WO2020137184A1 - Automatic welding system, method for manufacturing elevator cage parts, and automatic welding method - Google Patents

Automatic welding system, method for manufacturing elevator cage parts, and automatic welding method Download PDF

Info

Publication number
WO2020137184A1
WO2020137184A1 PCT/JP2019/043673 JP2019043673W WO2020137184A1 WO 2020137184 A1 WO2020137184 A1 WO 2020137184A1 JP 2019043673 W JP2019043673 W JP 2019043673W WO 2020137184 A1 WO2020137184 A1 WO 2020137184A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
welded
workpiece
welding position
robot
Prior art date
Application number
PCT/JP2019/043673
Other languages
French (fr)
Japanese (ja)
Inventor
岸本 直樹
武司 阿部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020562890A priority Critical patent/JP7046226B2/en
Priority to CN201980084064.5A priority patent/CN113195142B/en
Publication of WO2020137184A1 publication Critical patent/WO2020137184A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/02Door or gate operation

Definitions

  • the present invention relates to an automatic welding system for welding workpieces to be welded, a method for manufacturing elevator cab parts, and an automatic welding method.
  • NC Numerical Control
  • CAM Computer-Aided Manufacture
  • CAD Computer-Aided Design
  • the present invention has been made to solve the above problems, and prepares CAD data corresponding to each required specification even when the work size and the welding position change depending on the required specification of the customer.
  • An object of the present invention is to obtain an automatic welding system, a method for manufacturing elevator cab components, and an automatic welding method capable of improving workability for welding various workpieces to be welded without necessity.
  • an order number, a drawing number of a work to be welded corresponding to the order number, and dimension data necessary for calculating a welding position of the work to be welded are stored in association with each other.
  • Server computer that calculates the welding position of the workpiece to be welded based on the drawing number and dimension data output from the server according to the input result of the order number, a camera that can capture the welding position of the workpiece to be welded, and an image taken by the camera Compare the actual installation position of the workpiece to be welded obtained from the result with the regular installation position of the workpiece to be welded obtained from the welding position calculated by the computer, and find the difference between the regular installation position and the actual installation position.
  • An image processing device that calculates a certain installation error amount and a welder that welds the welding position calculated by the computer are provided, and the computer recalculates the welding position based on the installation error amount calculated by the image processing device.
  • the corrected welding position is calculated by and the welding machine is caused to perform the welding of the workpiece to be welded based on the corrected welding position.
  • the method for manufacturing an elevator cab room part according to the present invention is a method for manufacturing an elevator cab room part using the automatic welding system according to the present invention, wherein the workpiece to be welded is a floor plate that is an elevator cab part, It is either the ceiling, the door of the car or the wall of the cab.
  • the automatic welding method uses a step of calculating the welding position of the workpiece to be welded based on the drawing number and the dimension data output from the data storage unit, and a camera capable of photographing the welding position of the workpiece to be welded.
  • the actual installation position of the workpiece to be welded obtained from the shooting result is compared with the regular installation position of the workpiece to be welded obtained from the calculated welding position, and it is the difference between the regular installation position and the actual installation position.
  • the process of calculating the installation error amount, the process of calculating the corrected welding position by recalculating the welding position based on the calculated installation error amount, and the welding target for the welding machine based on the corrected welding position And a welding process for executing the welding of the work.
  • the automatic welding system even when the work size and the welding position change depending on the customer's required specifications, it is possible to perform various welding on workpieces without needing to prepare CAD data corresponding to each required specification. It is possible to obtain an automatic welding system, a manufacturing method of elevator cab room parts, and an automatic welding method capable of improving workability of welding.
  • FIG. 3 is a perspective view of an elevator cab manufactured by the welding method according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of components of an elevator cab manufactured by the welding method according to the first embodiment of the present invention. It is a figure which shows the whole automatic welding system structure which concerns on Embodiment 1 of this invention.
  • FIG. 6 is a schematic diagram showing another configuration for expanding the reach range of the welding robot in the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing exchange of information between each component in the automatic welding system according to the first embodiment of the present invention.
  • 5 is a flowchart showing a flow of a series of welding processes by the automatic welding system according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of a workpiece to be welded according to the first embodiment of the present invention.
  • FIG. 3 is a front view of the workpiece to be welded according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a captured image of the camera according to the first embodiment of the present invention. It is explanatory drawing of the welding position correction method by Embodiment 1 of this invention. It is a schematic diagram of the butt welding by Embodiment 2 of this invention. It is explanatory drawing of the welding conditions by Embodiment 3 of this invention. It is explanatory drawing of the detailed welding conditions by Embodiment 3 of this invention. It is a perspective view of the clamp jig by Embodiment 4 of this invention. It is explanatory drawing which showed the correspondence of the welding position and clamp position by Embodiment 4 of this invention.
  • FIG. 1 is a perspective view of an elevator cab 400 manufactured by the manufacturing method according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of components of an elevator cab manufactured by the welding method according to the first embodiment of the present invention.
  • the car room 400 is configured by combining a ceiling 401, a car door 402, a car room wall 403, and a floor plate 404.
  • FIG. 3 is a diagram showing the overall configuration of the automatic welding system according to the first embodiment of the present invention.
  • the automatic welding system according to the first embodiment includes a server 10 as a data storage unit, a computer 20 as a calculation unit, an image processing device 30, and a welding machine 100. Then, the automatic welding system according to the first embodiment welds the workpiece 200 to be welded mounted on the welding stage 300.
  • the computer 20 connected to the server 10 is installed with software for calculating the welding position of the workpiece 200 to be welded.
  • the computer 20 causes the welder 100 to weld the workpiece 200 to be welded based on the calculated welding position.
  • the welding machine 100 includes a welding robot 110 as a robot and a robot controller 140 as a controller.
  • a welding torch 120 and a camera 31 are attached to the tip of a manipulator 111 corresponding to the arm of the welding robot 110.
  • the manipulator 111 one having six drive axes is used.
  • a 7-axis manipulator or a 3-axis to 5-axis manipulator can be used.
  • the welding robot 110 is installed on the movable stage 130.
  • the robot controller 140 controls the position and operation of the welding robot 110, the welding torch 120, the movable stage 130, and the camera 31.
  • the robot control device 140 is connected to the computer 20 and the image processing device 30.
  • the camera 31 is connected to the image processing device 30.
  • the camera 31 can photograph the workpiece 200 to be welded, and the photographed image is output to the image processing device 30 as a photographing result.
  • the image processing device 30 can acquire the information of the point cloud and the contour from the image, and can detect the two-dimensional position or the three-dimensional position of the welding target work 200 and the posture of the welding target work 200 shown in the image. Arbitrary methods can be used for the position detection and the attitude detection.
  • the welding robot 110 is installed such that the welding torch 120 can weld the welding target work 200 and the camera 31 can take an image of the welding position of the welding target work 200. ..
  • the workpiece 200 to be welded is a component that constitutes an elevator.
  • the workpiece 200 to be welded is a large structure having a maximum of several meters on one side, and the entire workpiece 200 to be welded cannot be welded within the reach range of the normal welding robot 110.
  • the welding robot 110 is installed on the movable stage 130 that can move the entire welding robot 110 in the direction perpendicular to the paper surface.
  • the reach range of the welding robot 110 can be expanded and the entire welding target work 200 can be welded by the welding torch 120.
  • FIG. 4 is a schematic diagram showing another configuration for expanding the reach range of welding robot 110 in the first embodiment of the present invention. As shown in FIG. 4, by suspending the welding robot 110 on a structure 131 that can move in the same manner as an overhead crane that can move in two horizontal directions, it is possible to weld a larger workpiece 200 to be welded.
  • FIG. 5 is a schematic diagram showing exchange of information between each component in the automatic welding system according to the first embodiment of the present invention.
  • each component of the server 10 the computer 20 in which the welding position calculation software is installed, the image processing device 30 connected to the camera 31, and the welding machine 100 is shown.
  • These constituent elements are connected by a wired cable or radio waves.
  • a local network is constructed in the automatic welding system according to the first embodiment.
  • FIG. 6 is a flowchart showing a flow of a series of welding processes by the automatic welding system according to the first embodiment of the present invention.
  • the operation procedure of welding in the first embodiment will be described according to the exchange of information between the respective constituent elements shown in FIG. 5 and the flowchart shown in FIG.
  • step S601 the order number for identifying the workpiece 200 to be welded is read by the barcode reader. Then, the read order number is transmitted to the server 10.
  • the server 10 stores an order number, a drawing number of the workpiece 200 to be welded corresponding to the order number, and dimension data necessary for calculating a welding position of the workpiece 200 to be welded, in association with each other.
  • the vertical dimension and the horizontal dimension of the workpiece 200 to be welded are stored in the server 10 as dimension data necessary for calculating the welding position.
  • step S602 the server 10 extracts the drawing number and the vertical and horizontal dimensions as dimension data according to the input result of the order number. Further, in step S603, the server 10 transmits the extracted drawing number, vertical dimension, and horizontal dimension to the computer 20.
  • the computer 20 has a calculation formula for calculating the welding position from the data of the vertical dimension and the horizontal dimension according to each drawing number installed as welding position calculation software. That is, in the welding position calculation software, the parameters necessary for calculating the welding position are the vertical dimension and the horizontal dimension of the workpiece 200 to be welded. Therefore, in step S604, the computer 20 can calculate the welding position of the welding target work 200 by substituting the vertical dimension and the horizontal dimension received from the server 10 into the calculation formula corresponding to the drawing number.
  • step S605 the computer 20 transmits a movement command including information on the calculated welding position to the robot controller 140, and the robot controller 140 operates the manipulator 111 and uses the camera 31 to determine the welding position. Take a picture.
  • step S606 the image processing device 30 acquires the image data captured by the camera 31. Further, the image processing device 30 calculates an installation error amount which is a difference between the regular installation position and the actual installation position of the welding target work 200.
  • the image processing device 30 can calculate the position where the workpiece 200 to be welded should originally be installed as a regular installation position.
  • the image processing device 30 can calculate the position where the welding target work 200 is actually installed as an actual installation position by performing image processing on the image data acquired from the camera 31. Then, the image processing device 30 transmits the installation error amount calculated as the difference between the regular installation position and the actual installation position to the computer 20.
  • step S607 the computer 20 compares the installation error amount with a predetermined allowable error amount. Then, the computer 20 determines whether or not the installation error amount is within the allowable error amount or less, and if it is within the allowable error amount, the process proceeds to the next step S608.
  • the computer 20 notifies the error and prompts the operator to move the welding target work 200 to the correct position.
  • step S608 the computer 20 calculates the corrected welding position by recalculating the welding position based on the installation error amount calculated by the image processing device 30. That is, the computer 20 recalculates the welding position offset considering the installation error amount as the corrected welding position.
  • step S609 the computer 20 transmits the recalculated and corrected welding position to the robot controller 140, and causes the welding robot 110 to start automatic welding.
  • FIG. 7 is a diagram showing a relationship of calculation formulas associated with drawing numbers according to the first embodiment of the present invention.
  • Drawing numbers A to C shown in FIG. 7 are standard drawings of the workpiece 200 to be welded.
