WO2020137328A1 - Electrochromic transistor, electronic curtain, information display/storage device, and anti-glare mirror - Google Patents

Electrochromic transistor, electronic curtain, information display/storage device, and anti-glare mirror Download PDF

Info

Publication number
WO2020137328A1
WO2020137328A1 PCT/JP2019/046479 JP2019046479W WO2020137328A1 WO 2020137328 A1 WO2020137328 A1 WO 2020137328A1 JP 2019046479 W JP2019046479 W JP 2019046479W WO 2020137328 A1 WO2020137328 A1 WO 2020137328A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochromic
transparent conductive
conductive film
transistor
active layer
Prior art date
Application number
PCT/JP2019/046479
Other languages
French (fr)
Japanese (ja)
Inventor
太田 裕道
尚記 小野里
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2020137328A1 publication Critical patent/WO2020137328A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to an electrochromic transistor, an electronic curtain, an information display storage device, and an antiglare mirror, and relates to, for example, antiglare windows of aircrafts, automobiles, buildings, etc., or displaying/storing information on these windows. It is suitable for application to antiglare of automobile rearview mirrors.
  • Electrochromism is a phenomenon in which the color of a material is reversibly changed from colorless transparent to black by electrochemically oxidizing and reducing a substance called electrochromic material that contains metal ions. Electrochromism can be used as an electronic curtain for passenger planes and residential windows because the color of the glass can be switched from colorless transparent to black and the transmittance of outside light can be adjusted. It has begun to be applied as an anti-glare mirror to reduce the glare of the headlights of the following vehicles reflected in the mirror. Its market size is 1.5 billion dollars in 2016 (about 160 billion yen) and 4 billion dollars in 2023 ( It is expected to exceed JPY 430 billion).
  • Tungsten oxide (WO 3 ), which has been known as an electrochromic material since the 1970s, is an insulator that is colorless and transparent and does not conduct electricity. However, it is a metal that is black and conducts electricity well due to electrochemical inclusion of hydrogen. The electrochromism of returning to the original colorless and transparent insulator by drawing out hydrogen is shown.
  • electrochromic transistor a new information display storage device can be realized by using this electrochromic transistor.
  • a transparent source electrode and a drain electrode made of a tin (Sn)-doped indium oxide (ITO) film are formed on a glass substrate, and the transparent source electrode and the drain electrode are formed on the glass substrate so as to extend over these source electrode and drain electrode.
  • a WO 3 layer serving as an active layer is formed on the WO 3 layer, and a water-containing cement thin film made of calcium aluminate having a large number of nanopores is formed as a gate insulating film on the WO 3 layer. It has a structure in which a transparent gate electrode made of an ITO film is sequentially formed.
  • the state of the insulator in which the WO 3 layer does not conduct electricity is information “0”, and the state of the metal through which electricity easily passes is information “1”. It is possible to electrically store and read the information "0” and “1” in addition to the captured color change information "transparent" and "black”.
  • This electrochromic transistor or information display memory device can be manufactured at low cost at room temperature, and it is easy to increase the area.
  • Non-Patent Document 1 in order to protonate the WO 3 layer of the active layer (WO 3 ⁇ H x WO 3 ), it is necessary to apply +3 V to the gate electrode with respect to the source electrode for 300 seconds. For protonation (H x WO 3 ⁇ WO 3 ), it is necessary to apply ⁇ 3 V to the gate electrode with respect to the source electrode for 100 seconds. That is, at a practical operation switching voltage of 3V, the time required for switching is about 100 to 300 seconds. Therefore, it has been desired to reduce the time required for switching.
  • the problem to be solved by the present invention is that the time required for switching is significantly shortened as compared with the electrochromic transistor described in Non-Patent Document 1 even with a practical operating switching voltage of 3V.
  • PROBLEM TO BE SOLVED To provide an electrochromic transistor, a high-performance electron curtain using the electrochromic transistor, a high-performance information display storage device using the electrochromic transistor, and a high-performance antiglare mirror using the electrochromic transistor. Is.
  • the present invention provides An active layer comprising at least an electrochromic material and an electrolyte containing water; It is an electrochromic transistor having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
  • the electrochromic transistor is a three-terminal element having a thin film transistor structure that uses an electrochromic material for an active layer and has a source electrode, a drain electrode, and a gate electrode.
  • the active layer may have any form as long as it contains at least an electrochromic material and an electrolyte containing water, and is designed as necessary.
  • the active layer has a structure in which a first layer made of an electrochromic material and a second layer made of an electrolyte are laminated on each other. At least a part or the whole of the active layer may have a structure in which a fine particle electrochromic material and a fine particle electrolyte are mixed.
  • the active layer is provided so as to make electrical contact with the source electrode and the drain electrode.
  • the first transparent conductive film and the second transparent conductive film constitutes a gate electrode, the other is integrated with the active layer, and the sheet resistance of the channel is reduced by making electrical contact with the source electrode and the drain electrode.
  • the first transparent conductive film and the second transparent conductive film are made of, for example, a transparent conductive oxide (TCO), a transparent metal such as ultra-thin gold (Au), or the like, and are selected as necessary.
  • the transparent conductive oxide is generally an oxide containing at least one metal selected from the group consisting of indium (In), zinc (Zn), gallium (Ga) and tin (Sn). ..
  • the transparent conductive oxide is, for example, In 2 O 3 (ITO) doped with tin (Sn), ZnO doped with gallium (Ga), aluminum (Al), or the like, and doped with fluorine (F). Tin oxide (SnO 2 ) and the like.
  • ITO In 2 O 3
  • the electric conductivity of the first transparent conductive film and the second transparent conductive film is generally 0.01 S/cm or more and 100000 S/cm or less.
  • the thickness and electric conductivity (or electric conductivity) of the second transparent conductive film located on the first layer side are selected as follows. That is, the thickness of the first layer is t 1 , the electrical conductivity is ⁇ 1 , and the thickness of one of the first transparent conductive film and the second transparent conductive film located on the side of the first layer is t 2. , And the electrical conductivity is ⁇ 2 .
  • Log (on/off ratio) Log(t 1 / t 1 , ⁇ 1 , t 2 , and ⁇ 2 are selected so that t 2 )+Log( ⁇ 1 / ⁇ 2 ) holds.
  • the electrochromic material may be an inorganic material, an organic material, or an organic-inorganic composite material, and is selected as necessary.
  • the inorganic electrochromic material is typically an oxide electro containing at least one metal selected from the group consisting of tungsten (W), vanadium (V), niobium (Nb) and titanium (Ti). Examples include, but are not limited to, chromic materials.
  • the oxide electrochromic material is, in one typical example, an amorphous or crystalline simple oxide represented by the composition formula AO x (A is tungsten, vanadium, niobium or titanium, and x is in the range of 1 to 3). Is. A representative example of AO 3 is WO 3 .
  • Examples of the organic electrochromic material include, but are not limited to, various conductive polymer compounds, viologen compounds, leuco dye compounds, and terephthalic acid compounds.
  • the electrolyte is not particularly limited as long as it contains water, and is selected as necessary.
  • the electrolyte is preferably, but not limited to, an oxide dielectric containing 1% or more and 50% or less by volume of water.
  • Oxide dielectrics are generally various metal oxides (including complex oxides and glasses) that can be made porous and contain water. Specific examples of such metal oxides include TaO x , NbO x , ZrO x , HfO x , AlO x , SiO x , and GaO x .
  • water-containing cement composed of calcium aluminate having a large number of nanopores described in Non-Patent Document 1 may be used.
  • the transparent substrate is, for example, a transparent glass substrate or a transparent plastic substrate.
  • the transparent substrate is configured flexibly as needed.
  • the transparent plastic constituting the transparent plastic substrate include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetyl cellulose, brominated phenoxy, aramids, polyimides, polystyrene. , Polyarylates, polysulfones, polyolefins and the like can be used.
  • the present invention is A transparent substrate, Having one or more electrochromic transistors provided on the transparent substrate,
  • the electrochromic transistor is An active layer comprising at least an electrochromic material and an electrolyte containing water; It is an electronic curtain having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
  • the present invention is A transparent substrate, Having a plurality of electrochromic transistors provided on the transparent substrate,
  • the electrochromic transistor is An active layer comprising at least an electrochromic material and an electrolyte containing water;
  • An information display storage device having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
  • the information display storage device displays color information "colorless and transparent” and “black” when the electrochromic transistor is off and on, and electrical conduction information “0" and “1” when the electrochromic transistor is off and on. It can be stored and read.
  • the arrangement of the electrochromic transistors on the transparent substrate is selected as necessary, but typically, a plurality of electrochromic transistors are arranged in a matrix.
  • the present invention is A transparent substrate provided on the surface of the mirror, Having one or more electrochromic transistors provided on the transparent substrate,
  • the electrochromic transistor is An active layer comprising at least an electrochromic material and an electrolyte containing water; It is an antiglare mirror having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
  • the use of the anti-glare mirror is not particularly limited, but it is, for example, an automobile rearview mirror.
  • the transparent conductive film is provided in contact with the active layer containing at least the electrochromic material and the electrolyte containing water, the effective sheet resistance of the channel can be significantly reduced.
  • a high performance electrochromic transistor with an active layer that is colorless and transparent and has an extremely high electrical and optical on/off ratio between an insulator state and a black state and a metal state and a switching speed. be able to.
  • this high-performance electrochromic transistor it is possible to realize an electronic curtain capable of controlling light transmission at high speed, and at the same time, information display capable of displaying/storing/reading information at high speed.
  • a storage device can be realized.
  • this high-performance electrochromic transistor it is possible to realize an antiglare mirror capable of effective antiglare even at night.
  • FIG. 1 is a sectional view showing an electrochromic transistor according to a first embodiment of the present invention.
  • 1 is a plan view showing an electrochromic transistor according to a first embodiment of the present invention.
  • FIG. 3 is a sectional view showing a first example of a structure of an active layer of the electrochromic transistor according to the first embodiment of the present invention.
  • FIG. 6 is a sectional view showing a second example of the structure of the active layer of the electrochromic transistor according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the relationship between the electrical on/off ratio and the thickness ratio t 1 /t 2 of the electrochromic transistor according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an electrochromic transistor according to an example.
  • FIG. 6 is a plan view showing an electrochromic transistor according to an example. 8 is a drawing-substituting photograph showing an electrochromic transistor according to an example.
  • FIG. 6 is a cross-sectional view showing an electrochromic transistor according to a comparative example.
  • FIG. 6 is a schematic diagram showing a time change of sheet resistance due to protonation of an electrochromic transistor according to an example and an electrochromic transistor according to a comparative example.
  • FIG. 6 is a schematic diagram showing a change over time in sheet resistance with deprotonation of an electrochromic transistor according to an example and an electrochromic transistor according to a comparative example.
  • FIG. 6 is a schematic diagram showing transmission spectra of an electrochromic transistor according to an example and an electrochromic transistor according to a comparative example in an initial state and a state in which +3V is applied to a gate electrode.
  • It is a top view which shows the electronic curtain by the 2nd Embodiment of this invention.
  • It is a front view which shows the example which applied the electronic curtain by the 2nd Embodiment of this invention to the window of an aircraft.
  • It is a top view which shows an example which displays and memorize
  • Electrode 1 and 2 show an electrochromic transistor according to a first embodiment, FIG. 1 is a sectional view, and FIG. 2 is a plan view.
  • a transparent conductive film 12 is provided on a transparent substrate 11.
  • a transparent source electrode 13 and a transparent drain electrode 14 are provided on the transparent conductive film 12 so as to face each other.
  • An active layer 15 is provided on the transparent conductive film 12 so that both ends thereof are electrically contacted over the source electrode 13 and the drain electrode 14.
  • the active layer 15 contains at least an electrochromic material and an electrolyte containing water, and may contain a material other than the electrochromic material and the electrolyte as necessary, but typically, the electrochromic material and the electrolyte. It consists of and.
  • the electrochromic material forming the active layer 15 is a colorless and transparent insulator when it is not protonated, and in the electrochromic transistor, the active layer 15 becomes non-conductive and a current flows between the source electrode 13 and the drain electrode 14. However, when the electrochromic material is protonated, it changes to a black metal. At that time, in the electrochromic transistor, the active layer 15 becomes conductive and a current flows between the source electrode 13 and the drain electrode 14 to turn it on. Become.
  • An absorption layer 16 that also serves as a gate insulating film is provided on the active layer 15.
  • a gate electrode 17 made of a transparent conductive film is provided on the absorption layer 16. Therefore, this electrochromic transistor has a structure in which the active layer 15 is sandwiched between the transparent conductive film and the transparent conductive film 12 which form the gate electrode 17.
  • the transparent substrate 11 is a transparent glass substrate or a transparent plastic substrate made of the transparent plastic already mentioned.
  • the transparent substrate 11 is configured flexibly as needed.
  • the thickness and material of the transparent substrate 11 are selected as needed within a range in which required transparency and strength can be obtained.
  • the planar shape of the transparent substrate 11 is rectangular, but the planar shape of the transparent substrate 11 is selected as necessary depending on the application of the electrochromic transistor and other polygons (triangle, pentagon, hexagon, etc.). Besides, it may have a circular shape, an elliptical shape, or a shape obtained by modifying these shapes.
  • the transparent conductive film forming the transparent conductive film 12 and the gate electrode 17 is made of, for example, various kinds of transparent conductive oxide (TCO) or an ultrathin Au film.
  • TCO transparent conductive oxide
  • the thickness and electric conductivity of the transparent conductive film 12 will be described later.
  • the source electrode 13 and the drain electrode 14 are made of, for example, a transparent conductive film such as various transparent conductive oxides (TCO) or an ultrathin Au film, and are selected as needed.
  • the planar shapes of the source electrode 13 and the drain electrode 14 are generally rectangular, but are not limited to this.
  • the electrochromic material and the electrolyte forming the active layer 15 are selected from those already mentioned as needed.
  • the electrolyte consists of an oxide dielectric containing water and is transparent.
  • the active layer 15 has a structure in which a first layer made of an electrochromic material and a second layer made of an electrolyte are laminated on each other, and at least a part or all of the active layer 15 is a fine particle electrochromic material and fine particles. There is a case where it has a mixed structure with a solid electrolyte. An example of the former is shown in FIG. 3 and an example of the latter is shown in FIG. As shown in FIG.
