WO2020137242A1 - Aircraft assistance device and aircraft assistance system - Google Patents

Aircraft assistance device and aircraft assistance system Download PDF

Info

Publication number
WO2020137242A1
WO2020137242A1 PCT/JP2019/044908 JP2019044908W WO2020137242A1 WO 2020137242 A1 WO2020137242 A1 WO 2020137242A1 JP 2019044908 W JP2019044908 W JP 2019044908W WO 2020137242 A1 WO2020137242 A1 WO 2020137242A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
aircraft
altitude
information
spraying
Prior art date
Application number
PCT/JP2019/044908
Other languages
French (fr)
Japanese (ja)
Inventor
良真 望月
内田 隆史
宗司 執行
寛昌 藤原
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN201980078407.7A priority Critical patent/CN113163745B/en
Publication of WO2020137242A1 publication Critical patent/WO2020137242A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present invention relates to an aircraft support device and an aircraft support system.
  • the display unit disclosed in Patent Document 1 displays a route map that is a two-dimensional map including a start point of an aircraft and a target arrival point of the aircraft, and the route map is a start point of the aircraft. Is indicated by a black circle, the target point of the aircraft is indicated by a white star, the current position of the aircraft is indicated by a black triangle, and the route of the aircraft is indicated.
  • the display unit displays the route map so that the operator can start the aircraft (that is, the position where the operator exists), the current position of the aircraft, and the arrival of the aircraft. It is possible to understand the relationship with the target point.
  • the route of the flying object can be displayed, the work result of the flying object cannot be displayed, and the work result of the flying object is confirmed and reflected in the work management. I could't.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and provides a support device for an air vehicle that can easily perform work management by checking the results of previous work. To aim.
  • a support device for an air vehicle includes a position information acquisition unit that acquires the position of the air vehicle, and a spray information acquisition unit that acquires information about the spraying of sprayed material by a spraying device provided on the air vehicle. And a display unit that displays a field region and the periphery of the field, and the display unit displays a movement trajectory of the flight object based on the position of the flight object acquired by the position information acquisition unit. Then, based on the information acquired by the spraying information acquisition unit, the spraying range of the sprayed material sprayed by the spraying device is displayed.
  • the aircraft support device includes an altitude information acquisition unit that acquires information on the altitude of the aircraft, and the display unit is based on the altitude of the aircraft acquired by the altitude information acquisition unit. Display the altitude of the body.
  • the flying device support apparatus includes an altitude information acquisition unit that acquires information about the altitude of the flying object, and the display unit displays the movement trajectory when the altitude of the flying object is within a predetermined range. And, the movement trajectory when the altitude of the flying object is out of a predetermined range is hidden, the scattering range is displayed when the altitude of the flying object is in a predetermined range, and the flight is performed. Hide the spray range when the altitude of the body is outside the predetermined range.
  • the support device of the air vehicle the wind information acquisition unit that acquires information including the wind direction and wind speed of the field, the information acquired by the spraying information acquisition unit, and the wind direction and the wind information acquired by the wind information acquisition unit.
  • a computing unit for computing the spraying range based on the wind speed and the display unit displays the spraying range computed by the computing unit.
  • the support device for an air vehicle includes a mesh setting unit that sets a predetermined mesh in the spraying range, and the display unit displays the sprayed material sprayed by the spraying device for each mesh set by the mesh setting unit. The display form of the mesh is displayed differently according to the spray amount of.
  • the aircraft support device includes a correction unit that corrects the variation in the position of the aircraft acquired by the position information acquisition unit, and the display unit is based on the position of the aircraft corrected by the correction unit. Then, the trajectory of the flying body is displayed.
  • the support device for the flying object includes an operation information acquisition unit that acquires operation information of an operation device that can operate the flying object, and the display unit is based on the operation information acquired by the operation information acquisition unit, The operation of the operating device is displayed.
  • the support system for a flying body includes a flying body support device and the flying body.
  • the flying body a detection unit that detects whether the flying body is located in the region of the field, or outside the region of the field, the detection unit, the flying body of the field When it is detected that it is located in the area, the application of the sprayed material by the spraying device is permitted, and when it is detected that the flying body is located outside the area of the field, the application of the spraying device is performed.
  • a control unit that prohibits the spraying of objects.
  • FIG. 1 is an overall view of a support system for an air vehicle in the first embodiment. It is a figure explaining the spraying range of the spraying apparatus in 1st Embodiment. It is a figure explaining the spraying range of the spraying device when considering the wind direction and the wind speed of the farm field in 1st Embodiment. It is a 1st figure which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. It is a 2nd figure which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. It is a 3rd figure which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. It is FIG.
  • FIG. 4 which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays.
  • FIG. 5 shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays.
  • FIG. 6 which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays.
  • FIG. 7 which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays.
  • It is a whole figure of the support system of the flying body in a 2nd embodiment.
  • It is a 1st figure which shows an example of the screen which the display part of the support apparatus in 2nd Embodiment displays.
  • FIG. 3 is an overall side view of the flying body.
  • 1 is an overall plan view of an air vehicle.
  • FIG. 1 is an overall view of a support system 80 for the air vehicle 1.
  • the support system 80 for the flying vehicle 1 includes the flying vehicle 1, the supporting device 30 for the flying vehicle 1, and the server 40.
  • the server 40 manages the information about the flying vehicle 1 and the information on the farm field, and the display unit 34 of the supporting apparatus 30 displays the information transmitted from the server, so that It is a system that reflects the work result in the work management of the flying vehicle 1.
  • the support device 30 will be described by taking a mobile terminal such as a smartphone or a tablet terminal having a relatively high processing capability as an example.
  • the aircraft 1 has a main body 2, an arm 3, a rotary wing 4, a skid 8, and a spraying device 10.
  • a plurality of arms 3 are attached to the main body 2.
  • the six arms 3 extend radially from the center of the main body 2 in a horizontal plane (a plane parallel to the ground in the landing state).
  • the number of arms 3 is not limited to 6, and may be 7 or more, or 5 or less.
  • the arm 3 may have a structure that can be folded toward the main body side.
  • the base end side of the arm 3 is attached to the main body 2.
  • Rotor blades 4 are attached to the tip ends of the plurality of arms 3, respectively.
  • the rotor 4 generates lift for the flying body 1.
  • the rotary blade 4 is composed of a rotor 5 and a blade (propeller) 6.
  • the rotor 5 is composed of an electric motor (DC motor or the like).
  • the rotor 5 is driven by electric power supplied from a battery (not shown) provided in the main body 2.
  • the blade 6 is attached to the upper part of the rotation shaft of the rotor 5. Adjacent rotor blades 4 rotate in opposite directions.
  • the number of rotary blades 4 is not particularly limited, and can be changed according to the required lift force and the like.
  • the air vehicle 1 may be a tricopter having three rotor blades 4, a quadcopter having four rotor blades 4, or a hexacopter having six rotor blades 4. It may be an octocopter having eight rotors 4.
  • the skid 8 is installed when the aircraft 1 lands and supports the main body 2 on the ground. Specifically, the skid 8 extends downward from the main body 2 and spreads toward the end.
  • the spraying device 10 is a device that is provided on the flying body 1 and sprays the sprayed material. As shown in FIG. 6A, the spraying device 10 includes a tank 11 that stores the sprayed product, and a pump 12 that sprays the sprayed product. The tank 11 is mounted on the mounting portion 9 provided in the middle of the skid 8. The tank 11 can be attached to and detached from the attachment portion 9. The tank 11 forms an internal space in which the sprayed material to be sprayed on the farm is stored.
  • the sprayed material is, for example, fertilizer, water, pesticide, or the like.
  • the pump 12 sprays the sprayed material stored inside the tank 11.
  • the pump 12 is communicably connected to the control unit 21, and sprays the sprayed material based on an instruction from the control unit 21.
  • the suction port of the pump 12 is connected to the inside of the tank 11 via a hose (not shown).
  • the discharge port of the pump 12 is connected to the nozzle 13 via a hose.
  • the pump 12 sprays the sprayed material from the nozzle 13.
  • the nozzle 13 can make the size of the spray particles relatively uniform and spray the sprayed material in a predetermined spray amount.
  • the nozzle 13 is provided, for example, below the rotor 5, and the ejection port of the nozzle 13 faces downward.
  • the nozzle 13 can spray the sprayed material stored in the tank 11 from the nozzle 13 toward the field by driving the pump 12. That is, when the pump 12 is driven, the nozzle 13 sprays the sprayed material, and when the pump 12 is not driven, the nozzle 13 stops the spraying of the sprayed material. Further, as shown in FIG. 2A, since the nozzle 13 sprays the sprayed material at a predetermined spraying angle ⁇ , the spraying is performed according to the altitude (distance between the lower end of the nozzle 13 and the ground of the field) H1 of the flying body 1.
  • the range (effective spreading width) E varies. That is, the spray range E can be calculated based on the spray angle ⁇ and the altitude H1 of the flying object 1. Further, as shown in FIG. 2B, in the case where wind is generated in the field, the spraying range E moves from the windward side to the leeward side as compared with the case where the wind is not generated in the field.
  • the nozzle 13 only needs to be able to spray the sprayed material toward the field, and the mounting position of the nozzle 13 is not limited to below the rotor 5 and may be provided on the skid 8 or is not limited to the position described above. .. Further, the spray amount, the spray angle ⁇ , and the spray range E of the sprayed products sprayed from the nozzles 13 may be switchable, and the configuration of the spray device 10 is not limited to the above configuration.
  • the flying body 1 flies based on information (operation information) about the operation of an operation device 15 including a joystick 16 that can be rocked, a push button switch 17 that can be pressed, and the like. , Do the spraying work. More specifically, the flying vehicle 1 includes a first control device 20, a first communication unit 24, a position detection device 25, and an altitude detection device 26.
  • the first control device 20 includes a CPU, an electronic circuit, and the like, and performs various controls on the flying vehicle 1 in accordance with the operation of the operation device 15.
  • the first control device 20 has a control unit 21 and a first storage unit 22.
  • the control unit 21 is composed of a CPU, programs stored in the first storage unit 22, and the like, and performs various controls regarding the flying vehicle 1.
  • the control unit 21 controls the rotor 4 and the spraying device 10 (pump 12) based on the operation information of the operation device 15 received by the first communication unit 24, for example.
  • the first storage unit 22 is a non-volatile memory or the like, and stores various information including information on the flying vehicle 1.
  • the first communication unit 24 is a device that performs wireless communication with the operation device 15 and the third communication unit 43 of the server 40.
  • the first communication unit 24 wirelessly communicates with the operation device 15 and the third communication unit 43 by, for example, Wi-Fi (Wireless Fidelity, registered trademark).
  • the first communication unit 24 may perform wireless communication with the operation device 15 and the third communication unit 43 via a data communication network, a mobile phone communication network, or the like.
  • the position detection device 25 can detect its own position (positioning information including latitude and longitude) by a satellite positioning system (positioning satellite) such as D-GPS, GPS, GLONASS, Hokuto, Galileo, and Michibiki. That is, the position detection device 25 receives a satellite signal (position of the positioning satellite, transmission time, correction information, etc.) transmitted from the positioning satellite, and based on the satellite signal, the position of the flying body 1 (for example, latitude and longitude). ) Is detected. In the present embodiment, for example, the position detection device 25 is provided in the main body 2 of the flying body 1.
  • a satellite positioning system positioning satellite
  • positioning satellite positioning system
  • the position detection device 25 receives a satellite signal (position of the positioning satellite, transmission time, correction information, etc.) transmitted from the positioning satellite, and based on the satellite signal, the position of the flying body 1 (for example, latitude and longitude). ) Is detected.
  • the position detection device 25 is provided in the main body 2 of the flying body 1.
  • the position information of the flying object 1 detected by the position detecting device 25 is associated with the time when the position of the flying object 1 is detected, and is transmitted to the server 40 via the first communication unit 24. It should be noted that the position detection device 25 only needs to be able to detect the position of the flying body 1, and its mounting position and configuration are not limited to the above configuration.
  • the altitude detection device 26 is a device that detects the altitude H1 of the self (aircraft 1).
  • the altitude detection device 26 is an atmospheric pressure sensor 26 such as a static pressure sensor that measures atmospheric pressure.
  • the value detected by the atmospheric pressure sensor 26 is associated with the time when the atmospheric pressure is detected, and is transmitted to the server 40 via the first communication unit 24.
  • the operation device 15 is a controller including the joystick 16 and the push button switch 17, but the operation device 15 may be operable as long as the operation device 15 can be operated. It may be a terminal such as a connected personal computer (PC), a smartphone (multifunctional mobile phone), a computer such as a tablet terminal, or the like.
  • the first control device 20 controls the flying body 1 based on the operation information of the operating device 15, but based on a signal output from a sensor provided in the flying body 1 or a preset flight route. Therefore, it may be autonomously controlled to be able to fly.
  • the scheduled flight route is a route along which the flying body 1 moves, and includes control information of the spraying device 10 (spraying of sprayed materials and stop of spraying).
  • the planned flight route is stored in the first storage unit 22, and the first control device 20 acquires it from the outside (for example, the server 40) via the first communication unit 24.
  • the support device 30 is a terminal that can display the result of the work (scattering work) performed by the air vehicle 1. It is a mobile terminal such as a tablet terminal, a personal computer (PC), a smartphone (multifunctional mobile phone), etc. which is communicatively connected to the aircraft 1 or the server 40. In the following description, a tablet terminal will be described as an example of the support device 30.
  • the support device 30 may communicate with the server 40 and can display various information on the screen (display unit). When the operation device 15 has the screen (display unit), the support device 30 can be used. As the unit 30, the operation device 15 may be used instead of the mobile terminal such as the tablet terminal.
  • the support device 30 includes a second control device 31, a second communication unit 33, and a display unit 34.
  • the second control device 31 includes a CPU, an electronic circuit, and the like, and performs various controls regarding the support device 30.
  • the second control device 31 has a second storage unit 32.
  • the second storage unit 32 is a non-volatile memory or the like, and stores information and the like received by the second communication unit 33.
  • the second communication unit 33 is a device that wirelessly communicates with the third communication unit 43 of the server 40.
  • the second communication unit 33 performs wireless communication with the third communication unit 43 by, for example, Wi-Fi (Wireless Fidelity, registered trademark).
  • the second communication unit 33 receives, for example, information on the field area and the field surroundings from the server 40.
  • the second communication unit 33 may perform wireless communication with the third communication unit 43 via a data communication network, a mobile phone communication network, or the like.
  • the display unit 34 can display various information stored in the second storage unit 32, information received by the second communication unit 33, and information stored in the second storage unit 32.
  • the display unit 34 displays the field area and the periphery of the field.
  • the display unit 34 is a touch panel or the like that can be operated by the operator's fingertip or the like, and the support device 30 can be operated by operating the display unit 34. If the display unit 34 is not a touch panel that can be operated with a fingertip or the like, the support device 30 may include an operation tool such as an operable push button switch.
  • the server 40 receives information from the outside such as the air vehicle 1, performs a predetermined process on the information, and transmits the processed information to the support device 30.
  • the server 40 includes a third control device 41 and a third communication unit 43.
  • the third control device 41 includes a CPU, an electronic circuit, and the like, and performs various arithmetic processing.
  • the third control device 41 performs a predetermined process on the information received by the third communication unit 43 as the information displayed on the display unit 34 of the support device 30.
  • the third control device 41 has a third storage unit 42.
  • the third storage unit 42 is a non-volatile memory or the like, and stores various information received by the third communication unit 43, various programs, and the like.
  • the third storage unit 42 stores map data including position information of a field on which the air vehicle 1 works.
  • the third communication unit 43 uses, for example, the IEEE 802.11 series Wi-Fi (Wireless Fidelity, registered trademark), which is a communication standard, and the like, and the first communication unit 24 of the aircraft 1 and the second communication unit of the support device 30. It is for wireless communication with 33 or the like.
  • the third communication unit 43 receives information about the flying vehicle 1 from the first communication unit 24.
  • the third communication unit 43 also transmits the information and the like received from the first communication unit 24 to the second communication unit 33.
  • the third communication unit 43 may be a unit that performs wireless communication with the first communication unit 24, the second communication unit 33, and the like through a mobile phone communication network, a data communication network, or the like.
  • the support system 80 of the flying body 1 displays the moving locus of the flying body 1 and the work range of the flying body 1 by the display unit 34 of the supporting apparatus 30 displaying the moving locus of the flying body 1 and the spraying range E of the scattered matter scattered by the spreading device 10. This is a system that reflects the relationship of the results (scattering results) in the work management of the air vehicle 1. Further, the support system 80 of the flying vehicle 1 can display the spraying range E of the sprayed material more accurately by acquiring the information on the flying vehicle 1 and the information on the wind in the field. In the support system 80 of the air vehicle 1, the server 40 acquires, for example, field information from the field server 50 and transmits the information to the support device 30.
  • the field server 50 detects information about the wind in the field and sends the information to the server 40.
  • the field server 50 is a device that collects information about wind in the field.
  • the field server 50 is installed in a field and has a fourth control device 51, a fourth communication unit 53, and an information collecting unit 54, as shown in FIG.
  • the fourth control device 51 includes a CPU, an electronic circuit, and the like, and processes the information (data) acquired by the information collecting unit 54.
  • the fourth control device 51 also has a fourth storage unit 52.
  • the fourth storage unit 52 is a non-volatile memory or the like, and stores various information including information processed by the fourth control device 51.
  • the fourth communication unit 53 wirelessly communicates with the third communication unit 43 of the server 40 by, for example, IEEE 802.11 series Wi-Fi (Wireless Fidelity, a registered trademark) which is a communication standard.
  • the fourth communication unit 53 transmits information about the wind in the field to the third communication unit 43.
  • the fourth communication unit 53 may perform wireless communication with the third communication unit 43, for example, via a mobile phone communication network or a data communication network.
  • the information collecting unit 54 collects information on the environment in the field, particularly information on wind in the field.
  • the information collecting unit 54 includes, for example, sensors such as a wind speed sensor 54a and a wind direction sensor 54b.
  • the wind speed sensor 54a is a sensor that measures the wind speed in the field.
  • the wind direction sensor 54b is a sensor that measures the wind direction in the field.
  • the information collected by the information collecting unit 54 is associated with the time when the information was collected, and is transmitted to the second communication unit 33 via the fourth communication unit 53 and the third communication unit 43.
  • the support device 30 acquires various information such as information about the air vehicle 1 and information about wind in the field via the server 40, and displays the information on the display unit 34 of the support device 30.
  • the second control device 31 of the support device 30 includes a position information acquisition unit 31a, a spray information acquisition unit 31b, an altitude calculation unit 31c, an altitude information acquisition unit 31d, and a wind information acquisition unit 31e. And have.
  • the support device 30 of the air vehicle 1 includes a position information acquisition unit 31a, a spray information acquisition unit 31b, an altitude calculation unit 31c, an altitude information acquisition unit 31d, and a wind information acquisition unit 31e.
  • the position information acquisition unit 31a, the spray information acquisition unit 31b, the altitude calculation unit 31c, the altitude information acquisition unit 31d, and the wind information acquisition unit 31e are configured by a CPU, an electronic circuit, a program stored in the second storage unit 32, and the like. ing.
  • the position information acquisition unit 31a acquires the position of the air vehicle 1. Specifically, the position information acquisition unit 31a acquires the position information of the aircraft 1 that the second communication unit 33 has received via the first communication unit 24 and the third communication unit 43.
  • the spraying information acquisition unit 31b acquires information on the spraying of the sprayed material by the spraying device 10 provided in the air vehicle 1.
  • the spraying information acquisition unit 31b acquires the information on the spraying of the sprayed material of the spraying device 10 received by the second communication unit 33 via the first communication unit 24 and the third communication unit 43.
  • the spraying information acquisition unit 31b acquires information on the spraying amount of the sprayed product and the spraying angle ⁇ associated with time, and information on spraying or spraying stop of the spraying device 10.
  • the altitude calculation unit 31c determines that The atmospheric pressure during flight is calculated, and the altitude H1 of the flying object 1 is calculated.
  • the altitude information acquisition unit 31d acquires information on the altitude H1 of the flying vehicle 1. Specifically, the altitude information acquisition unit 31d acquires the calculation result of the altitude H1 of the aircraft 1 calculated by the altitude calculation unit 31c. In the present embodiment, the altitude information acquisition unit 31d acquires the calculation result of the altitude H1 of the flying object 1 calculated by the altitude calculation unit 31c, but the altitude information acquisition unit 31d uses the information about the altitude H1 of the flying object 1.
  • the server 40 calculates the altitude H1 of the air vehicle 1 based on the value detected by the atmospheric pressure sensor 26, and the altitude information acquisition unit 31d causes the second communication unit 33 to operate the third communication unit of the server 40.
  • the calculation result of the altitude H1 of the flying object 1 received from 43 may be acquired, and the acquisition source of the information regarding the altitude H1 of the flying object 1 is not limited to the above-described altitude calculation unit 31c.
  • the wind information acquisition unit 31e acquires information including the wind direction and wind speed in the field. Specifically, the wind information acquisition unit 31e acquires information about the wind in the field received by the second communication unit 33 via the first communication unit 24 and the third communication unit 43.
  • the field server 50 detects the information on the wind in the field and transmits it to the server 40.
  • the wind information acquisition unit 31e only needs to be able to acquire the information on the wind in the field, and the field server 50.
  • the server 40 connects to a server or the like of the Meteorological Agency via an external network such as the Internet, acquires the meteorological information (information including at least wind direction and wind speed) provided by the Meteorological Agency, and acquires the wind information acquisition unit 31e.
  • the server 40 accesses the server of a weather information providing company or the like that provides the weather information to obtain the weather information or the weather information provided by another information providing company to obtain wind information.
  • the acquisition unit 31e may acquire the weather information via the third communication unit 43 and the second communication unit 33.
  • the second control device 31 of the support device 30 includes a trajectory generation unit 31f, a calculation unit 31g, a mesh setting unit 31h, and a correspondence unit 31i.
  • the support device 30 of the flying vehicle 1 includes the trajectory generation unit 31f, the calculation unit 31g, the mesh setting unit 31h, and the association unit 31i.
  • the trajectory generation unit 31f, the calculation unit 31g, the mesh setting unit 31h, and the associating unit 31i are configured by a CPU, a program stored in the second storage unit 32, and the like.
  • the trajectory generation unit 31f generates a movement trajectory of the flight vehicle 1 based on the position information of the flight vehicle 1 acquired by the location information acquisition unit 31a. Specifically, the trajectory generation unit 31f generates a movement trajectory by connecting the position coordinates of the flying vehicle 1 with a line. For example, the trajectory generation unit 31f connects the position coordinates of the position (n) of the flying object 1 at a predetermined time point and the position coordinates of the position (n-1) of the flying object 1 at the previous time point with a line. Generate a trajectory.
  • the trajectory generation unit 31f also has a correction unit 31f1. The correction unit 31f1 corrects the variation in the position of the aircraft 1 acquired by the position information acquisition unit 31a.
  • the correction unit 31f1 corrects the variation in the position of the flying body 1 by averaging the positions of the flying body 1 acquired by the position information acquisition unit 31a.
  • the correction unit 31f1 only needs to be able to average the positions of the aircraft 1 acquired by the position information acquisition unit 31a, and the method of correcting variations is not limited to averaging.
  • the calculation unit 31g calculates the spray range E based on the spray information acquired by the spray information acquisition unit 31b. More specifically, the calculation unit 31g has the spray information (spraying amount of sprayed material, information of spraying angle ⁇ , information on spraying or stopping spraying of the spraying device 10), position information of the flying body 1, and flying body 1 at a predetermined time point.
  • the spraying range E is calculated on the basis of the moving speed, the altitude H1, and the like. Specifically, the calculation unit 31g calculates the spray range E from the range calculated by the spray angle ⁇ of the nozzle 13 and the altitude H1 of the flying vehicle 1 and the position of the flying vehicle 1.
  • the calculation unit 31g adds the spray information, the position information, the moving speed of the flying body 1, and the altitude H1. Then, the spray range E can be calculated based on the wind direction and the wind speed acquired by the wind information acquisition unit 31e. More specifically, the calculation unit 31g has the spray information (spraying amount of sprayed material, information of spraying angle ⁇ , information on spraying or stopping spraying of the spraying device 10), position information of the flying body 1, and flying body 1 at a predetermined time point.
  • a predetermined value for example, wind speed is 1 m/s or higher
  • the calculation unit 31g adds the spray information, the position information, the moving speed of the flying body 1, and the altitude H1. Then, the spray range E can be calculated based on the wind direction and the wind speed acquired by the wind information acquisition unit 31e. More specifically, the calculation unit 31g has the spray information (spraying amount of sprayed material, information of spraying angle ⁇ , information on spraying or stopping spraying of the spraying device 10), position information of
  • the spraying range E is calculated based on the moving speed, the altitude H1, the wind direction, the wind speed, and the like. Specifically, the calculation unit 31g calculates the spraying range E by combining the wind speed and the moving speed of the flying vehicle 1 with the range calculated by the spraying angle ⁇ of the nozzle 13 and the altitude H1 of the flying vehicle 1.
  • the calculation unit 31g only needs to be able to calculate the spray range E based on the spray information acquired by the spray information acquisition unit 31b and the wind direction and wind speed acquired by the wind information acquisition unit 31e.
  • the calculation method is the above-described calculation method. Not limited to.
  • the spraying range E is calculated by combining the wind speed and the moving speed of the flying object 1 in the range calculated by the spraying angle ⁇ of the nozzle 13 and the altitude H1 of the flying object 1.
  • the distance H3 obtained by subtracting the plant height H2 of the crop R in the field from the altitude H1 of the air vehicle 1 is used, and the spray angle ⁇ of the nozzle 13 and the nozzle 13 and the crop
  • the scattering range E may be calculated by combining the wind speed and the moving speed of the flying object 1 in the range calculated by the distance H3 with R.
  • the information collecting unit 54 of the field server 50 includes, for example, an image capturing unit such as a camera, and the field server 50 detects the plant height H2 of the crop R based on the image captured by the image capturing unit. I do.
