WO2020137120A1 - Fiber product production method, fiber product, and filter - Google Patents

Fiber product production method, fiber product, and filter Download PDF

Info

Publication number
WO2020137120A1
WO2020137120A1 PCT/JP2019/041377 JP2019041377W WO2020137120A1 WO 2020137120 A1 WO2020137120 A1 WO 2020137120A1 JP 2019041377 W JP2019041377 W JP 2019041377W WO 2020137120 A1 WO2020137120 A1 WO 2020137120A1
Authority
WO
WIPO (PCT)
Prior art keywords
layered double
double hydroxide
paper
fiber
product according
Prior art date
Application number
PCT/JP2019/041377
Other languages
French (fr)
Japanese (ja)
Inventor
劉兆涛
大野睦浩
朝倉健夫
Original Assignee
日本国土開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本国土開発株式会社 filed Critical 日本国土開発株式会社
Publication of WO2020137120A1 publication Critical patent/WO2020137120A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/70Inorganic compounds forming new compounds in situ, e.g. within the pulp or paper, by chemical reaction with other substances added separately

Definitions

  • the present invention relates to a method for manufacturing a textile product, a textile product, and a filter.
  • a fiber product such as paper containing a layered double hydroxide is desired for use as a wallpaper or the like having a function of adsorbing harmful substances.
  • an object of the present invention is to provide a fiber product in which layered double hydroxide or a functional material is hard to be desorbed, a fiber product in which a functional material is hard to be desorbed, a manufacturing method thereof, and a filter.
  • a first aspect of a method for producing a fiber product containing a layered double hydroxide is to mix an acidic solution containing at least one of divalent metal ions and trivalent metal ions with an alkaline solution in the presence of fibers. Then, it has a synthesis step of synthesizing the layered double hydroxide and a molding step of removing the water content of the mixed liquid generated in the synthesis step and molding.
  • a second aspect of the method for producing a fiber product containing a layered double hydroxide is to mix an acidic solution containing at least one of divalent metal ions and trivalent metal ions with an alkaline solution,
  • the method includes a synthesizing step of synthesizing a hydroxide, a mixing step of mixing fibers with the mixed solution generated in the synthesizing step, and a molding step of removing water from the mixed solution to perform molding.
  • FIG. 5A is a diagram showing a filter according to the fourth embodiment
  • FIG. 5B is a diagram showing a vertical cross section of the filter of FIG. 5A.
  • FIG. 7 is a table showing the results of experiments using the experimental apparatus of FIG. 6.
  • the paper product means a product formed by intertwining paper fibers, and includes thin flat paper, and columnar products used for filters and the like.
  • the fiber for paper means, for example, a natural fiber such as cellulose such as a plant fiber, a chemical fiber, a glass fiber or a metal fiber. Further, as the fiber for paper, other fibers can be used as long as they can be used for manufacturing paper.
  • FIG. 1 shows a flowchart of a method for manufacturing a paper product according to the first embodiment.
  • the method for manufacturing a paper product according to this embodiment mainly includes a synthesizing step S10 and a molding step S20.
  • Synthesis step S10 In the synthesis step S10, an acidic solution L1 containing a divalent metal ion and a trivalent metal ion in at least one of them and an alkaline solution L2 are mixed in the presence of paper or paper fibers to synthesize a layered double hydroxide. To do. Generally, it is preferable that both the divalent metal ion and the trivalent metal ion be contained in the acidic solution L1 side.
  • At least one of the acidic solution L1 and the alkaline solution L2 may contain the paper or the paper fiber and mix them. ..
  • the paper or the paper fibers may be contained in the alkaline solution L2
  • the paper or the paper fiber may be placed in a container or the like, and the acidic solution L1 and the alkaline solution L2 may be simultaneously supplied to the paper or the paper fiber.
  • this method is preferable when it is not desired to expose the paper or the paper fiber to the acidic solution L1 or the alkaline solution L2.
  • a liquid such as water may be added to the paper or the paper fiber, and the acidic solution L1 and the alkaline solution L2 may be supplied to this liquid.
  • the layered double hydroxide has a general formula of M 2+ 1-x M 3+ x (OH) 2 (A n- ) x/n ⁇ mH 2 O (where M 2+ is divalent).
  • Metal ions M 3+ is a trivalent metal ion
  • a n ⁇ is an n-valent anion, a non-stoichiometric compound represented by 0 ⁇ x ⁇ 1, m>0), and is called a hydrotalcite-like compound Sometimes.
  • Examples of the divalent metal ion (M 2+ ) include Mg 2+ , Fe 2+ , Zn 2+ , Ca 2+ , Li 2+ , Ni 2+ , Co 2+ , Cu 2+. ..
  • Examples of the trivalent metal ion (M 3+ ) include Al 3+ , Fe 3+ , Cr 3+ , Mn 3+ and the like.
  • Examples of the anion (A n- ) include ClO 4 - , CO 3 2- , HCO 3 - , PO 4 3- , SO 4 2- , SiO 4 4- , OH - , Cl - , NO 2 - , NO 3 -, etc.
  • the divalent metal ion (M 2+ ) and the trivalent metal ion (M 3+ ) included in the above general formula do not have to be one type, and may include a plurality of types.
  • Mg 2+ 1-x Al 3+ x (OH) 2 (A in which the divalent metal ion (M 2+ ) is Mg 2+ and the trivalent metal ion (M 3+ ) is Al 3+ n- ) x/n ⁇ mH 2 O (Mg-Al type), divalent metal ion (M 2+ ) is Mg 2+ , and trivalent metal ion (M 3+ ) is Fe 3+ Mg 2+ 1-x Fe 3+ x (OH) 2 (A n- ) x/n ⁇ mH 2 O (Mg-Fe type) and divalent metal ion (M 2+ ) are Fe 2+ Trivalent metal ion (M 3+ ) is Fe 3+ , Fe 2+ 1-x Al 3+ x (OH) 2 (A n- ) x/n ⁇ mH 2 O (Mg-Fe type) and divalent metal ion (M 2+ ) are Fe 2+ Trivalent metal ion (M 3
  • the layered double hydroxide according to the first embodiment is in the form of slurry or gel, and the crystallite size in the slurry or gel is preferably 20 nm or less, more preferably 10 nm or less. Is better.
  • the average crystallite size is preferably 10 nm or less.
  • the specific surface area of the layered double hydroxide according to the first exemplary embodiment is not particularly limited, but a larger value is preferable because the adsorption performance can be improved.
  • the layered double hydroxide can have, for example, a specific surface area by the BET method of 20 m 2 /g or more, preferably 30 m 2 /g or more, and more preferably 50 m 2 /g or more. And more preferably 70 m 2 /g or more.
  • the upper limit of the specific surface area is not particularly limited.
  • the specific surface area by the BET method can be determined, for example, by measuring a nitrogen adsorption/desorption isotherm using a specific surface area/pore distribution measuring device and creating BET-plot from the measurement result. For example, if the crystallite size of the layered double hydroxide is 20 nm or less, the specific surface area can be 20 m 2 /g or more.
  • Synthesis of the layered double hydroxide is performed by mixing an acidic solution L1 containing a divalent metal ion and a trivalent metal ion with an alkaline solution L2.
  • the layered double hydroxide synthesized here can have a larger specific surface area as the crystallite size is smaller. Therefore, it is preferable that the aging time after the synthesis is short, and that after the acidic solution L1 and the alkaline solution L2 are mixed, at least 120 minutes or less, preferably 60 minutes or less, and more preferably, neutralization is performed simultaneously with the mixing.
  • the aluminum source of aluminum ions is not limited to a specific substance as long as it can generate aluminum ions in water.
  • alumina, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminum nitrate, bauxite, an alumina production residue from bauxite, aluminum sludge and the like can be used.
  • these aluminum sources may be used alone or in combination of two or more kinds.
  • the magnesium ion source of magnesium ions is not limited to a specific substance as long as it can generate magnesium ions in water.
  • brucite, magnesium hydroxide, magnesite, a calcined product of magnesite, or the like can be used.
  • These magnesium sources may be used alone or in combination of two or more kinds.
  • the aluminum compound as the aluminum source and the magnesium compound as the magnesium source need not be completely dissolved as long as the aluminum ion and the magnesium ion are present in the acidic solution L1.
  • the acid contained in the acidic solution L1 is not particularly limited as long as it makes the aqueous solution acidic, and nitric acid or hydrochloric acid can be used, for example.
  • the alkali contained in the alkaline solution L2 is not particularly limited as long as it makes the aqueous solution alkaline, and for example, sodium hydroxide, calcium hydroxide or the like can be used. Further, sodium carbonate, potassium carbonate, ammonium carbonate, aqueous ammonia, sodium borate, potassium borate and the like can also be used. Any of these may be used alone or in combination of two or more.
  • a solution having a pH adjusted to 8 to 14 can be used, and a solution having a pH adjusted to 8 to 11 is preferably used.
  • the paper or the paper fiber may be added to either or both of the acidic solution L1 and the alkaline solution L2, or may be placed in a container for mixing the acidic solution L1 and the alkaline solution L2. good.
  • an acidic solution L1 containing aluminum ions and magnesium ions and an alkaline solution L2 containing alkali are mixed at a predetermined ratio.
  • a layered double hydroxide is produced.
  • the mixing can be performed by adding the acidic solution L1 to the alkaline solution L2 all at once, or by dropping the acidic solution L1 into the alkaline solution L2, but other methods may be used.
  • a method of stopping the aging there is a method of lowering the pH of the mixed solution to a value at which the crystal growth of the layered double hydroxide stops after the mixing of the acidic solution L1 and the alkaline solution L2 is completed.
  • the pH should be 9 or less.
  • aging can be stopped by diluting with water within 120 minutes, preferably within 60 minutes, and more preferably simultaneously with mixing after the completion of mixing the acidic solution L1 and the alkaline solution L2.
  • the iron ion source is not limited to a specific substance as long as it can generate iron ions in water.
  • iron chloride or the like can be used.
  • these iron sources may be used alone or in combination of two or more kinds.
  • the magnesium ion source of magnesium ions is not limited to a specific substance as long as it can generate magnesium ions in water.
  • brucite, magnesium hydroxide, magnesite, a calcined product of magnesite, or the like can be used.
  • These magnesium sources may be used alone or in combination of two or more kinds.
  • the iron compound as the iron source and the magnesium compound as the magnesium source need not be completely dissolved as long as the iron ion and the magnesium ion are present in the acidic solution L1.
  • the acid contained in the acidic solution L1 is not particularly limited as long as it makes the aqueous solution acidic, and nitric acid or hydrochloric acid can be used, for example.
  • the alkali contained in the alkaline solution L2 is not particularly limited as long as it makes the aqueous solution alkaline, and for example, sodium hydroxide, calcium hydroxide or the like can be used. Further, sodium carbonate, potassium carbonate, ammonium carbonate, aqueous ammonia, sodium borate, potassium borate and the like can also be used. Any of these may be used alone or in combination of two or more.
  • a solution having a pH adjusted to 8 to 14 can be used, and a solution having a pH adjusted to 8 to 11 is preferably used.
  • the paper or the paper fiber may be added to either or both of the acidic solution L1 and the alkaline solution L2, or may be placed in a container for mixing the acidic solution L1 and the alkaline solution L2. good.
  • an acidic solution L1 containing iron ions and magnesium ions and an alkaline solution L2 containing alkali are mixed at a predetermined ratio.
  • a layered double hydroxide is produced.
  • the mixing can be performed by adding the acidic solution L1 to the alkaline solution L2 all at once, or by dropping the acidic solution L1 into the alkaline solution L2, but other methods may be used.
  • a method of stopping the aging there is a method of lowering the pH of the mixed solution to a value at which the crystal growth of the layered double hydroxide stops after the mixing of the acidic solution L1 and the alkaline solution L2 is completed.
  • the pH should be 9 or less.
  • aging can be stopped by diluting with water within 120 minutes, preferably within 60 minutes, and more preferably simultaneously with mixing after the completion of mixing the acidic solution L1 and the alkaline solution L2.
  • the acidic solution L1 side contains iron ions and magnesium ions
  • the acidic solution L1 side contains iron ions and the alkaline solution L2 side contains magnesium ions. It is also possible to contain the above, or to contain magnesium ions on the acidic solution L1 side and iron ions on the alkaline solution L2 side, or to contain both iron ions and magnesium ions on the alkaline solution L2 side. is there.
  • the layered double hydroxide immediately after being neutralized as described above is in the form of slurry or gel.
  • This slurry-like or gel-like layered double hydroxide may be used as it is in the molding step S20 described later.
  • the molding step S20 is a step of removing the water content of the mixed liquid generated in the synthesis step S10 and molding the mixture into a desired shape.
  • the water content of the mixed liquid may be removed until the mixture of paper or paper fibers and the composite layered double hydroxide is formed into a desired shape.
  • water is removed by applying pressure to a paper or a mixture of paper fibers and a layered double hydroxide until the water content becomes 70% or less, preferably 65% or less, more preferably 60% or less.
  • compression separation using a filter press, suction filtration, centrifugal separation, or the like may be used.
  • the pressure applied when removing water is not limited, but may be, for example, 0.7 MPa or more and 4 MPa or less, preferably 0.9 MPa or more and 3 MPa or less. This is because if the pressure applied at the time of removing water is less than the lower limit value described above, the water content of the mixed liquid is not sufficiently removed, and if it exceeds the upper limit value described above, water may leak from the sealing member such as packing.
  • the dehydrated mixture can be formed into a desired shape, for example, a columnar shape used for a filter or the like to form a paper product.
  • the product molded in the molding step S20 can be used as it is as a paper product, as shown by a broken line frame in FIG. 1, a drying step S30 for drying the paper product is performed after the molding step S20. Is also good.
  • paper-making may be performed using a solution of paper or fiber for paper containing layered double hydroxide. Specifically, when the mixed solution is spread on the net or the paper scraps, the water content passes through the nets or the paper scraps and drops, while the layered double hydroxide and the paper or the paper fiber remain on the nets or the paper scraps. By removing water from this and drying it in the drying step S30, a sheet-shaped paper can be manufactured. Well-known methods may be used as specific means for removing paper, removing water, and drying.
  • the paper product of the first embodiment will be described.
  • the layered double hydroxide grows from the surface of the paper fiber. Therefore, there is an effect that it is difficult for the layered double hydroxide powder to be detached from the paper.
  • the relative amount of the layered double hydroxide is reduced by the addition of the binder, and the layered double hydroxide is covered by the binder.
  • the surface area of the hydroxide is reduced and the adsorption ability of the paper product is reduced, in the first embodiment, since the binder is not used, the amount of the layered double hydroxide contained in the paper can be increased and the layered double hydroxide can be contained. The surface area of the double hydroxide can be increased. Thereby, the adsorption performance can be sufficiently exhibited.
  • the specific surface area of the layered double hydroxide contained in the paper product of the first embodiment is not particularly limited, but a larger value is preferable because the adsorption performance can be improved.
  • the layered double hydroxide can have, for example, a specific surface area by BET method of 20 m 2 /g or more, preferably 30 m 2 /g or more, and more preferably 50 m 2 /g or more. It is preferable that it is 70 m 2 /g or more.
  • the upper limit of the specific surface area is not particularly limited.
  • the specific surface area by the BET method can be determined, for example, by measuring a nitrogen adsorption/desorption isotherm using a specific surface area/pore distribution measuring device and creating BET-plot from the measurement result. For example, if the crystallite size of the layered double hydroxide is 20 nm or less, the specific surface area can be 20 m 2 /g or more.
  • a columnar filter see the filter 10 in FIG. 3 and the filter 30 in FIG. 5A
  • sheet-shaped paper used as wallpaper, or the like can be used.
  • Example 1 Paper product of the first embodiment (forming step after synthesis on paper fiber)
  • magnesium chloride hexahydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • aluminum chloride hexahydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • an acidic solution L1 magnesium chloride hexahydrate
  • sodium hydroxide manufactured by Wako Pure Chemical Industries, Ltd.
  • the acidic solution L1, the alkaline solution L2, and the fiber for paper (30 g) were mixed, and further, a sufficient amount of distilled water was rapidly mixed into the mixed solution in a short time. Then, the solution was used to make paper and dried at 100° C. for 10 hours to produce paper.
  • Example 2 ⁇ Paper product of the first embodiment of the invention (molding process after synthesis on paper)
  • magnesium chloride hexahydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • aluminum chloride hexahydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • an acidic solution L1 is dissolved in distilled water to prepare an acidic solution L1.
  • sodium hydroxide is dissolved in distilled water to prepare an alkaline solution L2.
  • the acidic solution L1 and the alkaline solution L2 were mixed with paper (30 g), and further, a sufficient amount of distilled water was rapidly mixed with the mixed solution in a short time. Then, the paper was taken out from the solution and dried at 100° C. for 10 hours to manufacture the paper.
  • the paper product of the second embodiment means a product formed by entwining paper fibers, and includes thin flat-formed paper and columnar products used for filters and the like.
  • the fiber for paper means, for example, plant fiber, chemical fiber, glass fiber, metal fiber or the like. Further, as the fiber for paper, other fibers can be used as long as they can be used for manufacturing paper.
  • the paper product of the second embodiment contains a functional material.
  • the functional material means a material having one or more specific functions such as an adsorption function and a catalyst function. Examples of such a functional material include zeolite, activated carbon, schwertmannite, zirconium, and cerium. Also, a photocatalyst such as titanium oxide may be used. Further, the functional material may be a layered double hydroxide prepared separately instead of the layered double hydroxide synthesized in the synthesis step described later. The functional material may be one kind of material or a mixture of plural kinds.
  • FIG. 2 shows a flowchart of a method for manufacturing a paper product according to the second embodiment.
  • the method for manufacturing a paper product according to the second embodiment mainly includes a synthesizing step S110 and a molding step S120.
  • Synthesis step S110 In the synthesis step S110, an acidic solution L1 containing a divalent metal ion and a trivalent metal ion in at least one of them and an alkaline solution L2 are mixed in the presence of paper or paper fibers to synthesize a layered double hydroxide. To do. Generally, it is preferable that both the divalent metal ion and the trivalent metal ion be contained in the acidic solution L1 side.
  • the method of mixing the acidic solution L1 and the alkaline solution L2 in the presence of paper or paper fibers is the same as that of the first embodiment, and therefore the description thereof will be omitted.
  • the layered double hydroxide, the acidic solution L1 and the alkaline solution L2 in the present embodiment are also the same as those in the first embodiment, and therefore the description thereof will be omitted.
  • the forming step S120 is a step of removing the water content of the mixed liquid generated in the synthesizing step S110 in the presence of the functional material to form a desired shape.
  • the water content of the mixed liquid may be removed until the mixture of paper or paper fibers, a functional material, and the synthesized layered double hydroxide is hard enough to be molded into a desired shape.
  • water is removed from a mixture of paper or paper fibers, a functional material, and a layered double hydroxide by applying pressure until the water content is 70% or less, preferably 65% or less, and more preferably 60% or less. To do.
  • the dehydrated mixture can be formed into a desired shape, for example, a columnar shape used for a filter or the like to form a paper product.
  • the product molded in the molding process S120 can be used as it is as a paper product, as shown by a broken line frame in FIG. 2, a drying process S130 for drying the paper product is performed after the molding process S120. Is also good.
  • a paper plow (making up) is performed using a solution of paper or a fiber for paper containing a layered double hydroxide and a functional material.
  • a solution of paper or a fiber for paper containing a layered double hydroxide and a functional material Just go. Specifically, when the mixed solution is spread on the net or the paper scraps, the water drops through the nets or the paper scraps, while the layered double hydroxide, the functional material, the paper or the paper fibers are placed on the nets or the paper sandals. Remain.
  • a sheet of paper can be manufactured.
  • Well-known methods may be used as specific means for removing paper, removing water, and drying.
  • the functional material may be mixed at least before the layered double hydroxide synthesized in the synthesis step S110 is dried, for example, may be mixed after the layered double hydroxide is synthesized, or may be mixed before the synthesis. You may do it.
  • the functional material When mixing after the synthesis of the layered double hydroxide, the functional material may be mixed with the mixed liquid generated in the synthesis step S110, and then the water may be removed before molding.
  • the functional material When mixing the layered double hydroxide before synthesis, it is sufficient to mix the functional material in at least one of the acidic solution L1 and the alkaline solution L2.
  • the functional material may be contained in the alkaline solution L2, and if it is not desired to be exposed to the alkaline solution L2, it may be contained in the acidic solution L1.
  • the functional material may be placed in a container or the like, and the acidic solution L1 and the alkaline solution L2 may be simultaneously supplied to the functional material.
  • this method is preferable when it is not desired to expose the functional material to the acidic solution L1 or the alkaline solution L2.
  • a liquid such as water may be added to the functional material, and the acidic solution L1 and the alkaline solution L2 may be supplied to this liquid.
  • the paper product of the second embodiment will be described.
  • the paper product of the second embodiment is a product in which paper or paper fibers and a functional material are bound by a layered double hydroxide. Therefore, there is an effect that it is difficult for the layered double hydroxide and the powder of the functional material to be detached from the paper. Further, since the layered double hydroxide is used instead of the binder, it is possible to manufacture a paper product having the function of the layered double hydroxide in addition to the function of the functional material. When a layered double hydroxide is used as the functional material, the relative amount of the layered double hydroxide contained in the paper can be increased because the binder is not present, and the surface area of the layered double hydroxide can be increased by the binder. Since there is no problem that the value becomes small, the adsorption performance can be sufficiently exhibited.
  • the specific surface area of the layered double hydroxide or functional material contained in the paper product of the second embodiment is not particularly limited, but the larger the specific surface area, the more the adsorption performance can be improved. preferable.
  • the layered double hydroxide and the functional material may, for example, BET specific surface area of which is equivalent to or exceeds the 20 m 2 / g, preferably better not less than 30 m 2 / g, more preferably 50 m 2 /G or more, and more preferably 70 m 2 /g or more.
  • the upper limit of the specific surface area is not particularly limited.
  • the specific surface area by the BET method can be determined, for example, by measuring a nitrogen adsorption/desorption isotherm using a specific surface area/pore distribution measuring device and creating BET-plot from the measurement result. For example, if the crystallite size of the layered double hydroxide or the functional material is 20 nm or less, the specific surface area can be 20 m 2 /g or more.
  • a columnar filter see the filter 10 in FIG. 3 and the filter 30 in FIG. 5A
  • sheet-shaped paper used as wallpaper, or the like can be used.
  • Example 1 Paper product of the second embodiment (layered double hydroxide)
  • magnesium chloride hexahydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • aluminum chloride hexahydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • an acidic solution L1 is dissolved in distilled water to prepare an acidic solution L1.
  • sodium hydroxide is dissolved in distilled water to prepare an alkaline solution L2.
  • the acidic solution L1, the alkaline solution L2, and the fiber for paper (30 g) were mixed, and further, a sufficient amount of distilled water was rapidly mixed into the mixed solution in a short time.
  • layered double hydroxide (22 g) as Functional Material 1 was further added to the mixed solution and mixed.
  • the solution was used to make paper and dried at 100° C. for 10 hours to produce paper.
  • Example 2 ⁇ Paper product (zeolite) of the second embodiment
  • magnesium chloride hexahydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • aluminum chloride hexahydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • sodium hydroxide manufactured by Wako Pure Chemical Industries, Ltd.
  • alkaline solution L2 prepared an alkaline solution L2.
  • the acidic solution L1, the alkaline solution L2, and the fiber for paper (30 g) were mixed, and further, a sufficient amount of distilled water was rapidly mixed into the mixed solution in a short time.
  • zeolite (22 g) as the functional material 2 was added to the mixed solution and mixed.
  • the solution was used to make paper and dried at 100° C. for 10 hours to produce paper.
  • Example 3 Paper products of the present invention (activated carbon) First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in distilled water to prepare an acidic solution L1. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution L2. Next, the acidic solution L1, the alkaline solution L2, and the fiber for paper (30 g) were mixed, and further, a sufficient amount of distilled water was rapidly mixed into the mixed solution in a short time. Then, activated carbon (22 g) was further added as the functional material 3 to the mixed solution and mixed. Finally, the solution was used to make paper and dried at 100° C. for 10 hours to produce paper.
  • activated carbon 22 g
  • the layered double hydroxide was used as the functional material 1
  • the zeolite was used as the functional material 2
  • the activated carbon was used as the functional material 3.
  • the powder synthesized as follows was used. First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in distilled water to prepare an acidic solution. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution.
  • the acidic solution and the alkaline solution were mixed, and further, a sufficient amount of distilled water was quickly mixed with the mixed solution without time. Then, the solution was filtered, and the obtained filtered product was dried at 100° C. for 10 hours to produce a powdery layered double hydroxide.
  • zeolite of the functional material 2 one manufactured by Wako Pure Chemical Industries, Ltd. (code No. 268-01522) was used.
  • the activated carbon of the functional material 3 one manufactured by Wako Pure Chemical Industries, Ltd. (code No.034-18051) was used.
  • the acidic solution L1 and the alkaline solution L2 containing divalent metal ions and trivalent metal ions in at least one of them are used for paper or paper.
  • the acid solution L1 and the alkaline solution L2 may be mixed to synthesize a layered double hydroxide, and then paper or paper fibers may be mixed with the mixed solution after synthesis (the mixing step is performed). ..
  • the powdery layered double hydroxide is mixed with the paper or the fiber for paper to perform paper making (raising). Compared with, there is an effect that the layered double hydroxide is hard to be detached from the paper.
  • the functional material may be mixed before mixing the paper or the fiber for paper, or the functional material may be mixed after mixing the paper or the fiber for paper.
  • Modification 2 In the molding steps S20 and S120 of the first and second embodiments, it is possible to remove water from the mixed liquid, wash (wash with water), and then mold. By this washing, NaCl produced when synthesizing the layered double hydroxide from the acidic solution L1 and the alkaline solution L2 can be removed from the paper. At this time, since the NaCl attached to the layered double hydroxide is also removed, the anion exchange function of the layered double hydroxide is improved, and arsenic, fluorine, boron, selenium, hexavalent chromium, nitrite noise, Adsorption performance of adsorbing other anionic harmful substances can be improved. Since NaCL also functions as a binder for binding fibers for paper, for example, even if the paper product contains NaCl, there is no problem. If NaCl is used as the binder, washing should not be performed. ..
  • the layered double hydroxide was couple
  • the hydroxide may be combined to produce a nonwoven product. For example, after the acidic solution L1 and the alkaline solution L2 are mixed in the presence of the non-woven fabric fiber to synthesize a layered double hydroxide, or the acidic solution L1 and the alkaline solution L2 are mixed to synthesize a layered double hydroxide. Alternatively, it is possible to mix fibers for a non-woven fabric with the mixed solution.
  • the water may be removed from the mixed solution generated when the layered double hydroxide is synthesized, and the molding may be performed.
  • the wet nonwoven fabric is formed.
  • the present invention is not limited to this, and the dry non-woven fabric may be manufactured using the non-woven fabric fibers (short fibers or long fibers) to which the layered double hydroxide or the functional material is bound after removing the water content.
  • a layered double hydroxide may be bonded to a fiber material obtained by mixing fibers for paper and fibers for non-woven fabric to produce a fiber product (hybrid product).
  • FIG. 3 shows an example in which the paper product of the second embodiment is used as the filter 10 of the filtering device 100 that filters water.
  • the filtering device 100 includes a housing 12, a filter 10 provided in the housing 12, support members 14A and 14B provided above and below the filter 10, a water supply pipe 16A, and a drain pipe 16B.
  • the weight ratio of the paper fiber to the layered double hydroxide synthesized in the synthesis step S110 is 3:1, and the powdery layered double hydroxide used as the functional material and the synthesis step S110. It is assumed that the total weight of the layered double hydroxide synthesized in (1) accounts for 60% of the entire filter 10.
  • the weight of the entire filter 10 is 400 g.
  • the filter 10 is formed in a substantially columnar shape, and a hollow portion 20 is provided at the center of the filter 10 from the upper end toward the lower end.
  • the material ratio of the filter 10 is not limited to the above.
  • the weight of the layered double hydroxide contained in the filter 10 can be 0.25 to 4 times, preferably 1 to 3 times the weight of the paper fiber.
  • the weight of the layered double hydroxide When the weight of the layered double hydroxide is less than 0.25 times the weight of the paper fiber, the adsorption of harmful substances becomes insufficient. Further, if the weight of the layered double hydroxide exceeds 3 times or 4 times the weight of the paper fiber, the water permeability of the filter 10 becomes insufficient. For this reason, it is preferable to determine the ratio of the material of the filter 10 in consideration of hardness, water absorption, water permeability, filtration performance, etc. of the filter 10.
  • the support members 14A and 14B are substantially disc-shaped members formed of a material such as plastic or rubber.
  • a through hole 22 is formed in the center of the support member 14A, and the through hole 22 is in communication with the hollow portion 20 of the filter 10.
  • the water supply pipe 16A is provided, for example, in the vicinity of the lower end of the housing 12 and is a pipe for introducing water before filtration into the housing 12.
  • the drain pipe 16B is connected to the support member 14A and is a pipe for taking out the water filtered by the filter 10 to the outside.
  • the water supply pipe 16A may supply water into the housing 12 from above the housing 12.
  • a pipe having a double structure may be provided in the upper part of the housing 12, and an outer pipe line of the double pipe structure may be used as the water supply pipe 16A and an inner pipe line may be used as the drain pipe 16B.
  • the water taken into the housing 12 from the water supply pipe 16A is filtered by permeating the filter 10 from the outside to the inside, and the filtered water is discharged through the hollow portion 20 and the through hole 22 to the drain pipe 16B. It is designed to be discharged from the outside.
  • FIG. 4 shows the result of measuring the boron concentration of the water discharged from the drainage pipe 16B using ICP emission spectroscopy.
  • the boron concentration of the water (stock solution) supplied from the water supply pipe 16A to the filtration device 100 was 98.15 mg/L.
  • the filter 10 of the third embodiment has , For at least 13 hours, it has been found to have suitable capacity as a filter.
  • FIG. 5A is a diagram showing a filter 30 according to the fourth embodiment.
  • the filter 30 is shaped like a cylinder.
  • FIG. 5B shows a state in which the filter 30 is vertically sectioned.
  • the filter 30 includes a powdery layered double hydroxide 32 as a functional material, and a paper product 34 that wraps the layered double hydroxide 32. That is, in the filter 30, the internal space of the paper product 34 is filled with the layered double hydroxide 32 as a functional material.
  • the weight ratio of the paper fiber and the layered double hydroxide synthesized in the synthesis step S10 is 3:1. Further, the total weight of the powdery layered double hydroxide 32 used as the functional material and the layered double hydroxide synthesized in the synthesis step S10 accounts for 70% of the entire filter 10, and the weight thereof is It is 65 g. That is, the paper fiber of the paper product 34 is about 27.9 g, and the layered double hydroxide synthesized in the synthesis step S110 is about 9.3 g.
  • the material ratio of the filter 30 is not limited to the above.
  • the weight of the layered double hydroxide contained in the filter 30 can be 0.25 to 4 times, preferably 1 to 3 times the weight of the paper fiber. In this case, it is preferable to determine the material ratio of the filter 30 in consideration of hardness, water absorption, filtration performance, etc. of the filter 30.
  • the filter 30 is provided in the funnel 40, water (stock solution) is put into the funnel 40 from above, the water filtered by the filter 30 is received by the beaker 50, and the arsenic concentration of the filtered water is measured by ICP. It measured using the optical emission spectroscopy. The result is shown in FIG.
  • 16 L of water (stock solution) is filtered three times without changing the filter 30.
  • the arsenic concentration of the first stock solution was 422.6 ppb
  • the arsenic concentration of the second stock solution was 476.3 ppb
  • the arsenic concentration of the third stock solution was 430.1 ppb. there were.
  • it took a total of 73 hours to filter a total of 48 L of water (stock solution) but it was found that even if the filter 30 was used for 72 hours, the arsenic removal capacity did not deteriorate so much. It was also found that it is possible to produce water that satisfies the drinking water standard from water that contains a large amount of arsenic by adjusting the size and configuration of the filter.
  • paper products and non-woven fabric products described in the first and second embodiments and the modified examples can be used as products other than filters.
  • the paper products and non-woven fabric products described in the first and second embodiments and the modified examples can be used as products other than filters.
  • it can be used as wallpaper, adsorption mats that absorb harmful substances that exude from contaminated soil when laid under contaminated soil, pet sheets, sweatside pads, drip sheets laid on food trays, etc. Can also be used.
  • the layered double hydroxide has flame retardancy, it can be expected to suppress the fire when it is used in the above-mentioned wallpaper even when a fire occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Paper (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

In order to provide a fiber product from which a layered double hydroxide does not detach readily and a production method therefor, the invention comprises a synthesis step (S10) of mixing, in the presence of fibers, an acidic solution (L1) and an alkaline solution (L2), at least one of which contains a divalent metal ion and a trivalent metal ion, to synthesize a layered double hydroxide, and a molding step (S20) of eliminating the moisture in the mixed solution generated in the synthesis step and performing molding.

