> is interposed between the heat-generating electronic component and the heat radiator. apparatus.
  • ⁇ 3> A semiconductor device having a step of heating the thermally conductive silicone composition according to ⁇ 1> to 80° C. or higher under a pressure of 0.01 MPa or higher between a heat-generating electronic component and a radiator. Production method.
  • the thermally conductive silicone composition of the present invention has a structure and a compounding amount that exert desired properties without limitation of the structure and the compounding amount of the SiH group-containing organohydrogenpolysiloxane which is one component of the composition. Since the cured product has excellent thermal conductivity and can suppress bubbles in the system, the appearance and physical properties of the cured product are not impaired, and it is useful for semiconductor devices.
  • the organopolysiloxane of component (A) is the base polymer of the composition of the present invention and contains at least two alkenyl groups bonded to silicon atoms in one molecule.
  • Examples of the molecular structure of the component (A) include a linear structure and a cyclic structure. These structures may have a branch, but the main chain is basically composed of repeating diorganosiloxane units. Therefore, a linear diorganopolysiloxane in which both ends of the molecular chain are blocked with a triorganosiloxy group is preferably used as the component (A). If the component (A) has a kinematic viscosity at 25° C.
  • the kinematic viscosity of the component (A) at 25° C. is preferably 10 to 100,000 mm 2 /s, and particularly preferably 100 to 50,000 mm 2 /s.
  • the kinematic viscosity of the organopolysiloxane of component (A) described in the present specification is a value at 25° C. measured with an Ostwald viscometer.
  • the alkenyl group bonded to the silicon atom in the component (A) for example, a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group and the like, preferably having 2 to 8 carbon atoms, more preferably 2 to 4 are mentioned, and a vinyl group is particularly preferable.
  • the organopolysiloxane of the component (A) has a linear structure
  • the alkenyl group may be bonded to a silicon atom only at one of the molecular chain terminal and the part not at the molecular chain terminal, or the silicon may be bonded at both of them. It may be bonded to an atom.
  • Examples of the organic group bonded to a silicon atom other than the alkenyl group in the component (A) include an alkyl group, particularly a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group.
  • An alkyl group having 1 to 10 carbon atoms such as; an aryl group, particularly an aryl group having 6 to 14 carbon atoms such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group; an aralkyl group, particularly a benzyl group, a phenethyl group Aralkyl groups having 7 to 14 carbon atoms such as; halogenated alkyl groups, particularly halogenated alkyl groups having 1 to 3 carbon atoms such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group Examples thereof include an unsubstituted or halogen-substituted monovalent hydrocarbon group such as an alkyl group, and a methyl group and a phenyl group are particularly preferable.
  • component (A) examples include a dimethylsiloxy group-capped dimethylsiloxysiloxane block-capped with trimethylsiloxy groups at both molecular chain ends, a trimethylsiloxy group-blocked methylvinylpolysiloxane blocked with trimethylsiloxy groups at both molecular chain ends, and a dimethylsiloxy group-capped dimethyl block at both molecular chain ends.
  • Siloxane/Methylvinylsiloxane/Methylphenylsiloxane Copolymer Dimethylvinylsiloxy group-blocked dimethylpolysiloxane at both molecular chain ends, Dimethylvinylsiloxy group-blocked methylvinylpolysiloxane at both molecular chain ends, Dimethylvinylsiloxy group-blocked dimethyl chain at both molecular chain ends Siloxane/methylvinylsiloxane copolymer, dimethylvinylsiloxy group-blocked dimethylsiloxane at both molecular chain ends, dimethylpolysiloxane, methylvinylsiloxane/methylphenylsiloxane copolymer, trivinylsiloxy group-blocked dimethylpolysiloxane at both molecular chain ends, formula: R 1 3 SiO 0.5 (R 1 is an unsubstituted or substituted monovalent hydrocarbon group
  • R 1 2 R 2 SiO 0.5 (R 2 is an alkenyl group.
  • organopolysiloxane copolymer comprising a unit represented by the formula: R 1 2 SiO and a siloxane unit represented by the formula: SiO 2 , represented by the formula: R 1 3 SiO 0.5
  • Organopolysiloxane copolymer comprising a siloxane unit represented by the formula: R 1 2 R 2 SiO 0.5 and a siloxane unit represented by the formula: SiO 2 , represented by the formula: R 1 2 R 2 SiO 0.5
  • R 1 in the above formula examples include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and heptyl group; aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group. Group; aralkyl group such as benzyl group and phenethyl group; halogenated alkyl group such as chloromethyl group, 3-chloropropyl group and 3,3,3-trifluoropropyl group.
  • examples of R 2 in the above formula include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group.
  • the component (A) is preferably contained in the composition of the present invention in an amount of 0.01 to 25% by mass.
  • Component (B) The organohydrogenpolysiloxane of component (B) reacts with component (A) and acts as a crosslinking agent.
  • component (B) There is no particular limitation on the molecular structure of the component (B), and various conventionally known organohydrogenpolysiloxanes having a linear, cyclic, branched, or three-dimensional network structure (resin-like) can be used. ..
  • the organohydrogenpolysiloxane as the component (B) is 2 or more, preferably 3 or more (generally 3 to 500, preferably 3 to 200, more preferably 3 to 100) per molecule. It has a hydrogen atom (that is, a hydrosilyl group or SiH group) bonded to a silicon atom.
  • these SiH groups may be located at either one of the molecular chain terminal or the non-molecular chain terminal, or at both of them. May be
  • the number (degree of polymerization) of silicon atoms in one molecule of the component (B) is preferably 2 to 1,000, more preferably 3 to 300, and still more preferably 4 to 150. Further, the viscosity of the component (B) at 25° C. is preferably 0.1 to 5,000 mPa ⁇ s, more preferably 0.5 to 1,000 mPa ⁇ s, and even more preferably 5 to 500 mPa ⁇ s. ..
  • the viscosity (absolute viscosity) of the organopolysiloxane of the component (B) described in the present specification is a value at 25° C. measured with a model number PC-1TL (10 rpm) manufactured by Malcolm Co., Ltd.
  • Examples of the component (B) include the following average composition formula (1): R 3 a H b SiO (4-ab)/2 (1)
  • R 3 is an unsubstituted or substituted monovalent hydrocarbon group having a carbon atom number of preferably 1 to 14, and more preferably 1 to 10, excluding an aliphatic unsaturated group, bonded to a silicon atom.
  • a and b are preferably 0.7 ⁇ a ⁇ 2.1, 0.001 ⁇ b ⁇ 1.0, and 0.8 ⁇ a+b ⁇ 3.0, and more preferably 0.9 ⁇ a.
  • R 3 examples include a methyl group, an ethyl group, a propyl group, an isoprovir group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a cyclohexyl group, an octyl group, a nonyl group, Alkyl group such as decyl group; aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group; aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group; some of hydrogen atoms in these hydrocarbon groups or A group in which all of them are substituted with a halogen atom such as fluorine, bromine or chlorine, for example, a chloromethyl group, a 3-chloropropyl group, a brom
  • the component (B) can be obtained by a known production method.
  • a general production method for example, 1,3,5,7-tetramethyl-1,3,5,7-tetrahydrocyclotetrasiloxane (in some cases, the cyclotetrasiloxane and octamethylcyclotetrasiloxane And a siloxane compound serving as a terminal group source such as hexamethyldisiloxane and 1,3-dihydro-1,1,3,3-tetramethyldisiloxane, or octamethylcyclotetrasiloxane and 1,3 -A method of equilibrating dihydro-1,1,3,3-tetramethyldisiloxane with a catalyst such as sulfuric acid, trifluoromethanesulfonic acid or methanesulfonic acid at a temperature of about -10 to +40°C.
  • a catalyst such as sulfuric acid, trifluoromethanesulfonic acid
  • component (B) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris(dimethylhydrogensiloxy)methylsilane and tris(dimethylhydro).
  • the amount of the component (B) blended is such that the amount of hydrogen atoms (SiH groups) bonded to silicon atoms in the component (B) is 0.2 to 10 mol, preferably 1 mol of the alkenyl group in the entire composition.
  • the amount is in the range of 1.0 to 8.0 mol.
  • the ratio of the alkenyl group bonded to the silicon atom in the component (A) to the alkenyl group present in the entire composition is preferably 50 to 100 mol %, more preferably 80 to 100 mol %.
  • the amount of SiH groups in the component (B) per mole of alkenyl groups bonded to silicon atoms in the component (A). is 0.5 to 10 moles, preferably 1.0 to 8.0 moles. If the blending amount of the component (B) is too small, the composition may not be sufficiently cured, and conversely if the blending amount is too large, the resulting cured product (silicone rubber) may have extremely poor heat resistance.
  • the hydrosilylation reaction catalyst of component (C) may be any catalyst that promotes the addition reaction between the alkenyl group in component (A) and the SiH group in component (B). You may.
  • platinum-based catalysts such as chloroplatinic acid, alcohol-modified chloroplatinic acid, coordination compounds of chloroplatinic acid with olefins, vinyl siloxanes or acetylene compounds; palladium-based catalysts such as tetrakis(triphenylphosphine)palladium; chlorotris( A rhodium-based catalyst such as triphenylphosphine)rhodium is used as the component (C), but a platinum-based catalyst such as a platinum-divinyltetramethyldisiloxane complex is particularly preferable.
  • the compounding amount of the component (C) is not particularly limited as long as it is an effective amount as a catalyst for the hydrosilylation reaction, but is based on the total amount of the components (A) and (B) in terms of the catalytic metal element on a mass basis. Is preferably 0.1 to 2,000 ppm, more preferably 1 to 1,500 ppm. When the addition amount is within this range, the addition reaction is sufficiently promoted, the curing is sufficient, and it is economically advantageous.
  • the type of metal catalyst is not particularly limited as long as it is a metal having an effective activity as a catalyst for hydrosilylation reaction, but platinum or the like having an activity of splitting hydrogen gas into atoms is useful.
  • Component (D) is a silver powder having a tap density of 3.0 g/cm 3 or more, a specific surface area of 2.0 m 2 /g or less, and an aspect ratio of 1 to 30. If the tap density of the silver powder of the component (D) is less than 3.0 g/cm 3 , the filling rate of the composition of the component (D) cannot be increased and the viscosity of the composition increases, resulting in poor workability. Therefore, the range of 3.0 g/cm 3 to 8.0 g/cm 3 is preferable, the range of 4.5 g/cm 3 to 8.0 g/cm 3 is more preferable, and the range of 5.5 g/cm 3 to 8.0 g is preferable.
  • the range of /cm 3 is more preferable. If the specific surface area of the silver powder of the component (D) is larger than 2.0 m 2 /g, the filling rate of the composition of the component (D) cannot be increased and the viscosity of the composition increases, resulting in poor workability. preferably in the range of 0.08m 2 /g ⁇ 2.0m 2 / g to become, more preferably in the range of 0.08m 2 /g ⁇ 1.5m 2 / g, 0.08m 2 /g ⁇ 1.0m 2 The range of /g is more preferable.
  • the tap density described in the present specification was obtained by weighing 100 g of silver powder, gently dropping the silver powder into a 100 ml graduated cylinder with a funnel, and then placing the cylinder on a tap density measuring device to set a drop distance of 20 mm at 60 times/ It is a value calculated from the volume of the silver powder compressed by dropping 600 times at the speed of a minute.
  • the specific surface area about 2 g of silver powder was sampled, degassed at 60 ⁇ 5° C. for 10 minutes, and then the total surface area was measured by an automatic specific surface area measuring device (BET method). After that, the sample amount is measured and calculated by the following formula (2).
  • the aspect ratio of the silver powder of the component (D) is 1 to 30, preferably 2 to 20, and more preferably 3 to 15.
  • the aspect ratio means the ratio of the major axis and the minor axis of the particle (major axis/minor axis).
  • a measuring method for example, an electron micrograph of the particle is taken, and the major axis and the minor axis of the particle can be measured and calculated from this photograph.
  • the size of the particles can be measured by an electron micrograph from the upper surface, and the larger diameter is measured from the electron micrograph of the upper surface as the major axis.
  • the minor axis becomes the particle thickness with respect to the major axis. Particle thickness cannot be measured by electron micrographs from the top.
  • the thickness of a particle when taking an electron micrograph, attach the sample stage on which the particle is mounted with an inclination, take an electron micrograph from the top, and correct the angle of the sample stage to correct the particle.
  • the thickness of the can be calculated. Specifically, after taking several pictures magnified several thousand times with an electron microscope, the major axis and the minor axis of 100 particles are arbitrarily measured, and the ratio of the major axis and the minor axis (major axis/minor axis) is calculated. The aspect ratio was calculated and the average value was calculated.
  • the particle size of the silver powder as the component (D) is not particularly limited, but the average particle size is preferably in the range of 0.2 to 30 ⁇ m, particularly preferably 1.0 to 20 ⁇ m.
  • the average particle size is 1 to 2 cups of silver powder placed in a 100 ml beaker with a microspatella, about 60 ml of isopropyl alcohol is added, and the silver powder is dispersed for 1 minute with an ultrasonic homogenizer, and then the volume is measured by a laser diffraction particle size analyzer. It is a standard volume average diameter [MV]. The measurement time was 30 seconds.