  • the mesh setting unit 31h performs a process of allocating information on the amount of spray (dispersion amount data) included in the spray information acquired by the spray information acquisition unit 31b for each spray range E calculated by the calculator 31g. For example, when the mesh size is 1 m, the mesh setting unit 31h sets the width (vertical width, horizontal width) of one side of the area Qn to 1 m, divides the spray range E into a plurality of areas Qn every 1 m, The spread amount data is divided as data that enters the area Qn formed by dividing the spread amount data by the mesh size.
  • the mesh setting unit 31h averages the data values and assigns the average value as the divided data Dn corresponding to the area Qn.
  • the mesh setting unit 31h assigns the data as divided data Dn corresponding to the area Qn when the number of data in the area Qn is one.
  • the mesh size may be set by inputting a numerical value of “mesh size” shown in the basic display section 59 of the display section 34 described later. Further, the method of assigning the field data to the divided data Dn corresponding to the area Qn is not limited to the above example.
  • the mesh setting unit 31h sets the amount of scattered matter for each area Qn based on the divided data Dn for each area Qn.
  • the associating unit 31i associates the information about the moving trajectory of the flying object 1 generated by the trajectory generating unit 31f, the information about the altitude H1 of the flying object 1, and the information processed by the mesh setting unit 31h. Specifically, the associating unit 31i, based on the time, the information of the movement trajectory of the flying body 1 at the same time, the information about the altitude H1 of the flying body 1, and the information processed by the mesh setting unit 31h. Correspond.
  • the second control device 31 of the support device 30 also includes an operation information acquisition unit 31j and an operation trajectory generation unit 31k.
  • the support device 30 of the flying vehicle 1 includes the operation information acquisition unit 31j and the operation trajectory generation unit 31k.
  • the operation information acquisition unit 31j and the operation trajectory generation unit 31k are configured by a CPU, a program stored in the second storage unit 32, and the like.
  • the operation information acquisition unit 31j acquires the operation information of the operation device 15. Specifically, the operation information acquisition unit 31j acquires the operation information of the operation device 15 via the first communication unit 24, the third communication unit 43, and the second communication unit 33.
  • the operation information acquisition unit 31j acquires the operation information via the first communication unit 24, the third communication unit 43, and the second communication unit 33, but the operation information acquisition unit 31j operates The operation information of the device 15 may be acquired, and the operation information may be transmitted from the operation device 15 to the second communication unit 33.
  • the acquisition source of the operation information is not limited to the above configuration.
  • the operation trajectory generation unit 31k generates a movement trajectory of the flying vehicle 1 based on the operation information acquired by the operation information acquisition unit 31j.
  • the movement locus of the flying body 1 based on the operation information generated by the operation locus generation unit 31k is an ideal movement locus that does not consider resistance such as wind and rain in the field and obstacles.
  • the screen displayed on the display unit 34 will be described in detail. As shown in FIGS. 3A to 3G, the display unit 34 can display a spraying screen M1 that shows the result of the spraying work of the aircraft 1.
  • the spraying screen M1 displays the field area, the periphery of the field, the actual movement trajectory of the flying vehicle 1, the moving trajectory of the flying vehicle 1 based on the operation information, the altitude H1 of the flying vehicle 1, and the scattering range E of the scattered matter.
  • the display unit 34 displays the result of the spraying work of the flying object 1, so that the result of the spraying work can be easily confirmed without manually inputting the result. Further, by displaying not only the distribution range E of the scattered matter but also the movement locus at the same time as the scattering range E, the relationship between the movement locus and the scattering range E can be confirmed and can be utilized for work planning.
  • the scatter screen M1 has a basic display unit 59, a peripheral image 60, a movement track image 61, an operation track image 62, an altitude display image 65, and a scatter range image 66.
  • the basic display unit 59 displays various information regarding the work of the flying vehicle 1. Specifically, for example, the basic display unit 59 displays the field name on which the aircraft 1 has worked, the size of the field, the start date and time of the work, the working time, the end date and time of the work, the model number of the aircraft 1, and the mesh size. , Displays the wind direction, wind speed, etc. in the field.
  • the peripheral image 60 is an image that displays a field region and the periphery of the field.
  • the peripheral image 60 displays, for example, the area of the farm field and the periphery of the farm field in a bird's-eye view.
  • the movement trajectory image 61 is an image that displays the actual movement trajectory of the flying object 1, and is an image based on the trajectory generated by the trajectory generation unit 31f.
  • the display unit 34 displays the movement trajectory of the flying body 1 based on the position of the flying body 1 acquired by the position information obtaining unit 31a and the position of the flying body 1 corrected by the correction unit 31f1.
  • the display unit 34 displays the movement trajectory image 61 in different display forms inside the field area and outside the field area. Specifically, the display unit 34 displays the movement trajectory image 61 within the field area with a solid line 61b, and displays the movement trajectory image 61 outside the field area with a broken line 61c. In addition, the display unit 34 displays the movement start point of the flying body 1 and the final point of the flying body 1 in the movement locus image 61 in a predetermined figure. In the present embodiment, the display unit 34 displays the movement start point of the flying body 1 by the substantially circular graphic 61a and the final point of the flying body 1 by the simplified graphic 61d of the flying body 1.
  • the operation trajectory image 62 is an image that displays the movement trajectory of the flying vehicle 1 based on the operation information of the operation device 15, and is an image that is based on the trajectory generated by the operation trajectory generation unit 31k.
  • the operation trajectory image 62 is displayed in a display form different from at least the movement trajectory image 61.
  • the operation trajectory image 62 is displayed by, for example, a two-dot chain line.
  • the operation trajectory image 62 can be switched between display and non-display by operating the switching button 63 displayed on the scatter screen M1.
  • the display unit 34 hides the movement trajectory image 61 when the operation trajectory image 62 is displayed. In other words, the display unit 34 displays either the movement trajectory image 61 or the operation trajectory image 62.
  • the display unit 34 displays either the movement trajectory image 61 or the operation trajectory image 62.
  • the display unit 34 displays Both the movement track image 61 and the operation track image 62 may be displayed simultaneously.
  • the operator of the flying vehicle 1 can understand the operability of the flying vehicle 1 in a more appropriate manner, so that the operating skill of the flying vehicle 1 can be improved at an early stage.
  • the operation trajectory generation unit 31k generates the movement trajectory of the flying vehicle 1 based on the operation information, and the display unit 34 displays the operation trajectory image 62 based on the movement trajectory, and the operation device 15 is displayed.
  • the display unit 34 only needs to be able to display the operation information of the operation device 15, and instead of the operation trajectory image 62, an icon 64 that simplifies the operation device 15 as shown in FIG. 3C. May be displayed to display the operation state of the operation device 15 at each point, and the display image is not limited to the above-mentioned image.
  • the simplified icon 64 of the operating device 15 is displayed, the operating state of the operating device 15 may be displayed using an arrow or the like.
  • the altitude display image 65 is an image that displays the altitude H1 of the aircraft 1, and is an image based on the information regarding the altitude H1 of the aircraft 1 acquired by the altitude information acquisition unit 31d.
  • the display unit 34 displays the altitude H1 of the aircraft 1 based on the altitude H1 of the aircraft 1 acquired by the altitude information acquisition unit 31d.
  • the altitude display image 65 numerically displays the altitude H1 of the flying vehicle 1 at each point (each time point). Accordingly, by displaying the altitude information at the same time as the spray range E, the relationship between the altitude H1 of the flying object 1 and the spray range E can be confirmed and can be utilized for work planning.
  • the display unit 34 displays the altitude display image 65 at the selected point, and the altitude display image at another point. 65 is hidden.
  • the display unit 34 displays the altitude H1 at the selected point as a value, but the display unit 34 may display the altitude H1 of the flying object 1, and the color or the like according to the altitude H1.
  • the altitude H1 of the aircraft 1 may be displayed in different display forms, and the display format of the altitude H1 of the aircraft 1 is not limited to the display format described above.
  • the dispersion range image 66 is an image displaying the dispersion range E calculated by the calculation unit 31g and the divided data Dn for each area Qn allocated by the mesh setting unit 31h. ..
  • the display unit 34 displays the spraying range E of the sprayed material sprayed by the spraying device 10, based on the spraying information acquired by the spraying information acquiring unit 31b and the spraying range E calculated by the calculation unit 31g.
  • the spray range image 66 is displayed for each mesh generated by the mesh setting unit 31h in a different display form of the mesh according to the spray amount of the sprayed material sprayed by the spraying device 10.
  • the display unit 34 displays the meshes for each mesh generated by the mesh setting unit 31h while changing the display form of the meshes in accordance with the amount of the sprayed material sprayed by the spraying device 10.
  • the display unit 34 changes the display density of the mesh for each mesh generated by the mesh setting unit 31h in accordance with the amount of sprayed material. Specifically, the display unit 34 displays the mesh so that the display density is increased in proportion to the amount of sprayed material. That is, the display unit 34 displays the display density of the mesh lighter as the amount of the sprayed material becomes lower. On the other hand, as the amount of sprayed material increases, the display unit 34 displays the display density of the mesh darker.
  • the display unit 34 may display a legend 67 that indicates the amount of scattered matter corresponding to the display density of the mesh.
  • the display unit 34 can switch the display of the movement trajectory of the flying body 1 and the dispersion range E according to the altitude H1 of the flying body 1.
  • the spray screen M1 has an altitude selection unit 69 for selecting the altitude H1 of the flying vehicle 1.
  • the altitude selection unit 69 has a slider 69a that can be slid.
  • the altitude selection unit 69 can select the range of the altitude H1 of the flying object 1 by operating the slider 69a to select the upper limit value and the lower limit value of the altitude H1 of the flying object 1.
  • the display unit 34 displays the movement trajectory of the flying vehicle 1 at the altitude H1 within the range of the altitude H1 selected by the altitude selecting unit 69, and the spray range E of the scattered matter scattered by the flying object 1. Specifically, the display unit 34 displays the movement trajectory image 61 and the scatter range image 66 at the altitude H1 within the range of the altitude H1 selected by the altitude selection unit 69.
  • the display unit 34 displays the movement locus of the flying body 1 at the altitude H1 outside the range of the altitude H1 selected by the altitude selecting unit 69 and the spread range E of the scattered matter scattered by the flying body 1. To hide. Specifically, the display unit 34 does not display the movement trajectory image 61 and the scatter range image 66 at the altitude H1 outside the range of the altitude H1 selected by the altitude selection unit 69. As a result, the result of the spraying work of the flying body 1 can be confirmed for each altitude H1 of the flying body 1. Therefore, the relationship between the altitude H1 of the flying object 1 and the spray range E can be more easily confirmed and can be utilized for work planning.
  • the display unit 34 hides the spraying range E of the scattered matter scattered by the aircraft 1 at the altitude H1 outside the range of the altitude H1 selected by the altitude selecting unit 69. It suffices that the section 34 can switch the display of the spraying range E in accordance with the altitude H1 of the flying object 1.
  • the flying object 1 is sprayed by the flying object 1 at an altitude H1 outside the range of the altitude H1 selected by the altitude selecting section 69.
  • the spraying range E may be grayed out.
  • the display unit 34 displays the result of one spraying operation of one flying body 1. However, as shown in FIG. 3F, the display unit 34 displays a plurality of flights.
  • the results of the spraying work of the body 1 may be displayed, or the results of a plurality of spraying works of one flying body 1 may be displayed simultaneously.
  • the mesh setting unit 31h averages the data values of the respective work results and assigns the average value as the divided data Dn corresponding to the area Qn.
  • the display unit 34 displays a movement trajectory image 61, an operation trajectory image 62, a switch button 63, an altitude display image 65, and a spray range image 66 for each spraying work.
  • the display unit 34 when the wind speed in the field is a predetermined speed or higher (for example, a wind speed of 1 m/s or higher), the display unit 34 operates the change button 70 to switch the display of the spray range image 66, It is possible to display the spraying range E of the sprayed material in consideration of the wind direction and the wind speed acquired by the wind information acquisition unit 31e.
  • the spraying range image 66 includes the spraying range E calculated based on the wind direction and the wind speed acquired by the wind information acquiring unit 31e in addition to the spraying information acquired by the spraying information acquiring unit 31b, and the mesh setting unit 31h. It is an image for displaying the divided data Dn for each assigned area Qn.
  • the application range image 66 is applied from the application range E calculated by the operation unit 31g based on the application information, the position information, the moving speed of the flying body 1, the altitude H1, and the like.
  • the display is switched to the spray range E calculated based on the information, the position information, the moving speed of the flying object 1, the altitude H1, and the wind direction and wind speed acquired by the wind information acquisition unit 31e.
  • the first control device 20 of the aircraft 1 has a detection unit 23.
  • the flying body 1 has the detection unit 23.
  • the detection unit 23 includes a CPU, a program stored in the first storage unit 22, and the like.
  • the detection unit 23 detects, based on the position information detected by the position detection device 25 and the position information of the farm field, whether the flying body 1 is positioned inside the field region or outside the farm region. To do.
  • the position information of the field is stored in, for example, the first storage unit 22.
  • the position information of the field is acquired from the server 40 via the third communication unit 43 and the first communication unit 24, and is stored in the first storage unit 22 in advance.
  • the detection unit 23 outputs the detection result to the control unit 21.
  • the detection unit 23 determines whether the flying body 1 is in the field area or outside the field area based on the position information detected by the position detection device 25 and the field position information. Although it is detected whether or not it is located, the detection unit 23 only needs to be able to detect whether the flying body 1 is located in the area of the field or outside the area of the field, such as a camera provided in the flying body 1.
  • the detection method is not limited to the above configuration.
  • the control unit 21 controls the spraying device 10 according to the detection result of the detection unit 23. Specifically, when the detection unit 23 detects that the flying body 1 is located within the field area, the control unit 21 controls the spraying device 10 based on the operation of the operation device 15. On the other hand, when the detection unit 23 detects that the flying body 1 is located outside the area of the field, the control unit 21 stops the driving of the pump 12 separately from the operation of the operation device 15, and the spraying device 10 is operated. Stop spraying. That is, the control unit 21 permits the spraying of the sprayed material by the spraying device 10 when the flying body 1 is located in the area of the field, and the flying device 1 when the flying body 1 is located outside the area of the field. Prohibit the spraying of 10 items.
  • the above-described support device 30 for the flying vehicle 1 includes a position information obtaining unit 31a that obtains the position of the flying vehicle 1 and a spraying information obtaining unit that obtains information on the spraying of the sprayed material by the spraying device 10 provided on the flying vehicle 1. 31b and a display unit 34 that displays the area of the farm field and the periphery of the farm field.
  • the display unit 34 displays the movement trajectory of the flight vehicle 1 based on the position of the flight vehicle 1 acquired by the position information acquisition unit 31a. Then, based on the spraying information acquired by the spraying information acquiring unit 31b, the spraying range E of the sprayed material sprayed by the spraying device 10 is displayed.
  • the result of the spraying work of the flying object 1 can be displayed on the display unit 34. Therefore, an operator who manages the work of the flying object 1 can easily confirm the result of the spraying work without manually inputting the result. Further, since the display unit 34 displays not only the distribution range E of the scattered matter but also the movement locus at the same time as the distribution range E, the operator can confirm the relationship between the movement locus and the dispersion range E.
  • the support device 30 of the aircraft 1 includes an altitude information acquisition unit 31d that acquires information on the altitude H1 of the aircraft 1, and the display unit 34 displays the altitude H1 of the aircraft 1 acquired by the altitude information acquisition unit 31d. Based on this, the altitude H1 of the aircraft 1 is displayed. According to the above configuration, since the display unit 34 simultaneously displays the altitude information and the dispersion range E, the operator can confirm the relationship between the altitude H1 of the aircraft 1 and the dispersion range E, and utilize it in the work plan. You can
  • the support device 30 of the aircraft 1 includes an altitude information acquisition unit 31d that acquires information on the altitude H1 of the aircraft 1, and the display unit 34 displays the altitude H1 of the aircraft 1 within a predetermined range.
  • the movement locus is displayed, and the movement locus when the altitude H1 of the flying object 1 is outside the predetermined range is hidden, and the spray range E when the altitude H1 of the flying object 1 is within the predetermined range is displayed.
  • the spray range E when the altitude H1 of the aircraft 1 is outside the predetermined range is hidden.
  • the support device 30 of the aircraft 1 includes the wind information acquisition unit 31e that acquires information including the wind direction and wind speed of the field, the spray information acquired by the spray information acquisition unit 31b, and the wind direction acquired by the wind information acquisition unit 31e.
  • a calculator 31g that calculates the spray range E based on the wind speed, and the display unit 34 displays the spray range E calculated by the calculator 31g.
  • the display unit 34 can display the spray range E close to the actual spray range sprayed by the spraying operation of the air vehicle 1 when wind is generated in the field. Therefore, it is possible to confirm the relationship between the movement trajectory when the wind is generated and the spray range E, and to use it for work planning such as adjusting the flight path of the flying body 1 according to the wind condition in the field. can do.
  • the support device 30 of the flying object 1 includes a mesh setting unit 31h that sets a predetermined mesh in the spray range E, and the display unit 34 sprays the spray device 10 for each mesh set by the mesh setting unit 31h. The display form of the mesh is displayed differently according to the amount of the sprayed material.
  • the support device 30 of the aircraft 1 includes a correction unit 31f1 that corrects the variation in the position of the aircraft 1 acquired by the position information acquisition unit 31a, and the display unit 34 displays the aircraft 1 corrected by the correction unit 31f1. The movement trajectory of the flying body 1 is displayed based on the position.
  • the display unit 34 can smoothly display the movement trajectory of the flight vehicle 1 even when the position information of the flight vehicle 1 is acquired relatively infrequently, and the movement trajectory can be displayed. It can be grasped easily.
  • the support device 30 of the aircraft 1 includes an operation information acquisition unit 31j that acquires operation information of the operation device 15 that can operate the aircraft 1, and the display unit 34 includes the operation information acquired by the operation information acquisition unit 31j. The operation of the operation device 15 is displayed based on the.
  • the support system 80 for the flying vehicle 1 includes the supporting device 30 for the flying vehicle 1 and the flying vehicle 1.
  • the flying body 1 includes a detection unit 23 that detects whether the flying body 1 is located inside the field area or outside the field area. When it is detected that the flying object 1 is located inside the field, when it is detected that the flying body 1 is located outside the area of the field, when the flying object 1 is located outside the field, And a control unit 21 that prohibits spraying.
  • FIG. 4 shows another embodiment (second embodiment) of the support system 80 for the air vehicle 1.
  • the support device 30 for the aircraft 1 of the first embodiment displays the result of the work (scattering work) performed by the aircraft 1, but the support device 30 for the aircraft 1 of the second embodiment shows that It is possible to display the movement trajectory and the dispersion range (effective dispersion width) E in the previous work, and to create a work plan for the air vehicle 1.
  • the support system 80 for the air vehicle 1 of the second embodiment will be described focusing on the configuration different from the above-described embodiment (first embodiment), and the same reference numerals will be given to configurations common to the first embodiment. Detailed description is omitted.
  • the third control device 41 of the server 40 has a work plan setting unit 44.
  • the work plan setting unit 44 includes a CPU, a program stored in the third storage unit 42, and the like.
  • the work plan setting unit 44 sets the work to be performed in the field, the period of the work (work period), the aircraft 1 to perform the work, the movement route of the aircraft 1, and the like as a work plan.
  • a work plan is a plan of how and within what period (work period) a work is to be performed in a given field, that is, "work" to be performed in the field, "work period” to perform the work, and "aircraft". 1” and the “movement path” of the aircraft 1 are associated with each other. For example, an operator or a manager performs the work before actually performing the work.
  • the third storage unit 42 of the server 40 stores the default values of the work and the work period that are the reference when setting the work plan, and the work and the work period defaults stored in the third storage unit 42.
  • the value is set by past work or the like.
  • the setting of the work plan by the work plan setting unit 44 will be described in detail.
  • the setting of the work plan by the work plan setting unit 44 can be performed by operating the support device 30 communicatively connected to the server 40. Specifically, when the support device 30 requests the server 40 to create a work plan, the operation of the work plan setting unit 44 of the server 40 causes the work plan to be created in each field as shown in FIGS. 5A to 5D.
  • the work plan screen M2 to be created is displayed on the display unit 34.
  • the work plan screen M2 displays a portion for inputting the contents of the work plan, a field area, and the periphery of the field.
  • the work plan screen M2 has a work input unit 156, a peripheral image 160, and a calling unit 157.
  • the work input unit 156 can input information such as a work date, a field to perform the work, a worker to perform the work, and an air vehicle 1 to perform the work.
  • the work plan setting unit 44 stores the information input to the work input unit 156 in the third storage unit 42 as a work plan. As shown in FIGS.
  • the work input unit 156 includes a date input unit 156a, a field input unit 156b, a worker input unit 156c, an aircraft input unit 156d, a route creation unit 156e, and a confirm button. And 156f.
  • the date input part 156a is a part for inputting a date for performing work.
  • the farm field input unit 156b is a part for inputting a farm field on which work is to be performed.
  • the worker input unit 156c is a part for inputting a worker who performs a work.
  • the flight body input unit 156d is a portion for inputting the flight vehicle 1 to be operated.
  • the route creation unit 156e is selectable, and draws the route of the air vehicle 1 on the peripheral image 160 by selecting the route creation unit 156e and performing an operation such as tracing the display unit 34 with a fingertip.
  • the confirm button 156f is a button for confirming the information input to the date input unit 156a, the field input unit 156b, the worker input unit 156c, the flight body input unit 156d, and the route creation unit 156e as a work plan.
  • the confirm button 156f is operated, the work plan setting unit 44 stores the information input to the work input unit 156 in the third storage unit 42 as a work plan.
  • the peripheral image 160 is an image that displays the field area and the periphery of the field.
  • the peripheral image 160 displays, for example, the area of the farm field and the periphery of the farm field in a bird's-eye view.
  • the peripheral image 160 displays the farm field called by the calling unit 157.
  • the calling unit 157 can input information such as the date of past work, the field where the work was performed, the worker who performed the work, and the flying vehicle 1 that performed the work.
  • the work plan setting unit 44 acquires the past work from the third storage unit 42 based on the information input to the calling unit 157. As shown in FIGS.
  • the calling unit 157 includes a date input unit 157a, a field input unit 157b, a worker input unit 157c, an aircraft input unit 157d, and a search button 157e.
  • the date input part 157a is a part for inputting dates of past work.
  • the farm field input unit 157b is a part for inputting a farm field on which work has been performed in the past.
  • the worker input unit 157c is a part for inputting a worker who has worked in the past.
  • the flight body input unit 157d is a portion for inputting the flight vehicle 1 that has performed work in the past.
  • the search button 157e is a button for confirming that the past work is searched based on the information input to the date input unit 157a, the field input unit 157b, the worker input unit 157c, and the flight body input unit 157d.
  • the search button 157e is operated, as shown in FIG. 5B, the display unit 34 displays the list display unit 158 on the work plan screen M2. Note that it is not necessary to input information to all of the date input unit 157a, the field input unit 157b, the operator input unit 157c, and the aircraft input unit 157d, and at least one or more information items are input to the calling unit 157. If you have.
  • the list display unit 158 displays a list of works obtained from the third storage unit 42 as past works based on the information input to the calling unit 157 by the work plan setting unit 44. Specifically, for example, the list display unit 158 lists information such as the date of the work acquired by the work plan setting unit 44, the field where the work was performed, the worker who performed the work, and the flying vehicle 1 that performed the work. Display as. The past work displayed on the list display unit 158 can be selected. When one past work is selected from the past works displayed on the list display unit 158, the display unit 34 displays information on the one past work on the work plan screen M2 as shown in FIG. 5C.
  • the work plan screen M2 has a basic display unit 159, a movement trajectory image 161, and a scatter range image 166.
  • the basic display unit 159 displays various information regarding past work. Specifically, for example, the basic display unit 159 displays past work start date/time, work end date/time, work time, worker's name, model number of the air vehicle 1, wind direction and wind speed in the field, and the like.
  • the movement trajectory image 161 is an image that displays the actual movement trajectory of the flying vehicle 1 in the past work, and is an image based on the trajectory generated by the trajectory generation unit 31f.
  • the display unit 34 displays the movement trajectory of the flying body 1 based on the position of the flying body 1 acquired by the position information obtaining unit 31a and the position of the flying body 1 corrected by the correction unit 31f1.
  • the display unit 34 displays the movement trajectory image 161 in different display forms inside the field area and outside the field area.
  • the display unit 34 displays the movement trajectory image 161 in the field area by a solid line 161b, and displays the movement trajectory image 161 outside the field area by a broken line 161c.
  • the display unit 34 displays the movement start point of the flying body 1 and the final point of the flying body 1 in the movement locus image 161 in a predetermined figure.
  • the display unit 34 displays the movement start point of the flying body 1 by the substantially circular graphic 161a and the final point of the flying body 1 by the simplified graphic 161d of the flying body 1.
  • the scatter range image 166 is an image displaying the altitude H1 of the aircraft 1 and the scatter range E calculated by the calculation unit 31g.
  • the scatter range image 166 is displayed in different display forms according to the altitude H1 of the flying object 1.
  • the display unit 34 changes the display density of the spray range image 166 according to the altitude H1 of the flying object 1. Specifically, the display unit 34 displays the dispersion range image 166 such that the display density of the dispersion range image 166 becomes darker in proportion to the altitude H1 of the aircraft 1. That is, as the altitude H1 of the flying object 1 becomes lower, the display unit 34 displays the display density of the dispersion range image 166 lighter.
  • the display unit 34 displays the display density of the spray range image 166 darker.
  • the display unit 34 may display a legend 167 indicating the altitude H1 of the flying object 1 corresponding to the display density of the dispersion range image 166.
  • the display unit 34 when the wind speed in the field is equal to or higher than a predetermined value (eg, wind speed of 1 m/s or higher), the display unit 34 operates the change button 170 to switch the display of the spray range image 166, It is possible to display the spraying range E of the sprayed material in consideration of the wind direction and the wind speed acquired by the wind information acquisition unit 31e.
  • the scatter range image 166 is the scatter range calculated based on the wind direction and the wind speed acquired by the wind information acquisition unit 31e in addition to the altitude H1 of the air vehicle 1 and the spray information acquired by the spray information acquisition unit 31b. It is an image displaying E and.
  • the dispersion range image 166 is distributed from the dispersion range E calculated by the calculation unit 31g based on the dispersion information, the position information, the moving speed of the flying body 1, the altitude H1, and the like.
  • the display is switched to the spray range E calculated based on the information, the position information, the moving speed of the flying object 1, the altitude H1, and the wind direction and wind speed acquired by the wind information acquisition unit 31e.