  • the lower layer of the active layer 15 is a first layer 15a made of an electrochromic material and the upper layer is a second layer 15b made of an electrolyte.
  • FIG. 4 has a structure in which a large number of fine particle electrochromic materials 15c and fine particle electrolytes 15d are mixed.
  • the fine particle electrochromic material 15c is drawn larger than the fine particle electrolyte 15d in order to distinguish between the fine particle electrochromic material 15c and the fine particle electrolyte 15d. Is not limited to this, and is selected as needed. Further, in FIG.
  • the fine particle-shaped electrochromic material 15c and the fine particle-shaped electrolyte 15d are drawn in a spherical shape, but the shape is not limited to this, and other shapes may be used.
  • the planar shape of the active layer 15 is generally rectangular, but is not limited to this and may be selected as necessary.
  • the absorption layer 16 plays a role of absorbing OH ⁇ released from the active layer 15 during the operation of the electrochromic transistor.
  • the absorption layer 16 is made of, for example, NiO, but is not limited to this.
  • the thickness of the absorption layer 16 is not particularly limited and is selected as necessary, but is generally 10 nm to 30 nm. The absorption layer 16 can be omitted if necessary.
  • the gate electrode 17 is made of, for example, a transparent conductive film such as various transparent conductive oxides (TCO) or an ultrathin Au film, and is selected as necessary.
  • the planar shape of the gate electrode 17 is generally rectangular, but is not limited to this.
  • the thickness of the gate electrode 17 is not particularly limited and is selected as necessary, but is generally 10 nm to 30 nm.
  • the thickness t of the first layer 15a is t. 1
  • the electric conductivity ⁇ 1 , the thickness t 2 of the transparent conductive film 12 and the electric conductivity ⁇ 2 are selected as follows. That is, in FIG. 5, the vertical axis represents the electrical on/off ratio of the electrochromic transistor, and the horizontal axis represents the thickness ratio t 1 /t 2 . In FIG. 5, the vertical axis represents the electrical on/off ratio of the electrochromic transistor, and the horizontal axis represents the thickness ratio t 1 /t 2 .
  • ⁇ 2 was changed to 0.01 S/cm, 0.1 S/cm, 1 S/cm, 10 S/cm, 100 S/cm, and 1000 S/cm to draw a straight line.
  • the active layer 15 has a structure in which a large number of fine particle electrochromic materials 15c and fine particle electrolytes 15d are mixed as shown in FIG. 4, the total mass of the electrochromic material 15c contained in the active layer 15 is By using the thickness (equivalent thickness) converted to the thickness of the first layer 15a as t 2 , the same handling as above can be approximately performed.
  • the electrochromic material of the active layer 15 is initially not protonated and is assumed to be a colorless and transparent insulator. In this state, the active layer 15 is not conductive and no current flows between the source electrode 13 and the drain electrode 14. A gate voltage V g necessary for electrolysis of water described below is applied between the source electrode 13 and the gate electrode 17. Generally, the source electrode 13 is grounded. When a positive voltage is applied as the gate voltage V g , an electric field is applied from the gate electrode 17 to the transparent conductive film 12 in the thickness direction of the active layer 15. By this electric field, water in the electrolyte contained in the active layer 15 is electrolyzed to generate protons (H + ) and hydroxide ions (OH ⁇ ).
  • H + is taken into the electrochromic material of the active layer 15 by the electric field and protonated, and OH ⁇ penetrates the active layer 15 by the electric field and is taken into the absorption layer 16.
  • the electrochromic material of the active layer 15 is protonated, the electrochromic material becomes a black metal. At this time, the active layer 15 becomes conductive, and a current flows between the source electrode 13 and the drain electrode 14.
  • the source electrode 13 and the drain electrode 14 made of the transparent conductive film are formed thereon.
  • These transparent conductive films can be formed by a conventionally known method and are selected as necessary, and for example, a pulse laser deposition (PLD) method, a vacuum evaporation method or the like is used.
  • PLD pulse laser deposition
  • the source electrode 13 and the drain electrode 14 can be formed by selectively depositing a transparent conductor using a metal mask.
  • the active layer 15 is formed on the transparent conductive film 12 so that both ends thereof straddle the source electrode 13 and the drain electrode 14.
  • the active layer 15 is composed of the first layer 15a and the second layer 15b as shown in FIG. 3, the first layer 15a and the second layer 15b are sequentially formed.
  • the first layer 15a and the second layer 15b can be formed by a conventionally known method and are selected according to need. For example, a PLD method using a metal mask, a vacuum deposition method, or the like is used. ..
  • the active layer 15 is composed of the fine particle electrochromic material 15c and the fine particle electrolyte 15d as shown in FIG.
  • the fine particle electrochromic material 15c and the fine particle electrolyte 15d are prepared in advance, and these are mixed with water or the like.
  • a paste-like dispersion liquid uniformly dispersed in the solvent is prepared, and the dispersion liquid is applied or printed on the transparent conductive film 12 so as to extend over the source electrode 13 and the drain electrode 14.
  • a conventionally known method can be used.
  • a coating method for example, a dipping method, a spray method, a wire bar method, a spin coating method, a roller coating method, a blade coating method, a gravure coating method, or the like can be used.
  • a letterpress printing method As a printing method, a letterpress printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, a screen printing method or the like can be used.
  • the fine particle electrochromic material 15c and the fine particle electrolyte 15d are applied or printed on the transparent conductive film 12, the source electrode 13 and the drain electrode 14, and then the solvent is evaporated and removed.
  • firing may be performed in order to improve the mechanical strength of the active layer 15 and improve the adhesion to the transparent conductive film 12 and the like.
  • the firing temperature is selected to be lower than the heat resistant temperature of the transparent substrate 11, and is generally 40 to 200°C.
  • the absorption layer 16 is formed on the active layer 15.
  • the absorption layer 16 can be formed by a conventionally known method and is selected according to need. For example, a PLD method, a vacuum vapor deposition method or the like is used.
  • the gate electrode 17 made of a transparent conductive film is formed on the absorption layer 16.
  • the gate electrode 17 can be formed by a conventionally known method and is selected according to need. For example, a PLD method, a vacuum deposition method or the like is used.
  • the gate electrode 17 can be formed by selectively depositing a transparent conductor using a metal mask.
  • the target electrochromic transistor is manufactured.
  • FIG. 8 shows an optical microscope photograph of this electrochromic transistor.
  • the transparent substrate 11 a glass substrate having a thickness of 0.7 mm and a size of 10 mm ⁇ 10 mm was used.
  • the transparent conductive film 12 a ZnO film having a thickness of 30 nm (electric conductivity is 30 S/cm) was formed.
  • An active layer 15 having a two-layer structure composed of a first layer 15a and a second layer 15b is used, the first layer 15a is a WO 3 layer having a thickness of 100 nm, and the second layer 15b is a layer having a thickness of 250 nm.
  • a TaO x layer was formed.
  • As the absorption layer 16 a NiO layer having a thickness of 20 nm was formed.
  • An ITO film having a thickness of 20 nm was formed as the gate electrode 17.
  • the distance between the source electrode 13 and the drain electrode 14, that is, the channel length is 800 ⁇ m, which is the same as the length of the gate electrode 17 in the channel length direction, that is, the gate length.
  • the length of the active layer 15 in the direction orthogonal to the channel length direction, that is, the channel width is 400 ⁇ m.
  • FIG. 9 shows a sectional view of this electrochromic transistor.
  • the plan view of this electrochromic transistor is similar to that of FIG.
  • the ZnO film as the transparent conductive film 12 is not formed, the WO 3 layer has a thickness of 80 nm, and the cement thin film CAN having a thickness of 300 nm is used instead of the TaO x layer shown in FIG.
  • the formation of (calcium aluminate having a large number of holes with a diameter of about 10 nm (chemical composition 12CaO.7Al 2 O 3 , the main component of alumina cement)) is different from that of the electrochromic transistor according to the embodiment. And the size of each part is the same.
  • FIG. 10 shows the retention time (Retention time) when the first layer 15a of the active layer 15 is protonated by applying +3 V as the gate voltage V g to the gate electrode 17 of the electrochromic transistor according to the example and the comparative example. ) shows the measurement results of the change in the sheet resistance R s with respect to t.
  • the sheet resistance measuring electrodes E 1 to E 4 are formed on the WO 3 layer (first layer 15a made of an electrochromic material) and the ZnO film (transparent conductive film 12). Were contacted with each other and the DC four-terminal method was used. The applied current was about 100 ⁇ A.
  • FIG. 11 shows the retention time t when the first layer 15a of the active layer 15 is deprotonated by applying ⁇ 3 V as the gate voltage V g to the gate electrode 17 of the electrochromic transistor according to the example and the comparative example. shows the results of measuring the change in the sheet resistance R s for.
  • the sheet resistance R s was measured in the same manner as above using the sheet resistance measuring electrodes E 1 to E 4 .
  • the electrochromic transistor according to the comparative example in the electrochromic transistor according to the comparative example, it takes about 300 seconds to complete the protonation, whereas in the electrochromic transistor according to the example, the protonation is completed in about 1 second. Further, as is apparent from FIG. 11, in the electrochromic transistor according to the comparative example, it takes about 100 seconds to complete deprotonation, whereas in the electrochromic transistor according to the example, deprotonation is completed in about 1 second. ing. That is, the electrochromic transistor according to the example has a switching time significantly shortened to about 1/300 as compared with the electrochromic transistor according to the comparative example.
  • Figure 12 shows the results of measurement of the transmission spectrum of the entire transistor while applying a + 3V as examples and the initial state (state prior to application of the gate voltage V g) of the electrochromic transistor according to the comparative example and the gate voltage V g.
  • the application time of the gate voltage V g is 1 second
  • the application time of the gate voltage V g is 20 seconds.
  • the light transmittance for a wavelength of about 570 nm is 67% when the electrochromic transistor according to the embodiment is off, 28% when the on/off ratio is about 40% when the on, and 71% when the electrochromic transistor according to the comparative example is off.
  • the on/off ratio is about 10% at 63% when turned on. That is, the electrochromic transistor according to the example has an optical on/off ratio improved by about 4 times as compared with the electrochromic transistor according to the comparative example.
  • the same advantages as those of the electrochromic transistor described in Non-Patent Document 1 can be obtained, and the transparent conductive film is provided between the transparent substrate 11 and the active layer 15.
  • the electrical on/off ratio which is the ratio of the sheet resistance of the on-channel to the sheet resistance of the off-channel
  • the off-color is colorless.
  • the optical on/off ratio which is the ratio of the light transmittance in the black state when turned on to the light transmittance in the transparent state, can be made sufficiently high, and even at a practical operating switching voltage of 3 V, it is extremely high. It is possible to realize a high-performance electrochromic transistor capable of switching at high speed.
  • This electrochromic transistor can be manufactured inexpensively at room temperature and can easily be made large in area.
  • This electrochromic transistor is an electronic curtain used for windows of moving objects such as various aircraft (passenger planes, transport planes, helicopters, etc.) and various automobiles (including electric vehicles and self-driving cars), automobile rearview mirrors.
  • an information display storage device for displaying and storing information in windows, etc., it can be applied to a touch panel and the like.
  • FIG. 13 shows an electronic curtain according to the second embodiment.
  • This electronic curtain uses the electrochromic transistor according to the first embodiment as an optical shutter.
  • This electronic curtain has one or a plurality of electrochromic transistors according to the first embodiment formed on a transparent substrate 11.
  • the electrochromic transistor does not necessarily have to be formed on the entire surface of the transparent substrate 11, and may be formed on a portion of the transparent substrate 11 where light transmission is desired to be controlled.
  • the active layer 15 of a single electrochromic transistor is formed so that the area of the transparent substrate 11 and the total area of the active layer 15 are substantially the same.
  • a plurality of electrochromic transistors are spread over the entire surface of the glass plate 110.
  • the source wiring, the drain wiring, and the gate wiring of the electrochromic transistor can be formed on the transparent substrate 11 using various conductive films such as a transparent conductive film, and can be led out to the outer peripheral portion of the transparent substrate 11. In this way, the power source can be connected to the end portions of the source wiring, the drain wiring, and the gate wiring that are drawn to the outer peripheral portion of the transparent substrate 11.
  • This electronic curtain can be basically installed in any part as long as it is a part where it is desired to control the transmission of light.
  • various types of windows such as aircraft windows, buildings, houses, etc. It can be applied to windows of buildings.
  • FIG. 14 shows an example in which the electronic curtain 200 is applied to the window 110 provided on the wall surface 100 inside the aircraft
  • FIG. 15 shows an example in which the electronic curtain 200 is applied to the window 400 on the wall 300 of the building.
  • the light transmittance can be controlled at high speed, antiglare can be achieved when applied to a window, and high-performance electronic that can be manufactured at low cost.
  • the curtain can be realized.
  • FIG. 16 shows an information display storage device according to the third embodiment. This information display storage device uses the electrochromic transistor according to the first embodiment.
  • the electrochromic transistors according to the first embodiment are arranged on the transparent substrate 11 in a matrix of n rows and m columns, n ⁇ m in total, vertically and horizontally. It is a thing.
  • These electrochromic transistors T ij can be driven independently.
  • the source wiring, the drain wiring, and the gate wiring of the electrochromic transistor T ij can be formed in the same manner as the wiring of the pixel switching thin film transistor of the liquid crystal display, for example.
  • These source wiring, drain wiring, and gate wiring can be formed on the transparent substrate 11 using various conductive films such as a transparent conductive film, and can be drawn out to the outer peripheral portion of the transparent substrate 11. In this way, the power source can be connected to the end portions of the source wiring, the drain wiring, and the gate wiring that are drawn to the outer peripheral portion of the transparent substrate 11.
  • the electrochromic transistor T ij is driven according to the information to be displayed and stored in the information display storage device, the active layer 15 is colorless and transparent and the state of the insulator is “0” and the active layer 15 is black and the state of the metal is “. 1”.
  • the active layer 15 is colorless and transparent and the state of the insulator is “0” and the active layer 15 is black and the state of the metal is “. 1”.
  • the character “A” is displayed and stored as information
  • the electrochromic transistor T ij necessary for displaying the character “A” is driven, and the electrochromic of the active layer 15 is driven.
  • the material turns black due to protonation. By doing so, the character "A” can be displayed and stored.
  • the electrochromic transistor T ij used for displaying the character “A” is driven to make it colorless and transparent by deprotonating the electrochromic material of the active layer 15.
  • information can be displayed/stored/erased/read out at high speed on windows of various moving bodies such as airplanes and automobiles or windows of buildings, and the manufacturing cost is low. It is possible to realize a high performance information display storage device that can be realized.