Description

繊維製品の製造方法および繊維製品、並びにフィルタTextile product manufacturing method, textile product, and filter
 本発明は、繊維製品の製造方法および繊維製品、並びにフィルタに関する。 The present invention relates to a method for manufacturing a textile product, a textile product, and a filter.
 ハイドロタルサイト等の層状複水酸化物は、層間に種々のイオンや分子等を挿入できる構造を有しており、陰イオン交換能を発現させることができる。このため、層状複水酸化物は、有害物質等を吸着除去する吸着剤等に利用されている(例えば、特許文献1参照)。 Layered double hydroxides such as hydrotalcite have a structure in which various ions and molecules can be inserted between layers, and can exhibit anion exchange capacity. Therefore, the layered double hydroxide is used as an adsorbent that adsorbs and removes harmful substances and the like (see, for example, Patent Document 1).
 また、このような層状複水酸化物の機能を付与するために、種々の材料に当該層状複水酸化物を担持させることも検討されている。例えば、有害物質等の吸着機能を有する壁紙等に利用するため、層状複水酸化物を含有する紙などの繊維製品が望まれている。 Also, in order to impart such a function of layered double hydroxide, it is also considered to support the layered double hydroxide on various materials. For example, a fiber product such as paper containing a layered double hydroxide is desired for use as a wallpaper or the like having a function of adsorbing harmful substances.
特許第4036237号Patent No. 4036237
 ここで、粉状の層状複水酸化物を繊維と混合して漉き上げ、紙などの繊維製品を製造する方法がある。また、繊維と機能性材料を混合して漉き上げ、紙などの繊維製品を製造する方法がある。しかしながら、これらの場合には、繊維製品から層状複水酸化物や機能性材料の粉が脱離し易いという問題があった。 Here, there is a method in which a powdery layered double hydroxide is mixed with fibers and made up to produce a fiber product such as paper. In addition, there is a method of manufacturing a fiber product such as paper by mixing fibers and functional materials and filtering them. However, in these cases, there is a problem that the layered double hydroxide or the powder of the functional material is easily detached from the fiber product.
 そこで本発明は、層状複水酸化物や機能性材料が脱離し難い繊維製品、機能性材料が脱離し難い繊維製品およびその製造方法、並びにフィルタを提供することを目的とする。 Therefore, an object of the present invention is to provide a fiber product in which layered double hydroxide or a functional material is hard to be desorbed, a fiber product in which a functional material is hard to be desorbed, a manufacturing method thereof, and a filter.
 層状複水酸化物を含有する繊維製品の製造方法の第1の態様は、少なくともいずれか一方に2価の金属イオンと3価の金属イオンを含む酸性溶液とアルカリ性溶液を繊維の存在下において混合し、前記層状複水酸化物を合成する合成工程と、前記合成工程で生じた混合液の水分を除去して成形する成形工程と、を有している。 A first aspect of a method for producing a fiber product containing a layered double hydroxide is to mix an acidic solution containing at least one of divalent metal ions and trivalent metal ions with an alkaline solution in the presence of fibers. Then, it has a synthesis step of synthesizing the layered double hydroxide and a molding step of removing the water content of the mixed liquid generated in the synthesis step and molding.
 層状複水酸化物を含有する繊維製品の製造方法の第2の態様は、少なくともいずれか一方に2価の金属イオンと3価の金属イオンを含む酸性溶液とアルカリ性溶液を混合し、前記層状複水酸化物を合成する合成工程と、前記合成工程で生じた混合液に繊維を混合する混合工程と、前記混合液の水分を除去して成形する成形工程と、を有している。 A second aspect of the method for producing a fiber product containing a layered double hydroxide is to mix an acidic solution containing at least one of divalent metal ions and trivalent metal ions with an alkaline solution, The method includes a synthesizing step of synthesizing a hydroxide, a mixing step of mixing fibers with the mixed solution generated in the synthesizing step, and a molding step of removing water from the mixed solution to perform molding.
 本発明によれば、層状複水酸化物や機能性材料が脱離し難いという効果がある。 According to the present invention, there is an effect that the layered double hydroxide and the functional material are hard to be desorbed.
第1の実施形態における紙製品の製造方法のフローチャートである。It is a flow chart of a manufacturing method of a paper product in a 1st embodiment. 第2の実施形態における紙製品の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the paper product in 2nd Embodiment. 第3の実施形態に係る濾過装置を示す図である。It is a figure which shows the filtration apparatus which concerns on 3rd Embodiment. 図3の濾過装置を用いて水を濾過した場合のホウ素濃度の測定結果を示す表である。It is a table which shows the measurement result of the boron concentration at the time of filtering water using the filtration apparatus of FIG. 図5(a)は、第4の実施形態に係るフィルタを示す図であり、図5(b)は、図5(a)のフィルタの縦断面を示す図である。FIG. 5A is a diagram showing a filter according to the fourth embodiment, and FIG. 5B is a diagram showing a vertical cross section of the filter of FIG. 5A. 第4の実施形態のフィルタを用いた実験装置を示す図である。It is a figure which shows the experiment apparatus using the filter of 4th Embodiment. 図6の実験装置を用いた実験の結果を示す表である。7 is a table showing the results of experiments using the experimental apparatus of FIG. 6.
《第1の実施形態》
 本第1の実施形態における繊維製品としての紙製品の製造方法について説明する。ここで紙製品とは、紙用繊維を絡ませて成形したものを意味し、薄く平らに成形した紙の他、フィルタ等に用いる柱状のものなどを含む。また、紙用繊維とは、例えば、セルロースなどの天然繊維である植物繊維や化学繊維、ガラス繊維、金属繊維等を意味する。また、紙用繊維としては、紙の製造に用いることができるものであれば、その他の繊維を用いることも可能である。
<<First Embodiment>>
A method of manufacturing a paper product as a fiber product according to the first embodiment will be described. Here, the paper product means a product formed by intertwining paper fibers, and includes thin flat paper, and columnar products used for filters and the like. Further, the fiber for paper means, for example, a natural fiber such as cellulose such as a plant fiber, a chemical fiber, a glass fiber or a metal fiber. Further, as the fiber for paper, other fibers can be used as long as they can be used for manufacturing paper.
 図1には、本第1の実施形態における紙製品の製造方法のフローチャートが示されている。本実施形態の紙製品の製造方法は、図1に示すように、主に、合成工程S10と成形工程S20とを有する。 FIG. 1 shows a flowchart of a method for manufacturing a paper product according to the first embodiment. As shown in FIG. 1, the method for manufacturing a paper product according to this embodiment mainly includes a synthesizing step S10 and a molding step S20.
(合成工程S10)
 合成工程S10は、少なくともいずれか一方に2価の金属イオンと3価の金属イオンを含む酸性溶液L1とアルカリ性溶液L2を紙又は紙用繊維の存在下において混合し、層状複水酸化物を合成するものである。一般的には、2価の金属イオンと3価の金属イオンは、両方とも酸性溶液L1側に含む方が好ましい。
(Synthesis step S10)
In the synthesis step S10, an acidic solution L1 containing a divalent metal ion and a trivalent metal ion in at least one of them and an alkaline solution L2 are mixed in the presence of paper or paper fibers to synthesize a layered double hydroxide. To do. Generally, it is preferable that both the divalent metal ion and the trivalent metal ion be contained in the acidic solution L1 side.
 酸性溶液L1とアルカリ性溶液L2を紙又は紙用繊維の存在下において混合するには、酸性溶液L1およびアルカリ性溶液L2の少なくともいずれか一方に紙又は紙用繊維を含有させておいて混合すれば良い。例えば、紙又は紙用繊維を酸性溶液L1に曝したくない場合には、アルカリ性溶液L2に含有させれば良いし、アルカリ性溶液L2に曝したくない場合には酸性溶液L1に含有させれば良い。 In order to mix the acidic solution L1 and the alkaline solution L2 in the presence of the paper or the paper fiber, at least one of the acidic solution L1 and the alkaline solution L2 may contain the paper or the paper fiber and mix them. .. For example, when it is not desired to expose the paper or the paper fibers to the acidic solution L1, it may be contained in the alkaline solution L2, and when it is not desired to be exposed to the alkaline solution L2, it may be contained in the acidic solution L1.
 また、紙又は紙用繊維を容器等に配置しておき、当該紙又は紙用繊維に酸性溶液L1とアルカリ性溶液L2を同時に供給しても良い。例えば、紙又は紙用繊維を酸性溶液L1にもアルカリ性溶液L2にも曝したくない場合には、この方法が好ましい。また、この場合には、紙又は紙用繊維に水等の液体を加えておき、この液体に酸性溶液L1とアルカリ性溶液L2を供給しても良い。 Alternatively, the paper or the paper fiber may be placed in a container or the like, and the acidic solution L1 and the alkaline solution L2 may be simultaneously supplied to the paper or the paper fiber. For example, this method is preferable when it is not desired to expose the paper or the paper fiber to the acidic solution L1 or the alkaline solution L2. In this case, a liquid such as water may be added to the paper or the paper fiber, and the acidic solution L1 and the alkaline solution L2 may be supplied to this liquid.
 なお、層状複水酸化物とは、一般式がM2+ 1-xM3+ x(OH)2(An-x/n・mH2O(ここで、M2+は2価の金属イオン、M3+は3価の金属イオン、An-はn価の陰イオン、0<x<1、m>0)で表される不定比化合物であり、ハイドロタルサイト様化合物と呼ばれることもある。2価の金属イオン(M2+)としては、例えば、Mg2+、Fe2+、Zn2+、Ca2+、Li2+、Ni2+、Co2+、Cu2+等が挙げられる。また、3価の金属イオン(M3+)としては、例えば、Al3+、Fe3+、Cr3+、Mn3+等が挙げられる。また、陰イオン(An-)としては、例えば、ClO4 -、CO3 2-、HCO3 -、PO4 3-、SO4 2-、SiO4 4-、OH-、Cl-、NO2 -、NO3 -等が挙げられる。なお、前記一般式に含まれる2価の金属イオン(M2+)や3価の金属イオン(M3+)は1種類である必要はなく、複数種類を含んでいても良い。 The layered double hydroxide has a general formula of M 2+ 1-x M 3+ x (OH) 2 (A n- ) x/n ·mH 2 O (where M 2+ is divalent). Metal ions, M 3+ is a trivalent metal ion, A n− is an n-valent anion, a non-stoichiometric compound represented by 0<x<1, m>0), and is called a hydrotalcite-like compound Sometimes. Examples of the divalent metal ion (M 2+ ) include Mg 2+ , Fe 2+ , Zn 2+ , Ca 2+ , Li 2+ , Ni 2+ , Co 2+ , Cu 2+. .. Examples of the trivalent metal ion (M 3+ ) include Al 3+ , Fe 3+ , Cr 3+ , Mn 3+ and the like. Examples of the anion (A n- ) include ClO 4 - , CO 3 2- , HCO 3 - , PO 4 3- , SO 4 2- , SiO 4 4- , OH - , Cl - , NO 2 - , NO 3 -, etc. The divalent metal ion (M 2+ ) and the trivalent metal ion (M 3+ ) included in the above general formula do not have to be one type, and may include a plurality of types.
 本第1の実施形態に係る層状複水酸化物は、2価の金属イオン(M2+)、3価の金属イオン(M3+)、陰イオン(An-)として、どのようなものを用いてもよい。例えば、2価の金属イオン(M2+)がMg2+であり3価の金属イオン(M3+)がAl3+であるMg2+ 1-xAl3+ x(OH)2(An-)x/n・mH2O(Mg-Al型)や、2価の金属イオン(M2+)がMg2+であり3価の金属イオン(M3+)がFe3+であるMg2+ 1-xFe3+ x(OH)2(An-)x/n・mH2O(Mg-Fe型)や、2価の金属イオン(M2+)がFe2+であり3価の金属イオン(M3+)がFe3+であるFe2+ 1-xFe3+ x(OH)2(An-)x/n・mH2O(Fe-Fe型)とすることができる。なお、Mg-Fe型は、ヒ素の吸着の効果が高い点、比重が高く沈降分離が容易である点、原料コストを抑えられる点において、Mg-Al型よりも優れている。 What is the layered double hydroxide according to the first embodiment as a divalent metal ion (M 2+ ), a trivalent metal ion (M 3+ ), and an anion (A n− )? May be used. For example, Mg 2+ 1-x Al 3+ x (OH) 2 (A in which the divalent metal ion (M 2+ ) is Mg 2+ and the trivalent metal ion (M 3+ ) is Al 3+ n- ) x/n ·mH 2 O (Mg-Al type), divalent metal ion (M 2+ ) is Mg 2+ , and trivalent metal ion (M 3+ ) is Fe 3+ Mg 2+ 1-x Fe 3+ x (OH) 2 (A n- ) x/n・mH 2 O (Mg-Fe type) and divalent metal ion (M 2+ ) are Fe 2+ Trivalent metal ion (M 3+ ) is Fe 3+ , Fe 2+ 1-x Fe 3+ x (OH) 2 (A n- ) x/n ·mH 2 O (Fe-Fe type) be able to. The Mg-Fe type is superior to the Mg-Al type in that it has a high effect of adsorbing arsenic, has a high specific gravity, facilitates sedimentation and separation, and can reduce raw material costs.
 また、本第1の実施形態に係る層状複水酸化物は、スラリー状またはゲル状であり、スラリー状内またはゲル状内の結晶子サイズが20nm以下である方が良く、更に好ましくは10nm以下である方が良い。また、平均結晶子サイズが10nm以下であることが好ましい。 Further, the layered double hydroxide according to the first embodiment is in the form of slurry or gel, and the crystallite size in the slurry or gel is preferably 20 nm or less, more preferably 10 nm or less. Is better. The average crystallite size is preferably 10 nm or less.
 また、本第1の実施形態に係る層状複水酸化物の比表面積は、特に限定されるものではないが、大きい方が吸着性能を向上することができる点で好ましい。層状複水酸化物は、例えば、BET法による比表面積が20m/g以上のものとすることができ、好ましくは30m/g以上のものが良く、更に好ましくは50m/g以上のものが良く、更に好ましくは70m/g以上のものが良い。比表面積の上限は特に限定されない。なお、BET法による比表面積は、例えば、窒素吸脱着等温線を比表面積・細孔分布測定装置を用いて測定し、当該測定結果からBET-plotを作成して求めることができる。例えば、層状複水酸化物の結晶子サイズが20nm以下とすれば、比表面積を20m/g以上のものとすることができる。 Further, the specific surface area of the layered double hydroxide according to the first exemplary embodiment is not particularly limited, but a larger value is preferable because the adsorption performance can be improved. The layered double hydroxide can have, for example, a specific surface area by the BET method of 20 m 2 /g or more, preferably 30 m 2 /g or more, and more preferably 50 m 2 /g or more. And more preferably 70 m 2 /g or more. The upper limit of the specific surface area is not particularly limited. The specific surface area by the BET method can be determined, for example, by measuring a nitrogen adsorption/desorption isotherm using a specific surface area/pore distribution measuring device and creating BET-plot from the measurement result. For example, if the crystallite size of the layered double hydroxide is 20 nm or less, the specific surface area can be 20 m 2 /g or more.
 層状複水酸化物の合成は、2価の金属イオンと3価の金属イオンを含有する酸性溶液L1とアルカリ性溶液L2とを混合して行う。ここで合成される層状複水酸化物は、結晶子サイズを小さくするほど、その比表面積を大きくすることができる。したがって、合成後の熟成時間は短い方が良く、酸性溶液L1とアルカリ性溶液L2の混合後、少なくとも120分以内、好ましくは60分以内、更に好ましくは混合と同時に中和する方が良い。 Synthesis of the layered double hydroxide is performed by mixing an acidic solution L1 containing a divalent metal ion and a trivalent metal ion with an alkaline solution L2. The layered double hydroxide synthesized here can have a larger specific surface area as the crystallite size is smaller. Therefore, it is preferable that the aging time after the synthesis is short, and that after the acidic solution L1 and the alkaline solution L2 are mixed, at least 120 minutes or less, preferably 60 minutes or less, and more preferably, neutralization is performed simultaneously with the mixing.
 次に、一例として、構造式がMg2+ 1-xAl3+ x(OH)2(An-)x/n・mH2Oで表される層状複水酸化物の合成方法を説明する。 Next, as an example, a method for synthesizing a layered double hydroxide having a structural formula of Mg 2+ 1-x Al 3+ x (OH) 2 (A n- ) x/ nmH 2 O will be described. ..
 まず、アルミニウムイオンとマグネシウムイオンを含む酸性溶液L1を調製する。 First, prepare an acidic solution L1 containing aluminum ions and magnesium ions.
 アルミニウムイオンのアルミニウム源としては、水中でアルミニウムイオンを生成するものであれば良く、特定の物質に限定されるものではない。例えば、アルミナ、アルミン酸ソーダ、水酸化アルミニウム、塩化アルミニウム、硝酸アルミニウム、ボーキサイト、ボーキサイトからのアルミナ製造残渣、アルミスラッジ等を用いることができる。また、これらアルミニウム源は、いずれかを単独で用いても、2種類以上を組み合わせて用いても良い。 The aluminum source of aluminum ions is not limited to a specific substance as long as it can generate aluminum ions in water. For example, alumina, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminum nitrate, bauxite, an alumina production residue from bauxite, aluminum sludge and the like can be used. Moreover, these aluminum sources may be used alone or in combination of two or more kinds.
 また、マグネシウムイオンのマグネシウム源としては、水中でマグネシウムイオンを生成する物であれば良く、特定の物質に限定されるものではない。例えば、ブルーサイト、水酸化マグネシウム、マグネサイト、マグネサイトの焼成物等を用いることができる。これらマグネシウム源は、いずれかを単独で用いても、2種類以上を組み合わせて用いても良い。 Also, the magnesium ion source of magnesium ions is not limited to a specific substance as long as it can generate magnesium ions in water. For example, brucite, magnesium hydroxide, magnesite, a calcined product of magnesite, or the like can be used. These magnesium sources may be used alone or in combination of two or more kinds.
 なお、アルミニウム源としてのアルミニウム化合物、マグネシウム源としてのマグネシウム化合物は、酸性溶液L1にアルミニウムイオン、マグネシウムイオンが存在していれば完全に溶解している必要はない。 Note that the aluminum compound as the aluminum source and the magnesium compound as the magnesium source need not be completely dissolved as long as the aluminum ion and the magnesium ion are present in the acidic solution L1.
 また、Mg2+ 1-xAl3+ x(OH)2(An-)x/n・mH2Oで表わされる高結晶質の層状複水酸化物は、アルミニウムイオンとマグネシウムイオンのモル比が1:3(x=0.25)となっていることが知られている。したがって、酸性溶液L1中のアルミニウムイオンとマグネシウムイオンのモル比は、1:5~1:2の範囲とするのが好ましい。この範囲とすることによって、アルミニウム源とマグネシウム源を無駄にすることなく、物質収支的に有利に層状複水酸化物を製造することができる。 Further, the highly crystalline layered double hydroxide represented by Mg 2+ 1-x Al 3+ x (OH) 2 (A n- ) x/ nmH 2 O has a molar ratio of aluminum ion and magnesium ion. Is known to be 1:3 (x=0.25). Therefore, the molar ratio of aluminum ion to magnesium ion in the acidic solution L1 is preferably in the range of 1:5 to 1:2. Within this range, the layered double hydroxide can be produced in a material balance advantageous manner without wasting the aluminum source and the magnesium source.