Abstract

An aircraft assistance device capable of ascertaining the results of previous operations and easily managing operations. The assistance device (30) for an aircraft (1) comprises: a location information-acquiring unit (31a) for acquiring the location of the aircraft; a dispersion information-acquiring unit (31b) for acquiring information relating to dispersion of a dispersion material from a dispersion device (10) provided on the aircraft (1); and a display unit (34) for displaying areas of a field and the surroundings of the field. The display unit (34) displays a movement path of the aircraft (1) on the basis of the location of the aircraft (1) acquired by the location information-acquiring unit (31a) and displays a dispersion area (E) for the dispersion material dispersed by the dispersion device (10) on the basis of the information acquired by the dispersion information-acquiring unit (31b). The assistance device (30) for the aircraft (1) also comprises an altitude information-acquiring unit (31d) for acquiring altitude information for the aircraft and the display unit (34) displays the altitude of the aircraft (1) on the basis of the altitude (H1) of the aircraft acquired by the altitude information-acquiring unit (31d).

Description

飛行体の支援装置、及び飛行体の支援システムFlight support device and flight support system
 本発明は、飛行体の支援装置、及び飛行体の支援システムに関する。 The present invention relates to an aircraft support device and an aircraft support system.
 従来、特許文献1に開示された表示部は、飛行体のスタート地点と、飛行体の到達目標地点とを含む2次元の地図である経路マップを表示し、経路マップは、飛行体のスタート地点を黒丸で示し、飛行体の到達目標地点は白抜きの星形で示し、飛行体の現在位置は黒の三角形で示し、飛行体の経路を示す。 BACKGROUND ART Conventionally, the display unit disclosed in Patent Document 1 displays a route map that is a two-dimensional map including a start point of an aircraft and a target arrival point of the aircraft, and the route map is a start point of the aircraft. Is indicated by a black circle, the target point of the aircraft is indicated by a white star, the current position of the aircraft is indicated by a black triangle, and the route of the aircraft is indicated.
日本国特許公開公報「2018-110352号公報」Japanese Patent Publication “2018-110352”
 特許文献1の支援装置では、表示部が経路マップを表示することで、作業者は、飛行体のスタート地点(すなわち、作業者が存在する地点)、飛行体の現在位置、及び飛行体の到達目標地点との関係を把握することができる。
 しかしながら、特許文献1の支援装置では、飛行体の経路を表示することができるものの、飛行体の作業結果を表示することができず、飛行体の作業結果を確認して、作業管理に反映させることができなかった。
In the support device of Patent Document 1, the display unit displays the route map so that the operator can start the aircraft (that is, the position where the operator exists), the current position of the aircraft, and the arrival of the aircraft. It is possible to understand the relationship with the target point.
However, with the support device of Patent Document 1, although the route of the flying object can be displayed, the work result of the flying object cannot be displayed, and the work result of the flying object is confirmed and reflected in the work management. I couldn't.
 本発明は、このような従来技術の問題点を解決すべくなされたものであって、以前の作業の結果を確認して、容易に作業管理を行うことができる飛行体の支援装置の提供を目的とする。 The present invention has been made to solve the above-mentioned problems of the prior art, and provides a support device for an air vehicle that can easily perform work management by checking the results of previous work. To aim.
 本発明の一態様に係る飛行体の支援装置は、飛行体の位置を取得する位置情報取得部と、前記飛行体に設けられた散布装置の散布物の散布に関する情報を取得する散布情報取得部と、圃場の領域及び前記圃場の周囲を表示する表示部と、を備え、前記表示部は、前記位置情報取得部が取得した前記飛行体の位置に基づいて、前記飛行体の移動軌跡を表示し、前記散布情報取得部が取得した情報に基づいて、前記散布装置が散布した散布物の散布範囲を表示する。 A support device for an air vehicle according to an aspect of the present invention includes a position information acquisition unit that acquires the position of the air vehicle, and a spray information acquisition unit that acquires information about the spraying of sprayed material by a spraying device provided on the air vehicle. And a display unit that displays a field region and the periphery of the field, and the display unit displays a movement trajectory of the flight object based on the position of the flight object acquired by the position information acquisition unit. Then, based on the information acquired by the spraying information acquisition unit, the spraying range of the sprayed material sprayed by the spraying device is displayed.
 また、飛行体の支援装置は、前記飛行体の高度の情報を取得する高度情報取得部を備え、前記表示部は、前記高度情報取得部が取得した前記飛行体の高度に基づいて、当該飛行体の高度を表示する。
 また、飛行体の支援装置は、前記飛行体の高度の情報を取得する高度情報取得部を備え、前記表示部は、前記飛行体の高度が所定の範囲内にある場合の前記移動軌跡を表示し、且つ、前記飛行体の高度が所定の範囲外にある場合の移動軌跡を非表示にし、前記飛行体の高度が所定の範囲内にある場合の前記散布範囲を表示し、且つ、前記飛行体の高度が所定の範囲外にある場合の前記散布範囲を非表示にする。
Further, the aircraft support device includes an altitude information acquisition unit that acquires information on the altitude of the aircraft, and the display unit is based on the altitude of the aircraft acquired by the altitude information acquisition unit. Display the altitude of the body.
In addition, the flying device support apparatus includes an altitude information acquisition unit that acquires information about the altitude of the flying object, and the display unit displays the movement trajectory when the altitude of the flying object is within a predetermined range. And, the movement trajectory when the altitude of the flying object is out of a predetermined range is hidden, the scattering range is displayed when the altitude of the flying object is in a predetermined range, and the flight is performed. Hide the spray range when the altitude of the body is outside the predetermined range.
 また、飛行体の支援装置は、前記圃場の風向及び風速を含む情報を取得する風情報取得部と、前記散布情報取得部が取得した情報、並びに前記風情報取得部が取得した前記風向及び前記風速に基づいて、前記散布範囲を演算する演算部と、を備え、前記表示部は、前記演算部が演算した前記散布範囲を表示する。
 また、飛行体の支援装置は、前記散布範囲に所定のメッシュを設定するメッシュ設定部を備え、前記表示部は、前記メッシュ設定部が設定した前記メッシュ毎に、前記散布装置が散布した散布物の散布量に応じて、前記メッシュの表示形態を異ならせて表示する。
In addition, the support device of the air vehicle, the wind information acquisition unit that acquires information including the wind direction and wind speed of the field, the information acquired by the spraying information acquisition unit, and the wind direction and the wind information acquired by the wind information acquisition unit. A computing unit for computing the spraying range based on the wind speed, and the display unit displays the spraying range computed by the computing unit.
In addition, the support device for an air vehicle includes a mesh setting unit that sets a predetermined mesh in the spraying range, and the display unit displays the sprayed material sprayed by the spraying device for each mesh set by the mesh setting unit. The display form of the mesh is displayed differently according to the spray amount of.
 また、飛行体の支援装置は、前記位置情報取得部が取得した前記飛行体の位置のばらつきを補正する補正部を備え、前記表示部は、前記補正部が補正した前記飛行体の位置に基づいて、前記飛行体の移動軌跡を表示する。
 また、飛行体の支援装置は、前記飛行体を操作可能な操作装置の操作情報を取得する操作情報取得部を備え、前記表示部は、前記操作情報取得部が取得した操作情報に基づいて、前記操作装置の操作を表示する。
Further, the aircraft support device includes a correction unit that corrects the variation in the position of the aircraft acquired by the position information acquisition unit, and the display unit is based on the position of the aircraft corrected by the correction unit. Then, the trajectory of the flying body is displayed.
In addition, the support device for the flying object includes an operation information acquisition unit that acquires operation information of an operation device that can operate the flying object, and the display unit is based on the operation information acquired by the operation information acquisition unit, The operation of the operating device is displayed.
 また、飛行体の支援システムは、飛行体の支援装置と、前記飛行体と、を備えている。
 また、前記飛行体は、当該飛行体が前記圃場の領域内と、前記圃場の領域外とのいずれに位置しているかを検出する検出部と、前記検出部が、前記飛行体が前記圃場の領域内に位置していることを検出した場合、前記散布装置の散布物の散布を許可し、前記飛行体が前記圃場の領域外に位置していることを検出した場合、前記散布装置の散布物の散布を禁止する制御部と、を有している。
Further, the support system for a flying body includes a flying body support device and the flying body.
In addition, the flying body, a detection unit that detects whether the flying body is located in the region of the field, or outside the region of the field, the detection unit, the flying body of the field When it is detected that it is located in the area, the application of the sprayed material by the spraying device is permitted, and when it is detected that the flying body is located outside the area of the field, the application of the spraying device is performed. And a control unit that prohibits the spraying of objects.
 上記飛行体の支援装置によれば、以前の作業の結果を確認し、容易に作業管理を行うことができる。 According to the above-mentioned support device for the air vehicle, it is possible to confirm the result of the previous work and easily manage the work.
第1実施形態における飛行体の支援システムの全体図である。FIG. 1 is an overall view of a support system for an air vehicle in the first embodiment. 第1実施形態における散布装置の散布範囲について説明する図である。It is a figure explaining the spraying range of the spraying apparatus in 1st Embodiment. 第1実施形態における圃場の風向及び風速を考慮した場合の散布装置の散布範囲について説明する図である。It is a figure explaining the spraying range of the spraying device when considering the wind direction and the wind speed of the farm field in 1st Embodiment. 第1実施形態における支援装置の表示部が表示する画面の一例を示す第1図である。It is a 1st figure which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. 第1実施形態における支援装置の表示部が表示する画面の一例を示す第2図である。It is a 2nd figure which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. 第1実施形態における支援装置の表示部が表示する画面の一例を示す第3図である。It is a 3rd figure which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. 第1実施形態における支援装置の表示部が表示する画面の一例を示す第4図である。It is FIG. 4 which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. 第1実施形態における支援装置の表示部が表示する画面の一例を示す第5図である。It is FIG. 5 which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. 第1実施形態における支援装置の表示部が表示する画面の一例を示す第6図である。It is FIG. 6 which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. 第1実施形態における支援装置の表示部が表示する画面の一例を示す第7図である。It is FIG. 7 which shows an example of the screen which the display part of the support apparatus in 1st Embodiment displays. 第2実施形態における飛行体の支援システムの全体図である。It is a whole figure of the support system of the flying body in a 2nd embodiment. 第2実施形態における支援装置の表示部が表示する画面の一例を示す第1図である。It is a 1st figure which shows an example of the screen which the display part of the support apparatus in 2nd Embodiment displays. 第2実施形態における支援装置の表示部が表示する画面の一例を示す第2図である。It is a 2nd figure which shows an example of the screen which the display part of the support apparatus in 2nd Embodiment displays. 第2実施形態における支援装置の表示部が表示する画面の一例を示す第3図である。It is FIG. 3 which shows an example of the screen which the display part of the support apparatus in 2nd Embodiment displays. 第2実施形態における支援装置の表示部が表示する画面の一例を示す第4図である。It is FIG. 4 which shows an example of the screen which the display part of the support apparatus in 2nd Embodiment displays. 飛行体の側面全体図である。FIG. 3 is an overall side view of the flying body. 飛行体の平面全体図である。1 is an overall plan view of an air vehicle.
 以下、本発明の一実施形態について、図面を参照しながら説明する。
[第1実施形態]
 図1は、飛行体1の支援システム80の全体図である。飛行体1の支援システム80は、飛行体1、当該飛行体1の支援装置30、及びサーバ40を備えている。飛行体1の支援システム80は、サーバ40が飛行体1に関する情報や圃場の情報の管理を行い、支援装置30の表示部34がサーバから送信された情報を表示することで、飛行体1の作業結果を飛行体1の作業管理に反映させるシステムである。本実施形態において、支援装置30は、比較的処理能力が高いスマートフォンやタブレット端末の携帯端末を例に説明する。
An embodiment of the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is an overall view of a support system 80 for the air vehicle 1. The support system 80 for the flying vehicle 1 includes the flying vehicle 1, the supporting device 30 for the flying vehicle 1, and the server 40. In the support system 80 of the flying vehicle 1, the server 40 manages the information about the flying vehicle 1 and the information on the farm field, and the display unit 34 of the supporting apparatus 30 displays the information transmitted from the server, so that It is a system that reflects the work result in the work management of the flying vehicle 1. In the present embodiment, the support device 30 will be described by taking a mobile terminal such as a smartphone or a tablet terminal having a relatively high processing capability as an example.
 まず、飛行体1の1つであるマルチコプターについて説明する。図6A及び図6Bに示すように、飛行体1は、本体2と、アーム3と、回転翼4と、スキッド8と、散布装置10を有している。本体2には、複数本のアーム3が取り付けられている。本実施形態の場合、6本のアーム3が本体2に取り付けられている。6本のアーム3は、本体2の中心から水平面(着地状態で地面と平行な面)内で放射状に延びている。但し、アーム3の本数は、6本に限定されず、7本以上であってもよいし、5本以下であってもよい。また、アーム3は、本体側に向けて折り畳み可能な構造としてもよい。アーム3の基端側は、本体2に取り付けられている。複数のアーム3の先端側には、それぞれ回転翼4が取り付けられている。 First, I will explain the multi-copter, which is one of the aircraft 1. As shown in FIGS. 6A and 6B, the aircraft 1 has a main body 2, an arm 3, a rotary wing 4, a skid 8, and a spraying device 10. A plurality of arms 3 are attached to the main body 2. In the case of this embodiment, six arms 3 are attached to the main body 2. The six arms 3 extend radially from the center of the main body 2 in a horizontal plane (a plane parallel to the ground in the landing state). However, the number of arms 3 is not limited to 6, and may be 7 or more, or 5 or less. Further, the arm 3 may have a structure that can be folded toward the main body side. The base end side of the arm 3 is attached to the main body 2. Rotor blades 4 are attached to the tip ends of the plurality of arms 3, respectively.
 回転翼4は、飛行体1が飛行するための揚力を発生させる。回転翼4は、ロータ5及びブレード(プロペラ)6から構成されている。ロータ5は、電動モータ(DCモータ等)から構成されている。ロータ5は、本体2に設けられたバッテリ(図示略)から供給される電力により駆動される。ロータ5の回転軸の上部には、ブレード6が取り付けられている。隣り合う回転翼4は、互いに逆方向に回転する。 The rotor 4 generates lift for the flying body 1. The rotary blade 4 is composed of a rotor 5 and a blade (propeller) 6. The rotor 5 is composed of an electric motor (DC motor or the like). The rotor 5 is driven by electric power supplied from a battery (not shown) provided in the main body 2. The blade 6 is attached to the upper part of the rotation shaft of the rotor 5. Adjacent rotor blades 4 rotate in opposite directions.
 回転翼4の数は、特に限定はされず、必要な揚力等に応じて変更することができる。例えば、飛行体1は、3つの回転翼4を有するトリコプターであってもよいし、4つの回転翼4を有するクアッドコプターであってもよいし、6つの回転翼4を有するヘキサコプターであってもよいし、8つの回転翼4を有するオクトコプターであってもよい。
 スキッド8は、飛行体1が着地したときに設置して本体2を地面上に支持する。具体的には、スキッド8は、本体2から下方、且つ末広がりに延びている。
The number of rotary blades 4 is not particularly limited, and can be changed according to the required lift force and the like. For example, the air vehicle 1 may be a tricopter having three rotor blades 4, a quadcopter having four rotor blades 4, or a hexacopter having six rotor blades 4. It may be an octocopter having eight rotors 4.
The skid 8 is installed when the aircraft 1 lands and supports the main body 2 on the ground. Specifically, the skid 8 extends downward from the main body 2 and spreads toward the end.
 散布装置10は、飛行体1に設けられ、且つ散布物を散布する装置である。図6Aに示すように、散布装置10は、散布物を収容するタンク11と、散布物を散布するポンプ12と、を有している。タンク11は、スキッド8の中途部に設けられた装着部9に装着される。タンク11は、装着部9に対して着脱可能である。タンク11は、農場に散布される散布物が収容される内部空間を形成している。散布物は、例えば、肥料、水、農薬等である。 The spraying device 10 is a device that is provided on the flying body 1 and sprays the sprayed material. As shown in FIG. 6A, the spraying device 10 includes a tank 11 that stores the sprayed product, and a pump 12 that sprays the sprayed product. The tank 11 is mounted on the mounting portion 9 provided in the middle of the skid 8. The tank 11 can be attached to and detached from the attachment portion 9. The tank 11 forms an internal space in which the sprayed material to be sprayed on the farm is stored. The sprayed material is, for example, fertilizer, water, pesticide, or the like.
 ポンプ12は、タンク11の内部に収容された散布物を散布する。ポンプ12は、制御部21と通信可能に接続されており、当該制御部21からの指示に基づいて散布物の散布を行う。ポンプ12の吸込口は、ホース(図示略)を介してタンク11の内部に接続される。また、ポンプ12の吐出口は、ホースを介してノズル13に接続される。ポンプ12は、ノズル13から散布物を散布する。ノズル13は、散布粒子の大きさを比較的均一にして、所定の散布量で散布物を散布することができる。 The pump 12 sprays the sprayed material stored inside the tank 11. The pump 12 is communicably connected to the control unit 21, and sprays the sprayed material based on an instruction from the control unit 21. The suction port of the pump 12 is connected to the inside of the tank 11 via a hose (not shown). The discharge port of the pump 12 is connected to the nozzle 13 via a hose. The pump 12 sprays the sprayed material from the nozzle 13. The nozzle 13 can make the size of the spray particles relatively uniform and spray the sprayed material in a predetermined spray amount.
 図6Aに示すように、ノズル13は、例えば、ロータ5の下方に設けられており、当該ノズル13の噴出口は、下方に向いている。ノズル13は、ポンプ12の駆動によって、タンク11に収容された散布物をノズル13から圃場に向けて散布することができる。即ち、ポンプ12を駆動させている場合、ノズル13は、散布物を散布し、ポンプ12を駆動させない場合、ノズル13は、散布物の散布を停止する。また、図2Aに示すように、ノズル13は、所定の散布角θで散布物の散布を行うため、飛行体1の高度(ノズル13の下端と圃場の地面との距離)H1に応じて散布範囲(有効散布幅)Eが変動する。つまり、散布角θと、飛行体1の高度H1と、に基づいて散布範囲Eを算出することができる。また、図2Bに示すように、圃場に風が生じている場合、圃場に風が生じていない場合に比べて、散布範囲Eは、風の風上から風下に向かって移動する。 As shown in FIG. 6A, the nozzle 13 is provided, for example, below the rotor 5, and the ejection port of the nozzle 13 faces downward. The nozzle 13 can spray the sprayed material stored in the tank 11 from the nozzle 13 toward the field by driving the pump 12. That is, when the pump 12 is driven, the nozzle 13 sprays the sprayed material, and when the pump 12 is not driven, the nozzle 13 stops the spraying of the sprayed material. Further, as shown in FIG. 2A, since the nozzle 13 sprays the sprayed material at a predetermined spraying angle θ, the spraying is performed according to the altitude (distance between the lower end of the nozzle 13 and the ground of the field) H1 of the flying body 1. The range (effective spreading width) E varies. That is, the spray range E can be calculated based on the spray angle θ and the altitude H1 of the flying object 1. Further, as shown in FIG. 2B, in the case where wind is generated in the field, the spraying range E moves from the windward side to the leeward side as compared with the case where the wind is not generated in the field.
 なお、ノズル13は、圃場に向かって散布物を散布できればよく、ノズル13の取り付け位置は、ロータ5の下方に限定されず、スキッド8に設けられていてもよいし、上述した位置に限定されない。また、ノズル13から散布される散布物の散布量、散布角θ、及び散布範囲Eは、切換可能であってもよいし、散布装置10の構成は上記構成に限定されない。 It should be noted that the nozzle 13 only needs to be able to spray the sprayed material toward the field, and the mounting position of the nozzle 13 is not limited to below the rotor 5 and may be provided on the skid 8 or is not limited to the position described above. .. Further, the spray amount, the spray angle θ, and the spray range E of the sprayed products sprayed from the nozzles 13 may be switchable, and the configuration of the spray device 10 is not limited to the above configuration.
 図1に示すように、飛行体1は、揺動操作可能なジョイスティック16や、押圧操作可能な押しボタンスイッチ17等から構成された操作装置15の操作に関する情報(操作情報)に基づいて飛行し、散布作業を行う。詳しく説明すると、飛行体1は、第1制御装置20と、第1通信部24と、位置検出装置25と、高度検出装置26と、を有している。第1制御装置20は、CPUや電子回路等から構成され、操作装置15の操作に応じて飛行体1に関する様々な制御を行う。第1制御装置20は、制御部21と、第1記憶部22と、を有している。制御部21は、CPUや第1記憶部22に記憶されたプログラム等から構成されており、飛行体1に関する様々な制御を行う。制御部21は、例えば、第1通信部24が受信した操作装置15の操作情報に基づいて、回転翼4の制御や散布装置10(ポンプ12)の制御を行う。第1記憶部22は、不揮発性のメモリ等であって、飛行体1の情報を含む様々な情報を記憶する。 As shown in FIG. 1, the flying body 1 flies based on information (operation information) about the operation of an operation device 15 including a joystick 16 that can be rocked, a push button switch 17 that can be pressed, and the like. , Do the spraying work. More specifically, the flying vehicle 1 includes a first control device 20, a first communication unit 24, a position detection device 25, and an altitude detection device 26. The first control device 20 includes a CPU, an electronic circuit, and the like, and performs various controls on the flying vehicle 1 in accordance with the operation of the operation device 15. The first control device 20 has a control unit 21 and a first storage unit 22. The control unit 21 is composed of a CPU, programs stored in the first storage unit 22, and the like, and performs various controls regarding the flying vehicle 1. The control unit 21 controls the rotor 4 and the spraying device 10 (pump 12) based on the operation information of the operation device 15 received by the first communication unit 24, for example. The first storage unit 22 is a non-volatile memory or the like, and stores various information including information on the flying vehicle 1.
 第1通信部24は、操作装置15、及びサーバ40の第3通信部43と無線通信を行う装置である。第1通信部24は、例えば、Wi-Fi(Wireless Fidelity、登録商標)などにより操作装置15及び第3通信部43と無線通信を行う。なお、第1通信部24は、データ通信網や携帯電話通信網などにより操作装置15及び第3通信部43と無線通信を行うものであってもよい。 The first communication unit 24 is a device that performs wireless communication with the operation device 15 and the third communication unit 43 of the server 40. The first communication unit 24 wirelessly communicates with the operation device 15 and the third communication unit 43 by, for example, Wi-Fi (Wireless Fidelity, registered trademark). The first communication unit 24 may perform wireless communication with the operation device 15 and the third communication unit 43 via a data communication network, a mobile phone communication network, or the like.
 位置検出装置25は、D-GPS、GPS、GLONASS、北斗、ガリレオ、みちびき等の衛星測位システム(測位衛星)により、自己の位置(緯度、経度を含む測位情報)を検出可能である。即ち、位置検出装置25は、測位衛星から送信された衛星信号(測位衛星の位置、送信時刻、補正情報等)を受信し、衛星信号に基づいて、飛行体1の位置(例えば、緯度、経度)を検出する。本実施形態において、例えば、位置検出装置25は、飛行体1の本体2に設けられている。位置検出装置25が検出した飛行体1の位置情報は、当該飛行体1の位置を検出した時間と対応付けられ、第1通信部24を介してサーバ40に送信される。なお、位置検出装置25は、飛行体1の位置を検出することができればよく、その取り付け位置や構成は、上記構成に限定されない。 The position detection device 25 can detect its own position (positioning information including latitude and longitude) by a satellite positioning system (positioning satellite) such as D-GPS, GPS, GLONASS, Hokuto, Galileo, and Michibiki. That is, the position detection device 25 receives a satellite signal (position of the positioning satellite, transmission time, correction information, etc.) transmitted from the positioning satellite, and based on the satellite signal, the position of the flying body 1 (for example, latitude and longitude). ) Is detected. In the present embodiment, for example, the position detection device 25 is provided in the main body 2 of the flying body 1. The position information of the flying object 1 detected by the position detecting device 25 is associated with the time when the position of the flying object 1 is detected, and is transmitted to the server 40 via the first communication unit 24. It should be noted that the position detection device 25 only needs to be able to detect the position of the flying body 1, and its mounting position and configuration are not limited to the above configuration.
 高度検出装置26は、自己(飛行体1)の高度H1を検出する装置である。高度検出装置26は、例えば気圧計測する静圧センサなどの気圧センサ26である。気圧センサ26が検出した値は、当該気圧を検出した時間と対応付けられ、第1通信部24を介してサーバ40に送信される。
 なお、本実施形態において、操作装置15は、ジョイスティック16や押しボタンスイッチ17等から構成されたコントローラーであるが、飛行体1を操作できればよく、当該操作装置15は、飛行体1と通信可能に接続されたパーソナルコンピュータ(PC)、スマートフォン(多機能携帯電話)、タブレット端末等のコンピュータ等の端末であってもよい。また、第1制御装置20は、操作装置15の操作情報に基づいて飛行体1の制御を行うが、飛行体1に設けられたセンサから出力された信号や予め設定された飛行予定ルートに基づいて、自律して飛行可能に制御してもよい。飛行予定ルートは、飛行体1が移動するルートであり、散布装置10の制御情報(散布物の散布及び散布停止)の情報を含む。なお、斯かる場合、飛行予定ルートは、第1記憶部22に記憶されており、第1制御装置20が第1通信部24を介して外部(例えばサーバ40)から取得する。
The altitude detection device 26 is a device that detects the altitude H1 of the self (aircraft 1). The altitude detection device 26 is an atmospheric pressure sensor 26 such as a static pressure sensor that measures atmospheric pressure. The value detected by the atmospheric pressure sensor 26 is associated with the time when the atmospheric pressure is detected, and is transmitted to the server 40 via the first communication unit 24.
In the present embodiment, the operation device 15 is a controller including the joystick 16 and the push button switch 17, but the operation device 15 may be operable as long as the operation device 15 can be operated. It may be a terminal such as a connected personal computer (PC), a smartphone (multifunctional mobile phone), a computer such as a tablet terminal, or the like. Further, the first control device 20 controls the flying body 1 based on the operation information of the operating device 15, but based on a signal output from a sensor provided in the flying body 1 or a preset flight route. Therefore, it may be autonomously controlled to be able to fly. The scheduled flight route is a route along which the flying body 1 moves, and includes control information of the spraying device 10 (spraying of sprayed materials and stop of spraying). In such a case, the planned flight route is stored in the first storage unit 22, and the first control device 20 acquires it from the outside (for example, the server 40) via the first communication unit 24.
 支援装置30は、飛行体1による作業(散布作業)の結果を表示することができる端末である。飛行体1やサーバ40と通信可能に接続されたタブレット端末、パーソナルコンピュータ(PC)、スマートフォン(多機能携帯電話)等の携帯端末である。以下の説明において、支援装置30としてタブレット端末を例に挙げて説明する。なお、支援装置30は、サーバ40と通信可能であり、画面(表示部)に様々な情報を表示可能であればよく、操作装置15が画面(表示部)を有している場合、支援装置30としてタブレット端末等の携帯端末の代わりに操作装置15を用いても良い。 The support device 30 is a terminal that can display the result of the work (scattering work) performed by the air vehicle 1. It is a mobile terminal such as a tablet terminal, a personal computer (PC), a smartphone (multifunctional mobile phone), etc. which is communicatively connected to the aircraft 1 or the server 40. In the following description, a tablet terminal will be described as an example of the support device 30. The support device 30 may communicate with the server 40 and can display various information on the screen (display unit). When the operation device 15 has the screen (display unit), the support device 30 can be used. As the unit 30, the operation device 15 may be used instead of the mobile terminal such as the tablet terminal.