  • the standard drawing data is stored in the storage device of the computer 20.
  • the workpiece 200 to be welded is given a plurality of drawing numbers depending on its type.
  • each calculation formula regarding the reinforcement length, the number of reinforcements, the pitch between reinforcements, and the welding position regarding the reinforcement member is given.
  • the respective calculation formulas associated with the drawing numbers as shown in FIG. 7 are stored in the computer 20 as welding position calculation software.
  • the parameters of these calculation formulas are defined by the vertical and horizontal dimensions of the workpiece 200 to be welded. Therefore, the computer 20 can calculate the welding position if the drawing number, the vertical dimension, and the horizontal dimension of the workpiece 200 to be welded are known. Therefore, it is not necessary to input information regarding the welding position of the reinforcing member into the computer 20. Alternatively, it is not necessary to create CAD data reflecting the dimensional data and the welding position for each changing customer requirement.
  • the drawing number, the vertical dimension, and the horizontal dimension corresponding to the workpiece 200 to be welded are stored in the server 10 in association with the order number. Therefore, for example, by reading the bar code or the like used for tracking the manufacturing line, the order number is acquired, and the read order number is collated by the server 10, so that the computer 20 displays the drawing corresponding to the workpiece 200 to be welded.
  • the number, the vertical dimension, and the horizontal dimension can be obtained.
  • any known method other than reading the barcode may be used, or a tracking code other than the barcode may be used.
  • FIG. 8 is a schematic diagram showing a specific example of the welding target work 200 according to the first embodiment of the present invention.
  • a method of calculating the welding position will be described in the case where the reinforcing member 202 is welded to the design panel 201, using the welding target work 200 shown in FIG. 8 as an example.
  • the design panel 201 and the reinforcing member 202 correspond to the welding target work 200.
  • the calculation formula is specified with the dimension regarding the welding position of the reinforcing member 202 as a variable.
  • This calculation formula is stored as welding position calculation software.
  • 9 and 10 are explanatory diagrams showing specific examples of the calculation formulas regarding the dimensions, the installation position, and the welding position of the reinforcing member 202 according to the first embodiment of the present invention.
  • the calculation formulas stored as the welding position calculation software include, for example, those shown in FIGS. 9 and 10.
  • the length of the reinforcing member and the number of welds are drawing variables Z, and are described by the vertical dimension A of the design panel 201.
  • the number N of the reinforcing members 202 and the pitch length Q between the reinforcing members 202 are also drawing variables, and are described by the lateral dimension B of the design panel 201.
  • FIG. 11 is a plan view of the welding target work 200 according to the first embodiment of the present invention.
  • FIG. 12 is a front view of the workpiece 200 to be welded according to the first embodiment of the present invention.
  • FIG. 13 is an explanatory diagram showing a part of the welding instruction according to the first embodiment of the present invention. This becomes a welding symbol called fillet welding. The boundary portion between the reinforcing plate and the decorative plate at the tip of the arrow in the drawing is welded.
  • the specific meaning of the numbers in the welding symbols shown in FIG. 13 is that the front leg length is 3 mm, the welding length is 50 mm, the number of welds is Z3, and the pitch is 200 mm.
  • the drawing variable of FIG. 9 and the number of welds are linked.
  • the computer 20 can derive the length of the reinforcing member 202, the number of welds, the number N of the reinforcing members 202, and the pitch length Q between the reinforcing members 202 from the calculation formulas shown in FIGS. 9 and 10. As a result, the computer 20 can determine the drawing dimensions shown in FIGS. 11 and 12, and can determine the welding position.
  • steps S605 to S607 in FIG. 6 will be described.
  • the case where the design panel 201 and the reinforcing member 202(a) in FIG. 11 are used as the welding target work 200 will be described as an example.
  • the lower left corner of the design panel 201 is the origin O
  • the horizontal direction is the x-axis
  • the vertical direction is the y-axis.
  • the lower left portion G and the upper left portion H of the reinforcing member 202(a) are photographed by the camera 31.
  • the regular xy coordinates of the lower left portion G are G(a, b)
  • the regular xy coordinates of the upper left portion H are H(a, b+Z1).
  • FIG. 14 is a schematic diagram of a captured image of the camera 31 according to the first embodiment of the present invention. Specifically, FIG. 14A shows an image obtained by capturing the lower left portion G, and FIG. 14B shows an image capturing the upper left portion H.
  • the image processing device 30 acquires an image captured by the camera 31 as shown in FIG.
  • the image processing apparatus 30 obtains contours by performing edge extraction processing on the design panel 201 and the reinforcing member 202(a) based on the acquired image. After that, the image processing device 30 obtains the coordinates of the lower left portion G and the upper left portion H of the reinforcing member 202(a).
  • the image processing device 30 acquires the position coordinates G(a,b) and H(a,b+Z1) calculated from the calculation formula by the computer 20 as the regular installation position. Further, the image processing device 30 performs the above-described image processing on the image acquired by the camera 31, so that the position coordinates G(a+ ⁇ a, b+ ⁇ b), H(a+ ⁇ a′, b+Z1+ ⁇ b′) as shown in FIG. ) Is calculated as the actual installation position.
  • the image processing device 30 has position coordinates G(a, b) and H(a, b+Z1) that are regular installation positions and position coordinates G(a+ ⁇ a, b+ ⁇ b) and H(a+ ⁇ a′) that are actual installation positions. , B+Z1+ ⁇ b′), it is possible to specify ⁇ a, ⁇ b, ⁇ a′, ⁇ b′ as installation error amounts. If these installation error amounts exceed the allowable error amount, the processing ends with an error.
  • the image processing apparatus 30 reinforces each of the reinforcing members 202(b), 202(c), 202(d), 202(e) on the basis of the images captured by the camera 31 at the lower left and upper left portions.
  • the installation error amount of the member 202 is calculated, and it is determined whether or not the installation error amount exceeds the allowable error amount.
  • the operator can promptly take necessary measures by notifying which reinforcing member the installation position exceeds the allowable error amount. Further, the error determination and the notification process associated with the error occurrence can be performed on the computer 20 side that has received the installation error amount.
  • FIG. 15 is an explanatory diagram of a welding position correction method according to the first embodiment of the present invention.
  • the reinforcing member 202 is installed at the actual installation position shown by the solid line, deviating from the regular installation position shown by the chain double-dashed line, based on the installation error amount.
  • a method of calculating the corrected welding position will be described.
  • the image processing apparatus 30 transmits the installation error amounts ⁇ a, ⁇ b, ⁇ a′, ⁇ b′ calculated in step S606 to the computer 20.
  • the computer 20 calculates the corrected welding position by recalculating the trajectory of the welding torch 120 from the received installation error amount according to the following calculation formula.
  • the welding start point and welding end point are linear. Therefore, the computer 20 can create a welding line in consideration of the installation error amount by linearly complementing the positions of these two points. Therefore, the computer 20 can complement the welding position even when the position in the middle of welding is the blind spot of the camera 31.
  • the computer 20 can similarly obtain the welding line of the other reinforcing member 202. Therefore, the computer 20 can cause the robot controller 140 to perform welding of the workpiece 200 to be welded by the welding robot 110 by transmitting these data to the robot controller 140.
  • the welding position is photographed by using the camera, and the image processing apparatus is used to calculate the installation error amount of the welding target workpiece using the photographed result.
  • the position and locus data of the welding torch obtained by off-line teaching based on the drawing number and dimension data can be corrected.
  • the welding position of the reinforcing member can be automatically calculated by a calculation formula. Therefore, it is not necessary to mark the welding position in advance, and the operator does not need to manually input the welding position. Therefore, it is possible to reduce welding mistakes and eliminate the need for an operator, which improves workability and reduces labor costs.
  • the automatic welding system according to the first embodiment can be easily applied even when the work size and the welding position change depending on the customer's required specifications such as the panel-shaped member of the elevator. ..
  • Embodiment 2 In the first embodiment described above, the method of capturing the welding start point and the welding end point using the camera 31 and correcting the welding position using the captured two points has been described. However, the number of points used for correction is not limited to two, and may be increased to three or more. Therefore, in the second embodiment, a case where the welding position correction process is performed based on the recognition results of three or more points will be described.
  • FIG. 16 is a schematic diagram of butt welding according to the second embodiment of the present invention.
  • the welding position correction process is performed based on the recognition result of three or more points. The effect of doing is demonstrated.
  • the laser 122 emitted from the optical head 121 is emitted to the boundary portion 211 between the welding member 210(a) and the welding member 210(b) to perform welding.
  • the focal diameter of the laser 122 is small and the focal point of the laser 122 deviates from the boundary portion 211, the welding strength is significantly reduced, and if the deviation width is large, welding cannot be performed. Therefore, it is necessary to make the focal position of the laser 122 accurately follow the boundary portion 211. In such a case, the accuracy of the welding position can be improved by increasing the number of recognition points used for correction to three or more.
  • Embodiment 3 In each of the first and second embodiments described above, the case where the actual installation position of the workpiece 200 to be welded is obtained using the camera 31 has been described. However, in addition to the camera 31, a laser sensor, an ultrasonic sensor, a contact type distance sensor, or the like may be used to obtain the actual installation position of the workpiece 200 to be welded. Further, the camera 31 or the above-mentioned sensor need only be able to acquire information on the actual installation position of the workpiece 200 to be welded, and is not necessarily mounted on the welding robot 110.
  • a welding electrode may be attached to the robot and may be applied to spot welding.
  • a grinder may be attached to the robot instead of the welding torch 120 and used for deburring or for removing the welding bead.
  • the work to be applied is not limited to the elevator welding target parts, and any work can be applied as long as the welding position is determined by the calculation formula from the outer diameter shape of the work. ..
  • a large effect can be realized by applying the system configuration according to the present invention to high-mix low-volume products.
  • the case where the calculation formula is used to calculate the welding position of the workpiece to be welded from the drawing number and the dimension data has been described.
  • the calculation formula it is also possible to adopt a configuration in which the welding position of the workpiece to be welded is calculated using a function with the drawing number and dimension data as parameters or a table with the drawing number and dimension data as parameters. Is.
  • the welding condition can be automatically selected by transmitting the material and plate thickness data of the workpiece to be welded from the server 10 to the computer 20.
  • FIG. 17 is an explanatory diagram of welding conditions according to the third embodiment of the present invention.
  • FIG. 18 is an explanatory diagram of detailed welding conditions according to the third embodiment of the present invention. Specifically, as shown in FIGS. 17 and 18, welding conditions corresponding to the material and the plate thickness prepared in advance are automatically selected and welding is performed. As a result, even if the material type and the plate thickness are changed according to the customer's specifications, it can be applied.
  • FIG. 19 is a perspective view of a clamp jig according to the fourth embodiment of the present invention.
  • the clamp jig 301 for the workpiece to be welded includes a stage 302, a beam 303, and a clamp portion 304.
  • the clamp position can be automatically adjusted according to the dimension and installation position of the workpiece to be welded.
  • the clamp portion 304 of the clamp jig 301 is composed of, for example, an air cylinder, and is clamped by pressing a workpiece to be welded.
  • the beam 303 and the clamp portion 304 are composed of, for example, a ball screw and a linear guide so as to be movable in the x-axis direction and the y-axis direction.
  • FIG. 20 is an explanatory diagram showing the correspondence between the welding position and the clamp position according to the fourth embodiment of the present invention.
  • the position of the clamp portion 304 is automatically moved so that the position closest to the welding position calculated by the computer 20 is always clamped, so that the gap between the design panel 201 and the reinforcing member 202 is minimized. And the welding quality can be improved.
  • 10 server 20 computer, 30 image processing device, 31 camera, 100 welding machine, 110 welding robot, 111 manipulator, 120 welding torch, 130 movable stage, 140 robot control device, 200 welding target work, 201 design panel, 202 reinforcement member , 301 clamp jig, 302 stage, 303 beam, 304 clamp part, 305 torch, 400 cab room, 401 ceiling, 402 basket door, 403 cab room wall, 404 floor board.