 酸性溶液L1に含まれる酸としては、水溶液を酸性にするものであれば特に限定されないが、例えば、硝酸や塩酸を用いることができる。 The acid contained in the acidic solution L1 is not particularly limited as long as it makes the aqueous solution acidic, and nitric acid or hydrochloric acid can be used, for example.
 また、アルカリ性溶液L2を調製する。ここで、アルカリ性溶液L2に含まれるアルカリとしては、水溶液をアルカリ性にするものであれば特に限定されないが、例えば、水酸化ナトリウム、水酸化カルシウム等を用いることができる。また、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、アンモニア水、ホウ酸ナトリウム、ホウ酸カリウムなどを用いることもできる。これらはいずれかを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。アルカリ性溶液L2は、pHを8~14に調製したものを用いることができ、pHを8~11に調製したものを用いるのが好ましい。 Also, prepare the alkaline solution L2. Here, the alkali contained in the alkaline solution L2 is not particularly limited as long as it makes the aqueous solution alkaline, and for example, sodium hydroxide, calcium hydroxide or the like can be used. Further, sodium carbonate, potassium carbonate, ammonium carbonate, aqueous ammonia, sodium borate, potassium borate and the like can also be used. Any of these may be used alone or in combination of two or more. As the alkaline solution L2, a solution having a pH adjusted to 8 to 14 can be used, and a solution having a pH adjusted to 8 to 11 is preferably used.
 また、紙又は紙用繊維は、上記酸性溶液L1又はアルカリ性溶液L2のいずれか一方又は両方に加えておくか、あるいは、酸性溶液L1とアルカリ性溶液L2を混合するための容器に配置しておけば良い。 Further, the paper or the paper fiber may be added to either or both of the acidic solution L1 and the alkaline solution L2, or may be placed in a container for mixing the acidic solution L1 and the alkaline solution L2. good.
 次に、アルミニウムイオンとマグネシウムイオンを含んだ酸性溶液L1と、アルカリを含むアルカリ性溶液L2とを所定の割合で混合する。これにより、層状複水酸化物が生成する。混合は、酸性溶液L1をアルカリ性溶液L2へ一気に加えて混合するか、酸性溶液L1をアルカリ性溶液L2へ滴下して行うことができるが、これら以外の方法であっても良い。 Next, an acidic solution L1 containing aluminum ions and magnesium ions and an alkaline solution L2 containing alkali are mixed at a predetermined ratio. As a result, a layered double hydroxide is produced. The mixing can be performed by adding the acidic solution L1 to the alkaline solution L2 all at once, or by dropping the acidic solution L1 into the alkaline solution L2, but other methods may be used.
 なお、酸性溶液L1とアルカリ性溶液L2の混合が完了した後の熟成時間を短くするほど、結晶の成長を抑制することができ、結晶子サイズの小さい層状複水酸化物や比表面積の大きい層状複水酸化物を製造することができる。 The shorter the aging time after the mixing of the acidic solution L1 and the alkaline solution L2 is, the more the growth of crystals can be suppressed, and the layered double hydroxide having a small crystallite size or the layered double hydroxide having a large specific surface area can be obtained. Hydroxides can be produced.
 熟成を止める方法としては、酸性溶液L1とアルカリ性溶液L2の混合が完了した後、当該混合液のpHを層状複水酸化物の結晶成長が止まる値まで下げる方法が挙げられる。例えば、一般式Mg2+ 1-xAl3+ x(OH)2(An-)x/n・mH2Oで表される層状複水酸化物の場合、pHが9以下となるようにすれば良い。具体的には、酸性溶液L1とアルカリ性溶液L2との混合が完了した後120分以内、好ましくは60分以内、更に好ましくは混合と同時に、水で希釈することで、熟成を止めることができる。また、確実に熟成を行わせないためには、酸性溶液L1とアルカリ性溶液L2の混合が完了した後、速やかに層状複水酸化物を洗浄するのも良い。なお、合成過程で生成されるNaCl等の塩化物は含有させておいても構わない。 As a method of stopping the aging, there is a method of lowering the pH of the mixed solution to a value at which the crystal growth of the layered double hydroxide stops after the mixing of the acidic solution L1 and the alkaline solution L2 is completed. For example, in the case of the layered double hydroxide represented by the general formula Mg 2 + 1-x Al 3+ x (OH) 2 (A n- ) x/n ·mH 2 O, the pH should be 9 or less. Just do it. Specifically, aging can be stopped by diluting with water within 120 minutes, preferably within 60 minutes, and more preferably simultaneously with mixing after the completion of mixing the acidic solution L1 and the alkaline solution L2. Further, in order to prevent the ripening from occurring surely, it is preferable to wash the layered double hydroxide promptly after the mixing of the acidic solution L1 and the alkaline solution L2 is completed. Note that chlorides such as NaCl generated in the synthesis process may be included.
 なお、上記説明では、酸性溶液L1側にアルミニウムイオンとマグネシウムイオンを含有させる場合について説明したが、これに限られるものではなく、酸性溶液L1側にアルミニウムイオンを含有させアルカリ性溶液L2側にマグネシウムイオンを含有させたり、酸性溶液L1側にマグネシウムイオンを含有させアルカリ性溶液L2側にアルミニウムイオンを含有させたり、あるいは、アルカリ性溶液L2側にアルミニウムイオンとマグネシウムイオンの両方を含有させたりすることも可能である。 In the above description, the case where aluminum ions and magnesium ions are contained in the acidic solution L1 side has been described, but the present invention is not limited to this, and aluminum ions are contained in the acidic solution L1 side and magnesium ions are contained in the alkaline solution L2 side. It is also possible to contain a magnesium ion on the acidic solution L1 side and an aluminum ion on the alkaline solution L2 side, or to contain both an aluminum ion and a magnesium ion on the alkaline solution L2 side. is there.
 また、別の例として、構造式がMg2+ 1-xFe3+ x(OH)2(An-)x/n・mH2Oで表される層状複水酸化物の合成方法を説明する。 In addition, as another example, a method for synthesizing a layered double hydroxide having a structural formula of Mg 2+ 1-x Fe 3+ x (OH) 2 (A n- ) x/ nmH 2 O will be described. To do.
 まず、鉄イオンとマグネシウムイオンを含む酸性溶液L1を調製する。 First, prepare an acidic solution L1 containing iron ions and magnesium ions.
 鉄イオンの鉄源としては、水中で鉄イオンを生成するものであれば良く、特定の物質に限定されるものではない。例えば、塩化鉄等を用いることができる。また、これら鉄源は、いずれかを単独で用いても、2種類以上を組み合わせて用いても良い。  The iron ion source is not limited to a specific substance as long as it can generate iron ions in water. For example, iron chloride or the like can be used. Further, these iron sources may be used alone or in combination of two or more kinds.
 また、マグネシウムイオンのマグネシウム源としては、水中でマグネシウムイオンを生成する物であれば良く、特定の物質に限定されるものではない。例えば、ブルーサイト、水酸化マグネシウム、マグネサイト、マグネサイトの焼成物等を用いることができる。これらマグネシウム源は、いずれかを単独で用いても、2種類以上を組み合わせて用いても良い。 Also, the magnesium ion source of magnesium ions is not limited to a specific substance as long as it can generate magnesium ions in water. For example, brucite, magnesium hydroxide, magnesite, a calcined product of magnesite, or the like can be used. These magnesium sources may be used alone or in combination of two or more kinds.
 なお、鉄源としての鉄化合物、マグネシウム源としてのマグネシウム化合物は、酸性溶液L1に鉄イオン、マグネシウムイオンが存在していれば完全に溶解している必要はない。 Note that the iron compound as the iron source and the magnesium compound as the magnesium source need not be completely dissolved as long as the iron ion and the magnesium ion are present in the acidic solution L1.
 また、Mg2+ 1-xFe3+ x(OH)2(An-)x/n・mH2Oで表わされる高結晶質の層状複水酸化物は、鉄イオンとマグネシウムイオンのモル比が1:3(x=0.25)となっていることが知られている。したがって、酸性溶液L1中の鉄イオンとマグネシウムイオンのモル比は、1:5~1:2の範囲とするのが好ましい。この範囲とすることによって、鉄源とマグネシウム源を無駄にすることなく、物質収支的に有利に層状複水酸化物を製造することができる。 Further, the highly crystalline layered double hydroxide represented by Mg 2+ 1-x Fe 3+ x (OH) 2 (A n- ) x/ nmH 2 O has a molar ratio of iron ion and magnesium ion. Is known to be 1:3 (x=0.25). Therefore, the molar ratio of iron ion to magnesium ion in the acidic solution L1 is preferably in the range of 1:5 to 1:2. Within this range, the layered double hydroxide can be produced in a material balance advantageous manner without wasting the iron source and the magnesium source.
 酸性溶液L1に含まれる酸としては、水溶液を酸性にするものであれば特に限定されないが、例えば、硝酸や塩酸を用いることができる。 The acid contained in the acidic solution L1 is not particularly limited as long as it makes the aqueous solution acidic, and nitric acid or hydrochloric acid can be used, for example.
 また、アルカリ性溶液L2を調製する。ここで、アルカリ性溶液L2に含まれるアルカリとしては、水溶液をアルカリ性にするものであれば特に限定されないが、例えば、水酸化ナトリウム、水酸化カルシウム等を用いることができる。また、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、アンモニア水、ホウ酸ナトリウム、ホウ酸カリウムなどを用いることもできる。これらはいずれかを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。アルカリ性溶液L2は、pHを8~14に調製したものを用いることができ、pHを8~11に調製したものを用いるのが好ましい。 Also, prepare the alkaline solution L2. Here, the alkali contained in the alkaline solution L2 is not particularly limited as long as it makes the aqueous solution alkaline, and for example, sodium hydroxide, calcium hydroxide or the like can be used. Further, sodium carbonate, potassium carbonate, ammonium carbonate, aqueous ammonia, sodium borate, potassium borate and the like can also be used. Any of these may be used alone or in combination of two or more. As the alkaline solution L2, a solution having a pH adjusted to 8 to 14 can be used, and a solution having a pH adjusted to 8 to 11 is preferably used.
 また、紙又は紙用繊維は、上記酸性溶液L1又はアルカリ性溶液L2のいずれか一方又は両方に加えておくか、あるいは、酸性溶液L1とアルカリ性溶液L2を混合するための容器に配置しておけば良い。 Further, the paper or the paper fiber may be added to either or both of the acidic solution L1 and the alkaline solution L2, or may be placed in a container for mixing the acidic solution L1 and the alkaline solution L2. good.
 次に、鉄イオンとマグネシウムイオンを含んだ酸性溶液L1と、アルカリを含むアルカリ性溶液L2とを所定の割合で混合する。これにより、層状複水酸化物が生成する。混合は、酸性溶液L1をアルカリ性溶液L2へ一気に加えて混合するか、酸性溶液L1をアルカリ性溶液L2へ滴下して行うことができるが、これら以外の方法であっても良い。 Next, an acidic solution L1 containing iron ions and magnesium ions and an alkaline solution L2 containing alkali are mixed at a predetermined ratio. As a result, a layered double hydroxide is produced. The mixing can be performed by adding the acidic solution L1 to the alkaline solution L2 all at once, or by dropping the acidic solution L1 into the alkaline solution L2, but other methods may be used.
 なお、酸性溶液L1とアルカリ性溶液L2の混合が完了した後の熟成時間を短くするほど、結晶の成長を抑制することができ、結晶子サイズの小さい層状複水酸化物や比表面積の大きい層状複水酸化物を製造することができる。 The shorter the aging time after the mixing of the acidic solution L1 and the alkaline solution L2 is, the more the growth of crystals can be suppressed, and the layered double hydroxide having a small crystallite size or the layered double hydroxide having a large specific surface area can be obtained. Hydroxides can be produced.
 熟成を止める方法としては、酸性溶液L1とアルカリ性溶液L2の混合が完了した後、当該混合液のpHを層状複水酸化物の結晶成長が止まる値まで下げる方法が挙げられる。例えば、一般式Mg2+ 1-xFe3+ x(OH)2(An-)x/n・mH2Oで表される層状複水酸化物の場合、pHが9以下となるようにすれば良い。具体的には、酸性溶液L1とアルカリ性溶液L2との混合が完了した後120分以内、好ましくは60分以内、更に好ましくは混合と同時に、水で希釈することで、熟成を止めることができる。また、確実に熟成を行わせないためには、酸性溶液L1とアルカリ性溶液L2の混合が完了した後、速やかに層状複水酸化物を洗浄するのも良い。なお、合成過程で生成されるNaCl等の塩化物は含有させておいても構わない。 As a method of stopping the aging, there is a method of lowering the pH of the mixed solution to a value at which the crystal growth of the layered double hydroxide stops after the mixing of the acidic solution L1 and the alkaline solution L2 is completed. For example, in the case of the layered double hydroxide represented by the general formula Mg 2+ 1-x Fe 3+ x (OH) 2 (A n- ) x/n ·mH 2 O, the pH should be 9 or less. Just do it. Specifically, aging can be stopped by diluting with water within 120 minutes, preferably within 60 minutes, and more preferably simultaneously with mixing after the completion of mixing the acidic solution L1 and the alkaline solution L2. Further, in order to prevent the ripening from occurring surely, it is preferable to wash the layered double hydroxide promptly after the mixing of the acidic solution L1 and the alkaline solution L2 is completed. Note that chlorides such as NaCl generated in the synthesis process may be included.
 なお、上記説明では、酸性溶液L1側に鉄イオンとマグネシウムイオンを含有させる場合について説明したが、これに限られるものではなく、酸性溶液L1側に鉄イオンを含有させアルカリ性溶液L2側にマグネシウムイオンを含有させたり、酸性溶液L1側にマグネシウムイオンを含有させアルカリ性溶液L2側に鉄イオンを含有させたり、あるいは、アルカリ性溶液L2側に鉄イオンとマグネシウムイオンの両方を含有させたりすることも可能である。 In the above description, the case where the acidic solution L1 side contains iron ions and magnesium ions has been described, but the present invention is not limited to this. The acidic solution L1 side contains iron ions and the alkaline solution L2 side contains magnesium ions. It is also possible to contain the above, or to contain magnesium ions on the acidic solution L1 side and iron ions on the alkaline solution L2 side, or to contain both iron ions and magnesium ions on the alkaline solution L2 side. is there.
 上述のようにして中和した直後の層状複水酸化物はスラリー状またはゲル状である。このスラリー状またはゲル状の層状複水酸化物をそのまま後述する成形工程S20に用いれば良い。 The layered double hydroxide immediately after being neutralized as described above is in the form of slurry or gel. This slurry-like or gel-like layered double hydroxide may be used as it is in the molding step S20 described later.
(成形工程S20)
 成形工程S20は、合成工程S10で生じた混合液の水分を除去して所望の形状に成形する工程である。混合液の水分は、紙又は紙用繊維と合成した層状複水酸化物との混合物を所望の形状に成形できる固さになるまで除去すれば良い。例えば、紙又は紙用繊維と層状複水酸化物の混合物に、含水率が70%以下、好ましくは65%以下、更に好ましくは60%以下になるまで圧力をかけて水分を除去する。当該水分の除去には、例えば、フィルタープレス等を用いた圧搾分離や吸引濾過、遠心分離等を用いれば良い。なお、水分除去の際にかける圧力は、限定されるものではないが、例えば0.7MPa以上から4MPa以下、好ましくは0.9MPa以上から3MPa以下とすれば良い。水分除去の際にかける圧力が上述の下限値未満となると混合液の水分除去が十分ではなく、上述の上限値を超えるとパッキンなどのシール部材から水分が漏れてしまう虞があるからである。これにより脱水した混合物を所望の形状、例えば、フィルタ等に用いる柱状に成形して紙製品とすることができる。
(Molding step S20)
The molding step S20 is a step of removing the water content of the mixed liquid generated in the synthesis step S10 and molding the mixture into a desired shape. The water content of the mixed liquid may be removed until the mixture of paper or paper fibers and the composite layered double hydroxide is formed into a desired shape. For example, water is removed by applying pressure to a paper or a mixture of paper fibers and a layered double hydroxide until the water content becomes 70% or less, preferably 65% or less, more preferably 60% or less. For removing the water content, for example, compression separation using a filter press, suction filtration, centrifugal separation, or the like may be used. The pressure applied when removing water is not limited, but may be, for example, 0.7 MPa or more and 4 MPa or less, preferably 0.9 MPa or more and 3 MPa or less. This is because if the pressure applied at the time of removing water is less than the lower limit value described above, the water content of the mixed liquid is not sufficiently removed, and if it exceeds the upper limit value described above, water may leak from the sealing member such as packing. Thus, the dehydrated mixture can be formed into a desired shape, for example, a columnar shape used for a filter or the like to form a paper product.
 なお、成形工程S20で成形されたものをそのまま紙製品として用いることもできるが、図1において破線枠で示すように、成形工程S20の後に当該紙製品を乾燥する乾燥工程S30を実行することとしても良い。 Although the product molded in the molding step S20 can be used as it is as a paper product, as shown by a broken line frame in FIG. 1, a drying step S30 for drying the paper product is performed after the molding step S20. Is also good.
 また、紙製品としてシート状のいわゆる紙を製造したい場合には、成形工程S20で、層状複水酸化物を含有する紙又は紙用繊維の溶液を用いて紙すき(漉き上げ)を行えば良い。具体的には、網又は紙すき簾上に混合液を広げると水分は網又は紙すき簾を通り抜けて落ちる一方、層状複水酸化物と紙又は紙用繊維は網又は紙すき簾上に残る。これを水分除去し、乾燥工程S30において乾燥させるとシート状の紙が製造できる。なお、紙すきや水分除去、乾燥のための具体的手段は周知の方法を用いればよい。 Further, if it is desired to manufacture a sheet-shaped so-called paper as a paper product, in the molding step S20, paper-making (making up) may be performed using a solution of paper or fiber for paper containing layered double hydroxide. Specifically, when the mixed solution is spread on the net or the paper scraps, the water content passes through the nets or the paper scraps and drops, while the layered double hydroxide and the paper or the paper fiber remain on the nets or the paper scraps. By removing water from this and drying it in the drying step S30, a sheet-shaped paper can be manufactured. Well-known methods may be used as specific means for removing paper, removing water, and drying.
(紙製品について)