 図1に示すように、支援装置30は、第2制御装置31と、第2通信部33と、表示部34と、を有している。第2制御装置31は、CPUや電子回路等から構成され、支援装置30に関する様々な制御を行う。第2制御装置31は、第2記憶部32を有している。第2記憶部32は、不揮発性のメモリ等であって、第2通信部33が受信した情報等を記憶する。 As shown in FIG. 1, the support device 30 includes a second control device 31, a second communication unit 33, and a display unit 34. The second control device 31 includes a CPU, an electronic circuit, and the like, and performs various controls regarding the support device 30. The second control device 31 has a second storage unit 32. The second storage unit 32 is a non-volatile memory or the like, and stores information and the like received by the second communication unit 33.
 第2通信部33は、サーバ40の第3通信部43と無線通信を行う装置である。第2通信部33は、例えば、Wi-Fi(Wireless Fidelity、登録商標)などにより第3通信部43との無線通信を行う。第2通信部33は、例えば、圃場の領域及び圃場の周囲の情報をサーバ40から受信する。なお、第2通信部33は、データ通信網や携帯電話通信網などにより第3通信部43との無線通信を行うものであってもよい。 The second communication unit 33 is a device that wirelessly communicates with the third communication unit 43 of the server 40. The second communication unit 33 performs wireless communication with the third communication unit 43 by, for example, Wi-Fi (Wireless Fidelity, registered trademark). The second communication unit 33 receives, for example, information on the field area and the field surroundings from the server 40. The second communication unit 33 may perform wireless communication with the third communication unit 43 via a data communication network, a mobile phone communication network, or the like.
 表示部34は、第2記憶部32に記憶されている種々の情報や、第2通信部33が受信した情報や第2記憶部32に記憶された情報を表示することができる。表示部34は、圃場の領域及び圃場の周囲を表示する。表示部34は、作業者の指先等で操作可能なタッチパネル等であり、当該表示部34を操作することで支援装置30を操作できる。なお、表示部34が指先等で操作可能なタッチパネルではない場合、支援装置30は、操作可能な押しボタンスイッチ等の操作具を備えていてもよい。 The display unit 34 can display various information stored in the second storage unit 32, information received by the second communication unit 33, and information stored in the second storage unit 32. The display unit 34 displays the field area and the periphery of the field. The display unit 34 is a touch panel or the like that can be operated by the operator's fingertip or the like, and the support device 30 can be operated by operating the display unit 34. If the display unit 34 is not a touch panel that can be operated with a fingertip or the like, the support device 30 may include an operation tool such as an operable push button switch.
 図1に示すように、サーバ40は、飛行体1等の外部から情報を受信し、当該情報に所定の処理を行い、処理後の情報を支援装置30に送信する。サーバ40は、第3制御装置41と、第3通信部43と、を有している。第3制御装置41は、CPUや電子回路等から構成され、様々な演算処理を行う。例えば、第3制御装置41は、支援装置30の表示部34に表示する情報として、第3通信部43が受信した情報に所定の処理を行う。本実施形態において、第3制御装置41は、第3記憶部42を有している。第3記憶部42は、不揮発性のメモリ等であって、第3通信部43が受信した様々な情報や、種々のプログラム等を記憶する。例えば、第3記憶部42は、飛行体1が作業を行う圃場の位置情報を含む地図データを記憶している。 As shown in FIG. 1, the server 40 receives information from the outside such as the air vehicle 1, performs a predetermined process on the information, and transmits the processed information to the support device 30. The server 40 includes a third control device 41 and a third communication unit 43. The third control device 41 includes a CPU, an electronic circuit, and the like, and performs various arithmetic processing. For example, the third control device 41 performs a predetermined process on the information received by the third communication unit 43 as the information displayed on the display unit 34 of the support device 30. In the present embodiment, the third control device 41 has a third storage unit 42. The third storage unit 42 is a non-volatile memory or the like, and stores various information received by the third communication unit 43, various programs, and the like. For example, the third storage unit 42 stores map data including position information of a field on which the air vehicle 1 works.
 第3通信部43は、例えば、通信規格であるIEEE802.11シリーズのWi-Fi(Wireless Fidelity、登録商標)等により、飛行体1の第1通信部24、及び支援装置30の第2通信部33等と無線通信を行うものである。例えば、第3通信部43は、第1通信部24から飛行体1に関する情報等を受信する。また、第3通信部43は、第1通信部24から受信した情報等を第2通信部33に送信する。なお、第3通信部43は、例えば、携帯電話通信網やデータ通信網などにより、第1通信部24及び第2通信部33等と無線通信を行うものであってもよい。 The third communication unit 43 uses, for example, the IEEE 802.11 series Wi-Fi (Wireless Fidelity, registered trademark), which is a communication standard, and the like, and the first communication unit 24 of the aircraft 1 and the second communication unit of the support device 30. It is for wireless communication with 33 or the like. For example, the third communication unit 43 receives information about the flying vehicle 1 from the first communication unit 24. The third communication unit 43 also transmits the information and the like received from the first communication unit 24 to the second communication unit 33. The third communication unit 43 may be a unit that performs wireless communication with the first communication unit 24, the second communication unit 33, and the like through a mobile phone communication network, a data communication network, or the like.
 飛行体1の支援システム80は、支援装置30の表示部34が飛行体1の移動軌跡と散布装置10が散布した散布物の散布範囲Eを表示することで、飛行体1の移動軌跡と作業結果(散布結果)の関係を飛行体1の作業管理に反映させるシステムである。また、飛行体1の支援システム80は、飛行体1に関する情報や、圃場の風に関する情報を取得することで、散布物の散布範囲Eをより正確に表示させることができる。飛行体1の支援システム80において、サーバ40は、例えばフィールドサーバ50から圃場の情報を取得し、当該情報を支援装置30に送信する。 The support system 80 of the flying body 1 displays the moving locus of the flying body 1 and the work range of the flying body 1 by the display unit 34 of the supporting apparatus 30 displaying the moving locus of the flying body 1 and the spraying range E of the scattered matter scattered by the spreading device 10. This is a system that reflects the relationship of the results (scattering results) in the work management of the air vehicle 1. Further, the support system 80 of the flying vehicle 1 can display the spraying range E of the sprayed material more accurately by acquiring the information on the flying vehicle 1 and the information on the wind in the field. In the support system 80 of the air vehicle 1, the server 40 acquires, for example, field information from the field server 50 and transmits the information to the support device 30.
 フィールドサーバ50は、圃場の風に関する情報を検出し、当該情報をサーバ40に送信する。フィールドサーバ50は、圃場の風に関する情報を収集する装置である。フィールドサーバ50は、圃場に設置されており、図1に示すように、第4制御装置51と、第4通信部53と、情報収集部54と、を有している。
 第4制御装置51は、CPUや電子回路等から構成され、情報収集部54が取得した情報(データ)の処理を行う。また、第4制御装置51は、第4記憶部52を有している。第4記憶部52は、不揮発性のメモリ等であって、第4制御装置51が処理した情報を含む様々な情報を記憶する。
The field server 50 detects information about the wind in the field and sends the information to the server 40. The field server 50 is a device that collects information about wind in the field. The field server 50 is installed in a field and has a fourth control device 51, a fourth communication unit 53, and an information collecting unit 54, as shown in FIG.
The fourth control device 51 includes a CPU, an electronic circuit, and the like, and processes the information (data) acquired by the information collecting unit 54. The fourth control device 51 also has a fourth storage unit 52. The fourth storage unit 52 is a non-volatile memory or the like, and stores various information including information processed by the fourth control device 51.
 第4通信部53は、例えば、通信規格であるIEEE802.11シリーズのWi-Fi(Wireless Fidelity、登録商標)等により、サーバ40の第3通信部43と無線通信を行うものである。第4通信部53は、第3通信部43に圃場の風に関する情報を送信する。なお、第4通信部53は、例えば、携帯電話通信網やデータ通信網などにより、第3通信部43と無線通信を行うものであってもよい。 The fourth communication unit 53 wirelessly communicates with the third communication unit 43 of the server 40 by, for example, IEEE 802.11 series Wi-Fi (Wireless Fidelity, a registered trademark) which is a communication standard. The fourth communication unit 53 transmits information about the wind in the field to the third communication unit 43. The fourth communication unit 53 may perform wireless communication with the third communication unit 43, for example, via a mobile phone communication network or a data communication network.
 情報収集部54は、圃場内の環境に関する情報、特に圃場内の風の情報を収集する。図1に示すように、情報収集部54は、例えば、風速センサ54a及び風向センサ54bのセンサを含む。風速センサ54aは、圃場内の風速を計測するセンサである。風向センサ54bは、圃場内の風向を計測するセンサである。情報収集部54が収集した情報は、当該情報を収集した時間と対応付けられ、第4通信部53及び第3通信部43を介して第2通信部33に送信される。 The information collecting unit 54 collects information on the environment in the field, particularly information on wind in the field. As shown in FIG. 1, the information collecting unit 54 includes, for example, sensors such as a wind speed sensor 54a and a wind direction sensor 54b. The wind speed sensor 54a is a sensor that measures the wind speed in the field. The wind direction sensor 54b is a sensor that measures the wind direction in the field. The information collected by the information collecting unit 54 is associated with the time when the information was collected, and is transmitted to the second communication unit 33 via the fourth communication unit 53 and the third communication unit 43.
 以下、支援装置30について詳しく説明する。支援装置30は、サーバ40を介して飛行体1に関する情報や圃場の風に関する情報等、様々な情報を取得し、当該情報を支援装置30の表示部34に表示する。図1に示すように、支援装置30の第2制御装置31は、位置情報取得部31aと、散布情報取得部31bと、高度算出部31cと、高度情報取得部31dと、風情報取得部31eと、を有している。言い換えると、飛行体1の支援装置30は、位置情報取得部31a、散布情報取得部31b、高度算出部31c、高度情報取得部31d、及び風情報取得部31eを備えている。 Hereinafter, the support device 30 will be described in detail. The support device 30 acquires various information such as information about the air vehicle 1 and information about wind in the field via the server 40, and displays the information on the display unit 34 of the support device 30. As shown in FIG. 1, the second control device 31 of the support device 30 includes a position information acquisition unit 31a, a spray information acquisition unit 31b, an altitude calculation unit 31c, an altitude information acquisition unit 31d, and a wind information acquisition unit 31e. And have. In other words, the support device 30 of the air vehicle 1 includes a position information acquisition unit 31a, a spray information acquisition unit 31b, an altitude calculation unit 31c, an altitude information acquisition unit 31d, and a wind information acquisition unit 31e.
 位置情報取得部31a、散布情報取得部31b、高度算出部31c、高度情報取得部31d、及び風情報取得部31eは、CPUや電子回路、第2記憶部32に記憶されたプログラム等から構成されている。位置情報取得部31aは、飛行体1の位置を取得する。詳しくは、位置情報取得部31aは、第2通信部33が第1通信部24及び第3通信部43を介して受信した飛行体1の位置情報を取得する。 The position information acquisition unit 31a, the spray information acquisition unit 31b, the altitude calculation unit 31c, the altitude information acquisition unit 31d, and the wind information acquisition unit 31e are configured by a CPU, an electronic circuit, a program stored in the second storage unit 32, and the like. ing. The position information acquisition unit 31a acquires the position of the air vehicle 1. Specifically, the position information acquisition unit 31a acquires the position information of the aircraft 1 that the second communication unit 33 has received via the first communication unit 24 and the third communication unit 43.
 散布情報取得部31bは、飛行体1に設けられた散布装置10の散布物の散布に関する情報を取得する。散布情報取得部31bは、第2通信部33が第1通信部24及び第3通信部43を介して受信した散布装置10の散布物の散布に関する情報を取得する。例えば、散布情報取得部31bは、時間と対応付けられた散布物の散布量や散布角θの情報、散布装置10の散布又は散布停止についての情報を取得する。 The spraying information acquisition unit 31b acquires information on the spraying of the sprayed material by the spraying device 10 provided in the air vehicle 1. The spraying information acquisition unit 31b acquires the information on the spraying of the sprayed material of the spraying device 10 received by the second communication unit 33 via the first communication unit 24 and the third communication unit 43. For example, the spraying information acquisition unit 31b acquires information on the spraying amount of the sprayed product and the spraying angle θ associated with time, and information on spraying or spraying stop of the spraying device 10.
 高度算出部31cは、第2通信部33が第1通信部24及び第3通信部43を介して受信した気圧センサ26の値に基づいて、飛行体1が地上における気圧と、飛行体1が飛行中における気圧とを算出し、飛行体1の高度H1を演算する。
 高度情報取得部31dは、飛行体1の高度H1に関する情報を取得する。具体的には、高度情報取得部31dは、高度算出部31cが算出した飛行体1の高度H1の演算結果を取得する。なお、本実施形態において、高度情報取得部31dは、高度算出部31cが算出した飛行体1の高度H1の演算結果を取得するが、高度情報取得部31dは、飛行体1の高度H1に関する情報を取得できればよく、サーバ40が気圧センサ26の検出した値に基づいて、飛行体1の高度H1を演算し、当該高度情報取得部31dは、第2通信部33がサーバ40の第3通信部43から受信した飛行体1の高度H1の演算結果を取得してもよいし、飛行体1の高度H1に関する情報の取得元は、上述した高度算出部31cに限定されない。
Based on the value of the atmospheric pressure sensor 26 that the second communication unit 33 has received via the first communication unit 24 and the third communication unit 43, the altitude calculation unit 31c determines that The atmospheric pressure during flight is calculated, and the altitude H1 of the flying object 1 is calculated.
The altitude information acquisition unit 31d acquires information on the altitude H1 of the flying vehicle 1. Specifically, the altitude information acquisition unit 31d acquires the calculation result of the altitude H1 of the aircraft 1 calculated by the altitude calculation unit 31c. In the present embodiment, the altitude information acquisition unit 31d acquires the calculation result of the altitude H1 of the flying object 1 calculated by the altitude calculation unit 31c, but the altitude information acquisition unit 31d uses the information about the altitude H1 of the flying object 1. It is sufficient that the server 40 calculates the altitude H1 of the air vehicle 1 based on the value detected by the atmospheric pressure sensor 26, and the altitude information acquisition unit 31d causes the second communication unit 33 to operate the third communication unit of the server 40. The calculation result of the altitude H1 of the flying object 1 received from 43 may be acquired, and the acquisition source of the information regarding the altitude H1 of the flying object 1 is not limited to the above-described altitude calculation unit 31c.
 風情報取得部31eは、圃場の風向及び風速を含む情報を取得する。具体的には、風情報取得部31eは、第2通信部33が第1通信部24及び第3通信部43を介して受信した圃場の風に関する情報を取得する。なお、本実施形態において、フィールドサーバ50が圃場の風に関する情報を検出し、サーバ40に送信するが、風情報取得部31eは、圃場の風に関する情報を取得することができればよく、フィールドサーバ50の代わりに、サーバ40がインターネット等の外部ネットワークを介して、気象庁のサーバ等に接続し、当該気象庁が提供する気象情報(少なくとも風向及び風速を含む情報)を取得して、風情報取得部31eが第3通信部43及び第2通信部33を介して、当該気象情報を取得してもよい。或いは、サーバ40が、気象情報を提供する気象情報提供会社等のサーバにアクセスすることによって、気象情報を取得したり、その他の情報提供会社が提供する気象情報を取得したりして、風情報取得部31eが第3通信部43及び第2通信部33を介して、当該気象情報を取得してもよい。 The wind information acquisition unit 31e acquires information including the wind direction and wind speed in the field. Specifically, the wind information acquisition unit 31e acquires information about the wind in the field received by the second communication unit 33 via the first communication unit 24 and the third communication unit 43. In addition, in the present embodiment, the field server 50 detects the information on the wind in the field and transmits it to the server 40. However, the wind information acquisition unit 31e only needs to be able to acquire the information on the wind in the field, and the field server 50. Instead of, the server 40 connects to a server or the like of the Meteorological Agency via an external network such as the Internet, acquires the meteorological information (information including at least wind direction and wind speed) provided by the Meteorological Agency, and acquires the wind information acquisition unit 31e. May acquire the weather information via the third communication unit 43 and the second communication unit 33. Alternatively, the server 40 accesses the server of a weather information providing company or the like that provides the weather information to obtain the weather information or the weather information provided by another information providing company to obtain wind information. The acquisition unit 31e may acquire the weather information via the third communication unit 43 and the second communication unit 33.
 また、図1に示すように、支援装置30の第2制御装置31は、軌跡生成部31fと、演算部31gと、メッシュ設定部31hと、対応付け部31iと、を有している。言い換えると、飛行体1の支援装置30は、軌跡生成部31f、演算部31g、メッシュ設定部31h、及び対応付け部31iを備えている。軌跡生成部31f、演算部31g、メッシュ設定部31h、及び対応付け部31iは、CPUや第2記憶部32に記憶されているプログラム等から構成されている。 Further, as shown in FIG. 1, the second control device 31 of the support device 30 includes a trajectory generation unit 31f, a calculation unit 31g, a mesh setting unit 31h, and a correspondence unit 31i. In other words, the support device 30 of the flying vehicle 1 includes the trajectory generation unit 31f, the calculation unit 31g, the mesh setting unit 31h, and the association unit 31i. The trajectory generation unit 31f, the calculation unit 31g, the mesh setting unit 31h, and the associating unit 31i are configured by a CPU, a program stored in the second storage unit 32, and the like.
 軌跡生成部31fは、位置情報取得部31aが取得した飛行体1の位置情報に基づいて、飛行体1の移動軌跡を生成する。具体的には、軌跡生成部31fは、飛行体1の位置座標を線で結ぶことで移動軌跡を生成する。例えば、軌跡生成部31fは、所定の時点における飛行体1の位置(n)の位置座標と、前回の時点における飛行体1の位置(n-1)の位置座標と、を線で結ぶことで移動軌跡を生成する。また、軌跡生成部31fは、補正部31f1を有している。補正部31f1は、位置情報取得部31aが取得した飛行体1の位置のばらつきを補正する。具体的には、例えば、補正部31f1は、位置情報取得部31aが取得した飛行体1の位置を平均化することで、飛行体1の位置のばらつきを補正する。なお、補正部31f1は、位置情報取得部31aが取得した飛行体1の位置を平均化できればよく、ばらつきの補正方法は、平均化に限定されない。 The trajectory generation unit 31f generates a movement trajectory of the flight vehicle 1 based on the position information of the flight vehicle 1 acquired by the location information acquisition unit 31a. Specifically, the trajectory generation unit 31f generates a movement trajectory by connecting the position coordinates of the flying vehicle 1 with a line. For example, the trajectory generation unit 31f connects the position coordinates of the position (n) of the flying object 1 at a predetermined time point and the position coordinates of the position (n-1) of the flying object 1 at the previous time point with a line. Generate a trajectory. The trajectory generation unit 31f also has a correction unit 31f1. The correction unit 31f1 corrects the variation in the position of the aircraft 1 acquired by the position information acquisition unit 31a. Specifically, for example, the correction unit 31f1 corrects the variation in the position of the flying body 1 by averaging the positions of the flying body 1 acquired by the position information acquisition unit 31a. Note that the correction unit 31f1 only needs to be able to average the positions of the aircraft 1 acquired by the position information acquisition unit 31a, and the method of correcting variations is not limited to averaging.
 演算部31gは、散布情報取得部31bが取得した散布情報に基づいて、散布範囲Eを演算する。詳しくは、演算部31gは、所定の時点における散布情報(散布物の散布量、散布角θの情報、散布装置10の散布又は散布停止についての情報)、飛行体1の位置情報、飛行体1の移動速度、及び高度H1等に基づいて、散布範囲Eを演算する。具体的には、演算部31gは、ノズル13の散布角θと飛行体1の高度H1とで算出した範囲と、飛行体1の位置から散布範囲Eを演算する。 The calculation unit 31g calculates the spray range E based on the spray information acquired by the spray information acquisition unit 31b. More specifically, the calculation unit 31g has the spray information (spraying amount of sprayed material, information of spraying angle θ, information on spraying or stopping spraying of the spraying device 10), position information of the flying body 1, and flying body 1 at a predetermined time point. The spraying range E is calculated on the basis of the moving speed, the altitude H1, and the like. Specifically, the calculation unit 31g calculates the spray range E from the range calculated by the spray angle θ of the nozzle 13 and the altitude H1 of the flying vehicle 1 and the position of the flying vehicle 1.
 また、演算部31gは、図2Bに示すように、圃場の風速が所定以上(例えば風速1m/s以上)である場合、散布情報、位置情報、飛行体1の移動速度、及び高度H1に加えて、風情報取得部31eが取得した風向及び風速に基づいて、散布範囲Eを演算可能である。詳しくは、演算部31gは、所定の時点における散布情報(散布物の散布量、散布角θの情報、散布装置10の散布又は散布停止についての情報)、飛行体1の位置情報、飛行体1の移動速度、高度H1、風向、及び風速等に基づいて、散布範囲Eを演算する。具体的には、演算部31gは、ノズル13の散布角θと飛行体1の高度H1とで算出した範囲に、風速と飛行体1の移動速度とを合成して散布範囲Eを演算する。 In addition, as shown in FIG. 2B, when the wind speed in the field is equal to or higher than a predetermined value (for example, wind speed is 1 m/s or higher), the calculation unit 31g adds the spray information, the position information, the moving speed of the flying body 1, and the altitude H1. Then, the spray range E can be calculated based on the wind direction and the wind speed acquired by the wind information acquisition unit 31e. More specifically, the calculation unit 31g has the spray information (spraying amount of sprayed material, information of spraying angle θ, information on spraying or stopping spraying of the spraying device 10), position information of the flying body 1, and flying body 1 at a predetermined time point. The spraying range E is calculated based on the moving speed, the altitude H1, the wind direction, the wind speed, and the like. Specifically, the calculation unit 31g calculates the spraying range E by combining the wind speed and the moving speed of the flying vehicle 1 with the range calculated by the spraying angle θ of the nozzle 13 and the altitude H1 of the flying vehicle 1.
 なお、演算部31gは、散布情報取得部31bが取得した散布情報、並びに風情報取得部31eが取得した風向及び風速に基づいて、散布範囲Eを演算できればよく、その演算方法は上述した演算方法に限定されない。例えば、本実施形態において、ノズル13の散布角θと飛行体1の高度H1とで算出した範囲に、風速と飛行体1の移動速度とを合成して散布範囲Eを演算するが、飛行体1の高度H1の代わりに、図2Aに示すように、飛行体1の高度H1から圃場の作物Rの草丈H2を減算した距離H3を用いて、ノズル13の散布角θと、ノズル13と作物Rとの距離H3と、で算出した範囲に、風速と飛行体1の移動速度とを合成して散布範囲Eを演算してもよい。なお、斯かる場合、フィールドサーバ50の情報収集部54は、例えば、カメラ等の撮像部を含んでおり、フィールドサーバ50は、当該撮像部が撮像した画像に基づいて作物Rの草丈H2の検出を行う。 Note that the calculation unit 31g only needs to be able to calculate the spray range E based on the spray information acquired by the spray information acquisition unit 31b and the wind direction and wind speed acquired by the wind information acquisition unit 31e. The calculation method is the above-described calculation method. Not limited to. For example, in the present embodiment, the spraying range E is calculated by combining the wind speed and the moving speed of the flying object 1 in the range calculated by the spraying angle θ of the nozzle 13 and the altitude H1 of the flying object 1. 2A, instead of the altitude H1 of 1, the distance H3 obtained by subtracting the plant height H2 of the crop R in the field from the altitude H1 of the air vehicle 1 is used, and the spray angle θ of the nozzle 13 and the nozzle 13 and the crop The scattering range E may be calculated by combining the wind speed and the moving speed of the flying object 1 in the range calculated by the distance H3 with R. In such a case, the information collecting unit 54 of the field server 50 includes, for example, an image capturing unit such as a camera, and the field server 50 detects the plant height H2 of the crop R based on the image captured by the image capturing unit. I do.
 メッシュ設定部31hは、散布情報取得部31bが取得した散布情報に含まれる散布量の情報(散布量データ)を、演算部31gが演算した散布範囲E毎に割り当てる処理を行う。例えば、メッシュサイズが1mである場合、メッシュ設定部31hは、エリアQnの1辺の幅(縦幅、横幅)を1mに設定して、1mごとに散布範囲Eを複数のエリアQnに区切り、散布量データを、当該メッシュサイズで区切ることで形成したエリアQnに入るデータとして分割する。ここで、メッシュ設定部31hは、エリアQnに入るデータが複数ある場合には、例えば、データの値を平均し、平均値をエリアQnに対応する分割データDnとして割り当てる。また、メッシュ設定部31hは、エリアQnに入るデータが1つである場合には、当該データをエリアQnに対応する分割データDnとして割り当てる。なお、メッシュサイズは、後述する表示部34の基本表示部59に示された「メッシュサイズ」の数値を入力することで設定することができてもよい。また、圃場データを、エリアQnに対応する分割データDnに割り当てる方法は、上述した例に限定されない。また、メッシュ設定部31hは、エリアQn毎の分割データDnに基づいて、散布物の散布量をエリアQn毎に設定する。 The mesh setting unit 31h performs a process of allocating information on the amount of spray (dispersion amount data) included in the spray information acquired by the spray information acquisition unit 31b for each spray range E calculated by the calculator 31g. For example, when the mesh size is 1 m, the mesh setting unit 31h sets the width (vertical width, horizontal width) of one side of the area Qn to 1 m, divides the spray range E into a plurality of areas Qn every 1 m, The spread amount data is divided as data that enters the area Qn formed by dividing the spread amount data by the mesh size. Here, when there are a plurality of data in the area Qn, the mesh setting unit 31h averages the data values and assigns the average value as the divided data Dn corresponding to the area Qn. In addition, the mesh setting unit 31h assigns the data as divided data Dn corresponding to the area Qn when the number of data in the area Qn is one. The mesh size may be set by inputting a numerical value of “mesh size” shown in the basic display section 59 of the display section 34 described later. Further, the method of assigning the field data to the divided data Dn corresponding to the area Qn is not limited to the above example. In addition, the mesh setting unit 31h sets the amount of scattered matter for each area Qn based on the divided data Dn for each area Qn.
 対応付け部31iは、軌跡生成部31fが生成した飛行体1の移動軌跡の情報と、飛行体1の高度H1に関する情報と、メッシュ設定部31hが処理した情報と、を対応付ける。具体的には、対応付け部31iは、時間に基づいて、同一時刻における飛行体1の移動軌跡の情報と、飛行体1の高度H1に関する情報と、メッシュ設定部31hが処理した情報と、を対応付ける。 The associating unit 31i associates the information about the moving trajectory of the flying object 1 generated by the trajectory generating unit 31f, the information about the altitude H1 of the flying object 1, and the information processed by the mesh setting unit 31h. Specifically, the associating unit 31i, based on the time, the information of the movement trajectory of the flying body 1 at the same time, the information about the altitude H1 of the flying body 1, and the information processed by the mesh setting unit 31h. Correspond.