  • the method for producing the silver powder used in the present invention is not particularly limited, and examples thereof include an electrolytic method, a pulverizing method, a heat treatment method, an atomizing method, and a reducing method.
  • the silver powder produced by the above method may be used as it is, or may be crushed and used in a range satisfying the above numerical range.
  • the device is not particularly limited, and known devices such as a stamp mill, a ball mill, a vibration mill, a hammer mill, a rolling roller, and a mortar can be used. Of these, a stamp mill, a ball mill, a vibration mill and a hammer mill are preferable.
  • the blending amount of the component (D) is 300 to 11,000 parts by mass with respect to 100 parts by mass of the component (A).
  • the blending amount of the component (D) is preferably 300 to 5,000 parts by mass, more preferably 500 to 5,000 parts by mass, relative to 100 parts by mass of the component (A).
  • the component (E) is palladium powder having an average particle size of 1 nm to 100 nm or crystalline silica, amorphous silica or carbon carrying the palladium powder.
  • the heat-conductive silicone composition of the present invention contains a very small amount of a fine powder of palladium in a specific particle size range or a carrier having the palladium powder, so that hydrogen gas generated during the curing reaction of the composition is converted into palladium.
  • the powder is adsorbed and the cured product has good appearance and physical properties without impairing the thermal conductivity.
  • the average particle diameter of the palladium powder is 1 nm to 100 nm, preferably 5 nm to 70 nm, and more preferably 10 nm to 50 nm.
  • the average particle size of the palladium powder is a value obtained by taking electron micrographs of the particles, taking a few thousands of magnified photographs, and then measuring the major axis of 100 particles arbitrarily.
  • the (E) component palladium powder may be supported on crystalline silica, amorphous silica or carbon.
  • the carrier that supports palladium include amorphous silica such as dry silica and wet silica, crystalline silica, and carbon.
  • the fumed silica may be fumed silica.
  • the average particle size of silica is preferably 0.5 ⁇ m to 100 ⁇ m. When the average particle size is less than 0.5 ⁇ m, the viscosity of the composition increases and the handleability deteriorates, and when the average particle size is more than 100 ⁇ m, the formation of a heat conduction path is hindered and the thermal performance deteriorates. ..
  • the average particle size of silica as a carrier in the component (E) was taken by taking electron micrographs of the particles and taking several thousands of magnified photographs, after which the major axis of 100 particles was arbitrarily measured. It is a value.
  • the average primary particle diameter of carbon as a carrier in the component (E) is preferably 0.5 ⁇ m to 100 ⁇ m. When the average primary particle size is less than 0.5 ⁇ m, the viscosity of the composition increases and the handling property deteriorates. When the average primary particle size is more than 100 ⁇ m, the formation of heat conduction paths is hindered and the thermal performance is improved. It may decrease.
  • the average primary particle diameter of carbon in the component (E) is a value obtained by taking electron micrographs of the particles, taking a few thousands of magnified photographs, and then measuring the major axis of 100 particles arbitrarily. Is.
  • the particle diameter of the crystalline silica in the component (E) is a volume-based volume average diameter [MV] measured by Microtrac MT330OEX manufactured by Nikkiso Co., Ltd.
  • the palladium powder in the component (E) preferably has a melting point peak in the range of 1553°C to 1557°C as measured by the thermal arrest method.
  • component (E) there is no particular limitation on the method of blending component (E).
  • the component (E) may be added to and dispersed in another component as it is. Further, the component (E) may be dispersed in a suitable solvent and then added to other components. Furthermore, the component (E) is mixed with an appropriate dispersion liquid (eg, organosiloxane), and then uniformly dispersed using a device such as a three-roll mill, and the paste mixture obtained is added to other components. - May be dispersed.
  • an appropriate dispersion liquid eg, organosiloxane
  • the blending amount of the component (E) is usually 0.00001 to 100 parts by mass of the component (A) with respect to the amount of palladium powder (if the palladium powder is supported on a carrier, the amount of supported palladium powder).
  • the amount is 0.05 parts by mass, preferably 0.0001 to 0.001 parts by mass, more preferably 0.0005 to 0.001 parts by mass. If the blending amount is too small, it may not be possible to impart a good effect of suppressing bubble generation to the composition of the present invention, and if the blending amount is too large, it inhibits the formation of a heat conduction path, resulting in a thermal performance. May decrease.
  • thermally conductive silicone composition of the present invention may contain the following components as optional components in addition to the components (A) to (E).
  • Curing reaction control agent In the composition of the present invention, all the conventionally known curing, which is said to have a curing suppressing effect on the addition reaction catalyst, as an optional component in addition to the above-mentioned components (A) to (E)
  • a reaction control agent can be used.
  • examples of such compounds include phosphorus-containing compounds such as triphenylphosphine, nitrogen-containing compounds such as tributylamine, tetramethylethylenediamine and benzotriazole, sulfur-containing compounds, and acetylene-based compounds such as 1-ethynyl-1-cyclohexanol. , Triallyl isocyanuric acid, hydroperoxy compounds, maleic acid derivatives and the like.
  • the degree of the curing retarding effect of the curing reaction control agent greatly differs depending on the chemical structure of the curing reaction control agent. Therefore, the addition amount of the curing reaction control agent should be adjusted to an optimum amount for each curing reaction control agent to be used, but such adjustment can be easily performed by a method well known to those skilled in the art. Generally, if the amount added is too small, the long-term storage stability of the composition of the present invention cannot be obtained at room temperature, and if the amount added is too large, the curing of the composition is inhibited.
  • Metal powders such as aluminum, gold, copper, nickel, indium, gallium, and metal silicon; Diamond powder; Carbon materials such as carbon fiber, graphene, graphite, carbon nanotube, carbon black; Metal oxide powder such as zinc oxide, titanium oxide, magnesium oxide, alumina, iron oxide, silicon dioxide (fumed silica, crystalline silica, precipitated silica, etc.); Metal hydroxide powder such as aluminum hydroxide; Nitride powder such as boron nitride and aluminum nitride; Carbonates such as magnesium carbonate, calcium carbonate and zinc carbonate; Hollow filler; silsesquioxane; layered mica; diatomaceous earth; glass fiber; silicone rubber powder; silicone resin powder and the like.
  • the inorganic compound powder and/or organic compound material having high thermal conductivity aluminum powder, zinc oxide powder, titanium oxide powder, magnesium oxide powder, alumina powder, aluminum hydroxide powder, boron nitride powder, aluminum nitride powder, diamond powder.
  • the surface of these inorganic compound powders and organic compound materials may be subjected to hydrophobic treatment with organosilane, organosilazane, organopolysiloxane, organofluorine compound, etc., if necessary. If the average particle size of the inorganic compound powder and the organic compound material is smaller than 0.5 ⁇ m or larger than 100 ⁇ m, the filling rate in the resulting composition will not be increased, so that the range of 0.5 to 100 ⁇ m is preferable, and particularly 1 The range of up to 50 ⁇ m is preferred.
  • the filling rate into the composition obtained cannot be increased, so that it is preferably in the range of 10 to 500 ⁇ m, particularly preferably in the range of 30 to 300 ⁇ m.
  • the fluidity of the composition becomes poor and the handleability of the composition becomes poor.
  • the amount is preferably ⁇ 3,000 parts by mass, particularly preferably 5 to 2,000 parts by mass.
  • composition of the present invention as long as the object of the present invention is not impaired, as other optional components, for example, an organopolysiloxane containing one hydrogen atom or an alkenyl group bonded to a silicon atom in one molecule, Includes organopolysiloxanes containing neither hydrogen atoms nor alkenyl groups bonded to silicon atoms, organic solvents, heat resistance imparting agents, flame retardancy imparting agents, plasticizers, thixotropy imparting agents, dyes, fungicides, etc. May be
  • the method for producing the thermally conductive silicone composition of the present invention may be according to a conventionally known method for producing a silicone composition, and is not particularly limited.
  • the above components (A) to (E) and, if necessary, other components are added to Trimix, Twinwin, Planetary mixer (all are mixers manufactured by Inoue Seisakusho Co., Ltd., registered trademark), Ultramixer (Mizuho). It can be produced by mixing for 10 minutes to 4 hours with a mixer such as Kogyo Co., Ltd. mixer, Hibis Dispermix (Primix Co., Ltd. mixer, registered trademark). Moreover, you may mix, heating as needed at the temperature of the range of 50-200 degreeC.
  • the heat conductive silicone composition of the present invention preferably has an absolute viscosity measured at 25° C. of 10 to 600 Pa ⁇ s, more preferably 15 to 500 Pa ⁇ s, and more preferably 15 to 400 Pa ⁇ s. Is more preferable.
  • the absolute viscosity can be obtained by preparing each component in the above-mentioned blending amount.
  • the absolute viscosity is a result measured using a model number PC-1TL (10 rpm) manufactured by Malcolm Co., Ltd.
  • the heat conductive silicone composition of the present invention is cured by heating the heat conductive silicone composition obtained as described above to 80° C. or higher under a pressure of 0.01 MPa or higher.
  • the properties of the cured product thus obtained are not limited, and examples thereof include gel, low hardness rubber, and high hardness rubber.
  • the semiconductor device of the present invention is characterized in that the heat conductive silicone composition of the present invention is interposed between the surface of the heat generating electronic component and the heat radiator.
  • the thermally conductive silicone composition of the present invention is preferably interposed in a thickness of 10 to 500 ⁇ m.
  • a typical structure is shown in FIG. 1, but the present invention is not limited to this.
  • the heat conductive silicone composition of the present invention is shown in 3 of FIG.
  • the heat conductive silicone composition of the present invention is heated to 80° C. or higher while a pressure of 0.01 MPa or higher is applied between the heat-generating electronic component and the radiator.
  • a heating method is preferred.
  • the applied pressure is preferably 0.01 MPa or more, particularly preferably 0.05 MPa to 100 MPa, further preferably 0.1 MPa to 100 MPa.
  • the heating temperature needs to be 80° C. or higher.
  • the temperature is preferably 100° C. to 300° C., more preferably 120° C. to 300° C., and further preferably 140° C. to 300° C.
  • Component A-1 Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25° C. of 600 mm 2 /s.
  • Component B-1 Organohydrogenpolysiloxane represented by the following formula (viscosity at 25° C. is 30 mm 2 /s)
  • Component C-1 (Platinum catalyst): A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1 wt% as platinum atom
  • D-1 Silver powder having a tap density of 6.6 g/cm 3 , a specific surface area of 0.28 m 2 /g and an aspect ratio of 8
  • D-2 a tap density of 6.2 g/cm 3 , ratio Silver powder having a surface area of 0.48 m 2 /g and an aspect ratio of 13
  • D-3 Silver powder having a tap density of 3.0 g/cm 3 , a specific surface area of 2.0 m 2 /g and an aspect ratio of 30
  • E-1 Palladium powder having an average particle diameter of 5 nm
  • E-2 0.8 wt% palladium powder-supported fumed silica (the average particle diameter of the palladium powder is 90 nm, and the fumed silica used for supporting the powder) Has an average particle size of 5 ⁇ m.
  • E-3 0.5 wt% palladium powder-supported dry silica (the average particle size of the palladium powder is 7 nm, and the specific surface area of the dry silica used for the support is 130 m 2 /g).
  • E-4 1.0 wt% palladium powder-carrying carbon (average particle size of palladium powder is 2 nm, and primary particle size of carbon used for supporting is about 48 nm)
  • E-5 (comparative example): Palladium powder having an average particle diameter of 110 nm
  • E-6 (comparative example): Palladium powder having an average particle diameter of 0.5 nm
  • E-7 0.8 wt% palladium powder-supporting crystalline silica (The average particle size of the palladium powder is 5 nm, and the average particle size of the crystalline silica used for supporting is 5 ⁇ m.)
  • E-8 0.8 wt% palladium powder-supporting crystalline silica (the average particle size of the palladium powder is 90 nm, and the average particle size of the crystalline silica used for supporting is 5 ⁇ m)
  • E-9 1.0 wt% Palladium powder-supporting crystalline silica (The average particle size of the palladium powder is
  • E-11 (Comparative Example): 0.8 wt% palladium powder-supporting crystalline silica (palladium powder has an average particle size of 0.5 nm, and the crystalline silica used for supporting has an average particle size of 5 ⁇ m).
  • Curing reaction inhibitor F-1 1-ethynyl-1-cyclohexanol
  • Examples 1-26 and Comparative Examples 1-13 The compositions shown in Tables 1 to 6 below were mixed as follows to obtain compositions of Examples 1 to 26 and Comparative Examples 1 to 13. That is, the components (A) and (D) are taken in a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), and the components (C), (E) and (F) are added and mixed at 25° C. for 1.5 hours. did. Next, the component (B) was added and mixed so as to be uniform.