 本第1の実施形態の紙製品について説明する。本第1の実施形態の紙製品は層状複水酸化物が紙用繊維の表面から成長したものである。したがって、紙から層状複水酸化物の粉が脱離し難いという効果がある。また、紙用繊維に層状複水酸化物を結合させるためにバインダーを用いる方法では、バインダーを加える分、層状複水酸化物の相対的な量が減少するほか、バインダーに覆われることにより層状複水酸化物の表面積が減少し、紙製品の吸着能力が低下するが、本第1の実施形態では、バインダーを用いないので、紙に含まれる層状複水酸化物の量を多くできると共に、層状複水酸化物の表面積を大きくすることができる。これにより、吸着性能を十分に発揮させることができる。
(About paper products)
The paper product of the first embodiment will be described. In the paper product of the first embodiment, the layered double hydroxide grows from the surface of the paper fiber. Therefore, there is an effect that it is difficult for the layered double hydroxide powder to be detached from the paper. Further, in the method of using a binder to bond the layered double hydroxide to the paper fiber, the relative amount of the layered double hydroxide is reduced by the addition of the binder, and the layered double hydroxide is covered by the binder. Although the surface area of the hydroxide is reduced and the adsorption ability of the paper product is reduced, in the first embodiment, since the binder is not used, the amount of the layered double hydroxide contained in the paper can be increased and the layered double hydroxide can be contained. The surface area of the double hydroxide can be increased. Thereby, the adsorption performance can be sufficiently exhibited.
 また、本第1の実施形態の紙製品に含まれる層状複水酸化物の比表面積は、特に限定されるものではないが、大きい方が吸着性能を向上することができる点で好ましい。当該層状複水酸化物は、例えば、BET法による比表面積が20m/g以上のものとすることができ、好ましくは30m/g以上のものが良く、更に好ましくは50m/g以上のものが良く、更に好ましくは70m/g以上のものが良い。比表面積の上限は特に限定されない。なお、BET法による比表面積は、例えば、窒素吸脱着等温線を比表面積・細孔分布測定装置を用いて測定し、当該測定結果からBET-plotを作成して求めることができる。例えば、層状複水酸化物の結晶子サイズが20nm以下とすれば、比表面積を20m/g以上のものとすることができる。 Moreover, the specific surface area of the layered double hydroxide contained in the paper product of the first embodiment is not particularly limited, but a larger value is preferable because the adsorption performance can be improved. The layered double hydroxide can have, for example, a specific surface area by BET method of 20 m 2 /g or more, preferably 30 m 2 /g or more, and more preferably 50 m 2 /g or more. It is preferable that it is 70 m 2 /g or more. The upper limit of the specific surface area is not particularly limited. The specific surface area by the BET method can be determined, for example, by measuring a nitrogen adsorption/desorption isotherm using a specific surface area/pore distribution measuring device and creating BET-plot from the measurement result. For example, if the crystallite size of the layered double hydroxide is 20 nm or less, the specific surface area can be 20 m 2 /g or more.
 当該紙製品としては、例えば、柱状に形成されたフィルタ(図3のフィルタ10、図5(a)のフィルタ30参照)や、壁紙等に用いるシート状の紙等に用いることができる。 As the paper product, for example, a columnar filter (see the filter 10 in FIG. 3 and the filter 30 in FIG. 5A), sheet-shaped paper used as wallpaper, or the like can be used.
(実施例1)
◎本第1の実施形態の紙製品(紙用繊維上で合成後に成形工程)
 まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液L1を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液L2を調製する。次いで、酸性溶液L1とアルカリ性溶液L2と、紙用繊維(30g)を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。そして、当該溶液を用いて紙すきを行い、100℃で10時間乾燥して、紙を製造した。
(Example 1)
◎Paper product of the first embodiment (forming step after synthesis on paper fiber)
First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in distilled water to prepare an acidic solution L1. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution L2. Next, the acidic solution L1, the alkaline solution L2, and the fiber for paper (30 g) were mixed, and further, a sufficient amount of distilled water was rapidly mixed into the mixed solution in a short time. Then, the solution was used to make paper and dried at 100° C. for 10 hours to produce paper.
(実施例2)
◎本第1の実施形態発明の紙製品(紙上で合成後に成形工程)
 まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液L1を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液L2を調製する。次いで、酸性溶液L1とアルカリ性溶液L2と、紙(30g)を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。そして、当該溶液から紙を取り出し、100℃で10時間乾燥して、紙を製造した。
(Example 2)
◎Paper product of the first embodiment of the invention (molding process after synthesis on paper)
First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in distilled water to prepare an acidic solution L1. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution L2. Next, the acidic solution L1 and the alkaline solution L2 were mixed with paper (30 g), and further, a sufficient amount of distilled water was rapidly mixed with the mixed solution in a short time. Then, the paper was taken out from the solution and dried at 100° C. for 10 hours to manufacture the paper.
(比較例1)
◎合成後の層状複水酸化物の粉を成形工程で紙用繊維に加えた紙製品
 まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液を調製する。次いで、酸性溶液とアルカリ性溶液を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。そして、当該溶液をろ過し、得られたろ過物を100℃で10時間乾燥して粉状の層状複水酸化物を製造した。当該層状複水酸化物の粉(全量)と紙用繊維(30g)に水を加え、これを用いて紙すきを行い、100℃で10時間乾燥して、紙を製造した。
(Comparative Example 1)
◎ Paper product in which powder of layered double hydroxide after synthesis is added to fiber for paper in molding process First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (Wako Jun Yaku Kogyo Co., Ltd.) is dissolved in distilled water to prepare an acidic solution. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution. Next, the acidic solution and the alkaline solution were mixed, and further, a sufficient amount of distilled water was quickly mixed with the mixed solution without time. Then, the solution was filtered, and the obtained filtered product was dried at 100° C. for 10 hours to produce a powdery layered double hydroxide. Water was added to the powder of the layered double hydroxide (total amount) and the fiber for paper (30 g), the paper was plowed using this, and dried at 100° C. for 10 hours to produce paper.
(比較例2)
◎層状複水酸化物の粉をバインダーと共に成形工程で加えた紙製品
 まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液を調製する。次いで、当該酸性溶液とアルカリ性溶液を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。そして、当該溶液をろ過し、得られたろ過物を100℃で10時間乾燥して粉状の層状複水酸化物を製造した。当該層状複水酸化物の粉(全量)、紙用繊維(30g)およびバインダー(1g)に水を加え、これを用いて紙すきを行い、100℃で10時間乾燥して、紙を製造した。
(Comparative example 2)
◎Paper product in which powder of layered double hydroxide was added with binder in molding process First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) ) Is dissolved in distilled water to prepare an acidic solution. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution. Next, the acidic solution and the alkaline solution were mixed, and further, a sufficient amount of distilled water was quickly mixed with the mixed solution without time. Then, the solution was filtered, and the obtained filtered product was dried at 100° C. for 10 hours to produce a powdery layered double hydroxide. Water was added to the layered double hydroxide powder (total amount), the paper fiber (30 g) and the binder (1 g), the paper was plowed using this, and dried at 100° C. for 10 hours to produce paper.
◎層状複水酸化物の脱離試験
 実施例1,2および比較例1,2の紙を水に浸し、マグネチックスターラーで10分間撹拌し、どの程度層状複水酸化物が脱離するか観察した。その結果を表1に示す。
◎Layered Double Hydroxide Desorption Test The papers of Examples 1 and 2 and Comparative Examples 1 and 2 were immersed in water and stirred with a magnetic stirrer for 10 minutes to observe how much the layered double hydroxide desorbed. did. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1のように紙用繊維上で層状複水酸化物を合成した紙は、層状複水酸化物が全く脱離しなかった。また、実施例2のように紙上で層状複水酸化物を合成した紙も層状複水酸化物の脱離はほとんどなかった。これに対し、比較例1のように合成後の層状複水酸化物の粉を成形工程で紙用繊維に加えた紙は、層状複水酸化物がかなり脱離した。一方、比較例2のように層状複水酸化物の粉をバインダーと共に成形工程で加えた紙も、層状複水酸化物の脱離は全くなかった。しかしながら比較例2の紙は、バインダーが加わっている分、単位質量当たりの層状複水酸化物の量が減少していることや、バインダーによって層状複水酸化物の表面積が小さくなっていることの影響で、陰イオンの吸着量が低下した。 From Table 1, in the paper obtained by synthesizing the layered double hydroxide on the paper fiber as in Example 1, the layered double hydroxide was not released at all. Further, the paper obtained by synthesizing the layered double hydroxide on the paper as in Example 2 showed almost no desorption of the layered double hydroxide. On the other hand, in the paper in which the powder of the layered double hydroxide after synthesis was added to the paper fiber in the molding step as in Comparative Example 1, the layered double hydroxide was considerably desorbed. On the other hand, the paper obtained by adding the powder of layered double hydroxide together with the binder in the molding step as in Comparative Example 2 did not release the layered double hydroxide at all. However, in the paper of Comparative Example 2, the amount of the layered double hydroxide per unit mass is reduced by the addition of the binder, and the surface area of the layered double hydroxide is reduced by the binder. As a result, the amount of adsorbed anions decreased.
《第2の実施形態》
 本第2の実施形態の紙製品の製造方法について説明する。第2の実施形態の紙製品は、第1の実施形態と同様、紙用繊維を絡ませて成形したものを意味し、薄く平らに成形した紙の他、フィルタ等に用いる柱状のものなどを含む。また、紙用繊維とは、例えば、植物繊維や化学繊維、ガラス繊維、金属繊維等を意味する。また、紙用繊維としては、紙の製造に用いることができるものであれば、その他の繊維を用いることも可能である。
<<Second Embodiment>>
A method of manufacturing the paper product according to the second embodiment will be described. Similar to the first embodiment, the paper product of the second embodiment means a product formed by entwining paper fibers, and includes thin flat-formed paper and columnar products used for filters and the like. .. The fiber for paper means, for example, plant fiber, chemical fiber, glass fiber, metal fiber or the like. Further, as the fiber for paper, other fibers can be used as long as they can be used for manufacturing paper.
 また、本第2の実施形態の紙製品は、機能性材料を含有する。機能性材料とは、吸着機能や触媒機能等、特定の機能を1以上有する材料を意味する。このような機能性材料としては、例えば、ゼオライト、活性炭、シュベルトマナイト、ジルコニウム、セリウムなどが挙げられる。また、酸化チタンのような光触媒でも良い。更に、機能性材料は、後述する合成工程で合成する層状複水酸化物ではなく、別途用意した層状複水酸化物であっても良い。なお、機能性材料は、1種類の材料であっても良いし、複数種類の混合物であっても良い。 Also, the paper product of the second embodiment contains a functional material. The functional material means a material having one or more specific functions such as an adsorption function and a catalyst function. Examples of such a functional material include zeolite, activated carbon, schwertmannite, zirconium, and cerium. Also, a photocatalyst such as titanium oxide may be used. Further, the functional material may be a layered double hydroxide prepared separately instead of the layered double hydroxide synthesized in the synthesis step described later. The functional material may be one kind of material or a mixture of plural kinds.
 図2には、本第2の実施形態における紙製品の製造方法のフローチャートが示されている。本第2の実施形態の紙製品の製造方法は、図2に示すように、主に、合成工程S110と成形工程S120とを有する。 FIG. 2 shows a flowchart of a method for manufacturing a paper product according to the second embodiment. As shown in FIG. 2, the method for manufacturing a paper product according to the second embodiment mainly includes a synthesizing step S110 and a molding step S120.
(合成工程S110)
 合成工程S110は、少なくともいずれか一方に2価の金属イオンと3価の金属イオンを含む酸性溶液L1とアルカリ性溶液L2を紙又は紙用繊維の存在下において混合し、層状複水酸化物を合成するものである。一般的には、2価の金属イオンと3価の金属イオンは、両方とも酸性溶液L1側に含む方が好ましい。
(Synthesis step S110)
In the synthesis step S110, an acidic solution L1 containing a divalent metal ion and a trivalent metal ion in at least one of them and an alkaline solution L2 are mixed in the presence of paper or paper fibers to synthesize a layered double hydroxide. To do. Generally, it is preferable that both the divalent metal ion and the trivalent metal ion be contained in the acidic solution L1 side.
 本第2の実施形態において、紙又は紙用繊維の存在下において酸性溶液L1とアルカリ性溶液L2を混合させる方法については、上記第1の実施形態と同様であるので、その説明を省略するものとする。また、本実施形態における層状複水酸化物、酸性溶液L1及びアルカリ性溶液L2についても、上記第1の実施形態と同様であるので、その説明を省略するものとする。 In the second embodiment, the method of mixing the acidic solution L1 and the alkaline solution L2 in the presence of paper or paper fibers is the same as that of the first embodiment, and therefore the description thereof will be omitted. To do. Further, the layered double hydroxide, the acidic solution L1 and the alkaline solution L2 in the present embodiment are also the same as those in the first embodiment, and therefore the description thereof will be omitted.
(成形工程S120)
 成形工程S120は、機能性材料の存在下において合成工程S110で生じた混合液の水分を除去して所望の形状に成形する工程である。混合液の水分は、紙又は紙用繊維、機能性材料、合成した層状複水酸化物との混合物を所望の形状に成形できる固さになるまで除去すれば良い。例えば、紙又は紙用繊維、機能性材料、層状複水酸化物の混合物に、含水率が70%以下、好ましくは65%以下、更に好ましくは60%以下になるまで圧力をかけて水分を除去する。当該水分の除去には、例えば、フィルタープレス等を用いた圧搾分離や吸引濾過、遠心分離等を用いれば良い。なお、水分除去の際にかける圧力は、限定されるものではないが、例えば0.7MPa以上から4MPa以下、好ましくは0.9MPa以上から3MPa以下とすれば良い。これにより脱水した混合物を所望の形状、例えば、フィルタ等に用いる柱状に成形して紙製品とすることができる。
(Molding step S120)
The forming step S120 is a step of removing the water content of the mixed liquid generated in the synthesizing step S110 in the presence of the functional material to form a desired shape. The water content of the mixed liquid may be removed until the mixture of paper or paper fibers, a functional material, and the synthesized layered double hydroxide is hard enough to be molded into a desired shape. For example, water is removed from a mixture of paper or paper fibers, a functional material, and a layered double hydroxide by applying pressure until the water content is 70% or less, preferably 65% or less, and more preferably 60% or less. To do. For removing the water content, for example, compression separation using a filter press, suction filtration, centrifugal separation, or the like may be used. The pressure applied when removing water is not limited, but may be, for example, 0.7 MPa or more and 4 MPa or less, preferably 0.9 MPa or more and 3 MPa or less. Thus, the dehydrated mixture can be formed into a desired shape, for example, a columnar shape used for a filter or the like to form a paper product.
 なお、成形工程S120で成形されたものをそのまま紙製品として用いることもできるが、図2において破線枠で示すように、成形工程S120の後に当該紙製品を乾燥する乾燥工程S130を実行することとしても良い。 Although the product molded in the molding process S120 can be used as it is as a paper product, as shown by a broken line frame in FIG. 2, a drying process S130 for drying the paper product is performed after the molding process S120. Is also good.
 また、紙製品としてシート状のいわゆる紙を製造したい場合には、成形工程S120で、層状複水酸化物及び機能性材料を含有する紙又は紙用繊維の溶液を用いて紙すき(漉き上げ)を行えば良い。具体的には、網又は紙すき簾上に混合液を広げると水分は網又は紙すき簾を通り抜けて落ちる一方、層状複水酸化物と機能性材料と紙又は紙用繊維は網又は紙すき簾上に残る。これを水分除去し、乾燥工程S130において乾燥させるとシート状の紙が製造できる。なお、紙すきや水分除去、乾燥のための具体的手段は周知の方法を用いればよい。 In addition, when it is desired to manufacture a sheet-shaped so-called paper as a paper product, in the molding step S120, a paper plow (making up) is performed using a solution of paper or a fiber for paper containing a layered double hydroxide and a functional material. Just go. Specifically, when the mixed solution is spread on the net or the paper scraps, the water drops through the nets or the paper scraps, while the layered double hydroxide, the functional material, the paper or the paper fibers are placed on the nets or the paper sandals. Remain. By removing water from this and drying it in the drying step S130, a sheet of paper can be manufactured. Well-known methods may be used as specific means for removing paper, removing water, and drying.
 なお、機能性材料は、少なくとも合成工程S110で合成した層状複水酸化物が乾燥する前に混合すれば良く、例えば、層状複水酸化物の合成後に混合しても良いし、合成前に混合しても良い。 The functional material may be mixed at least before the layered double hydroxide synthesized in the synthesis step S110 is dried, for example, may be mixed after the layered double hydroxide is synthesized, or may be mixed before the synthesis. You may do it.