Abstract

This automatic welding system comprises: a data storage unit in which an order number, a drawing number, and dimension data about a workpiece to be welded are stored in association with each other; a calculation unit which calculates the welding position of the workpiece to be welded on the basis of the drawing number and the dimension data corresponding to the result of entering the order number; an image processing device that calculates an error amount between the actual installation position of the workpiece to be welded, obtained from the result of photographing by means of a camera and the regular installation position of the workpiece to be welded, obtained from the welding position calculated by the calculation unit; and a welding machine. The calculation unit recalculates the welding position on the basis of the error amount to calculate the corrected welding position, and causes the welding machine to perform welding on the workpiece to be welded on the basis of the corrected welding position.

Description

自動溶接システム、エレベーターかご室部品の製造方法、および自動溶接方法Automatic welding system, manufacturing method for elevator cab parts, and automatic welding method
 この発明は、溶接対象ワークの溶接を行う自動溶接システム、エレベーターかご室部品の製造方法、および自動溶接方法に関するものである。 The present invention relates to an automatic welding system for welding workpieces to be welded, a method for manufacturing elevator cab parts, and an automatic welding method.
 従来の自動溶接システムとしては、被溶接物の形状、取り付け位置等の情報を含むCAD(Computer-Aided Design)データから、CAM(Computer-Aided Manufactureing)システムによって生成されたNC(Numerical Control)データを、カメラ等のセンサによる被溶接物の設置位置に関する測定結果によって補正するシステムが知られている(例えば、特許文献1、特許文献2参照)。 As a conventional automatic welding system, NC (Numerical Control) data generated by a CAM (Computer-Aided Manufacture) system from CAD (Computer-Aided Design) data including information such as the shape and attachment position of an object to be welded is used. 2. Description of the Related Art A system is known in which correction is performed based on a measurement result regarding the installation position of an object to be welded by a sensor such as a camera (see, for example, Patent Documents 1 and 2).
特開2002-336994号公報JP, 2002-336994, A 特開平7-230310号公報Japanese Unexamined Patent Publication No. 7-230310
 このような自動溶接システムにあっては、各ワークの溶接位置情報が記載されているCADデータを用意する必要がある。しかしながら、例えば、エレベーターのパネル形状部材のような、客先の要求仕様によって寸法および溶接位置が変化する場合には、それぞれの仕様に対してCADデータを用意する必要がある。従って、従来の自動溶接システムを適用する際には、手間がかかる問題がある。 In such an automatic welding system, it is necessary to prepare CAD data that describes the welding position information of each work. However, for example, when the dimensions and the welding position change depending on the customer's required specifications such as a panel-shaped member of an elevator, it is necessary to prepare CAD data for each specification. Therefore, when applying the conventional automatic welding system, there is a problem that it takes time.
 また、カメラ等のセンサによって溶接位置をセンシングして溶接する方法を、溶接点が多く、データ量が膨大になる大型構造物のような製品に対して適用する際には、センシングを長時間行う必要があり、生産性が向上しない問題がある。 In addition, when applying the method of welding by sensing the welding position with a sensor such as a camera to a product with a large number of welding points and a large amount of data, sensing is performed for a long time. Therefore, there is a problem that productivity is not improved.
 この発明は、上記のような問題点を解決するためになされたものであり、客先の要求仕様によってワーク寸法および溶接位置が変化する場合にも、各要求仕様に対応するCADデータを用意する必要なしに、種々の溶接対象ワークの溶接に対する作業性を向上させることのできる自動溶接システム、エレベーターかご室部品の製造方法、および自動溶接方法を得ることを目的としている。 The present invention has been made to solve the above problems, and prepares CAD data corresponding to each required specification even when the work size and the welding position change depending on the required specification of the customer. An object of the present invention is to obtain an automatic welding system, a method for manufacturing elevator cab components, and an automatic welding method capable of improving workability for welding various workpieces to be welded without necessity.
 この発明に係る自動溶接システムは、注文番号と、注文番号に対応する溶接対象ワークの図面番号と、溶接対象ワークの溶接位置を算出するために必要な寸法データとが関連付けられて記憶されているサーバー、注文番号の入力結果に応じてサーバーから出力される図面番号および寸法データに基づいて溶接対象ワークの溶接位置を算出するコンピュータ、溶接対象ワークの溶接位置を撮影可能なカメラと、カメラによる撮影結果から求めた溶接対象ワークの実際の設置位置と、コンピュータによって算出された溶接位置から求めた溶接対象ワークの正規の設置位置とを比較し、正規の設置位置と実際の設置位置との差である設置誤差量を算出する画像処理装置、およびコンピュータにより算出された溶接位置を溶接する溶接機を備え、コンピュータは、画像処理装置で算出された設置誤差量に基づいて溶接位置を再計算することで修正後の溶接位置を算出し、修正後の溶接位置に基づいて溶接機に溶接対象ワークの溶接を実行させるものである。
 また、本発明に係るエレベーターかご室部品の製造方法は、本発明に係る自動溶接システムを使用した、エレベーターかご室部品の製造方法であって、溶接対象ワークは、エレベーターかご室部品である床板、天井、かごの戸またはかご室壁のいずれかである、ものである。
 さらに、本発明に係る自動溶接方法は、データ記憶部から出力される図面番号および寸法データに基づいて溶接対象ワークの溶接位置を算出する工程と、溶接対象ワークの溶接位置を撮影可能なカメラによる撮影結果から求めた溶接対象ワークの実際の設置位置と、算出された溶接位置から求めた溶接対象ワークの正規の設置位置とを比較し、正規の設置位置と実際の設置位置との差である設置誤差量を算出する工程と、算出された設置誤差量に基づいて溶接位置を再計算することで修正後の溶接位置を算出する工程と、修正後の溶接位置に基づいて溶接機に溶接対象ワークの溶接を実行させる溶接工程とを備えるものである。
In the automatic welding system according to the present invention, an order number, a drawing number of a work to be welded corresponding to the order number, and dimension data necessary for calculating a welding position of the work to be welded are stored in association with each other. Server, computer that calculates the welding position of the workpiece to be welded based on the drawing number and dimension data output from the server according to the input result of the order number, a camera that can capture the welding position of the workpiece to be welded, and an image taken by the camera Compare the actual installation position of the workpiece to be welded obtained from the result with the regular installation position of the workpiece to be welded obtained from the welding position calculated by the computer, and find the difference between the regular installation position and the actual installation position. An image processing device that calculates a certain installation error amount and a welder that welds the welding position calculated by the computer are provided, and the computer recalculates the welding position based on the installation error amount calculated by the image processing device. The corrected welding position is calculated by and the welding machine is caused to perform the welding of the workpiece to be welded based on the corrected welding position.
Further, the method for manufacturing an elevator cab room part according to the present invention is a method for manufacturing an elevator cab room part using the automatic welding system according to the present invention, wherein the workpiece to be welded is a floor plate that is an elevator cab part, It is either the ceiling, the door of the car or the wall of the cab.
Furthermore, the automatic welding method according to the present invention uses a step of calculating the welding position of the workpiece to be welded based on the drawing number and the dimension data output from the data storage unit, and a camera capable of photographing the welding position of the workpiece to be welded. The actual installation position of the workpiece to be welded obtained from the shooting result is compared with the regular installation position of the workpiece to be welded obtained from the calculated welding position, and it is the difference between the regular installation position and the actual installation position. The process of calculating the installation error amount, the process of calculating the corrected welding position by recalculating the welding position based on the calculated installation error amount, and the welding target for the welding machine based on the corrected welding position And a welding process for executing the welding of the work.
 この発明に係る自動溶接システムによれば、客先の要求仕様によってワーク寸法および溶接位置が変化する場合にも、各要求仕様に対応するCADデータを用意する必要なしに、種々の溶接対象ワークに対する溶接の作業性を向上させることのできる自動溶接システム、エレベーターかご室部品の製造方法、および自動溶接方法を得ることができる。 According to the automatic welding system according to the present invention, even when the work size and the welding position change depending on the customer's required specifications, it is possible to perform various welding on workpieces without needing to prepare CAD data corresponding to each required specification. It is possible to obtain an automatic welding system, a manufacturing method of elevator cab room parts, and an automatic welding method capable of improving workability of welding.
本発明の実施の形態1による溶接方法により製造されるエレベーターかご室の斜視図である。FIG. 3 is a perspective view of an elevator cab manufactured by the welding method according to the first embodiment of the present invention. 本発明の実施の形態1による溶接方法により製造されるエレベーターかご室の構成要素の説明図である。FIG. 3 is an explanatory diagram of components of an elevator cab manufactured by the welding method according to the first embodiment of the present invention. 本発明の実施の形態1に係る自動溶接システムの全体構成を示す図である。It is a figure which shows the whole automatic welding system structure which concerns on Embodiment 1 of this invention. 本発明の実施の形態1において、溶接ロボットのリーチ範囲を拡大させるための別の構成を示した概略図である。FIG. 6 is a schematic diagram showing another configuration for expanding the reach range of the welding robot in the first embodiment of the present invention. 本発明の実施の形態1による自動溶接システムにおいて、各構成要素間での情報のやり取りを示す概略図である。FIG. 3 is a schematic diagram showing exchange of information between each component in the automatic welding system according to the first embodiment of the present invention. 本発明の実施の形態1に係る自動溶接システムによる一連の溶接処理の流れを示すフローチャートである。5 is a flowchart showing a flow of a series of welding processes by the automatic welding system according to the first embodiment of the present invention. 本発明の実施の形態1による図面番号に関連付けられている計算式の関係を示す図である。It is a figure which shows the relationship of the calculation formula linked|related with the drawing number by Embodiment 1 of this invention. 本発明の実施の形態1による溶接対象ワークの具体例を示した概略図である。It is the schematic which showed the specific example of the workpiece|work to be welded by Embodiment 1 of this invention. 本発明の実施の形態1による補強部材の寸法、設置位置、および溶接位置に関する計算式の具体例を示した説明図である。It is explanatory drawing which showed the specific example of the calculation formula regarding the dimension, installation position, and welding position of the reinforcement member by Embodiment 1 of this invention. 本発明の実施の形態1による補強部材の寸法、設置位置、および溶接位置に関する計算式の具体例を示した説明図である。It is explanatory drawing which showed the specific example of the calculation formula regarding the dimension, installation position, and welding position of the reinforcement member by Embodiment 1 of this invention. 本発明の実施の形態1による溶接対象ワークの平面図である。FIG. 3 is a plan view of a workpiece to be welded according to the first embodiment of the present invention. 本発明の実施の形態1による溶接対象ワークの正面図である。FIG. 3 is a front view of the workpiece to be welded according to the first embodiment of the present invention. 本発明の実施の形態1による溶接指示の一部を抜粋した説明図である。It is explanatory drawing which extracted a part of welding instruction|indication by Embodiment 1 of this invention. 本発明の実施の形態1によるカメラの撮影画像の模式図である。FIG. 3 is a schematic diagram of a captured image of the camera according to the first embodiment of the present invention. 本発明の実施の形態1による溶接位置補正方法の説明図である。It is explanatory drawing of the welding position correction method by Embodiment 1 of this invention. 本発明の実施の形態2による突合せ溶接の模式図である。It is a schematic diagram of the butt welding by Embodiment 2 of this invention. 本発明の実施の形態3による溶接条件の説明図である。It is explanatory drawing of the welding conditions by Embodiment 3 of this invention. 本発明の実施の形態3による詳細な溶接条件の説明図である。It is explanatory drawing of the detailed welding conditions by Embodiment 3 of this invention. 本発明の実施の形態4によるクランプ治具の斜視図である。It is a perspective view of the clamp jig by Embodiment 4 of this invention. 本発明の実施の形態4による溶接位置とクランプ位置の対応を示した説明図である。It is explanatory drawing which showed the correspondence of the welding position and clamp position by Embodiment 4 of this invention.
 以下、本発明に係る自動溶接システム、エレベーターかご室部品の製造方法、および自動溶接方法の好適な実施の形態につき、図面を用いて説明する。 Hereinafter, preferred embodiments of the automatic welding system, the method for manufacturing an elevator cab room component, and the automatic welding method according to the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、本発明の実施の形態1による製造方法により製造されるエレベーターかご室400の斜視図である。また、図2は、本発明の実施の形態1による溶接方法により製造されるエレベーターかご室の構成要素の説明図である。図1および図2に示すように、かご室400は、天井401、かごの戸402、かご室壁403および床板404を組み合わせて構成されている。