Abstract

Provided is a heat-conductive silicone composition that provides excellent heat dissipation effects, effectively suppresses in-system air bubbles, and yields a cured product having excellent external appearance and physical properties. This heat-conductive silicone composition contains the following components (A), (B), (C), (D), and (E). (A) An organopolysiloxane containing, within the molecule, at least two alkenyl groups bonded to a silicon atom (B) An organohydrodiene polysiloxane containing, within the molecule, at least two hydrogen atoms bonded to a silicon atom (SiH group) (C) A hydrosilylation reaction catalyst (D) Silver powder having a tapped density of 3.0 g/cm3 or more, a specific surface area of 2.0 m2/g or less, and an aspect ratio of 1-30 (E) Palladium powder having an average grain diameter of 1-100 nm, or crystalline silica, amorphous silica, or carbon on which the palladium powder is carried

Description

熱伝導性シリコーン組成物及び半導体装置Thermally conductive silicone composition and semiconductor device
 本発明は、熱伝導性に優れたシリコーン組成物及び半導体装置に関する。 The present invention relates to a silicone composition having excellent thermal conductivity and a semiconductor device.
 電子部品の多くは使用中に熱が発生するので、その電子部品を適切に機能させるためには、その電子部品から熱を取り除くことが必要である。特にパーソナルコンピューターに使用されているCPU等の集積回路素子は、動作周波数の高速化により発熱量が増大しており、熱対策が重要な問題となっている。
 従って、この熱を放熱する多くの方法が提案されている。特に発熱量の多い電子部品では、電子部品とヒートシンク等の部材の間に熱伝導性グリースや熱伝導性シートの熱伝導性材料を介在させて熱を逃がす方法が提案されている。
Since many electronic components generate heat during use, it is necessary to remove heat from the electronic components in order for them to function properly. Particularly in integrated circuit elements such as CPUs used in personal computers, the amount of heat generation is increasing due to the increase in operating frequency, and heat countermeasures have become an important issue.
Therefore, many methods of radiating this heat have been proposed. Particularly for electronic components that generate a large amount of heat, a method has been proposed in which a thermally conductive grease or a thermally conductive material such as a thermally conductive sheet is interposed between the electronic components and a member such as a heat sink to release heat.
 特開平2-153995号公報(特許文献1)には、特定のオルガノポリシロキサンに一定粒径範囲の球状六方晶系窒化アルミニウム粉末を配合したシリコーングリース組成物が、特開平3-14873号公報(特許文献2)には、粒径の細かい窒化アルミニウム粉末と粒径の粗い窒化アルミニウム粉末を組み合わせた熱伝導性オルガノシロキサン組成物が、特開平10-110179号公報(特許文献3)には、窒化アルミニウム粉末と酸化亜鉛粉末を組み合わせた熱伝導性シリコーングリースが、特開2000-63872号公報(特許文献4)には、オルガノシランで表面処理した窒化アルミニウム粉末を用いた熱伝導性グリース組成物が開示されている。
 窒化アルミニウムの熱伝導率は70~270W/mKであり、これより熱伝導性の高い材料として熱伝導率900~2,000W/mKのダイヤモンドがある。特開2002-30217号公報(特許文献5)には、シリコーン樹脂に、ダイヤモンド、酸化亜鉛、分散剤を用いた熱伝導性シリコーン組成物が開示されている。
 更に、特開2000-63873号公報(特許文献6)や特開2008-222776号公報(特許文献7)には、シリコーンオイル等の基油に金属アルミニウム粉末を混合した熱伝導性グリース組成物が開示されている。
 更には熱伝導率の高い銀粉末を充填剤として用いている特許3130193号公報(特許文献8)、特許3677671号公報(特許文献9)等も開示されている。
 しかし、いずれの熱伝導性材料や熱伝導性グリースも、最近のCPU等の集積回路素子の発熱量に対する放熱効果は不十分なものとなってきている。
Japanese Unexamined Patent Publication (Kokai) No. 2-153995 (Patent Document 1) discloses a silicone grease composition in which a specific organopolysiloxane is mixed with spherical hexagonal aluminum nitride powder having a certain particle size range. Japanese Patent Application Laid-Open No. 10-110179 (Patent Document 3) discloses a thermally conductive organosiloxane composition in which an aluminum nitride powder having a small particle size and an aluminum nitride powder having a coarse particle size are combined. A heat conductive silicone grease in which aluminum powder and zinc oxide powder are combined is disclosed in Japanese Patent Laid-Open No. 2000-63872 (Patent Document 4), which is a heat conductive grease composition using aluminum nitride powder surface-treated with organosilane. It is disclosed.
Aluminum nitride has a thermal conductivity of 70 to 270 W/mK, and a material having a higher thermal conductivity than this is diamond having a thermal conductivity of 900 to 2,000 W/mK. Japanese Unexamined Patent Publication No. 2002-30217 (Patent Document 5) discloses a heat conductive silicone composition using diamond, zinc oxide and a dispersant in a silicone resin.
Further, in JP-A-2000-63873 (Patent Document 6) and JP-A-2008-222776 (Patent Document 7), there is disclosed a heat conductive grease composition obtained by mixing metal aluminum powder with a base oil such as silicone oil. It is disclosed.
Furthermore, Japanese Patent No. 3130193 (Patent Document 8), Japanese Patent No. 3677671 (Patent Document 9) and the like, which use silver powder having high thermal conductivity as a filler, are also disclosed.
However, any of the heat conductive materials and heat conductive greases have recently become insufficient in heat radiation effect with respect to the heat generation amount of integrated circuit elements such as CPUs.
 また、ケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンと、ケイ素原子に結合した水素原子を含有するオルガノハイドロジェンシロキサンとに熱伝導性フィラーを配合した熱伝導性シリコーン組成物が、白金系触媒の存在下で付加反応させて弾性硬化物とすることで、該弾性硬化物は、優れた信頼性を発現することが知られている(特許文献10)。 Further, a thermally conductive silicone composition obtained by blending a thermally conductive filler in an organopolysiloxane containing an alkenyl group bonded to a silicon atom and an organohydrogensiloxane containing a hydrogen atom bonded to a silicon atom is a platinum-based compound. It is known that an elastic cured product exhibits excellent reliability by being subjected to an addition reaction in the presence of a catalyst to give an elastic cured product (Patent Document 10).
特開平2-153995号公報JP-A-2-153995 特開平3-14873号公報JP-A-3-14873 特開平10-110179号公報Japanese Patent Laid-Open No. 10-110179 特開2000-63872号公報JP-A-2000-63872 特開2002-30217号公報JP-A-2002-30217 特開2000-63873号公報Japanese Patent Laid-Open No. 2000-63873 特開2008-222776号公報JP, 2008-222776, A 特許3130193号公報Japanese Patent No. 3130193 特許3677671号公報Japanese Patent No. 3677671 特開2017-066406号公報JP, 2017-066406, A
 特許文献10等に記載の組成物は、系内に存在する水分、ケイ素原子に結合した水素原子(SiH基)を含有するオルガノハイドロジェンポリシロキサン及び白金触媒を代表とするヒドロシリル化を促進させる触媒の共存化で、SiH基の水素が脱離することにより、系内に水素ガスの気泡が発生し、硬化物の外観や物性を損なう場合がある。また、塩基性成分との接触や塩基性成分が同一系内に共存することでも同様に、SiH基の水素が脱離し、系内に水素ガスの気泡が発生し、硬化物の外観や物性を損なう場合もある。
 系内で発生する水素ガスを低減する手段として、SiH基を含有するオルガノハイドロジェンポリシロキサンとしてSiH基の量が少ない又は活性の低い構造を持つSiH基を含有するオルガノハイドロジェンシロキサンを用いること、SiH基を含有するオルガノハイドロジェンポリシロキサンの添加量を低減することなどが挙げられるが、架橋剤として作用する成分の構造及び配合量が限られるため、組成物の特性が制限され、所望とする物性や放熱効果が得られないという問題がある。
 従って、本発明の目的は、良好な放熱効果を奏し、かつ系内の気泡を効果的に抑制させ、良好な外観や物性を有する硬化物を与える熱伝導性シリコーン組成物を提供することにある。
The composition described in Patent Document 10 or the like is a catalyst that promotes hydrosilylation represented by water present in the system, an organohydrogenpolysiloxane containing a hydrogen atom (SiH group) bonded to a silicon atom, and a platinum catalyst. With the coexistence of hydrogen, the hydrogen of the SiH group is desorbed, whereby bubbles of hydrogen gas are generated in the system, which may impair the appearance and physical properties of the cured product. Further, when the basic component is brought into contact with the basic component or the basic component coexists in the same system, hydrogen in the SiH group is desorbed, and bubbles of hydrogen gas are generated in the system to improve the appearance and physical properties of the cured product. In some cases, it may be damaged.
As means for reducing hydrogen gas generated in the system, use of an organohydrogenpolysiloxane containing SiH groups having a low SiH group content or a structure with low activity as the organohydrogenpolysiloxane containing SiH groups, Examples include reducing the amount of addition of the SiH group-containing organohydrogenpolysiloxane, but since the structure and amount of the component acting as a crosslinking agent are limited, the properties of the composition are limited and desired. There is a problem that physical properties and heat dissipation effect cannot be obtained.
Therefore, an object of the present invention is to provide a heat conductive silicone composition that exhibits a good heat dissipation effect, effectively suppresses bubbles in the system, and gives a cured product having good appearance and physical properties. ..
 本発明者らは、上記目的を達成するために鋭意研究した結果、特定のタップ密度、比表面積、及びアスペクト比を持つ銀粉末と、微細な粒径のパラジウム粉又はこれを担持したシリカ等とを特定のオルガノポリシロキサン中に混合することで組成物の熱伝導性が飛躍的に向上することを見出し、本発明を完成した。
 すなわち、本発明は、次の熱伝導性シリコーン組成物等を提供するものである。
The present inventors have conducted extensive studies in order to achieve the above objects, and a specific tap density, a specific surface area, and a silver powder having an aspect ratio, and a fine powder of palladium powder or silica carrying the same, etc. It was found that the thermal conductivity of the composition is remarkably improved by mixing the compound with a specific organopolysiloxane, and the present invention has been completed.
That is, the present invention provides the following thermally conductive silicone composition and the like.
<1>
 下記、(A)、(B)、(C)、(D)及び(E)成分を含有する熱伝導性シリコーン組成物。
(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個含有するオルガノポリシロキサン:100質量部
(B)ケイ素原子に結合した水素原子(SiH基)を1分子中に少なくとも2個含有するオルガノハイドロジェンポリシロキサン:全組成物中のアルケニル基1モル当たり、本(B)成分中のケイ素原子に結合した水素原子の量が0.2~10モルとなる量
(C)ヒドロシリル化反応用触媒:有効量
(D)タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が、1~30である銀粉末:(A)成分100質量部に対して、300~11,000質量部
(E)平均粒径が1nmから100nmであるパラジウム粉又は該パラジウム粉が担持された結晶性シリカ、非晶質シリカもしくはカーボン:(A)成分100質量部に対して、パラジウム粉が0.00001~0.05質量部となる量
<2>
 発熱性電子部品と、放熱体とを備えている半導体装置であって、前記発熱性電子部品と放熱体との間に、<1>に記載の熱伝導性シリコーン組成物が介在している半導体装置。
<3>
 <1>に記載の熱伝導性シリコーン組成物を、発熱性電子部品と放熱体との間で、0.01MPa以上の圧力を掛けられた状態で80℃以上に加熱する工程を有する半導体装置の製造方法。
<1>
A thermally conductive silicone composition containing the following components (A), (B), (C), (D) and (E).
(A) Organopolysiloxane containing at least two alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) At least two hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule Organohydrogenpolysiloxane: An amount (C) hydrosilylation reaction in which the amount of hydrogen atoms bonded to silicon atoms in the component (B) is 0.2 to 10 mol, based on 1 mol of alkenyl groups in the entire composition. Catalyst: Effective amount (D) Silver powder having a tap density of 3.0 g/cm 3 or more, a specific surface area of 2.0 m 2 /g or less, and an aspect ratio of 1 to 30: (A) 300 to 11,000 parts by mass (E) Palladium powder having an average particle diameter of 1 nm to 100 nm, or crystalline silica, amorphous silica or carbon:(A ) Amount of palladium powder in an amount of 0.00001 to 0.05 parts by mass relative to 100 parts by mass of component <2>
A semiconductor device comprising a heat-generating electronic component and a heat radiator, wherein the heat-conductive silicone composition according to <1> is interposed between the heat-generating electronic component and the heat radiator. apparatus.
<3>
<1> A semiconductor device having a step of heating the thermally conductive silicone composition according to <1> to 80° C. or higher under a pressure of 0.01 MPa or higher between a heat-generating electronic component and a radiator. Production method.
 本発明の熱伝導性シリコーン組成物は、組成物の一成分であるSiH基を含有するオルガノハイドロジェンポリシロキサンの構造や配合量の制限なく、所望の特性を発揮する組成及び配合量において、その硬化物が優れた熱伝導性を有し、系内の気泡を抑制できるため、硬化物の外観や物性が損なわれることがなく、半導体装置に有用である。 The thermally conductive silicone composition of the present invention has a structure and a compounding amount that exert desired properties without limitation of the structure and the compounding amount of the SiH group-containing organohydrogenpolysiloxane which is one component of the composition. Since the cured product has excellent thermal conductivity and can suppress bubbles in the system, the appearance and physical properties of the cured product are not impaired, and it is useful for semiconductor devices.
本発明の半導体装置の1例を示す縦断面概略図である。It is a longitudinal cross-sectional schematic diagram which shows an example of the semiconductor device of this invention.
 本発明の熱伝導性シリコーン組成物について以下詳述する。 The heat conductive silicone composition of the present invention will be described in detail below.