 また、支援装置30の第2制御装置31は、操作情報取得部31jと、操作軌跡生成部31kと、を有している。言い換えると、飛行体1の支援装置30は、操作情報取得部31j及び操作軌跡生成部31kを備えている。操作情報取得部31j及び操作軌跡生成部31kは、CPUや第2記憶部32に記憶されているプログラム等から構成されている。操作情報取得部31jは、操作装置15の操作情報を取得する。具体的には、操作情報取得部31jは、第1通信部24、第3通信部43、及び第2通信部33を介して操作装置15の操作情報を取得する。なお、本実施形態において、操作情報取得部31jは、第1通信部24、第3通信部43、及び第2通信部33を介して操作情報を取得するが、操作情報取得部31jは、操作装置15の操作情報を取得できればよく、操作情報は、操作装置15から第2通信部33に送信されてもよく、操作情報の取得元は、上記構成に限定されない。 The second control device 31 of the support device 30 also includes an operation information acquisition unit 31j and an operation trajectory generation unit 31k. In other words, the support device 30 of the flying vehicle 1 includes the operation information acquisition unit 31j and the operation trajectory generation unit 31k. The operation information acquisition unit 31j and the operation trajectory generation unit 31k are configured by a CPU, a program stored in the second storage unit 32, and the like. The operation information acquisition unit 31j acquires the operation information of the operation device 15. Specifically, the operation information acquisition unit 31j acquires the operation information of the operation device 15 via the first communication unit 24, the third communication unit 43, and the second communication unit 33. In addition, in the present embodiment, the operation information acquisition unit 31j acquires the operation information via the first communication unit 24, the third communication unit 43, and the second communication unit 33, but the operation information acquisition unit 31j operates The operation information of the device 15 may be acquired, and the operation information may be transmitted from the operation device 15 to the second communication unit 33. The acquisition source of the operation information is not limited to the above configuration.
 操作軌跡生成部31kは、操作情報取得部31jが取得した操作情報に基づく飛行体1の移動軌跡を生成する。操作軌跡生成部31kが生成する操作情報に基づく飛行体1の移動軌跡は、圃場の風雨等の抵抗や、障害物を考慮しない理想の移動軌跡である。
 以下、表示部34に表示される画面について詳しく説明する。図3A~図3Gに示すように、表示部34は、飛行体1の散布作業の結果を示す散布画面M1を表示することができる。散布画面M1は、圃場の領域、圃場の周囲、飛行体1の実際の移動軌跡、操作情報に基づく飛行体1の移動軌跡、飛行体1の高度H1、散布物の散布範囲Eを表示する。これによって、表示部34は、飛行体1の散布作業の結果を表示するため、散布作業の結果を手動で入力することなく、容易に確認することができる。また、散布物の散布範囲Eだけでなく、移動軌跡を散布範囲Eと同時に表示させることで、移動軌跡と散布範囲Eの関係性を確認することができ、作業計画に活用することができる。
The operation trajectory generation unit 31k generates a movement trajectory of the flying vehicle 1 based on the operation information acquired by the operation information acquisition unit 31j. The movement locus of the flying body 1 based on the operation information generated by the operation locus generation unit 31k is an ideal movement locus that does not consider resistance such as wind and rain in the field and obstacles.
Hereinafter, the screen displayed on the display unit 34 will be described in detail. As shown in FIGS. 3A to 3G, the display unit 34 can display a spraying screen M1 that shows the result of the spraying work of the aircraft 1. The spraying screen M1 displays the field area, the periphery of the field, the actual movement trajectory of the flying vehicle 1, the moving trajectory of the flying vehicle 1 based on the operation information, the altitude H1 of the flying vehicle 1, and the scattering range E of the scattered matter. As a result, the display unit 34 displays the result of the spraying work of the flying object 1, so that the result of the spraying work can be easily confirmed without manually inputting the result. Further, by displaying not only the distribution range E of the scattered matter but also the movement locus at the same time as the scattering range E, the relationship between the movement locus and the scattering range E can be confirmed and can be utilized for work planning.
 詳しくは、散布画面M1は、基本表示部59と、周辺画像60と、移動軌跡画像61と、操作軌跡画像62と、高度表示画像65と、散布範囲画像66と、を有している。基本表示部59は、飛行体1の作業に関する様々な情報を表示する。具体的には、例えば、基本表示部59は、飛行体1が作業を行った圃場名、圃場の大きさ、作業の開始日時、作業時間、作業の終了日時、飛行体1の型番、メッシュサイズ、圃場における風向及び風速等を表示する。 Specifically, the scatter screen M1 has a basic display unit 59, a peripheral image 60, a movement track image 61, an operation track image 62, an altitude display image 65, and a scatter range image 66. The basic display unit 59 displays various information regarding the work of the flying vehicle 1. Specifically, for example, the basic display unit 59 displays the field name on which the aircraft 1 has worked, the size of the field, the start date and time of the work, the working time, the end date and time of the work, the model number of the aircraft 1, and the mesh size. , Displays the wind direction, wind speed, etc. in the field.
 図3A~図3Gに示すように、周辺画像60は、圃場の領域と、圃場の周囲を表示する画像である。周辺画像60は、例えば圃場の領域及び圃場の周囲を鳥瞰図で表示する。
 図3A、図3C等に示すように、移動軌跡画像61は、飛行体1の実際の移動軌跡を表示する画像であり、軌跡生成部31fが生成した軌跡に基づく画像である。言い換えると、表示部34は、位置情報取得部31aが取得した飛行体1の位置と、補正部31f1が補正した飛行体1の位置と、に基づいて、飛行体1の移動軌跡を表示する。表示部34は、移動軌跡画像61を圃場の領域内と圃場の領域外とで異なる表示形態で表示する。具体的には、表示部34は、圃場の領域内における移動軌跡画像61を実線61bで表示し、圃場の領域外における移動軌跡画像61を破線61cで表示する。また、表示部34は、移動軌跡画像61のうち、飛行体1の移動開始地点、及び飛行体1の最終地点を所定の図形で表示する。本実施形態において、表示部34は、飛行体1の移動開始地点を略円形の図形61aで表示し、飛行体1の最終地点を飛行体1の簡略図形61dで表示する。
As shown in FIGS. 3A to 3G, the peripheral image 60 is an image that displays a field region and the periphery of the field. The peripheral image 60 displays, for example, the area of the farm field and the periphery of the farm field in a bird's-eye view.
As illustrated in FIG. 3A, FIG. 3C, and the like, the movement trajectory image 61 is an image that displays the actual movement trajectory of the flying object 1, and is an image based on the trajectory generated by the trajectory generation unit 31f. In other words, the display unit 34 displays the movement trajectory of the flying body 1 based on the position of the flying body 1 acquired by the position information obtaining unit 31a and the position of the flying body 1 corrected by the correction unit 31f1. The display unit 34 displays the movement trajectory image 61 in different display forms inside the field area and outside the field area. Specifically, the display unit 34 displays the movement trajectory image 61 within the field area with a solid line 61b, and displays the movement trajectory image 61 outside the field area with a broken line 61c. In addition, the display unit 34 displays the movement start point of the flying body 1 and the final point of the flying body 1 in the movement locus image 61 in a predetermined figure. In the present embodiment, the display unit 34 displays the movement start point of the flying body 1 by the substantially circular graphic 61a and the final point of the flying body 1 by the simplified graphic 61d of the flying body 1.
 図3Bに示すように、操作軌跡画像62は、操作装置15の操作情報に基づく飛行体1の移動軌跡を表示する画像であり、操作軌跡生成部31kが生成した軌跡に基づく画像である。操作軌跡画像62は、少なくとも移動軌跡画像61とは別の表示形態で表示される。操作軌跡画像62は、例えば、2点鎖線で表示される。操作軌跡画像62は、散布画面M1に表示された切換ボタン63を操作することで、表示又は非表示を切換えることができる。なお、表示部34は、操作軌跡画像62を表示している場合、移動軌跡画像61を非表示にする。言い換えると、表示部34は、移動軌跡画像61と操作軌跡画像62とのいずれか一方を表示する。なお、本実施形態において、表示部34は、移動軌跡画像61と操作軌跡画像62とのいずれか一方を表示するが、表示部34が表示する画像が煩雑にならない場合は、表示部34は、移動軌跡画像61と操作軌跡画像62との両方を同時に表示してもよい。これによって、飛行体1の操作と実際の移動軌跡を確認することができるため、操作装置15の操作に対する飛行体1の動きの特性を把握することができる。このため、飛行体1の操作者は、飛行体1の操作性をより適格に把握することができるため、飛行体1の操作スキルの早期向上を図ることができる。 As shown in FIG. 3B, the operation trajectory image 62 is an image that displays the movement trajectory of the flying vehicle 1 based on the operation information of the operation device 15, and is an image that is based on the trajectory generated by the operation trajectory generation unit 31k. The operation trajectory image 62 is displayed in a display form different from at least the movement trajectory image 61. The operation trajectory image 62 is displayed by, for example, a two-dot chain line. The operation trajectory image 62 can be switched between display and non-display by operating the switching button 63 displayed on the scatter screen M1. The display unit 34 hides the movement trajectory image 61 when the operation trajectory image 62 is displayed. In other words, the display unit 34 displays either the movement trajectory image 61 or the operation trajectory image 62. In the present embodiment, the display unit 34 displays either the movement trajectory image 61 or the operation trajectory image 62. However, if the image displayed by the display unit 34 is not complicated, the display unit 34 displays Both the movement track image 61 and the operation track image 62 may be displayed simultaneously. As a result, the operation of the flying vehicle 1 and the actual movement trajectory can be confirmed, so that the characteristics of the movement of the flying vehicle 1 with respect to the operation of the operating device 15 can be understood. Therefore, the operator of the flying vehicle 1 can understand the operability of the flying vehicle 1 in a more appropriate manner, so that the operating skill of the flying vehicle 1 can be improved at an early stage.
 なお、本実施形態において、操作軌跡生成部31kが操作情報に基づく飛行体1の移動軌跡を生成し、表示部34は、当該移動軌跡に基づいて操作軌跡画像62を表示して、操作装置15の操作を表示するが、表示部34は、操作装置15の操作情報を表示することができればよく、操作軌跡画像62の代わりに、図3Cに示すように、操作装置15を簡略化したアイコン64を表示させて、各地点の操作装置15の操作状態を表示させるような構成であってもよいし、その表示画像は、上述した画像に限定されない。なお、図3Cに示すように、操作装置15を簡略化したアイコン64を表示させる場合、矢印等を用いて操作装置15の操作状態を表示させてもよい。 In the present embodiment, the operation trajectory generation unit 31k generates the movement trajectory of the flying vehicle 1 based on the operation information, and the display unit 34 displays the operation trajectory image 62 based on the movement trajectory, and the operation device 15 is displayed. However, the display unit 34 only needs to be able to display the operation information of the operation device 15, and instead of the operation trajectory image 62, an icon 64 that simplifies the operation device 15 as shown in FIG. 3C. May be displayed to display the operation state of the operation device 15 at each point, and the display image is not limited to the above-mentioned image. As shown in FIG. 3C, when the simplified icon 64 of the operating device 15 is displayed, the operating state of the operating device 15 may be displayed using an arrow or the like.
 図3Dに示すように、高度表示画像65は、飛行体1の高度H1を表示する画像であり、高度情報取得部31dが取得した飛行体1の高度H1に関する情報に基づく画像である。言い換えると、表示部34は、高度情報取得部31dが取得した飛行体1の高度H1に基づいて、当該飛行体1の高度H1を表示する。高度表示画像65は、各地点(各時点)における飛行体1の高度H1を数値で表示する。これによって、高度情報を散布範囲Eと同時に表示させることで、飛行体1の高度H1と散布範囲Eの関係性を確認でき、作業計画に活用することができる。詳しくは、支援装置30を操作して、移動軌跡画像61のうち、一部を選択すると、表示部34は、当該選択された地点における高度表示画像65を表示し、他の地点における高度表示画像65は非表示にする。なお、本実施形態において、表示部34は、選択された地点における高度H1を値で表示するが、表示部34は、飛行体1の高度H1を表示すればよく、高度H1に応じて色彩などの表示形態を異ならせて飛行体1の高度H1を表示させてもよいし、飛行体1の高度H1の表示形式は、上述した表示形式に限定されない。 As shown in FIG. 3D, the altitude display image 65 is an image that displays the altitude H1 of the aircraft 1, and is an image based on the information regarding the altitude H1 of the aircraft 1 acquired by the altitude information acquisition unit 31d. In other words, the display unit 34 displays the altitude H1 of the aircraft 1 based on the altitude H1 of the aircraft 1 acquired by the altitude information acquisition unit 31d. The altitude display image 65 numerically displays the altitude H1 of the flying vehicle 1 at each point (each time point). Accordingly, by displaying the altitude information at the same time as the spray range E, the relationship between the altitude H1 of the flying object 1 and the spray range E can be confirmed and can be utilized for work planning. Specifically, when the assisting device 30 is operated to select a part of the movement trajectory image 61, the display unit 34 displays the altitude display image 65 at the selected point, and the altitude display image at another point. 65 is hidden. In addition, in the present embodiment, the display unit 34 displays the altitude H1 at the selected point as a value, but the display unit 34 may display the altitude H1 of the flying object 1, and the color or the like according to the altitude H1. The altitude H1 of the aircraft 1 may be displayed in different display forms, and the display format of the altitude H1 of the aircraft 1 is not limited to the display format described above.
 図3A~図3Gに示すように、散布範囲画像66は、演算部31gが演算した散布範囲Eと、メッシュ設定部31hで割り当てられたエリアQn毎の分割データDnと、を表示する画像である。言い換えると、表示部34は、散布情報取得部31bが取得した散布情報と、演算部31gが演算した散布範囲Eに基づいて、散布装置10が散布した散布物の散布範囲Eを表示する。散布範囲画像66は、メッシュ設定部31hが生成したメッシュ毎に、散布装置10が散布した散布物の散布量に応じてメッシュの表示形態を異ならせて表示する。言い換えると、表示部34は、メッシュ設定部31hが生成したメッシュ毎に、散布装置10が散布した散布物の散布量に応じて、メッシュの表示形態を異ならせて表示する。表示部34は、メッシュ設定部31hが生成したメッシュ毎に、散布物の散布量に応じて、メッシュの表示濃度を変更する。詳しくは、表示部34は、散布物の散布量に比例して、表示濃度を濃くなるようメッシュを表示する。即ち、散布物の散布量が低くなるに伴って、表示部34は、メッシュの表示濃度を薄く表示する。一方、散布物の散布量が高くなるに伴って、表示部34は、メッシュの表示濃度を濃く表示する。これによって、実際に散布した散布物の散布量が少ない箇所や、散布物の散布量が多い場所を直観的に把握することができる。このため、散布が不要又は必要である箇所を把握し、従前の作業結果に応じて適切な散布作業を行うことができる。なお、表示部34は、メッシュの表示濃度に対応する散布物の散布量を示す凡例67を表示してもよい。 As shown in FIGS. 3A to 3G, the dispersion range image 66 is an image displaying the dispersion range E calculated by the calculation unit 31g and the divided data Dn for each area Qn allocated by the mesh setting unit 31h. .. In other words, the display unit 34 displays the spraying range E of the sprayed material sprayed by the spraying device 10, based on the spraying information acquired by the spraying information acquiring unit 31b and the spraying range E calculated by the calculation unit 31g. The spray range image 66 is displayed for each mesh generated by the mesh setting unit 31h in a different display form of the mesh according to the spray amount of the sprayed material sprayed by the spraying device 10. In other words, the display unit 34 displays the meshes for each mesh generated by the mesh setting unit 31h while changing the display form of the meshes in accordance with the amount of the sprayed material sprayed by the spraying device 10. The display unit 34 changes the display density of the mesh for each mesh generated by the mesh setting unit 31h in accordance with the amount of sprayed material. Specifically, the display unit 34 displays the mesh so that the display density is increased in proportion to the amount of sprayed material. That is, the display unit 34 displays the display density of the mesh lighter as the amount of the sprayed material becomes lower. On the other hand, as the amount of sprayed material increases, the display unit 34 displays the display density of the mesh darker. As a result, it is possible to intuitively grasp a location where the amount of the sprayed material actually sprayed is small or a location where the sprayed quantity of the scattered material is large. For this reason, it is possible to grasp the places where the spraying is unnecessary or necessary and to perform the appropriate spraying work according to the result of the previous work. Note that the display unit 34 may display a legend 67 that indicates the amount of scattered matter corresponding to the display density of the mesh.
 図3Eに示すように、表示部34は、飛行体1の高度H1に応じて、飛行体1の移動軌跡及び散布範囲Eの表示を切り換えることができる。具体的には、図3A~図3Gに示すように、散布画面M1は、飛行体1の高度H1を選択する高度選択部69を有している。高度選択部69は、スライド操作可能なスライダ69aを有している。高度選択部69は、スライダ69aを操作して、飛行体1の高度H1の上限値及び下限値を選択することで、飛行体1の高度H1の範囲を選択することができる。表示部34は、高度選択部69で選択された高度H1の範囲内の高度H1における飛行体1の移動軌跡及び、飛行体1が散布した散布物の散布範囲Eを表示する。具体的には、表示部34は、高度選択部69で選択された高度H1の範囲内の高度H1における移動軌跡画像61及び散布範囲画像66を表示する。 As shown in FIG. 3E, the display unit 34 can switch the display of the movement trajectory of the flying body 1 and the dispersion range E according to the altitude H1 of the flying body 1. Specifically, as shown in FIGS. 3A to 3G, the spray screen M1 has an altitude selection unit 69 for selecting the altitude H1 of the flying vehicle 1. The altitude selection unit 69 has a slider 69a that can be slid. The altitude selection unit 69 can select the range of the altitude H1 of the flying object 1 by operating the slider 69a to select the upper limit value and the lower limit value of the altitude H1 of the flying object 1. The display unit 34 displays the movement trajectory of the flying vehicle 1 at the altitude H1 within the range of the altitude H1 selected by the altitude selecting unit 69, and the spray range E of the scattered matter scattered by the flying object 1. Specifically, the display unit 34 displays the movement trajectory image 61 and the scatter range image 66 at the altitude H1 within the range of the altitude H1 selected by the altitude selection unit 69.
 また、図3Eに示すように、表示部34は、高度選択部69で選択された高度H1の範囲外の高度H1における飛行体1の移動軌跡及び飛行体1が散布した散布物の散布範囲Eを非表示にする。具体的には、表示部34は、高度選択部69で選択された高度H1の範囲外の高度H1における移動軌跡画像61及び散布範囲画像66を非表示する。これによって、飛行体1の散布作業の結果を飛行体1の高度H1毎に確認することができる。このため、一層簡単に飛行体1の高度H1と散布範囲Eの関係性を確認でき、作業計画に活用することができる。なお、本実施形態において、表示部34は、高度選択部69で選択された高度H1の範囲外の高度H1で飛行体1が散布した散布物の散布範囲Eを非表示にするが、当該表示部34は飛行体1の高度H1に応じて散布範囲Eの表示を切り換えることができればよく、高度選択部69で選択された高度H1の範囲外の高度H1で飛行体1が散布した散布物の散布範囲Eをグレーアウトさせるようなものであってもよい。また、図3A~図3Eにおいては、表示部34は、1つの飛行体1の1回の散布作業の結果を表示しているが、図3Fに示すように、表示部34は、複数の飛行体1の散布作業の結果を表示してもよいし、1つの飛行体1の複数の散布作業の結果を同時に表示させてもよい。斯かる場合、メッシュ設定部31hは、それぞれの作業結果のデータの値を平均し、平均値をエリアQnに対応する分割データDnとして割り当てる。また、表示部34は、それぞれの散布作業ごとに移動軌跡画像61、操作軌跡画像62、切換ボタン63、高度表示画像65、及び散布範囲画像66を表示する。 Further, as shown in FIG. 3E, the display unit 34 displays the movement locus of the flying body 1 at the altitude H1 outside the range of the altitude H1 selected by the altitude selecting unit 69 and the spread range E of the scattered matter scattered by the flying body 1. To hide. Specifically, the display unit 34 does not display the movement trajectory image 61 and the scatter range image 66 at the altitude H1 outside the range of the altitude H1 selected by the altitude selection unit 69. As a result, the result of the spraying work of the flying body 1 can be confirmed for each altitude H1 of the flying body 1. Therefore, the relationship between the altitude H1 of the flying object 1 and the spray range E can be more easily confirmed and can be utilized for work planning. In the present embodiment, the display unit 34 hides the spraying range E of the scattered matter scattered by the aircraft 1 at the altitude H1 outside the range of the altitude H1 selected by the altitude selecting unit 69. It suffices that the section 34 can switch the display of the spraying range E in accordance with the altitude H1 of the flying object 1. The flying object 1 is sprayed by the flying object 1 at an altitude H1 outside the range of the altitude H1 selected by the altitude selecting section 69. The spraying range E may be grayed out. In addition, in FIGS. 3A to 3E, the display unit 34 displays the result of one spraying operation of one flying body 1. However, as shown in FIG. 3F, the display unit 34 displays a plurality of flights. The results of the spraying work of the body 1 may be displayed, or the results of a plurality of spraying works of one flying body 1 may be displayed simultaneously. In such a case, the mesh setting unit 31h averages the data values of the respective work results and assigns the average value as the divided data Dn corresponding to the area Qn. Further, the display unit 34 displays a movement trajectory image 61, an operation trajectory image 62, a switch button 63, an altitude display image 65, and a spray range image 66 for each spraying work.
 また、図3Gに示すように、圃場の風速が所定以上(例えば風速1m/s以上)である場合、表示部34は、変更ボタン70を操作することで、散布範囲画像66の表示を切り換え、風情報取得部31eが取得した風向及び風速を考慮した散布物の散布範囲Eを表示させることができる。斯かる場合、散布範囲画像66は、散布情報取得部31bが取得した散布情報に加えて、風情報取得部31eが取得した風向及び風速に基づいて演算した散布範囲Eと、メッシュ設定部31hで割り当てられたエリアQn毎の分割データDnと、を表示する画像である。即ち、散布範囲画像66は、変更ボタン70が操作されると、演算部31gが、散布情報、位置情報、飛行体1の移動速度、及び高度H1等に基づいて演算した散布範囲Eから、散布情報、位置情報、飛行体1の移動速度、高度H1、及び風情報取得部31eが取得した風向及び風速に基づいて演算した散布範囲Eに表示を切り換える。 Further, as shown in FIG. 3G, when the wind speed in the field is a predetermined speed or higher (for example, a wind speed of 1 m/s or higher), the display unit 34 operates the change button 70 to switch the display of the spray range image 66, It is possible to display the spraying range E of the sprayed material in consideration of the wind direction and the wind speed acquired by the wind information acquisition unit 31e. In such a case, the spraying range image 66 includes the spraying range E calculated based on the wind direction and the wind speed acquired by the wind information acquiring unit 31e in addition to the spraying information acquired by the spraying information acquiring unit 31b, and the mesh setting unit 31h. It is an image for displaying the divided data Dn for each assigned area Qn. That is, when the change button 70 is operated, the application range image 66 is applied from the application range E calculated by the operation unit 31g based on the application information, the position information, the moving speed of the flying body 1, the altitude H1, and the like. The display is switched to the spray range E calculated based on the information, the position information, the moving speed of the flying object 1, the altitude H1, and the wind direction and wind speed acquired by the wind information acquisition unit 31e.
 飛行体1は、圃場の領域外に移動した場合には、自動的に散布装置10の散布物の散布を終了させることができる。図1に示すように、飛行体1の第1制御装置20は、検出部23を有している。言い換えると、飛行体1は、検出部23を有している。検出部23は、CPUや第1記憶部22に記憶されているプログラム等から構成されている。検出部23は、位置検出装置25が検出した位置情報と、圃場の位置情報と、に基づいて、飛行体1が圃場の領域内と、圃場の領域外とのいずれに位置しているかを検出する。圃場の位置情報は、例えば、第1記憶部22に記憶されている。具体的には、圃場の位置情報は、第3通信部43と第1通信部24とを介して、サーバ40から取得され、予め第1記憶部22に記憶される。検出部23は、検出結果を制御部21に出力する。なお、本実施形態において、検出部23は、位置検出装置25が検出した位置情報と、圃場の位置情報とに基づいて、飛行体1が圃場の領域内と、圃場の領域外とのいずれに位置しているかを検出するが、検出部23は、飛行体1が圃場の領域内と、圃場の領域外とのいずれに位置しているかを検出できればよく、飛行体1に設けられたカメラ等の撮像部が撮像した画像に基づいて、圃場の境界を検出することで、飛行体1が圃場の領域内と、圃場の領域外とのいずれに位置しているかを検出してもよいし、その検出方法は、上記構成に限定されない。 When the air vehicle 1 moves outside the field area, it is possible to automatically end the spraying of the sprayed material by the spraying device 10. As shown in FIG. 1, the first control device 20 of the aircraft 1 has a detection unit 23. In other words, the flying body 1 has the detection unit 23. The detection unit 23 includes a CPU, a program stored in the first storage unit 22, and the like. The detection unit 23 detects, based on the position information detected by the position detection device 25 and the position information of the farm field, whether the flying body 1 is positioned inside the field region or outside the farm region. To do. The position information of the field is stored in, for example, the first storage unit 22. Specifically, the position information of the field is acquired from the server 40 via the third communication unit 43 and the first communication unit 24, and is stored in the first storage unit 22 in advance. The detection unit 23 outputs the detection result to the control unit 21. In the present embodiment, the detection unit 23 determines whether the flying body 1 is in the field area or outside the field area based on the position information detected by the position detection device 25 and the field position information. Although it is detected whether or not it is located, the detection unit 23 only needs to be able to detect whether the flying body 1 is located in the area of the field or outside the area of the field, such as a camera provided in the flying body 1. By detecting the boundary of the field based on the image captured by the image capturing unit, it is possible to detect whether the flying body 1 is located inside the field area or outside the field area, The detection method is not limited to the above configuration.
 制御部21は、検出部23の検出結果に応じて、散布装置10の制御を行う。具体的には、検出部23が飛行体1は圃場の領域内に位置していることを検出した場合、制御部21は、操作装置15の操作に基づいて、散布装置10の制御を行う。一方、検出部23が飛行体1は圃場の領域外に位置していることを検出した場合、制御部21は、操作装置15の操作とは別に、ポンプ12の駆動を停止させ、散布装置10の散布を停止させる。即ち、制御部21は飛行体1が圃場の領域内に位置している場合、散布装置10の散布物の散布を許可し、飛行体1が圃場の領域外に位置している場合、散布装置10の散布物の散布を禁止させる。 The control unit 21 controls the spraying device 10 according to the detection result of the detection unit 23. Specifically, when the detection unit 23 detects that the flying body 1 is located within the field area, the control unit 21 controls the spraying device 10 based on the operation of the operation device 15. On the other hand, when the detection unit 23 detects that the flying body 1 is located outside the area of the field, the control unit 21 stops the driving of the pump 12 separately from the operation of the operation device 15, and the spraying device 10 is operated. Stop spraying. That is, the control unit 21 permits the spraying of the sprayed material by the spraying device 10 when the flying body 1 is located in the area of the field, and the flying device 1 when the flying body 1 is located outside the area of the field. Prohibit the spraying of 10 items.
 上述した飛行体1の支援装置30は、飛行体1の位置を取得する位置情報取得部31aと、飛行体1に設けられた散布装置10の散布物の散布に関する情報を取得する散布情報取得部31bと、圃場の領域及び圃場の周囲を表示する表示部34と、を備え、表示部34は、位置情報取得部31aが取得した飛行体1の位置に基づいて、飛行体1の移動軌跡を表示し、散布情報取得部31bが取得した散布情報に基づいて、散布装置10が散布した散布物の散布範囲Eを表示する。 The above-described support device 30 for the flying vehicle 1 includes a position information obtaining unit 31a that obtains the position of the flying vehicle 1 and a spraying information obtaining unit that obtains information on the spraying of the sprayed material by the spraying device 10 provided on the flying vehicle 1. 31b and a display unit 34 that displays the area of the farm field and the periphery of the farm field. The display unit 34 displays the movement trajectory of the flight vehicle 1 based on the position of the flight vehicle 1 acquired by the position information acquisition unit 31a. Then, based on the spraying information acquired by the spraying information acquiring unit 31b, the spraying range E of the sprayed material sprayed by the spraying device 10 is displayed.