Embodiment 1.
FIG. 1 is a perspective view of an elevator cab 400 manufactured by the manufacturing method according to the first embodiment of the present invention. Further, FIG. 2 is an explanatory diagram of components of an elevator cab manufactured by the welding method according to the first embodiment of the present invention. As shown in FIGS. 1 and 2, the car room 400 is configured by combining a ceiling 401, a car door 402, a car room wall 403, and a floor plate 404.
 図3は、本発明の実施の形態1に係る自動溶接システムの全体構成を示す図である。本実施の形態1に係る自動溶接システムは、データ記憶部としてのサーバー10、算出部としてのコンピュータ20、画像処理装置30、および溶接機100を備えて構成されている。そして、本実施の形態1に係る自動溶接システムは、溶接ステージ300に搭載された溶接対象ワーク200の溶接を行う。 FIG. 3 is a diagram showing the overall configuration of the automatic welding system according to the first embodiment of the present invention. The automatic welding system according to the first embodiment includes a server 10 as a data storage unit, a computer 20 as a calculation unit, an image processing device 30, and a welding machine 100. Then, the automatic welding system according to the first embodiment welds the workpiece 200 to be welded mounted on the welding stage 300.
 サーバー10と接続されているコンピュータ20には、溶接対象ワーク200の溶接位置を算出するためのソフトウェアがインストールされている。コンピュータ20は、算出した溶接位置に基づいて、溶接機100に溶接対象ワーク200の溶接を実行させる。 The computer 20 connected to the server 10 is installed with software for calculating the welding position of the workpiece 200 to be welded. The computer 20 causes the welder 100 to weld the workpiece 200 to be welded based on the calculated welding position.
 溶接機100は、ロボットとしての溶接ロボット110、および制御装置としてのロボット制御装置140を含んで構成されている。溶接ロボット110の腕に相当するマニピュレーター111の先端部には、溶接トーチ120およびカメラ31が取り付けられている。マニピュレーター111としては、6軸の駆動軸を有するものが用いられている。なお、他の構成例として、7軸のマニピュレーター、または3軸~5軸のマニピュレーターを用いることも可能である。 The welding machine 100 includes a welding robot 110 as a robot and a robot controller 140 as a controller. A welding torch 120 and a camera 31 are attached to the tip of a manipulator 111 corresponding to the arm of the welding robot 110. As the manipulator 111, one having six drive axes is used. As another configuration example, a 7-axis manipulator or a 3-axis to 5-axis manipulator can be used.
 溶接ロボット110は、可動ステージ130に設置されている。溶接ロボット110、溶接トーチ120、可動ステージ130およびカメラ31の位置制御および動作制御は、ロボット制御装置140によって行われる。ロボット制御装置140は、コンピュータ20および画像処理装置30に接続されている。 The welding robot 110 is installed on the movable stage 130. The robot controller 140 controls the position and operation of the welding robot 110, the welding torch 120, the movable stage 130, and the camera 31. The robot control device 140 is connected to the computer 20 and the image processing device 30.
 カメラ31は、画像処理装置30と接続されている。カメラ31は、溶接対象ワーク200を撮影可能であり、撮影した画像は、撮影結果として画像処理装置30に出力される。画像処理装置30は、画像から点群および輪郭の情報を取得し、画像に写る溶接対象ワーク200の2次元の位置または3次元の位置、および溶接対象ワーク200の姿勢を検出することができる。このような位置検出および姿勢検出の方法としては、それぞれ、任意の手法を用いることができる。 The camera 31 is connected to the image processing device 30. The camera 31 can photograph the workpiece 200 to be welded, and the photographed image is output to the image processing device 30 as a photographing result. The image processing device 30 can acquire the information of the point cloud and the contour from the image, and can detect the two-dimensional position or the three-dimensional position of the welding target work 200 and the posture of the welding target work 200 shown in the image. Arbitrary methods can be used for the position detection and the attitude detection.
 溶接ロボット110は、溶接トーチ120により溶接対象ワーク200を溶接することが可能な配置、およびカメラ31により溶接対象ワーク200の溶接位置を撮影することが可能な配置となるように、設置されている。 The welding robot 110 is installed such that the welding torch 120 can weld the welding target work 200 and the camera 31 can take an image of the welding position of the welding target work 200. ..
 ここで、溶接対象ワーク200がエレベーターを構成する部品である場合を想定する。この場合、溶接対象ワーク200は、1辺が最大で数mある大型構造物であり、通常の溶接ロボット110のリーチ範囲では、溶接対象ワーク200の全体を溶接することができない。 Here, it is assumed that the workpiece 200 to be welded is a component that constitutes an elevator. In this case, the workpiece 200 to be welded is a large structure having a maximum of several meters on one side, and the entire workpiece 200 to be welded cannot be welded within the reach range of the normal welding robot 110.
 そこで、図3では、紙面に垂直な方向に溶接ロボット110全体を移動可能な可動ステージ130上に溶接ロボット110が設置されている。このような構成により、溶接ロボット110のリーチ範囲を拡大させ、溶接対象ワーク200全体を溶接トーチ120によって溶接することが可能となる。 Therefore, in FIG. 3, the welding robot 110 is installed on the movable stage 130 that can move the entire welding robot 110 in the direction perpendicular to the paper surface. With such a configuration, the reach range of the welding robot 110 can be expanded and the entire welding target work 200 can be welded by the welding torch 120.
 また、図4は、本発明の実施の形態1において、溶接ロボット110のリーチ範囲を拡大させるための別の構成を示した概略図である。図4に示すように、水平2方向に移動できる天井クレーンと同様の移動ができる構造体131に溶接ロボット110を吊り下げることで、さらに大型の溶接対象ワーク200を溶接することが可能となる。 Further, FIG. 4 is a schematic diagram showing another configuration for expanding the reach range of welding robot 110 in the first embodiment of the present invention. As shown in FIG. 4, by suspending the welding robot 110 on a structure 131 that can move in the same manner as an overhead crane that can move in two horizontal directions, it is possible to weld a larger workpiece 200 to be welded.
 次に、本実施の形態1に係る自動溶接システムによる自動溶接の一連の流れについて、図5および図6を用いて説明する。図5は、本発明の実施の形態1による自動溶接システムにおいて、各構成要素間での情報のやり取りを示す概略図である。図5では、サーバー10、溶接位置計算ソフトが実装されたコンピュータ20、カメラ31と接続された画像処理装置30、および溶接機100の各構成要素が示されている。これらの構成要素は、有線ケーブルまたは無線電波などで接続されている。この結果、本実施の形態1に係る自動溶接システムには、ローカルネットワークが構築されている。 Next, a series of flows of automatic welding by the automatic welding system according to the first embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic diagram showing exchange of information between each component in the automatic welding system according to the first embodiment of the present invention. In FIG. 5, each component of the server 10, the computer 20 in which the welding position calculation software is installed, the image processing device 30 connected to the camera 31, and the welding machine 100 is shown. These constituent elements are connected by a wired cable or radio waves. As a result, a local network is constructed in the automatic welding system according to the first embodiment.
 図6は、本発明の実施の形態1に係る自動溶接システムによる一連の溶接処理の流れを示すフローチャートである。以下、図5に示す各構成要素間での情報のやり取り、および図6に示すフローチャートに従って、本実施の形態1における溶接の動作手順について説明する。 FIG. 6 is a flowchart showing a flow of a series of welding processes by the automatic welding system according to the first embodiment of the present invention. Hereinafter, the operation procedure of welding in the first embodiment will be described according to the exchange of information between the respective constituent elements shown in FIG. 5 and the flowchart shown in FIG.
 まず、ステップS601において、溶接対象ワーク200を特定するための注文番号が、バーコードリーダーにより読み取られる。そして、読み取られた注文番号は、サーバー10に送信される。 First, in step S601, the order number for identifying the workpiece 200 to be welded is read by the barcode reader. Then, the read order number is transmitted to the server 10.
 サーバー10には、注文番号と、注文番号に対応する溶接対象ワーク200の図面番号と、溶接対象ワーク200の溶接位置を算出するために必要な寸法データとが、関連付けられて記憶されている。以下の説明では、溶接位置を算出するために必要な寸法データとして、溶接対象ワーク200の縦寸法および横寸法がサーバー10に格納されているものとする。 The server 10 stores an order number, a drawing number of the workpiece 200 to be welded corresponding to the order number, and dimension data necessary for calculating a welding position of the workpiece 200 to be welded, in association with each other. In the following description, it is assumed that the vertical dimension and the horizontal dimension of the workpiece 200 to be welded are stored in the server 10 as dimension data necessary for calculating the welding position.
 バーコードリーダーからサーバー10に注文番号が送信された後、ステップS602において、サーバー10は、注文番号の入力結果に応じて、図面番号と、寸法データとしての縦寸法および横寸法とを抽出する。さらに、ステップS603において、サーバー10は、抽出した図面番号、縦寸法、および横寸法をコンピュータ20に送信する。 After the order number is transmitted from the barcode reader to the server 10, in step S602, the server 10 extracts the drawing number and the vertical and horizontal dimensions as dimension data according to the input result of the order number. Further, in step S603, the server 10 transmits the extracted drawing number, vertical dimension, and horizontal dimension to the computer 20.
 コンピュータ20には、各図面番号に応じて、縦寸法および横寸法のデータから溶接位置を算出するための計算式が、溶接位置計算ソフトとしてインストールされている。すなわち、溶接位置計算ソフトにおいて、溶接位置の計算に必要なパラメータは、溶接対象ワーク200の縦寸法および横寸法である。従って、ステップS604において、コンピュータ20は、サーバー10から受信した縦寸法および横寸法を、図面番号に対応した計算式に代入することで、溶接対象ワーク200の溶接位置を算出することができる。 The computer 20 has a calculation formula for calculating the welding position from the data of the vertical dimension and the horizontal dimension according to each drawing number installed as welding position calculation software. That is, in the welding position calculation software, the parameters necessary for calculating the welding position are the vertical dimension and the horizontal dimension of the workpiece 200 to be welded. Therefore, in step S604, the computer 20 can calculate the welding position of the welding target work 200 by substituting the vertical dimension and the horizontal dimension received from the server 10 into the calculation formula corresponding to the drawing number.
 次に、ステップS605において、コンピュータ20は、算出した溶接位置の情報を含む移動指令をロボット制御装置140に送信し、ロボット制御装置140は、マニピュレーター111を稼働させ、カメラ31を使って溶接位置を撮影する。次に、ステップS606において、画像処理装置30は、カメラ31が撮影した画像データを取得する。さらに、画像処理装置30は、溶接対象ワーク200の正規の設置位置と実際の設置位置との差である設置誤差量を算出する。 Next, in step S605, the computer 20 transmits a movement command including information on the calculated welding position to the robot controller 140, and the robot controller 140 operates the manipulator 111 and uses the camera 31 to determine the welding position. Take a picture. Next, in step S606, the image processing device 30 acquires the image data captured by the camera 31. Further, the image processing device 30 calculates an installation error amount which is a difference between the regular installation position and the actual installation position of the welding target work 200.
 ここで、画像処理装置30は、コンピュータ20によって算出された溶接位置に基づいて、溶接対象ワーク200が本来設置されるべき位置を正規の設置位置として算出できる。また、画像処理装置30は、カメラ31から取得した画像データを画像処理することで、溶接対象ワーク200が実際に設置されている位置を実際の設置位置として算出できる。そして、画像処理装置30は、正規の設置位置と実際の設置位置との差として算出した設置誤差量をコンピュータ20に送信する。 Here, based on the welding position calculated by the computer 20, the image processing device 30 can calculate the position where the workpiece 200 to be welded should originally be installed as a regular installation position. In addition, the image processing device 30 can calculate the position where the welding target work 200 is actually installed as an actual installation position by performing image processing on the image data acquired from the camera 31. Then, the image processing device 30 transmits the installation error amount calculated as the difference between the regular installation position and the actual installation position to the computer 20.
 次に、ステップS607において、コンピュータ20は、設置誤差量と、あらかじめ規定されている許容誤差量とを比較する。そして、コンピュータ20は、設置誤差量が許容誤差量以下に収まっているか否かを判定し、収まっている場合には、次のステップS608に進む。 Next, in step S607, the computer 20 compares the installation error amount with a predetermined allowable error amount. Then, the computer 20 determines whether or not the installation error amount is within the allowable error amount or less, and if it is within the allowable error amount, the process proceeds to the next step S608.
 一方、設置誤差量が許容誤差量を超えている場合には、コンピュータ20は、エラーを報知し、オペレーターに対して正しい位置に溶接対象ワーク200を移動させるように促す。 On the other hand, when the installation error amount exceeds the allowable error amount, the computer 20 notifies the error and prompts the operator to move the welding target work 200 to the correct position.
 ステップS608に進んだ場合には、コンピュータ20は、画像処理装置30で算出された設置誤差量に基づいて溶接位置を再計算することで修正後の溶接位置を算出する。すなわち、コンピュータ20は、設置誤差量を考慮してオフセットした溶接位置を、修正後の溶接位置として再計算する。 If the process proceeds to step S608, the computer 20 calculates the corrected welding position by recalculating the welding position based on the installation error amount calculated by the image processing device 30. That is, the computer 20 recalculates the welding position offset considering the installation error amount as the corrected welding position.