(A)成分
 (A)成分のオルガノポリシロキサンは本発明の組成物のベースポリマーであり、1分子中にケイ素原子に結合したアルケニル基を少なくとも2個含有する。
 (A)成分の分子構造としては、例えば、直鎖状構造、環状構造が挙げられ、これらの構造は分岐を有していてもよいが、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、直鎖状のジオルガノポリシロキサンが(A)成分として好ましく用いられる。
 (A)成分の25℃における動粘度は、10mm2/sより小さいと組成物にした時にオイルブリードが出やすくなり、100,000mm2/sより大きいと組成物に配合したときの組成物の絶対粘度が高くなることから取り扱い性が低下する。そのため、(A)成分の25℃における動粘度は10~100,000mm2/sであることが好ましく、特に100~50,000mm2/sであることが好ましい。なお、本明細書に記載される(A)成分のオルガノポリシロキサンの動粘度はオストワルド粘度計で測定した25℃の値である。
Component (A) The organopolysiloxane of component (A) is the base polymer of the composition of the present invention and contains at least two alkenyl groups bonded to silicon atoms in one molecule.
Examples of the molecular structure of the component (A) include a linear structure and a cyclic structure. These structures may have a branch, but the main chain is basically composed of repeating diorganosiloxane units. Therefore, a linear diorganopolysiloxane in which both ends of the molecular chain are blocked with a triorganosiloxy group is preferably used as the component (A).
If the component (A) has a kinematic viscosity at 25° C. of less than 10 mm 2 /s, oil bleeding tends to occur when it is made into a composition, and if it is more than 100,000 mm 2 /s, the composition when blended into the composition is Since the absolute viscosity is high, the handling property is low. Therefore, the kinematic viscosity of the component (A) at 25° C. is preferably 10 to 100,000 mm 2 /s, and particularly preferably 100 to 50,000 mm 2 /s. The kinematic viscosity of the organopolysiloxane of component (A) described in the present specification is a value at 25° C. measured with an Ostwald viscometer.
 (A)成分中のケイ素原子に結合したアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等の、炭素原子数が好ましくは2~8、より好ましくは2~4のものが挙げられ、特に、ビニル基であることが好ましい。(A)成分のオルガノポリシロキサンが直鎖状構造を有する場合、該アルケニル基は、分子鎖末端および分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。 As the alkenyl group bonded to the silicon atom in the component (A), for example, a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group and the like, preferably having 2 to 8 carbon atoms, more preferably 2 to 4 are mentioned, and a vinyl group is particularly preferable. When the organopolysiloxane of the component (A) has a linear structure, the alkenyl group may be bonded to a silicon atom only at one of the molecular chain terminal and the part not at the molecular chain terminal, or the silicon may be bonded at both of them. It may be bonded to an atom.
 (A)成分中のアルケニル基以外のケイ素原子に結合する有機基としては、例えば、アルキル基、特に、メチル基、エチル基、ブロピル基、プチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基等の炭素原子数1~10のアルキル基;アリール基、特に、フェニル基、トリル基、キシリル基、ナフチル基等の炭素原子数6~14のアリール基;アラルキル基、特に、ベンジル基、フェネチル基等の炭素原子数7~14のアラルキル基;ハロゲン化アルキル基、特に、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等の炭素原子数1~3のハロゲン化アルキル基などの、非置換またはハロゲン置換一価炭化水素基が挙げられ、特に、メチル基、フェニル基であることが好ましい。 Examples of the organic group bonded to a silicon atom other than the alkenyl group in the component (A) include an alkyl group, particularly a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group. An alkyl group having 1 to 10 carbon atoms such as; an aryl group, particularly an aryl group having 6 to 14 carbon atoms such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group; an aralkyl group, particularly a benzyl group, a phenethyl group Aralkyl groups having 7 to 14 carbon atoms such as; halogenated alkyl groups, particularly halogenated alkyl groups having 1 to 3 carbon atoms such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group Examples thereof include an unsubstituted or halogen-substituted monovalent hydrocarbon group such as an alkyl group, and a methyl group and a phenyl group are particularly preferable.
 (A)成分の具体例としては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、式:R1 3SiO0.5(R1はアルケニル基以外の非置換または置換の一価炭化水素基である。以下同様。)で示されるシロキサン単位と式:R1 22SiO0.5(R2はアルケニル基である。以下同様。)で示されるシロキサン単位と式:R1 2SiOで示される単位と式:SiO2で示されるシロキサン単位とからなるオルガノポリシロキサン共重合体、式:R1 3SiO0.5で示されるシロキサン単位と式:R1 22SiO0.5で示されるシロキサン単位と式:SiO2で示されるシロキサン単位とからなるオルガノポリシロキサン共重合体、式:R1 22SiO0.5で示されるシロキサン単位と式:R1 2SiOで示されるシロキサン単位と式:SiO2で示されるシロキサン単位とからなるオルガノポリシロキサン共重合体、式:R12SiOで示されるシロキサン単位と式:R1SiO1.5で示されるシロキサン単位もしくは式:R2SiO1.5で示されるシロキサン単位とからなるオルガノポリシロキサン共重合体が挙げられる。これら(A)成分は1種単独でも2種以上組み合わせても使用することができる。 Specific examples of the component (A) include a dimethylsiloxy group-capped dimethylsiloxysiloxane block-capped with trimethylsiloxy groups at both molecular chain ends, a trimethylsiloxy group-blocked methylvinylpolysiloxane blocked with trimethylsiloxy groups at both molecular chain ends, and a dimethylsiloxy group-capped dimethyl block at both molecular chain ends. Siloxane/Methylvinylsiloxane/Methylphenylsiloxane Copolymer, Dimethylvinylsiloxy group-blocked dimethylpolysiloxane at both molecular chain ends, Dimethylvinylsiloxy group-blocked methylvinylpolysiloxane at both molecular chain ends, Dimethylvinylsiloxy group-blocked dimethyl chain at both molecular chain ends Siloxane/methylvinylsiloxane copolymer, dimethylvinylsiloxy group-blocked dimethylsiloxane at both molecular chain ends, dimethylpolysiloxane, methylvinylsiloxane/methylphenylsiloxane copolymer, trivinylsiloxy group-blocked dimethylpolysiloxane at both molecular chain ends, formula: R 1 3 SiO 0.5 (R 1 is an unsubstituted or substituted monovalent hydrocarbon group other than an alkenyl group. The same applies hereinafter) and a formula: R 1 2 R 2 SiO 0.5 (R 2 is an alkenyl group. The same shall apply hereinafter) and an organopolysiloxane copolymer comprising a unit represented by the formula: R 1 2 SiO and a siloxane unit represented by the formula: SiO 2 , represented by the formula: R 1 3 SiO 0.5 Organopolysiloxane copolymer comprising a siloxane unit represented by the formula: R 1 2 R 2 SiO 0.5 and a siloxane unit represented by the formula: SiO 2 , represented by the formula: R 1 2 R 2 SiO 0.5 An organopolysiloxane copolymer composed of a siloxane unit and a siloxane unit represented by the formula: R 1 2 SiO and a siloxane unit represented by the formula: SiO 2 , a siloxane unit represented by the formula: R 1 R 2 SiO and a formula: R An organopolysiloxane copolymer composed of a siloxane unit represented by 1 SiO 1.5 or a siloxane unit represented by the formula: R 2 SiO 1.5 can be mentioned. These components (A) can be used either individually or in combination of two or more.
 上式中のR1としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基が挙げられる。また、上式中のR2としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基が挙げられる。 Examples of R 1 in the above formula include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and heptyl group; aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group. Group; aralkyl group such as benzyl group and phenethyl group; halogenated alkyl group such as chloromethyl group, 3-chloropropyl group and 3,3,3-trifluoropropyl group. In addition, examples of R 2 in the above formula include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group.
 本発明の組成物中、(A)成分は、0.01~25質量%含有することが好ましい。 The component (A) is preferably contained in the composition of the present invention in an amount of 0.01 to 25% by mass.
(B)成分
 (B)成分のオルガノハイドロジェンポリシロキサンは、(A)成分と反応し、架橋剤として作用する。(B)成分の分子構造に特に制限はなく、例えば、線状、環状、分岐状、三次元網状構造(樹脂状)等の、従来公知の各種のオルガノハイドロジェンポリシロキサンを使用することができる。
Component (B) The organohydrogenpolysiloxane of component (B) reacts with component (A) and acts as a crosslinking agent. There is no particular limitation on the molecular structure of the component (B), and various conventionally known organohydrogenpolysiloxanes having a linear, cyclic, branched, or three-dimensional network structure (resin-like) can be used. ..
 (B)成分のオルガノハイドロジェンポリシロキサンは、一分子中に2個以上、好ましくは3個以上(通常、3~500個、好ましくは3~200個、より好ましくは3~100個程度)のケイ素原子に結合した水素原子(即ち、ヒドロシリル基またはSiH基)を有する。(B)成分のオルガノハイドロジェンポリシロキサンが線状構造を有する場合、これらのSiH基は、分子鎖末端および分子鎖末端でない部分のどちらか一方にのみ位置していても、その両方に位置していてもよい。 The organohydrogenpolysiloxane as the component (B) is 2 or more, preferably 3 or more (generally 3 to 500, preferably 3 to 200, more preferably 3 to 100) per molecule. It has a hydrogen atom (that is, a hydrosilyl group or SiH group) bonded to a silicon atom. When the organohydrogenpolysiloxane as the component (B) has a linear structure, these SiH groups may be located at either one of the molecular chain terminal or the non-molecular chain terminal, or at both of them. May be
 (B)成分の一分子中のケイ素原子の数(重合度)は、好ましくは2~1,000、より好ましくは3~300、更により好ましくは4~150程度である。更に、(B)成分の25℃における粘度は、好ましくは0.1~5,000mPa・s、より好ましくは0.5~1,000mPa・s、更により好ましくは5~500mPa・s程度である。なお、本明細書に記載される(B)成分のオルガノポリシロキサンの粘度(絶対粘度)は株式会社マルコム社製の型番PC-1TL(10rpm)で測定した25℃の値である。 The number (degree of polymerization) of silicon atoms in one molecule of the component (B) is preferably 2 to 1,000, more preferably 3 to 300, and still more preferably 4 to 150. Further, the viscosity of the component (B) at 25° C. is preferably 0.1 to 5,000 mPa·s, more preferably 0.5 to 1,000 mPa·s, and even more preferably 5 to 500 mPa·s. .. The viscosity (absolute viscosity) of the organopolysiloxane of the component (B) described in the present specification is a value at 25° C. measured with a model number PC-1TL (10 rpm) manufactured by Malcolm Co., Ltd.
 (B)成分としては、例えば、下記平均組成式(1):
  R3 abSiO(4-a-b)/2   (1)
(式中、R3は、脂肪族不飽和基を除く、非置換または置換の、炭素原子数が好ましくは1~14、より好ましくは1~10の、ケイ素原子に結合した一価炭化水素基であり、aおよびbは、好ましくは0.7≦a≦2.1、0.001≦b≦1.0、かつ0.8≦a+b≦3.0、より好ましくは、0.9≦a≦2.0、0.01≦b≦1.0、かつ1.0≦a+b≦2.5を満足する正数である)
で示されるオルガノハイドロジェンポリシロキサンが用いられる。
Examples of the component (B) include the following average composition formula (1):
R 3 a H b SiO (4-ab)/2 (1)
(In the formula, R 3 is an unsubstituted or substituted monovalent hydrocarbon group having a carbon atom number of preferably 1 to 14, and more preferably 1 to 10, excluding an aliphatic unsaturated group, bonded to a silicon atom. And a and b are preferably 0.7≦a≦2.1, 0.001≦b≦1.0, and 0.8≦a+b≦3.0, and more preferably 0.9≦a. A positive number that satisfies ≦2.0, 0.01≦b≦1.0, and 1.0≦a+b≦2.5)
The organohydrogenpolysiloxane represented by
 上記R3としては、例えば、メチル基、エチル基、プロピル基、イソプロビル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フエニルエチル基、フェニルプロピル基等のアラルキル基;これらの炭化水素基中の水素原子の一部または全部をフッ素、臭素、塩素等のハロゲン原子で置換した基、例えば、クロロメチル基、3-クロロプロピル基、ブロモエチル基、3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基であり、より好ましくはメチル基、フェニル基である。 Examples of R 3 include a methyl group, an ethyl group, a propyl group, an isoprovir group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a cyclohexyl group, an octyl group, a nonyl group, Alkyl group such as decyl group; aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group; aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group; some of hydrogen atoms in these hydrocarbon groups or A group in which all of them are substituted with a halogen atom such as fluorine, bromine or chlorine, for example, a chloromethyl group, a 3-chloropropyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group and the like can be mentioned, and an alkyl group is preferable. , An aryl group, and more preferably a methyl group or a phenyl group.