Abstract

An electrochromic transistor has: a gate electrode 17 comprising an active layer 15 including an electrolyte containing an electrochromic resin and water, and a transparent electroconductive film 12 and a transparent electroconductive film provided with the active layer 15 therebetween; and a source electrode 13 and a drain electrode 14. From a state in which the electrochromic resin of the active layer 15 is a colorless and transparent insulator, a positive gate voltage is applied to the gate electrode 17, and by electrolysis of the water contained by the electrolyte of the active layer 15, protons are generated, and the electrochromic resin is protonated and converted to a black metal. A negative gate voltage is applied to the gate electrode 17, and protons are thereby moved in the reverse direction, and the electrochromic material is deprotonated and returned to the colorless and transparent insulator state.

Description

エレクトロクロミックトランジスタ、電子カーテン、情報表示記憶装置および防眩ミラーElectrochromic transistor, electronic curtain, information display storage device and anti-glare mirror
 この発明は、エレクトロクロミックトランジスタ、電子カーテン、情報表示記憶装置および防眩ミラーに関し、例えば、航空機、自動車、建築物などの窓の防眩、あるいはこれらの窓への情報の表示・記憶、さらには自動車のルームミラーの防眩などに適用して好適なものである。 The present invention relates to an electrochromic transistor, an electronic curtain, an information display storage device, and an antiglare mirror, and relates to, for example, antiglare windows of aircrafts, automobiles, buildings, etc., or displaying/storing information on these windows. It is suitable for application to antiglare of automobile rearview mirrors.
 エレクトロクロミズムは、エレクトロクロミック材料と呼ばれる金属イオンを内包する物質を電気化学的に酸化・還元することで、材料の色が無色透明⇔黒色のように可逆的に変化する現象である。エレクトロクロミズムは、ガラスの色を無色透明⇔黒色に切り替えて外光の透過率を調節することができるので、旅客機や住宅の窓の電子カーテンとして応用されているほか、夜間の自動車運転中にルームミラーに映り込む後続車のヘッドライトの眩しさを和らげるための防眩ミラーとして応用され始めており、その市場規模は2016年で15億ドル(約1600億円)、2023年には40億ドル(約4300億円)を超えると予測されている。 Electrochromism is a phenomenon in which the color of a material is reversibly changed from colorless transparent to black by electrochemically oxidizing and reducing a substance called electrochromic material that contains metal ions. Electrochromism can be used as an electronic curtain for passenger planes and residential windows because the color of the glass can be switched from colorless transparent to black and the transmittance of outside light can be adjusted. It has begun to be applied as an anti-glare mirror to reduce the glare of the headlights of the following vehicles reflected in the mirror. Its market size is 1.5 billion dollars in 2016 (about 160 billion yen) and 4 billion dollars in 2023 ( It is expected to exceed JPY 430 billion).
 1970年代からエレクトロクロミック材料として知られる酸化タングステン(WO)は、無色透明で、電気を通さない絶縁体であるが、電気化学的に水素を内包させることにより、黒色で、電気をよく通す金属になり、水素を引き抜くことで元の無色透明な絶縁体に戻るというエレクトロクロミズムを示す。 Tungsten oxide (WO 3 ), which has been known as an electrochromic material since the 1970s, is an insulator that is colorless and transparent and does not conduct electricity. However, it is a metal that is black and conducts electricity well due to electrochemical inclusion of hydrogen. The electrochromism of returning to the original colorless and transparent insulator by drawing out hydrogen is shown.
 本発明者らは、最近、エレクトロクロミック材料に薄膜トランジスタ構造を適用することで、無色透明⇔黒色の色変化で情報を表示・記憶し、同時に電気を通す⇔通さない(=電子情報)を記憶し、読み出すことが可能な新しい3端子素子(以下「エレクトロクロミックトランジスタ」という)の開発に成功した(非特許文献1参照)。このエレクトロクロミックトランジスタを用いることにより新しい情報表示記憶装置を実現することができる。このエレクトロクロミックトランジスタでは、ガラス基板上にスズ(Sn)ドープ酸化インジウム(ITO)膜からなる透明なソース電極およびドレイン電極を形成し、これらのソース電極およびドレイン電極に跨がるようにガラス基板上に活性層となるWO層を形成し、このWO層上に、多数のナノポアを有するアルミン酸カルシウムからなる、水を含んだセメント薄膜をゲート絶縁膜として形成し、その上にNiO膜およびITO膜からなる透明なゲート電極を順次形成した構造を有する。このエレクトロクロミックトランジスタを用いた情報表示記憶装置では、WO層が電気が通らない絶縁体の状態を情報「0」、電気がよく通る金属の状態を情報「1」とすることで、視覚で捉えられる色変化の情報「透明」および「黒」に加え、電気的に情報「0」および「1」の記憶・読み出しが可能である。 The present inventors have recently applied a thin film transistor structure to an electrochromic material to display and store information with a color change of colorless transparent ⇔ black, and at the same time store electricity ⇔ not pass (= electronic information). , Succeeded in developing a new readable three-terminal element (hereinafter referred to as “electrochromic transistor”) (see Non-Patent Document 1). A new information display storage device can be realized by using this electrochromic transistor. In this electrochromic transistor, a transparent source electrode and a drain electrode made of a tin (Sn)-doped indium oxide (ITO) film are formed on a glass substrate, and the transparent source electrode and the drain electrode are formed on the glass substrate so as to extend over these source electrode and drain electrode. A WO 3 layer serving as an active layer is formed on the WO 3 layer, and a water-containing cement thin film made of calcium aluminate having a large number of nanopores is formed as a gate insulating film on the WO 3 layer. It has a structure in which a transparent gate electrode made of an ITO film is sequentially formed. In the information display storage device using this electrochromic transistor, the state of the insulator in which the WO 3 layer does not conduct electricity is information “0”, and the state of the metal through which electricity easily passes is information “1”. It is possible to electrically store and read the information "0" and "1" in addition to the captured color change information "transparent" and "black".
 このエレクトロクロミックトランジスタあるいは情報表示記憶装置は、安価に、室温で作製することができ、大面積化も容易である。 This electrochromic transistor or information display memory device can be manufactured at low cost at room temperature, and it is easy to increase the area.
 非特許文献1に記載のエレクトロクロミックトランジスタでは、活性層のWO層のプロトン化(WO→HWO)にはソース電極に対しゲート電極に+3Vを300秒印加する必要があり、脱プロトン化(HWO→WO)にはソース電極に対しゲート電極に-3Vを100秒印加する必要がある。すなわち、実用的な動作スイッチング電圧である3Vにおいて、スイッチングに必要な時間は100秒から300秒程度になってしまう。このため、スイッチングに必要な時間の短縮が望まれていた。 In the electrochromic transistor described in Non-Patent Document 1, in order to protonate the WO 3 layer of the active layer (WO 3 →H x WO 3 ), it is necessary to apply +3 V to the gate electrode with respect to the source electrode for 300 seconds. For protonation (H x WO 3 →WO 3 ), it is necessary to apply −3 V to the gate electrode with respect to the source electrode for 100 seconds. That is, at a practical operation switching voltage of 3V, the time required for switching is about 100 to 300 seconds. Therefore, it has been desired to reduce the time required for switching.
 そこで、この発明が解決しようとする課題は、実用的な動作スイッチング電圧である3Vに対してもスイッチングに必要な時間を非特許文献1に記載のエレクトロクロミックトランジスタに比べて大幅に短縮することができるエレクトロクロミックトランジスタ、このエレクトロクロミックトランジスタを用いた高性能の電子カーテンおよびこのエレクトロクロミックトランジスタを用いた高性能の情報表示記憶装置ならびにこのエレクトロクロミックトランジスタを用いた高性能の防眩ミラーを提供することである。 Therefore, the problem to be solved by the present invention is that the time required for switching is significantly shortened as compared with the electrochromic transistor described in Non-Patent Document 1 even with a practical operating switching voltage of 3V. PROBLEM TO BE SOLVED: To provide an electrochromic transistor, a high-performance electron curtain using the electrochromic transistor, a high-performance information display storage device using the electrochromic transistor, and a high-performance antiglare mirror using the electrochromic transistor. Is.
 上記課題を解決するために、この発明は、
 少なくともエレクトロクロミック材料と水を含有する電解質とを含む活性層と、
 上記活性層を挟むように設けられた第1の透明導電膜および第2の透明導電膜とを有するエレクトロクロミックトランジスタである。
In order to solve the above problems, the present invention provides
An active layer comprising at least an electrochromic material and an electrolyte containing water;
It is an electrochromic transistor having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
 ここで、エレクトロクロミックトランジスタは、活性層にエレクトロクロミック材料を用い、ソース電極、ドレイン電極およびゲート電極を備えた薄膜トランジスタ構造を有する3端子素子である。活性層は、少なくともエレクトロクロミック材料と水を含有する電解質とを含む限り、どのような形態であってもよく、必要に応じて設計される。典型的には、活性層は、エレクトロクロミック材料からなる第1の層と電解質からなる第2の層とが互いに積層された構造を有する。活性層は、その少なくとも一部あるいは全部が、微粒子状のエレクトロクロミック材料と微粒子状の電解質とが混合した構造を有することもある。活性層は、ソース電極およびドレイン電極と電気的にコンタクトするように設けられる。 Here, the electrochromic transistor is a three-terminal element having a thin film transistor structure that uses an electrochromic material for an active layer and has a source electrode, a drain electrode, and a gate electrode. The active layer may have any form as long as it contains at least an electrochromic material and an electrolyte containing water, and is designed as necessary. Typically, the active layer has a structure in which a first layer made of an electrochromic material and a second layer made of an electrolyte are laminated on each other. At least a part or the whole of the active layer may have a structure in which a fine particle electrochromic material and a fine particle electrolyte are mixed. The active layer is provided so as to make electrical contact with the source electrode and the drain electrode.
 第1の透明導電膜および第2の透明導電膜の一方がゲート電極を構成し、他方が活性層と一体となり、かつソース電極およびドレイン電極と電気的にコンタクトすることによってチャネルのシート抵抗の低減に寄与する。第1の透明導電膜および第2の透明導電膜は、例えば、透明導電性酸化物(TCO)や極薄の金(Au)などの透明金属などにより構成され、必要に応じて選ばれる。透明導電性酸化物は、一般的には、インジウム(In)、亜鉛(Zn)、ガリウム(Ga)およびスズ(Sn)からなる群より選ばれた少なくとも1種類以上の金属を含む酸化物である。透明導電性酸化物は、具体的には、例えば、スズ(Sn)をドープしたIn(ITO)、ガリウム(Ga)やアルミニウム(Al)などをドープしたZnO、フッ素(F)をドープした酸化スズ(SnO)などである。第1の透明導電膜および第2の透明導電膜の電気伝導度は、一般的には0.01S/cm以上100000S/cm以下である。 One of the first transparent conductive film and the second transparent conductive film constitutes a gate electrode, the other is integrated with the active layer, and the sheet resistance of the channel is reduced by making electrical contact with the source electrode and the drain electrode. Contribute to. The first transparent conductive film and the second transparent conductive film are made of, for example, a transparent conductive oxide (TCO), a transparent metal such as ultra-thin gold (Au), or the like, and are selected as necessary. The transparent conductive oxide is generally an oxide containing at least one metal selected from the group consisting of indium (In), zinc (Zn), gallium (Ga) and tin (Sn). .. Specifically, the transparent conductive oxide is, for example, In 2 O 3 (ITO) doped with tin (Sn), ZnO doped with gallium (Ga), aluminum (Al), or the like, and doped with fluorine (F). Tin oxide (SnO 2 ) and the like. The electric conductivity of the first transparent conductive film and the second transparent conductive film is generally 0.01 S/cm or more and 100000 S/cm or less.
 活性層が上記のように第1の層と第2の層とが互いに積層された構造を有する場合、第1の層の厚さおよび電気伝導度(あるいは導電率)、第1の透明導電膜および第2の透明導電膜のうちの第1の層側に位置するものの厚さおよび電気伝導度(あるいは導電率)は次のように選ばれる。すなわち、第1の層の厚さをt、電気伝導度をσ、第1の透明導電膜および第2の透明導電膜のうちの第1の層側に位置するものの厚さをt、電気伝導度をσとする。このエレクトロクロミックトランジスタの目標とする電気的なオン/オフ比(オフ時のチャネルのシート抵抗に対するオン時のチャネルのシート抵抗の比)に対し、Log(オン/オフ比)=Log(t/t)+Log(σ/σ)が成立するようにt、σ、t、σが選ばれる。 When the active layer has a structure in which the first layer and the second layer are laminated as described above, the thickness and electric conductivity (or conductivity) of the first layer, the first transparent conductive film The thickness and electric conductivity (or electric conductivity) of the second transparent conductive film located on the first layer side are selected as follows. That is, the thickness of the first layer is t 1 , the electrical conductivity is σ 1 , and the thickness of one of the first transparent conductive film and the second transparent conductive film located on the side of the first layer is t 2. , And the electrical conductivity is σ 2 . With respect to the target electrical on/off ratio (ratio of the sheet resistance of the on channel to the sheet resistance of the on channel) of this electrochromic transistor, Log (on/off ratio)=Log(t 1 / t 1 , σ 1 , t 2 , and σ 2 are selected so that t 2 )+Log(σ 12 ) holds.
 エレクトロクロミック材料は、無機材料であっても有機材料であっても有機無機複合材料であってもよく、必要に応じて選ばれる。無機のエレクトロクロミック材料としては、典型的には、タングステン(W)、バナジウム(V)、ニオブ(Nb)およびチタン(Ti)からなる群より選ばれた少なくとも1種類以上の金属を含む酸化物エレクトロクロミック材料が挙げられるが、これに限定されるものではない。酸化物エレクトロクロミック材料は、一つの典型的な例では、組成式AO(Aはタングステン、バナジウム、ニオブまたはチタン、xは1~3の範囲)で表されるアモルファスまたは結晶質の単純酸化物である。AOの代表例がWOである。有機のエレクトロクロミック材料としては、例えば、各種の導電性高分子化合物、ビオロゲン化合物、ロイコ染料系化合物、テレフタル酸化合物などが挙げられるが、これに限定されるものではない。 The electrochromic material may be an inorganic material, an organic material, or an organic-inorganic composite material, and is selected as necessary. The inorganic electrochromic material is typically an oxide electro containing at least one metal selected from the group consisting of tungsten (W), vanadium (V), niobium (Nb) and titanium (Ti). Examples include, but are not limited to, chromic materials. The oxide electrochromic material is, in one typical example, an amorphous or crystalline simple oxide represented by the composition formula AO x (A is tungsten, vanadium, niobium or titanium, and x is in the range of 1 to 3). Is. A representative example of AO 3 is WO 3 . Examples of the organic electrochromic material include, but are not limited to, various conductive polymer compounds, viologen compounds, leuco dye compounds, and terephthalic acid compounds.
 電解質は、水を含有するものである限り、特に限定されず、必要に応じて選ばれる。電解質は、好適には、体積分率で1%以上50%以下の水を含有する酸化物誘電体であるが、これに限定されるものではない。酸化物誘電体は、多孔質化できて、かつ水を含有する各種の金属酸化物(複合酸化物やガラスも含む)が一般的である。このような金属酸化物の具体例を挙げると、TaO、NbO、ZrO、HfO、AlO、SiO、GaOなどである。電解質としては、非特許文献1に記載されている、多数のナノポアを有するアルミン酸カルシウムからなる、水を含んだセメントを用いてもよい。 The electrolyte is not particularly limited as long as it contains water, and is selected as necessary. The electrolyte is preferably, but not limited to, an oxide dielectric containing 1% or more and 50% or less by volume of water. Oxide dielectrics are generally various metal oxides (including complex oxides and glasses) that can be made porous and contain water. Specific examples of such metal oxides include TaO x , NbO x , ZrO x , HfO x , AlO x , SiO x , and GaO x . As the electrolyte, water-containing cement composed of calcium aluminate having a large number of nanopores described in Non-Patent Document 1 may be used.
 典型的には、第1の透明導電膜および第2の透明導電膜の一方が透明基板上に設けられる。透明基板は、例えば、透明ガラス基板、透明プラスチック基板などである。透明基板は、必要に応じてフレキシブルに構成される。透明プラスチック基板を構成する透明プラスチックとしては、例えば、ポリエチレンテレフタラート、ポリエチレンナフタラート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、アセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルホン類、ポリオレフィン類などを用いることができる。 Typically, one of the first transparent conductive film and the second transparent conductive film is provided on the transparent substrate. The transparent substrate is, for example, a transparent glass substrate or a transparent plastic substrate. The transparent substrate is configured flexibly as needed. Examples of the transparent plastic constituting the transparent plastic substrate include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetyl cellulose, brominated phenoxy, aramids, polyimides, polystyrene. , Polyarylates, polysulfones, polyolefins and the like can be used.