 最後に、ステップS609において、コンピュータ20は、再計算した修正後の溶接位置を、ロボット制御装置140に送信し、溶接ロボット110による自動溶接を開始させる。 Finally, in step S609, the computer 20 transmits the recalculated and corrected welding position to the robot controller 140, and causes the welding robot 110 to start automatic welding.
 次に、図6に示した各ステップの詳細について、図7~図16を参照しながら説明する。まず、ステップS601~ステップS603について、詳細を説明する。図7は、本発明の実施の形態1による図面番号に関連付けられている計算式の関係を示す図である。図7に示された図面番号A~Cは、溶接対象ワーク200の標準となる図面である。標準となる図面データは、コンピュータ20の記憶装置内に保存されている。図7に示すように、溶接対象ワーク200は、その種類によって複数の図面番号が与えられている。 Next, details of each step shown in FIG. 6 will be described with reference to FIGS. 7 to 16. First, the details of steps S601 to S603 will be described. FIG. 7 is a diagram showing a relationship of calculation formulas associated with drawing numbers according to the first embodiment of the present invention. Drawing numbers A to C shown in FIG. 7 are standard drawings of the workpiece 200 to be welded. The standard drawing data is stored in the storage device of the computer 20. As shown in FIG. 7, the workpiece 200 to be welded is given a plurality of drawing numbers depending on its type.
 そして、それぞれの図面において、補強部材に関する補強長さ、補強本数、補強間ピッチ、および溶接位置に関するそれぞれの計算式が与えられている。この図7に示すような、図面番号と関連付けられたそれぞれの計算式は、コンピュータ20内に、溶接位置計算ソフトとして格納されている。 In each drawing, each calculation formula regarding the reinforcement length, the number of reinforcements, the pitch between reinforcements, and the welding position regarding the reinforcement member is given. The respective calculation formulas associated with the drawing numbers as shown in FIG. 7 are stored in the computer 20 as welding position calculation software.
 これらの計算式のパラメータは、溶接対象ワーク200の縦寸法および横寸法によって規定されている。従って、コンピュータ20は、溶接対象ワーク200に関する図面番号、縦寸法、および横寸法が分かれば、溶接位置を算出することができる。従って、補強部材の溶接位置に関する情報をコンピュータ20に入力する必要がない。または、寸法データ及び溶接位置を反映させたCADデータを、変化する客先の要求仕様毎に作成する必要がない。 The parameters of these calculation formulas are defined by the vertical and horizontal dimensions of the workpiece 200 to be welded. Therefore, the computer 20 can calculate the welding position if the drawing number, the vertical dimension, and the horizontal dimension of the workpiece 200 to be welded are known. Therefore, it is not necessary to input information regarding the welding position of the reinforcing member into the computer 20. Alternatively, it is not necessary to create CAD data reflecting the dimensional data and the welding position for each changing customer requirement.
 上述したように、溶接対象ワーク200に対応する図面番号、縦寸法、および横寸法は、注文番号と関連付けられて、サーバー10に保存されている。従って、例えば製造ラインのトラッキングに使用しているバーコード等を読み取ることで注文番号を取得し、読み取った注文番号をサーバー10で照合させることで、コンピュータ20は、溶接対象ワーク200に対応する図面番号、縦寸法、および横寸法を取得することができる。 As described above, the drawing number, the vertical dimension, and the horizontal dimension corresponding to the workpiece 200 to be welded are stored in the server 10 in association with the order number. Therefore, for example, by reading the bar code or the like used for tracking the manufacturing line, the order number is acquired, and the read order number is collated by the server 10, so that the computer 20 displays the drawing corresponding to the workpiece 200 to be welded. The number, the vertical dimension, and the horizontal dimension can be obtained.
 もちろん、注文番号の取得方法としては、バーコードを読み取る以外の他の公知の方法でもよく、バーコード以外のトラッキングコードを利用してもよい。 Of course, as a method of obtaining the order number, any known method other than reading the barcode may be used, or a tracking code other than the barcode may be used.
 次に、図6のステップS604について、詳細を説明する。図8は、本発明の実施の形態1による溶接対象ワーク200の具体例を示した概略図である。ここでは、図8に示す溶接対象ワーク200を例に、補強部材202を意匠パネル201に溶接する場合について、溶接位置を計算する方法を説明する。なお、意匠パネル201および補強部材202は、溶接対象ワーク200に相当する。 Next, the details of step S604 in FIG. 6 will be described. FIG. 8 is a schematic diagram showing a specific example of the welding target work 200 according to the first embodiment of the present invention. Here, a method of calculating the welding position will be described in the case where the reinforcing member 202 is welded to the design panel 201, using the welding target work 200 shown in FIG. 8 as an example. The design panel 201 and the reinforcing member 202 correspond to the welding target work 200.
 図7を用いて説明したように、図面には補強部材202の溶接位置に関する寸法を変数として、計算式が指示されている。この計算式は、溶接位置計算ソフトとして格納されている。図9および図10は、本発明の実施の形態1による補強部材202の寸法、設置位置、および溶接位置に関する計算式の具体例を示した説明図である。溶接位置計算ソフトとして格納されている計算式は、例えば、図9および図10のようなものが挙げられる。 As described with reference to FIG. 7, in the drawing, the calculation formula is specified with the dimension regarding the welding position of the reinforcing member 202 as a variable. This calculation formula is stored as welding position calculation software. 9 and 10 are explanatory diagrams showing specific examples of the calculation formulas regarding the dimensions, the installation position, and the welding position of the reinforcing member 202 according to the first embodiment of the present invention. The calculation formulas stored as the welding position calculation software include, for example, those shown in FIGS. 9 and 10.
 図9に例示した計算式は、補強部材の長さ、溶接数が図面変数Zとなっており、意匠パネル201の縦寸法Aで記述されている。また、図10に示すように、補強部材202の個数N、補強部材202間のピッチ長Qも図面変数となっており、意匠パネル201の横寸法Bで記述されている。 In the calculation formula illustrated in FIG. 9, the length of the reinforcing member and the number of welds are drawing variables Z, and are described by the vertical dimension A of the design panel 201. Further, as shown in FIG. 10, the number N of the reinforcing members 202 and the pitch length Q between the reinforcing members 202 are also drawing variables, and are described by the lateral dimension B of the design panel 201.
 図11は、本発明の実施の形態1による溶接対象ワーク200の平面図である。また、図12は、本発明の実施の形態1による溶接対象ワーク200の正面図である。図13は、本発明の実施の形態1による溶接指示の一部を抜粋した説明図である。これは、隅肉溶接と呼ばれる溶接記号になる。図面矢印先端部の補強板と化粧板の境界部分を溶接するものである。図13に示した溶接記号における数字の具体的な意味は、手前側脚長3mm、溶接長50mm、溶接数Z3箇所、ピッチ200mm、というものである。なお、ここでの例としては、図9の図面変数と溶接数がリンクしている。 FIG. 11 is a plan view of the welding target work 200 according to the first embodiment of the present invention. FIG. 12 is a front view of the workpiece 200 to be welded according to the first embodiment of the present invention. FIG. 13 is an explanatory diagram showing a part of the welding instruction according to the first embodiment of the present invention. This becomes a welding symbol called fillet welding. The boundary portion between the reinforcing plate and the decorative plate at the tip of the arrow in the drawing is welded. The specific meaning of the numbers in the welding symbols shown in FIG. 13 is that the front leg length is 3 mm, the welding length is 50 mm, the number of welds is Z3, and the pitch is 200 mm. In addition, as an example here, the drawing variable of FIG. 9 and the number of welds are linked.
 コンピュータ20は、図9および図10に示した計算式から、補強部材202の長さ、溶接数、補強部材202の個数N、補強部材202間のピッチ長Qを導出することができる。この結果、コンピュータ20は、図11および図12に示す図面寸法を定めることができ、溶接位置を決定することができる。 The computer 20 can derive the length of the reinforcing member 202, the number of welds, the number N of the reinforcing members 202, and the pitch length Q between the reinforcing members 202 from the calculation formulas shown in FIGS. 9 and 10. As a result, the computer 20 can determine the drawing dimensions shown in FIGS. 11 and 12, and can determine the welding position.
 次に、図6のステップS605~ステップS607について、詳細を説明する。ここでは、図11における意匠パネル201および補強部材202(a)を溶接対象ワーク200とした場合を例に、説明する。 Next, details of steps S605 to S607 in FIG. 6 will be described. Here, the case where the design panel 201 and the reinforcing member 202(a) in FIG. 11 are used as the welding target work 200 will be described as an example.
 図11に示すように、意匠パネル201の左下隅部を原点Oとし、横方向をx軸、縦方向をy軸に設定する。次に、補強部材202(a)の左下部Gおよび左上部Hをカメラ31で撮影する。ここで、原点Oに対して、左下部Gの正規のxy座標は、G(a,b)であり、左上部Hの正規のxy座標はH(a,b+Z1)である。 As shown in FIG. 11, the lower left corner of the design panel 201 is the origin O, the horizontal direction is the x-axis, and the vertical direction is the y-axis. Next, the lower left portion G and the upper left portion H of the reinforcing member 202(a) are photographed by the camera 31. Here, with respect to the origin O, the regular xy coordinates of the lower left portion G are G(a, b), and the regular xy coordinates of the upper left portion H are H(a, b+Z1).
 図14は、本発明の実施の形態1によるカメラ31の撮影画像の模式図である。具体的には、図14(a)は、左下部Gを撮像した画像を示しており、図14(b)は、左上部Hを撮像した画像を示している。画像処理装置30は、図14に示すような、カメラ31により撮影された画像を取得する。画像処理装置30は、取得した画像に基づいて、意匠パネル201および補強部材202(a)についてエッジ抽出処理を実行することで輪郭を求める。その後、画像処理装置30は、補強部材202(a)の左下部Gおよび左上部Hの座標を求める。 FIG. 14 is a schematic diagram of a captured image of the camera 31 according to the first embodiment of the present invention. Specifically, FIG. 14A shows an image obtained by capturing the lower left portion G, and FIG. 14B shows an image capturing the upper left portion H. The image processing device 30 acquires an image captured by the camera 31 as shown in FIG. The image processing apparatus 30 obtains contours by performing edge extraction processing on the design panel 201 and the reinforcing member 202(a) based on the acquired image. After that, the image processing device 30 obtains the coordinates of the lower left portion G and the upper left portion H of the reinforcing member 202(a).
 画像処理装置30は、コンピュータ20によって計算式から算出された位置座標G(a,b)、H(a,b+Z1)を正規の設置位置として取得する。また、画像処理装置30は、カメラ31で取得した画像に対して上述した画像処理を施すことで、図14に示したように、位置座標G(a+δa,b+δb)、H(a+δa’,b+Z1+δb’)を実際の設置位置として算出する。 The image processing device 30 acquires the position coordinates G(a,b) and H(a,b+Z1) calculated from the calculation formula by the computer 20 as the regular installation position. Further, the image processing device 30 performs the above-described image processing on the image acquired by the camera 31, so that the position coordinates G(a+δa, b+δb), H(a+δa′, b+Z1+δb′) as shown in FIG. ) Is calculated as the actual installation position.
 従って、画像処理装置30は、正規の設置位置である位置座標G(a,b)、H(a,b+Z1)と、実際の設置位置である位置座標G(a+δa,b+δb)、H(a+δa’,b+Z1+δb’)との差を求めることで、δa、δb、δa’、δb’を設置誤差量として特定することができる。これら設置誤差量が、許容誤差量を超えている場合には、エラー終了させる。 Therefore, the image processing device 30 has position coordinates G(a, b) and H(a, b+Z1) that are regular installation positions and position coordinates G(a+δa, b+δb) and H(a+δa′) that are actual installation positions. , B+Z1+δb′), it is possible to specify δa, δb, δa′, δb′ as installation error amounts. If these installation error amounts exceed the allowable error amount, the processing ends with an error.
 同様に、画像処理装置30は、補強部材202(b)、202(c)、202(d),202(e)の左下部および左上部をカメラ31で撮影した画像に基づいて、それぞれの補強部材202の設置誤差量を算出し、設置誤差量が許容誤差量を超えているか否かを判定する。なお、エラー判定する場合には、どの補強部材について設置位置が許容誤差量を超えているか合わせて報知させることで、オペレーターが必要な措置を素早く実施できる。また、エラー判定およびエラー発生に伴う報知処理は、設置誤差量を受信したコンピュータ20側で実施することができる。 Similarly, the image processing apparatus 30 reinforces each of the reinforcing members 202(b), 202(c), 202(d), 202(e) on the basis of the images captured by the camera 31 at the lower left and upper left portions. The installation error amount of the member 202 is calculated, and it is determined whether or not the installation error amount exceeds the allowable error amount. When making an error determination, the operator can promptly take necessary measures by notifying which reinforcing member the installation position exceeds the allowable error amount. Further, the error determination and the notification process associated with the error occurrence can be performed on the computer 20 side that has received the installation error amount.
 最後に、図6のステップS608およびステップS609について、詳細を説明する。図15は、本発明の実施の形態1による溶接位置補正方法の説明図である。例えば、図15に示すように、補強部材202が、2点鎖線で示した正規の設置位置からずれて、実線で示した実際の設置位置に設置されていた場合について、設置誤差量に基づいて修正後の溶接位置を算出する方法を説明する。 Finally, details of step S608 and step S609 of FIG. 6 will be described. FIG. 15 is an explanatory diagram of a welding position correction method according to the first embodiment of the present invention. For example, as shown in FIG. 15, in the case where the reinforcing member 202 is installed at the actual installation position shown by the solid line, deviating from the regular installation position shown by the chain double-dashed line, based on the installation error amount. A method of calculating the corrected welding position will be described.