 (B)成分は公知の製法によって得ることができる。一般的な製造方法としては、例えば、1,3,5,7-テトラメチル-1,3,5,7-テトラハイドロシクロテトラシロキサン(場合によっては、該シクロテトラシロキサンとオクタメチルシクロテトラシロキサンとの混合物)とヘキサメチルジシロキサン、1,3-ジハイドロ-1,1,3,3-テトラメチルジシロキサン等の末端基源となるシロキサン化合物とを、あるいは、オクタメチルシクロテトラシロキサンと1,3-ジハイドロ-1,1,3,3-テトラメチルジシロキサンとを、硫酸、トリフルオロメタンスルホン酸、メタンスルホン酸等の触媒の存在下に-10~+40℃程度の温度で平衡化させる方法が挙げられる。 The component (B) can be obtained by a known production method. As a general production method, for example, 1,3,5,7-tetramethyl-1,3,5,7-tetrahydrocyclotetrasiloxane (in some cases, the cyclotetrasiloxane and octamethylcyclotetrasiloxane And a siloxane compound serving as a terminal group source such as hexamethyldisiloxane and 1,3-dihydro-1,1,3,3-tetramethyldisiloxane, or octamethylcyclotetrasiloxane and 1,3 -A method of equilibrating dihydro-1,1,3,3-tetramethyldisiloxane with a catalyst such as sulfuric acid, trifluoromethanesulfonic acid or methanesulfonic acid at a temperature of about -10 to +40°C. To be
 (B)成分の具体例としては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジエンシロキシ基封鎖メチルフェニルポリシロキサン、式:R1 3SiO0.5(R1は(A)成分について定義および例示したとおりである。以下同様。)で示されるシロキサン単位と式:R1 2HSiO0.5で示されるシロキサン単位と式:SiO2で示されるシロキサン単位とからなるオルガノポリシロキサン共重合体、式:R1 2HSiO0.5で示されるシロキサン単位と式:SiO2で示されるシロキサン単位とからなるオルガノポリシロキサン共重合体、式:R1HSiOで示されるシロキサン単位と式:R1SiO1.5で示されるシロキサン単位もしくは式:HSiO1.5で示されるシロキサン単位とからなるオルガノポリシロキサン共重合体が挙げられる。これら(B)成分は1種単独でも2種以上組み合わせても使用することができる。 Specific examples of the component (B) include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris(dimethylhydrogensiloxy)methylsilane and tris(dimethylhydro). Gensiloxy) phenylsilane, dimethylsiloxy group-blocked methylhydrogenpolysiloxane at both ends of the molecular chain, dimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecular chain, methylhydrogensiloxane copolymer, trimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecular chain Methyl hydrogen siloxane/methyl phenyl siloxane copolymer, dimethyl hydrogen siloxy group-blocked dimethyl polysiloxane at both molecular chain ends, dimethyl hydrogen siloxy group dimethyl polysiloxane/methyl hydrogen siloxane copolymer at both molecular chain ends, molecular chain Dimethylhydrogensiloxy group-blocked dimethylsiloxane/methylphenylsiloxane copolymer with both terminals, Molecular chain Both-end dimethylhydrogensiloxy group-blocked methylphenylpolysiloxane, Formula: R 1 3 SiO 0.5 (R 1 is defined as component (A) An organopolysiloxane copolymer comprising a siloxane unit represented by the formula: R 1 2 HSiO 0.5 and a siloxane unit represented by the formula: SiO 2 , An organopolysiloxane copolymer comprising a siloxane unit represented by R 1 2 HSiO 0.5 and a siloxane unit represented by the formula: SiO 2 , a siloxane unit represented by the formula: R 1 HSiO and a formula: R 1 SiO 1.5 And an organopolysiloxane copolymer comprising a siloxane unit represented by the formula: HSiO 1.5 . These components (B) can be used alone or in combination of two or more.
 (B)成分の配合量は、全組成物中のアルケニル基1モル当たり、本(B)成分中のケイ素原子に結合した水素原子(SiH基)の量が0.2~10モル、好ましくは1.0~8.0モルの範囲内となる量である。このとき、全組成物中に存在するアルケニル基に対する(A)成分中のケイ素原子に結合したアルケニル基の割合は50~100モル%が好ましく、80~100モル%がより好ましい。全組成物中にアルケニル基を有する成分として(A)成分しか存在しない場合には、(A)成分中のケイ素原子に結合したアルケニル基1モル当たり、本(B)成分中のSiH基の量が0.5~10モル、好ましくは1.0~8.0モルの範囲内となる量である。(B)成分の配合量が少なすぎると組成物が十分に硬化しない場合があり、逆に多すぎると得られる硬化物(シリコーンゴム)の耐熱性が極端に劣る場合がある。 The amount of the component (B) blended is such that the amount of hydrogen atoms (SiH groups) bonded to silicon atoms in the component (B) is 0.2 to 10 mol, preferably 1 mol of the alkenyl group in the entire composition. The amount is in the range of 1.0 to 8.0 mol. At this time, the ratio of the alkenyl group bonded to the silicon atom in the component (A) to the alkenyl group present in the entire composition is preferably 50 to 100 mol %, more preferably 80 to 100 mol %. When only component (A) is present as a component having an alkenyl group in the entire composition, the amount of SiH groups in the component (B) per mole of alkenyl groups bonded to silicon atoms in the component (A). Is 0.5 to 10 moles, preferably 1.0 to 8.0 moles. If the blending amount of the component (B) is too small, the composition may not be sufficiently cured, and conversely if the blending amount is too large, the resulting cured product (silicone rubber) may have extremely poor heat resistance.
(C)成分
 (C)成分のヒドロシリル化反応用触媒は、(A)成分中のアルケニル基と、(B)成分中のSiH基との付加反応を促進するものであれば、いかなる触媒を使用してもよい。例えば、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィン類、ビニルシロキサンもしくはアセチレン化合物との配位化合物等の白金系触媒;テトラキス(トリフェニルホスフィン)パラジウム等のパラジウム系触媒;クロロトリス(トリフェニルホスフィン)ロジウム等のロジウム系触媒が(C)成分として使用されるが、特に好ましくは白金-ジビニルテトラメチルジシロキサン錯体等の白金系触媒である。
Component (C) The hydrosilylation reaction catalyst of component (C) may be any catalyst that promotes the addition reaction between the alkenyl group in component (A) and the SiH group in component (B). You may. For example, platinum-based catalysts such as chloroplatinic acid, alcohol-modified chloroplatinic acid, coordination compounds of chloroplatinic acid with olefins, vinyl siloxanes or acetylene compounds; palladium-based catalysts such as tetrakis(triphenylphosphine)palladium; chlorotris( A rhodium-based catalyst such as triphenylphosphine)rhodium is used as the component (C), but a platinum-based catalyst such as a platinum-divinyltetramethyldisiloxane complex is particularly preferable.
 (C)成分の配合量は、ヒドロシリル化反応用触媒としての有効量であれば特に制限されないが、(A)及び(B)成分の合計量に対して、触媒金属元素に換算して質量基準で好ましくは0.1~2,000ppm、より好ましくは1~1,500ppmの範囲である。該添加量がこの範囲だと、付加反応が十分に促進され、硬化が十分であり、経済的に有利である。また、金属触媒の種類としては、ヒドロシリル化反応用触媒としての有効活性を持つ金属であれば特に制限されないが、水素ガスを原子に分割させる活性を持つ白金等が有用である。 The compounding amount of the component (C) is not particularly limited as long as it is an effective amount as a catalyst for the hydrosilylation reaction, but is based on the total amount of the components (A) and (B) in terms of the catalytic metal element on a mass basis. Is preferably 0.1 to 2,000 ppm, more preferably 1 to 1,500 ppm. When the addition amount is within this range, the addition reaction is sufficiently promoted, the curing is sufficient, and it is economically advantageous. The type of metal catalyst is not particularly limited as long as it is a metal having an effective activity as a catalyst for hydrosilylation reaction, but platinum or the like having an activity of splitting hydrogen gas into atoms is useful.
(D)成分
 (D)成分は、タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が1~30の銀粉末である。
 (D)成分の銀粉末のタップ密度は、3.0g/cm3より小さいと(D)成分の組成物への充填率が上げられなくなり、組成物の粘度が上がってしまい、作業性が悪くなるため、3.0g/cm3~8.0g/cm3の範囲が好ましく、4.5g/cm3~8.0g/cm3の範囲がより好ましく、5.5g/cm3~8.0g/cm3の範囲がさらに好ましい。
 (D)成分の銀粉末の比表面積は、2.0m2/gより大きいと(D)成分の組成物への充填率が上げられなくなり、組成物の粘度が上がってしまい、作業性が悪くなるため0.08m2/g~2.0m2/gの範囲が好ましく、0.08m2/g~1.5m2/gの範囲がより好ましく、0.08m2/g~1.0m2/gの範囲がさらに好ましい。
 尚、本明細書に記載のタップ密度は、銀粉末100gをはかり、該銀粉末をロートで100mlメスシリンダーに静かに落とした後、シリンダーをタップ密度測定器にのせて落差距離20mm、60回/分の速さで600回落下させ、圧縮した銀粉末の容積から算出した値である。
 また、比表面積は、銀粉末約2gをサンプルにとり、60±5℃で10分間脱ガスした後、比表面積自動測定装置(BET法)にて総表面積を測定した。その後、サンプル量をはかり、下記式(2)で計算し、算出したものである。
Component (D) Component (D) is a silver powder having a tap density of 3.0 g/cm 3 or more, a specific surface area of 2.0 m 2 /g or less, and an aspect ratio of 1 to 30.
If the tap density of the silver powder of the component (D) is less than 3.0 g/cm 3 , the filling rate of the composition of the component (D) cannot be increased and the viscosity of the composition increases, resulting in poor workability. Therefore, the range of 3.0 g/cm 3 to 8.0 g/cm 3 is preferable, the range of 4.5 g/cm 3 to 8.0 g/cm 3 is more preferable, and the range of 5.5 g/cm 3 to 8.0 g is preferable. The range of /cm 3 is more preferable.
If the specific surface area of the silver powder of the component (D) is larger than 2.0 m 2 /g, the filling rate of the composition of the component (D) cannot be increased and the viscosity of the composition increases, resulting in poor workability. preferably in the range of 0.08m 2 /g~2.0m 2 / g to become, more preferably in the range of 0.08m 2 /g~1.5m 2 / g, 0.08m 2 /g~1.0m 2 The range of /g is more preferable.
The tap density described in the present specification was obtained by weighing 100 g of silver powder, gently dropping the silver powder into a 100 ml graduated cylinder with a funnel, and then placing the cylinder on a tap density measuring device to set a drop distance of 20 mm at 60 times/ It is a value calculated from the volume of the silver powder compressed by dropping 600 times at the speed of a minute.
As for the specific surface area, about 2 g of silver powder was sampled, degassed at 60±5° C. for 10 minutes, and then the total surface area was measured by an automatic specific surface area measuring device (BET method). After that, the sample amount is measured and calculated by the following formula (2).
  比表面積(m2/g)=総表面積(m2)/サンプル量(g)   (2) Specific surface area (m 2 /g)=total surface area (m 2 )/sample amount (g) (2)
 (D)成分の銀粉末のアスペクト比は、1~30であり、好ましくは2~20の範囲であり、より好ましくは3~15の範囲である。アスペクト比とは、粒子の長径と短径の比率(長径/短径)をいう。その測定方法としては、例えば粒子の電子顕微鏡写真を撮り、この写真から粒子の長径と短径を測定して、算出することが出来る。粒子の大きさは上面からの電子顕微鏡写真で測定でき、この上面の電子顕微鏡写真から大きい方の直径を長径として測定する。この長径に対して短径は粒子の厚さになる。粒子の厚さは上面からの電子顕微鏡写真では測定できない。粒子の厚さを測定するには、電子顕微鏡写真を撮る際に、粒子の載っている試料台を傾斜させて取り付け、上面から電子顕微鏡写真を撮り、試料台の傾きの角度で補正して粒子の厚さを算出すればよい。具体的には、電子顕微鏡で数千倍に拡大した写真を数枚撮影した後、任意に100個の粒子の長径及び短径を測定し、長径と短径の比(長径/短径)を算出して、平均値を求めてアスペクト比とした。 The aspect ratio of the silver powder of the component (D) is 1 to 30, preferably 2 to 20, and more preferably 3 to 15. The aspect ratio means the ratio of the major axis and the minor axis of the particle (major axis/minor axis). As a measuring method, for example, an electron micrograph of the particle is taken, and the major axis and the minor axis of the particle can be measured and calculated from this photograph. The size of the particles can be measured by an electron micrograph from the upper surface, and the larger diameter is measured from the electron micrograph of the upper surface as the major axis. The minor axis becomes the particle thickness with respect to the major axis. Particle thickness cannot be measured by electron micrographs from the top. To measure the thickness of a particle, when taking an electron micrograph, attach the sample stage on which the particle is mounted with an inclination, take an electron micrograph from the top, and correct the angle of the sample stage to correct the particle. The thickness of the can be calculated. Specifically, after taking several pictures magnified several thousand times with an electron microscope, the major axis and the minor axis of 100 particles are arbitrarily measured, and the ratio of the major axis and the minor axis (major axis/minor axis) is calculated. The aspect ratio was calculated and the average value was calculated.