 また、この発明は、
 透明基板と、
 上記透明基板上に設けられた一つまたは複数のエレクトロクロミックトランジスタとを有し、
 上記エレクトロクロミックトランジスタが、
 少なくともエレクトロクロミック材料と水を含有する電解質とを含む活性層と、
 上記活性層を挟むように設けられた第1の透明導電膜および第2の透明導電膜とを有する電子カーテンである。
Further, the present invention is
A transparent substrate,
Having one or more electrochromic transistors provided on the transparent substrate,
The electrochromic transistor is
An active layer comprising at least an electrochromic material and an electrolyte containing water;
It is an electronic curtain having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
 また、この発明は、
 透明基板と、
 上記透明基板上に設けられた複数のエレクトロクロミックトランジスタとを有し、
 上記エレクトロクロミックトランジスタが、
 少なくともエレクトロクロミック材料と水を含有する電解質とを含む活性層と、
 上記活性層を挟むように設けられた第1の透明導電膜および第2の透明導電膜とを有する情報表示記憶装置である。
Further, the present invention is
A transparent substrate,
Having a plurality of electrochromic transistors provided on the transparent substrate,
The electrochromic transistor is
An active layer comprising at least an electrochromic material and an electrolyte containing water;
An information display storage device having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
 情報表示記憶装置は、エレクトロクロミックトランジスタのオフ時およびオン時の色の情報「無色透明」および「黒」の表示と、オフ時およびオン時の電気的導通の情報「0」および「1」の記憶・読み出しとが可能である。透明基板上のエレクトロクロミックトランジスタの配置は必要に応じて選ばれるが、典型的には、複数のエレクトロクロミックトランジスタがマトリクス状に配列される。 The information display storage device displays color information "colorless and transparent" and "black" when the electrochromic transistor is off and on, and electrical conduction information "0" and "1" when the electrochromic transistor is off and on. It can be stored and read. The arrangement of the electrochromic transistors on the transparent substrate is selected as necessary, but typically, a plurality of electrochromic transistors are arranged in a matrix.
 また、この発明は、
 ミラーの表面に設けられた透明基板と、
 上記透明基板上に設けられた一つまたは複数のエレクトロクロミックトランジスタとを有し、
 上記エレクトロクロミックトランジスタが、
 少なくともエレクトロクロミック材料と水を含有する電解質とを含む活性層と、
 上記活性層を挟むように設けられた第1の透明導電膜および第2の透明導電膜とを有する防眩ミラーである。
Further, the present invention is
A transparent substrate provided on the surface of the mirror,
Having one or more electrochromic transistors provided on the transparent substrate,
The electrochromic transistor is
An active layer comprising at least an electrochromic material and an electrolyte containing water;
It is an antiglare mirror having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
 防眩ミラーの用途は特に限定されないが、例えば、自動車のルームミラーである。 The use of the anti-glare mirror is not particularly limited, but it is, for example, an automobile rearview mirror.
 上記の電子カーテン、情報表示記憶装置および防眩ミラーの各発明においては、特にその性質に反しない限り、上記のエレクトロクロミックトランジスタの発明に関連して説明したことが成立する。 In each of the inventions of the electronic curtain, the information display storage device, and the antiglare mirror described above, what has been described in connection with the invention of the electrochromic transistor is established unless it is contrary to the property.
 この発明によれば、少なくともエレクトロクロミック材料と水を含有する電解質とを含む活性層に接して透明導電膜が設けられていることにより、チャネルの実効的なシート抵抗の大幅な低減を図ることができ、それによって活性層が無色透明で絶縁体の状態と黒色で金属の状態との間の電気的および光学的なオン/オフ比およびスイッチング速度が極めて優れた高性能のエレクトロクロミックトランジスタを実現することができる。そして、この高性能のエレクトロクロミックトランジスタを用いることにより、高速で光の透過の制御を行うことができる電子カーテンを実現することができるとともに、高速で情報の表示・記憶・読み出しが可能な情報表示記憶装置を実現することができる。さらに、この高性能のエレクトロクロミックトランジスタを用いることにより、夜間でも効果的な防眩が可能な防眩ミラーを実現することができる。 According to the present invention, since the transparent conductive film is provided in contact with the active layer containing at least the electrochromic material and the electrolyte containing water, the effective sheet resistance of the channel can be significantly reduced. Enables a high performance electrochromic transistor with an active layer that is colorless and transparent and has an extremely high electrical and optical on/off ratio between an insulator state and a black state and a metal state and a switching speed. be able to. By using this high-performance electrochromic transistor, it is possible to realize an electronic curtain capable of controlling light transmission at high speed, and at the same time, information display capable of displaying/storing/reading information at high speed. A storage device can be realized. Furthermore, by using this high-performance electrochromic transistor, it is possible to realize an antiglare mirror capable of effective antiglare even at night.
この発明の第1の実施の形態によるエレクトロクロミックトランジスタを示す断面図である。1 is a sectional view showing an electrochromic transistor according to a first embodiment of the present invention. この発明の第1の実施の形態によるエレクトロクロミックトランジスタを示す平面図である。1 is a plan view showing an electrochromic transistor according to a first embodiment of the present invention. この発明の第1の実施の形態によるエレクトロクロミックトランジスタの活性層の構造の第1の例を示す断面図である。FIG. 3 is a sectional view showing a first example of a structure of an active layer of the electrochromic transistor according to the first embodiment of the present invention. この発明の第1の実施の形態によるエレクトロクロミックトランジスタの活性層の構造の第2の例を示す断面図である。FIG. 6 is a sectional view showing a second example of the structure of the active layer of the electrochromic transistor according to the first embodiment of the present invention. この発明の第1の実施の形態によるエレクトロクロミックトランジスタの電気的なオン/オフ比と厚さ比t/tとの関係を示す略線図である。FIG. 3 is a schematic diagram showing the relationship between the electrical on/off ratio and the thickness ratio t 1 /t 2 of the electrochromic transistor according to the first embodiment of the present invention. 実施例によるエレクトロクロミックトランジスタを示す断面図である。FIG. 3 is a cross-sectional view showing an electrochromic transistor according to an example. 実施例によるエレクトロクロミックトランジスタを示す平面図である。FIG. 6 is a plan view showing an electrochromic transistor according to an example. 実施例によるエレクトロクロミックトランジスタを示す図面代用写真である。8 is a drawing-substituting photograph showing an electrochromic transistor according to an example. 比較例によるエレクトロクロミックトランジスタを示す断面図である。FIG. 6 is a cross-sectional view showing an electrochromic transistor according to a comparative example. 実施例によるエレクトロクロミックトランジスタおよび比較例によるエレクトロクロミックトランジスタのプロトン化に伴うシート抵抗の時間変化を示す略線図である。FIG. 6 is a schematic diagram showing a time change of sheet resistance due to protonation of an electrochromic transistor according to an example and an electrochromic transistor according to a comparative example. 実施例によるエレクトロクロミックトランジスタおよび比較例によるエレクトロクロミックトランジスタの脱プロトン化に伴うシート抵抗の時間変化を示す略線図である。FIG. 6 is a schematic diagram showing a change over time in sheet resistance with deprotonation of an electrochromic transistor according to an example and an electrochromic transistor according to a comparative example. 実施例によるエレクトロクロミックトランジスタおよび比較例によるエレクトロクロミックトランジスタの初期状態およびゲート電極に+3Vを印加した状態の透過スペクトルを示す略線図である。FIG. 6 is a schematic diagram showing transmission spectra of an electrochromic transistor according to an example and an electrochromic transistor according to a comparative example in an initial state and a state in which +3V is applied to a gate electrode. この発明の第2の実施の形態による電子カーテンを示す平面図である。It is a top view which shows the electronic curtain by the 2nd Embodiment of this invention. この発明の第2の実施の形態による電子カーテンを航空機の窓に適用した例を示す正面図である。It is a front view which shows the example which applied the electronic curtain by the 2nd Embodiment of this invention to the window of an aircraft. この発明の第2の実施の形態による電子カーテンを建築物の窓に適用した例を示す正面図である。It is a front view which shows the example which applied the electronic curtain by the 2nd Embodiment of this invention to the window of a building. この発明の第3の実施の形態による情報表示記憶装置を示す平面図である。It is a top view which shows the information display memory|storage device by the 3rd Embodiment of this invention. この発明の第3の実施の形態による情報表示記憶装置に情報の表示・記憶を行う一例を示す平面図である。It is a top view which shows an example which displays and memorize|stores information in the information display memory|storage device by the 3rd Embodiment of this invention.
 以下、発明を実施するための形態(以下、「実施の形態」という。)について図面を参照しながら説明する。 Hereinafter, modes for carrying out the invention (hereinafter, referred to as “embodiments”) will be described with reference to the drawings.
〈第1の実施の形態〉
[エレクトロクロミックトランジスタ]
 図1および図2は第1の実施の形態によるエレクトロクロミックトランジスタを示し、図1は断面図、図2は平面図である。
<First Embodiment>
[Electrochromic transistor]
1 and 2 show an electrochromic transistor according to a first embodiment, FIG. 1 is a sectional view, and FIG. 2 is a plan view.
 図1および図2に示すように、このエレクトロクロミックトランジスタにおいては、透明基板11上に透明導電膜12が設けられている。透明導電膜12上には透明なソース電極13およびドレイン電極14が互いに対向して設けられている。透明導電膜12上には活性層15が、その両端部がソース電極13およびドレイン電極14に跨がり電気的にコンタクトして設けられている。活性層15は、少なくともエレクトロクロミック材料と水を含有する電解質とを含み、必要に応じてこれらのエレクトロクロミック材料および電解質以外の材料を含むこともあるが、典型的には、エレクトロクロミック材料と電解質とからなる。活性層15を構成するエレクトロクロミック材料はプロトン化されていないときは無色透明な絶縁体であり、そのときエレクトロクロミックトランジスタは活性層15が非導通となりソース電極13およびドレイン電極14間に電流が流れずオフであるが、エレクトロクロミック材料がプロトン化されたときは黒色の金属に変化し、そのときエレクトロクロミックトランジスタは活性層15が導通してソース電極13およびドレイン電極14間に電流が流れオンとなる。活性層15上にはゲート絶縁膜を兼用する吸収層16が設けられている。吸収層16上に透明導電膜からなるゲート電極17が設けられている。従って、このエレクトロクロミックトランジスタは、ゲート電極17を構成する透明導電膜と透明導電膜12との間に活性層15が挟まれた構造を有する。 As shown in FIGS. 1 and 2, in this electrochromic transistor, a transparent conductive film 12 is provided on a transparent substrate 11. A transparent source electrode 13 and a transparent drain electrode 14 are provided on the transparent conductive film 12 so as to face each other. An active layer 15 is provided on the transparent conductive film 12 so that both ends thereof are electrically contacted over the source electrode 13 and the drain electrode 14. The active layer 15 contains at least an electrochromic material and an electrolyte containing water, and may contain a material other than the electrochromic material and the electrolyte as necessary, but typically, the electrochromic material and the electrolyte. It consists of and. The electrochromic material forming the active layer 15 is a colorless and transparent insulator when it is not protonated, and in the electrochromic transistor, the active layer 15 becomes non-conductive and a current flows between the source electrode 13 and the drain electrode 14. However, when the electrochromic material is protonated, it changes to a black metal. At that time, in the electrochromic transistor, the active layer 15 becomes conductive and a current flows between the source electrode 13 and the drain electrode 14 to turn it on. Become. An absorption layer 16 that also serves as a gate insulating film is provided on the active layer 15. A gate electrode 17 made of a transparent conductive film is provided on the absorption layer 16. Therefore, this electrochromic transistor has a structure in which the active layer 15 is sandwiched between the transparent conductive film and the transparent conductive film 12 which form the gate electrode 17.
 透明基板11は、透明ガラス基板や、既に挙げた透明プラスチックからなる透明プラスチック基板などである。透明基板11は必要に応じてフレキシブルに構成される。透明基板11の厚さおよび材質は、必要な透明度および強度が得られる範囲で必要に応じて選ばれる。図2においては透明基板11の平面形状は長方形であるが、透明基板11の平面形状はエレクトロクロミックトランジスタの用途などにより必要に応じて選ばれ、他の多角形(三角形、五角形、六角形など)のほか、円形、楕円形、さらにはこれらの形状を変形した形状であってもよい。 The transparent substrate 11 is a transparent glass substrate or a transparent plastic substrate made of the transparent plastic already mentioned. The transparent substrate 11 is configured flexibly as needed. The thickness and material of the transparent substrate 11 are selected as needed within a range in which required transparency and strength can be obtained. In FIG. 2, the planar shape of the transparent substrate 11 is rectangular, but the planar shape of the transparent substrate 11 is selected as necessary depending on the application of the electrochromic transistor and other polygons (triangle, pentagon, hexagon, etc.). Besides, it may have a circular shape, an elliptical shape, or a shape obtained by modifying these shapes.
 透明導電膜12およびゲート電極17を構成する透明導電膜は、例えば、各種の透明導電酸化物(TCO)や極薄のAu膜などからなる。透明導電膜12の厚さおよび電気伝導度については後述する。 The transparent conductive film forming the transparent conductive film 12 and the gate electrode 17 is made of, for example, various kinds of transparent conductive oxide (TCO) or an ultrathin Au film. The thickness and electric conductivity of the transparent conductive film 12 will be described later.
 ソース電極13およびドレイン電極14は、例えば、各種の透明導電酸化物(TCO)や極薄のAu膜などの透明導電膜により構成され、必要に応じて選ばれる。ソース電極13およびドレイン電極14の平面形状は一般的には長方形であるが、これに限定されるものではない。 The source electrode 13 and the drain electrode 14 are made of, for example, a transparent conductive film such as various transparent conductive oxides (TCO) or an ultrathin Au film, and are selected as needed. The planar shapes of the source electrode 13 and the drain electrode 14 are generally rectangular, but are not limited to this.
 活性層15を構成するエレクトロクロミック材料および電解質は、既に挙げたものの中から必要に応じて選ばれる。電解質は水を含有する酸化物誘電体からなり、透明に構成される。活性層15は、エレクトロクロミック材料からなる第1の層と電解質からなる第2の層とが互いに積層された構造を有する場合と、その少なくとも一部あるいは全部が、微粒子状のエレクトロクロミック材料と微粒子状の電解質とが混合した構造を有する場合とがある。前者の例を図3に、後者の例を図4に示す。図3に示すように、この例では、活性層15の下層がエレクトロクロミック材料からなる第1の層15a、上層が電解質からなる第2の層15bである。図4に示すもう一つの例では、微粒子状のエレクトロクロミック材料15cと微粒子状の電解質15dとが多数混合した構造を有する。図4においては、微粒子状のエレクトロクロミック材料15cと微粒子状の電解質15dとを区別するために微粒子状の電解質15dに比べて微粒子状のエレクトロクロミック材料15cを大きく描いているが、両者の大きさはこれに限定されるものではなく、必要に応じて選ばれる。また、図4においては、微粒子状のエレクトロクロミック材料15cおよび微粒子状の電解質15dは球状に描いているが、これに限定されるものではなく、他の形状であってもよい。活性層15の平面形状は一般的には長方形であるが、これに限定されるものではなく、必要に応じて選ばれる。 The electrochromic material and the electrolyte forming the active layer 15 are selected from those already mentioned as needed. The electrolyte consists of an oxide dielectric containing water and is transparent. The active layer 15 has a structure in which a first layer made of an electrochromic material and a second layer made of an electrolyte are laminated on each other, and at least a part or all of the active layer 15 is a fine particle electrochromic material and fine particles. There is a case where it has a mixed structure with a solid electrolyte. An example of the former is shown in FIG. 3 and an example of the latter is shown in FIG. As shown in FIG. 3, in this example, the lower layer of the active layer 15 is a first layer 15a made of an electrochromic material and the upper layer is a second layer 15b made of an electrolyte. Another example shown in FIG. 4 has a structure in which a large number of fine particle electrochromic materials 15c and fine particle electrolytes 15d are mixed. In FIG. 4, the fine particle electrochromic material 15c is drawn larger than the fine particle electrolyte 15d in order to distinguish between the fine particle electrochromic material 15c and the fine particle electrolyte 15d. Is not limited to this, and is selected as needed. Further, in FIG. 4, the fine particle-shaped electrochromic material 15c and the fine particle-shaped electrolyte 15d are drawn in a spherical shape, but the shape is not limited to this, and other shapes may be used. The planar shape of the active layer 15 is generally rectangular, but is not limited to this and may be selected as necessary.