 層状複水酸化物の合成後に混合する場合には、合成工程S110で生じた混合液に機能性材料を混合し、その後に水分を除去して成形すれば良い。 When mixing after the synthesis of the layered double hydroxide, the functional material may be mixed with the mixed liquid generated in the synthesis step S110, and then the water may be removed before molding.
 また、層状複水酸化物の合成前に混合する場合には、酸性溶液L1およびアルカリ性溶液L2の少なくともいずれか一方に機能性材料を含有させておいて混合すれば良い。例えば、機能性材料を酸性溶液L1に曝したくない場合には、アルカリ性溶液L2に含有させれば良いし、アルカリ性溶液L2に曝したくない場合には酸性溶液L1に含有させれば良い。 When mixing the layered double hydroxide before synthesis, it is sufficient to mix the functional material in at least one of the acidic solution L1 and the alkaline solution L2. For example, if the functional material is not desired to be exposed to the acidic solution L1, it may be contained in the alkaline solution L2, and if it is not desired to be exposed to the alkaline solution L2, it may be contained in the acidic solution L1.
 また、機能性材料を容器等に配置しておき、当該機能性材料に酸性溶液L1とアルカリ性溶液L2を同時に供給しても良い。例えば、機能性材料を酸性溶液にL1もアルカリ性溶液L2にも曝したくない場合には、この方法が好ましい。また、この場合には、機能性材料に水等の液体を加えておき、この液体に酸性溶液L1とアルカリ性溶液L2を供給しても良い。 Alternatively, the functional material may be placed in a container or the like, and the acidic solution L1 and the alkaline solution L2 may be simultaneously supplied to the functional material. For example, this method is preferable when it is not desired to expose the functional material to the acidic solution L1 or the alkaline solution L2. In this case, a liquid such as water may be added to the functional material, and the acidic solution L1 and the alkaline solution L2 may be supplied to this liquid.
 本第2の実施形態の紙製品について説明する。本第2の実施形態の紙製品は紙又は紙用繊維と機能性材料を層状複水酸化物で結合したものである。したがって、紙から層状複水酸化物及び機能性材料の粉が脱離し難いという効果がある。また、バインダーの代わりに層状複水酸化物を用いるので、機能性材料の機能に加えて層状複水酸化物の機能も有する紙製品を製造することができる。また、機能性材料として層状複水酸化物を用いる場合には、バインダーがない分、紙に含まれる層状複水酸化物の相対的な量を多くできると共に、バインダーによって層状複水酸化物の表面積が小さくなるという問題がないので、吸着性能を十分に発揮させることができる。 The paper product of the second embodiment will be described. The paper product of the second embodiment is a product in which paper or paper fibers and a functional material are bound by a layered double hydroxide. Therefore, there is an effect that it is difficult for the layered double hydroxide and the powder of the functional material to be detached from the paper. Further, since the layered double hydroxide is used instead of the binder, it is possible to manufacture a paper product having the function of the layered double hydroxide in addition to the function of the functional material. When a layered double hydroxide is used as the functional material, the relative amount of the layered double hydroxide contained in the paper can be increased because the binder is not present, and the surface area of the layered double hydroxide can be increased by the binder. Since there is no problem that the value becomes small, the adsorption performance can be sufficiently exhibited.
 また、本第2の実施形態の紙製品に含まれる層状複水酸化物又は機能性材料の比表面積は、特に限定されるものではないが、大きい方が吸着性能を向上することができる点で好ましい。当該層状複水酸化物及び機能性材料は、例えば、BET法による比表面積が20m/g以上のものとすることができ、好ましくは30m/g以上のものが良く、更に好ましくは50m/g以上のものが良く、更に好ましくは70m/g以上のものが良い。比表面積の上限は特に限定されない。なお、BET法による比表面積は、例えば、窒素吸脱着等温線を比表面積・細孔分布測定装置を用いて測定し、当該測定結果からBET-plotを作成して求めることができる。例えば、層状複水酸化物又は機能性材料の結晶子サイズが20nm以下とすれば、比表面積を20m/g以上のものとすることができる。 The specific surface area of the layered double hydroxide or functional material contained in the paper product of the second embodiment is not particularly limited, but the larger the specific surface area, the more the adsorption performance can be improved. preferable. The layered double hydroxide and the functional material may, for example, BET specific surface area of which is equivalent to or exceeds the 20 m 2 / g, preferably better not less than 30 m 2 / g, more preferably 50 m 2 /G or more, and more preferably 70 m 2 /g or more. The upper limit of the specific surface area is not particularly limited. The specific surface area by the BET method can be determined, for example, by measuring a nitrogen adsorption/desorption isotherm using a specific surface area/pore distribution measuring device and creating BET-plot from the measurement result. For example, if the crystallite size of the layered double hydroxide or the functional material is 20 nm or less, the specific surface area can be 20 m 2 /g or more.
 当該紙製品としては、例えば、柱状に形成されたフィルタ(図3のフィルタ10、図5(a)のフィルタ30参照)や、壁紙等に用いるシート状の紙等に用いることができる。 As the paper product, for example, a columnar filter (see the filter 10 in FIG. 3 and the filter 30 in FIG. 5A), sheet-shaped paper used as wallpaper, or the like can be used.
(実施例1)
◎本第2の実施形態の紙製品(層状複水酸化物)
 まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液L1を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液L2を調製する。次いで、酸性溶液L1とアルカリ性溶液L2と、紙用繊維(30g)を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。その後、更に機能性材料1として層状複水酸化物(22g)を当該混合液に加えて混合した。最後に、当該溶液を用いて紙すきを行い、100℃で10時間乾燥して、紙を製造した。
(Example 1)
◎Paper product of the second embodiment (layered double hydroxide)
First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in distilled water to prepare an acidic solution L1. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution L2. Next, the acidic solution L1, the alkaline solution L2, and the fiber for paper (30 g) were mixed, and further, a sufficient amount of distilled water was rapidly mixed into the mixed solution in a short time. Then, layered double hydroxide (22 g) as Functional Material 1 was further added to the mixed solution and mixed. Finally, the solution was used to make paper and dried at 100° C. for 10 hours to produce paper.
(実施例2)
◎本第2の実施形態の紙製品(ゼオライト)
 まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液L1を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液L2を調製する。次いで、酸性溶液L1とアルカリ性溶液L2と、紙用繊維(30g)を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。その後、更に機能性材料2としてゼオライト(22g)を当該混合液に加えて混合した。最後に、当該溶液を用いて紙すきを行い、100℃で10時間乾燥して、紙を製造した。
(Example 2)
◎Paper product (zeolite) of the second embodiment
First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in distilled water to prepare an acidic solution L1. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution L2. Next, the acidic solution L1, the alkaline solution L2, and the fiber for paper (30 g) were mixed, and further, a sufficient amount of distilled water was rapidly mixed into the mixed solution in a short time. Then, further, zeolite (22 g) as the functional material 2 was added to the mixed solution and mixed. Finally, the solution was used to make paper and dried at 100° C. for 10 hours to produce paper.
(実施例3)
◎本発明の紙製品(活性炭)
 まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液L1を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液L2を調製する。次いで、酸性溶液L1とアルカリ性溶液L2と、紙用繊維(30g)を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。その後、更に機能性材料3として活性炭(22g)を当該混合液に加えて混合した。最後に、当該溶液を用いて紙すきを行い、100℃で10時間乾燥して、紙を製造した。
(Example 3)
◎ Paper products of the present invention (activated carbon)
First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in distilled water to prepare an acidic solution L1. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution L2. Next, the acidic solution L1, the alkaline solution L2, and the fiber for paper (30 g) were mixed, and further, a sufficient amount of distilled water was rapidly mixed into the mixed solution in a short time. Then, activated carbon (22 g) was further added as the functional material 3 to the mixed solution and mixed. Finally, the solution was used to make paper and dried at 100° C. for 10 hours to produce paper.
(比較例1)
◎層状複水酸化物を単に成形工程で加えた紙製品
 まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液を調製する。次いで、当該酸性溶液とアルカリ性溶液を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。そして、当該溶液をろ過し、得られたろ過物を100℃で10時間乾燥して粉状の層状複水酸化物を製造した。当該層状複水酸化物の粉(全量)に、紙用繊維(30g)および機能性材料1として層状複水酸化物(22g)に水を加え、これを用いて紙すきを行い、100℃で10時間乾燥して、紙を製造した。
(Comparative Example 1)
◎Paper product in which layered double hydroxide is simply added in the molding process First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are distilled. Dissolve in water to prepare an acidic solution. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution. Next, the acidic solution and the alkaline solution were mixed, and further, a sufficient amount of distilled water was quickly mixed with the mixed solution without time. Then, the solution was filtered, and the obtained filtered product was dried at 100° C. for 10 hours to produce a powdery layered double hydroxide. To the layered double hydroxide powder (total amount), water was added to the paper fiber (30 g) and layered double hydroxide (22 g) as the functional material 1, and water was added thereto to make a paper sheet. It was dried for an hour to produce paper.
(比較例2)
◎層状複水酸化物の粉をバインダーと共に成形工程で加えた紙製品
 まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液を調製する。次いで、当該酸性溶液とアルカリ性溶液を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。そして、当該溶液をろ過し、得られたろ過物を100℃で10時間乾燥して粉状の層状複水酸化物を製造した。当該層状複水酸化物の粉(全量)、紙用繊維(30g)、機能性材料1として層状複水酸化物(22g)およびバインダー(1g)に水を加え、これを用いて紙すきを行い、100℃で10時間乾燥して、紙を製造した。
(Comparative example 2)
◎Paper product in which powder of layered double hydroxide was added with binder in molding process First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) ) Is dissolved in distilled water to prepare an acidic solution. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution. Next, the acidic solution and the alkaline solution were mixed, and further, a sufficient amount of distilled water was quickly mixed with the mixed solution without time. Then, the solution was filtered, and the obtained filtered product was dried at 100° C. for 10 hours to produce a powdery layered double hydroxide. Water is added to the layered double hydroxide powder (total amount), paper fibers (30 g), layered double hydroxide (22 g) as the functional material 1 and binder (1 g), and papermaking is performed using this. Paper was manufactured by drying at 100° C. for 10 hours.
 なお、機能性材料としては、前述のように、機能性材料1として層状複水酸化物、機能性材料2としてゼオライト、機能性材料3として活性炭を用いたが、機能性材料1の層状複水酸化物としては、次のように合成した粉末を用いた。まず、塩化マグネシウム六水和物(和光純薬工業株式会社製)と塩化アルミニウム六水和物(和光純薬工業株式会社製)を蒸留水に溶解させ、酸性溶液を調製する。また、水酸化ナトリウム(和光純薬工業株式会社製)を蒸留水に溶解させ、アルカリ性溶液を調製する。次いで、当該酸性溶液とアルカリ性溶液を混合し、更に当該混合溶液に十分な量の蒸留水を、時間をおかず速やかに混合した。そして、当該溶液をろ過し、得られたろ過物を100℃で10時間乾燥して粉状の層状複水酸化物を製造した。 As described above, as the functional material, the layered double hydroxide was used as the functional material 1, the zeolite was used as the functional material 2, and the activated carbon was used as the functional material 3. As the oxide, the powder synthesized as follows was used. First, magnesium chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in distilled water to prepare an acidic solution. Further, sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in distilled water to prepare an alkaline solution. Next, the acidic solution and the alkaline solution were mixed, and further, a sufficient amount of distilled water was quickly mixed with the mixed solution without time. Then, the solution was filtered, and the obtained filtered product was dried at 100° C. for 10 hours to produce a powdery layered double hydroxide.
 また、機能性材料2のゼオライトとしては、和光純薬工業株式会社製のもの(コードNo.268-01522)を用いた。 Also, as the zeolite of the functional material 2, one manufactured by Wako Pure Chemical Industries, Ltd. (code No. 268-01522) was used.
 また、機能性材料3の活性炭としては、和光純薬工業株式会社製のもの(コードNo.034-18051)を用いた。 Also, as the activated carbon of the functional material 3, one manufactured by Wako Pure Chemical Industries, Ltd. (code No.034-18051) was used.
◎層状複水酸化物や機能性材料の脱離試験
 実施例1~3および比較例1,2の紙を水に浸し、マグネチックスターラーで10分間撹拌し、どの程度層状複水酸化物が脱離するか観察した。その結果を表2に示す。
◎Desorption test of layered double hydroxide and functional materials The papers of Examples 1 to 3 and Comparative Examples 1 and 2 were immersed in water and stirred for 10 minutes with a magnetic stirrer to determine how much layered double hydroxide was removed. I observed if it was separated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、実施例1~3の紙は、層状複水酸化物や機能性材料が全く脱離しなかった。一方、比較例1の紙は、層状複水酸化物や機能性材料がかなり脱離した。一方、比較例2のように層状複水酸化物および機能性材料の粉をバインダーと共に成形工程で加えた紙も、層状複水酸化物の脱離は全くなかった。しかしながら比較例2の紙は、バインダーが加わっている分、単位質量当たりの層状複水酸化物や機能性材料の量が減少していることや、バインダーによって層状複水酸化物や機能性材料の表面積が小さくなっていることの影響で、層状複水酸化物や機能性材料の機能が低下した。 From Table 2, in the papers of Examples 1 to 3, the layered double hydroxide and the functional material were not released at all. On the other hand, in the paper of Comparative Example 1, the layered double hydroxide and the functional material were considerably desorbed. On the other hand, the paper obtained by adding the layered double hydroxide and the powder of the functional material together with the binder in the molding step as in Comparative Example 2 did not release the layered double hydroxide at all. However, in the paper of Comparative Example 2, the amount of the layered double hydroxide or the functional material per unit mass is reduced due to the addition of the binder, and the amount of the layered double hydroxide or the functional material per unit mass is reduced. Due to the small surface area, the functions of the layered double hydroxide and the functional material decreased.
(変形例1)
 なお、上記第1、第2の実施形態では、合成工程S10、S110において、少なくともいずれか一方に2価の金属イオンと3価の金属イオンを含む酸性溶液L1とアルカリ性溶液L2を紙又は紙用繊維の存在下において混合する場合について説明したが、これに限られるものではない。例えば、酸性溶液L1とアルカリ性溶液L2を混合して層状複水酸化物を合成した後に、合成後の混合液に対して紙又は紙用繊維を混合する(混合工程を実施する)こととしてもよい。この場合、ゲル状の層状複水酸化物と紙又は紙用繊維とが絡み合い結合するため、粉状の層状複水酸化物を紙又は紙用繊維と混合して紙漉き(漉き上げ)を行う場合と比べ、紙から層状複水酸化物が脱離し難いという効果がある。
(Modification 1)
In the first and second embodiments, in the synthesis steps S10 and S110, the acidic solution L1 and the alkaline solution L2 containing divalent metal ions and trivalent metal ions in at least one of them are used for paper or paper. Although the case of mixing in the presence of fibers has been described, the present invention is not limited to this. For example, the acid solution L1 and the alkaline solution L2 may be mixed to synthesize a layered double hydroxide, and then paper or paper fibers may be mixed with the mixed solution after synthesis (the mixing step is performed). .. In this case, since the gel-like layered double hydroxide and the paper or the fiber for paper are entangled with each other, the powdery layered double hydroxide is mixed with the paper or the fiber for paper to perform paper making (raising). Compared with, there is an effect that the layered double hydroxide is hard to be detached from the paper.
 なお、上記第2の実施形態において、酸性溶液L1とアルカリ性溶液L2を混合して層状複水酸化物を合成した後に、合成後の混合液に対して紙又は紙用繊維を混合する場合には、紙又は紙用繊維を混合する前に機能性材料を混合してもよいし、紙又は紙用繊維を混合した後に機能性材料を混合してもよい。 In the second embodiment, when the acidic solution L1 and the alkaline solution L2 are mixed to synthesize the layered double hydroxide, and then the paper or the paper fiber is mixed with the mixed solution after synthesis, , The functional material may be mixed before mixing the paper or the fiber for paper, or the functional material may be mixed after mixing the paper or the fiber for paper.