 上記構成によれば、飛行体1の散布作業の結果を表示部34に表示させることができる。このため、飛行体1の作業管理を行う作業者は、散布作業の結果を手動で入力することなく、容易に確認することができる。また、表示部34は、散布物の散布範囲Eだけでなく、移動軌跡を散布範囲Eと同時に表示するため、作業者は、移動軌跡と散布範囲Eの関係性を確認することができる。 According to the above configuration, the result of the spraying work of the flying object 1 can be displayed on the display unit 34. Therefore, an operator who manages the work of the flying object 1 can easily confirm the result of the spraying work without manually inputting the result. Further, since the display unit 34 displays not only the distribution range E of the scattered matter but also the movement locus at the same time as the distribution range E, the operator can confirm the relationship between the movement locus and the dispersion range E.
 また、飛行体1の支援装置30は、飛行体1の高度H1の情報を取得する高度情報取得部31dを備え、表示部34は、高度情報取得部31dが取得した飛行体1の高度H1に基づいて、当該飛行体1の高度H1を表示する。
 上記構成によれば、表示部34が高度情報と散布範囲Eとを同時に表示するため、作業者は、飛行体1の高度H1と散布範囲Eの関係性を確認でき、作業計画に活用することができる。
In addition, the support device 30 of the aircraft 1 includes an altitude information acquisition unit 31d that acquires information on the altitude H1 of the aircraft 1, and the display unit 34 displays the altitude H1 of the aircraft 1 acquired by the altitude information acquisition unit 31d. Based on this, the altitude H1 of the aircraft 1 is displayed.
According to the above configuration, since the display unit 34 simultaneously displays the altitude information and the dispersion range E, the operator can confirm the relationship between the altitude H1 of the aircraft 1 and the dispersion range E, and utilize it in the work plan. You can
 また、飛行体1の支援装置30は、飛行体1の高度H1の情報を取得する高度情報取得部31dを備え、表示部34は、飛行体1の高度H1が所定の範囲内にある場合の移動軌跡を表示し、且つ、飛行体1の高度H1が所定の範囲外にある場合の移動軌跡を非表示にし、飛行体1の高度H1が所定の範囲内にある場合の散布範囲Eを表示し、且つ、飛行体1の高度H1が所定の範囲外にある場合の散布範囲Eを非表示にする。 In addition, the support device 30 of the aircraft 1 includes an altitude information acquisition unit 31d that acquires information on the altitude H1 of the aircraft 1, and the display unit 34 displays the altitude H1 of the aircraft 1 within a predetermined range. The movement locus is displayed, and the movement locus when the altitude H1 of the flying object 1 is outside the predetermined range is hidden, and the spray range E when the altitude H1 of the flying object 1 is within the predetermined range is displayed. In addition, the spray range E when the altitude H1 of the aircraft 1 is outside the predetermined range is hidden.
 上記構成によれば、飛行体1の散布作業の結果を飛行体1の高度H1毎に確認することができる。このため、作業者は、飛行体1の高度H1の高度毎に散布範囲Eを確認でき、高度H1と散布範囲Eとの関係を作業計画に活用することができる。
 また、飛行体1の支援装置30は、圃場の風向及び風速を含む情報を取得する風情報取得部31eと、散布情報取得部31bが取得した散布情報、並びに風情報取得部31eが取得した風向及び風速に基づいて、散布範囲Eを演算する演算部31gと、を備え、表示部34は、演算部31gが演算した散布範囲Eを表示する。
According to the above configuration, it is possible to confirm the result of the spraying work of the flying body 1 for each altitude H1 of the flying body 1. Therefore, the operator can confirm the spray range E for each altitude H1 of the aircraft 1, and can utilize the relationship between the altitude H1 and the spray range E in the work plan.
In addition, the support device 30 of the aircraft 1 includes the wind information acquisition unit 31e that acquires information including the wind direction and wind speed of the field, the spray information acquired by the spray information acquisition unit 31b, and the wind direction acquired by the wind information acquisition unit 31e. And a calculator 31g that calculates the spray range E based on the wind speed, and the display unit 34 displays the spray range E calculated by the calculator 31g.
 上記構成によれば、表示部34は、圃場に風が生じている場合に、飛行体1の散布作業によって散布された実際の散布範囲に近い散布範囲Eを表示することができる。このため、風が生じている場合の移動軌跡と散布範囲Eの関係性を確認することができ、圃場の風の状態に応じて、飛行体1の飛行経路を調整する等、作業計画に活用することができる。
 また、飛行体1の支援装置30は、散布範囲Eに所定のメッシュを設定するメッシュ設定部31hを備え、表示部34は、メッシュ設定部31hが設定したメッシュ毎に、散布装置10が散布した散布物の散布量に応じて、メッシュの表示形態を異ならせて表示する。
According to the above configuration, the display unit 34 can display the spray range E close to the actual spray range sprayed by the spraying operation of the air vehicle 1 when wind is generated in the field. Therefore, it is possible to confirm the relationship between the movement trajectory when the wind is generated and the spray range E, and to use it for work planning such as adjusting the flight path of the flying body 1 according to the wind condition in the field. can do.
In addition, the support device 30 of the flying object 1 includes a mesh setting unit 31h that sets a predetermined mesh in the spray range E, and the display unit 34 sprays the spray device 10 for each mesh set by the mesh setting unit 31h. The display form of the mesh is displayed differently according to the amount of the sprayed material.
 上記構成によれば、実際に散布した散布物の散布量が少ない箇所や、散布物の散布量が多い場所を直観的に把握することができる。このため、散布が不要又は必要である箇所を把握したり、散布量の調整を行ったりすることで、作業結果に応じて適切な作業計画を行うことができる。
 また、飛行体1の支援装置30は、位置情報取得部31aが取得した飛行体1の位置のばらつきを補正する補正部31f1を備え、表示部34は、補正部31f1が補正した飛行体1の位置に基づいて、飛行体1の移動軌跡を表示する。
According to the above configuration, it is possible to intuitively grasp a location where the amount of the sprayed material actually sprayed is small or a location where the sprayed amount of the sprayed material is large. Therefore, it is possible to make an appropriate work plan according to the work result by grasping the places where the spraying is unnecessary or necessary and adjusting the spraying amount.
In addition, the support device 30 of the aircraft 1 includes a correction unit 31f1 that corrects the variation in the position of the aircraft 1 acquired by the position information acquisition unit 31a, and the display unit 34 displays the aircraft 1 corrected by the correction unit 31f1. The movement trajectory of the flying body 1 is displayed based on the position.
 上記構成によれば、飛行体1の位置情報を取得する頻度が比較的少ない場合であっても、表示部34は、飛行体1の移動軌跡を滑らかに表示させることができ、当該移動軌跡を容易に把握することができる。
 また、飛行体1の支援装置30は、飛行体1を操作可能な操作装置15の操作情報を取得する操作情報取得部31jを備え、表示部34は、操作情報取得部31jが取得した操作情報に基づいて、操作装置15の操作を表示する。
According to the above configuration, the display unit 34 can smoothly display the movement trajectory of the flight vehicle 1 even when the position information of the flight vehicle 1 is acquired relatively infrequently, and the movement trajectory can be displayed. It can be grasped easily.
In addition, the support device 30 of the aircraft 1 includes an operation information acquisition unit 31j that acquires operation information of the operation device 15 that can operate the aircraft 1, and the display unit 34 includes the operation information acquired by the operation information acquisition unit 31j. The operation of the operation device 15 is displayed based on the.
 上記構成によれば、飛行体1の操作と実際の移動軌跡を確認することができるため、操作装置15の操作に対する飛行体1の動きの特性を把握することができる。これによって、飛行体1の操作者は、飛行体1の操作性をより適格に把握することができるため、飛行体1の操作スキルの早期向上を図ることができる。
 また、飛行体1の支援システム80は、飛行体1の支援装置30と、飛行体1と、を備えている。
According to the above configuration, since the operation of the flying object 1 and the actual movement trajectory can be confirmed, the characteristics of the movement of the flying object 1 with respect to the operation of the operating device 15 can be grasped. As a result, the operator of the flying vehicle 1 can more appropriately understand the operability of the flying vehicle 1, and thus the operating skill of the flying vehicle 1 can be improved at an early stage.
Further, the support system 80 for the flying vehicle 1 includes the supporting device 30 for the flying vehicle 1 and the flying vehicle 1.
 上記構成によれば、上述した飛行体1の支援装置30の優れた効果を奏する飛行体1の支援システム80を実現することができる。
 また、飛行体1は、当該飛行体1が圃場の領域内と、圃場の領域外とのいずれに位置しているかを検出する検出部23と、検出部23が、飛行体1が圃場の領域内に位置していることを検出した場合、散布装置10の散布物の散布を許可し、飛行体1が圃場の領域外に位置していることを検出した場合、散布装置10の散布物の散布を禁止する制御部21と、を有している。
According to the above configuration, it is possible to realize the support system 80 of the aircraft 1 that exhibits the excellent effects of the above-described assistance device 30 of the aircraft 1.
In addition, the flying body 1 includes a detection unit 23 that detects whether the flying body 1 is located inside the field area or outside the field area. When it is detected that the flying object 1 is located inside the field, when it is detected that the flying body 1 is located outside the area of the field, when the flying object 1 is located outside the field, And a control unit 21 that prohibits spraying.
 上記構成によれば、飛行体1が圃場の領域外に散布物を散布することを抑制することができる。このため、散布装置10が散布対象ではない圃場に散布物を散布することを抑止することができる。また、散布装置10が圃場の周囲の道路に散布物を散布せず、散布物を無駄に消費することを抑止することができるため、飛行体1は、最低限の散布物を積載して散布作業を行うことができる。これによって、飛行体1の稼働時間を確保することができる。
[第2実施形態]
 図4は、飛行体1の支援システム80の別の実施形態(第2実施形態)を示す。第1実施形態の飛行体1の支援装置30は、飛行体1による作業(散布作業)の結果を表示していたが、第2実施形態の飛行体1の支援装置30では、飛行体1の以前の作業における移動軌跡や散布範囲(有効散布幅)Eを表示することができ、飛行体1の作業計画の作成できる。以下、第2実施形態の飛行体1の支援システム80について、上述した実施形態(第1実施形態)と異なる構成を中心に説明し、第1実施形態と共通する構成については同じ符号を付して詳しい説明を省略する。
According to the above configuration, it is possible to prevent the flying body 1 from spraying the scattered matter outside the field area. For this reason, it is possible to prevent the spraying device 10 from spraying the sprayed material on a field that is not a spraying target. Further, since the spraying device 10 does not spray the sprayed material on the roads around the field and can prevent wasteful consumption of the sprayed material, the aircraft 1 loads the minimum sprayed material and sprays it. You can do the work. As a result, the operating time of the aircraft 1 can be secured.
[Second Embodiment]
FIG. 4 shows another embodiment (second embodiment) of the support system 80 for the air vehicle 1. The support device 30 for the aircraft 1 of the first embodiment displays the result of the work (scattering work) performed by the aircraft 1, but the support device 30 for the aircraft 1 of the second embodiment shows that It is possible to display the movement trajectory and the dispersion range (effective dispersion width) E in the previous work, and to create a work plan for the air vehicle 1. Hereinafter, the support system 80 for the air vehicle 1 of the second embodiment will be described focusing on the configuration different from the above-described embodiment (first embodiment), and the same reference numerals will be given to configurations common to the first embodiment. Detailed description is omitted.
 図4に示すように、サーバ40の第3制御装置41は、作業計画設定部44を有している。作業計画設定部44は、CPUや第3記憶部42に格納されたプログラム等から構成されている。作業計画設定部44は、圃場で行う作業、当該作業の期間(作業期間)、当該作業を行う飛行体1、及び飛行体1の移動経路等を作業計画として設定するものである。作業計画とは、所定の圃場において、作業をどの期間(作業期間)内にどのように行うかという計画、即ち、圃場で行う「作業」と、作業を行う「作業期間」と、「飛行体1」と、当該飛行体1の「移動経路」と、を関係付けるためのものであって、例えば、実際に作業を行う前に作業者や管理者等が行う。 As shown in FIG. 4, the third control device 41 of the server 40 has a work plan setting unit 44. The work plan setting unit 44 includes a CPU, a program stored in the third storage unit 42, and the like. The work plan setting unit 44 sets the work to be performed in the field, the period of the work (work period), the aircraft 1 to perform the work, the movement route of the aircraft 1, and the like as a work plan. A work plan is a plan of how and within what period (work period) a work is to be performed in a given field, that is, "work" to be performed in the field, "work period" to perform the work, and "aircraft". 1” and the “movement path” of the aircraft 1 are associated with each other. For example, an operator or a manager performs the work before actually performing the work.
 サーバ40の第3記憶部42は、作業計画を設定するに際して、基準となる作業や作業期間のデフォルト値を記憶しており、当該第3記憶部42に記憶されている作業や作業期間のデフォルト値は、過去の作業等により設定されるものである。
 次に、作業計画設定部44による作業計画の設定について詳しく説明する。作業計画設定部44による作業計画の設定は、サーバ40と通信可能に接続された支援装置30を操作することで行うことができる。具体的には、支援装置30から作業計画作成の要求がサーバ40にされると、サーバ40の作業計画設定部44の動作により、図5A~図5Dに示すように、それぞれ圃場における作業計画を作成する作業計画画面M2を表示部34に表示する。
The third storage unit 42 of the server 40 stores the default values of the work and the work period that are the reference when setting the work plan, and the work and the work period defaults stored in the third storage unit 42. The value is set by past work or the like.
Next, the setting of the work plan by the work plan setting unit 44 will be described in detail. The setting of the work plan by the work plan setting unit 44 can be performed by operating the support device 30 communicatively connected to the server 40. Specifically, when the support device 30 requests the server 40 to create a work plan, the operation of the work plan setting unit 44 of the server 40 causes the work plan to be created in each field as shown in FIGS. 5A to 5D. The work plan screen M2 to be created is displayed on the display unit 34.
 以下、表示部34に表示される画面について詳しく説明する。図5A~図5Dに示すように、作業計画画面M2は、作業計画の内容を入力する部分、圃場の領域、及び圃場の周囲を表示する。詳しくは、作業計画画面M2は、作業入力部156と、周辺画像160と、呼び出し部157と、を有している。
 作業入力部156は、作業を行う日付や、作業を行う圃場、作業を行う作業者、作業を行う飛行体1等の情報を入力することができる。作業計画設定部44は、作業入力部156に入力された情報を作業計画として第3記憶部42に記憶させる。図5A~図5Dに示すように、作業入力部156は、日付入力部156aと、圃場入力部156bと、作業者入力部156cと、飛行体入力部156dと、経路作成部156eと、確定ボタン156fと、を有している。日付入力部156aは、作業を行う日付を入力する部分である。圃場入力部156bは、作業を行う圃場を入力する部分である。作業者入力部156cは、作業を行う作業者を入力する部分である。飛行体入力部156dは、作業を行う飛行体1を入力する部分である。経路作成部156eは、選択操作可能であり、当該経路作成部156eを選択し、表示部34を指先でなぞる等の操作を行うことで、周辺画像160上に飛行体1の経路を描画することができる。確定ボタン156fは、日付入力部156a、圃場入力部156b、作業者入力部156c、飛行体入力部156d、経路作成部156eに入力された情報を作業計画として確定させるボタンである。確定ボタン156fが操作されると、作業計画設定部44は、作業入力部156に入力された情報を作業計画として第3記憶部42に記憶させる。
Hereinafter, the screen displayed on the display unit 34 will be described in detail. As shown in FIGS. 5A to 5D, the work plan screen M2 displays a portion for inputting the contents of the work plan, a field area, and the periphery of the field. Specifically, the work plan screen M2 has a work input unit 156, a peripheral image 160, and a calling unit 157.
The work input unit 156 can input information such as a work date, a field to perform the work, a worker to perform the work, and an air vehicle 1 to perform the work. The work plan setting unit 44 stores the information input to the work input unit 156 in the third storage unit 42 as a work plan. As shown in FIGS. 5A to 5D, the work input unit 156 includes a date input unit 156a, a field input unit 156b, a worker input unit 156c, an aircraft input unit 156d, a route creation unit 156e, and a confirm button. And 156f. The date input part 156a is a part for inputting a date for performing work. The farm field input unit 156b is a part for inputting a farm field on which work is to be performed. The worker input unit 156c is a part for inputting a worker who performs a work. The flight body input unit 156d is a portion for inputting the flight vehicle 1 to be operated. The route creation unit 156e is selectable, and draws the route of the air vehicle 1 on the peripheral image 160 by selecting the route creation unit 156e and performing an operation such as tracing the display unit 34 with a fingertip. You can The confirm button 156f is a button for confirming the information input to the date input unit 156a, the field input unit 156b, the worker input unit 156c, the flight body input unit 156d, and the route creation unit 156e as a work plan. When the confirm button 156f is operated, the work plan setting unit 44 stores the information input to the work input unit 156 in the third storage unit 42 as a work plan.
 周辺画像160は、圃場の領域と、圃場の周囲を表示する画像である。周辺画像160は、例えば圃場の領域及び圃場の周囲を鳥瞰図で表示する。周辺画像160は、呼び出し部157によって、呼び出された圃場を表示する。
 呼び出し部157は、過去の作業の日付や、作業を行った圃場、作業を行った作業者、作業を行った飛行体1等の情報を入力することができる。作業計画設定部44は、呼び出し部157に入力された情報に基づいて、過去の作業を第3記憶部42から取得する。図5A~図5Dに示すように、呼び出し部157は、日付入力部157aと、圃場入力部157bと、作業者入力部157cと、飛行体入力部157dと、検索ボタン157eと、を有している。日付入力部157aは、過去の作業の日付を入力する部分である。圃場入力部157bは、過去に作業を行った圃場を入力する部分である。作業者入力部157cは、過去に作業を行った作業者を入力する部分である。飛行体入力部157dは、過去に作業を行った飛行体1を入力する部分である。検索ボタン157eは、日付入力部157a、圃場入力部157b、作業者入力部157c、及び飛行体入力部157dに入力された情報で、過去の作業を検索することを確定させるボタンである。検索ボタン157eが操作されると、図5Bに示すように、表示部34は、作業計画画面M2に一覧表示部158を表示する。なお、日付入力部157a、圃場入力部157b、作業者入力部157c、及び飛行体入力部157dの全てに情報を入力する必要はなく、呼び出し部157に入力される情報は、少なくとも1以上入力されていればよい。
The peripheral image 160 is an image that displays the field area and the periphery of the field. The peripheral image 160 displays, for example, the area of the farm field and the periphery of the farm field in a bird's-eye view. The peripheral image 160 displays the farm field called by the calling unit 157.
The calling unit 157 can input information such as the date of past work, the field where the work was performed, the worker who performed the work, and the flying vehicle 1 that performed the work. The work plan setting unit 44 acquires the past work from the third storage unit 42 based on the information input to the calling unit 157. As shown in FIGS. 5A to 5D, the calling unit 157 includes a date input unit 157a, a field input unit 157b, a worker input unit 157c, an aircraft input unit 157d, and a search button 157e. There is. The date input part 157a is a part for inputting dates of past work. The farm field input unit 157b is a part for inputting a farm field on which work has been performed in the past. The worker input unit 157c is a part for inputting a worker who has worked in the past. The flight body input unit 157d is a portion for inputting the flight vehicle 1 that has performed work in the past. The search button 157e is a button for confirming that the past work is searched based on the information input to the date input unit 157a, the field input unit 157b, the worker input unit 157c, and the flight body input unit 157d. When the search button 157e is operated, as shown in FIG. 5B, the display unit 34 displays the list display unit 158 on the work plan screen M2. Note that it is not necessary to input information to all of the date input unit 157a, the field input unit 157b, the operator input unit 157c, and the aircraft input unit 157d, and at least one or more information items are input to the calling unit 157. If you have.
 図5Bに示すように、一覧表示部158は、作業計画設定部44が呼び出し部157に入力された情報に基づいて、過去の作業を第3記憶部42から取得した作業の一覧を表示する。具体的には、例えば一覧表示部158は、作業計画設定部44が取得した作業の日付や、作業を行った圃場、作業を行った作業者、作業を行った飛行体1等の情報を一覧として表示する。一覧表示部158に表示された過去の作業は、選択操作可能である。一覧表示部158に表示された過去の作業のうち、一の過去の作業を選択すると、図5Cに示すように、表示部34は、作業計画画面M2に、当該一の過去の作業の情報、過去の作業における飛行体1の移動軌跡、飛行体1の高度H1、散布物の散布範囲(有効散布幅)Eを表示する。詳しくは、作業計画画面M2は、基本表示部159と、移動軌跡画像161と、散布範囲画像166と、を有している。基本表示部159は、過去の作業に関する様々な情報を表示する。具体的には、例えば、基本表示部159は、過去の作業の開始日時、作業の終了日時、作業時間、作業者の名前、飛行体1の型番、圃場における風向及び風速等を表示する。 As shown in FIG. 5B, the list display unit 158 displays a list of works obtained from the third storage unit 42 as past works based on the information input to the calling unit 157 by the work plan setting unit 44. Specifically, for example, the list display unit 158 lists information such as the date of the work acquired by the work plan setting unit 44, the field where the work was performed, the worker who performed the work, and the flying vehicle 1 that performed the work. Display as. The past work displayed on the list display unit 158 can be selected. When one past work is selected from the past works displayed on the list display unit 158, the display unit 34 displays information on the one past work on the work plan screen M2 as shown in FIG. 5C. The trajectory of the flying body 1 in the past work, the altitude H1 of the flying body 1, and the spread range (effective spread width) E of the scattered matter are displayed. Specifically, the work plan screen M2 has a basic display unit 159, a movement trajectory image 161, and a scatter range image 166. The basic display unit 159 displays various information regarding past work. Specifically, for example, the basic display unit 159 displays past work start date/time, work end date/time, work time, worker's name, model number of the air vehicle 1, wind direction and wind speed in the field, and the like.
 図5Cに示すように、移動軌跡画像161は、過去の作業における飛行体1の実際の移動軌跡を表示する画像であり、軌跡生成部31fが生成した軌跡に基づく画像である。言い換えると、表示部34は、位置情報取得部31aが取得した飛行体1の位置と、補正部31f1が補正した飛行体1の位置と、に基づいて、飛行体1の移動軌跡を表示する。表示部34は、移動軌跡画像161を圃場の領域内と圃場の領域外とで異なる表示形態で表示する。図5Cに示すように、表示部34は、圃場の領域内における移動軌跡画像161を実線161bで表示し、圃場の領域外における移動軌跡画像161を破線161cで表示する。また、表示部34は、移動軌跡画像161のうち、飛行体1の移動開始地点、及び飛行体1の最終地点を所定の図形で表示する。本実施形態において、表示部34は、飛行体1の移動開始地点を略円形の図形161aで表示し、飛行体1の最終地点を飛行体1の簡略図形161dで表示する。 As shown in FIG. 5C, the movement trajectory image 161 is an image that displays the actual movement trajectory of the flying vehicle 1 in the past work, and is an image based on the trajectory generated by the trajectory generation unit 31f. In other words, the display unit 34 displays the movement trajectory of the flying body 1 based on the position of the flying body 1 acquired by the position information obtaining unit 31a and the position of the flying body 1 corrected by the correction unit 31f1. The display unit 34 displays the movement trajectory image 161 in different display forms inside the field area and outside the field area. As shown in FIG. 5C, the display unit 34 displays the movement trajectory image 161 in the field area by a solid line 161b, and displays the movement trajectory image 161 outside the field area by a broken line 161c. In addition, the display unit 34 displays the movement start point of the flying body 1 and the final point of the flying body 1 in the movement locus image 161 in a predetermined figure. In the present embodiment, the display unit 34 displays the movement start point of the flying body 1 by the substantially circular graphic 161a and the final point of the flying body 1 by the simplified graphic 161d of the flying body 1.
 図5Cに示すように、散布範囲画像166は、飛行体1の高度H1と、演算部31gが演算した散布範囲Eと、を表示する画像である。散布範囲画像166は、飛行体1の高度H1に応じて、表示形態を異ならせて表示する。表示部34は、飛行体1の高度H1に応じて、散布範囲画像166の表示濃度を変更する。詳しくは、表示部34は、飛行体1の高度H1に比例して、散布範囲画像166の表示濃度を濃くなるよう表示する。即ち、飛行体1の高度H1が低くなるに伴って、表示部34は、散布範囲画像166の表示濃度を薄く表示する。一方、飛行体1の高度H1が高くなるに伴って、表示部34は、散布範囲画像166の表示濃度を濃く表示する。なお、表示部34は、散布範囲画像166の表示濃度に対応する飛行体1の高度H1を示す凡例167を表示してもよい。 As shown in FIG. 5C, the scatter range image 166 is an image displaying the altitude H1 of the aircraft 1 and the scatter range E calculated by the calculation unit 31g. The scatter range image 166 is displayed in different display forms according to the altitude H1 of the flying object 1. The display unit 34 changes the display density of the spray range image 166 according to the altitude H1 of the flying object 1. Specifically, the display unit 34 displays the dispersion range image 166 such that the display density of the dispersion range image 166 becomes darker in proportion to the altitude H1 of the aircraft 1. That is, as the altitude H1 of the flying object 1 becomes lower, the display unit 34 displays the display density of the dispersion range image 166 lighter. On the other hand, as the altitude H1 of the flying object 1 increases, the display unit 34 displays the display density of the spray range image 166 darker. The display unit 34 may display a legend 167 indicating the altitude H1 of the flying object 1 corresponding to the display density of the dispersion range image 166.
 また、図5Dに示すように、圃場の風速が所定以上(例えば風速1m/s以上)である場合、表示部34は、変更ボタン170を操作することで、散布範囲画像166の表示を切り換え、風情報取得部31eが取得した風向及び風速を考慮した散布物の散布範囲Eを表示させることができる。斯かる場合、散布範囲画像166は、飛行体1の高度H1と、散布情報取得部31bが取得した散布情報に加えて、風情報取得部31eが取得した風向及び風速に基づいて演算した散布範囲Eと、を表示する画像である。即ち、散布範囲画像166は、変更ボタン70が操作されると、演算部31gが、散布情報、位置情報、飛行体1の移動速度、及び高度H1等に基づいて演算した散布範囲Eから、散布情報、位置情報、飛行体1の移動速度、高度H1、及び風情報取得部31eが取得した風向及び風速に基づいて演算した散布範囲Eに表示を切り換える。 Further, as shown in FIG. 5D, when the wind speed in the field is equal to or higher than a predetermined value (eg, wind speed of 1 m/s or higher), the display unit 34 operates the change button 170 to switch the display of the spray range image 166, It is possible to display the spraying range E of the sprayed material in consideration of the wind direction and the wind speed acquired by the wind information acquisition unit 31e. In such a case, the scatter range image 166 is the scatter range calculated based on the wind direction and the wind speed acquired by the wind information acquisition unit 31e in addition to the altitude H1 of the air vehicle 1 and the spray information acquired by the spray information acquisition unit 31b. It is an image displaying E and. That is, when the change button 70 is operated, the dispersion range image 166 is distributed from the dispersion range E calculated by the calculation unit 31g based on the dispersion information, the position information, the moving speed of the flying body 1, the altitude H1, and the like. The display is switched to the spray range E calculated based on the information, the position information, the moving speed of the flying object 1, the altitude H1, and the wind direction and wind speed acquired by the wind information acquisition unit 31e.
 以上、本発明について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The present invention has been described above, but it should be considered that the embodiments disclosed this time are exemplifications in all points and not restrictive. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
  1 飛行体(マルチコプター)
 10 散布装置
 15 操作装置
 23 検出部
 30 支援装置
 31a 位置情報取得部
 31b 散布情報取得部
 31c 高度算出部
 31d 高度情報取得部
 31e 風情報取得部
 31f1 補正部
 31g 演算部
 31h メッシュ設定部
 31j 操作情報取得部
 34 表示部
 80 支援システム
  E 散布範囲
 H1 飛行体の高度
1 Aircraft (multicopter)
10 spraying device 15 operating device 23 detection unit 30 support device 31a position information acquisition unit 31b spraying information acquisition unit 31c altitude calculation unit 31d altitude information acquisition unit 31e wind information acquisition unit 31f1 correction unit 31g calculation unit 31h mesh setting unit 31j operation information acquisition Part 34 Display part 80 Support system E Spread range H1 Aircraft altitude