 まず、画像処理装置30は、ステップS606で算出した設置誤差量δa、δb、δa’、δb’を、コンピュータ20に送信する。コンピュータ20は、受信した設置誤差量から、溶接トーチ120の軌跡を、次の計算式に従い、再計算することで、修正後の溶接位置を算出する。 First, the image processing apparatus 30 transmits the installation error amounts δa, δb, δa′, δb′ calculated in step S606 to the computer 20. The computer 20 calculates the corrected welding position by recalculating the trajectory of the welding torch 120 from the received installation error amount according to the following calculation formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 溶接開始点と溶接終了点は、直線状になっている。そこで、コンピュータ20は、これら2点の位置から直線補完することで、設置誤差量を考慮した溶接線を作成することができる。従って、コンピュータ20は、溶接途中の位置がカメラ31の死角になっている場合でも、溶接位置を補完することができる。コンピュータ20は、他の補強部材202の溶接線についても同様に求めることができる。従って、コンピュータ20は、これらのデータをロボット制御装置140に送信することで、ロボット制御装置140に溶接ロボット110による溶接対象ワーク200の溶接を実行させることができる。  The welding start point and welding end point are linear. Therefore, the computer 20 can create a welding line in consideration of the installation error amount by linearly complementing the positions of these two points. Therefore, the computer 20 can complement the welding position even when the position in the middle of welding is the blind spot of the camera 31. The computer 20 can similarly obtain the welding line of the other reinforcing member 202. Therefore, the computer 20 can cause the robot controller 140 to perform welding of the workpiece 200 to be welded by the welding robot 110 by transmitting these data to the robot controller 140.
 以上のように、実施の形態1によれば、実際の溶接に先立って、カメラを用いて溶接位置を撮影し、撮影結果を用いて画像処理装置により溶接対象ワークの設置誤差量を算出することにより、図面番号および寸法データに基づくオフライン教示によって得られた溶接トーチの位置、軌跡データを補正することができる。その結果、個々のワークの設置誤差、およびワーク自体が持つばらつきに対処することができ、溶接精度の向上を図ることができる。 As described above, according to the first embodiment, prior to actual welding, the welding position is photographed by using the camera, and the image processing apparatus is used to calculate the installation error amount of the welding target workpiece using the photographed result. Thus, the position and locus data of the welding torch obtained by off-line teaching based on the drawing number and dimension data can be corrected. As a result, it is possible to deal with the installation error of each work and the variation of the work itself, and it is possible to improve the welding accuracy.
 また、補強部材の溶接位置を計算式によって自動的に算出することができる構成を備えている。このため、溶接位置にあらかじめマーキングする必要がなく、また、オペレーターが手動で溶接位置を入力する必要もない。従って、溶接ミスを減らすことができるとともに、オペレーターが不要になることで、作業性が向上するとともに人件費を削減できるメリットがある。 Also, the welding position of the reinforcing member can be automatically calculated by a calculation formula. Therefore, it is not necessary to mark the welding position in advance, and the operator does not need to manually input the welding position. Therefore, it is possible to reduce welding mistakes and eliminate the need for an operator, which improves workability and reduces labor costs.
 したがって、本実施の形態1に係る自動溶接システムは、例えば、エレベーターのパネル形状部材のように、客先の要求仕様によってワーク寸法および溶接位置が変化する場合にも、容易に適用することができる。 Therefore, the automatic welding system according to the first embodiment can be easily applied even when the work size and the welding position change depending on the customer's required specifications such as the panel-shaped member of the elevator. ..
 実施の形態2.
 先の実施の形態1においては、溶接開始点と溶接終了点の2点について、カメラ31を用いて撮影し、撮影した2点を用いて溶接位置の補正を行う方式について説明した。しかしながら、補正に使用する点数は、2点には限定されず、3点以上に増やしてもよい。そこで、本実施の形態2では、3点以上の認識結果に基づいて溶接位置の補正処理を行う場合について説明する。
Embodiment 2.
In the first embodiment described above, the method of capturing the welding start point and the welding end point using the camera 31 and correcting the welding position using the captured two points has been described. However, the number of points used for correction is not limited to two, and may be increased to three or more. Therefore, in the second embodiment, a case where the welding position correction process is performed based on the recognition results of three or more points will be described.
 図16は、本発明の実施の形態2による突合せ溶接の模式図である。例えば、図16に示すような、溶接部材210(a)と溶接部材210(b)とをレーザー122を用いて突合せ溶接する場合には、3点以上の認識結果に基づいて溶接位置の補正処理を行う効果が発揮される。 FIG. 16 is a schematic diagram of butt welding according to the second embodiment of the present invention. For example, when butt welding the welding member 210(a) and the welding member 210(b) using the laser 122 as shown in FIG. 16, the welding position correction process is performed based on the recognition result of three or more points. The effect of doing is demonstrated.
 光学ヘッド121から照射されるレーザー122を、溶接部材210(a)と溶接部材210(b)との境界部211に照射して溶接する場合を考える。この場合、レーザー122の焦点径が小さく、レーザー122の焦点が境界部211からずれると、溶接強度が大幅に低下し、ずれ幅が大きい場合には、溶接できなくなる。従って、レーザー122の焦点位置を精度よく境界部211に追従させる必要がある。そのような場合は、補正に用いる認識箇所を3点以上に増やすことにより、溶接位置の精度を向上させることができる。 Consider a case where the laser 122 emitted from the optical head 121 is emitted to the boundary portion 211 between the welding member 210(a) and the welding member 210(b) to perform welding. In this case, if the focal diameter of the laser 122 is small and the focal point of the laser 122 deviates from the boundary portion 211, the welding strength is significantly reduced, and if the deviation width is large, welding cannot be performed. Therefore, it is necessary to make the focal position of the laser 122 accurately follow the boundary portion 211. In such a case, the accuracy of the welding position can be improved by increasing the number of recognition points used for correction to three or more.
 実施の形態3.
 上記の各実施の形態1、2では、カメラ31を用いて溶接対象ワーク200の実際の設置位置を求める場合について説明した。しかしながら、カメラ31以外にも、レーザセンサ、超音波センサ、接触式の距離センサなどを用いて、溶接対象ワーク200の実際の設置位置を求めるようにしてもよい。また、カメラ31、あるいは上述したセンサは、溶接対象ワーク200の実際の設置位置に関する情報を取得できればよく、必ずしも溶接ロボット110に搭載される必要はない。
Embodiment 3.
In each of the first and second embodiments described above, the case where the actual installation position of the workpiece 200 to be welded is obtained using the camera 31 has been described. However, in addition to the camera 31, a laser sensor, an ultrasonic sensor, a contact type distance sensor, or the like may be used to obtain the actual installation position of the workpiece 200 to be welded. Further, the camera 31 or the above-mentioned sensor need only be able to acquire information on the actual installation position of the workpiece 200 to be welded, and is not necessarily mounted on the welding robot 110.
 また、上記の実施の形態1、2では、アーク溶接作業およびレーザー溶接作業を適用対象とする場合について説明した。しかしながら、他の作業ロボットを適用対象とすることも可能である。 In addition, in the above-described first and second embodiments, the case where the arc welding work and the laser welding work are applied has been described. However, it is also possible to apply other work robots.
 例えば、溶接トーチ120の代わりに溶接電極をロボットに装着し、スポット溶接を行う用途に適用してもよい。他にも、溶接トーチ120の代わりにグラインダーをロボットに装着し、バリ取りに使用する、あるいは溶接ビードを除去する用途に適用するようにしてもよい。 For example, instead of the welding torch 120, a welding electrode may be attached to the robot and may be applied to spot welding. In addition, a grinder may be attached to the robot instead of the welding torch 120 and used for deburring or for removing the welding bead.
 また、適用対象となるワークは、エレベーターの溶接対象部品に限るわけではなく、ワークの外径形状から溶接位置が計算式によって定まるワークであれば、どのようなワークでも適用対象とすることができる。特に、多品種少量生産品に対して本発明に係るシステム構成を適用することで、大きな効果を実現できる。 Further, the work to be applied is not limited to the elevator welding target parts, and any work can be applied as long as the welding position is determined by the calculation formula from the outer diameter shape of the work. .. In particular, a large effect can be realized by applying the system configuration according to the present invention to high-mix low-volume products.
 また、実施の形態1~3では、図面番号および寸法データから溶接対象ワークの溶接位置を算出するために、計算式を用いる場合について説明した。しかしながら、計算式の代わりに、図面番号および寸法データをパラメータとする関数、あるいは図面番号および寸法データをパラメータとするテーブルを用いて、溶接対象ワークの溶接位置を算出する構成を採用することも可能である。 Further, in the first to third embodiments, the case where the calculation formula is used to calculate the welding position of the workpiece to be welded from the drawing number and the dimension data has been described. However, instead of the calculation formula, it is also possible to adopt a configuration in which the welding position of the workpiece to be welded is calculated using a function with the drawing number and dimension data as parameters or a table with the drawing number and dimension data as parameters. Is.
 また、図面番号および寸法データに加え、溶接対象ワークの材料および板厚のデータをサーバー10からコンピュータ20に送信することで、溶接条件を自動的に選択することができる。 In addition to the drawing number and dimensional data, the welding condition can be automatically selected by transmitting the material and plate thickness data of the workpiece to be welded from the server 10 to the computer 20.
 図17は、本発明の実施の形態3による溶接条件の説明図である。また、図18は、本発明の実施の形態3による詳細な溶接条件の説明図である。具体的には、図17および図18に示すように、あらかじめ用意しておいた材料および板厚に対応した溶接条件が自動的に選択され、溶接が行われる。これにより、客先仕様により、材料種類および板厚が変更された場合でも、適用することができる。 FIG. 17 is an explanatory diagram of welding conditions according to the third embodiment of the present invention. Further, FIG. 18 is an explanatory diagram of detailed welding conditions according to the third embodiment of the present invention. Specifically, as shown in FIGS. 17 and 18, welding conditions corresponding to the material and the plate thickness prepared in advance are automatically selected and welding is performed. As a result, even if the material type and the plate thickness are changed according to the customer's specifications, it can be applied.
 実施の形態4.
 図19は、本発明の実施の形態4によるクランプ治具の斜視図である。溶接対象ワークのクランプ治具301は、ステージ302、梁303、およびクランプ部304から構成されている。コンピュータ20内に、図面番号および寸法データをパラメータとするクランプ位置計算式を用意しておくことで、溶接対象ワークの寸法および設置位置によって、クランプ位置を自動的に調整することができる。
Fourth Embodiment
FIG. 19 is a perspective view of a clamp jig according to the fourth embodiment of the present invention. The clamp jig 301 for the workpiece to be welded includes a stage 302, a beam 303, and a clamp portion 304. By preparing a clamp position calculation formula having the drawing number and the dimension data as parameters in the computer 20, the clamp position can be automatically adjusted according to the dimension and installation position of the workpiece to be welded.
 これにより、溶接前のクランプ位置調整工程を自動化することができる。クランプ治具301のクランプ部304は、例えば、エアシリンダーで構成されており、溶接対象ワークを押し付けることでクランプが行われる。梁303およびクランプ部304は、x軸方向及びy軸方向に移動できるように、例えば、ボールネジとリニアガイドで構成されている。 With this, the clamp position adjustment process before welding can be automated. The clamp portion 304 of the clamp jig 301 is composed of, for example, an air cylinder, and is clamped by pressing a workpiece to be welded. The beam 303 and the clamp portion 304 are composed of, for example, a ball screw and a linear guide so as to be movable in the x-axis direction and the y-axis direction.
 図20は、本発明の実施の形態4による溶接位置とクランプ位置の対応を示した説明図である。図20に示すように、コンピュータ20で計算した溶接位置に最も近い箇所を常にクランプするように、クランプ部304の位置を自動的に移動させることで、意匠パネル201と補強部材202の隙間を最小限にすることができ、溶接品質を向上させることができる。 FIG. 20 is an explanatory diagram showing the correspondence between the welding position and the clamp position according to the fourth embodiment of the present invention. As shown in FIG. 20, the position of the clamp portion 304 is automatically moved so that the position closest to the welding position calculated by the computer 20 is always clamped, so that the gap between the design panel 201 and the reinforcing member 202 is minimized. And the welding quality can be improved.
 10 サーバー、20 コンピュータ、30 画像処理装置、31 カメラ、100 溶接機、 110 溶接ロボット、111 マニピュレーター、120 溶接トーチ、130 可動ステージ、140 ロボット制御装置、200 溶接対象ワーク、201 意匠パネル、202 補強部材、301 クランプ治具、302 ステージ、303 梁、304 クランプ部、305 トーチ、400 かご室、401 天井、402 かごの戸、403 かご室壁、404 床板。 10 server, 20 computer, 30 image processing device, 31 camera, 100 welding machine, 110 welding robot, 111 manipulator, 120 welding torch, 130 movable stage, 140 robot control device, 200 welding target work, 201 design panel, 202 reinforcement member , 301 clamp jig, 302 stage, 303 beam, 304 clamp part, 305 torch, 400 cab room, 401 ceiling, 402 basket door, 403 cab room wall, 404 floor board.