 吸収層16は、エレクトロクロミックトランジスタの動作時に活性層15から放出されるOHを吸収する役割を果たす。吸収層16は、例えばNiOからなるが、これに限定されるものではない。吸収層16の厚さは特に限定されず、必要に応じて選ばれるが、一般的には10nm~30nmである。吸収層16は必要に応じて省略可能である。 The absorption layer 16 plays a role of absorbing OH released from the active layer 15 during the operation of the electrochromic transistor. The absorption layer 16 is made of, for example, NiO, but is not limited to this. The thickness of the absorption layer 16 is not particularly limited and is selected as necessary, but is generally 10 nm to 30 nm. The absorption layer 16 can be omitted if necessary.
 ゲート電極17は、ソース電極13およびドレイン電極14と同様に、例えば、各種の透明導電性酸化物(TCO)や極薄のAu膜などの透明導電膜により構成され、必要に応じて選ばれる。ゲート電極17の平面形状は一般的には長方形であるが、これに限定されるものではない。ゲート電極17の厚さは特に限定されず、必要に応じて選ばれるが、一般的には10nm~30nmである。 Like the source electrode 13 and the drain electrode 14, the gate electrode 17 is made of, for example, a transparent conductive film such as various transparent conductive oxides (TCO) or an ultrathin Au film, and is selected as necessary. The planar shape of the gate electrode 17 is generally rectangular, but is not limited to this. The thickness of the gate electrode 17 is not particularly limited and is selected as necessary, but is generally 10 nm to 30 nm.
 活性層15が、図3に示すように、エレクトロクロミック材料からなる第1の層15aと電解質からなる第2の層15bとからなる二層構造を有する場合、第1の層15aの厚さtおよび電気伝導度σ、透明導電膜12の厚さtおよび電気伝導度σは次のように選ばれる。すなわち、図5は、縦軸にエレクトロクロミックトランジスタの電気的なオン/オフ比、横軸に厚さの比t/tを取ったものである。図5中に、σを7000S/cm固定(第1の層15aがWO層である場合を想定)、σをパラメータとして、Log(オン/オフ比)=Log(t/t)+Log(σ/σ)で表される直線を描いた。図5では、σを0.01S/cm、0.1S/cm、1S/cm、10S/cm、100S/cm、1000S/cmに変えて直線を描いた。t、t、σ、σは、目標とする電気的なオン/オフ比に対し、Log(オン/オフ比)=Log(t/t)+Log(σ/σ)が成立するように選ばれる。例えば、σ=1000S/cmとすると、目標とする電気的なオン/オフ比を10とする場合は、t/tを約2に設定すればよいことが分かる。 When the active layer 15 has a two-layer structure including a first layer 15a made of an electrochromic material and a second layer 15b made of an electrolyte as shown in FIG. 3, the thickness t of the first layer 15a is t. 1, the electric conductivity σ 1 , the thickness t 2 of the transparent conductive film 12 and the electric conductivity σ 2 are selected as follows. That is, in FIG. 5, the vertical axis represents the electrical on/off ratio of the electrochromic transistor, and the horizontal axis represents the thickness ratio t 1 /t 2 . In FIG. 5, σ 1 is fixed at 7,000 S/cm (assuming that the first layer 15a is the WO 3 layer), and σ 2 is a parameter, Log (on/off ratio)=Log(t 1 /t 2 )+Log(σ 12 ). In FIG. 5, σ 2 was changed to 0.01 S/cm, 0.1 S/cm, 1 S/cm, 10 S/cm, 100 S/cm, and 1000 S/cm to draw a straight line. t 1 , t 2 , σ 1 , and σ 2 are Log (on/off ratio)=Log(t 1 /t 2 )+Log(σ 12 ) with respect to the target electrical on/off ratio. Is selected so that For example, if σ 2 =1000 S/cm, it can be understood that t 1 /t 2 should be set to about 2 when the target electrical on/off ratio is 10.
 なお、活性層15が図4に示すように微粒子状のエレクトロクロミック材料15cと微粒子状の電解質15dとが多数混合した構造を有する場合は、活性層15に含まれるエレクトロクロミック材料15cの総質量を第1の層15aの厚さに換算した場合の厚さ(等価厚さ)をtとして用いることにより、近似的に上記と同じ取り扱いが可能である。 When the active layer 15 has a structure in which a large number of fine particle electrochromic materials 15c and fine particle electrolytes 15d are mixed as shown in FIG. 4, the total mass of the electrochromic material 15c contained in the active layer 15 is By using the thickness (equivalent thickness) converted to the thickness of the first layer 15a as t 2 , the same handling as above can be approximately performed.
[エレクトロクロミックトランジスタの動作]
 活性層15のエレクトロクロミック材料は最初はプロトン化されておらず、無色透明な絶縁体であるとする。この状態では、活性層15は導通しておらず、ソース電極13とドレイン電極14との間に電流は流れない。ソース電極13とゲート電極17との間に後述の水の電気分解に必要なゲート電圧Vを印加する。一般的にはソース電極13を接地する。ゲート電圧Vとして正の電圧を印加すると、活性層15の厚さ方向にゲート電極17から透明導電膜12に向かう電界が印加される。この電界によって活性層15に含まれる電解質中の水が電気分解され、プロトン(H)および水酸化物イオン(OH)が生成される。このうちHは電界により活性層15のエレクトロクロミック材料に取り込まれてプロトン化が起き、OHは電界により活性層15を突き抜けて吸収層16に取り込まれる。活性層15のエレクトロクロミック材料のプロトン化が起きると、エレクトロクロミック材料は黒色の金属となる。このとき活性層15が導通し、ソース電極13とドレイン電極14との間に電流が流れる。
[Operation of electrochromic transistor]
The electrochromic material of the active layer 15 is initially not protonated and is assumed to be a colorless and transparent insulator. In this state, the active layer 15 is not conductive and no current flows between the source electrode 13 and the drain electrode 14. A gate voltage V g necessary for electrolysis of water described below is applied between the source electrode 13 and the gate electrode 17. Generally, the source electrode 13 is grounded. When a positive voltage is applied as the gate voltage V g , an electric field is applied from the gate electrode 17 to the transparent conductive film 12 in the thickness direction of the active layer 15. By this electric field, water in the electrolyte contained in the active layer 15 is electrolyzed to generate protons (H + ) and hydroxide ions (OH ). Of these, H + is taken into the electrochromic material of the active layer 15 by the electric field and protonated, and OH penetrates the active layer 15 by the electric field and is taken into the absorption layer 16. When the electrochromic material of the active layer 15 is protonated, the electrochromic material becomes a black metal. At this time, the active layer 15 becomes conductive, and a current flows between the source electrode 13 and the drain electrode 14.
 次に、ゲート電圧Vとして負の電圧を印加すると、活性層15の厚さ方向に透明導電膜12からゲート電極17に向かう方向に電界が印加される。この電界によって活性層15のエレクトロクロミック材料からプロトンが引き抜かれて脱プロトン化が起きるとともに、吸収層16からOHが引き抜かれる。こうしてエレクトロクロミック材料から引き抜かれたHと吸収層16から引き抜かれたOHとにより水が生成され、活性層15中の電解質に取り込まれる。活性層15のエレクトロクロミック材料の脱プロトン化が起きると、エレクトロクロミック材料は無色透明な絶縁体に復帰する。このとき活性層15は導通せず、ソース電極13とドレイン電極14との間に電流は流れない。 Next, when a negative voltage is applied as the gate voltage V g , an electric field is applied in the thickness direction of the active layer 15 in the direction from the transparent conductive film 12 to the gate electrode 17. By this electric field, protons are extracted from the electrochromic material of the active layer 15 to cause deprotonation, and OH is extracted from the absorption layer 16. Thus, H + extracted from the electrochromic material and OH extracted from the absorption layer 16 generate water, which is taken into the electrolyte in the active layer 15. When deprotonation of the electrochromic material of the active layer 15 occurs, the electrochromic material returns to a colorless and transparent insulator. At this time, the active layer 15 does not conduct, and no current flows between the source electrode 13 and the drain electrode 14.
[エレクトロクロミックトランジスタの製造方法]
 図1に示すように、まず、透明基板11上に透明導電膜12を形成した後、その上に透明導電膜からなるソース電極13およびドレイン電極14を形成する。これらの透明導電膜は従来公知の方法により形成することができ、必要に応じて選ばれるが、例えば、パルスレーザー堆積(PLD)法、真空蒸着法などが用いられる。ソース電極13およびドレイン電極14の形成は金属マスクを用いて透明導電体を選択的に堆積させることにより形成することができる。
[Method for manufacturing electrochromic transistor]
As shown in FIG. 1, first, after forming the transparent conductive film 12 on the transparent substrate 11, the source electrode 13 and the drain electrode 14 made of the transparent conductive film are formed thereon. These transparent conductive films can be formed by a conventionally known method and are selected as necessary, and for example, a pulse laser deposition (PLD) method, a vacuum evaporation method or the like is used. The source electrode 13 and the drain electrode 14 can be formed by selectively depositing a transparent conductor using a metal mask.
 次に、透明導電膜12上に活性層15をその両端部がソース電極13およびドレイン電極14に跨がるように形成する。活性層15が図3に示すような第1の層15aおよび第2の層15bからなる場合は、第1の層15aおよび第2の層15bを順次形成する。これらの第1の層15aおよび第2の層15bは従来公知の方法により形成することができ、必要に応じて選ばれるが、例えば、金属マスクを用いたPLD法、真空蒸着法などが用いられる。活性層15が図4に示すような微粒子状のエレクトロクロミック材料15cおよび微粒子状の電解質15dからなる場合は、微粒子状のエレクトロクロミック材料15cおよび微粒子状の電解質15dを予め調製し、これらを水などの溶媒に均一に分散させたペースト状の分散液を調製し、この分散液を透明導電膜12上にソース電極13およびドレイン電極14に跨がるように塗布または印刷する。分散液の塗布方法または印刷方法に特に制限はなく、従来公知の方法を用いることができる。具体的には、塗布方法としては、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法などを用いることができる。また、印刷方法としては、凸版印刷法、オフセット印刷法、グラビア印刷法、凹版印刷法、ゴム版印刷法、スクリーン印刷法などを用いることができる。こうして微粒子状のエレクトロクロミック材料15cおよび微粒子状の電解質15dを透明導電膜12、ソース電極13およびドレイン電極14上に塗布または印刷した後に溶媒を蒸発させて除去する。必要に応じて、活性層15の機械的強度を向上させ、透明導電膜12などとの密着性を向上させるために焼成を行ってもよい。焼成温度は透明基板11の耐熱温度より低く選ばれ、一般的には40~200℃である。 Next, the active layer 15 is formed on the transparent conductive film 12 so that both ends thereof straddle the source electrode 13 and the drain electrode 14. When the active layer 15 is composed of the first layer 15a and the second layer 15b as shown in FIG. 3, the first layer 15a and the second layer 15b are sequentially formed. The first layer 15a and the second layer 15b can be formed by a conventionally known method and are selected according to need. For example, a PLD method using a metal mask, a vacuum deposition method, or the like is used. .. When the active layer 15 is composed of the fine particle electrochromic material 15c and the fine particle electrolyte 15d as shown in FIG. 4, the fine particle electrochromic material 15c and the fine particle electrolyte 15d are prepared in advance, and these are mixed with water or the like. A paste-like dispersion liquid uniformly dispersed in the solvent is prepared, and the dispersion liquid is applied or printed on the transparent conductive film 12 so as to extend over the source electrode 13 and the drain electrode 14. There is no particular limitation on the coating method or printing method of the dispersion liquid, and a conventionally known method can be used. Specifically, as a coating method, for example, a dipping method, a spray method, a wire bar method, a spin coating method, a roller coating method, a blade coating method, a gravure coating method, or the like can be used. As a printing method, a letterpress printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, a screen printing method or the like can be used. In this way, the fine particle electrochromic material 15c and the fine particle electrolyte 15d are applied or printed on the transparent conductive film 12, the source electrode 13 and the drain electrode 14, and then the solvent is evaporated and removed. If necessary, firing may be performed in order to improve the mechanical strength of the active layer 15 and improve the adhesion to the transparent conductive film 12 and the like. The firing temperature is selected to be lower than the heat resistant temperature of the transparent substrate 11, and is generally 40 to 200°C.
 次に、活性層15上に吸収層16を形成する。この吸収層16は従来公知の方法により形成することができ、必要に応じて選ばれるが、例えば、PLD法、真空蒸着法などが用いられる。 Next, the absorption layer 16 is formed on the active layer 15. The absorption layer 16 can be formed by a conventionally known method and is selected according to need. For example, a PLD method, a vacuum vapor deposition method or the like is used.
 次に、吸収層16上に透明導電膜からなるゲート電極17を形成する。このゲート電極17は従来公知の方法により形成することができ、必要に応じて選ばれるが、例えば、PLD法、真空蒸着法などが用いられる。ゲート電極17は金属マスクを用いて透明導電体を選択的に堆積させることにより形成することができる。 Next, the gate electrode 17 made of a transparent conductive film is formed on the absorption layer 16. The gate electrode 17 can be formed by a conventionally known method and is selected according to need. For example, a PLD method, a vacuum deposition method or the like is used. The gate electrode 17 can be formed by selectively depositing a transparent conductor using a metal mask.
 以上により、目的とするエレクトロクロミックトランジスタが製造される。 By the above, the target electrochromic transistor is manufactured.
 実施例を説明する。
(実施例)
 図6および図7に示すエレクトロクロミックトランジスタを作製した。図8にこのエレクトロクロミックトランジスタの光学顕微鏡写真を示す。透明基板11として厚さ0.7mmで10mm×10mmの大きさのガラス基板を用いた。透明導電膜12として厚さ30nmのZnO膜(電気伝導度は30S/cm)を形成した。ソース電極13およびドレイン電極14として厚さ20nmのITO膜(電気伝導度は2000S/cm)を形成した。活性層15として第1の層15aおよび第2の層15bからなる二層構造を有するものを用い、第1の層15aとして厚さ100nmのWO層、第2の層15bとして厚さ250nmのTaO層を形成した。吸収層16として厚さ20nmのNiO層を形成した。ゲート電極17として厚さ20nmのITO膜を形成した。これらのZnO膜、ITO膜、WO層、TaO層およびNiO層は室温でPLD法により形成した。ソース電極13とドレイン電極14との間の距離、すなわちチャネル長はチャネル長方向のゲート電極17の長さ、すなわちゲート長と同じで800μmである。チャネル長方向に直交する方向の活性層15の長さ、すなわちチャネル幅は400μmである。
An example will be described.
(Example)
The electrochromic transistor shown in FIGS. 6 and 7 was produced. FIG. 8 shows an optical microscope photograph of this electrochromic transistor. As the transparent substrate 11, a glass substrate having a thickness of 0.7 mm and a size of 10 mm×10 mm was used. As the transparent conductive film 12, a ZnO film having a thickness of 30 nm (electric conductivity is 30 S/cm) was formed. An ITO film (electric conductivity: 2000 S/cm) having a thickness of 20 nm was formed as the source electrode 13 and the drain electrode 14. An active layer 15 having a two-layer structure composed of a first layer 15a and a second layer 15b is used, the first layer 15a is a WO 3 layer having a thickness of 100 nm, and the second layer 15b is a layer having a thickness of 250 nm. A TaO x layer was formed. As the absorption layer 16, a NiO layer having a thickness of 20 nm was formed. An ITO film having a thickness of 20 nm was formed as the gate electrode 17. These ZnO film, ITO film, WO 3 layer, TaO x layer and NiO layer were formed by the PLD method at room temperature. The distance between the source electrode 13 and the drain electrode 14, that is, the channel length is 800 μm, which is the same as the length of the gate electrode 17 in the channel length direction, that is, the gate length. The length of the active layer 15 in the direction orthogonal to the channel length direction, that is, the channel width is 400 μm.
(比較例)
 比較例として、非特許文献1のFigure1に記載されたエレクトロクロミックトランジスタを作製した。図9にこのエレクトロクロミックトランジスタの断面図を示す。このエレクトロクロミックトランジスタの平面図は図7と同様である。このエレクトロクロミックトランジスタは、透明導電膜12としてのZnO膜が形成されていないこと、WO層の厚さが80nmであること、図6に示すTaO層の代わりに厚さ300nmのセメント薄膜CAN(直径約10nmの孔が多数開いたアルミン酸カルシウム(化学組成12CaO・7Al、アルミナセメントの主成分))を形成していることが、実施例によるエレクトロクロミックトランジスタと異なり、その他の構成および各部のサイズは同じである。
(Comparative example)
As a comparative example, the electrochromic transistor described in FIG. 1 of Non-Patent Document 1 was manufactured. FIG. 9 shows a sectional view of this electrochromic transistor. The plan view of this electrochromic transistor is similar to that of FIG. In this electrochromic transistor, the ZnO film as the transparent conductive film 12 is not formed, the WO 3 layer has a thickness of 80 nm, and the cement thin film CAN having a thickness of 300 nm is used instead of the TaO x layer shown in FIG. Different from the electrochromic transistor according to the embodiment, the formation of (calcium aluminate having a large number of holes with a diameter of about 10 nm (chemical composition 12CaO.7Al 2 O 3 , the main component of alumina cement)) is different from that of the electrochromic transistor according to the embodiment. And the size of each part is the same.
(評価結果)