 (D)成分の銀粉末の粒径は特に限定されないが、平均粒径は0.2~30μmの範囲が好ましく、特に1.0~20μmの範囲が好ましい。平均粒径は銀粉末をミクロスパテラで1~2杯100mlビーカーにとり、イソプロピルアルコールを約60ml入れて、超音波ホモジナイザーで1分間銀粉末を分散させた後、レーザー回折式粒度分析計により測定した体積基準の体積平均径[MV]である。なお、測定時間は30秒で測定した。 The particle size of the silver powder as the component (D) is not particularly limited, but the average particle size is preferably in the range of 0.2 to 30 μm, particularly preferably 1.0 to 20 μm. The average particle size is 1 to 2 cups of silver powder placed in a 100 ml beaker with a microspatella, about 60 ml of isopropyl alcohol is added, and the silver powder is dispersed for 1 minute with an ultrasonic homogenizer, and then the volume is measured by a laser diffraction particle size analyzer. It is a standard volume average diameter [MV]. The measurement time was 30 seconds.
 本発明で用いる銀粉末の製造方法としては、特に限定されないが、例えば電解法、粉砕法、熱処理法、アトマイズ法、還元法等が挙げられる。
 銀粉末は、上記方法で製造されたものをそのまま用いてもよく、上記数値範囲を満たす範囲で粉砕して用いてもよい。銀粉末を粉砕する場合、装置は特に限定されず、例えば、スタンプミル、ボールミル、振動ミル、ハンマーミル、圧延ローラ、乳鉢等の公知の装置を用いることができる。なかでも、スタンプミル、ボールミル、振動ミル、ハンマーミルが好ましい。
The method for producing the silver powder used in the present invention is not particularly limited, and examples thereof include an electrolytic method, a pulverizing method, a heat treatment method, an atomizing method, and a reducing method.
The silver powder produced by the above method may be used as it is, or may be crushed and used in a range satisfying the above numerical range. When pulverizing the silver powder, the device is not particularly limited, and known devices such as a stamp mill, a ball mill, a vibration mill, a hammer mill, a rolling roller, and a mortar can be used. Of these, a stamp mill, a ball mill, a vibration mill and a hammer mill are preferable.
 (D)成分の配合量は、(A)成分100質量部に対して、300~11,000質量部である。(A)成分100質量部に対して、(D)成分の配合量が300質量部より少ないと得られる組成物の熱伝導率が悪くなり、11,000質量部より多いと組成物の流動性が悪くなり組成物の取扱い性が悪くなる。(D)成分の配合量は、(A)成分100質量部に対して、好ましくは300~5,000質量部、より好ましくは500~5,000質量部の範囲である。 The blending amount of the component (D) is 300 to 11,000 parts by mass with respect to 100 parts by mass of the component (A). When the compounding amount of the component (D) is less than 300 parts by mass relative to 100 parts by mass of the component (A), the thermal conductivity of the resulting composition is poor, and when it is more than 11,000 parts by mass, the fluidity of the composition is high. And the handleability of the composition deteriorates. The blending amount of the component (D) is preferably 300 to 5,000 parts by mass, more preferably 500 to 5,000 parts by mass, relative to 100 parts by mass of the component (A).
(E)成分
 (E)成分は平均粒径が1nmから100nmであるパラジウム粉又は該パラジウム粉が担持された結晶性シリカ、非晶質シリカもしくはカーボンである。本発明の熱伝導性シリコーン組成物は、微細な特定の粒径範囲のパラジウム粉又は該パラジウム粉を有する担体を特定のごく少量含むことにより、組成物の硬化反応中に発生する水素ガスをパラジウム粉が吸着し、熱伝導性を損なうことなく、硬化物の外観や物性が良好なものとなる。パラジウム粉の平均粒径は、1nmから100nmであり、5nmから70nmが好ましく、更に10nmから50nmが好ましい。該平均粒径が1nmより小さいと配合に不都合が生じ、また該平均粒径が100nmより大きいと配合量に対する水素ガスの吸着効率が低くなり、コストパフォーマンス性に劣ることとなる。なお、パラジウム粉の平均粒径は粒子の電子顕微鏡写真を撮り、数千倍に拡大した写真を数枚撮影した後、任意に100個の粒子の長径を測定した値である。
Component (E) The component (E) is palladium powder having an average particle size of 1 nm to 100 nm or crystalline silica, amorphous silica or carbon carrying the palladium powder. The heat-conductive silicone composition of the present invention contains a very small amount of a fine powder of palladium in a specific particle size range or a carrier having the palladium powder, so that hydrogen gas generated during the curing reaction of the composition is converted into palladium. The powder is adsorbed and the cured product has good appearance and physical properties without impairing the thermal conductivity. The average particle diameter of the palladium powder is 1 nm to 100 nm, preferably 5 nm to 70 nm, and more preferably 10 nm to 50 nm. If the average particle size is less than 1 nm, the blending will be inconvenient, and if the average particle size is more than 100 nm, the hydrogen gas adsorption efficiency with respect to the blending amount will be low, resulting in poor cost performance. The average particle size of the palladium powder is a value obtained by taking electron micrographs of the particles, taking a few thousands of magnified photographs, and then measuring the major axis of 100 particles arbitrarily.
 (E)成分のパラジウム粉は、結晶性シリカ、非晶質シリカもしくはカーボンに担持されたものであってもよい。パラジウムを担持させる担体としては、乾式シリカ、湿式シリカ等の非晶質シリカ、結晶性シリカ、及びカーボンが挙げられる。乾式シリカはヒュームドシリカであってもよい。シリカの平均粒径は0.5μmから100μmが好ましい。該平均粒径が0.5μmより小さいと組成物の粘度が上昇し、取扱い性が悪化し、また、該平均粒径が100μmより大きいと熱伝導経路の形成を阻害し、熱性能が低下する。なお、(E)成分中の担体であるシリカの平均粒径は粒子の電子顕微鏡写真を撮り、数千倍に拡大した写真を数枚撮影した後、任意に100個の粒子の長径を測定した値である。また、(E)成分中の担体であるカーボンの平均一次粒子径は0.5μm~100μmが好ましい。該平均一次粒子径が0.5μmより小さいと組成物の粘度が上昇し、取扱い性が悪化し、また、該平均一次粒子径が100μmより大きいと熱伝導経路の形成を阻害し、熱性能が低下することがある。なお、(E)成分中のカーボンの平均一次粒子径は、粒子の電子顕微鏡写真を撮り、数千倍に拡大した写真を数枚撮影した後、任意に100個の粒子の長径を測定した値である。また、(E)成分中の結晶性シリカの粒径は日装機(株)製マイクロトラックMT330OEXにより測定した体積基準の体積平均径[MV]である。 The (E) component palladium powder may be supported on crystalline silica, amorphous silica or carbon. Examples of the carrier that supports palladium include amorphous silica such as dry silica and wet silica, crystalline silica, and carbon. The fumed silica may be fumed silica. The average particle size of silica is preferably 0.5 μm to 100 μm. When the average particle size is less than 0.5 μm, the viscosity of the composition increases and the handleability deteriorates, and when the average particle size is more than 100 μm, the formation of a heat conduction path is hindered and the thermal performance deteriorates. .. The average particle size of silica as a carrier in the component (E) was taken by taking electron micrographs of the particles and taking several thousands of magnified photographs, after which the major axis of 100 particles was arbitrarily measured. It is a value. Further, the average primary particle diameter of carbon as a carrier in the component (E) is preferably 0.5 μm to 100 μm. When the average primary particle size is less than 0.5 μm, the viscosity of the composition increases and the handling property deteriorates. When the average primary particle size is more than 100 μm, the formation of heat conduction paths is hindered and the thermal performance is improved. It may decrease. The average primary particle diameter of carbon in the component (E) is a value obtained by taking electron micrographs of the particles, taking a few thousands of magnified photographs, and then measuring the major axis of 100 particles arbitrarily. Is. The particle diameter of the crystalline silica in the component (E) is a volume-based volume average diameter [MV] measured by Microtrac MT330OEX manufactured by Nikkiso Co., Ltd.
 (E)成分中のパラジウム粉は、サーマルアレスト法による測定で、融点ピークが1553℃から1557℃の範囲にあるものが好ましい。 The palladium powder in the component (E) preferably has a melting point peak in the range of 1553°C to 1557°C as measured by the thermal arrest method.
 (E)成分の配合方法としては特に制限はない。例えば、(E)成分をそのままの状態で他の成分に添加・分散させてもよい。また、(E)成分を適当な溶媒に分散させた上で他の成分に添加してもよい。更に、(E)成分を適当な分散液(例えば、オルガノシロキサン等)に混合した後、3本ロールミル等の装置を用いて均一に分散させて得られたペースト状態の混合物を他の成分に添加・分散させてもよい。 There is no particular limitation on the method of blending component (E). For example, the component (E) may be added to and dispersed in another component as it is. Further, the component (E) may be dispersed in a suitable solvent and then added to other components. Furthermore, the component (E) is mixed with an appropriate dispersion liquid (eg, organosiloxane), and then uniformly dispersed using a device such as a three-roll mill, and the paste mixture obtained is added to other components. -May be dispersed.
 (E)成分の配合量は、(A)成分100質量部に対して、通常、パラジウム粉量が(パラジウム粉が担体に担持されている場合は担持されたパラジウム粉量が)0.00001~0.05質量部、好ましくは0.0001~0.001質量部の範囲であり、更に好ましくは0.0005~0.001質量部の範囲である。該配合量が少なすぎると本発明の組成物に良好な気泡発生を抑制する効果を付与することができない場合があり、また該配合量が多すぎると熱伝導経路の形成を阻害し、熱性能が低下する場合がある。 The blending amount of the component (E) is usually 0.00001 to 100 parts by mass of the component (A) with respect to the amount of palladium powder (if the palladium powder is supported on a carrier, the amount of supported palladium powder). The amount is 0.05 parts by mass, preferably 0.0001 to 0.001 parts by mass, more preferably 0.0005 to 0.001 parts by mass. If the blending amount is too small, it may not be possible to impart a good effect of suppressing bubble generation to the composition of the present invention, and if the blending amount is too large, it inhibits the formation of a heat conduction path, resulting in a thermal performance. May decrease.
その他の成分
 本発明の熱伝導性シリコーン組成物は、上記の(A)~(E)成分に加えて任意の成分として、以下の成分を含有してもよい。
Other Components The thermally conductive silicone composition of the present invention may contain the following components as optional components in addition to the components (A) to (E).
硬化反応制御剤
 本発明の組成物において、上記の(A)~(E)成分に加えて任意の成分として、付加反応触媒に対して硬化抑制効果を有するとされている従来公知のすべての硬化反応制御剤を使用することができる。このような化合物としては、例えば、トリフェニルホスフィンなどのリン含有化合物、トリブチルアミンやテトラメチルエチレンジアミン、ベンゾトリアゾールなどの窒素含有化合物、硫黄含有化合物、1-エチニル-1-シクロヘキサノールなどのアセチレン系化合物、トリアリルイソシアヌル酸、ハイドロパーオキシ化合物、マレイン酸誘導体などが挙げられる。硬化反応制御剤による硬化遅延効果の度合は、硬化反応制御剤の化学構造によって大きく異なる。従って、硬化反応制御剤の添加量は、使用する硬化反応制御剤の個々について最適な量に調整すべきであるが、そのような調整は当業者に周知の方法によって容易に行うことができる。一般には、該添加量が少なすぎると室温において本発明組成物の長期貯蔵安定性が得られず、逆に該添加量が多すぎると該組成物の硬化が阻害される。
Curing reaction control agent In the composition of the present invention, all the conventionally known curing, which is said to have a curing suppressing effect on the addition reaction catalyst, as an optional component in addition to the above-mentioned components (A) to (E) A reaction control agent can be used. Examples of such compounds include phosphorus-containing compounds such as triphenylphosphine, nitrogen-containing compounds such as tributylamine, tetramethylethylenediamine and benzotriazole, sulfur-containing compounds, and acetylene-based compounds such as 1-ethynyl-1-cyclohexanol. , Triallyl isocyanuric acid, hydroperoxy compounds, maleic acid derivatives and the like. The degree of the curing retarding effect of the curing reaction control agent greatly differs depending on the chemical structure of the curing reaction control agent. Therefore, the addition amount of the curing reaction control agent should be adjusted to an optimum amount for each curing reaction control agent to be used, but such adjustment can be easily performed by a method well known to those skilled in the art. Generally, if the amount added is too small, the long-term storage stability of the composition of the present invention cannot be obtained at room temperature, and if the amount added is too large, the curing of the composition is inhibited.