Claims (8)

  1.  注文番号と、前記注文番号に対応する溶接対象ワークの図面番号と、前記溶接対象ワークの溶接位置を算出するために必要な寸法データとが関連付けられて記憶されているデータ記憶部、
     前記注文番号の入力結果に応じて前記データ記憶部から出力される前記図面番号および前記寸法データに基づいて前記溶接対象ワークの溶接位置を算出する算出部、
     前記溶接対象ワークの前記溶接位置を撮影可能なカメラ、
     前記カメラによる撮影結果から求めた前記溶接対象ワークの実際の設置位置と、前記算出部によって算出された前記溶接位置から求めた前記溶接対象ワークの正規の設置位置とを比較し、前記正規の設置位置と前記実際の設置位置との差である設置誤差量を算出する画像処理装置、および
     前記算出部により算出された前記溶接位置を溶接する溶接機
     を備え、
     前記算出部は、前記画像処理装置で算出された前記設置誤差量に基づいて前記溶接位置を再計算することで修正後の溶接位置を算出し、前記修正後の溶接位置に基づいて前記溶接機に前記溶接対象ワークの溶接を実行させる
     自動溶接システム。
    A data storage unit in which an order number, a drawing number of a workpiece to be welded corresponding to the order number, and dimension data necessary for calculating a welding position of the workpiece to be welded are stored in association with each other,
    A calculator that calculates a welding position of the workpiece to be welded based on the drawing number and the dimension data output from the data storage unit according to the input result of the order number.
    A camera capable of photographing the welding position of the workpiece to be welded,
    The actual installation position of the workpiece to be welded obtained from the image taken by the camera is compared with the regular installation position of the workpiece to be welded obtained from the welding position calculated by the calculator, and the regular installation is performed. An image processing device that calculates an installation error amount that is a difference between a position and the actual installation position, and a welding machine that welds the welding position calculated by the calculation unit,
    The calculator calculates a corrected welding position by recalculating the welding position based on the installation error amount calculated by the image processing device, and the welder based on the corrected welding position. An automatic welding system that causes the above-mentioned workpiece to be welded.
  2.  前記データ記憶部は、前記溶接対象ワークの材料データが記憶されており、前記算出部は、前記材料データに基づいて前記溶接対象ワークの溶接条件を決定する請求項1に記載の自動溶接システム。 The automatic welding system according to claim 1, wherein the data storage unit stores material data of the workpiece to be welded, and the calculation unit determines welding conditions of the workpiece to be welded based on the material data.
  3.  前記溶接機は、
      先端部に溶接トーチが装着され、少なくとも3つの駆動軸を有するロボット、および
      前記算出部から受信した前記修正後の溶接位置に基づいて前記ロボットの位置制御を行うことで、前記溶接対象ワークの溶接を実行させる制御装置
     を有する請求項1または2に記載の自動溶接システム。
    The welder is
    Welding of the workpiece to be welded is performed by controlling the position of the robot based on the robot having the welding torch attached to the tip thereof and having at least three drive axes, and the corrected welding position received from the calculator. The automatic welding system according to claim 1 or 2, further comprising:
  4.  前記溶接機は、前記ロボットが設置され、ロボット全体を移動可能な可動ステージをさらに有し、
     前記制御装置は、前記算出部から受信した前記修正後の溶接位置に基づいて前記ロボットおよび前記可動ステージの位置制御を行うことで、前記溶接対象ワークの溶接を実行させる
     請求項3に記載の自動溶接システム。
    The welding machine further includes a movable stage on which the robot is installed and which can move the entire robot,
    The automatic control according to claim 3, wherein the control device performs welding of the workpiece to be welded by performing position control of the robot and the movable stage based on the corrected welding position received from the calculation unit. Welding system.
  5.  前記カメラは、前記ロボットに搭載されており、
     前記算出部は、前記溶接位置を撮影可能な位置に前記ロボットを移動させるための移動指令を前記制御装置に対して出力し、
     前記制御装置は、前記移動指令に基づいて前記ロボットの位置制御を行い、前記カメラにより前記溶接位置を撮影させ、
     前記画像処理装置は、前記ロボットに搭載された前記カメラによる前記溶接位置に関する撮影結果を用いて、前記設置誤差量を算出する
     請求項3または4に記載の自動溶接システム。
    The camera is mounted on the robot,
    The calculation unit outputs a movement command for moving the robot to a position where the welding position can be imaged, to the control device,
    The control device controls the position of the robot based on the movement command, causes the camera to photograph the welding position,
    The automatic welding system according to claim 3, wherein the image processing device calculates the installation error amount by using a photographing result of the welding position by the camera mounted on the robot.
  6.  前記カメラは、前記溶接位置に含まれる溶接開始点および溶接終了点の2点を撮影し、
     前記画像処理装置は、前記溶接開始点に関する撮影結果、および前記溶接終了点に関する撮影結果に基づいて前記設置誤差量を算出する
     請求項1から5のいずれか1項に記載の自動溶接システム。
    The camera photographs two points of a welding start point and a welding end point included in the welding position,
    The automatic welding system according to any one of claims 1 to 5, wherein the image processing device calculates the installation error amount based on a shooting result regarding the welding start point and a shooting result regarding the welding end point.
  7.  請求項1から請求項6のいずれか1項に記載の自動溶接システムを使用した、エレベーターかご室部品の製造方法であって、
     前記溶接対象ワークは、エレベーターかご室部品である床板、天井、かごの戸またはかご室壁のいずれかである、
     エレベーターかご室部品の製造方法。
    A method of manufacturing an elevator cab part, which uses the automatic welding system according to any one of claims 1 to 6,
    The work to be welded is either a floor plate that is an elevator car room part, a ceiling, a car door or a car room wall,
    Manufacturing method of elevator cab parts.
  8.  データ記憶部から出力される図面番号および寸法データに基づいて溶接対象ワークの溶接位置を算出する工程と、
     前記溶接対象ワークの前記溶接位置を撮影可能なカメラによる撮影結果から求めた前記溶接対象ワークの実際の設置位置と、算出された前記溶接位置から求めた前記溶接対象ワークの正規の設置位置とを比較し、前記正規の設置位置と前記実際の設置位置との差である設置誤差量を算出する工程と、
     算出された前記設置誤差量に基づいて前記溶接位置を再計算することで修正後の溶接位置を算出する工程と、
     前記修正後の溶接位置に基づいて溶接機に前記溶接対象ワークの溶接を実行させる溶接工程と
     を備える自動溶接方法。
    A step of calculating the welding position of the workpiece to be welded based on the drawing number and the dimension data output from the data storage unit,
    The actual installation position of the welding target work obtained from the photographing result by the camera capable of photographing the welding position of the welding target work, and the regular installation position of the welding target work obtained from the calculated welding position Comparing, calculating the installation error amount that is the difference between the regular installation position and the actual installation position,
    Calculating a corrected welding position by recalculating the welding position based on the calculated installation error amount;
    A welding step of causing a welding machine to perform welding of the workpiece to be welded based on the corrected welding position.
PCT/JP2019/043673 2018-12-27 2019-11-07 Automatic welding system, method for manufacturing elevator cage parts, and automatic welding method WO2020137184A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020562890A JP7046226B2 (en) 2018-12-27 2019-11-07 Automatic welding system, manufacturing method of elevator car room parts, and automatic welding method
CN201980084064.5A CN113195142B (en) 2018-12-27 2019-11-07 Automatic welding system, method for manufacturing elevator car chamber member, and automatic welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-244278 2018-12-27
JP2018244278 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137184A1 true WO2020137184A1 (en) 2020-07-02