 図10は、実施例および比較例によるエレクトロクロミックトランジスタのゲート電極17にゲート電圧Vとして+3Vを印加して活性層15の第1の層15aのプロトン化を行った時の保持時間(Retention time)tに対するシート抵抗Rの変化を測定した結果を示す。シート抵抗Rの計測は、図7に示すように、WO層(エレクトロクロミック材料からなる第1の層15a)およびZnO膜(透明導電膜12)にシート抵抗計測用電極E~Eをコンタクトさせて直流四端子法により行った。印加電流は約100μAとした。図10中の挿入図はt=0~10(sec)を拡大して示したものである。図11は、実施例および比較例によるエレクトロクロミックトランジスタのゲート電極17にゲート電圧Vとして-3Vを印加して活性層15の第1の層15aの脱プロトン化を行った時の保持時間tに対するシート抵抗Rの変化を測定した結果を示す。シート抵抗Rの計測はシート抵抗計測用電極E~Eを用いて上記と同様に行った。図11中の挿入図はt=0~10(sec)を拡大して示したものである。図10から明らかなように、比較例によるエレクトロクロミックトランジスタではプロトン化の完了に約300秒かかっているのに対し、実施例によるエレクトロクロミックトランジスタでは約1秒でプロトン化が完了している。また、図11から明らかなように、比較例によるエレクトロクロミックトランジスタでは脱プロトン化の完了に約100秒かかっているのに対し、実施例によるエレクトロクロミックトランジスタでは約1秒で脱プロトン化が完了している。すなわち、実施例によるエレクトロクロミックトランジスタは、比較例によるエレクトロクロミックトランジスタに比べてスイッチング時間が約1/300と大幅に短縮されている。
(Evaluation results)
FIG. 10 shows the retention time (Retention time) when the first layer 15a of the active layer 15 is protonated by applying +3 V as the gate voltage V g to the gate electrode 17 of the electrochromic transistor according to the example and the comparative example. ) shows the measurement results of the change in the sheet resistance R s with respect to t. To measure the sheet resistance R s , as shown in FIG. 7, the sheet resistance measuring electrodes E 1 to E 4 are formed on the WO 3 layer (first layer 15a made of an electrochromic material) and the ZnO film (transparent conductive film 12). Were contacted with each other and the DC four-terminal method was used. The applied current was about 100 μA. The inset in FIG. 10 is an enlarged view of t=0 to 10 (sec). FIG. 11 shows the retention time t when the first layer 15a of the active layer 15 is deprotonated by applying −3 V as the gate voltage V g to the gate electrode 17 of the electrochromic transistor according to the example and the comparative example. shows the results of measuring the change in the sheet resistance R s for. The sheet resistance R s was measured in the same manner as above using the sheet resistance measuring electrodes E 1 to E 4 . The inset in FIG. 11 is an enlarged view of t=0 to 10 (sec). As is clear from FIG. 10, in the electrochromic transistor according to the comparative example, it takes about 300 seconds to complete the protonation, whereas in the electrochromic transistor according to the example, the protonation is completed in about 1 second. Further, as is apparent from FIG. 11, in the electrochromic transistor according to the comparative example, it takes about 100 seconds to complete deprotonation, whereas in the electrochromic transistor according to the example, deprotonation is completed in about 1 second. ing. That is, the electrochromic transistor according to the example has a switching time significantly shortened to about 1/300 as compared with the electrochromic transistor according to the comparative example.
 図12は、実施例および比較例によるエレクトロクロミックトランジスタの初期状態(ゲート電圧Vの印加前の状態)およびゲート電圧Vとして+3Vを印加した状態のトランジスタ全体の透過スペクトルの測定結果を示す。実施例によるエレクトロクロミックトランジスタではゲート電圧Vの印加時間は1秒、比較例によるエレクトロクロミックトランジスタではゲート電圧Vの印加時間は20秒である。図12より、波長約570nmに対する光透過率は、実施例によるエレクトロクロミックトランジスタではオフ時に67%、オン時に28%でオン/オフ比は約40%、比較例によるエレクトロクロミックトランジスタではオフ時に71%、オン時に63%でオン/オフ比は約10%である。すなわち、実施例によるエレクトロクロミックトランジスタは、比較例によるエレクトロクロミックトランジスタに比べて光学的なオン/オフ比が約4倍も向上している。 Figure 12 shows the results of measurement of the transmission spectrum of the entire transistor while applying a + 3V as examples and the initial state (state prior to application of the gate voltage V g) of the electrochromic transistor according to the comparative example and the gate voltage V g. In the electrochromic transistor according to the example, the application time of the gate voltage V g is 1 second, and in the electrochromic transistor according to the comparative example, the application time of the gate voltage V g is 20 seconds. From FIG. 12, the light transmittance for a wavelength of about 570 nm is 67% when the electrochromic transistor according to the embodiment is off, 28% when the on/off ratio is about 40% when the on, and 71% when the electrochromic transistor according to the comparative example is off. The on/off ratio is about 10% at 63% when turned on. That is, the electrochromic transistor according to the example has an optical on/off ratio improved by about 4 times as compared with the electrochromic transistor according to the comparative example.
 以上のように、この第1の実施の形態によれば、非特許文献1に記載のエレクトロクロミックトランジスタと同様な利点を得ることができるほか、透明基板11と活性層15との間に透明導電膜12が設けられていることにより、オフ時のチャネルのシート抵抗に対するオン時のチャネルのシート抵抗の比である電気的なオン/オフ比を大幅に向上させることができるとともに、オフ時の無色透明な状態の光透過率に対するオン時の黒色の状態の光透過率の比である光学的なオン/オフ比も十分に高くすることができ、しかも実用的な動作スイッチング電圧である3Vでも極めて高速でスイッチングを行うことができる高性能のエレクトロクロミックトランジスタを実現することができる。このエレクトロクロミックトランジスタは、安価に、室温で製造することができ、大面積化も容易である。このエレクトロクロミックトランジスタは、各種の航空機(旅客機、輸送機、ヘリコプターなど)、各種の自動車(電気自動車や自動運転車などを含む)などの移動体の窓などに用いられる電子カーテン、自動車のルームミラーなどに用いられる防眩ミラー、窓などに情報の表示記憶を行う情報表示記憶装置などに加えて、タッチパネルなどにも応用することが可能である。 As described above, according to the first embodiment, the same advantages as those of the electrochromic transistor described in Non-Patent Document 1 can be obtained, and the transparent conductive film is provided between the transparent substrate 11 and the active layer 15. By providing the film 12, the electrical on/off ratio, which is the ratio of the sheet resistance of the on-channel to the sheet resistance of the off-channel, can be significantly improved, and the off-color is colorless. The optical on/off ratio, which is the ratio of the light transmittance in the black state when turned on to the light transmittance in the transparent state, can be made sufficiently high, and even at a practical operating switching voltage of 3 V, it is extremely high. It is possible to realize a high-performance electrochromic transistor capable of switching at high speed. This electrochromic transistor can be manufactured inexpensively at room temperature and can easily be made large in area. This electrochromic transistor is an electronic curtain used for windows of moving objects such as various aircraft (passenger planes, transport planes, helicopters, etc.) and various automobiles (including electric vehicles and self-driving cars), automobile rearview mirrors. In addition to an anti-glare mirror used for the above, an information display storage device for displaying and storing information in windows, etc., it can be applied to a touch panel and the like.
〈第2の実施の形態〉
[電子カーテン]
 図13は第2の実施の形態による電子カーテンを示す。この電子カーテンは、第1の実施の形態によるエレクトロクロミックトランジスタを光シャッターとして用いたものである。
<Second Embodiment>
[Electronic curtain]
FIG. 13 shows an electronic curtain according to the second embodiment. This electronic curtain uses the electrochromic transistor according to the first embodiment as an optical shutter.
 この電子カーテンは、透明基板11上に、第1の実施の形態によるエレクトロクロミックトランジスタが一つまたは複数形成されたものである。エレクトロクロミックトランジスタは必ずしも透明基板11の全面に形成されている必要はなく、透明基板11の光の透過を制御したい部位に形成されていればよい。透明基板11のほぼ全面に亘って光の透過を制御したい場合は、透明基板11の面積と活性層15の総面積とがほぼ同じになるように単一のエレクトロクロミックトランジスタの活性層15を形成するか、複数のエレクトロクロミックトランジスタをガラス板110の全面に敷き詰める。図13には、一例として、4つのエレクトロクロミックトランジスタT~Tが互いにほぼ密接して形成された場合が示されているが、これに限定されるものではない。エレクトロクロミックトランジスタのソース配線、ドレイン配線およびゲート配線は透明導電膜などの各種の導電膜を用いて透明基板11上に形成し、透明基板11の外周部に引き出すことができる。こうして透明基板11の外周部に引き出されたソース配線、ドレイン配線およびゲート配線の末端部に電源を接続することができる。 This electronic curtain has one or a plurality of electrochromic transistors according to the first embodiment formed on a transparent substrate 11. The electrochromic transistor does not necessarily have to be formed on the entire surface of the transparent substrate 11, and may be formed on a portion of the transparent substrate 11 where light transmission is desired to be controlled. When it is desired to control light transmission over substantially the entire surface of the transparent substrate 11, the active layer 15 of a single electrochromic transistor is formed so that the area of the transparent substrate 11 and the total area of the active layer 15 are substantially the same. Or, a plurality of electrochromic transistors are spread over the entire surface of the glass plate 110. FIG. 13 shows, as an example, a case where four electrochromic transistors T 1 to T 4 are formed in close contact with each other, but the present invention is not limited to this. The source wiring, the drain wiring, and the gate wiring of the electrochromic transistor can be formed on the transparent substrate 11 using various conductive films such as a transparent conductive film, and can be led out to the outer peripheral portion of the transparent substrate 11. In this way, the power source can be connected to the end portions of the source wiring, the drain wiring, and the gate wiring that are drawn to the outer peripheral portion of the transparent substrate 11.
 この電子カーテンは、光の透過を制御したい部位であれば基本的にはどのような部位に設置することも可能であるが、具体的には、例えば、航空機の窓、ビルや住宅などの各種の建築物の窓などに適用することができる。図14に航空機の機内の壁面100に設けられた窓110にこの電子カーテン200を適用した例を、図15に建築物の壁300の窓400にこの電子カーテン200を適用した例を示す。 This electronic curtain can be basically installed in any part as long as it is a part where it is desired to control the transmission of light. Specifically, for example, various types of windows such as aircraft windows, buildings, houses, etc. It can be applied to windows of buildings. FIG. 14 shows an example in which the electronic curtain 200 is applied to the window 110 provided on the wall surface 100 inside the aircraft, and FIG. 15 shows an example in which the electronic curtain 200 is applied to the window 400 on the wall 300 of the building.
 この第2の実施の形態によれば、高速で光の透過率を制御することができ、窓に適用した場合は防眩が可能になり、しかも低コストで製造することができる高性能の電子カーテンを実現することができる。 According to the second embodiment, the light transmittance can be controlled at high speed, antiglare can be achieved when applied to a window, and high-performance electronic that can be manufactured at low cost. The curtain can be realized.
〈第3の実施の形態〉
[情報表示記憶装置]
 図16は第3の実施の形態による情報表示記憶装置を示す。この情報表示記憶装置は、第1の実施の形態によるエレクトロクロミックトランジスタを用いたものである。
<Third Embodiment>
[Information display storage device]
FIG. 16 shows an information display storage device according to the third embodiment. This information display storage device uses the electrochromic transistor according to the first embodiment.
 図16に示すように、この情報表示記憶装置においては、透明基板11上に、第1の実施の形態によるエレクトロクロミックトランジスタがn行m列のマトリクス状に合計n×m個、縦横に配列されたものである。各エレクトロクロミックトランジスタをTij(i=1~n、j=1~m)と表示する。n、mは、この情報表示記憶装置の用途などに応じて適宜選択される。図16においては、n=18、m=22の場合が示されているが、これに限定されるものではない。これらのエレクトロクロミックトランジスタTijは独立に駆動することができるようになっている。エレクトロクロミックトランジスタTijのソース配線、ドレイン配線およびゲート配線は、例えば液晶ディスプレイの画素スイッチング用薄膜トランジスタの配線と同様に形成することができる。これらのソース配線、ドレイン配線およびゲート配線は、例えば、透明導電膜などの各種の導電膜を用いて透明基板11上に形成し、透明基板11の外周部に引き出すことができる。こうして透明基板11の外周部に引き出されたソース配線、ドレイン配線およびゲート配線の末端部に電源を接続することができる。 As shown in FIG. 16, in this information display storage device, the electrochromic transistors according to the first embodiment are arranged on the transparent substrate 11 in a matrix of n rows and m columns, n×m in total, vertically and horizontally. It is a thing. Each electrochromic transistor is designated as T ij (i=1 to n, j=1 to m). n and m are appropriately selected depending on the application of the information display storage device. Although FIG. 16 shows the case where n=18 and m=22, the present invention is not limited to this. These electrochromic transistors T ij can be driven independently. The source wiring, the drain wiring, and the gate wiring of the electrochromic transistor T ij can be formed in the same manner as the wiring of the pixel switching thin film transistor of the liquid crystal display, for example. These source wiring, drain wiring, and gate wiring can be formed on the transparent substrate 11 using various conductive films such as a transparent conductive film, and can be drawn out to the outer peripheral portion of the transparent substrate 11. In this way, the power source can be connected to the end portions of the source wiring, the drain wiring, and the gate wiring that are drawn to the outer peripheral portion of the transparent substrate 11.
[情報表示記憶装置の動作]
 情報表示記憶装置に表示し、記憶しようとする情報に応じてエレクトロクロミックトランジスタTijを駆動し、活性層15が無色透明で絶縁体の状態「0」と活性層15が黒色で金属の状態「1」とを制御する。例えば、図17に示すように、情報として文字「A」を表示し、記憶する場合には、文字「A」の表示に必要なエレクトロクロミックトランジスタTijだけを駆動し、活性層15のエレクトロクロミック材料のプロトン化により黒色にする。こうすることで、文字「A」の表示・記憶を行うことができる。文字「A」の情報を消去する場合は、文字「A」の表示に用いられているエレクトロクロミックトランジスタTijだけを駆動し、活性層15のエレクトロクロミック材料の脱プロトン化により無色透明にする。
[Operation of information display storage device]
The electrochromic transistor T ij is driven according to the information to be displayed and stored in the information display storage device, the active layer 15 is colorless and transparent and the state of the insulator is “0” and the active layer 15 is black and the state of the metal is “. 1”. For example, as shown in FIG. 17, when the character “A” is displayed and stored as information, only the electrochromic transistor T ij necessary for displaying the character “A” is driven, and the electrochromic of the active layer 15 is driven. The material turns black due to protonation. By doing so, the character "A" can be displayed and stored. When erasing the information of the character “A”, only the electrochromic transistor T ij used for displaying the character “A” is driven to make it colorless and transparent by deprotonating the electrochromic material of the active layer 15.
 この第3の実施の形態によれば、航空機、自動車などの各種移動体の窓あるいは建築物の窓などに高速で情報の表示・記憶・消去・読み出しなどを行うことができ、しかも安価に製造することができる高性能の情報表示記憶装置を実現することができる。 According to the third embodiment, information can be displayed/stored/erased/read out at high speed on windows of various moving bodies such as airplanes and automobiles or windows of buildings, and the manufacturing cost is low. It is possible to realize a high performance information display storage device that can be realized.
 以上、この発明の実施の形態および実施例について具体的に説明したが、この発明は、上述の実施の形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。 Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present invention. Is possible.
 例えば、上述の実施の形態および実施例において挙げた数値、材料、構成、配置、プロセスなどはあくまでも例に過ぎず、必要に応じて、これらと異なる数値、材料、構成、配置、プロセスなどを用いてもよい。 For example, the numerical values, materials, configurations, arrangements, processes, etc. mentioned in the above-described embodiments and examples are merely examples, and different numerical values, materials, configurations, arrangements, processes, etc. may be used as necessary. May be.
 11 透明基板
 12 透明導電膜
 13 ソース電極
 14 ドレイン電極
 15 活性層
 15a 第1の層
 15b 第2の層
 15c 微粒子状のエレクトロクロミック材料
 15d 微粒子状の電解質
 16 吸収層
 17 ゲート電極
 T~T、Tij エレクトロクロミックトランジスタ
 100 壁面
 110、400 窓
 200 電子カーテン
 300 壁
11 transparent substrate 12 transparent conductive film 13 source electrode 14 drain electrode 15 active layer 15a first layer 15b second layer 15c fine particle electrochromic material 15d fine particle electrolyte 16 absorption layer 17 gate electrodes T 1 to T 4 , T ij electrochromic transistor 100 wall surface 110, 400 window 200 electronic curtain 300 wall