Claims (9)

  1.  飛行体の位置を取得する位置情報取得部と、
     前記飛行体に設けられた散布装置の散布物の散布に関する情報を取得する散布情報取得部と、
     圃場の領域及び前記圃場の周囲を表示する表示部と、
     を備え、
     前記表示部は、
     前記位置情報取得部が取得した前記飛行体の位置に基づいて、前記飛行体の移動軌跡を表示し、
     前記散布情報取得部が取得した情報に基づいて、前記散布装置が散布した散布物の散布範囲を表示する飛行体の支援装置。
    A position information acquisition unit that acquires the position of the air vehicle,
    A spraying information acquisition unit for acquiring information on the spraying of the sprayed material of the spraying device provided on the aircraft,
    A display unit for displaying a field region and the periphery of the field;
    Equipped with
    The display unit is
    Based on the position of the aircraft acquired by the position information acquisition unit, displaying the movement trajectory of the aircraft,
    A support device for a flying object, which displays a spraying range of the sprayed material sprayed by the spraying device, based on the information acquired by the spraying information acquisition unit.
  2.  前記飛行体の高度の情報を取得する高度情報取得部を備え、
     前記表示部は、前記高度情報取得部が取得した前記飛行体の高度に基づいて、当該飛行体の高度を表示する請求項1に記載の飛行体の支援装置。
    An altitude information acquisition unit for acquiring information on the altitude of the flying object,
    The support device for an aircraft according to claim 1, wherein the display unit displays the altitude of the aircraft based on the altitude of the aircraft acquired by the altitude information acquisition unit.
  3.  前記飛行体の高度の情報を取得する高度情報取得部を備え、
     前記表示部は、前記飛行体の高度が所定の範囲内にある場合の前記移動軌跡を表示し、且つ、前記飛行体の高度が所定の範囲外にある場合の移動軌跡を非表示にし、
     前記飛行体の高度が所定の範囲内にある場合の前記散布範囲を表示し、且つ、前記飛行体の高度が所定の範囲外にある場合の前記散布範囲を非表示にする請求項1又は2に記載の飛行体の支援装置。
    An altitude information acquisition unit for acquiring information on the altitude of the flying object,
    The display unit displays the movement trajectory when the altitude of the flying object is within a predetermined range, and hides the movement trajectory when the altitude of the flying object is outside a predetermined range,
    3. The dispersion range when the altitude of the aircraft is within a predetermined range is displayed, and the dispersion range is hidden when the altitude of the aircraft is outside the predetermined range. The device for supporting an air vehicle according to.
  4.  前記圃場の風向及び風速を含む情報を取得する風情報取得部と、
     前記散布情報取得部が取得した情報、並びに前記風情報取得部が取得した前記風向及び前記風速に基づいて、前記散布範囲を演算する演算部と、
     を備え、
     前記表示部は、前記演算部が演算した前記散布範囲を表示する請求項1~3のいずれか1項に記載の飛行体の支援装置。
    A wind information acquisition unit that acquires information including the wind direction and wind speed of the field,
    A calculation unit that calculates the spray range based on the information acquired by the spray information acquisition unit, and the wind direction and the wind speed acquired by the wind information acquisition unit;
    Equipped with
    The aircraft support device according to any one of claims 1 to 3, wherein the display unit displays the dispersion range calculated by the calculation unit.
  5.  前記散布範囲に所定のメッシュを設定するメッシュ設定部を備え、
     前記表示部は、前記メッシュ設定部が設定した前記メッシュ毎に、前記散布装置が散布した散布物の散布量に応じて、前記メッシュの表示形態を異ならせて表示する請求項1~4のいずれか1項に記載の飛行体の支援装置。
    A mesh setting unit for setting a predetermined mesh in the spray range,
    5. The display unit displays the mesh for each mesh set by the mesh setting unit in a different display form of the mesh according to the amount of the sprayed material sprayed by the spraying device. The support device for an air vehicle according to item 1.
  6.  前記位置情報取得部が取得した前記飛行体の位置のばらつきを補正する補正部を備え、
     前記表示部は、前記補正部が補正した前記飛行体の位置に基づいて、前記飛行体の移動軌跡を表示する請求項1~5のいずれか1項に記載の飛行体の支援装置。
    A correction unit that corrects the variation in the position of the aircraft acquired by the position information acquisition unit;
    The aircraft support device according to any one of claims 1 to 5, wherein the display unit displays the movement trajectory of the aircraft based on the position of the aircraft corrected by the correction unit.
  7.  前記飛行体を操作可能な操作装置の操作情報を取得する操作情報取得部を備え、
     前記表示部は、前記操作情報取得部が取得した操作情報に基づいて、前記操作装置の操作を表示する請求項1~6のいずれか1項に記載の飛行体の支援装置。
    An operation information acquisition unit for acquiring operation information of an operation device capable of operating the flying object,
    The aircraft support device according to any one of claims 1 to 6, wherein the display unit displays an operation of the operation device based on the operation information acquired by the operation information acquisition unit.
  8.  請求項1~7のいずれか1項に記載の飛行体の支援装置と、前記飛行体と、を備えている飛行体の支援システム。 An air vehicle support system comprising the air vehicle support device according to any one of claims 1 to 7 and the air vehicle.
  9.  前記飛行体は、
     当該飛行体が前記圃場の領域内と、前記圃場の領域外とのいずれに位置しているかを検出する検出部と、
     前記検出部が、前記飛行体が前記圃場の領域内に位置していることを検出した場合、前記散布装置の散布物の散布を許可し、前記飛行体が前記圃場の領域外に位置していることを検出した場合、前記散布装置の散布物の散布を禁止する制御部と、
     を有している請求項8に記載の飛行体の支援システム。
    The aircraft is
    A detection unit that detects whether the aircraft is located in the area of the farm field or outside the area of the farm field,
    When the detection unit detects that the flying body is located in the area of the field, it permits the spraying of the scattered matter of the spreading device, and the flying body is located outside the area of the field. When it is detected that there is a control unit for prohibiting the spraying of the sprayed material of the spraying device,
    The aircraft support system according to claim 8, further comprising:
PCT/JP2019/044908 2018-12-28 2019-11-15 Aircraft assistance device and aircraft assistance system WO2020137242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980078407.7A CN113163745B (en) 2018-12-28 2019-11-15 Support device for an aircraft and support system for an aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-248051 2018-12-28
JP2018248051A JP7163179B2 (en) 2018-12-28 2018-12-28 Aircraft support device and aircraft support system