Family

ID=71126555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043673 WO2020137184A1 (en) 2018-12-27 2019-11-07 Automatic welding system, method for manufacturing elevator cage parts, and automatic welding method

Country Status (3)

Country Link
JP (1) JP7046226B2 (en)
CN (1) CN113195142B (en)
WO (1) WO2020137184A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114841959A (en) * 2022-05-05 2022-08-02 广州东焊智能装备有限公司 Automatic welding method and system based on computer vision
CN116511813A (en) * 2023-07-03 2023-08-01 山西建筑工程集团有限公司 Integral tool for construction lifter cage combination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502110A (en) * 1985-02-25 1987-08-20 キヤタピラ− インコ−ポレ−テツド Applicable welding guide device
JPH0839470A (en) * 1994-07-27 1996-02-13 Fanuc Ltd Welding robot control method by recognizing sectional shape
JPH0999368A (en) * 1995-10-05 1997-04-15 Hitachi Ltd Automatic welding equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372480A (en) * 1986-09-11 1988-04-02 Yaskawa Electric Mfg Co Ltd Application control method for gap of welding groove
WO2013073683A1 (en) * 2011-11-16 2013-05-23 日産自動車株式会社 Joint manufacturing method and manufacturing device for same
JP6372480B2 (en) 2015-12-09 2018-08-15 京セラドキュメントソリューションズ株式会社 Toner container and image forming apparatus having the same
CN106945047A (en) * 2017-04-27 2017-07-14 上海新朋联众汽车零部件有限公司 Welding robot error compensation control system and its control method
JP7021728B2 (en) * 2017-05-12 2022-02-17 株式会社神戸製鋼所 Automatic welding system, welding control method, and machine learning model

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502110A (en) * 1985-02-25 1987-08-20 キヤタピラ− インコ−ポレ−テツド Applicable welding guide device
JPH0839470A (en) * 1994-07-27 1996-02-13 Fanuc Ltd Welding robot control method by recognizing sectional shape
JPH0999368A (en) * 1995-10-05 1997-04-15 Hitachi Ltd Automatic welding equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114841959A (en) * 2022-05-05 2022-08-02 广州东焊智能装备有限公司 Automatic welding method and system based on computer vision
CN116511813A (en) * 2023-07-03 2023-08-01 山西建筑工程集团有限公司 Integral tool for construction lifter cage combination
CN116511813B (en) * 2023-07-03 2023-09-22 山西建筑工程集团有限公司 Integral tool for construction lifter cage combination

Also Published As

Publication number Publication date
CN113195142A (en) 2021-07-30
CN113195142B (en) 2022-09-09
JP7046226B2 (en) 2022-04-01
JPWO2020137184A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP7153085B2 (en) ROBOT CALIBRATION SYSTEM AND ROBOT CALIBRATION METHOD
JP5981143B2 (en) Robot tool control method
US9050728B2 (en) Apparatus and method for measuring tool center point position of robot
EP3863791B1 (en) System and method for weld path generation
JP5429872B2 (en) Method and apparatus for controlling a robot for welding a workpiece
JP5537868B2 (en) Welding robot
US20130060369A1 (en) Method and system for generating instructions for an automated machine
KR20160010868A (en) Automated machining head with vision and procedure
Chen et al. A robust visual servo control system for narrow seam double head welding robot
JP2024009106A (en) Device and method for acquiring deviation amount of work position of tool
CN112720458B (en) System and method for online real-time correction of robot tool coordinate system
JPWO2018092243A1 (en) Work position correction method and work robot
WO2020137184A1 (en) Automatic welding system, method for manufacturing elevator cage parts, and automatic welding method
JP7000361B2 (en) Follow-up robot and work robot system
KR102096897B1 (en) The auto teaching system for controlling a robot using a 3D file and teaching method thereof
WO2018215592A1 (en) An apparatus and a method for automated seam welding of a work piece comprising a base plate with a pattern of upstanding profiles
JP7281910B2 (en) robot control system
CN110154043B (en) Robot system for learning control based on machining result and control method thereof
JP3517529B2 (en) Image input type robot system
JP6205023B2 (en) Mold
KR20070068797A (en) Automation processing method for propeller
WO2023030902A1 (en) Determination of contour fidelity for a laser cutting machine
JP2602292B2 (en) Welding system and welding method
JP5241330B2 (en) Robot bending apparatus and method
JP2899642B2 (en) Processing position detection device and processing position detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902274

Country of ref document: EP

Kind code of ref document: A1