Claims (13)

  1.  少なくともエレクトロクロミック材料と水を含有する電解質とを含む活性層と、
     上記活性層を挟むように設けられた第1の透明導電膜および第2の透明導電膜とを有するエレクトロクロミックトランジスタ。
    An active layer comprising at least an electrochromic material and an electrolyte containing water;
    An electrochromic transistor having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
  2.  上記活性層が上記エレクトロクロミック材料からなる第1の層と上記電解質からなる第2の層とが互いに積層された構造を有する請求項1記載のエレクトロクロミックトランジスタ。 The electrochromic transistor according to claim 1, wherein the active layer has a structure in which a first layer made of the electrochromic material and a second layer made of the electrolyte are laminated on each other.
  3.  上記活性層の少なくとも一部が、微粒子状の上記エレクトロクロミック材料と微粒子状の上記電解質とが混合した構造を有する請求項1記載のエレクトロクロミックトランジスタ。 The electrochromic transistor according to claim 1, wherein at least a part of the active layer has a structure in which the particulate electrochromic material and the particulate electrolyte are mixed.
  4.  上記第1の層の厚さをt、電気伝導度をσ、上記第1の透明導電膜および上記第2の透明導電膜のうちの上記第1の層側に位置するものの厚さをt、電気伝導度をσとしたとき、目標とする電気的なオン/オフ比に対し、Log(オン/オフ比)=Log(t/t)+Log(σ/σ)が成立するようにt、σ、t、σが選ばれている請求項2記載のエレクトロクロミックトランジスタ。 The thickness of the first layer is t 1 , the electric conductivity is σ 1 , and the thickness of one of the first transparent conductive film and the second transparent conductive film located on the side of the first layer is When t 2 and the electrical conductivity are σ 2 , Log (on/off ratio)=Log(t 1 /t 2 )+Log(σ 12 ) with respect to the target electrical on/off ratio The electrochromic transistor according to claim 2 , wherein t 1 , σ 1 , t 2 and σ 2 are selected so that
  5.  上記エレクトロクロミック材料が、タングステン、バナジウム、ニオブおよびチタンからなる群より選ばれた少なくとも1種類以上の金属を含む酸化物エレクトロクロミック材料である請求項1記載のエレクトロクロミックトランジスタ。 The electrochromic transistor according to claim 1, wherein the electrochromic material is an oxide electrochromic material containing at least one metal selected from the group consisting of tungsten, vanadium, niobium, and titanium.
  6.  上記酸化物エレクトロクロミック材料が、組成式AO(Aはタングステン、バナジウム、ニオブまたはチタン、xは1~3の範囲)で表されるアモルファスまたは結晶質の単純酸化物である請求項5記載のエレクトロクロミックトランジスタ。 The oxide electrochromic material is an amorphous or crystalline simple oxide represented by the composition formula AO x (A is tungsten, vanadium, niobium or titanium, and x is in the range of 1 to 3). Electrochromic transistor.
  7.  上記電解質が、体積分率で1%以上50%以下の水を含有する酸化物誘電体である請求項1記載のエレクトロクロミックトランジスタ。 The electrochromic transistor according to claim 1, wherein the electrolyte is an oxide dielectric containing water in a volume fraction of 1% or more and 50% or less.
  8.  上記第1の透明導電膜および上記第2の透明導電膜が、インジウム、亜鉛、ガリウムおよびスズからなる群より選ばれた少なくとも1種類以上の金属を含む透明導電性酸化物からなる請求項1記載のエレクトロクロミックトランジスタ。 The first transparent conductive film and the second transparent conductive film are made of a transparent conductive oxide containing at least one metal selected from the group consisting of indium, zinc, gallium and tin. Electrochromic transistor.
  9.  上記第1の透明導電膜および上記第2の透明導電膜の電気伝導度が0.01S/cm以上100000S/cm以下である請求項1記載のエレクトロクロミックトランジスタ。 The electrochromic transistor according to claim 1, wherein the electrical conductivity of the first transparent conductive film and the second transparent conductive film is 0.01 S/cm or more and 100000 S/cm or less.
  10.  上記第1の透明導電膜および上記第2の透明導電膜の一方が透明基板上に設けられている請求項1記載のエレクトロクロミックトランジスタ。 The electrochromic transistor according to claim 1, wherein one of the first transparent conductive film and the second transparent conductive film is provided on a transparent substrate.
  11.  透明基板と、
     上記透明基板上に設けられた、少なくともエレクトロクロミック材料と水を含有する電解質とを含む活性層と、上記活性層を挟むように設けられた第1の透明導電膜および第2の透明導電膜とを有する少なくとも一つのエレクトロクロミックトランジスタとを有する電子カーテン。
    A transparent substrate,
    An active layer provided on the transparent substrate, containing at least an electrochromic material and an electrolyte containing water; and a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer. An electronic curtain having at least one electrochromic transistor having.
  12.  透明基板と、
     上記透明基板上に設けられた複数のエレクトロクロミックトランジスタとを有し、
     上記エレクトロクロミックトランジスタが、
     少なくともエレクトロクロミック材料と水を含有する電解質とを含む活性層と、
     上記活性層を挟むように設けられた第1の透明導電膜および第2の透明導電膜とを有する情報表示記憶装置。
    A transparent substrate,
    Having a plurality of electrochromic transistors provided on the transparent substrate,
    The electrochromic transistor is
    An active layer comprising at least an electrochromic material and an electrolyte containing water;
    An information display storage device having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
  13.  ミラーの表面に設けられた透明基板と、
     上記透明基板上に設けられた一つまたは複数のエレクトロクロミックトランジスタとを有し、
     上記エレクトロクロミックトランジスタが、
     少なくともエレクトロクロミック材料と水を含有する電解質とを含む活性層と、
     上記活性層を挟むように設けられた第1の透明導電膜および第2の透明導電膜とを有する防眩ミラー。
    A transparent substrate provided on the surface of the mirror,
    Having one or more electrochromic transistors provided on the transparent substrate,
    The electrochromic transistor is
    An active layer comprising at least an electrochromic material and an electrolyte containing water;
    An anti-glare mirror having a first transparent conductive film and a second transparent conductive film provided so as to sandwich the active layer.
PCT/JP2019/046479 2018-12-27 2019-11-28 Electrochromic transistor, electronic curtain, information display/storage device, and anti-glare mirror WO2020137328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-243861 2018-12-27
JP2018243861A JP2020106626A (en) 2018-12-27 2018-12-27 Electrochromic transistor, electronic curtain, information display storage device, and anti-glare mirror