(変形例2)
 なお、上記第1、第2の実施形態の成形工程S20、S120においては、混合液の水分を除去した後に、洗浄(水洗)を行い、その後に成形することとしてもよい。この洗浄により、酸性溶液L1とアルカリ性溶液L2とから層状複水酸化物を合成する際に生成されるNaClを紙から除去することができる。このとき、層状複水酸化物に付着したNaClも除去されるため、層状複水酸化物の陰イオン交換作用性が向上し、ヒ素、フッ素、ホウ素、セレン、六価クロム、亜硝酸異音、その他の陰イオン系の有害物質を吸着する吸着性能を向上することができる。なお、NaCLは、紙用繊維間を結合するバインダーとしても機能するため、例えば、紙製品にNaClが含まれていても問題がなく、NaClをバインダーとして用いる場合には、洗浄を行わないほうがよい。
(Modification 2)
In the molding steps S20 and S120 of the first and second embodiments, it is possible to remove water from the mixed liquid, wash (wash with water), and then mold. By this washing, NaCl produced when synthesizing the layered double hydroxide from the acidic solution L1 and the alkaline solution L2 can be removed from the paper. At this time, since the NaCl attached to the layered double hydroxide is also removed, the anion exchange function of the layered double hydroxide is improved, and arsenic, fluorine, boron, selenium, hexavalent chromium, nitrite noise, Adsorption performance of adsorbing other anionic harmful substances can be improved. Since NaCL also functions as a binder for binding fibers for paper, for example, even if the paper product contains NaCl, there is no problem. If NaCl is used as the binder, washing should not be performed. ..
(変形例3)
 なお、上記第1、第2の実施形態では、成形工程S20、S120において混合液の水分を除去した後、バインダーを混合し、その後に成形するようにしてもよい。なお、バインダーを混合するタイミングはその他のタイミングであってもよい。
(Modification 3)
In addition, in the said 1st, 2nd embodiment, you may make it shape|mold after mixing a binder after removing the water|moisture content of a mixed liquid in shaping|molding process S20, S120. The timing of mixing the binder may be other timing.
(変形例4)
 なお、上記第1、第2の実施形態では、紙又は紙用繊維に層状複水酸化物を結合させ、紙製品を製造する場合について説明したが、これに限らず、不織布用繊維に層状複水酸化物を結合させて、不織布製品を製造することとしてもよい。例えば、酸性溶液L1とアルカリ性溶液L2を不織布用繊維の存在下において混合し、層状複水酸化物を合成したり、酸性溶液L1とアルカリ性溶液L2を混合して層状複水酸化物を合成した後に、混合液に不織布用繊維を混合するなどすることができる。また、機能性材料の存在下において、層状複水酸化物を合成した際に生じた混合液の水分を除去して成形することとしてもよい。なお、水分除去の際には、紙漉きと同様に漉き上げを行うことができる。これにより、湿式不織布が成形される。なお、これに限らず、水分除去後の、層状複水酸化物や機能性材料が結合した不織布用繊維(短繊維や長繊維)を用いて乾式不織布を製造することとしてもよい。なお、紙用繊維と不織布用繊維を混合した繊維材料に対して層状複水酸化物を結合させ、繊維製品(ハイブリッド製品)を製造することとしてもよい。
(Modification 4)
In addition, in the said 1st, 2nd embodiment, although the layered double hydroxide was couple|bonded with the paper or the fiber for papers, and the paper product was manufactured, it was not limited to this, but it is not limited to this. The hydroxide may be combined to produce a nonwoven product. For example, after the acidic solution L1 and the alkaline solution L2 are mixed in the presence of the non-woven fabric fiber to synthesize a layered double hydroxide, or the acidic solution L1 and the alkaline solution L2 are mixed to synthesize a layered double hydroxide. Alternatively, it is possible to mix fibers for a non-woven fabric with the mixed solution. Further, in the presence of the functional material, the water may be removed from the mixed solution generated when the layered double hydroxide is synthesized, and the molding may be performed. In addition, when removing the water, it is possible to perform lifting like the paper making. Thereby, the wet nonwoven fabric is formed. However, the present invention is not limited to this, and the dry non-woven fabric may be manufactured using the non-woven fabric fibers (short fibers or long fibers) to which the layered double hydroxide or the functional material is bound after removing the water content. Note that a layered double hydroxide may be bonded to a fiber material obtained by mixing fibers for paper and fibers for non-woven fabric to produce a fiber product (hybrid product).
《第3の実施形態》
 以下、第3の実施形態について説明する。本第3の実施形態では、第2の実施形態の紙製品をフィルタとして用いる例について説明する。
<<Third Embodiment>>
The third embodiment will be described below. In the third embodiment, an example in which the paper product of the second embodiment is used as a filter will be described.
 図3は、水を濾過する濾過装置100のフィルタ10として、第2の実施形態の紙製品を用いた例を示している。 FIG. 3 shows an example in which the paper product of the second embodiment is used as the filter 10 of the filtering device 100 that filters water.
 濾過装置100は、ハウジング12と、ハウジング12内に設けられたフィルタ10と、フィルタ10の上下に設けられた支持部材14A,14Bと、給水管16Aと、排水管16Bとを備える。 The filtering device 100 includes a housing 12, a filter 10 provided in the housing 12, support members 14A and 14B provided above and below the filter 10, a water supply pipe 16A, and a drain pipe 16B.
 フィルタ10は、紙用繊維と、合成工程S110で合成された層状複水酸化物との重量比が3:1であり、機能性材料として用いた粉状の層状複水酸化物と合成工程S110で合成された層状複水酸化物の合計重量が、フィルタ10全体における60%を占めているものとする。また、フィルタ10全体の重量は、400gであるものとする。フィルタ10は、略円柱状に成形されており、その中央部には、上端部から下端部近傍に向けて中空部20が設けられている。なお、フィルタ10の材料の比率は、上記に限られるものではない。例えば、フィルタ10が有する層状複水酸化物の重量は、紙繊維の重量の0.25~4倍、好ましくは1~3倍などとすることができる。層状複水酸化物の重量が紙繊維の重量の0.25倍未満になると有害物質の吸着が十分ではなくなる。また、層状複水酸化物の重量が紙繊維の重量の3倍もしくは4倍を超えるとフィルター10の通水性能が十分ではなくなる。このため、フィルタ10の硬さや吸水性、通水性、濾過性能などを考慮して、フィルタ10の材料の比率を定めることが好ましい。 In the filter 10, the weight ratio of the paper fiber to the layered double hydroxide synthesized in the synthesis step S110 is 3:1, and the powdery layered double hydroxide used as the functional material and the synthesis step S110. It is assumed that the total weight of the layered double hydroxide synthesized in (1) accounts for 60% of the entire filter 10. The weight of the entire filter 10 is 400 g. The filter 10 is formed in a substantially columnar shape, and a hollow portion 20 is provided at the center of the filter 10 from the upper end toward the lower end. The material ratio of the filter 10 is not limited to the above. For example, the weight of the layered double hydroxide contained in the filter 10 can be 0.25 to 4 times, preferably 1 to 3 times the weight of the paper fiber. When the weight of the layered double hydroxide is less than 0.25 times the weight of the paper fiber, the adsorption of harmful substances becomes insufficient. Further, if the weight of the layered double hydroxide exceeds 3 times or 4 times the weight of the paper fiber, the water permeability of the filter 10 becomes insufficient. For this reason, it is preferable to determine the ratio of the material of the filter 10 in consideration of hardness, water absorption, water permeability, filtration performance, etc. of the filter 10.
 支持部材14A、14Bは、プラスチックやゴムなどの材料を用いて形成された略円盤状の部材である。支持部材14Aの中央部に貫通孔22が形成されており、貫通孔22は、フィルタ10の中空部20と連通した状態となっている。 The support members 14A and 14B are substantially disc-shaped members formed of a material such as plastic or rubber. A through hole 22 is formed in the center of the support member 14A, and the through hole 22 is in communication with the hollow portion 20 of the filter 10.
 給水管16Aは、例えば、ハウジング12の下端部近傍に設けられており、濾過前の水をハウジング12内に取り入れるための管である。排水管16Bは、支持部材14Aに接続されており、フィルタ10で濾過された水を外部に取り出すための管である。なお、給水管16Aは、ハウジング12の上側からハウジング12内に水を供給することとしてもよい。この場合、ハウジング12の上部に2重構造の配管を設け、当該2重構造の配管の外側の管路を給水管16Aとして用い、内側の管路を排水管16Bとして用いることとしてもよい。 The water supply pipe 16A is provided, for example, in the vicinity of the lower end of the housing 12 and is a pipe for introducing water before filtration into the housing 12. The drain pipe 16B is connected to the support member 14A and is a pipe for taking out the water filtered by the filter 10 to the outside. The water supply pipe 16A may supply water into the housing 12 from above the housing 12. In this case, a pipe having a double structure may be provided in the upper part of the housing 12, and an outer pipe line of the double pipe structure may be used as the water supply pipe 16A and an inner pipe line may be used as the drain pipe 16B.
 濾過装置100においては、給水管16Aからハウジング12内に取り入られた水がフィルタ10の外側から内側に染み込むことで濾過され、濾過された水が中空部20、貫通孔22を介して排水管16Bから外部に排出されるようになっている。 In the filtering device 100, the water taken into the housing 12 from the water supply pipe 16A is filtered by permeating the filter 10 from the outside to the inside, and the filtered water is discharged through the hollow portion 20 and the through hole 22 to the drain pipe 16B. It is designed to be discharged from the outside.
 図4には、排水管16Bから排出される水のホウ素濃度をICP発光分光分析法を用いて測定した結果が示されている。このとき、給水管16Aから濾過装置100に供給する水(原液)のホウ素濃度は98.15mg/Lであった。図4からわかるように、1時間後、3時間後、5時間後、…とホウ素濃度を測定した結果、ホウ素の除去能力は徐々に落ちていくものの、本第3の実施形態のフィルタ10は、少なくとも13時間の間は、フィルタとして適切な能力を有することが分かった。 FIG. 4 shows the result of measuring the boron concentration of the water discharged from the drainage pipe 16B using ICP emission spectroscopy. At this time, the boron concentration of the water (stock solution) supplied from the water supply pipe 16A to the filtration device 100 was 98.15 mg/L. As can be seen from FIG. 4, as a result of measuring the boron concentration after 1 hour, 3 hours, 5 hours,... As a result, although the boron removing ability gradually decreases, the filter 10 of the third embodiment has , For at least 13 hours, it has been found to have suitable capacity as a filter.
《第4の実施形態》
 以下、第4の実施形態について説明する。本第4の実施形態では、第1の実施形態の紙製品をフィルタの一部として用いる例について説明する。
<<Fourth Embodiment>>
The fourth embodiment will be described below. In the fourth embodiment, an example in which the paper product of the first embodiment is used as a part of a filter will be described.
 図5(a)は、本第4の実施形態に係るフィルタ30を示す図である。フィルタ30は、円柱状に成形されている。図5(b)には、フィルタ30を縦方向に断面した状態が示されている。図5(b)に示すように、フィルタ30は、機能性材料としての粉状の層状複水酸化物32と、層状複水酸化物32を包む紙製品34と、を備える。すなわち、フィルタ30においては、紙製品34が有する内部空間に、機能性材料としての層状複水酸化物32が充填された状態となっている。 FIG. 5A is a diagram showing a filter 30 according to the fourth embodiment. The filter 30 is shaped like a cylinder. FIG. 5B shows a state in which the filter 30 is vertically sectioned. As shown in FIG. 5B, the filter 30 includes a powdery layered double hydroxide 32 as a functional material, and a paper product 34 that wraps the layered double hydroxide 32. That is, in the filter 30, the internal space of the paper product 34 is filled with the layered double hydroxide 32 as a functional material.
 ここで、紙製品34は、紙用繊維と、合成工程S10で合成された層状複水酸化物との重量比が3:1となっている。また、機能性材料として用いた粉状の層状複水酸化物32と合成工程S10で合成された層状複水酸化物の合計重量が、フィルタ10全体の70%を占めており、その重量は、65gである。すなわち、紙製品34の紙用繊維は、約27.9gであり、合成工程S110で合成された層状複水酸化物は、約9.3gである。なお、フィルタ30の材料の比率は、上記に限られるものではない。例えば、フィルタ30が有する層状複水酸化物の重量は、紙繊維の重量の0.25~4倍、好ましくは1~3倍などとすることができる。この場合、フィルタ30の硬さや吸水性、濾過性能などを考慮して、フィルタ30の材料の比率を定めることが好ましい。 Here, in the paper product 34, the weight ratio of the paper fiber and the layered double hydroxide synthesized in the synthesis step S10 is 3:1. Further, the total weight of the powdery layered double hydroxide 32 used as the functional material and the layered double hydroxide synthesized in the synthesis step S10 accounts for 70% of the entire filter 10, and the weight thereof is It is 65 g. That is, the paper fiber of the paper product 34 is about 27.9 g, and the layered double hydroxide synthesized in the synthesis step S110 is about 9.3 g. The material ratio of the filter 30 is not limited to the above. For example, the weight of the layered double hydroxide contained in the filter 30 can be 0.25 to 4 times, preferably 1 to 3 times the weight of the paper fiber. In this case, it is preferable to determine the material ratio of the filter 30 in consideration of hardness, water absorption, filtration performance, etc. of the filter 30.
 本第4の実施形態では、図6に示すような実験装置を用いて、実験を行った。この実験においては、漏斗40内にフィルタ30を設け、上方から漏斗40内に水(原液)を入れ、フィルタ30で濾過された水をビーカー50で受けて、濾過後の水のヒ素濃度をICP発光分光分析法を用いて測定した。その結果が、図7に示されている。 In the fourth embodiment, an experiment was conducted using the experimental device shown in FIG. In this experiment, the filter 30 is provided in the funnel 40, water (stock solution) is put into the funnel 40 from above, the water filtered by the filter 30 is received by the beaker 50, and the arsenic concentration of the filtered water is measured by ICP. It measured using the optical emission spectroscopy. The result is shown in FIG.
 本第4の実施形態では、フィルタ30を変更せずに、16Lの水(原液)を3回濾過することとした。図7に示すように、1回目の原液のヒ素濃度は、422.6ppbであり、2回目の原液のヒ素濃度は、476.3ppbであり、3回目の原液のヒ素濃度は、430.1ppbであった。図7からわかるように、合計48Lの水(原液)を濾過するのに合計73時間を要したが、フィルタ30を72時間使用しても、ヒ素除去能力は然程低下しないことが分かった。また、フィルタの大きさや構成を調整することにより、ヒ素を多く含む水から飲料水基準を満たす水を生成することも可能であることが分かった。 In the fourth embodiment, 16 L of water (stock solution) is filtered three times without changing the filter 30. As shown in FIG. 7, the arsenic concentration of the first stock solution was 422.6 ppb, the arsenic concentration of the second stock solution was 476.3 ppb, and the arsenic concentration of the third stock solution was 430.1 ppb. there were. As can be seen from FIG. 7, it took a total of 73 hours to filter a total of 48 L of water (stock solution), but it was found that even if the filter 30 was used for 72 hours, the arsenic removal capacity did not deteriorate so much. It was also found that it is possible to produce water that satisfies the drinking water standard from water that contains a large amount of arsenic by adjusting the size and configuration of the filter.
 なお、上記第3、第4実施形態では、機能性材料として層状複水酸化物を用いる場合について説明したが、目的に合わせて、その他の機能性材料、例えばゼオライト、活性炭、シュベルトマナイト、ジルコニウム、セリウムなどを用いることしてもよい。 In addition, in the said 3rd and 4th embodiment, although the case where layered double hydroxide was used as a functional material was demonstrated, other functional materials, such as a zeolite, activated carbon, schwertmannite, zirconium, may be used according to the objective. Alternatively, cerium or the like may be used.
 なお、上記第3、第4実施形態では、フィルタ10、30に第1、第2実施形態の紙製品を用いる場合について説明したが、これに限らず、紙製品に代えて、上記変形例4で説明した不織布製品を用いることとしてもよい。 In addition, in the said 3rd and 4th embodiment, although the case where the paper product of 1st, 2nd embodiment was used for the filters 10 and 30 was demonstrated, it is not restricted to this, It replaces with a paper product and the said modification 4 is used. It is also possible to use the non-woven fabric product described in.
 なお、上記第1、第2実施形態、変形例で説明した紙製品や不織布製品は、フィルタ以外の製品としても用いることができる。例えば、シート状の紙製品であれば、壁紙や、汚染土の下に敷くことで汚染土から染み出す有害物質を吸収する吸着マット、ペットシート、汗脇パット、食品トレーに敷くドリップシートなどにも用いることができる。また、層状複水酸化物は難燃性を有しているので、前述の壁紙に用いた場合には、火災が発生した際でも火災を抑制することが期待できる。 Note that the paper products and non-woven fabric products described in the first and second embodiments and the modified examples can be used as products other than filters. For example, in the case of sheet-shaped paper products, it can be used as wallpaper, adsorption mats that absorb harmful substances that exude from contaminated soil when laid under contaminated soil, pet sheets, sweatside pads, drip sheets laid on food trays, etc. Can also be used. Further, since the layered double hydroxide has flame retardancy, it can be expected to suppress the fire when it is used in the above-mentioned wallpaper even when a fire occurs.
 上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。 The above-described embodiment is an example of a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.
  10 フィルタ(紙製品)
  30 フィルタ
  32 層状複水酸化物(機能性材料)
  34 紙製品(繊維製品)
  L1 酸性溶液
  L2 アルカリ性溶液
10 filters (paper products)
30 Filter 32 Layered Double Hydroxide (Functional Material)
34 Paper products (textile products)
L1 acidic solution L2 alkaline solution