Publications (1)

Publication Number Publication Date
WO2020137242A1 true WO2020137242A1 (en) 2020-07-02

Family

ID=71126564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044908 WO2020137242A1 (en) 2018-12-28 2019-11-15 Aircraft assistance device and aircraft assistance system

Country Status (3)

Country Link
JP (1) JP7163179B2 (en)
CN (1) CN113163745B (en)
WO (1) WO2020137242A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021168005A (en) * 2020-04-09 2021-10-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd Display control method, display control unit, program, and recording medium
JP7426960B2 (en) 2021-03-18 2024-02-02 ヤンマーホールディングス株式会社 Working area estimation method, working area estimation system, and working area estimation program
CN113791631A (en) * 2021-09-09 2021-12-14 常州希米智能科技有限公司 Unmanned aerial vehicle positioning flight control method and device based on Beidou
CN114403116B (en) * 2022-02-13 2023-06-30 厦门精图信息技术有限公司 Smart forest grass management system based on Beidou grid position codes
KR102530862B1 (en) * 2022-09-19 2023-05-11 주식회사 테이슨 Information collection device and information collection method for agricultural drones.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154999A (en) * 2001-11-19 2003-05-27 Fuji Heavy Ind Ltd Method and device for evaluating spreading performance of material to be spread by aeroplane
JP2004322836A (en) * 2003-04-24 2004-11-18 Yamaha Motor Co Ltd Spray data collecting method of unmanned helicopter
JP2005176741A (en) * 2003-12-19 2005-07-07 Yanmar Co Ltd Agricultural working vehicle
JP2006176073A (en) * 2004-12-24 2006-07-06 Fuji Heavy Ind Ltd Chemical spraying system using unmanned helicopter
JP2006213219A (en) * 2005-02-04 2006-08-17 Oki Electric Ind Co Ltd Air traffic control support system
JP2008068711A (en) * 2006-09-13 2008-03-27 Yamaha Motor Co Ltd Method and device for supporting flight of unmanned helicopter
JP2014113864A (en) * 2012-12-07 2014-06-26 Hitachi Solutions Ltd Spray support device
JP2015188150A (en) * 2014-03-26 2015-10-29 株式会社衛星ネットワーク Aerial imaging video distribution system and aerial imaging video distribution method
CN205018139U (en) * 2015-09-22 2016-02-10 北京农业信息技术研究中心 Agricultural unmanned aerial vehicle machine carries variable machine of giving medicine to poor free of charge
JP2016144990A (en) * 2015-02-07 2016-08-12 ヤンマー株式会社 Aerial spraying device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200674A (en) * 2016-08-16 2016-12-07 吉林农业大学 A kind of method of unmanned plane self adaptation accuracy pesticide applying

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154999A (en) * 2001-11-19 2003-05-27 Fuji Heavy Ind Ltd Method and device for evaluating spreading performance of material to be spread by aeroplane
JP2004322836A (en) * 2003-04-24 2004-11-18 Yamaha Motor Co Ltd Spray data collecting method of unmanned helicopter
JP2005176741A (en) * 2003-12-19 2005-07-07 Yanmar Co Ltd Agricultural working vehicle
JP2006176073A (en) * 2004-12-24 2006-07-06 Fuji Heavy Ind Ltd Chemical spraying system using unmanned helicopter
JP2006213219A (en) * 2005-02-04 2006-08-17 Oki Electric Ind Co Ltd Air traffic control support system
JP2008068711A (en) * 2006-09-13 2008-03-27 Yamaha Motor Co Ltd Method and device for supporting flight of unmanned helicopter
JP2014113864A (en) * 2012-12-07 2014-06-26 Hitachi Solutions Ltd Spray support device
JP2015188150A (en) * 2014-03-26 2015-10-29 株式会社衛星ネットワーク Aerial imaging video distribution system and aerial imaging video distribution method
JP2016144990A (en) * 2015-02-07 2016-08-12 ヤンマー株式会社 Aerial spraying device
CN205018139U (en) * 2015-09-22 2016-02-10 北京农业信息技术研究中心 Agricultural unmanned aerial vehicle machine carries variable machine of giving medicine to poor free of charge

Also Published As

Publication number Publication date
JP7163179B2 (en) 2022-10-31
CN113163745B (en) 2023-05-19
CN113163745A (en) 2021-07-23
JP2020104814A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2020137242A1 (en) Aircraft assistance device and aircraft assistance system
US10969781B1 (en) User interface to facilitate control of unmanned aerial vehicles (UAVs)
CN106020233B (en) Unmanned aerial vehicle plant protection operation system, unmanned aerial vehicle for plant protection operation and control method
CN107390709B (en) A kind of plant protection drone multi-machine collaborative operational method and system
CN107728642B (en) Unmanned aerial vehicle flight control system and method thereof
CN106716288B (en) Control method and ground control end of agricultural unmanned aerial vehicle
JP6962720B2 (en) Flight control methods, information processing equipment, programs and recording media
JP2017206066A (en) Unmanned aircraft for spraying chemical solution
CN106714554B (en) The sprinkling control method and unmanned plane of unmanned plane
US8521339B2 (en) Method and system for directing unmanned vehicles
CN104670496B (en) A kind of six shaft type pesticide spray flight instruments and control methods
CN110622088B (en) Flight path determination method, information processing device, program, and recording medium
AU2017357923A1 (en) Safety system for operation of an unmanned aerial vehicle
CN115113645A (en) Method for supporting aeronautical work
JP2008068711A (en) Method and device for supporting flight of unmanned helicopter
CN108700882A (en) Flight control method and device, monitoring method and device, storage medium
WO2019119239A1 (en) Method and device for measuring spray area
JP2004322836A (en) Spray data collecting method of unmanned helicopter
DE102020211016A1 (en) CONTROL SYSTEM OF A MOBILE WORKING MACHINE WITH WEATHER-BASED MODEL
JP2021075277A (en) Unmanned aircraft for spreading chemical liquid
KR102193844B1 (en) System for management and control of pest spraying drone, and control method for the same
CN115167529B (en) Monitoring method and system, unmanned aerial vehicle, mobile terminal and storage medium
JP2022088441A (en) Drone steering device and steering program
US20210241639A1 (en) Landing zone suitability indicating system
WO2021166175A1 (en) Drone system, controller, and method for defining work area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902590

Country of ref document: EP

Kind code of ref document: A1