Publications (1)

Publication Number Publication Date
WO2020137328A1 true WO2020137328A1 (en) 2020-07-02

Family

ID=71126011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046479 WO2020137328A1 (en) 2018-12-27 2019-11-28 Electrochromic transistor, electronic curtain, information display/storage device, and anti-glare mirror

Country Status (2)

Country Link
JP (1) JP2020106626A (en)
WO (1) WO2020137328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220107540A1 (en) * 2020-10-07 2022-04-07 Tpk Touch Solutions (Xiamen) Inc. Displayed light-adjustment device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007133A (en) * 2001-06-22 2003-01-10 Nippon Kodoshi Corp High ion-conducting solid electrolyte and electrochemical system using it
US20160370681A1 (en) * 2015-06-19 2016-12-22 International Business Machines Corporation Synaptic electronic devices with electrochromic device
JP2017111207A (en) * 2015-12-14 2017-06-22 株式会社リコー Electrochromic device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007133A (en) * 2001-06-22 2003-01-10 Nippon Kodoshi Corp High ion-conducting solid electrolyte and electrochemical system using it
US20160370681A1 (en) * 2015-06-19 2016-12-22 International Business Machines Corporation Synaptic electronic devices with electrochromic device
JP2017111207A (en) * 2015-12-14 2017-06-22 株式会社リコー Electrochromic device and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATASE, TAKAYOSHI ET AL.: "A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry", SCIENTIFIC REPORTS, vol. 25819, no. 6, 13 May 2016 (2016-05-13), pages 1 - 9, XP055721170 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220107540A1 (en) * 2020-10-07 2022-04-07 Tpk Touch Solutions (Xiamen) Inc. Displayed light-adjustment device
US11656520B2 (en) * 2020-10-07 2023-05-23 Tpk Touch Solutions (Xiamen) Inc. Displayed light-adjustment device

Also Published As

Publication number Publication date
JP2020106626A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US11874579B2 (en) Electrochromic multi-layer devices with current modulating structure
US11520205B2 (en) Electrochromic multi-layer devices with composite current modulating structure
US8503059B2 (en) Electrochromic thin film transistors with lateral or vertical structure using functionalized or non-functionalized substrates and method of manufacturing same
Dong et al. Electrochromic properties of NiOx: H films deposited by DC magnetron sputtering for ITO/NiOx: H/ZrO2/WO3/ITO device
US10247997B2 (en) Switchable hydride smart window and the methods for producing the same
CN103329035B (en) Porous electrode sheet and manufacture method thereof and display device
JPH04267227A (en) Electrochromic glass
Huang et al. Electrochemical studies of silicon nitride electron blocking layer for all-solid-state inorganic electrochromic device
CN102183862B (en) Electrochromic device with single substrate structure
WO2020137328A1 (en) Electrochromic transistor, electronic curtain, information display/storage device, and anti-glare mirror
GRANOVIST Electrochromic Tungsten-Oxide–Based Thin Films: Physics, Chemistry, and Technology
TWI495944B (en) Electrochromic composite film and applying the same
Chen et al. Logotype-selective electrochromic glass display
US20220229339A1 (en) Porous perovskite nickelates with enhanced electrochromic properties and systems thereof
US20210132457A1 (en) Method and apparatus for enhancing retention time of bleached and colored states of electrochromic devices
JP2013015805A (en) Electrochromic device and manufacturing method thereof
CA1265603A (en) Dispersed iridium based complementary electrochromic device
JPS61103982A (en) Electrochromic element
CN106970497A (en) The manufacture method of light control element, light control device and light control element
JPS61239226A (en) Electrochromic element
JP2000122101A (en) Electrochromic element
JPS61238027A (en) Electrochromic element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902116

Country of ref document: EP

Kind code of ref document: A1