(D)成分及び(E)成分以外の無機化合物粉末及び/又は有機化合物材料
 (D)成分及び(E)成分以外の無機化合物粉末及び/又は有機化合物材料としては、
アルミニウム、金、銅、ニッケル、インジウム、ガリウム、金属ケイ素等の金属粉末;
ダイヤモンド粉末;
炭素繊維、グラフェン、グラファイト、カーボンナノチューブ、カーボンブラック等のカーボン材料;
酸化亜鉛、酸化チタン、酸化マグネシウム、アルミナ、酸化鉄、二酸化ケイ素(ヒュームドシリカ、結晶性シリカ、沈降性シリカ等)等の金属酸化物粉末;
水酸化アルミニウム等の金属水酸化物粉末;
窒化ホウ素、窒化アルミニウム等の窒化物粉末;
炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛等の炭酸塩;
中空フィラー;シルセスキオキサン;層状マイカ;ケイ藻土;ガラス繊維;シリコーンゴムパウダー;シリコーンレジンパウダー等が挙げられる。
 これらの中でも、熱伝導率が高いものが好ましい。熱伝導率が高い無機化合物粉末及び/又は有機化合物材料としては、アルミニウム粉末、酸化亜鉛粉末、酸化チタン粉末、酸化マグネシウム粉末、アルミナ粉末、水酸化アルミニウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末、ダイヤモンド粉末、金粉末、銅粉末、カーボン粉末、ニッケル粉末、インジウム粉末、ガリウム粉末、金属ケイ素粉末、二酸化ケイ素粉末、炭素繊維、グラフェン、グラファイト及びカーボンナノチューブが挙げられる。これらは1種単独で用いても、2種以上を併用してもよい。
As the inorganic compound powder and/or organic compound material other than the component (D) and the component (E), as the inorganic compound powder and/or the organic compound material other than the component (D) and the component (E),
Metal powders such as aluminum, gold, copper, nickel, indium, gallium, and metal silicon;
Diamond powder;
Carbon materials such as carbon fiber, graphene, graphite, carbon nanotube, carbon black;
Metal oxide powder such as zinc oxide, titanium oxide, magnesium oxide, alumina, iron oxide, silicon dioxide (fumed silica, crystalline silica, precipitated silica, etc.);
Metal hydroxide powder such as aluminum hydroxide;
Nitride powder such as boron nitride and aluminum nitride;
Carbonates such as magnesium carbonate, calcium carbonate and zinc carbonate;
Hollow filler; silsesquioxane; layered mica; diatomaceous earth; glass fiber; silicone rubber powder; silicone resin powder and the like.
Among these, those having high thermal conductivity are preferable. As the inorganic compound powder and/or organic compound material having high thermal conductivity, aluminum powder, zinc oxide powder, titanium oxide powder, magnesium oxide powder, alumina powder, aluminum hydroxide powder, boron nitride powder, aluminum nitride powder, diamond powder. , Gold powder, copper powder, carbon powder, nickel powder, indium powder, gallium powder, metal silicon powder, silicon dioxide powder, carbon fiber, graphene, graphite and carbon nanotube. These may be used alone or in combination of two or more.
 これら無機化合物粉末及び有機化合物材料の表面は、必要に応じてオルガノシラン、オルガノシラザン、オルガノポリシロキサン、有機フッ素化合物等で疎水化処理を施してもよい。無機化合物粉末及び有機化合物材料の平均粒径は、0.5μmより小さくても100μmより大きくても得られる組成物への充填率が上がらなくなるため、0.5~100μmの範囲が好ましく、特に1~50μmの範囲が好ましい。また、炭素繊維の繊維長は10μmより小さくても500μmより大きくても得られる組成物への充填率が上がらなくなるため、10~500μmの範囲が好ましく、特に30~300μmの範囲が好ましい。 The surface of these inorganic compound powders and organic compound materials may be subjected to hydrophobic treatment with organosilane, organosilazane, organopolysiloxane, organofluorine compound, etc., if necessary. If the average particle size of the inorganic compound powder and the organic compound material is smaller than 0.5 μm or larger than 100 μm, the filling rate in the resulting composition will not be increased, so that the range of 0.5 to 100 μm is preferable, and particularly 1 The range of up to 50 μm is preferred. Further, if the fiber length of the carbon fiber is smaller than 10 μm or larger than 500 μm, the filling rate into the composition obtained cannot be increased, so that it is preferably in the range of 10 to 500 μm, particularly preferably in the range of 30 to 300 μm.
 無機化合物粉末及び有機化合物材料の総配合量は、(A)成分100質量部に対して3,000質量部より大きくなると組成物の流動性が悪くなり組成物の取扱い性が悪くなるため、1~3,000質量部が好ましく、特に5~2,000質量部が好ましい。 When the total content of the inorganic compound powder and the organic compound material is more than 3,000 parts by mass with respect to 100 parts by mass of the component (A), the fluidity of the composition becomes poor and the handleability of the composition becomes poor. The amount is preferably ˜3,000 parts by mass, particularly preferably 5 to 2,000 parts by mass.
 更に、本発明組成物には、本発明の目的を損なわない範囲において、その他の任意の成分として、例えば、ケイ素原子に結合した水素原子またはアルケニル基を一分子中に一個含有するオルガノポリシロキサン、ケイ素原子に結合した水素原子およびアルケニル基のどちらをも含有しないオルガノポリシロキサン、有機溶剤、耐熱性付与剤、難燃性付与剤、可塑剤、チキソトロピー付与剤、染料、防かび剤等が含まれていてもよい。 Further, the composition of the present invention, as long as the object of the present invention is not impaired, as other optional components, for example, an organopolysiloxane containing one hydrogen atom or an alkenyl group bonded to a silicon atom in one molecule, Includes organopolysiloxanes containing neither hydrogen atoms nor alkenyl groups bonded to silicon atoms, organic solvents, heat resistance imparting agents, flame retardancy imparting agents, plasticizers, thixotropy imparting agents, dyes, fungicides, etc. May be
 本発明の熱伝導性シリコーン組成物の製造方法は、従来公知のシリコーン組成物の製造方法に従えばよく、特に制限されるものでない。例えば、上記(A)~(E)成分、並びに必要に応じてその他の成分を、トリミックス、ツウィンミックス、プラネタリミキサー(いずれも井上製作所(株)製混合機、登録商標)、ウルトラミキサー(みずほ工業(株)製混合機、登録商標)、ハイビスディスパーミックス(プライミクス(株)製混合機、登録商標)等の混合機にて10分~4時間混合することにより製造することができる。また、必要に応じて、50~200℃の範囲の温度で加熱しながら混合してもよい。 The method for producing the thermally conductive silicone composition of the present invention may be according to a conventionally known method for producing a silicone composition, and is not particularly limited. For example, the above components (A) to (E) and, if necessary, other components are added to Trimix, Twinwin, Planetary mixer (all are mixers manufactured by Inoue Seisakusho Co., Ltd., registered trademark), Ultramixer (Mizuho). It can be produced by mixing for 10 minutes to 4 hours with a mixer such as Kogyo Co., Ltd. mixer, Hibis Dispermix (Primix Co., Ltd. mixer, registered trademark). Moreover, you may mix, heating as needed at the temperature of the range of 50-200 degreeC.
 本発明の熱伝導性シリコーン組成物は、25℃にて測定される絶対粘度が10~600Pa・sのものが好ましく、15~500Pa・sのものがより好ましく、15~400Pa・sであるものが更に好ましい。絶対粘度が上記範囲内であることにより良好なグリースを提供でき、また組成物の作業性にも優れる。該絶対粘度は、各成分を上述した配合量で調製することにより得ることができる。上記絶対粘度は、株式会社マルコム社製の型番PC-1TL(10rpm)を用いて測定した結果である。 The heat conductive silicone composition of the present invention preferably has an absolute viscosity measured at 25° C. of 10 to 600 Pa·s, more preferably 15 to 500 Pa·s, and more preferably 15 to 400 Pa·s. Is more preferable. When the absolute viscosity is within the above range, a good grease can be provided and the workability of the composition is excellent. The absolute viscosity can be obtained by preparing each component in the above-mentioned blending amount. The absolute viscosity is a result measured using a model number PC-1TL (10 rpm) manufactured by Malcolm Co., Ltd.
 上記のようにして得られる熱伝導性シリコーン組成物を、0.01MPa以上の圧力を掛けた状態で80℃以上に加熱することで本発明の熱伝導性シリコーン組成物は硬化する。こうして得られた硬化物の性状は限定されないが、例えば、ゲル状、低硬度のゴム状、又は高硬度のゴム状が挙げられる。 The heat conductive silicone composition of the present invention is cured by heating the heat conductive silicone composition obtained as described above to 80° C. or higher under a pressure of 0.01 MPa or higher. The properties of the cured product thus obtained are not limited, and examples thereof include gel, low hardness rubber, and high hardness rubber.
半導体装置
 本発明の半導体装置は、発熱性電子部品の表面と放熱体との間に、本発明の熱伝導性シリコーン組成物が介在することを特徴とする。本発明の熱伝導性シリコーン組成物は、10~500μmの厚さで介在させることが好ましい。
 代表的な構造を図1に示すが本発明はこれに限定されるものではない。本発明の熱伝導性シリコーン組成物は、図1の3に示すものである。
Semiconductor Device The semiconductor device of the present invention is characterized in that the heat conductive silicone composition of the present invention is interposed between the surface of the heat generating electronic component and the heat radiator. The thermally conductive silicone composition of the present invention is preferably interposed in a thickness of 10 to 500 μm.
A typical structure is shown in FIG. 1, but the present invention is not limited to this. The heat conductive silicone composition of the present invention is shown in 3 of FIG.
 本発明の半導体装置を製造する方法としては、本発明の熱伝導性シリコーン組成物を、発熱性電子部品と放熱体との間で、0.01MPa以上の圧力を掛けた状態で80℃以上に加熱する方法が好ましい。この際、掛ける圧力は、0.01MPa以上が好ましく、特に0.05MPa~100MPaが好ましく、更に0.1MPa~100MPaが好ましい。加熱する温度は、80℃以上が必要である。好ましくは、100℃~300℃であり、より好ましくは120℃~300℃であり、更に好ましくは140℃~300℃である。 As a method for producing the semiconductor device of the present invention, the heat conductive silicone composition of the present invention is heated to 80° C. or higher while a pressure of 0.01 MPa or higher is applied between the heat-generating electronic component and the radiator. A heating method is preferred. At this time, the applied pressure is preferably 0.01 MPa or more, particularly preferably 0.05 MPa to 100 MPa, further preferably 0.1 MPa to 100 MPa. The heating temperature needs to be 80° C. or higher. The temperature is preferably 100° C. to 300° C., more preferably 120° C. to 300° C., and further preferably 140° C. to 300° C.
 以下、本発明の効果をより明確にする目的で、実施例及び比較例によって更に詳述するが、本発明はこれによって限定されるものではない。
 本発明に関わる効果に関する試験は次のように行った。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples for the purpose of clarifying the effects of the present invention, but the present invention is not limited thereto.
The test for the effect of the present invention was conducted as follows.
〔粘度〕
 組成物の絶対粘度は、マルコム粘度計(タイプPC-1TL)を用いて25℃で測定した。
〔viscosity〕
The absolute viscosity of the composition was measured at 25° C. using a Malcolm viscometer (type PC-1TL).
〔熱伝導率〕
 下記表記載の実施例1~14及び比較例1~7の各組成物を6mm厚の型に流し込み、0.35MPaの圧力を掛けられた状態で150℃に加熱した後、京都電子工業(株)社製のTPS-2500Sにより、いずれも25℃において熱伝導率を測定した。
〔Thermal conductivity〕
The compositions of Examples 1 to 14 and Comparative Examples 1 to 7 shown in the table below were poured into a mold having a thickness of 6 mm and heated to 150° C. under a pressure of 0.35 MPa, and then Kyoto Electronics Industry Co., Ltd. ) Manufactured by TPS-2500S, the thermal conductivity was measured at 25°C.
〔気泡発生試験〕
 実施例1~26及び比較例1~13の各組成物をスライドガラスに0.1gになるよう計量し、もう1枚のスライドガラスで挟み、25psi(0.17MPa)の圧力で25℃にて15分保持した。その後、無加圧で150℃にて1時間加熱処理して硬化させ、発泡具合を目視で確認した。なお、本気泡発生試験では、組成物由来で発生する気泡の有無を確認する目的のため、硬化は無加圧で行なった。
[Bubbling test]
Each composition of Examples 1 to 26 and Comparative Examples 1 to 13 was weighed on a slide glass to be 0.1 g, sandwiched with another slide glass, and at a pressure of 25 psi (0.17 MPa) at 25° C. Hold for 15 minutes. Then, it was heat-treated at 150° C. for 1 hour without pressure to be cured, and the degree of foaming was visually confirmed. In this bubble generation test, curing was carried out without pressure for the purpose of confirming the presence or absence of bubbles generated from the composition.
 組成物を形成する以下の各成分を用意した。 Prepared the following components that form the composition.
(A)成分
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
(A) Component A-1: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25° C. of 600 mm 2 /s.