Claims (27)

  1.  層状複水酸化物を含有する繊維製品の製造方法であって、
     少なくともいずれか一方に2価の金属イオンと3価の金属イオンを含む酸性溶液とアルカリ性溶液を繊維の存在下において混合し、前記層状複水酸化物を合成する合成工程と、
     前記合成工程で生じた混合液の水分を除去して成形する成形工程と、
    を有する繊維製品の製造方法。
    A method for producing a fiber product containing a layered double hydroxide,
    A synthesis step of synthesizing the layered double hydroxide by mixing an acidic solution containing a divalent metal ion and a trivalent metal ion in at least one of them and an alkaline solution in the presence of fibers,
    A molding step of removing the water content of the mixed liquid generated in the synthesizing step and molding;
    A method for producing a textile product having.
  2.  層状複水酸化物を含有する繊維製品の製造方法であって、
     少なくともいずれか一方に2価の金属イオンと3価の金属イオンを含む酸性溶液とアルカリ性溶液を混合し、前記層状複水酸化物を合成する合成工程と、
     前記合成工程で生じた混合液に繊維を混合する混合工程と、
     前記混合液の水分を除去して成形する成形工程と、
    を有する繊維製品の製造方法。
    A method for producing a fiber product containing a layered double hydroxide,
    A synthetic step of synthesizing the layered double hydroxide by mixing an acidic solution containing at least one of divalent metal ions and trivalent metal ions with an alkaline solution,
    A mixing step of mixing fibers in the mixed solution generated in the synthesis step,
    A molding step of removing the water content of the mixed solution and molding,
    A method for producing a textile product having.
  3.  前記成形工程では、機能性材料の存在下において前記合成工程で生じた混合液の水分を除去して成形する、請求項1に記載の繊維製品の製造方法。 The method for producing a textile product according to claim 1, wherein, in the molding step, the mixed liquid produced in the synthesis step is removed in the presence of a functional material to perform molding.
  4.  前記成形工程では、機能性材料の存在下において前記合成工程で生じた混合液の水分を除去して成形する、請求項2に記載の繊維製品の製造方法。 The method for producing a textile product according to claim 2, wherein, in the molding step, the mixed liquid generated in the synthesis step is removed in the presence of a functional material to perform molding.
  5.  前記成形工程は、前記合成工程で生じた混合液に前記機能性材料を混合し、その後に水分を除去して成形する請求項3又は4に記載の繊維製品の製造方法。 The method for producing a textile product according to claim 3 or 4, wherein in the molding step, the functional material is mixed with the mixed liquid generated in the synthesis step, and then water is removed to perform molding.
  6.  前記合成工程において、前記酸性溶液および前記アルカリ性溶液の少なくともいずれか一方は前記機能性材料を含有する請求項3又は4に記載の繊維製品の製造方法。 The method for producing a textile product according to claim 3 or 4, wherein in the synthesis step, at least one of the acidic solution and the alkaline solution contains the functional material.
  7.  前記合成工程は、前記機能性材料に前記酸性溶液と前記アルカリ性溶液を供給して前記層状複水酸化物を合成するものである請求項3又は4に記載の繊維製品の製造方法。 The method for producing a textile product according to claim 3 or 4, wherein in the synthesis step, the acidic solution and the alkaline solution are supplied to the functional material to synthesize the layered double hydroxide.
  8.  前記機能性材料は、吸着機能又は触媒機能のいずれか1以上を有する物質である請求項3~7のいずれか一項に記載の繊維製品の製造方法。 The method for producing a textile product according to any one of claims 3 to 7, wherein the functional material is a substance having at least one of an adsorption function and a catalytic function.
  9.  前記機能性材料は、層状複水酸化物、ゼオライト、活性炭、シュベルトマナイト、ジルコニウム、セリウムのいずれかを含む請求項8に記載の繊維製品の製造方法。 The method for producing a textile product according to claim 8, wherein the functional material contains any one of layered double hydroxide, zeolite, activated carbon, schwertmannite, zirconium, and cerium.
  10.  前記繊維は、紙用繊維及び不織布用繊維の少なくとも一方を含む請求項1~9のいずれか一項に記載の繊維製品の製造方法。 The method for producing a textile product according to any one of claims 1 to 9, wherein the fibers include at least one of fibers for paper and fibers for non-woven fabric.
  11.  前記成形工程で成形されたものを乾燥する乾燥工程を有する請求項1~10のいずれか一項に記載の繊維製品の製造方法。 The method for producing a textile product according to any one of claims 1 to 10, further comprising a drying step of drying the material molded in the molding step.
  12.  前記成形工程では、漉き上げにより、前記水分を除去して成形する請求項1~11のいずれか一項に記載の繊維製品の製造方法。 The method for producing a textile product according to any one of claims 1 to 11, wherein in the forming step, the water is removed to form the product by straining.
  13.  前記合成工程では、前記酸性溶液と前記アルカリ性溶液の混合が完了した後、2時間以内に中和する請求項1~12のいずれか一項に記載の繊維製品の製造方法。 The method for producing a textile product according to any one of claims 1 to 12, wherein in the synthesis step, neutralization is performed within 2 hours after the mixing of the acidic solution and the alkaline solution is completed.
  14.  前記合成工程において、前記酸性溶液および前記アルカリ性溶液の少なくともいずれか一方は前記繊維を含有する請求項1又は3に記載の繊維製品の製造方法。 The method for producing a textile product according to claim 1 or 3, wherein in the synthesis step, at least one of the acidic solution and the alkaline solution contains the fiber.
  15.  前記合成工程では、前記繊維に前記酸性溶液と前記アルカリ性溶液を供給して前記層状複水酸化物を合成する請求項1又は3に記載の繊維製品の製造方法。 The method for producing a fiber product according to claim 1 or 3, wherein in the synthesis step, the acidic solution and the alkaline solution are supplied to the fiber to synthesize the layered double hydroxide.
  16.  前記成形工程では、前記混合液の水分を除去した後、バインダーを混合した後に成形する請求項1~15のいずれか一項に記載の繊維製品の製造方法。 The method for producing a textile product according to any one of claims 1 to 15, wherein, in the forming step, the water content of the mixed liquid is removed, and then the binder is mixed and then formed.
  17.  前記成形工程では、前記混合液の水分を除去した後、洗浄後に成形する請求項1~16のいずれか一項に記載の繊維製品の製造方法。 The method for producing a textile product according to any one of claims 1 to 16, wherein, in the molding step, the water content of the mixed liquid is removed, and then the molding is performed after washing.
  18.  層状複水酸化物を含有する繊維製品であって、
     前記層状複水酸化物は、繊維の表面に直接結合したものである繊維製品。
    A fiber product containing a layered double hydroxide,
    The layered double hydroxide is a fiber product in which the layered double hydroxide is directly bonded to the surface of the fiber.
  19.  機能性材料を含有する繊維製品であって、
     繊維と前記機能性材料を層状複水酸化物で結合したものである繊維製品。
    A textile product containing a functional material,
    A fiber product in which a fiber and the functional material are bound by a layered double hydroxide.
  20.  前記機能性材料は、吸着機能又は触媒機能のいずれか1以上を有する物質である請求項19に記載の繊維製品。 The textile product according to claim 19, wherein the functional material is a substance having at least one of an adsorption function and a catalytic function.
  21.  前記機能性材料は、層状複水酸化物、ゼオライト、活性炭、シュベルトマナイト、ジルコニウム、セリウムのいずれか1以上である請求項20に記載の繊維製品。 21. The fiber product according to claim 20, wherein the functional material is any one or more of layered double hydroxide, zeolite, activated carbon, schwertmannite, zirconium, and cerium.
  22.  前記層状複水酸化物は、前記繊維の表面で成長したものである請求項18~21のいずれか一項に記載の繊維製品。 The fiber product according to any one of claims 18 to 21, wherein the layered double hydroxide is grown on the surface of the fiber.
  23.  前記層状複水酸化物は、比表面積が20m/g以上である請求項18~22のいずれか一項に記載の繊維製品。 The fiber product according to any one of claims 18 to 22, wherein the layered double hydroxide has a specific surface area of 20 m 2 /g or more.
  24.  前記層状複水酸化物は、結晶子サイズが20nm以下である請求項18~23のいずれか一項に記載の繊維製品。 The fiber product according to any one of claims 18 to 23, wherein the layered double hydroxide has a crystallite size of 20 nm or less.
  25.  請求項1~17のいずれか一項に記載の繊維製品の製造方法で製造された繊維製品。 A fiber product manufactured by the method for manufacturing a fiber product according to any one of claims 1 to 17.
  26.  請求項18~25のいずれか一項に記載の繊維製品を具備するフィルタ。 A filter comprising the textile product according to any one of claims 18 to 25.
  27.  前記繊維製品が有する内部空間に充填された機能性材料を具備する請求項26に記載のフィルタ。 27. The filter according to claim 26, comprising a functional material filled in an internal space of the textile product.
PCT/JP2019/041377 2018-12-27 2019-10-21 Fiber product production method, fiber product, and filter WO2020137120A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018244965 2018-12-27
JP2018-244966 2018-12-27
JP2018244966 2018-12-27
JP2018-244965 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137120A1 true WO2020137120A1 (en) 2020-07-02