(B)成分
B-1:下記式で表されるオルガノハイドロジェンポリシロキサン(25℃における粘度が30mm2/s)
Figure JPOXMLDOC01-appb-C000001
(B) Component B-1: Organohydrogenpolysiloxane represented by the following formula (viscosity at 25° C. is 30 mm 2 /s)
Figure JPOXMLDOC01-appb-C000001
(C)成分
C-1:(白金触媒):白金-ジビニルテトラメチルジシロキサン錯体のA-1溶液、白金原子として1wt%含有
(C) Component C-1: (Platinum catalyst): A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1 wt% as platinum atom
(D)成分
D-1:タップ密度が6.6g/cm3、比表面積が0.28m2/g、アスペクト比が8の銀粉末
D-2:タップ密度が6.2g/cm3、比表面積が0.48m2/g、アスペクト比が13の銀粉末
D-3:タップ密度が3.0g/cm3、比表面積が2.0m2/g、アスペクト比が30の銀粉末
(D) Component D-1: Silver powder having a tap density of 6.6 g/cm 3 , a specific surface area of 0.28 m 2 /g and an aspect ratio of 8 D-2: a tap density of 6.2 g/cm 3 , ratio Silver powder having a surface area of 0.48 m 2 /g and an aspect ratio of 13 D-3: Silver powder having a tap density of 3.0 g/cm 3 , a specific surface area of 2.0 m 2 /g and an aspect ratio of 30
(E)成分
E-1:平均粒径が5nmであるパラジウム粉
E-2:0.8wt%パラジウム粉担持ヒュームドシリカ(パラジウム粉の平均粒径は90nmであり、担持に用いたヒュームドシリカの平均粒径は5μmである。)
E-3:0.5wt%パラジウム粉担持乾式シリカ(パラジウム粉の平均粒径は7nmであり、担持に用いた乾式シリカの比表面積は130m2/gである。)
E-4:1.0wt%パラジウム粉担持カーボン(パラジウム粉の平均粒径は2nmであり、担持に用いたカーボンの一次粒子径は約48nmである。)
E-5(比較例):平均粒径が110nmであるパラジウム粉
E-6(比較例):平均粒径が0.5nmであるパラジウム粉
E-7:0.8wt%パラジウム粉担持結晶性シリカ(パラジウム粉の平均粒径は5nmであり、担持に用いた結晶性シリカの平均粒径は5μmである。)
E-8:0.8wt%パラジウム粉担持結晶性シリカ(パラジウム粉の平均粒径は90nmであり、担持に用いた結晶性シリカの平均粒径は5μmである。)
E-9:1.0wt%パラジウム粉担持結晶性シリカ(パラジウム粉の平均粒径は2nmであり、担持に用いた結晶性シリカの平均粒径は約5μmである。)
E-10(比較例):0.8wt%パラジウム粉担持結晶性シリカ(パラジウム粉の平均粒径は110nmであり、担持に用いた結晶性シリカの平均粒径は5μmである。)
E-11(比較例):0.8wt%パラジウム粉担持結晶性シリカ(パラジウム粉の平均粒径は0.5nmであり、担持に用いた結晶性シリカの平均粒径は5μmである。)
(E) Component E-1: Palladium powder having an average particle diameter of 5 nm E-2: 0.8 wt% palladium powder-supported fumed silica (the average particle diameter of the palladium powder is 90 nm, and the fumed silica used for supporting the powder) Has an average particle size of 5 μm.)
E-3: 0.5 wt% palladium powder-supported dry silica (the average particle size of the palladium powder is 7 nm, and the specific surface area of the dry silica used for the support is 130 m 2 /g).
E-4: 1.0 wt% palladium powder-carrying carbon (average particle size of palladium powder is 2 nm, and primary particle size of carbon used for supporting is about 48 nm)
E-5 (comparative example): Palladium powder having an average particle diameter of 110 nm E-6 (comparative example): Palladium powder having an average particle diameter of 0.5 nm E-7: 0.8 wt% palladium powder-supporting crystalline silica (The average particle size of the palladium powder is 5 nm, and the average particle size of the crystalline silica used for supporting is 5 μm.)
E-8: 0.8 wt% palladium powder-supporting crystalline silica (the average particle size of the palladium powder is 90 nm, and the average particle size of the crystalline silica used for supporting is 5 μm)
E-9: 1.0 wt% Palladium powder-supporting crystalline silica (The average particle size of the palladium powder is 2 nm, and the average particle size of the crystalline silica used for supporting is about 5 μm.)
E-10 (Comparative Example): 0.8 wt% palladium powder-supporting crystalline silica (palladium powder has an average particle size of 110 nm, and the crystalline silica used for supporting has an average particle size of 5 μm).
E-11 (Comparative Example): 0.8 wt% palladium powder-supporting crystalline silica (palladium powder has an average particle size of 0.5 nm, and the crystalline silica used for supporting has an average particle size of 5 μm).
(F)成分:硬化反応抑制剤
F-1:1-エチニル-1-シクロヘキサノール
Component (F): Curing reaction inhibitor F-1: 1-ethynyl-1-cyclohexanol
実施例1~26及び比較例1~13
 下記表1~6に示す組成で、次のように混合して実施例1~26及び比較例1~13の組成物を得た。
 即ち、5リットルプラネタリーミキサー(井上製作所(株)社製)に(A)及び(D)成分を取り、(C)、(E)及び(F)成分を加え25℃で1.5時間混合した。次に、(B)成分を加えて均一になるように混合した。
Examples 1-26 and Comparative Examples 1-13
The compositions shown in Tables 1 to 6 below were mixed as follows to obtain compositions of Examples 1 to 26 and Comparative Examples 1 to 13.
That is, the components (A) and (D) are taken in a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), and the components (C), (E) and (F) are added and mixed at 25° C. for 1.5 hours. did. Next, the component (B) was added and mixed so as to be uniform.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (E)成分の配合量が少ない比較例3及び10並びに(E)成分を含まない比較例6では、硬化物に発泡が確認された。また、(E)成分の配合量が多い比較例4及び11では、硬化物の熱伝導率が低く、所望の熱性能を得られなかった。さらに、パラジウム粉の平均粒径が本発明の範囲外である(E)成分を用いた比較例5及び比較例7では、硬化物に発泡が確認された。また、結晶性シリカに担持されたパラジウム粉の平均粒径が本発明の範囲外である(E)成分を用いた比較例12及び比較例13では、硬化物に発泡が確認された。
 一方、特定の粒径範囲にあるパラジウム粉を有する(E)成分を特定量配合した本願発明の熱伝導性シリコーン組成物の硬化物は、熱伝導性に優れ、発泡がなかった。
In Comparative Examples 3 and 10 containing a small amount of the component (E) and Comparative Example 6 containing no component (E), foaming was confirmed in the cured product. Further, in Comparative Examples 4 and 11 in which the amount of the component (E) was large, the thermal conductivity of the cured product was low and the desired thermal performance could not be obtained. Further, in Comparative Examples 5 and 7 using the component (E) in which the average particle diameter of the palladium powder was outside the range of the present invention, foaming was confirmed in the cured product. Further, in Comparative Examples 12 and 13 using the component (E) in which the average particle size of the palladium powder supported on the crystalline silica was outside the range of the present invention, foaming was confirmed in the cured product.
On the other hand, the cured product of the thermally conductive silicone composition of the present invention in which a specific amount of the component (E) having palladium powder in a specific particle size range was blended was excellent in thermal conductivity and did not cause foaming.
1.基板
2.発熱性電子部品(CPU)
3.熱伝導性シリコーン組成物層
4.放熱体(リッド)
1. Substrate 2. Exothermic electronic components (CPU)
3. Heat conductive silicone composition layer 4. Heat sink (lid)

Claims (3)

  1.  下記、(A)、(B)、(C)、(D)及び(E)成分を含有する熱伝導性シリコーン組成物。
    (A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個含有するオルガノポリシロキサン:100質量部
    (B)ケイ素原子に結合した水素原子(SiH基)を1分子中に少なくとも2個含有するオルガノハイドロジェンポリシロキサン:全組成物中のアルケニル基1モル当たり、本(B)成分中のケイ素原子に結合した水素原子の量が0.2~10モルとなる量
    (C)ヒドロシリル化反応用触媒:有効量
    (D)タップ密度が3.0g/cm3以上であり、比表面積が2.0m2/g以下であり、かつアスペクト比が、1~30である銀粉末:(A)成分100質量部に対して、300~11,000質量部
    (E)平均粒径が1nmから100nmであるパラジウム粉又は該パラジウム粉が担持された結晶性シリカ、非晶質シリカもしくはカーボン:(A)成分100質量部に対して、パラジウム粉が0.00001~0.05質量部となる量
    A thermally conductive silicone composition containing the following components (A), (B), (C), (D) and (E).
    (A) Organopolysiloxane containing at least two alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) At least two hydrogen atoms bonded to silicon atoms (SiH groups) in one molecule Organohydrogenpolysiloxane: An amount (C) hydrosilylation reaction in which the amount of hydrogen atoms bonded to silicon atoms in the component (B) is 0.2 to 10 mol per 1 mol of alkenyl groups in the entire composition. Catalyst: Effective amount (D) Silver powder having a tap density of 3.0 g/cm 3 or more, a specific surface area of 2.0 m 2 /g or less, and an aspect ratio of 1 to 30: (A) 300 to 11,000 parts by mass (E) Palladium powder having an average particle diameter of 1 nm to 100 nm with respect to 100 parts by mass of the component, or crystalline silica, amorphous silica or carbon supporting the palladium powder: (A ) Amount of palladium powder in an amount of 0.00001 to 0.05 parts by mass based on 100 parts by mass of the component
  2.  発熱性電子部品と、放熱体とを備えている半導体装置であって、前記発熱性電子部品と放熱体との間に、請求項1に記載の熱伝導性シリコーン組成物が介在している半導体装置。 A semiconductor device comprising a heat-generating electronic component and a heat radiator, wherein the heat-conductive silicone composition according to claim 1 is interposed between the heat-generating electronic component and the heat radiator. apparatus.
  3.  請求項1に記載の熱伝導性シリコーン組成物を、発熱性電子部品と放熱体との間で、0.01MPa以上の圧力を掛けられた状態で80℃以上に加熱する工程を有する半導体装置の製造方法。 A semiconductor device comprising a step of heating the heat conductive silicone composition according to claim 1 to 80° C. or higher in a state in which a pressure of 0.01 MPa or higher is applied between the heat generating electronic component and the radiator. Production method.
PCT/JP2019/046493 2018-12-25 2019-11-28 Heat-conductive silicone composition and semiconductor device WO2020137332A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-240943 2018-12-25
JP2018240943A JP6965869B2 (en) 2018-12-25 2018-12-25 Thermally conductive silicone compositions and semiconductor devices
JP2018240944A JP6965870B2 (en) 2018-12-25 2018-12-25 Thermally conductive silicone compositions and semiconductor devices
JP2018-240944 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137332A1 true WO2020137332A1 (en) 2020-07-02

Family

ID=71127057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046493 WO2020137332A1 (en) 2018-12-25 2019-11-28 Heat-conductive silicone composition and semiconductor device

Country Status (2)

Country Link
TW (1) TW202033665A (en)
WO (1) WO2020137332A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276846A1 (en) * 2021-07-02 2023-01-05 信越化学工業株式会社 Heat-conductive silicone composition, semiconductor device, and method for manufacturing same
JP7467017B2 (en) 2021-05-25 2024-04-15 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671482A (en) * 2009-08-31 2010-03-17 上海润智硅胶制品有限公司 Bi-component addition type room temperature curing silicone rubber for manufacture of manual model toys
JP2017066406A (en) * 2015-10-02 2017-04-06 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
WO2017165608A1 (en) * 2016-03-23 2017-09-28 Dow Corning Corporation Metal-polyorganosiloxanes
JP2018070800A (en) * 2016-10-31 2018-05-10 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671482A (en) * 2009-08-31 2010-03-17 上海润智硅胶制品有限公司 Bi-component addition type room temperature curing silicone rubber for manufacture of manual model toys
JP2017066406A (en) * 2015-10-02 2017-04-06 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
WO2017165608A1 (en) * 2016-03-23 2017-09-28 Dow Corning Corporation Metal-polyorganosiloxanes
JP2018070800A (en) * 2016-10-31 2018-05-10 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467017B2 (en) 2021-05-25 2024-04-15 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof
WO2023276846A1 (en) * 2021-07-02 2023-01-05 信越化学工業株式会社 Heat-conductive silicone composition, semiconductor device, and method for manufacturing same

Also Published As

Publication number Publication date
TW202033665A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
TWI755437B (en) One-liquid curable thermal conductive silicone grease composition and electric/electronic article
JP5940325B2 (en) Thermally conductive silicone composition
JP6705426B2 (en) Thermally conductive silicone composition
JP6610491B2 (en) Thermally conductive silicone composition and semiconductor device
WO2014188667A1 (en) Thermally conductive silicone composition
JP5947267B2 (en) Silicone composition and method for producing thermally conductive silicone composition
JP5843364B2 (en) Thermally conductive composition
JP2014080546A (en) Silicone composition
JP6240593B2 (en) Thermally conductive silicone composition and cured product thereof
JP2012107152A (en) Thermally conductive silicone grease composition
WO2020137332A1 (en) Heat-conductive silicone composition and semiconductor device
KR102416096B1 (en) thermal conductive sheet
WO2020241054A1 (en) Thermally-conductive silicone composition, semiconductor device, and production method therefor
JP7271411B2 (en) Thermally conductive silicone composition, semiconductor device and manufacturing method thereof
JP6965870B2 (en) Thermally conductive silicone compositions and semiconductor devices
JP6965869B2 (en) Thermally conductive silicone compositions and semiconductor devices
CN115386231A (en) Thermally conductive silicone composition and cured product thereof
JP2006143978A (en) Heat conductive silicone composition
WO2023276846A1 (en) Heat-conductive silicone composition, semiconductor device, and method for manufacturing same
TWI834860B (en) Thermal conductive silicon oxide composition, semiconductor device and manufacturing method thereof
JP2023049417A (en) Method for producing heat conductive silicone composition
WO2024048335A1 (en) Thermally conductive silicone composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902773

Country of ref document: EP

Kind code of ref document: A1