Family

ID=71127932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041377 WO2020137120A1 (en) 2018-12-27 2019-10-21 Fiber product production method, fiber product, and filter

Country Status (1)

Country Link
WO (1) WO2020137120A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538173A (en) * 2004-05-18 2007-12-27 アクゾ ノーベル エヌ.ブイ. Paperboard containing hydrotalcite
JP2013241713A (en) * 2012-05-22 2013-12-05 Shinshu Univ Silk composite nanofiber and method for producing the same
WO2018030521A1 (en) * 2016-08-10 2018-02-15 日本製紙株式会社 Composite body of hydrotalcite and fiber
WO2018124192A1 (en) * 2016-12-27 2018-07-05 日本国土開発株式会社 Layered double hydroxide molded body and method for manufacturing same
WO2018180699A1 (en) * 2017-03-31 2018-10-04 日本製紙株式会社 Method for manufacturing inorganic particle composite fiber sheet
WO2019087694A1 (en) * 2017-10-31 2019-05-09 日本製紙株式会社 Titanium oxide composite fibers and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538173A (en) * 2004-05-18 2007-12-27 アクゾ ノーベル エヌ.ブイ. Paperboard containing hydrotalcite
JP2013241713A (en) * 2012-05-22 2013-12-05 Shinshu Univ Silk composite nanofiber and method for producing the same
WO2018030521A1 (en) * 2016-08-10 2018-02-15 日本製紙株式会社 Composite body of hydrotalcite and fiber
WO2018124192A1 (en) * 2016-12-27 2018-07-05 日本国土開発株式会社 Layered double hydroxide molded body and method for manufacturing same
WO2018180699A1 (en) * 2017-03-31 2018-10-04 日本製紙株式会社 Method for manufacturing inorganic particle composite fiber sheet
WO2019087694A1 (en) * 2017-10-31 2019-05-09 日本製紙株式会社 Titanium oxide composite fibers and method for producing same

Similar Documents

Publication Publication Date Title
Kong et al. Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@ MgAl nanocomposites
Mandal et al. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution
US10786802B2 (en) Process for preparing an adsorbing material comprising a precipitating step of boehmite according to specific conditions and process for extracting lithium from saline solutions using this material
AU2009326853B2 (en) Modified clay sorbents
US10850254B2 (en) Method for preparing an adsorbent material comprising a step of basic mixing, and method for extracting lithium from saline solutions using said material
US20190352196A1 (en) Method for adsorption of toxic contaminants from water
KR20120057651A (en) Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance
CN109415219B (en) Method for preparing adsorption material and method for extracting lithium by using same
Wu et al. Adsorption of fluoride at the interface of water with calcined magnesium–ferri–lanthanum hydrotalcite-like compound
US20230271122A1 (en) Filtration Body Using Layered Double Hydroxide and Method for Manufacturing Said Filtration Body
US20100075847A1 (en) Hydrotalcite-like Particulate Material and Method for Production Thereof
WO2021230760A1 (en) An adsorbent material, synthesis thereof, and use thereof
JPWO2008059618A1 (en) Liquid processing apparatus and liquid processing method using hydrotalcite-like granular material
WO2018124190A1 (en) Water purification apparatus and water purification method using layered double hydroxide
WO2009152172A2 (en) Defluoridation of water
WO2020137120A1 (en) Fiber product production method, fiber product, and filter
WO2017081857A1 (en) Adsorption-member support body
US11273427B2 (en) Fabrication of hydroxyapatite based hybrid sorbent media for removal of fluoride and other contaminants
JP7500896B2 (en) Filtration Cartridge
JP7541445B2 (en) Water purification method and water purification device
Heraldy et al. Synthesis of Mg/Al Hydrotalcite-like from Brine Water and Its Application for Methyl Orange Removal: A Preliminary Study
JP2009227511A (en) Inorganic hydrothermally solidified body, method of manufacturing the same and material using hydrothermally solidified body
JP6691415B2 (en) Method for producing cesium and / or strontium adsorbent
JP2016107191A (en) Adsorbent and method for producing the same
CN110115978A (en) A kind of manganese adsorbing material and its preparation and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP