WO2020137076A1 - Method for predicting susceptibility of cancer to parp inhibitors, and method for detecting cancer having homologous recombination repair deficiency - Google Patents

Method for predicting susceptibility of cancer to parp inhibitors, and method for detecting cancer having homologous recombination repair deficiency Download PDF

Info

Publication number
WO2020137076A1
WO2020137076A1 PCT/JP2019/039415 JP2019039415W WO2020137076A1 WO 2020137076 A1 WO2020137076 A1 WO 2020137076A1 JP 2019039415 W JP2019039415 W JP 2019039415W WO 2020137076 A1 WO2020137076 A1 WO 2020137076A1
Authority
WO
WIPO (PCT)
Prior art keywords
signature
mutation
brca
contribution
cancer
Prior art date
Application number
PCT/JP2019/039415
Other languages
French (fr)
Japanese (ja)
Inventor
克利 織田
油谷 浩幸
山本 尚吾
幸清 長谷川
Original Assignee
国立大学法人 東京大学
学校法人埼玉医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 学校法人埼玉医科大学 filed Critical 国立大学法人 東京大学
Priority to JP2020562373A priority Critical patent/JPWO2020137076A1/en
Publication of WO2020137076A1 publication Critical patent/WO2020137076A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Definitions

  • the present invention relates to a method for predicting cancer susceptibility to PARP inhibitors and a method for detecting cancer having homologous recombination repair failure.
  • molecularly targeted drugs that target changes in genes and proteins that occur specifically in cancer cells have been developed. Since such a molecular targeting drug targets cancer cells and does not damage normal cells, it has attracted attention as an anticancer agent with reduced side effects. In order to administer a molecular target drug, it is necessary not only to diagnose a cancer type but also to detect a gene mutation or a protein change at the molecular level.
  • Olaparib which is a poly(ADP-ribose)polymerase 1: PARP inhibitor that was developed targeting homologous recombination repair deficiency (HRD) among molecular target drugs, is 2014. Approved by the US Food and Drug Administration (FDA) for recurrent ovarian cancer with a germline BRCA mutation.
  • PARP is an enzyme involved in repairing single-strand breaks and double-strand breaks in DNA, and repair of double-strand breaks is performed by homologous recombination (HR).
  • HR homologous recombination
  • the BRCA1/2 gene has an important role for HR in DNA double-strand break repair.
  • a PARP inhibitor acts on cells having a BRCA1/2 mutation, DNA repair by homologous recombination is inhibited, resulting in cell death and an antitumor effect.
  • Non-patent Document 1 Since PARP inhibitors are drugs that target HRD, it is desirable that they be widely administered to patients with cancers that have HRD, without being limited to subjects with germline BRCA1/2 mutations. However, until now, there was not an appropriate biomarker for evaluating HRD without excess or deficiency.
  • the present inventors have recently carried out mutation signature analysis based on whole exon sequence analysis on cases of serous ovarian cancer, and found that the contribution of BRCA signature to the mutation catalog was greater than that of Age signature in 77% of cases. Found.
  • the present inventors also set a biomarker (MSBM) indicating the presence of a cancer having a homologous recombination repair deficiency, performed total exon sequence analysis and nonnegative matrix factorization (NMF), etc. was found to be 68%.
  • the present inventors further carried out MSBM determination using an oncogene panel test, and found that MSBM positivity can be an index of homologous recombination repair failure and sensitivity of PARP inhibitors.
  • the present inventors have also found that the contribution of 30 types of mutation signatures to the mutation catalog can be calculated by destructStructs analysis, and MSBM determination can be performed based on the analysis result.
  • the present invention is based on these findings.
  • a method for predicting cancer susceptibility to a PARP inhibitor comprising: Comprising the step of performing a sequence analysis on a nucleic acid sample obtained from a cancer cell to create a mutation catalog, wherein (A)(a1) the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog. And (a2) the absence of cyclin E1 amplification indicates the presence of a cancer sensitive to a PARP inhibitor.
  • the cancer cell is a cell obtained from a cancer patient.
  • step (1) mutation signature analysis is carried out on a plurality of cancer patients suffering from cancers whose susceptibility is predicted, and the mutation rate of substitution mutations of the Age signature and/or the BRCA signature is specified to obtain the Age signature and The method according to [9] above, wherein a BRCA signature is prepared. [11] The method according to [9] above, wherein in the step (2), the contribution is evaluated by calculating an Age signature score and a BRCA signature score for the mutation catalog. [12]
  • KBi is the mutation rate of the i-th substitution mutation of the BRCA signature.
  • the contribution of the BRCA signature is evaluated by calculating the ratio D(%) of the contribution of the BRCA signature to the sum (1) of the contributions of the mutant signatures.
  • a method for detecting cancer having homologous recombinant repair deficiency comprising: Comprising the step of performing a sequence analysis on a nucleic acid sample obtained from a cancer cell to create a mutation catalog, wherein (A)(a1) the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog.
  • the method further comprising the step of performing an exhaustive methylation analysis on the test sample of interest, wherein (B) methylation of the promoter region of BRCA1 indicates the presence of a cancer having a homologous recombination repair deficiency.
  • the detection method of description [30] A method for treating a cancer patient with a PARP inhibitor, which comprises carrying out the method according to any of [1] to [27] above to obtain a cancer patient having a cancer sensitive to the PARP inhibitor.
  • a method of treatment comprising: [31] A therapeutic agent for cancer comprising a PARP inhibitor as an active ingredient, wherein the treatment is carried out by the method according to [30] above.
  • the prediction methods [1] to [27] and the detection methods [28] and [29] above may be referred to as the “method of the present invention” below.
  • the method of the present invention is advantageous in that it can detect a cancer having a homologous recombination repair deficiency without excess or deficiency.
  • FIG. 1 is a diagram showing substitution classifications of 6 classes of 96 types of somatic gene substitution mutations in human cancer. Each class includes 16 trinucleotide sequences of 4 kinds of nucleotides one base before the mutated base and 4 kinds of nucleotides one base after the mutated base, and substitution mutations of 6 classes are classified into 96 kinds of trinucleotide sequences.
  • FIG. 2 is a diagram showing a mutation signature analysis performed on a fresh frozen sample of 78 cases of ovarian serous cancer in Example 1(1) using whole exon sequence analysis.
  • A shows the relationship between the number of signatures by non-negative matrix factorization (NMF) and stability and swing width.
  • NMF non-negative matrix factorization
  • FIG. 3 is a diagram showing the contribution of the mutation signature to the mutation catalog of each case by whole exon sequence analysis of fresh frozen specimens of 78 cases of serous ovarian cancer in Example 1(2). Each bar graph shows each case, and (A) and (B) arranged each case correspondingly.
  • FIG. 4 is a diagram showing the contribution of the mutation signature to the mutation catalog of each case in 78 cases of TCGA, ICGC, and high-grade ovarian cancer in Example 1(2).
  • Each vertical line indicates each case, and the cases are arranged in correspondence with each other in (A) and (B).
  • A shows the results of analysis of the contribution of the BRCA signature and the Age signature to the somatic mutation of each case by nonnegative matrix factorization (NMF).
  • NMF nonnegative matrix factorization
  • the vertical axis represents the number of mutations.
  • the ratio of contribution of each signature to the sum of the ratio of contribution of BRCA signature and the ratio of contribution of Age signature was calculated in each case.
  • B The figure sorted based on the ratio of the contribution of each signature when the number of mutations in each case in (A) is set to 100% is shown.
  • FIG. 5 shows that in Example 2(2), whole exon sequence analysis, non-negative matrix factorization (NMF), exhaustive methylation analysis and analysis of cyclin E1 amplification were performed on fresh frozen samples of 78 cases of ovarian serous cancer
  • FIG. 3 is a diagram showing the results (signatures that contribute to dominance, presence/absence of methylation of the BRCA1 promoter region, and presence/absence of cyclin E1 amplification). As a result of the determination by MSBM, 68% of cases were determined to be MSBM positive.
  • FIG. 6 shows a mutation catalog of each case by the oncogene panel test in Example 3.
  • Case X was positive for gBRCA1/2 mutation and positive for MSBM.
  • FIG. 7 shows a mutation catalog of each case by the oncogene panel test in Example 3.
  • Case Y was negative for gBRCA1/2 mutation and positive for MSBM.
  • FIG. 8 shows a mutation catalog of each case by the oncogene panel test in Example 3.
  • Case Z was negative for gBRCA1/2 mutation and negative for MSBM.
  • FIG. 9 is a diagram showing a comparison between the results of NMF analysis in Example 1(2) and the results of destructSigs analysis in Example 4 for 78 cases of TCGA, ICGC, and high-grade ovarian cancer.
  • A shows the results of analysis of the contribution of the BRCA signature and the Age signature to the somatic mutation of each case by nonnegative matrix factorization (NMF). The ratio of contribution of each signature to the sum of the ratio of contribution of BRCA signature and the ratio of contribution of Age signature was calculated for each case, and based on the ratio of contribution of each signature when the mutation number of each case was 100%.
  • FIG. 4B shows a sorted view.
  • FIG. 10 is a scatter diagram showing the contribution of the BRCA signature by the NMF analysis in Example 1(2) and the destructStructs analysis in Example 4 for 78 cases of TCGA, ICGC and high-grade ovarian cancer.
  • FIG. 10 is a scatter diagram showing the contribution of the BRCA signature by the NMF analysis in Example 1(2) and the destructStructs analysis in Example 4 for 78 cases of TCGA, ICGC and high-grade ovarian cancer.
  • FIG. 11 is a scatter diagram showing the contribution of the BRCA signature by the NMF analysis in Example 1(2) and the destructStructs analysis in Example 4 for 78 cases of TCGA, ICGC and high-grade ovarian cancer.
  • FIG. 12 is a scatter diagram showing the contribution of the BRCA signature by the NMF analysis in Example 1(2) and the destructStructs analysis in Example 4 for 78 cases of high-grade ovarian cancer.
  • PARP inhibitor refers to a drug that inhibits the function of poly(ADP ribose) polymerase-1, and examples thereof include olaparib, lucaparib, niraparib, beriparib, and tarazoparib.
  • the cancer cell can be a cell obtained from a cancer patient. Although the frequency is rare, germline mutations in the BRCA gene are widely found in solid cancers (Mandelker D. et.al., JAMA. 318:825-835(2017)). It can be excluded cancer or solid cancer.
  • the cancer may be a cancer that may exhibit a homologous recombination repair abnormality, and examples of such cancer include ovarian cancer (particularly ovarian serous cancer, intraclass). High-grade ovarian cancer such as membrane cancer, carcinosarcoma, mixed cancer, and undifferentiated cancer), breast cancer, prostate cancer, and pancreatic cancer.
  • “susceptibility” means a response to a standard dose of a drug or a standard treatment procedure.
  • the “Age signature” is a mutation signature showing a correlation with aging in cancer cells.
  • the “BRCA signature” is a mutant signature showing a correlation with a homologous recombination repair abnormality due to factors including BRCA1/2 mutation and BRCA1/2 inactivation in cancer cells.
  • the “mutation signature” is a characteristic mutation pattern or profile extracted from somatic gene substitution mutations in a plurality of human cancers, and includes 6 classes of 96 substitution classifications (C ⁇ A, C ⁇ G, C ⁇ T, T ⁇ A, T ⁇ C, T ⁇ G, each of which is classified according to 16 types of base-substituted trinucleotides (see FIG. 1), and the mutation type is the horizontal axis, and the ratio of mutations contributing to a specific mutation type Can be displayed on the vertical axis (Alexandrov LB et al., Nature, 500:415-421 (2013)).
  • the “mutation catalog” refers to 6 classes of 96 somatic gene substitution mutations identified for a test nucleic acid sample (C ⁇ A, C ⁇ G, C ⁇ T, T ⁇ A, T ⁇ C). , T ⁇ G, respectively, according to 16 types of base-substituted trinucleotides (see FIG. 1).
  • the classified or organized substitution mutations can be expressed by a mutation rate (%) (ratio to all substitution mutations) or the number of mutations.
  • the method of the present invention includes the step of performing sequence analysis on a nucleic acid sample obtained from cancer cells.
  • the sequence analysis includes DNA sequence analysis, RNA sequence analysis, whole exon sequence analysis, and whole genome sequence analysis.
  • the susceptibility of a target cancer to a PARP inhibitor can be predicted, and a cancer having a homologous recombination repair deficiency. Can be used without particular limitation as long as it can be detected.
  • Sequence analysis may also be carried out by an oncogene panel test, and as an oncogene panel test that can be used in the present invention, Todai OncoPanel (University of Tokyo Hospital), MSK-IMPACT, Foundation One Are listed.
  • the present invention when approved as a drug in relation to the whole exon sequence analysis or the whole genome sequence analysis, the present invention is advantageous because it can be positioned as an in vitro diagnostic agent capable of accurately determining the sensitivity of a PARP inhibitor.
  • the sequence analysis may consist of a sequence determination procedure and a sequence data analysis procedure, for example, the sequence determination procedure is performed on a nucleic acid sample, and the sequence data is obtained based on the sequence data obtained by the sequence determination procedure. Analysis procedures can be performed.
  • the sequencing procedure can include the steps of sequencing the nucleic acid sample obtained from the subject and obtaining sequence data for the nucleic acid sample. Sequencing can be performed, for example, using a next generation sequencer.
  • the sequence data analysis procedure can include a step of analyzing the obtained sequence data and obtaining a desired analysis result.
  • the analysis of sequence data can include analysis for creating a mutation catalog, analysis for determining condition (A) or condition (B), and signature analysis.
  • the analysis for creating the mutation catalog can be performed as follows, for example. That is, somatic gene mutations are identified in a test nucleic acid sample by sequence data analysis, and the identified somatic gene mutations are classified or organized according to the 96 types of substitution classifications shown in FIG. 1 to create a mutation catalog of test nucleic acid samples. can do.
  • the identification of the somatic gene mutation is performed by comparing the sequence data of normal tissues of cancer patients (for example, white blood cells in blood, surgical/biopsy tissue specimens of non-tumor portion) with tumor tissues of cancer patients (for example, cancer cells). ) It can be performed by comparison with the sequence data.
  • Such comparison of sequence data and identification of somatic gene mutations can be performed according to a known algorithm (for example, Totokietetal., Nat Genet.2014Dec;46(12):1267-73).
  • the identified mutations include base substitutions, deletions, insertions and additions, copy number changes, inversions, translocations, and fusion genes.
  • the analysis for determining the condition (a1) among the conditions (A) it is determined whether the mutation catalog obtained for the case to be evaluated is similar to the Age signature or the BRCA signature, that is, the contribution of the Age signature.
  • the degree of predominance of the contribution of the BRCA signature to the can be analyzed.
  • Such an analysis can be performed using a known algorithm for pattern recognition such as non-negative matrix factorization (NMF), or can be performed as in the following (1) to (3). ..
  • NMF non-negative matrix factorization
  • the mutation rate of substitution mutation of Age signature and/or BRCA signature is prepared according to the 96 types of substitution classification shown in FIG.
  • a mutation signature analysis is performed in advance on nucleic acid samples of a plurality of cancer patients suffering from a cancer that predicts susceptibility, and the mutation rate of substitution mutations of the Age signature and/or the BRCA signature for the 96 types of substitution classification shown in FIG. Can be specified.
  • the mutation signature analysis can be performed, for example, as described in Alexandrov LB et al., Nature, 500:415-21 (2013), in which the mutation signature analysis is performed by non-negative matrix factorization (NMF). be able to.
  • NMF non-negative matrix factorization
  • the mutation signature analysis can also be performed by the total exon sequence analysis.
  • the mutation rate of the substitution mutation of the known Age signature and BRCA signature may be used (for example, Alexandrov LB et al., Nature, 500:415-421). (2013)).
  • the mutation rate can be rephrased as a weighting (coefficient) for each substitution classification that characterizes the Age signature and the BRCA signature.
  • the mutation rate obtained by the mutation signature analysis or the known mutation rate can be used as it is in (2) below, but a part or all of the mutation rate may be arbitrarily changed to make a better judgment. May be.
  • each contribution of Age signature and BRCA signature to the mutation catalog of the test nucleic acid sample is evaluated.
  • the Age signature contribution and the BRCA signature contribution can be analyzed by non-negative matrix factorization (NMF).
  • NMF non-negative matrix factorization
  • Evaluation of the Age signature contribution and the BRCA signature contribution can also be performed by calculating the Age signature score and the BRCA signature score for the mutation catalog.
  • the Age signature score and the BRCA signature score are the mutation rates of the substitution mutations obtained in (1) above for the substitution mutation amounts (mutation rate or number) constituting the mutation catalog for all 96 substitution mutations. It can be calculated by multiplying by and calculating the product, and obtaining the total value of the products obtained for 96 types of substitution mutations.
  • the mutation rate of Age signature and BRCA signature is the Age signature described in Alexandrov LB et al., Nature, 500:415-421 (2013).
  • the BRCA signature, or a signature analysis may be performed to set the Age signature and the BRCA signature and the mutation rate may be determined based on it.
  • Signature analysis can be performed to set the Age signature and the BRCA signature, and the mutation rate can be determined based on that, or other than the substitution mutation from C to T
  • the sum of the score of the substitution mutation other than the substitution of C to T (BRCA signature score) and the score of the substitution mutation of C to T (Age signature score) of substitution mutations other than the substitution of C to T The ratio B (%) of the scores can be calculated, and the superiority can be evaluated based on the ratio B. When the obtained ratio B exceeds 50%, it can be determined that the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog, that is, the condition (a1) is satisfied.
  • the analysis for determining the condition (a1) of the condition (A) can also be performed as in the following (4) to (6).
  • a plurality of mutation signatures including at least an Age signature and a BRCA signature are prepared according to the 96 types of substitution classification shown in FIG.
  • the lower limit of the number of mutation signatures prepared in (4) can be 10 or 20, and the upper limit of the number can be 70, 60, 50 or 40. These lower limit values and upper limit values can be arbitrarily combined, and the range of the above number can be, for example, 10 to 70 kinds or 20 to 40 kinds.
  • the mutation signature including at least the Age signature and the BRCA signature
  • a set of known mutation signatures can be used, and, for example, 30 kinds of mutations registered in the COSMIC (Catalogue of somatic mutations in cancer) database of the UK Sanger Institute can be used. All or part of the mutation signature (COSMIC version 2), and among the mutation signatures (COSMIC version 3) registered in the COSMIC database of the institute, SBS (Single Base Substitution) signature (67 types), Doublet Base Substitution ( All or part of the DBS) signature (11 types) or Small Insertion and Deletion (ID) signature (17 types) can be used.
  • SBS Single Base Substitution
  • Doublet Base Substitution All or part of the DBS signature
  • ID Small Insertion and Deletion
  • the following (7) can be further performed in addition to the above (4) to (6).
  • Evaluation of Contribution of BRCA Signature to Overall Mutant Signature In (7), evaluation of contribution of BRCA signature to entire mutant signature. Specifically, based on the contribution of the BRCA signature calculated in (5) above, the ratio of the BRCA signature to the entire prepared mutation signature is evaluated. For example, the ratio D(%) of the contribution of the BRCA signature to the sum of the contributions of all prepared mutation signatures (100%) can be calculated, and the contribution of the BRCA signature can be evaluated based on the ratio D. ..
  • the mutation It can be determined that the contribution of the BRCA signature to the catalog exceeds the contribution of the Age signature to the mutant catalog, that is, the condition (a1) is satisfied.
  • the chromosome copy number can be analyzed using the probe (SNP) of the genomic region of cyclin E1 as an index. It can be determined that the condition (a2) is satisfied when the copy number of the cyclin E1 on the chromosome number is 2 or less.
  • condition (B) comprehensive methylation analysis can be performed to identify the methylation of the promoter region of BRCA1 in the test sample.
  • the method of exhaustive methylation analysis is publicly known and can be carried out, for example, according to The Cancer Genome Atlas Research Network, Nature, 474: 609-615 (2011).
  • the target cancer when the following condition (A) is satisfied (that is, both conditions (a1) and (a2) are satisfied), the target cancer may be a cancer sensitive to a PARP inhibitor. It can be determined that the cancer is highly likely or that the cancer has a homologous recombination repair deficiency.
  • the characteristic or profile of the condition (A) is referred to as Mutational Signature-based BioMarker (MSBM), and at least the condition (A) is satisfied with MSBM positive, and the condition (A) is not satisfied with MSBM negative.
  • MSBM Mutational Signature-based BioMarker
  • the condition (A) is satisfied, that is, when it is determined that both the condition (a1) and the condition (a2) are satisfied as a result of the sequence analysis, the MSBM positive can be determined.
  • the analysis for determining the condition (a1) is performed by the steps (4) to (6), the step (7) is further performed and the condition (A) is set from the viewpoint of accurate determination.
  • the following conditions can be set.
  • condition (B) can be supplementarily used, and when the following condition (B) is satisfied, the target cancer is highly likely to be a cancer having sensitivity to a PARP inhibitor. Alternatively, it can be determined that the cancer is highly likely to have a homologous recombination repair deficiency.
  • condition (B) When the condition (B) is satisfied, that is, when the result of the comprehensive methylation analysis indicates that the promoter region of BRCA1 is methylated, the condition (A) is satisfied, and the MSBM positive condition is satisfied. Can be determined. In this sense, the profile of condition (B) is sometimes referred to as MSBM.
  • the determination of MSBM positive/negative does not depend on the analysis result of gBRCA mutation. Therefore, even if the subject is negative for gBRCA mutation 1/2, it can be determined to be positive for MSBM if the condition (A) is satisfied.
  • the condition (a1) “dominance of BRCA signature over Age signature” is defined as the ratio (%) of the sum of Age signature scores obtained for nucleic acid samples and the sum of BRCA signature scores to the sum of BRCA signature scores. It can be determined based on the above conditions, and when the ratio exceeds 50%, it can be determined that the condition (a1) is satisfied.
  • Condition (a2) "absence of cyclin E1 amplification” can be determined to satisfy condition (a2) when the copy number of cyclin E1 is 2 or less, and when the number of chromosomes is greater than 2. Can be determined not to satisfy the condition (a2).
  • a mutation signature analysis is performed in advance on nucleic acid samples of a plurality of cancer patients suffering from a cancer that predicts susceptibility, and the substitution mutations of Age signature and BRCA signature of the 96 types of substitution classification shown in FIG. 1 are analyzed.
  • the mutation rate can be specified. That is, according to the method of the present invention, an Age signature and a BRCA signature can be set for each type of sequence analysis, and an optimal inspection method can be constructed.
  • a signature analysis is performed in a specific cancer gene panel test to prepare an Age signature and a BRCA signature, and the PARP inhibitor according to the method of the present invention is used by using the Age signature and the BRCA signature prepared in advance in the oncogene panel test. It is possible to accurately and simply predict the susceptibility of the cancer to the cancer and to accurately and easily detect the cancer having a homologous recombination repair deficiency (HRD).
  • HRD homologous recombination repair deficiency
  • a method for treating a cancer patient with a PARP inhibitor which comprises performing the prediction method of the present invention to identify a cancer patient having a cancer sensitive to the PARP inhibitor, or the present invention Is provided to identify a cancer patient having a cancer having a homologous recombination repair deficiency, and then to administer an effective amount of a PARP inhibitor to the patient.
  • a cancer therapeutic agent comprising a PARP inhibitor as an active ingredient, wherein the above-mentioned treatment is performed by the procedure of the therapeutic method of the present invention. ..
  • identifying a cancer patient having a cancer sensitive to a PARP inhibitor or identifying a cancer patient having a cancer having a homologous recombination repair deficiency is the predictive method of the present invention.
  • a therapeutically effective amount of a PARP inhibitor can be the standard dose of that drug.
  • 600 mg (which may be appropriately reduced depending on adverse events) can be used as the effective daily dose for adults (oral administration), for example, 300 mg once a day (300 mg twice a day). ( ⁇ 2 times/day) (depending on adverse events, it may be gradually reduced to 250 mg ⁇ 2 times/day, 200 mg ⁇ 2 times/day, etc.).
  • a PARP inhibitor can be administered to a cancer patient who is highly likely to respond to the PARP inhibitor, the cancer patient (particularly, the cancer patient exhibiting HRD) can be administered. Is advantageous in that it can provide treatment options suitable for
  • Example 1 Mutation signature analysis by whole exon sequence analysis (1) Mutation signature analysis in high-grade ovarian cancer Fresh frozen samples of cancer cells and normal cells (blood) in 78 cases of high-grade ovarian cancer (serous ovarian cancer) All exon sequence analysis was carried out (Center for Advanced Science and Technology Research, University of Tokyo), and mutational signature analysis (Mutational signature) was performed as described in Alexandrov LB et al., Nature, 500:415-21 (2013). The mutation catalog of each case in all exon sequence analysis was integrated, and clustering was performed using nonnegative matrix factorization (NMF, Lee DD and Seung HS, Nature, 401(6755):1999).
  • NMF nonnegative matrix factorization
  • each class contains 16 trinucleotide sequences, it can be classified into 96 base-substituted trinucleotides as a whole (Serena Nki-Zainal et al., Cell 149:979-993 (2012). )).
  • the number of mutated trinucleotide sequences (mutation number) and the mutation rate were identified according to 96 types of substitution classification for each case, and a mutation catalog was prepared and scored. The scoring is performed by calculating the product of the mutation rate and the mutation rate of the mutated trinucleotide sequence in the Age signature or BRCA signature (see FIG. 2B) calculated in (1) above for each substitution classification. went.
  • the sum of products calculated in relation to the Age signature or the BRCA signature was used as the Age signature score or the BRCA signature score.
  • the ratio (%) of the Age signature score or the BRCA signature score to the sum of the Age signature score and the BRCA signature score was calculated. Further, the ratios were calculated and sorted in the same manner for the mutation catalogs in TCGA and ICGC, which are public data sets.
  • Example 2 Biomarker (MSBM) setting in whole exon sequence analysis (1) MSBM setting In serous ovarian cancer, amplification of cyclin E1 (Cyclin E1; CCNE1) is positively correlated with Age signature (Etemadmoghadam, D et al., Proc Natl Acad Sci USA, 110:9489-94 (2013), Patch AM et al., Nature, 521:489-94 (2015)). Therefore, “the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog and the amplification of cyclin E1 is absent” is set as the condition (A), and the profile corresponding to the condition (A) is obtained.
  • a biomarker for predicting susceptibility to PARP inhibitors targeting a homologous recombination repair abnormality and a biomarker for detecting a homologous recombination repair abnormality is known that methylation of the promoter region of BRCA1 causes BRCA1 inactivation and leads to abnormal homologous recombination repair (The Cancer Genome Atlas Research Network, Nature, 474: 609-615 (2011), Moschetta M et al., Ann Oncol, 8:1449-55 (2016)). Therefore, “having methylation of the promoter region of BRCA1” was set as the condition (B).
  • condition (A) further condition (a1): “the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog” and condition (a2): “absence of amplification of cyclin E1”.
  • Condition A is satisfied when both condition (a1) and condition (a2) are satisfied.
  • Condition (a1) is calculated by total exon sequence analysis and non-negative matrix factorization (NMF), specifically, the BRCA signature score and Age signature score are calculated according to the method described in Example 1(2) for the mutation catalog of each case. Then, it was determined that the condition (a1) was satisfied when the ratio of the BRCA signature score to the sum of the BRCA signature score and the Age signature score exceeded 50%.
  • NMF non-negative matrix factorization
  • condition (a2) the chromosome copy number was analyzed by examining a probe (SNP) in the genomic region of cyclin E1, and it was determined that the condition (a2) was satisfied when the chromosome copy number of cyclin E1 was 2 or less ( Ohshima, et al., Sci Rep, 7:641 (2017)).
  • condition (B) an exhaustive methylation analysis (OuchiK et al., Cancer Sci., 106:1722-9 (2015)) was performed. Specifically, based on a methylation array (Infinium HumanMethylation450 BeadChip, manufactured by Illumina), 6 to 12 methylation probes in the promoter region of BRCA1 are extracted, and clustering is performed based on the methylation value. It was divided into a hypermethylated group and a hypomethylated group. The hypermethylated group was determined to satisfy the condition (B).
  • a methylation array Infinium HumanMethylation450 BeadChip, manufactured by Illumina
  • Example 3 Setting of MSBM in oncogene panel test (1) Determination of signature that contributes to mutation catalog predominantly All exons of 78 cases of high-grade ovarian cancer (serous ovarian cancer) performed in Example 2 (2) Following the MSBM determination by sequence analysis and non-negative matrix factorization (NMF), 7 cases were subjected to MSBM determination using an oncogene panel test. Specifically, in 7 cases of ovarian serous cancer (including serous peritoneal cancer), DNA was extracted from the tumor tissue and blood collected from the patient, and sequenced and sequenced using Todai OncoPanel (University of Tokyo Hospital). Data analysis was performed and a mutation catalog for each case was created. The mutation catalog was created based on the 96 types of substitution classification shown in FIG. 1 and the mutation rate for each substitution mutation.
  • NMF non-negative matrix factorization
  • germline BRCA germline BRCA; gBRCA
  • gBRCA germline BRCA
  • ClinVar https://www.ncbi.nlm.nih.gov/clinvar/
  • COSMIC http://www.sanger
  • .ac.uk/genetics/CGP/cosmic/ https://oncokb.org/#/
  • OncoKB https://oncokb.org/#/
  • FIG. 6 shows the results of classification X.
  • Case X1 human body ovarian cancer poorly differentiated endometrioid adenocarcinoma
  • case X2 lymph node ovarian cancer lymph node metastasis, same patient as case X1
  • case X3 spleen ovarian cancer Seeding to the splenic hilum
  • the score of substitution other than C to T substitution exceeds 50%.
  • substitutions other than C to T substitution could be set as the BRCA signature.
  • the contribution of the BRCA signature corresponding to substitutions other than C to T substitution
  • Age signature corresponding to C to T substitution
  • cases X1, X2, and X3 were positive for gBRCA1/2 mutation according to the analysis of gBRCA mutation. From these results, it can be said that the cases of classification X are “gBRCA1/2 mutation positive” and “MSBM positive”.
  • case X3 it was confirmed that the progression-free survival was maintained by the administration of the PARP inhibitor olaparib. From the above, it was confirmed that cancer having a homologous recombination repair abnormality (HRD) can be detected by the determination by MSBM, and the sensitivity to a PARP inhibitor can be predicted.
  • HRD homologous recombination repair abnormality
  • FIG. 7 shows the results of case Y.
  • case Y1 ovarian cancer, metastatic breast cancer
  • case Y2 ovarian cancer, metastatic breast cancer
  • the BRCA signature except for the substitution of C to T
  • the BRCA signature score for the sum of the (corresponding to substitution) score and the Age signature (corresponding to C to T substitution) score was more than 50%.
  • the analysis in Todai OncoPanel may have a tendency that the BRCA signature has a substitution pattern of T to C.
  • the BRCA signature and the Age signature in the Todai Onco Panel can be determined in more detail by accumulating future cases.
  • FIG. 8 shows the results of case Z.
  • case Z1 ovarian cancer recurrence
  • case Z2 peritoneal cancer after bilateral adnexectomy
  • Age signature corresponding to C to T substitution
  • BRCA signature other than C to T substitution
  • the Age signature score with respect to the sum with the score was more than 50%.
  • case Z1 was resistant to platinum drug, which is the main drug against ovarian cancer.
  • the sensitivity of platinum preparations has been shown to be high in cases with HRD and is known to correlate with the sensitivity of PARP inhibitors (De Picciotto N et al., Crit Rev Oncol Hematol., 101:50.
  • cases Z1 and Z2 were negative for the gBRCA1/2 mutation. These are classifications in which substitutions other than C to T substitutions in the Todai OncoPanel reflect the BRCA signature and are indicators of homologous recombination repair abnormality (HRD) when the contribution of the BRCA signature exceeds the contribution of the Age signature. Consistent with the X and classification Y considerations. From these results, it was confirmed that the cases of classification Z were “gBRCA1/2 mutation negative” and “MSBM negative”.
  • Example 4 Setting of MSBM using destructStructs and determination using it
  • destructStructs analysis a Whole exon sequence analysis DNA was extracted from tumor tissue (FFPE) and normal tissue (peripheral blood) of the case, and exome (Exome). The exon sequence was concentrated using a capture kit (Agilent SureSelect Human All Exon V6 (S07604514), Illumina), and a library was prepared according to the attached protocol. The sequence was obtained at 151 base pair ends using NextSeq (Illumina). The acquired data was converted into a fastq file for each sample based on the index sequence added for each library and stored in the storage in the computer used for the subsequent data processing. The fastq file is used when storing a nucleotide sequence such as DNA and its quality score together in one file, and is a format for storing nucleotide sequence data output from a next-generation sequencer or the like.
  • Mutation detection Mapping results (bam file) are processed with the mutation detection program karkinos (obtained at https://github.com/genome-rcast/karkinos) by combining the tumor part and normal part of the same case. , Created a list of somatic mutations.
  • Frequency data of 96 base substitution pattern One base substitution and one base before and after the substitution were extracted from the obtained mutation list, and the frequency was aggregated for each base substitution pattern. Specifically, by aligning the +/- strands of the genomic DNA into the strands whose bases before the change are C or T (for example, CGT>CAT is counted as the same as ACG>ATG). , 96 types of substitutions and mutation rates for each substitution mutation were totaled to create a mutation catalog.
  • deconstructStrigs which is a program for estimating the weight of mutation signatures, is used to extract 30 existing signatures. The contribution was estimated.
  • the set of 30 types of mutation signatures (version 2, March 2015) is the 30 types of mutation signatures registered in the COSMIC database (https://cancer.sanger.ac.uk/cosmic/signatures_v2) of the UK Sanger Research Institute. (COSMIC version 2) was used.
  • COSMIC version 2 was used.
  • the contributions of the BRCA signature Signature 3 in the COSMIC database
  • the AGE signature Signature 1 in the COSMIC database
  • deconstructSigs is a program that estimates the weight (contribution) of the existing mutation signature for each sample, compares the mutation profile reconstructed from the calculated weight with the original input, and judges the appropriateness of the estimation ( Rosenthal et al., Genome Biology, 17:31 (2016)).
  • the frequency of 96 mutation patterns of individual tumor samples [T: 1x96] indicates a matrix: matrix size (row x col). The same applies hereinafter) and existing mutation signature matrix.
  • one initial signature Si closest to the mutation profile of the tumor sample of interest is selected from existing mutation signatures, and the tumor mutation profile in which Si is reconstructed is selected.
  • W was determined to be the only signature that contributes to
  • a weight (contribution) matrix that minimizes the reconstruction error calculated as T-(SW) was determined by performing iterative calculation while changing the weight matrix [W].
  • the germline HRD mutation (HRD genes' germline mutation; including germline BRCA1/2 mutation, RAD51C mutation and RAD51D mutation) is high-grade ovarian cancer (serous ovarian cancer) 78
  • 23 of the cases exist Fig. 12
  • condition (a1) is satisfied when the contribution of the BRCA signature by the destructStructs analysis exceeds the contribution of the AGE signature, but for more accurate determination, the contribution of the BRCA signature is Is 0.25 (25%) or more and the contribution of the BRCA signature exceeds the contribution of the AGE signature, it can be determined that the condition (a1) is satisfied.
  • HRD homologous recombination repair abnormality

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The purpose of the present invention is to provide a method for predicting the susceptibility of a target cancer to PARP inhibitors. The present invention provides a method for predicting the susceptibility of a cancer to PARP inhibitors. The method includes a step for creating a mutation catalog by performing a sequence analysis on nucleic acid samples obtained from cancer cells. The presence of a cancer that is susceptible to PARP inhibitors is indicated by the contribution of BRCA signatures to the mutation catalog being greater than the contribution of Age signatures to the mutation catalog and by an absence of cyclin E1 amplification.

Description

PARP阻害剤に対する癌の感受性の予測方法および相同組換修復不全を有する癌の検出方法Method for predicting cancer susceptibility to PARP inhibitor and method for detecting cancer having homologous recombination repair deficiency 関連出願の参照Reference to related applications
 本願は、先行する日本国出願である特願2018-248619(出願日:2018年12月28日)の優先権の利益を享受するものであり、その開示内容全体は引用することにより本明細書の一部とされる。 This application enjoys the benefit of the priority of Japanese Patent Application No. 2018-248619 (filing date: December 28, 2018), which is a prior Japanese application, and the entire disclosure content thereof is incorporated herein by reference. Be part of.
 本発明は、PARP阻害剤に対する癌の感受性の予測方法および相同組換修復不全を有する癌の検出方法に関する。 The present invention relates to a method for predicting cancer susceptibility to PARP inhibitors and a method for detecting cancer having homologous recombination repair failure.
 近年、癌細胞特異的に生じている遺伝子やタンパク質の変化を標的とした分子標的薬が開発されている。このような分子標的薬は癌細胞を標的とし、正常細胞は傷害しないため、副作用が低減された抗癌剤として注目されている。分子標的薬を投与するためには、癌種の診断だけではなく、分子レベルで遺伝子変異やタンパクの変化を検出することが必要となる。 In recent years, molecularly targeted drugs that target changes in genes and proteins that occur specifically in cancer cells have been developed. Since such a molecular targeting drug targets cancer cells and does not damage normal cells, it has attracted attention as an anticancer agent with reduced side effects. In order to administer a molecular target drug, it is necessary not only to diagnose a cancer type but also to detect a gene mutation or a protein change at the molecular level.
 分子標的薬のうち、相同組換修復異常(Homologous Recombination Deficiency:HRD)を標的として開発されたポリ(ADP-リボース)ポリメラーゼ(Poly (ADP-ribose) polymerase1:PARP)阻害剤であるオラパリブは、2014年に米食品医薬品局(FDA)により生殖細胞系列BRCA突然変異を有する再発卵巣癌について承認された。PARPは、DNAの一本鎖切断および二本鎖切断の修復に関与する酵素であり、二本鎖切断の修復は相同組換え(homologous recombination:HR)によって行われる。一方、BRCA1/2遺伝子は、DNAの二本鎖切断修復におけるHRに重要な役割を持つ。BRCA1/2変異を有する細胞においてPARP阻害剤を作用させると、相同組換えによるDNA修復が阻害され、その結果細胞死が起こり、抗腫瘍効果が得られる。 Olaparib, which is a poly(ADP-ribose)polymerase 1: PARP inhibitor that was developed targeting homologous recombination repair deficiency (HRD) among molecular target drugs, is 2014. Approved by the US Food and Drug Administration (FDA) for recurrent ovarian cancer with a germline BRCA mutation. PARP is an enzyme involved in repairing single-strand breaks and double-strand breaks in DNA, and repair of double-strand breaks is performed by homologous recombination (HR). On the other hand, the BRCA1/2 gene has an important role for HR in DNA double-strand break repair. When a PARP inhibitor acts on cells having a BRCA1/2 mutation, DNA repair by homologous recombination is inhibited, resulting in cell death and an antitumor effect.
 漿液性卵巣癌において、生殖細胞系列BRCA1/2突然変異は約2割であるのに対し、HRDは約5割であることが報告されている(非特許文献1)。PARP阻害剤はHRDを標的とする薬剤であるため、生殖細胞系列BRCA1/2突然変異を有する対象に限定することなく、HRDを有する癌を有する患者へ広く投与することが望ましい。しかし、これまで、HRDを過不足なく評価する適切なバイオマーカーが存在しなかった。 It has been reported that in serous ovarian cancer, germline BRCA1/2 mutations account for about 20%, whereas HRD accounts for about 50% (Non-patent Document 1). Since PARP inhibitors are drugs that target HRD, it is desirable that they be widely administered to patients with cancers that have HRD, without being limited to subjects with germline BRCA1/2 mutations. However, until now, there was not an appropriate biomarker for evaluating HRD without excess or deficiency.
 本発明は、PARP阻害剤に対する対象の癌の感受性の予測方法と、相同組換修復不全を有する癌の検出方法を提供することを目的とする。 It is an object of the present invention to provide a method for predicting the susceptibility of a target cancer to a PARP inhibitor and a method for detecting a cancer having a homologous recombination repair deficiency.
 本発明者らは今般、卵巣漿液性癌の症例について全エクソンシークエンス解析に基づく変異シグネチャー解析を実施したところ、変異カタログに対するBRCAシグネチャーの寄与が、Ageシグネチャーの寄与を上回る症例が77%であることを見出した。本発明者らはまた、相同組換修復不全を有する癌の存在を示すバイオマーカー(MSBM)を設定し、全エクソンシークエンス解析および非負値行列因子分解(NMF)等を行ったところ、MSBM陽性症例が68%であることを見出した。本発明者らはさらに、癌遺伝子パネル検査を用いたMSBM判定を実施し、MSBM陽性が相同組換修復不全やPARP阻害剤の感受性の指標となりうることを見出した。本発明者らはさらにまた、変異カタログに対する30種の変異シグネチャーの寄与度をdeconstructSigs解析により算出し、その解析結果に基づいてMSBM判定を実施できることを見出した。本発明はこれらの知見に基づくものである。 The present inventors have recently carried out mutation signature analysis based on whole exon sequence analysis on cases of serous ovarian cancer, and found that the contribution of BRCA signature to the mutation catalog was greater than that of Age signature in 77% of cases. Found. The present inventors also set a biomarker (MSBM) indicating the presence of a cancer having a homologous recombination repair deficiency, performed total exon sequence analysis and nonnegative matrix factorization (NMF), etc. Was found to be 68%. The present inventors further carried out MSBM determination using an oncogene panel test, and found that MSBM positivity can be an index of homologous recombination repair failure and sensitivity of PARP inhibitors. The present inventors have also found that the contribution of 30 types of mutation signatures to the mutation catalog can be calculated by destructStructs analysis, and MSBM determination can be performed based on the analysis result. The present invention is based on these findings.
 本発明によれば以下の発明が提供される。
[1]PARP阻害剤に対する癌の感受性を予測する方法であって、
 癌細胞から得られた核酸試料について配列解析を実施して変異カタログを作成する工程を含んでなり、(A)(a1)変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回り、かつ(a2)サイクリンE1増幅が不存在であることが、PARP阻害剤に対して感受性を有する癌の存在を示す、予測方法。
[2]前記癌細胞が癌患者から得られた細胞である、上記[1]に記載の方法。
[3]前記癌が相同組換修復異常を示す可能性がある癌である、上記[1]または[2]に記載の方法。
[4]前記PARP阻害剤が、オラパリブ、ルカパリブ、ニラパリブ、ベリパリブまたはタラゾパリブである、上記[1]~[3]のいずれかに記載の方法。
[5]前記配列解析が配列決定手順および配列データ解析手順を含んでなる、上記[1]~[4]のいずれかに記載の方法。
[6]前記配列解析により図1に記載の96種の置換分類に従って体細胞遺伝子変異を同定し、変異カタログを作成する、上記[1]~[5]のいずれかに記載の方法。
[7]前記配列解析を全エクソンシークエンス解析により行う、上記[1]~[6]のいずれかに記載の方法。
[8]前記配列解析を癌遺伝子パネル検査により行う、上記[1]~[6]のいずれかに記載の方法。
[9]下記工程(1)~(3):
(1)AgeシグネチャーおよびBRCAシグネチャーを準備すること、
(2)変異カタログに対するAgeシグネチャーおよびBRCAシグネチャーの寄与を評価すること、および
(3)Ageシグネチャーの寄与に対するBRCAシグネチャーの寄与の優位性を評価すること
をさらに含んでなる、上記[1]~[8]のいずれかに記載の方法。
[10]前記工程(1)において、感受性を予測する癌を患う複数の癌患者について変異シグネチャー解析を実施し、Ageシグネチャーおよび/またはBRCAシグネチャーの置換変異の変異率を特定することによりAgeシグネチャーおよびBRCAシグネチャーを準備する、上記[9]に記載の方法。
[11]前記工程(2)において、変異カタログについて、AgeシグネチャースコアおよびBRCAシグネチャースコアを算出することにより寄与を評価する、上記[9]に記載の方法。
[12]Ageシグネチャースコアが下記式(1):
Figure JPOXMLDOC01-appb-M000003
(上記式中、n=96であり、iは、図1に記載の96種の置換分類のうちi番目の置換変異を意味し、Miは、前記変異カタログのi番目の置換変異の変異率または変異数であり、KAiは、Ageシグネチャーのi番目の置換変異の変異率である。)
により算出される、上記[11]に記載の方法。
[13]BRCAシグネチャースコアが下記式(2):
Figure JPOXMLDOC01-appb-M000004
(上記式中、n=96であり、iは、図1に記載の96種の置換分類のうちi番目の置換変異を意味し、Miは、前記変異カタログのi番目の置換変異の変異率または変異数であり、KBiは、BRCAシグネチャーのi番目の置換変異の変異率である。)
により算出される、上記[11]に記載の方法。
[14]前記工程(3)において、Ageシグネチャースコアと、BRCAシグネチャースコアとの和に対するBRCAシグネチャースコアの比率A(%)を算出することにより、BRCAシグネチャーの寄与の優位性を評価する、上記[9]および[11]~[13]のいずれかに記載の方法。
[15]前記工程(3)において、CからTへの置換以外の置換変異のスコア(BRCAシグネチャースコア)と、CからTへの置換変異のスコア(Ageシグネチャースコア)との和に対するCからTへの置換以外の置換変異のスコアの比率B(%)を算出することにより、BRCAシグネチャーの寄与の優位性を評価する、上記[9]および[11]~[13]のいずれかに記載の方法。
[16]比率A(%)が50%を超える場合に、前記(a1)を満たすと判定する、上記[14]に記載の方法。
[17]比率B(%)が50%を超える場合に、前記(a1)を満たすと判定する、上記[15]に記載の方法。
[18]下記工程(4)~(6):
(4)AgeシグネチャーおよびBRCAシグネチャーを少なくとも含む変異シグネチャーを準備すること、
(5)変異カタログに対する変異シグネチャーそれぞれの寄与度を評価すること、および
(6)Ageシグネチャーの寄与度に対するBRCAシグネチャーの寄与度の優位性を評価すること
をさらに含んでなる、上記[1]~[8]のいずれかに記載の方法。
[19](7)前記変異シグネチャー全体に対するBRCAシグネチャーの寄与度を評価することをさらに含んでなる、上記[18]に記載の方法。
[20]前記変異シグネチャーが、COSMICデータベースの30種の変異シグネチャーの全部または一部を含む、上記[18]に記載の方法。
[21]前記工程(5)において、変異カタログに対する変異シグネチャーの寄与度をdeconstructSigs解析により評価する、上記[18]に記載の方法。
[22]前記工程(6)において、Ageシグネチャーの寄与度と、BRCAシグネチャーの寄与度との和に対するBRCAシグネチャーの寄与度の比率C(%)を算出することにより、BRCAシグネチャーの寄与度の優位性を評価する、上記[18]に記載の方法。
[23]前記工程(6)において、Ageシグネチャーの寄与度と、BRCAシグネチャーの寄与度との和に対するBRCAシグネチャーの寄与度の比率C(%)を算出することにより、BRCAシグネチャーの寄与度の優位性を評価し、かつ、
 前記工程(7)において、前記変異シグネチャーの寄与度の和(1)に対するBRCAシグネチャーの寄与度の比率D(%)を算出することにより、BRCAシグネチャーの寄与度を評価する、上記[19]に記載の方法。
[24]比率C(%)が50%を超える場合に、前記(a1)を満たすと判定する、上記[22]に記載の方法。
[25]比率C(%)が50%を超え、かつ、比率D(%)がk%(k=20~30)を超える場合に、前記(a1)を満たすと判定する、上記[23]に記載の方法。
[26]条件(A)の(a1)および(a2)の両方が満たされる場合に、前記癌細胞がPARP阻害剤に対して感受性を有する癌細胞集団を含むと判定する工程を含む、上記[1]~[25]のいずれかに記載の方法。
[27]対象の被験試料について網羅的メチル化解析を実施する工程をさらに含んでなり、(B)BRCA1のプロモーター領域のメチル化がPARP阻害剤に対して感受性を有する癌の存在を示す、上記[1]~[26]のいずれかに記載の方法。
[28]相同組換修復不全(HRD)を有する癌を検出する方法であって、
 癌細胞から得られた核酸試料について配列解析を実施して変異カタログを作成する工程を含んでなり、(A)(a1)変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回り、かつ(a2)サイクリンE1増幅が不存在であることが、相同組換修復不全を有する癌の存在を示す、検出方法。
[29]対象の被験試料について網羅的メチル化解析を実施する工程をさらに含んでなり、(B)BRCA1のプロモーター領域のメチル化が相同組換修復不全を有する癌の存在を示す、上記[28]に記載の検出方法。
[30]PARP阻害剤による癌患者の治療方法であって、上記[1]~[27]のいずれかに記載の方法を実施してPARP阻害剤に対して感受性を有する癌を有する癌患者を特定するか、あるいは上記[28]または[29]に記載の方法を実施して相同組換修復不全を有する癌を有する癌患者を特定し、次いで、該患者に有効量のPARP阻害剤を投与することを含んでなる、治療方法。
[31]PARP阻害剤を有効成分として含んでなる癌治療剤であって、前記治療が上記[30]に記載の方法により行われることを特徴とする、癌治療剤。
According to the present invention, the following inventions are provided.
[1] A method for predicting cancer susceptibility to a PARP inhibitor, comprising:
Comprising the step of performing a sequence analysis on a nucleic acid sample obtained from a cancer cell to create a mutation catalog, wherein (A)(a1) the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog. And (a2) the absence of cyclin E1 amplification indicates the presence of a cancer sensitive to a PARP inhibitor.
[2] The method according to [1] above, wherein the cancer cell is a cell obtained from a cancer patient.
[3] The method of the above-mentioned [1] or [2], wherein the cancer is a cancer that may exhibit a homologous recombination repair abnormality.
[4] The method according to any one of [1] to [3] above, wherein the PARP inhibitor is olaparib, lucaparib, niraparib, beriparib or tarazoparib.
[5] The method according to any of [1] to [4] above, wherein the sequence analysis comprises a sequence determination procedure and a sequence data analysis procedure.
[6] The method according to any one of [1] to [5] above, wherein somatic gene mutations are identified by the sequence analysis according to the 96 types of substitution classification shown in FIG. 1, and a mutation catalog is prepared.
[7] The method according to any of [1] to [6] above, wherein the sequence analysis is performed by whole exon sequence analysis.
[8] The method according to any of [1] to [6] above, wherein the sequence analysis is performed by an oncogene panel test.
[9] The following steps (1) to (3):
(1) Preparing an Age signature and a BRCA signature,
[2] above, further comprising (2) evaluating the contribution of the Age and BRCA signatures to the mutation catalog and (3) evaluating the superiority of the contribution of the BRCA signature to the contribution of the Age signature. The method according to any one of 8].
[10] In the step (1), mutation signature analysis is carried out on a plurality of cancer patients suffering from cancers whose susceptibility is predicted, and the mutation rate of substitution mutations of the Age signature and/or the BRCA signature is specified to obtain the Age signature and The method according to [9] above, wherein a BRCA signature is prepared.
[11] The method according to [9] above, wherein in the step (2), the contribution is evaluated by calculating an Age signature score and a BRCA signature score for the mutation catalog.
[12] The Age signature score is represented by the following formula (1):
Figure JPOXMLDOC01-appb-M000003
(In the above formula, n=96, i means the i-th substitution mutation in the 96 types of substitution classification shown in FIG. 1, and Mi is the mutation rate of the i-th substitution mutation in the mutation catalog. Or the number of mutations, and KAi is the mutation rate of the i-th substitution mutation in the Age signature.)
The method according to [11] above, which is calculated by:
[13] The BRCA signature score is represented by the following formula (2):
Figure JPOXMLDOC01-appb-M000004
(In the above formula, n=96, i means the i-th substitution mutation in the 96 types of substitution classification shown in FIG. 1, and Mi is the mutation rate of the i-th substitution mutation in the mutation catalog. Or the mutation number, KBi is the mutation rate of the i-th substitution mutation of the BRCA signature.)
The method according to [11] above, which is calculated by:
[14] In the step (3), the ratio A(%) of the BRCA signature score to the sum of the Age signature score and the BRCA signature score is calculated to evaluate the superiority of the contribution of the BRCA signature. 9] and the method according to any of [11] to [13].
[15] In the step (3), C to T with respect to the sum of the score of the substitution mutation other than the substitution of C to T (BRCA signature score) and the score of the substitution mutation of C to T (Age signature score) The ratio B (%) of the scores of substitution mutations other than the substitution to is evaluated to evaluate the superiority of the contribution of the BRCA signature. [9] and [11] to [13] above. Method.
[16] The method according to [14] above, wherein when the ratio A (%) exceeds 50%, it is determined that the condition (a1) is satisfied.
[17] The method according to [15] above, wherein when the ratio B (%) exceeds 50%, it is determined that the condition (a1) is satisfied.
[18] The following steps (4) to (6):
(4) Providing a mutant signature including at least an Age signature and a BRCA signature,
[5] further comprising (5) evaluating the contribution of each mutation signature to the mutation catalog, and (6) evaluating the superiority of the contribution of the BRCA signature to the contribution of the Age signature. The method according to any one of [8].
[19] (7) The method according to [18] above, which further comprises evaluating the contribution of the BRCA signature to the entire mutation signature.
[20] The method according to [18] above, wherein the mutation signature includes all or part of 30 mutation signatures in the COSMIC database.
[21] The method according to [18] above, wherein in the step (5), the contribution degree of the mutation signature to the mutation catalog is evaluated by the destructStructs analysis.
[22] In the step (6), by calculating the ratio C (%) of the contribution of the BRCA signature to the sum of the contribution of the Age signature and the contribution of the BRCA signature, the contribution of the BRCA signature is superior. The method according to [18] above, wherein the sex is evaluated.
[23] In the step (6), by calculating the ratio C (%) of the contribution of the BRCA signature to the sum of the contribution of the Age signature and the contribution of the BRCA signature, the contribution of the BRCA signature is superior. Sex, and
In the step (7), the contribution of the BRCA signature is evaluated by calculating the ratio D(%) of the contribution of the BRCA signature to the sum (1) of the contributions of the mutant signatures. The method described.
[24] The method according to [22] above, wherein when the ratio C (%) exceeds 50%, it is determined that the condition (a1) is satisfied.
[25] When the ratio C (%) exceeds 50% and the ratio D (%) exceeds k% (k=20 to 30), it is determined that the above (a1) is satisfied, [23] The method described in.
[26] comprising the step of determining that the cancer cell contains a cancer cell population having sensitivity to a PARP inhibitor when both (a1) and (a2) of the condition (A) are satisfied. The method according to any one of 1] to [25].
[27] further comprising the step of performing an exhaustive methylation analysis on the subject test sample, wherein (B) methylation of the promoter region of BRCA1 indicates the presence of a cancer sensitive to a PARP inhibitor, The method according to any one of [1] to [26].
[28] A method for detecting cancer having homologous recombinant repair deficiency (HRD), comprising:
Comprising the step of performing a sequence analysis on a nucleic acid sample obtained from a cancer cell to create a mutation catalog, wherein (A)(a1) the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog. And (a2) the absence of cyclin E1 amplification indicates the presence of a cancer having a homologous recombination repair deficiency.
[29] The method further comprising the step of performing an exhaustive methylation analysis on the test sample of interest, wherein (B) methylation of the promoter region of BRCA1 indicates the presence of a cancer having a homologous recombination repair deficiency. ] The detection method of description.
[30] A method for treating a cancer patient with a PARP inhibitor, which comprises carrying out the method according to any of [1] to [27] above to obtain a cancer patient having a cancer sensitive to the PARP inhibitor. Identify or perform the method according to [28] or [29] above to identify a cancer patient having a cancer with a homologous recombination repair deficiency, and then administer an effective amount of the PARP inhibitor to the patient. A method of treatment comprising:
[31] A therapeutic agent for cancer comprising a PARP inhibitor as an active ingredient, wherein the treatment is carried out by the method according to [30] above.
 上記[1]~[27]の予測方法と上記[28]および[29]の検出方法を、以下「本発明の方法」ということがある。 The prediction methods [1] to [27] and the detection methods [28] and [29] above may be referred to as the “method of the present invention” below.
 本発明の方法によれば、相同組換修復不全を有する癌を過不足なく検出することができる点において有利である。 The method of the present invention is advantageous in that it can detect a cancer having a homologous recombination repair deficiency without excess or deficiency.
図1は、ヒト癌における体細胞遺伝子置換変異の6クラス96種の置換分類を示す図である。各クラスには変異した塩基の1塩基手前のヌクレオチド4種類と1塩基後ろのヌクレオチド4種類の16のトリヌクレオチド配列が含まれ、6クラスの置換変異は96種類のトリヌクレオチド配列に分類される。FIG. 1 is a diagram showing substitution classifications of 6 classes of 96 types of somatic gene substitution mutations in human cancer. Each class includes 16 trinucleotide sequences of 4 kinds of nucleotides one base before the mutated base and 4 kinds of nucleotides one base after the mutated base, and substitution mutations of 6 classes are classified into 96 kinds of trinucleotide sequences. 図2は、例1(1)における、卵巣漿液性癌78例の新鮮凍結検体について全エクソンシークエンス解析を用いて行った変異シグネチャー解析を示す図である。(A)非負値行列因子分解(NMF)によるシグネチャー数と安定性および振れ幅との関係を示す。(B)卵巣漿液性癌78例の遺伝子変異(変異カタログ)を統合し、非負値行列因子分解(NMF)を行うことにより抽出したAgeシグネチャーとBRCAシグネチャーを示す。各シグネチャーは96置換分類によって示される。横軸は変異型(96種の置換分類、図1参照)を示し、縦軸は特定の変異型の変異の割合を示す。変異シグネチャーは、ヒトゲノムのトリヌクレオチド頻度に基づいて表示される。FIG. 2 is a diagram showing a mutation signature analysis performed on a fresh frozen sample of 78 cases of ovarian serous cancer in Example 1(1) using whole exon sequence analysis. (A) shows the relationship between the number of signatures by non-negative matrix factorization (NMF) and stability and swing width. (B) shows the Age signature and BRCA signature extracted by integrating the gene mutations (mutation catalog) of 78 cases of ovarian serous cancer and performing non-negative matrix factorization (NMF). Each signature is represented by a 96 substitution classification. The abscissa indicates the mutant type (96 types of substitution classification, see FIG. 1), and the ordinate indicates the rate of mutation of the specific mutant type. Mutational signatures are displayed based on the trinucleotide frequency of the human genome. 図3は、例1(2)における、卵巣漿液性癌78例の新鮮凍結検体について全エクソンシークエンス解析による各症例の変異カタログへの変異シグネチャーの寄与を示す図である。各棒グラフは各症例を示し、(A)と(B)で各症例を対応させて配置した。(A)各症例の変異カタログへのBRCAシグネチャーとAgeシグネチャーの寄与を非負値行列因子分解(NMF)により解析した結果を示す。縦軸は変異数を表す。BRCAシグネチャースコアとAgeシグネチャースコアとの和に対する各シグネチャースコアの比率を各症例で算出した。(B)(A)における各症例の変異数を100%としたときのシグネチャースコアの比率に基づいてソートした図を示す。BRCAシグネチャーが優位に寄与する症例は76.9%(78例中60例)であり、平均変異数は95.7であった。FIG. 3 is a diagram showing the contribution of the mutation signature to the mutation catalog of each case by whole exon sequence analysis of fresh frozen specimens of 78 cases of serous ovarian cancer in Example 1(2). Each bar graph shows each case, and (A) and (B) arranged each case correspondingly. (A) shows the results of analysis of the contribution of BRCA signature and Age signature to the mutation catalog of each case by non-negative matrix factorization (NMF). The vertical axis represents the number of mutations. The ratio of each signature score to the sum of the BRCA signature score and the Age signature score was calculated for each case. (B) The figure sorted based on the ratio of the signature score when the number of mutations in each case in (A) is 100% is shown. The cases in which the BRCA signature was dominantly contributed were 76.9% (60 cases out of 78 cases), and the average mutation number was 95.7. 図4は、例1(2)における、TCGA、ICGCおよび高異型度卵巣癌78例における各症例の変異カタログへの変異シグネチャーの寄与を示す図である。各縦線は各症例を示し、(A)と(B)で各症例を対応させて配置した。(A)各症例の体細胞変異へのBRCAシグネチャーとAgeシグネチャーの寄与を非負値行列因子分解(NMF)により解析した結果を示す。縦軸は変異数を表す。BRCAシグネチャーの寄与の比率とAgeシグネチャーの寄与の比率との総和に対する各シグネチャーの寄与の比率を各症例で算出した。(B)(A)における各症例の変異数を100%としたときの各シグネチャーの寄与の比率に基づいてソートした図を示す。BRCAシグネチャーが優位に寄与する症例は、ICGCでは67.5%(80例中54例、平均変異数は92.5)であり、TCGAでは63.3%(316例中200例、平均変異数は57.4)であった。FIG. 4 is a diagram showing the contribution of the mutation signature to the mutation catalog of each case in 78 cases of TCGA, ICGC, and high-grade ovarian cancer in Example 1(2). Each vertical line indicates each case, and the cases are arranged in correspondence with each other in (A) and (B). (A) shows the results of analysis of the contribution of the BRCA signature and the Age signature to the somatic mutation of each case by nonnegative matrix factorization (NMF). The vertical axis represents the number of mutations. The ratio of contribution of each signature to the sum of the ratio of contribution of BRCA signature and the ratio of contribution of Age signature was calculated in each case. (B) The figure sorted based on the ratio of the contribution of each signature when the number of mutations in each case in (A) is set to 100% is shown. 67.5% (54 out of 80 cases, average mutation number: 92.5) in ICGC and 63.3% (200 out of 316 cases, average mutation number) in TCGA had a significant contribution of BRCA signature. Was 57.4). 図5は、例2(2)において、卵巣漿液性癌78例の新鮮凍結検体について全エクソンシークエンス解析、非負値行列因子分解(NMF)、網羅的メチル化解析およびサイクリンE1増幅の解析を行い、その結果(優位に寄与するシグネチャー、BRCA1プロモーター領域のメチル化の有無およびサイクリンE1増幅の有無)を示した図である。MSBMによる判定を行った結果、68%の症例がMSBM陽性と判定された。灰色のマスは、BRCAシグネチャーの寄与が優位な症例、BRCA1プロモーター領域のメチル化を有する症例あるいはサイクリンE1増幅の不存在の症例を表す。FIG. 5 shows that in Example 2(2), whole exon sequence analysis, non-negative matrix factorization (NMF), exhaustive methylation analysis and analysis of cyclin E1 amplification were performed on fresh frozen samples of 78 cases of ovarian serous cancer, FIG. 3 is a diagram showing the results (signatures that contribute to dominance, presence/absence of methylation of the BRCA1 promoter region, and presence/absence of cyclin E1 amplification). As a result of the determination by MSBM, 68% of cases were determined to be MSBM positive. Gray boxes represent cases in which the contribution of the BRCA signature was predominant, cases with methylation of the BRCA1 promoter region or cases without the cyclin E1 amplification. 図6は、例3における、癌遺伝子パネル検査による各症例の変異カタログを示す。症例Xは、gBRCA1/2変異陽性であり、かつ、MSBM陽性であった。FIG. 6 shows a mutation catalog of each case by the oncogene panel test in Example 3. Case X was positive for gBRCA1/2 mutation and positive for MSBM. 図7は、例3における、癌遺伝子パネル検査による各症例の変異カタログを示す。症例Yは、gBRCA1/2変異陰性であり、かつ、MSBM陽性であった。FIG. 7 shows a mutation catalog of each case by the oncogene panel test in Example 3. Case Y was negative for gBRCA1/2 mutation and positive for MSBM. 図8は、例3における、癌遺伝子パネル検査による各症例の変異カタログを示す。症例Zは、gBRCA1/2変異陰性であり、かつ、MSBM陰性であった。FIG. 8 shows a mutation catalog of each case by the oncogene panel test in Example 3. Case Z was negative for gBRCA1/2 mutation and negative for MSBM. 図9は、TCGA、ICGCおよび高異型度卵巣癌78例について、例1(2)におけるNMF解析の結果と、例4におけるdeconstructSigs解析の結果の比較を示す図である。(A)各症例の体細胞変異へのBRCAシグネチャーとAgeシグネチャーの寄与を非負値行列因子分解(NMF)により解析した結果を示す。BRCAシグネチャーの寄与の比率とAgeシグネチャーの寄与の比率との総和に対する各シグネチャーの寄与の比率を各症例で算出し、各症例の変異数を100%としたときの各シグネチャーの寄与の比率に基づいてソートした図を示す(図4B参照)。(B)各症例の体細胞変異へのBRCAシグネチャーとAgeシグネチャーの寄与度をdeconstructSigsにより解析した結果を示す。BRCAシグネチャーとAgeシグネチャーの寄与度のみ表示し、これら2種以外のシグネチャーの寄与は表示していないため、各症例において寄与度の合計が1とはならない。FIG. 9 is a diagram showing a comparison between the results of NMF analysis in Example 1(2) and the results of destructSigs analysis in Example 4 for 78 cases of TCGA, ICGC, and high-grade ovarian cancer. (A) shows the results of analysis of the contribution of the BRCA signature and the Age signature to the somatic mutation of each case by nonnegative matrix factorization (NMF). The ratio of contribution of each signature to the sum of the ratio of contribution of BRCA signature and the ratio of contribution of Age signature was calculated for each case, and based on the ratio of contribution of each signature when the mutation number of each case was 100%. FIG. 4B shows a sorted view. (B) shows the results of analyzing the contributions of the BRCA signature and the Age signature to the somatic mutation in each case by destructStructs. Since only the contributions of the BRCA signature and the Age signature are displayed, and the contributions of the signatures other than these two types are not displayed, the total contribution is not 1 in each case. 図10は、TCGA、ICGCおよび高異型度卵巣癌78例について、例1(2)におけるNMF解析と、例4におけるdeconstructSigs解析による、BRCAシグネチャーの寄与を示す散布図である。FIG. 10 is a scatter diagram showing the contribution of the BRCA signature by the NMF analysis in Example 1(2) and the destructStructs analysis in Example 4 for 78 cases of TCGA, ICGC and high-grade ovarian cancer. 図11は、TCGA、ICGCおよび高異型度卵巣癌78例について、例1(2)におけるNMF解析と、例4におけるdeconstructSigs解析による、BRCAシグネチャーの寄与を示す散布図である。FIG. 11 is a scatter diagram showing the contribution of the BRCA signature by the NMF analysis in Example 1(2) and the destructStructs analysis in Example 4 for 78 cases of TCGA, ICGC and high-grade ovarian cancer. 図12は、高異型度卵巣癌78例について、例1(2)におけるNMF解析と、例4におけるdeconstructSigs解析による、BRCAシグネチャーの寄与を示す散布図である。FIG. 12 is a scatter diagram showing the contribution of the BRCA signature by the NMF analysis in Example 1(2) and the destructStructs analysis in Example 4 for 78 cases of high-grade ovarian cancer.
発明の具体的説明Detailed explanation of the invention
 本発明において「PARP阻害剤」とは、ポリ(ADPリボース)ポリメラーゼ-1の機能を阻害する薬剤をいい、例えば、オラパリブ、ルカパリブ、ニラパリブ、ベリパリブおよびタラゾパリブが挙げられる。 In the present invention, the “PARP inhibitor” refers to a drug that inhibits the function of poly(ADP ribose) polymerase-1, and examples thereof include olaparib, lucaparib, niraparib, beriparib, and tarazoparib.
 本発明において癌細胞は癌患者から得られた細胞とすることができる。頻度は稀ながら、BRCA遺伝子の生殖細胞系列変異は広く固形癌にもみられることから(Mandelker D et al., JAMA. 318:825-835(2017))、本発明において癌は、血液の腫瘍を除く癌、あるいは固形癌とすることができる。本発明の好ましい態様においては、癌は、相同組換修復異常を示す可能性がある癌とすることができ、そのような癌としては、例えば、卵巣癌(特に、卵巣漿液性癌、類内膜癌、癌肉腫、混合癌、未分化癌等の高異型度卵巣癌)、乳癌、前立腺癌、膵臓癌が挙げられる。 In the present invention, the cancer cell can be a cell obtained from a cancer patient. Although the frequency is rare, germline mutations in the BRCA gene are widely found in solid cancers (Mandelker D. et.al., JAMA. 318:825-835(2017)). It can be excluded cancer or solid cancer. In a preferred embodiment of the present invention, the cancer may be a cancer that may exhibit a homologous recombination repair abnormality, and examples of such cancer include ovarian cancer (particularly ovarian serous cancer, intraclass). High-grade ovarian cancer such as membrane cancer, carcinosarcoma, mixed cancer, and undifferentiated cancer), breast cancer, prostate cancer, and pancreatic cancer.
 本発明において「感受性」とは、薬剤の標準的な用量または標準的な治療手順に対する応答を意味する。 In the present invention, “susceptibility” means a response to a standard dose of a drug or a standard treatment procedure.
 本発明において「Ageシグネチャー」(Age Signature)とは、癌細胞において加齢と相関を示す変異シグネチャーである。本発明において、「BRCAシグネチャー」(BRCA Signature)とは、癌細胞においてBRCA1/2変異およびBRCA1/2不活性化を含む要因による相同組換修復異常と相関を示す変異シグネチャーである。 In the present invention, the “Age signature” is a mutation signature showing a correlation with aging in cancer cells. In the present invention, the “BRCA signature” is a mutant signature showing a correlation with a homologous recombination repair abnormality due to factors including BRCA1/2 mutation and BRCA1/2 inactivation in cancer cells.
 本発明において「変異シグネチャー」とは、複数のヒト癌における体細胞遺伝子置換変異から抽出される特徴的な変異パターンないしプロフィールであり、6クラス96種の置換分類(C→A、C→G、C→T、T→A、T→C、T→Gそれぞれについて16種の塩基置換トリヌクレオチド、図1参照)に従って分類し、変異型を横軸に、特定の変異型に寄与する変異の比率を縦軸に表示することができる(Alexandrov LB et al., Nature, 500:415-421(2013))。 In the present invention, the “mutation signature” is a characteristic mutation pattern or profile extracted from somatic gene substitution mutations in a plurality of human cancers, and includes 6 classes of 96 substitution classifications (C→A, C→G, C→T, T→A, T→C, T→G, each of which is classified according to 16 types of base-substituted trinucleotides (see FIG. 1), and the mutation type is the horizontal axis, and the ratio of mutations contributing to a specific mutation type Can be displayed on the vertical axis (Alexandrov LB et al., Nature, 500:415-421 (2013)).
 本発明において「変異カタログ」とは、被験核酸試料について特定された体細胞遺伝子置換変異を6クラス96種の置換分類(C→A、C→G、C→T、T→A、T→C、T→Gそれぞれについて16種の塩基置換トリヌクレオチド、図1参照)に従って分類ないし整理したものである。分類ないし整理された置換変異は変異率(%)(すべての置換変異に対する割合)あるいは変異数で表現することができる。 In the present invention, the “mutation catalog” refers to 6 classes of 96 somatic gene substitution mutations identified for a test nucleic acid sample (C→A, C→G, C→T, T→A, T→C). , T→G, respectively, according to 16 types of base-substituted trinucleotides (see FIG. 1). The classified or organized substitution mutations can be expressed by a mutation rate (%) (ratio to all substitution mutations) or the number of mutations.
 本発明の方法は、癌細胞から得られた核酸試料について配列解析を実施する工程を含む。配列解析は、DNAシークエンス解析、RNAシークエンス解析、全エクソンシークエンス解析、全ゲノムシークエンス解析が挙げられ、本発明においてはPARP阻害剤に対する対象の癌の感受性を予測でき、相同組換修復不全を有する癌を検出できる限り特に制限なく使用することができる。配列解析はまた、癌遺伝子パネル検査により実施してもよく、本発明に使用可能な癌遺伝子パネル検査としては、東大オンコパネル(Todai OncoPanel)(東京大学医学部附属病院)、MSK-IMPACT、Foundation Oneが挙げられる。なお、本発明が全エクソンシークエンス解析や全ゲノムシークエンス解析との関係で薬事承認された場合には、本発明はPARP阻害剤の感受性を正確に判定できる体外診断薬として位置づけられるため有利である。 The method of the present invention includes the step of performing sequence analysis on a nucleic acid sample obtained from cancer cells. The sequence analysis includes DNA sequence analysis, RNA sequence analysis, whole exon sequence analysis, and whole genome sequence analysis. In the present invention, the susceptibility of a target cancer to a PARP inhibitor can be predicted, and a cancer having a homologous recombination repair deficiency. Can be used without particular limitation as long as it can be detected. Sequence analysis may also be carried out by an oncogene panel test, and as an oncogene panel test that can be used in the present invention, Todai OncoPanel (University of Tokyo Hospital), MSK-IMPACT, Foundation One Are listed. It should be noted that when the present invention is approved as a drug in relation to the whole exon sequence analysis or the whole genome sequence analysis, the present invention is advantageous because it can be positioned as an in vitro diagnostic agent capable of accurately determining the sensitivity of a PARP inhibitor.
 本発明において配列解析は、配列決定手順と配列データ解析手順とから構成されていてもよく、例えば、核酸試料について配列決定手順を実施し、配列決定手順により得られた配列データに基づいて配列データ解析手順を実施することができる。 In the present invention, the sequence analysis may consist of a sequence determination procedure and a sequence data analysis procedure, for example, the sequence determination procedure is performed on a nucleic acid sample, and the sequence data is obtained based on the sequence data obtained by the sequence determination procedure. Analysis procedures can be performed.
 配列決定手順では、対象から得られた核酸試料について配列を決定し、核酸試料の配列データを得る工程を含むことができる。配列決定は、例えば、次世代シークエンサーを用いて実施することができる。 The sequencing procedure can include the steps of sequencing the nucleic acid sample obtained from the subject and obtaining sequence data for the nucleic acid sample. Sequencing can be performed, for example, using a next generation sequencer.
 配列データ解析手順では、得られた配列データを解析し、所望の解析結果を得る工程を含むことができる。配列データの解析は、変異カタログの作成のための解析、条件(A)や条件(B)の判定のための解析、シグネチャー解析を含むことができる。 The sequence data analysis procedure can include a step of analyzing the obtained sequence data and obtaining a desired analysis result. The analysis of sequence data can include analysis for creating a mutation catalog, analysis for determining condition (A) or condition (B), and signature analysis.
 変異カタログの作成のための解析は、例えば、以下のようにして行うことができる。すなわち、配列データ解析により被験核酸試料について体細胞遺伝子変異を同定し、同定した体細胞遺伝子変異を図1に記載の96種の置換分類に従って分類ないし整理することにより被験核酸試料の変異カタログを作成することができる。ここで、体細胞遺伝子変異の同定は、癌患者の正常組織(例えば、血液中の白血球、非腫瘍部分の手術・生検組織検体)の配列データと、癌患者の腫瘍組織(例えば、癌細胞)の配列データとの対比により行うことができる。このような配列データの比較と体細胞遺伝子変異の同定は公知のアルゴリズム(例えば、Totoki et al., Nat Genet. 2014 Dec;46(12):1267-73)に従って実施することができる。また、同定される変異としては、塩基の置換、欠失、挿入および付加、コピー数変化、逆位、転座、融合遺伝子が挙げられる。 The analysis for creating the mutation catalog can be performed as follows, for example. That is, somatic gene mutations are identified in a test nucleic acid sample by sequence data analysis, and the identified somatic gene mutations are classified or organized according to the 96 types of substitution classifications shown in FIG. 1 to create a mutation catalog of test nucleic acid samples. can do. Here, the identification of the somatic gene mutation is performed by comparing the sequence data of normal tissues of cancer patients (for example, white blood cells in blood, surgical/biopsy tissue specimens of non-tumor portion) with tumor tissues of cancer patients (for example, cancer cells). ) It can be performed by comparison with the sequence data. Such comparison of sequence data and identification of somatic gene mutations can be performed according to a known algorithm (for example, Totokietetal., Nat Genet.2014Dec;46(12):1267-73). The identified mutations include base substitutions, deletions, insertions and additions, copy number changes, inversions, translocations, and fusion genes.
 条件(A)のうち条件(a1)の判定のための解析では、評価対象となる症例について得られた変異カタログがAgeシグネチャーおよびBRCAシグネチャーのいずれに類似しているかを、すなわち、Ageシグネチャーの寄与に対するBRCAシグネチャーの寄与の優位性の程度を分析することができる。このような分析は非負値行列因子分解(NMF)等のパターン認識のための公知のアルゴリズムを用いて実施することができ、あるいは、以下(1)~(3)のように実施することもできる。 In the analysis for determining the condition (a1) among the conditions (A), it is determined whether the mutation catalog obtained for the case to be evaluated is similar to the Age signature or the BRCA signature, that is, the contribution of the Age signature. The degree of predominance of the contribution of the BRCA signature to the can be analyzed. Such an analysis can be performed using a known algorithm for pattern recognition such as non-negative matrix factorization (NMF), or can be performed as in the following (1) to (3). ..
(1)AgeシグネチャーおよびBRCAシグネチャーの準備
 (1)では図1に記載の96種の置換分類に従って、Ageシグネチャーおよび/またはBRCAシグネチャーの置換変異の変異率を準備する。例えば、感受性を予測する癌を患う複数の癌患者の核酸試料について予め変異シグネチャー解析を実施し、図1に記載の96種の置換分類について、Ageシグネチャーおよび/またはBRCAシグネチャーの置換変異の変異率を特定することができる。変異シグネチャー解析は、例えば、Alexandrov LB et al., Nature, 500:415-21(2013)の記載に従って実施することができ、その中で非負値行列因子分解(NMF)により変異シグネチャー解析を実施することができる。また、シグネチャー解析は変異カタログの解析手法と同じ手法を使用することが好ましい。例えば、全エクソンシークエンス解析により変異カタログを作成したときは、変異シグネチャー解析も全エクソンシークエンス解析により実施することができる。
(1) Preparation of Age signature and BRCA signature In (1), the mutation rate of substitution mutation of Age signature and/or BRCA signature is prepared according to the 96 types of substitution classification shown in FIG. For example, a mutation signature analysis is performed in advance on nucleic acid samples of a plurality of cancer patients suffering from a cancer that predicts susceptibility, and the mutation rate of substitution mutations of the Age signature and/or the BRCA signature for the 96 types of substitution classification shown in FIG. Can be specified. The mutation signature analysis can be performed, for example, as described in Alexandrov LB et al., Nature, 500:415-21 (2013), in which the mutation signature analysis is performed by non-negative matrix factorization (NMF). be able to. Moreover, it is preferable to use the same method as the analysis method of the mutation catalog for the signature analysis. For example, when the mutation catalog is created by the total exon sequence analysis, the mutation signature analysis can also be performed by the total exon sequence analysis.
 (1)ではまた、変異シグネチャー解析を実施する代わりに、公知のAgeシグネチャーおよびBRCAシグネチャーの置換変異の変異率を使用してもよい(例えば、Alexandrov LB et al., Nature, 500:415-421(2013)参照)。ここで、変異率は、AgeシグネチャーおよびBRCAシグネチャーを特徴付ける、置換分類ごとの重み付け(係数)と言い換えることができる。また、変異シグネチャー解析により得られた変異率あるいは公知の変異率はそのまま後記(2)に使用することができるが、よりよい判定を実施するために変異率の一部または全部を任意で変更してもよい。 In (1), instead of carrying out the mutation signature analysis, the mutation rate of the substitution mutation of the known Age signature and BRCA signature may be used (for example, Alexandrov LB et al., Nature, 500:415-421). (2013)). Here, the mutation rate can be rephrased as a weighting (coefficient) for each substitution classification that characterizes the Age signature and the BRCA signature. Further, the mutation rate obtained by the mutation signature analysis or the known mutation rate can be used as it is in (2) below, but a part or all of the mutation rate may be arbitrarily changed to make a better judgment. May be.
(2)変異カタログに対するAgeシグネチャーおよびBRCAシグネチャーの寄与の評価
 (2)では被験核酸試料の変異カタログに対するAgeシグネチャーおよびBRCAシグネチャーのそれぞれの寄与を評価する。Ageシグネチャーの寄与およびBRCAシグネチャーの寄与は、非負値行列因子分解(NMF)により解析することができる。Ageシグネチャーの寄与およびBRCAシグネチャーの寄与の評価はまた、変異カタログについて、AgeシグネチャースコアおよびBRCAシグネチャースコアを算出することにより行うことができる。具体的には、AgeシグネチャースコアおよびBRCAシグネチャースコアは、96種の置換変異すべてについて、変異カタログを構成する置換変異量(変異率あるいは個数)に上記(1)で得られた置換変異の変異率を乗じて積を算出し、96種の置換変異について得られた積の合計値を求めることにより算出することができる。
(2) Evaluation of Contribution of Age Signature and BRCA Signature to Mutation Catalog In (2), each contribution of Age signature and BRCA signature to the mutation catalog of the test nucleic acid sample is evaluated. The Age signature contribution and the BRCA signature contribution can be analyzed by non-negative matrix factorization (NMF). Evaluation of the Age signature contribution and the BRCA signature contribution can also be performed by calculating the Age signature score and the BRCA signature score for the mutation catalog. Specifically, the Age signature score and the BRCA signature score are the mutation rates of the substitution mutations obtained in (1) above for the substitution mutation amounts (mutation rate or number) constituting the mutation catalog for all 96 substitution mutations. It can be calculated by multiplying by and calculating the product, and obtaining the total value of the products obtained for 96 types of substitution mutations.
 例えば、Ageシグネチャースコアは下記のように算出することができる。
Figure JPOXMLDOC01-appb-M000005
(上記式中、n=96(すなわちi=1~96)であり、iは、図1に記載の96種の置換分類のうちi番目の置換変異を意味し、Miは、前記変異カタログのi番目の置換変異の変異率または変異数であり、KAiは、Ageシグネチャーのi番目の置換変異の変異率である。)
For example, the Age signature score can be calculated as follows.
Figure JPOXMLDOC01-appb-M000005
(In the above formula, n=96 (that is, i=1 to 96), i is the i-th substitution mutation of the 96 substitution classes shown in FIG. 1, and Mi is the mutation catalog The mutation rate or the number of mutations of the i-th substitution mutation, and KAi is the mutation rate of the i-th substitution mutation of the Age signature.)
 またBRCAシグネチャースコアは、例えば、下記のように算出することができる。
Figure JPOXMLDOC01-appb-M000006
(上記式中、n=96(すなわちi=1~96)であり、iは、図1に記載の96種の置換分類のうちi番目の置換変異を意味し、Miは、前記変異カタログのi番目の置換変異の変異率であり、KBiは、BRCAシグネチャーのi番目の置換変異の変異率である。)
The BRCA signature score can be calculated as follows, for example.
Figure JPOXMLDOC01-appb-M000006
(In the above formula, n=96 (that is, i=1 to 96), i is the i-th substitution mutation of the 96 substitution classes shown in FIG. 1, and Mi is the mutation catalog The mutation rate of the i-th substitution mutation, KBi is the mutation rate of the i-th substitution mutation of the BRCA signature.)
(3)Ageシグネチャーの寄与に対するBRCAシグネチャーの寄与の優位性の評価
 (3)ではAgeシグネチャーの寄与に対するBRCAシグネチャーの寄与の優位性を評価する。具体的には、上記(2)で算出したAgeシグネチャースコアとBRCAシグネチャースコアに基づいてどちらのシグネチャーが変異カタログに対して優位であるかを評価する。例えば、Ageシグネチャースコアと、BRCAシグネチャースコアとの和に対するBRCAシグネチャースコアの比率A(%)を算出し、該比率Aに基づいて優位性を評価することができる。得られた比率Aが50%を超える場合には、変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回ると、すなわち、条件(a1)を満たすと判定することができる。
(3) Evaluation of superiority of contribution of BRCA signature to contribution of Age signature In (3), superiority of contribution of BRCA signature to contribution of Age signature is evaluated. Specifically, which signature is superior to the mutation catalog is evaluated based on the Age signature score and the BRCA signature score calculated in (2) above. For example, the ratio A (%) of the BRCA signature score to the sum of the Age signature score and the BRCA signature score can be calculated, and the superiority can be evaluated based on the ratio A. When the obtained ratio A exceeds 50%, it can be determined that the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog, that is, the condition (a1) is satisfied.
 配列解析を全エクソンシークエンス解析または全ゲノムシークエンス解析により実施する場合には、AgeシグネチャーおよびBRCAシグネチャーの変異率はAlexandrov LB et al., Nature, 500:415-421(2013)に記載されたAgeシグネチャーおよびBRCAシグネチャーに基づいて決定することができ、あるいは、シグネチャー解析を行ってAgeシグネチャーおよびBRCAシグネチャーを設定し、それに基づいて変異率を決定してもよい。 When the sequence analysis is performed by whole exon sequence analysis or whole genome sequence analysis, the mutation rate of Age signature and BRCA signature is the Age signature described in Alexandrov LB et al., Nature, 500:415-421 (2013). And the BRCA signature, or a signature analysis may be performed to set the Age signature and the BRCA signature and the mutation rate may be determined based on it.
 配列解析を癌遺伝子パネル検査により実施する場合には、シグネチャー解析を行ってAgeシグネチャーおよびBRCAシグネチャーを設定し、それに基づいて変異率を決定することができ、あるいは、CからTへの置換変異以外の置換変異(図1のi=1~32および49~96の置換変異に対応)がBRCAシグネチャーを反映し、CからTへの置換変異(図1のi=33~48の置換変異に対応)がAgeシグネチャーを反映することを前提として、AgeシグネチャースコアおよびBRCAシグネチャースコアを算出してもよい。後者の場合には、Ageシグネチャースコアは、前記式(1)(ここで、i=33~48のときはKAi=1であり、i=1~32および49~96のときはKAi=0である)により算出することができ、BRCAシグネチャースコアは、前記式(2)(ここで、i=1~32および49~96のときはKBi=1であり、i=33~48のときはKBi=0である)により算出することができる。例えば、CからTへの置換以外の置換変異のスコア(BRCAシグネチャースコア)と、CからTへの置換変異のスコア(Ageシグネチャースコア)との和に対するCからTへの置換以外の置換変異のスコアの比率B(%)を算出し、該比率Bに基づいて優位性を評価することができる。得られた比率Bが50%を超える場合には、変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回ると、すなわち、条件(a1)を満たすと判定することができる。 When the sequence analysis is performed by an oncogene panel test, signature analysis can be performed to set the Age signature and the BRCA signature, and the mutation rate can be determined based on that, or other than the substitution mutation from C to T Substitution mutations (corresponding to substitution mutations i=1 to 32 and 49 to 96 in FIG. 1) reflect the BRCA signature, and substitution mutations C to T (corresponding to substitution mutations i=33 to 48 in FIG. 1) ) May reflect the Age signature, the Age signature score and the BRCA signature score may be calculated. In the latter case, the Age signature score is expressed by the above formula (1) (where i=33 to 48, KAi=1, and i=1 to 32 and 49 to 96, KAi=0. The BRCA signature score can be calculated by the equation (2) (where i=1 to 32 and 49 to 96, KBi=1, and i=33 to 48, KBi=1. =0). For example, the sum of the score of the substitution mutation other than the substitution of C to T (BRCA signature score) and the score of the substitution mutation of C to T (Age signature score) of substitution mutations other than the substitution of C to T The ratio B (%) of the scores can be calculated, and the superiority can be evaluated based on the ratio B. When the obtained ratio B exceeds 50%, it can be determined that the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog, that is, the condition (a1) is satisfied.
 条件(A)のうち条件(a1)の判定のための解析はまた、以下(4)~(6)のように実施することもできる。 The analysis for determining the condition (a1) of the condition (A) can also be performed as in the following (4) to (6).
(4)変異シグネチャーの準備
 (4)では図1に記載の96種の置換分類に従って、AgeシグネチャーおよびBRCAシグネチャーを少なくとも含む複数の変異シグネチャーを準備する。(4)で準備する変異シグネチャーの個数の下限値は10種または20種とすることができ、個数の上限値は70個、60個、50個または40個とすることができる。これらの下限値および上限値はそれぞれ任意に組み合わせることができ、上記個数の範囲は、例えば、10~70種または20~40種とすることができる。
(4) Preparation of Mutation Signature In (4), a plurality of mutation signatures including at least an Age signature and a BRCA signature are prepared according to the 96 types of substitution classification shown in FIG. The lower limit of the number of mutation signatures prepared in (4) can be 10 or 20, and the upper limit of the number can be 70, 60, 50 or 40. These lower limit values and upper limit values can be arbitrarily combined, and the range of the above number can be, for example, 10 to 70 kinds or 20 to 40 kinds.
 AgeシグネチャーおよびBRCAシグネチャーを少なくとも含む変異シグネチャーは、公知の変異シグネチャーのセットを利用することができ、例えば、英国サンガー研究所のCOSMIC(Catalogue of somatic mutations in cancer)データベースに登録されている30種の変異シグネチャー(COSMIC version 2)の全部または一部や、同研究所のCOSMICデータベースに登録されている変異シグネチャー(COSMIC version 3)のうちSBS (Single Base Substitution) シグネチャー(67種)、Doublet Base Substitution (DBS) シグネチャー(11種)またはSmall Insertion and Deletion (ID) シグネチャー(17種)の全部または一部を使用することができる。 As the mutation signature including at least the Age signature and the BRCA signature, a set of known mutation signatures can be used, and, for example, 30 kinds of mutations registered in the COSMIC (Catalogue of somatic mutations in cancer) database of the UK Sanger Institute can be used. All or part of the mutation signature (COSMIC version 2), and among the mutation signatures (COSMIC version 3) registered in the COSMIC database of the institute, SBS (Single Base Substitution) signature (67 types), Doublet Base Substitution ( All or part of the DBS) signature (11 types) or Small Insertion and Deletion (ID) signature (17 types) can be used.
(5)変異カタログに対するAgeシグネチャーおよびBRCAシグネチャーの寄与度の評価
 (5)では被験核酸試料の変異カタログに対する変異シグネチャーそれぞれの寄与度を評価する。例えば、30種の変異シグネチャーを準備した場合には、変異カタログの変異プロフィールを再構築できるような、30種の変異シグネチャーそれぞれに対する最適な重み(寄与度)を計算することにより寄与度を評価することができる。このような寄与度の計算は公知のプログラムを利用して実施することができ、例えば、deconstructSigs解析(Rosenthal et al., Genome Biology, 17:31 (2016))により実施することができる。
(5) Evaluation of Contribution of Age Signature and BRCA Signature to Mutation Catalog In (5), the contribution of each mutation signature to the mutation catalog of the test nucleic acid sample is evaluated. For example, when 30 mutation signatures are prepared, the contribution is evaluated by calculating the optimum weight (contribution) for each of the 30 mutation signatures so that the mutation profile of the mutation catalog can be reconstructed. be able to. Such a calculation of the degree of contribution can be performed using a known program, for example, by the destructStructs analysis (Rosenthal et al., Genome Biology, 17:31 (2016)).
(6)Ageシグネチャーの寄与度に対するBRCAシグネチャーの寄与度の優位性の評価
 (6)ではAgeシグネチャーの寄与度に対するBRCAシグネチャーの寄与度の優位性を評価する。具体的には、上記(5)で算出したAgeシグネチャーの寄与度とBRCAシグネチャーの寄与度に基づいてどちらのシグネチャーが変異カタログに対して優位であるかを評価する。例えば、Ageシグネチャーの寄与度と、BRCAシグネチャーの寄与度との和に対するBRCAシグネチャーの寄与度の比率C(%)を算出し、該比率に基づいて優位性を評価することができる。得られた比率Cが50%を超える場合には、変異カタログに対するBRCAシグネチャーの寄与度が、変異カタログに対するAgeシグネチャーの寄与度を上回ると、すなわち、条件(a1)を満たすと判定することができる。
(6) Evaluation of superiority of contribution of BRCA signature to contribution of Age signature In (6), superiority of contribution of BRCA signature to contribution of Age signature is evaluated. Specifically, which signature is superior to the mutation catalog is evaluated based on the contribution of the Age signature and the contribution of the BRCA signature calculated in (5) above. For example, the ratio C(%) of the contribution of the BRCA signature to the sum of the contribution of the Age signature and the contribution of the BRCA signature can be calculated, and the superiority can be evaluated based on the calculated ratio. When the obtained ratio C exceeds 50%, it can be determined that the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog, that is, the condition (a1) is satisfied. ..
 条件(A)のうち条件(a1)の判定のための解析では、上記(4)~(6)に加えて以下(7)をさらに実施することができる。
(7)変異シグネチャー全体に対するBRCAシグネチャーの寄与度の評価
 (7)では変異シグネチャー全体に対するBRCAシグネチャーの寄与度を評価する。具体的には、上記(5)で算出したBRCAシグネチャーの寄与度に基づいて、準備した変異シグネチャー全体に対するBRCAシグネチャーが占める割合を評価する。例えば、準備したすべての変異シグネチャーの寄与度の和(100%)に対するBRCAシグネチャーの寄与度の比率D(%)を算出し、該比率Dに基づいてBRCAシグネチャーの寄与度を評価することができる。前記(6)で得られた比率Cが50%を超え、かつ、(7)で得られた比率Dがk%(k=15~40、好ましくは20~30)を超える場合には、変異カタログに対するBRCAシグネチャーの寄与度が、変異カタログに対するAgeシグネチャーの寄与度を上回ると、すなわち、条件(a1)を満たすと判定することができる。
In the analysis for determining the condition (a1) of the conditions (A), the following (7) can be further performed in addition to the above (4) to (6).
(7) Evaluation of Contribution of BRCA Signature to Overall Mutant Signature In (7), evaluation of contribution of BRCA signature to entire mutant signature. Specifically, based on the contribution of the BRCA signature calculated in (5) above, the ratio of the BRCA signature to the entire prepared mutation signature is evaluated. For example, the ratio D(%) of the contribution of the BRCA signature to the sum of the contributions of all prepared mutation signatures (100%) can be calculated, and the contribution of the BRCA signature can be evaluated based on the ratio D. .. When the ratio C obtained in (6) exceeds 50% and the ratio D obtained in (7) exceeds k% (k=15 to 40, preferably 20 to 30), the mutation It can be determined that the contribution of the BRCA signature to the catalog exceeds the contribution of the Age signature to the mutant catalog, that is, the condition (a1) is satisfied.
 条件(A)のうち条件(a2)の判定のための解析では、サイクリンE1のゲノム領域のプローブ(SNP)を指標にして染色体コピー数を解析することができる。サイクリンE1の染色体数コピー数が2以下である場合に条件(a2)を満たすと判定することができる。 In the analysis for determining the condition (a2) of the condition (A), the chromosome copy number can be analyzed using the probe (SNP) of the genomic region of cyclin E1 as an index. It can be determined that the condition (a2) is satisfied when the copy number of the cyclin E1 on the chromosome number is 2 or less.
 条件(B)の判定のための解析では、網羅的メチル化解析を実施し、被験試料におけるBRCA1のプロモーター領域のメチル化を同定することができる。網羅的メチル化解析の手法は公知であり、例えば、The Cancer Genome Atlas Research Network, Nature, 474: 609-615 (2011)に従って実施することができる。 In the analysis for determining condition (B), comprehensive methylation analysis can be performed to identify the methylation of the promoter region of BRCA1 in the test sample. The method of exhaustive methylation analysis is publicly known and can be carried out, for example, according to The Cancer Genome Atlas Research Network, Nature, 474: 609-615 (2011).
 本発明においては、下記条件(A)を満たす場合(すなわち、条件(a1)および(a2)の両方を満たす場合)に、対象の癌が、PARP阻害剤に対して感受性を有する癌である可能性が高い、あるいは、相同組換修復不全を有する癌である可能性が高いと判断することができる。
条件(A):(a1)変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回り、かつ(a2)サイクリンE1増幅が不存在であること
In the present invention, when the following condition (A) is satisfied (that is, both conditions (a1) and (a2) are satisfied), the target cancer may be a cancer sensitive to a PARP inhibitor. It can be determined that the cancer is highly likely or that the cancer has a homologous recombination repair deficiency.
Condition (A): the contribution of the BRCA signature to the (a1) mutation catalog exceeds the contribution of the Age signature to the mutation catalog, and (a2) the absence of cyclin E1 amplification.
 本明細書では、条件(A)の特徴ないしプロフィールをMutational Signature-based BioMarker(MSBM)といい、少なくとも条件(A)を満たす場合をMSBM陽性と、条件(A)を満たさない場合をMSBM陰性と、それぞれいうことがある。条件(A)を満たす場合、すなわち、シークエンス解析の結果、条件(a1)と条件(a2)の両方が満たされると判断される場合には、MSBM陽性と判定することができる。なお、条件(a1)の判定のための解析を工程(4)~(6)により実施する場合には、正確な判定の観点から、工程(7)をさらに実施するとともに、条件(A)を下記条件とすることができる。
条件(A):(a1)変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回るとともに、変異シグネチャー全体に対するBRCAシグネチャーの寄与度がk%(k=15~40)を超え、かつ(a2)サイクリンE1増幅が不存在であること
In the present specification, the characteristic or profile of the condition (A) is referred to as Mutational Signature-based BioMarker (MSBM), and at least the condition (A) is satisfied with MSBM positive, and the condition (A) is not satisfied with MSBM negative. , There are things to say. When the condition (A) is satisfied, that is, when it is determined that both the condition (a1) and the condition (a2) are satisfied as a result of the sequence analysis, the MSBM positive can be determined. When the analysis for determining the condition (a1) is performed by the steps (4) to (6), the step (7) is further performed and the condition (A) is set from the viewpoint of accurate determination. The following conditions can be set.
Condition (A): (a1) The contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog, and the contribution of the BRCA signature to the entire mutation signature exceeds k% (k=15-40), And (a2) absence of cyclin E1 amplification
 本発明においては、下記条件(B)を補助的に用いることができ、下記条件(B)を満たす場合に、対象の癌が、PARP阻害剤に対して感受性を有する癌である可能性が高い、あるいは、相同組換修復不全を有する癌である可能性が高いと判断することができる。
条件(B):BRCA1のプロモーター領域のメチル化
In the present invention, the following condition (B) can be supplementarily used, and when the following condition (B) is satisfied, the target cancer is highly likely to be a cancer having sensitivity to a PARP inhibitor. Alternatively, it can be determined that the cancer is highly likely to have a homologous recombination repair deficiency.
Condition (B): methylation of the promoter region of BRCA1
 条件(B)を満たす場合、すなわち、網羅的メチル化解析の結果、BRCA1のプロモーター領域がメチル化されていると判断される場合には、条件(A)が満たされることを条件に、MSBM陽性と判定することができる。この意味において、条件(B)のプロフィールを場合によってはMSBMということがある。 When the condition (B) is satisfied, that is, when the result of the comprehensive methylation analysis indicates that the promoter region of BRCA1 is methylated, the condition (A) is satisfied, and the MSBM positive condition is satisfied. Can be determined. In this sense, the profile of condition (B) is sometimes referred to as MSBM.
 本発明においてはMSBMの陽性・陰性の判断はgBRCA変異の解析結果に左右されない。従って、対象がgBRCA変異1/2陰性であっても、条件(A)が満たされれば、MSBMの陽性と判定することができる。 In the present invention, the determination of MSBM positive/negative does not depend on the analysis result of gBRCA mutation. Therefore, even if the subject is negative for gBRCA mutation 1/2, it can be determined to be positive for MSBM if the condition (A) is satisfied.
 条件(a1)の「Ageシグネチャーに対するBRCAシグネチャーの優位性」は、核酸試料について得られたAgeシグネチャースコアの総計と、BRCAシグネチャースコアの総計との和に対するBRCAシグネチャースコアの総計の比率(%)に基づいて決定することができ、該比率が50%を超える場合に、条件(a1)を満たすと判定することができる。 The condition (a1) “dominance of BRCA signature over Age signature” is defined as the ratio (%) of the sum of Age signature scores obtained for nucleic acid samples and the sum of BRCA signature scores to the sum of BRCA signature scores. It can be determined based on the above conditions, and when the ratio exceeds 50%, it can be determined that the condition (a1) is satisfied.
 条件(a2)の「サイクリンE1増幅の不存在」は、サイクリンE1の染色体数コピー数が2以下である場合に条件(a2)を満たすと判定することができ、染色体数が2を上回る場合には条件(a2)を満たさないと判定することができる。 Condition (a2) "absence of cyclin E1 amplification" can be determined to satisfy condition (a2) when the copy number of cyclin E1 is 2 or less, and when the number of chromosomes is greater than 2. Can be determined not to satisfy the condition (a2).
 本発明の方法では、感受性を予測する癌を患う複数の癌患者の核酸試料について予め変異シグネチャー解析を実施し、図1に記載の96種の置換分類について、AgeシグネチャーおよびBRCAシグネチャーの置換変異の変異率を特定することができる。すなわち、本発明の方法によれば、配列解析の種別ごとにAgeシグネチャーおよびBRCAシグネチャーを設定し、最適な検査方法を構築することができる。例えば、特定の癌遺伝子パネル検査においてシグネチャー解析を実施してAgeシグネチャーおよびBRCAシグネチャーを準備し、その癌遺伝子パネル検査において予め準備したAgeシグネチャーおよびBRCAシグネチャーを用いて、本発明の方法に従ってPARP阻害剤に対する癌の感受性を正確かつ簡便に予測するとともに、相同組換修復不全(HRD)を有する癌を正確かつ簡便に検出することができる。なお、癌遺伝子パネル検査においてシグネチャー解析を実施する場合にはアーカイブ検体を利用して実施してもよい。 In the method of the present invention, a mutation signature analysis is performed in advance on nucleic acid samples of a plurality of cancer patients suffering from a cancer that predicts susceptibility, and the substitution mutations of Age signature and BRCA signature of the 96 types of substitution classification shown in FIG. 1 are analyzed. The mutation rate can be specified. That is, according to the method of the present invention, an Age signature and a BRCA signature can be set for each type of sequence analysis, and an optimal inspection method can be constructed. For example, a signature analysis is performed in a specific cancer gene panel test to prepare an Age signature and a BRCA signature, and the PARP inhibitor according to the method of the present invention is used by using the Age signature and the BRCA signature prepared in advance in the oncogene panel test. It is possible to accurately and simply predict the susceptibility of the cancer to the cancer and to accurately and easily detect the cancer having a homologous recombination repair deficiency (HRD). When performing signature analysis in the cancer gene panel test, archive samples may be used.
 本発明によれば、PARP阻害剤による癌患者の治療方法であって、本発明の予測方法を実施してPARP阻害剤に対して感受性を有する癌を有する癌患者を特定するか、あるいは本発明の検出方法を実施して相同組換修復不全を有する癌を有する癌患者を特定し、次いで、該患者に有効量のPARP阻害剤を投与することを含んでなる、治療方法が提供される。本発明によればまた、PARP阻害剤を有効成分として含んでなる癌治療剤であって、前記治療が本発明の治療方法の手順により行われることを特徴とする、癌治療剤が提供される。本発明の治療方法において、PARP阻害剤に対して感受性を有する癌を有する癌患者を特定することや、相同組換修復不全を有する癌を有する癌患者を特定することは、本発明の予測方法や検出方法に関する記載に従って実施することができる。PARP阻害剤の治療上の有効量はその薬剤の標準的な用量とすることができる。例えば、オラパリブについては、600mg(有害事象により適宜漸減する場合がある)を成人の1日分の有効投与量(経口投与)とすることができ、例えば、1回300mgを1日2回(300mg×2回/日)(有害事象により、250mg×2回/日、200mg×2回/日など漸減する場合がある)投与することができる。本発明の治療方法および本発明の治療剤によれば、PARP阻害剤の奏効可能性が高い癌患者に対してPARP阻害剤を投与することができるため、癌患者(特にHRDを示す癌患者)に適した治療選択肢を提供できる点で有利である。 According to the present invention, there is provided a method for treating a cancer patient with a PARP inhibitor, which comprises performing the prediction method of the present invention to identify a cancer patient having a cancer sensitive to the PARP inhibitor, or the present invention Is provided to identify a cancer patient having a cancer having a homologous recombination repair deficiency, and then to administer an effective amount of a PARP inhibitor to the patient. According to the present invention, there is also provided a cancer therapeutic agent comprising a PARP inhibitor as an active ingredient, wherein the above-mentioned treatment is performed by the procedure of the therapeutic method of the present invention. .. In the treatment method of the present invention, identifying a cancer patient having a cancer sensitive to a PARP inhibitor or identifying a cancer patient having a cancer having a homologous recombination repair deficiency is the predictive method of the present invention. And the detection method. A therapeutically effective amount of a PARP inhibitor can be the standard dose of that drug. For example, for olaparib, 600 mg (which may be appropriately reduced depending on adverse events) can be used as the effective daily dose for adults (oral administration), for example, 300 mg once a day (300 mg twice a day). (×2 times/day) (depending on adverse events, it may be gradually reduced to 250 mg×2 times/day, 200 mg×2 times/day, etc.). According to the therapeutic method of the present invention and the therapeutic agent of the present invention, since a PARP inhibitor can be administered to a cancer patient who is highly likely to respond to the PARP inhibitor, the cancer patient (particularly, the cancer patient exhibiting HRD) can be administered. Is advantageous in that it can provide treatment options suitable for
 以下の例に基づき本発明をより具体的に説明するが、本発明はこれらの例に限定されるものではない。 The present invention will be described more specifically based on the following examples, but the present invention is not limited to these examples.
例1:全エクソンシークエンス解析による変異シグネチャー解析
(1)高異型度卵巣癌における変異シグネチャー解析
 高異型度卵巣癌(卵巣漿液性癌)78例における癌細胞および正常細胞(血液)の新鮮凍結検体について、全エクソンシークエンス解析を実施(東京大学先端科学技術研究センター)し、Alexandrov LB et al., Nature, 500:415-21(2013)の記載に従って変異シグネチャー解析(Mutational signature)を行った。全エクソンシークエンス解析における各症例の変異カタログを統合し、非負値行列因子分解(Nonnegative Matrix Factorization;NMF、Lee DD and Seung HS, Nature, 401(6755):1999)を用いてクラスタリングを行い、クラスター数(変異シグネチャー数)による安定性(Stability)および振れ幅(Reconstruction Error)を算出した(Sawada et al., Gastroenterology, 150:1171-1182(2016)、Rosales RA et al., Bioinformatics, 33:8-16 (2017)、Patch et al., Nature, 521:489-94 (2015))。ここで、安定性が高く振れ幅が低いほど、クラスタリングが安定しているとみなされる。
Example 1: Mutation signature analysis by whole exon sequence analysis (1) Mutation signature analysis in high-grade ovarian cancer Fresh frozen samples of cancer cells and normal cells (blood) in 78 cases of high-grade ovarian cancer (serous ovarian cancer) All exon sequence analysis was carried out (Center for Advanced Science and Technology Research, University of Tokyo), and mutational signature analysis (Mutational signature) was performed as described in Alexandrov LB et al., Nature, 500:415-21 (2013). The mutation catalog of each case in all exon sequence analysis was integrated, and clustering was performed using nonnegative matrix factorization (NMF, Lee DD and Seung HS, Nature, 401(6755):1999). Stability and Reconstruction Error based on (mutation signature number) were calculated (Sawada et al., Gastroenterology, 150:1171-1182(2016), Rosales RA et al., Bioinformatics, 33:8- 16 (2017), Patch et al., Nature, 521:489-94 (2015)). Here, the higher the stability and the smaller the swing range, the more stable the clustering is.
 結果は、図2に示される通りであった。図2Aの結果から、シグネチャー数を増やすほど振れ幅の値が下がるが安定性はシグネチャー数3の場合は0.5であるのに対し、シグネチャー数2の場合では1.0に近い値となり、シグネチャー数2とする方が、安定性が顕著に高い結果となった。安定性と振れ幅との比が大きいほど安定であることから、2つのシグネチャー(AgeシグネチャーとBRCAシグネチャー)に分ける妥当性が示された。また、図2Bの結果から、AgeシグネチャーではCからTへの置換、BRCAシグネチャーでは塩基置換の変異が均一、といったそれぞれのシグネチャーにおける遺伝子変異の特徴的なパターン(Alexandrov LB et al., Nature, 500:415-421(2013))が確認された。 The results were as shown in Figure 2. From the result of FIG. 2A, the value of the swing width decreases as the number of signatures increases, but the stability is 0.5 when the number of signatures is 3, whereas the stability is close to 1.0 when the number of signatures is 2, A signature number of 2 resulted in significantly higher stability. Since the larger the ratio of stability to the fluctuation range is, the more stable it is, the validity of dividing into two signatures (Age signature and BRCA signature) was shown. Also, from the results of FIG. 2B, characteristic patterns of gene mutations in each signature such as C to T substitution in Age signature and uniform base substitution mutation in BRCA signature (Alexandrov LB et al., Nature, 500) :415-421(2013)) was confirmed.
(2)全エクソンシークエンス解析を用いた高異型度卵巣癌に優位に寄与するシグネチャーの判定
 高異型度卵巣癌(卵巣漿液性癌)78例について、上記(1)における全エクソンシークエンス解析による各症例の変異カタログについてBRCAシグネチャーとAgeシグネチャーの寄与(contribution)を非負値行列因子分解(NMF)に基づいて解析した。具体的には、各症例の体細胞遺伝子変異の各塩基置換の変異数を同定した。ここで、塩基置換は6クラス(C→A、C→G、C→T、T→A、T→CおよびT→G)に分類することができ、さらに各置換塩基の5’および3’に隣接する塩基を含めると各クラスは16のトリヌクレオチド配列を含むため全体では96種の塩基置換トリヌクレオチドに分類することができる(Serena Nki-Zainal et al., Cell 149:979-993(2012))。各症例について96種の置換分類に従って、変異したトリヌクレオチド配列の数(変異数)と変異率を同定して、変異カタログを作成し、スコア化した。スコア化は、置換分類ごとに、変異率と、上記(1)で算出されたAgeシグネチャーまたはBRCAシグネチャーにおける変異したトリヌクレオチド配列の変異率(図2B参照)との乗法による積を算出することにより行った。AgeシグネチャーまたはBRCAシグネチャーとの関係で算出した積の和をAgeシグネチャースコアまたはBRCAシグネチャースコアとした。各症例について、AgeシグネチャースコアとBRCAシグネチャースコアとの和に対するAgeシグネチャースコアまたはBRCAシグネチャースコアの比率(%)を算出した。また、公的なデータセットであるTCGAおよびICGCにおける変異カタログについても同様にして比率を算出しソートした。
(2) Judgment of a signature that contributes to high-grade ovarian cancer by using whole-exon sequence analysis About 78 cases of high-grade ovarian cancer (serous ovarian cancer), each case by whole-exon sequence analysis in (1) above The contributions of the BRCA and Age signatures were analyzed for each of the variant catalogs based on non-negative matrix factorization (NMF). Specifically, the number of mutations in each base substitution of somatic gene mutations in each case was identified. Here, the base substitution can be classified into 6 classes (C→A, C→G, C→T, T→A, T→C and T→G), and 5′ and 3′ of each substitution base. Since each class contains 16 trinucleotide sequences, it can be classified into 96 base-substituted trinucleotides as a whole (Serena Nki-Zainal et al., Cell 149:979-993 (2012). )). The number of mutated trinucleotide sequences (mutation number) and the mutation rate were identified according to 96 types of substitution classification for each case, and a mutation catalog was prepared and scored. The scoring is performed by calculating the product of the mutation rate and the mutation rate of the mutated trinucleotide sequence in the Age signature or BRCA signature (see FIG. 2B) calculated in (1) above for each substitution classification. went. The sum of products calculated in relation to the Age signature or the BRCA signature was used as the Age signature score or the BRCA signature score. For each case, the ratio (%) of the Age signature score or the BRCA signature score to the sum of the Age signature score and the BRCA signature score was calculated. Further, the ratios were calculated and sorted in the same manner for the mutation catalogs in TCGA and ICGC, which are public data sets.
 結果は、図3および図4に示される通りであった。Ageシグネチャーの寄与に対してBRCAシグネチャーの寄与が優位な症例が76.9%であることが確認された。また、BRCAシグネチャーの寄与が優位な群ではAgeシグネチャーの寄与が優位な群と比較して有意に変異数が多い(p<0.0001)ことが確認された(図3参照)。TCGAまたはICGCにおける非負値行列因子分解(NMF)では、BRCAシグネチャーの寄与が優位な症例がそれぞれ63.3%および67.5%であることが確認された(図4参照)。 The results were as shown in Figures 3 and 4. It was confirmed that 76.9% of cases had a dominant contribution of the BRCA signature to the contribution of the Age signature. It was also confirmed that the group in which the contribution of the BRCA signature was dominant had a significantly larger number of mutations (p<0.0001) than the group in which the contribution of the Age signature was dominant (see FIG. 3 ). Non-negative matrix factorization (NMF) in TCGA or ICGC confirmed that the cases in which the contribution of the BRCA signature was dominant were 63.3% and 67.5%, respectively (see FIG. 4).
例2:全エクソンシークエンス解析におけるバイオマーカー(MSBM)の設定
(1)MSBMの設定
 卵巣漿液性癌では、サイクリンE1(Cyclin E1;CCNE1)の増幅はAgeシグネチャーと正に相関すること(Etemadmoghadam, D. et al., Proc Natl Acad Sci U S A, 110:9489-94 (2013)、Patch AM et al., Nature, 521:489-94 (2015))が知られている。従って、「変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回り、かつ、サイクリンE1の増幅が不存在である」を条件(A)とし、条件(A)に対応するプロフィールを、相同組換修復異常を標的としたPARP阻害剤への感受性を予測するバイオマーカーおよび相同組換修復異常を検出するバイオマーカーと設定した。また、BRCA1のプロモーター領域のメチル化はBRCA1失活の要因となり相同組換修復異常をもたらすことが知られている(The Cancer Genome Atlas Research Network, Nature, 474: 609-615 (2011)、Moschetta M et al., Ann Oncol, 8:1449-55 (2016))。そこで、「BRCA1のプロモーター領域のメチル化を有する」を条件(B)とした。
Example 2: Biomarker (MSBM) setting in whole exon sequence analysis (1) MSBM setting In serous ovarian cancer, amplification of cyclin E1 (Cyclin E1; CCNE1) is positively correlated with Age signature (Etemadmoghadam, D et al., Proc Natl Acad Sci USA, 110:9489-94 (2013), Patch AM et al., Nature, 521:489-94 (2015)). Therefore, “the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog and the amplification of cyclin E1 is absent” is set as the condition (A), and the profile corresponding to the condition (A) is obtained. , A biomarker for predicting susceptibility to PARP inhibitors targeting a homologous recombination repair abnormality and a biomarker for detecting a homologous recombination repair abnormality. In addition, it is known that methylation of the promoter region of BRCA1 causes BRCA1 inactivation and leads to abnormal homologous recombination repair (The Cancer Genome Atlas Research Network, Nature, 474: 609-615 (2011), Moschetta M et al., Ann Oncol, 8:1449-55 (2016)). Therefore, “having methylation of the promoter region of BRCA1” was set as the condition (B).
 条件(A)については、さらに条件(a1):「変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回る」と条件(a2):「サイクリンE1の増幅が不存在である」とに分け、条件(a1)および条件(a2)の両方を満たす場合に条件Aを満たすとした。条件(a1)は全エクソンシークエンス解析および非負値行列因子分解(NMF)により、具体的には、各症例の変異カタログについてBRCAシグネチャースコアとAgeシグネチャースコアを例1(2)に記載の方法に従って算出し、BRCAシグネチャースコアとAgeシグネチャースコアの和に対するBRCAシグネチャースコアの比率が50%を超える場合に条件(a1)を満たすと判定した。条件(a2)は、サイクリンE1のゲノム領域のプローブ(SNP)を調べることにより染色体コピー数を解析し、サイクリンE1の染色体コピー数が2以下である場合に条件(a2)を満たすと判定した(Ohshima et al., Sci Rep, 7:641 (2017))。 Regarding condition (A), further condition (a1): “the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog” and condition (a2): “absence of amplification of cyclin E1”. Condition A is satisfied when both condition (a1) and condition (a2) are satisfied. Condition (a1) is calculated by total exon sequence analysis and non-negative matrix factorization (NMF), specifically, the BRCA signature score and Age signature score are calculated according to the method described in Example 1(2) for the mutation catalog of each case. Then, it was determined that the condition (a1) was satisfied when the ratio of the BRCA signature score to the sum of the BRCA signature score and the Age signature score exceeded 50%. Regarding the condition (a2), the chromosome copy number was analyzed by examining a probe (SNP) in the genomic region of cyclin E1, and it was determined that the condition (a2) was satisfied when the chromosome copy number of cyclin E1 was 2 or less ( Ohshima, et al., Sci Rep, 7:641 (2017)).
 条件(B)については、網羅的メチル化解析(Ouchi K et al., Cancer Sci., 106:1722-9 (2015))を実施した。具体的には、メチル化アレイ(Infinium Human Methylation450 BeadChip、イルミナ社製)をもとに、BRCA1のプロモーター領域のメチル化プローブ6~12個を抽出し、メチル化の値に基づいてクラスタリングを行い、高メチル化群と低メチル化群に分けた。高メチル化群を条件(B)を満たすと判定した。 Regarding condition (B), an exhaustive methylation analysis (OuchiK et al., Cancer Sci., 106:1722-9 (2015)) was performed. Specifically, based on a methylation array (Infinium HumanMethylation450 BeadChip, manufactured by Illumina), 6 to 12 methylation probes in the promoter region of BRCA1 are extracted, and clustering is performed based on the methylation value. It was divided into a hypermethylated group and a hypomethylated group. The hypermethylated group was determined to satisfy the condition (B).
(2)卵巣漿液性癌におけるMSBMによる判定
 高異型度卵巣癌(卵巣漿液性癌)78例において上記(1)に記載の方法および基準に従ってMSBMによる判定を行った。結果は、図5に示される通りであった。高異型度卵巣癌(卵巣漿液性癌)78例のうち、68%の症例がMSBM陽性であることが示された。
(2) Judgment by MSBM in serous ovarian cancer Judgment by MSBM was carried out in 78 cases of high-grade ovarian cancer (serous ovarian cancer) according to the method and criteria described in (1) above. The result was as shown in FIG. It was shown that 68% of 78 high-grade ovarian cancers (ovarian serous cancer) were MSBM positive.
例3:癌遺伝子パネル検査におけるMSBMの設定
(1)変異カタログに対して優位に寄与するシグネチャーの判定
 例2(2)において実施した高異型度卵巣癌(卵巣漿液性癌)78例の全エクソンシークエンス解析および非負値行列因子分解(NMF)によるMSBM判定に続いて、7症例について、癌遺伝子パネル検査を用いてMSBM判定を実施した。具体的には卵巣漿液性癌(漿液性腹膜癌を含む)7例において、患者から採取した腫瘍組織と血液からDNAを抽出し、Todai OncoPanel(東京大学医学部附属病院)を用いて配列決定および配列データ解析を実施し、各症例の変異カタログを作成した。変異カタログは、図1に記載の96種の置換分類と置換変異ごとの変異率に基づいて作成した。
Example 3: Setting of MSBM in oncogene panel test (1) Determination of signature that contributes to mutation catalog predominantly All exons of 78 cases of high-grade ovarian cancer (serous ovarian cancer) performed in Example 2 (2) Following the MSBM determination by sequence analysis and non-negative matrix factorization (NMF), 7 cases were subjected to MSBM determination using an oncogene panel test. Specifically, in 7 cases of ovarian serous cancer (including serous peritoneal cancer), DNA was extracted from the tumor tissue and blood collected from the patient, and sequenced and sequenced using Todai OncoPanel (University of Tokyo Hospital). Data analysis was performed and a mutation catalog for each case was created. The mutation catalog was created based on the 96 types of substitution classification shown in FIG. 1 and the mutation rate for each substitution mutation.
 さらに、生殖細胞系列BRCA(germline BRCA;gBRCA)突然変異は、既知のデータベースであるClinVar(https://www.ncbi.nlm.nih.gov/clinvar/)、COSMIC(http://www.sanger.ac.uk/genetics/CGP/cosmic/)およびOncoKB(https://oncokb.org/#/)を参照して、病的意義づけを判定した。具体的には、データベースにおいて「病原性あり」または「その可能性が高い」という判定の場合に、生殖細胞系列BRCA突然変異陽性とした。VUS(意義不明)という判定の場合には、生殖細胞系列BRCA突然変異陽性とした。 Furthermore, germline BRCA (germline BRCA; gBRCA) mutations are known databases such as ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) and COSMIC (http://www.sanger). .ac.uk/genetics/CGP/cosmic/) and OncoKB (https://oncokb.org/#/) were used to determine pathological significance. Specifically, when it was determined to be "pathogenic" or "highly likely" in the database, it was determined to be germline BRCA mutation positive. In the case of determination of VUS (unclear significance), germline BRCA mutation was positive.
(2)結果
 各症例の変異カタログとgBRCA変異解析の結果をX、YおよびZに分類し、結果を図6~8に示した。なお、いずれの症例についてもサイクリンE1増幅は認められなかった(データ示さず)。
(2) Results The mutation catalog of each case and the results of gBRCA mutation analysis were classified into X, Y and Z, and the results are shown in FIGS. 6 to 8. No cyclin E1 amplification was observed in any of the cases (data not shown).
分類X
 図6は分類Xの結果について示す。gBRCA変異の解析によると、症例X1(子宮体部 卵巣癌 低分化類内膜腺癌)、症例X2(リンパ節 卵巣癌のリンパ節転移、症例X1と同一患者)および症例X3(脾臓 卵巣癌の脾門部への播種)は、いずれもgBRCA1/2変異陽性であった。従って、症例X1、X2およびX3の変異カタログに対するBRCAシグネチャーの寄与はAgeシグネチャーの寄与を上回ることが予測された。症例X1、症例X2および症例X3のいずれの変異カタログにおいても、CからTへの置換をAgeシグネチャーとした場合のAgeシグネチャーのスコア(前記式(1)(ここで、i=33~48のときはKAi=1であり、i=1~32および49~96のときはKAi=0である)に従って算出できる。例3において以下同様。)と、CからTへの置換以外の置換(CからA、CからG、TからA、TからCおよびTからGへの置換、以下同様)のスコア(前記式(2)(ここで、i=1~32および49~96のときはKBi=1であり、i=33~48のときはKBi=0である)に従って算出できる。例3において以下同様。)との和に対するCからTへの置換以外の置換のスコアが50%を超えることが確認された。以上の結果から、CからTへの置換以外の置換をBRCAシグネチャーと設定できる可能性が示唆された。すなわち、Todai OncoPanelの検査では、BRCAシグネチャー(CからTへの置換以外の置換に対応)の寄与がAgeシグネチャー(CからTへの置換に対応)の寄与を上回ることは相同組換修復不全を有する癌の指標となりうると考えられる。
Classification X
FIG. 6 shows the results of classification X. Analysis of gBRCA mutations revealed that case X1 (uterine body ovarian cancer poorly differentiated endometrioid adenocarcinoma), case X2 (lymph node ovarian cancer lymph node metastasis, same patient as case X1) and case X3 (spleen ovarian cancer Seeding to the splenic hilum) was positive for gBRCA1/2 mutation. Therefore, it was predicted that the contribution of the BRCA signature to the mutation catalog of cases X1, X2 and X3 would exceed the contribution of the Age signature. In any of the mutation catalogs of case X1, case X2, and case X3, the score of Age signature when the substitution of C to T is defined as the Age signature (the above formula (1) (where i=33 to 48) Is KAi=1 and KAi=0 when i=1 to 32 and 49 to 96. The same applies in Example 3) and substitutions other than C to T substitution (from C to Substitution of A, C to G, T to A, T to C and T to G, and so on (the above formula (2) (where i=1 to 32 and 49 to 96, KBi= 1 and i=33 to 48 when KBi=0). The same applies to the sum of the following) and the score of substitution other than C to T substitution exceeds 50%. Was confirmed. From the above results, it was suggested that substitutions other than C to T substitution could be set as the BRCA signature. In other words, in the Todai OncoPanel examination, it was found that the contribution of the BRCA signature (corresponding to substitutions other than C to T substitution) exceeds the contribution of Age signature (corresponding to C to T substitution), which indicates homologous recombination failure. It is considered that it can be used as an index of cancer.
 また、gBRCA変異の解析によると症例X1、X2およびX3は、gBRCA1/2変異陽性であった。これらの結果から、分類Xの症例は「gBRCA1/2変異陽性」であり、かつ、「MSBM陽性」であるといえる。症例X3では、PARP阻害剤オラパリブの投与により無増悪生存が維持されることが確認された。上記から、MSBMによる判定により相同組換修復異常(HRD)を有する癌を検出でき、PARP阻害剤に対する感受性を予測できることが確認された。 In addition, cases X1, X2, and X3 were positive for gBRCA1/2 mutation according to the analysis of gBRCA mutation. From these results, it can be said that the cases of classification X are “gBRCA1/2 mutation positive” and “MSBM positive”. In case X3, it was confirmed that the progression-free survival was maintained by the administration of the PARP inhibitor olaparib. From the above, it was confirmed that cancer having a homologous recombination repair abnormality (HRD) can be detected by the determination by MSBM, and the sensitivity to a PARP inhibitor can be predicted.
分類Y
 図7は症例Yの結果について示す。症例Y1(卵巣癌、転移性乳癌)および症例Y2(卵巣癌、転移性乳癌)のいずれにおいても、分類Xに記載の方法と同様に計算して、BRCAシグネチャー(CからTへの置換以外の置換に対応)スコアとAgeシグネチャー(CからTへの置換に対応)スコアとの和に対するBRCAシグネチャースコアが50%を超えることが確認された。さらに、分類Xと分類Yとの結果から、Todai OncoPanelにおける解析では、BRCAシグネチャーがTからCへの置換パターンを示す傾向を有する可能性が示唆された。このように、今後の症例の蓄積により、Todai OncoPanelにおけるBRCAシグネチャーおよびAgeシグネチャーをより詳細に決定できることが確認された。
Classification Y
FIG. 7 shows the results of case Y. In both case Y1 (ovarian cancer, metastatic breast cancer) and case Y2 (ovarian cancer, metastatic breast cancer), calculation was performed in the same manner as in the method described in classification X, and the BRCA signature (except for the substitution of C to T) was calculated. It was confirmed that the BRCA signature score for the sum of the (corresponding to substitution) score and the Age signature (corresponding to C to T substitution) score was more than 50%. Furthermore, from the results of classification X and classification Y, it was suggested that the analysis in Todai OncoPanel may have a tendency that the BRCA signature has a substitution pattern of T to C. As described above, it was confirmed that the BRCA signature and the Age signature in the Todai Onco Panel can be determined in more detail by accumulating future cases.
 また、gBRCA変異の解析によると症例Y1およびY2は、gBRCA1/2変異陰性であった。これらの結果から、分類Yの症例は「gBRCA1/2変異陰性」であり、かつ、「MSBM陽性」であることが確認された。上記から、gBRCA1/2変異陰性であっても、MSBMによる判定により相同組換修復異常(HRD)を有する癌を検出でき、PARP阻害剤に対する感受性を予測できる可能性が確認された。 Moreover, according to the analysis of the gBRCA mutation, cases Y1 and Y2 were negative for the gBRCA1/2 mutation. From these results, it was confirmed that the cases of classification Y were “gBRCA1/2 mutation negative” and “MSBM positive”. From the above, it was confirmed that even if the gBRCA1/2 mutation is negative, a cancer having a homologous recombination repair abnormality (HRD) can be detected by the determination by MSBM, and the sensitivity to a PARP inhibitor can be predicted.
分類Z
 図8は症例Zの結果について示す。症例Z1(卵巣癌再発)および症例Z2(両側付属器摘出術後の腹膜癌)のいずれにおいても、Ageシグネチャー(CからTへの置換に対応)スコアとBRCAシグネチャー(CからTへの置換以外の置換に対応)スコアとの和に対するAgeシグネチャースコアが50%を超えることが確認された。ここで、症例Z1は、卵巣癌に対する主要薬剤であるプラチナ製剤に抵抗性であった。プラチナ製剤の感受性は、HRDを有する症例において高いことが示されており、PARP阻害剤の感受性と相関することが知られている(De Picciotto N et al., Crit Rev Oncol Hematol., 101:50-9 (2016))(本邦におけるPARP阻害剤オラパリブの適応は、プラチナ製剤感受性再発に限定されている)。従って、症例Z1は、PARP阻害剤オラパリブに対して低感受性である可能性が高い症例といえた。また、gBRCA変異の解析によると症例Z1およびZ2は、gBRCA1/2変異陰性であった。これらは、Todai OncoPanelにおけるCからTへの置換以外の置換がBRCAシグネチャーを反映し、BRCAシグネチャーの寄与がAgeシグネチャーの寄与を上回る場合に相同組換修復異常(HRD)の指標となるという、分類Xおよび分類Yの考察と整合する。これらの結果から、分類Zの症例は「gBRCA1/2変異陰性」であり、かつ、「MSBM陰性」であることが確認された。
Classification Z
FIG. 8 shows the results of case Z. In both case Z1 (ovarian cancer recurrence) and case Z2 (peritoneal cancer after bilateral adnexectomy) Age signature (corresponding to C to T substitution) score and BRCA signature (other than C to T substitution) It was confirmed that the Age signature score with respect to the sum with the score was more than 50%. Here, case Z1 was resistant to platinum drug, which is the main drug against ovarian cancer. The sensitivity of platinum preparations has been shown to be high in cases with HRD and is known to correlate with the sensitivity of PARP inhibitors (De Picciotto N et al., Crit Rev Oncol Hematol., 101:50. -9 (2016)) (Indications for the PARP inhibitor olaparib in Japan are limited to platinum-sensitive recurrence). Therefore, it can be said that the case Z1 is highly likely to have low sensitivity to the PARP inhibitor olaparib. Moreover, according to the analysis of the gBRCA mutation, cases Z1 and Z2 were negative for the gBRCA1/2 mutation. These are classifications in which substitutions other than C to T substitutions in the Todai OncoPanel reflect the BRCA signature and are indicators of homologous recombination repair abnormality (HRD) when the contribution of the BRCA signature exceeds the contribution of the Age signature. Consistent with the X and classification Y considerations. From these results, it was confirmed that the cases of classification Z were “gBRCA1/2 mutation negative” and “MSBM negative”.
例4:deconstructSigsを用いたMSBMの設定とそれを用いた判定
(1)deconstructSigs解析
ア 全エクソンシークエンス解析
 症例の、腫瘍組織(FFPE)と正常組織(末梢血)からDNA抽出し、エクソーム(Exome)キャプチャーキット(Agilent SureSelect Human All Exon V6 (S07604514)、イルミナ社)を用いてエクソン配列を濃縮し、付属のプロトコルに従いライブラリーを調製した。NextSeq(イルミナ社)を用いて、151塩基ペアエンドで配列を取得した。取得したデータは、ライブラリー毎に付加したインデックス配列に基づき、サンプル毎にfastqファイルに変換し、以降のデータ処理に用いる計算機内のストレージに保存した。fastqファイルはDNAなどの塩基配列とそのクオリティスコアを1つのファイルに一緒に保存する際に用いられ、次世代シーケンサー等から出力された塩基配列のデータを保存する際のフォーマットである。
Example 4: Setting of MSBM using destructStructs and determination using it (1) destructStructs analysis a Whole exon sequence analysis DNA was extracted from tumor tissue (FFPE) and normal tissue (peripheral blood) of the case, and exome (Exome). The exon sequence was concentrated using a capture kit (Agilent SureSelect Human All Exon V6 (S07604514), Illumina), and a library was prepared according to the attached protocol. The sequence was obtained at 151 base pair ends using NextSeq (Illumina). The acquired data was converted into a fastq file for each sample based on the index sequence added for each library and stored in the storage in the computer used for the subsequent data processing. The fastq file is used when storing a nucleotide sequence such as DNA and its quality score together in one file, and is a format for storing nucleotide sequence data output from a next-generation sequencer or the like.
イ リファレンスゲノムへのマッピング
 上記アで得られたfastqファイルを、bwa-mem(マッピングソフトウエアbwa(http://www.liheng.org)に実装されたゲノム解析用アルゴリズム)を用いて、ヒトゲノム配列(ヒトレファレンスゲノム配列:GRCh38)へマッピングした。
B. Mapping to the reference genome The fastq file obtained in the above step (a) is used to analyze the human genome sequence using bwa-mem (genome analysis algorithm implemented in mapping software bwa (http://www.liheng.org)). (Human reference genome sequence: GRCh38).
ウ 変異検出
 マッピング結果(bamファイル)を、同一症例の腫瘍部と正常部を組にして、変異検出プログラムkarkinos(https://github.com/genome-rcast/karkinosにて入手)にて処理し、体細胞変異のリストを作成した。
C. Mutation detection Mapping results (bam file) are processed with the mutation detection program karkinos (obtained at https://github.com/genome-rcast/karkinos) by combining the tumor part and normal part of the same case. , Created a list of somatic mutations.
エ 96塩基置換パターンの頻度データ
 得られた変異リストから、1塩基置換とその前後の1塩基を抽出し、塩基置換パターン毎に頻度を集計した。具体的には、ゲノムDNAの+/-鎖を区別せずに、変化前の塩基がCまたはTである鎖に揃える(例えば、CGT>CATはACG>ATGと同じものとして集計する)ことにより、96種の置換分類と置換変異ごとの変異率を集計し、変異カタログを作成した。
Frequency data of 96 base substitution pattern One base substitution and one base before and after the substitution were extracted from the obtained mutation list, and the frequency was aggregated for each base substitution pattern. Specifically, by aligning the +/- strands of the genomic DNA into the strands whose bases before the change are C or T (for example, CGT>CAT is counted as the same as ACG>ATG). , 96 types of substitutions and mutation rates for each substitution mutation were totaled to create a mutation catalog.
オ 変異シグネチャーの推定
 上記エで得られた96種の変異パターン(すなわち変異カタログ)の変異頻度を入力とし、変異シグネチャーの重みを推定するプログラムであるdeconstructSigsを用いて、既存の30種類のシグネチャーの寄与度を推計した。上記30種類の変異シグネチャーのセット(version2、March 2015)は、英国サンガー研究所のCOSMICデータベース(https://cancer.sanger.ac.uk/cosmic/signatures_v2)に登録されている30種の変異シグネチャー(COSMIC version 2)を用いた。30種類のシグネチャーのうち、BRCAシグネチャー(COSMICデータベースのSignature 3)およびAGEシグネチャー(COSMICデータベースのSignature 1)の寄与度について詳細に解析した。
Estimating mutation signatures Using the mutation frequencies of the 96 mutation patterns (that is, mutation catalogs) obtained in the above item d as input, deconstructStrigs, which is a program for estimating the weight of mutation signatures, is used to extract 30 existing signatures. The contribution was estimated. The set of 30 types of mutation signatures (version 2, March 2015) is the 30 types of mutation signatures registered in the COSMIC database (https://cancer.sanger.ac.uk/cosmic/signatures_v2) of the UK Sanger Research Institute. (COSMIC version 2) was used. Of the 30 types of signatures, the contributions of the BRCA signature (Signature 3 in the COSMIC database) and the AGE signature (Signature 1 in the COSMIC database) were analyzed in detail.
 deconstructSigsは、各サンプルについて、既存の変異シグネチャーの重み(寄与度)を推計するプログラムであり、計算された重みから再構築された変異プロファイルと元の入力を比較し、推計の適否を判断する(Rosenthal et al., Genome Biology, 17:31 (2016))。本実施例では、個々の腫瘍サンプルの96変異パターンの頻度[T:1x96](括弧内は、行列を示す記号:行列サイズ(row x col)を示す。以下同様)と、既存の変異シグネチャー行列[S:30x96]を入力とし、各シグネチャーの寄与度Wi(i=1~30)を計算した。Tを最適に再作成する重みWを決定するために、まず、対象の腫瘍サンプルの変異プロファイルに最も近い初期シグネチャーSiを既存の変異シグネチャーから1つ選択し、Siが再構築された腫瘍変異プロファイルに寄与する唯一のシグネチャーであるようにWを決定した。次に、重み行列[W]を変化させながら反復計算することにより、T-(SW)として計算される再構築エラーが最小化するような重み(寄与度)行列を決定した。 deconstructSigs is a program that estimates the weight (contribution) of the existing mutation signature for each sample, compares the mutation profile reconstructed from the calculated weight with the original input, and judges the appropriateness of the estimation ( Rosenthal et al., Genome Biology, 17:31 (2016)). In this example, the frequency of 96 mutation patterns of individual tumor samples [T: 1x96] (in parentheses indicates a matrix: matrix size (row x col). The same applies hereinafter) and existing mutation signature matrix. Using [S:30×96] as an input, the contribution degree Wi (i=1 to 30) of each signature was calculated. In order to determine the weight W that optimally recreates T, one initial signature Si closest to the mutation profile of the tumor sample of interest is selected from existing mutation signatures, and the tumor mutation profile in which Si is reconstructed is selected. W was determined to be the only signature that contributes to Next, a weight (contribution) matrix that minimizes the reconstruction error calculated as T-(SW) was determined by performing iterative calculation while changing the weight matrix [W].
(2)NMF解析とdeconstructSigs解析におけるシグネチャーの寄与の比較
ア 方法
 TCGA、ICGCおよび高異型度卵巣癌78例について、上記(1)に記載のdeconstructSigsによる解析を行った。deconstructSigsによる解析を行った結果と例1(2)に記載の非負値行列因子分解(NMF)に基づく解析(NMF解析)の結果を比較した。
(2) Comparison of Signature Contribution in NMF Analysis and destructStructs Analysis A method 78 cases of TCGA, ICGC and high-grade ovarian cancer were analyzed by the destructStrucs described in (1) above. The results of the analysis by destructStructs were compared with the results of the analysis (NMF analysis) based on the non-negative matrix factorization (NMF) described in Example 1(2).
イ 結果
 結果は、図9に示される通りであった。図9の結果から、NMF解析とdeconstructSigs解析とにおいて、AgeシグネチャーおよびBRCAシグネチャーの寄与は、全体的には同じ傾向がみられることが確認された。一方で、例えば、NMF解析においてBRCAシグネチャーの寄与率0.5で区切った場合(図9中の縦線を参照)、NMF解析ではBRCAシグネチャーが優位である(>0.5)もののdeconstructSigs解析ではBRCAシグネチャーが優位でない(<0.2)症例や、反対に、NMF解析ではBRCAシグネチャーが優位でない(<0.5)もののdeconstructSigs解析ではBRCAシグネチャーがそれほど低くない(>0.3)症例等の、NMF解析とdeconstructSigs解析とではシグネチャーの寄与の傾向が一致しない症例が一定数存在することが確認された。
B result The result was as shown in FIG. From the results of FIG. 9, it was confirmed that the contributions of Age signature and BRCA signature generally showed the same tendency in the NMF analysis and the destructStructs analysis. On the other hand, for example, in the NMF analysis, when the contribution ratio of the BRCA signature is 0.5 (see the vertical line in FIG. 9), the BRCA signature is dominant in the NMF analysis (>0.5), but the destructSigs analysis is performed. In cases where the BRCA signature is not dominant (<0.2), or conversely, in cases where the BRCA signature is not dominant in the NMF analysis (<0.5), the BRCA signature is not so low (>0.3) in the destructSigs analysis. , NMF analysis and destructStructSs analysis confirmed that there were a certain number of cases in which the signature contribution tendencies did not match.
(3)NMF解析とdeconstructSigs解析におけるBRCAシグネチャーの寄与の比較
ア 方法
 TCGA、ICGCおよび高異型度卵巣癌78例について、上記(1)に記載のdeconstructSigs解析を行った。deconstructSigs解析によるBRCAシグネチャー(COSMICデータベースのSignature 3)の寄与度と、例1(2)に記載のNMF解析によるBRCAシグネチャーの寄与率を散布図に示し、BRCAシグネチャーの寄与度について、NMF解析で定めた閾値(0.5)に相当するdeconstructSigs解析のBRCAシグネチャー(COSMICデータベースのSignature 3)の閾値を求めた。
(3) Comparison of contribution of BRCA signature in NMF analysis and destructStructs analysis a. Method For 78 cases of TCGA, ICGC and high-grade ovarian cancer, the destructStrucs analysis described in (1) above was performed. The contribution of the BRCA signature (Signature 3 in the COSMIC database) obtained by the destructStructs analysis and the contribution rate of the BRCA signature obtained by the NMF analysis described in Example 1 (2) are shown in a scatter diagram, and the contribution of the BRCA signature is determined by the NMF analysis. The threshold value of the BRCA signature of the destructStrigs analysis (Signature 3 in the COSMIC database) corresponding to the threshold value (0.5) was determined.
イ 結果
 結果は、図10および図11に示される通りであった。図10の結果から、NMF解析で定めた閾値(0.5)に相当するdeconstructSigs解析の閾値は0.25であった。図11の結果から、NMF解析の閾値(0.5)を用いた場合、66%の症例がBRCAシグネチャー優位であることが示された。また、deconstructSigs解析の閾値(0.25)を用いた場合、54%の症例でBRCAシグネチャーの寄与度が0.25以上であることが示された。
B. Results The results were as shown in FIGS. 10 and 11. From the result of FIG. 10, the threshold value of the destructStructs analysis corresponding to the threshold value (0.5) determined by the NMF analysis was 0.25. From the results in FIG. 11, it was shown that 66% of the cases were superior to the BRCA signature when the threshold value (0.5) of NMF analysis was used. Further, when the threshold value of the destructStructs analysis (0.25) was used, it was shown that the contribution of the BRCA signature was 0.25 or more in 54% of the cases.
(4)deconstructSigs解析におけるバイオマーカー(MSBM)の設定
ア 方法
 高異型度卵巣癌78例について、上記(1)に記載のdeconstructSigs解析を行った。具体的には、各症例の変異カタログについて、BRCAシグネチャーとAgeシグネチャーを含む30種の変異シグネチャーの寄与度を上記(1)に記載の方法に従って算出し、BRCAシグネチャーの寄与度が0.25(25%)以上で、かつ、BRCAシグネチャーの寄与度がAGEシグネチャーの寄与度を上回っている場合に条件(a1)を満たすと判定した以外は、例2(1)に記載の方法および基準に従って条件(A)(条件(a2):「サイクリンE1の増幅が不存在である」を含む)を定めた。
(4) Setting method of biomarker (MSBM) in destructStructs analysis A method of destructStrigs described in (1) above was performed on 78 cases of high-grade ovarian cancer. Specifically, with respect to the mutation catalog of each case, the contribution of 30 kinds of mutation signatures including the BRCA signature and the Age signature was calculated according to the method described in (1) above, and the contribution of the BRCA signature was 0.25( 25%) or more and the condition (a1) is satisfied when the contribution of the BRCA signature exceeds the contribution of the AGE signature, except that the condition and the condition described in Example 2(1) are satisfied. (A) (Condition (a2): "Amplification of cyclin E1 is absent" is included).
イ 結果
 deconstructSigs解析の結果、73%(57/78)の症例においてBRCAシグネチャーの寄与度がAGEシグネチャーの寄与度を上回っていることが示され、また、73%(57/78)の症例において変異シグネチャー全体に対するBRCAシグネチャーの寄与度が0.25(25%)以上であることが示された。また、変異シグネチャー全体に対するBRCAシグネチャーの寄与度が0.25(25%)以上であり、かつ、BRCAシグネチャーの寄与度がAGEシグネチャーの寄与度を上回っている症例が73%(57/78)であった。さらに、変異シグネチャー全体に対するBRCAシグネチャーの寄与度が0.25(25%)以上であり、かつ、BRCAシグネチャーの寄与度がAGEシグネチャーの寄与度を上回っている症例であって、サイクリンE1増幅の不存在が確認された症例は68%(53/78)であった。すなわち、高異型度卵巣癌(卵巣漿液性癌)78例のうち、68%の症例がMSBM陽性であることが示された。
B. Results The resultStructSigs analysis showed that the contribution of the BRCA signature exceeded the contribution of the AGE signature in 73% (57/78) of the cases, and the mutation in 73% (57/78) of the cases. It was shown that the contribution of the BRCA signature to the entire signature is 0.25 (25%) or more. In addition, in 73% (57/78), the contribution of the BRCA signature to the entire mutation signature was 0.25 (25%) or more, and the contribution of the BRCA signature exceeded the contribution of the AGE signature. there were. Furthermore, the contribution of the BRCA signature to the entire mutation signature is 0.25 (25%) or more, and the contribution of the BRCA signature exceeds the contribution of the AGE signature, and there is no cyclin E1 amplification. 68% (53/78) cases were confirmed to exist. That is, it was shown that, out of 78 cases of high-grade ovarian cancer (serous ovarian cancer), 68% of cases were MSBM positive.
 ここで、生殖細胞系列HRD突然変異(HRD genes’ germline mutation;生殖細胞系列のBRCA1/2突然変異、RAD51C突然変異およびRAD51D突然変異を含む)は、高異型度卵巣癌(卵巣漿液性癌)78例のうち23例存在しているところ(図12)、変異シグネチャー全体に対するBRCAシグネチャーの寄与度が0.25(25%)以上である症例において18例存在し(78%)、BRCAシグネチャーの寄与度がAGEシグネチャーの寄与度を上回っている症例において13例(57%)存在していた。これらの結果から、deconstructSigs解析によるBRCAシグネチャーの寄与度がAGEシグネチャーの寄与度を上回っている場合に条件(a1)を満たすと判定できるが、より正確な判定のためには、BRCAシグネチャーの寄与度が0.25(25%)以上で、かつ、BRCAシグネチャーの寄与度がAGEシグネチャーの寄与度を上回っている場合に条件(a1)を満たすと判定することができる。以上から、deconstructSigs解析に基づくMSBMによる判定により相同組換修復異常(HRD)を有する癌を検出でき、PARP阻害剤に対する感受性を予測できる可能性が示された。

 
Here, the germline HRD mutation (HRD genes' germline mutation; including germline BRCA1/2 mutation, RAD51C mutation and RAD51D mutation) is high-grade ovarian cancer (serous ovarian cancer) 78 Where 23 of the cases exist (Fig. 12), 18 cases exist in the cases where the contribution of the BRCA signature to the entire mutation signature is 0.25 (25%) or more (78%), and the contribution of the BRCA signature. There were 13 cases (57%) in which the degree exceeded the contribution of the AGE signature. From these results, it can be determined that the condition (a1) is satisfied when the contribution of the BRCA signature by the destructStructs analysis exceeds the contribution of the AGE signature, but for more accurate determination, the contribution of the BRCA signature is Is 0.25 (25%) or more and the contribution of the BRCA signature exceeds the contribution of the AGE signature, it can be determined that the condition (a1) is satisfied. From the above, the possibility that a cancer having a homologous recombination repair abnormality (HRD) can be detected by the determination by MSBM based on the destructStructs analysis and the sensitivity to a PARP inhibitor can be predicted was shown.

Claims (31)

  1.  PARP阻害剤に対する癌の感受性を予測する方法であって、
     癌細胞から得られた核酸試料について配列解析を実施して変異カタログを作成する工程を含んでなり、(A)(a1)変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回り、かつ(a2)サイクリンE1増幅が不存在であることが、PARP阻害剤に対して感受性を有する癌の存在を示す、予測方法。
    A method of predicting cancer susceptibility to a PARP inhibitor comprising:
    Comprising the step of performing a sequence analysis on a nucleic acid sample obtained from a cancer cell to create a mutation catalog, wherein (A)(a1) the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog. And (a2) the absence of cyclin E1 amplification indicates the presence of a cancer sensitive to a PARP inhibitor.
  2.  前記癌細胞が癌患者から得られた細胞である、請求項1に記載の方法。 The method according to claim 1, wherein the cancer cells are cells obtained from a cancer patient.
  3.  前記癌が相同組換修復異常を示す可能性がある癌である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the cancer is a cancer that may exhibit a homologous recombination repair abnormality.
  4.  前記PARP阻害剤が、オラパリブ、ルカパリブ、ニラパリブ、ベリパリブまたはタラゾパリブである、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the PARP inhibitor is olaparib, lucaparib, niraparib, beriparib or tarazoparib.
  5.  前記配列解析が配列決定手順および配列データ解析手順を含んでなる、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the sequence analysis comprises a sequence determination procedure and a sequence data analysis procedure.
  6.  前記配列解析により図1に記載の96種の置換分類に従って体細胞遺伝子変異を同定し、変異カタログを作成する、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein somatic gene mutations are identified by the sequence analysis according to the 96 types of substitution classification shown in Fig. 1 and a mutation catalog is prepared.
  7.  前記配列解析を全エクソンシークエンス解析により行う、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the sequence analysis is performed by whole exon sequence analysis.
  8.  前記配列解析を癌遺伝子パネル検査により行う、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the sequence analysis is performed by an oncogene panel test.
  9.  下記工程(1)~(3):
    (1)AgeシグネチャーおよびBRCAシグネチャーを準備すること、
    (2)変異カタログに対するAgeシグネチャーおよびBRCAシグネチャーの寄与を評価すること、および
    (3)Ageシグネチャーの寄与に対するBRCAシグネチャーの寄与の優位性を評価すること
    をさらに含んでなる、請求項1~8のいずれか一項に記載の方法。
    The following steps (1) to (3):
    (1) Preparing an Age signature and a BRCA signature,
    9. The method of claim 1, further comprising (2) assessing the contribution of the Age and BRCA signatures to the mutation catalog, and (3) assessing the superiority of the contribution of the BRCA signature to the contribution of the Age signature. The method according to any one of claims.
  10.  前記工程(1)において、感受性を予測する癌を患う複数の癌患者について変異シグネチャー解析を実施し、Ageシグネチャーおよび/またはBRCAシグネチャーの置換変異の変異率を特定することによりAgeシグネチャーおよびBRCAシグネチャーを準備する、請求項9に記載の方法。 In the step (1), a mutation signature analysis is performed on a plurality of cancer patients suffering from cancers that predict susceptibility, and the Age signature and the BRCA signature are determined by specifying the mutation rate of the substitution mutation of the Age signature and/or the BRCA signature. The method according to claim 9, which is prepared.
  11.  前記工程(2)において、変異カタログについて、AgeシグネチャースコアおよびBRCAシグネチャースコアを算出することにより寄与を評価する、請求項9に記載の方法。 The method according to claim 9, wherein in the step (2), the contribution is evaluated by calculating the Age signature score and the BRCA signature score for the mutation catalog.
  12.  Ageシグネチャースコアが下記式(1):
    Figure JPOXMLDOC01-appb-M000001
    (上記式中、n=96であり、iは、図1に記載の96種の置換分類のうちi番目の置換変異を意味し、Miは、前記変異カタログのi番目の置換変異の変異率または変異数であり、KAiは、Ageシグネチャーのi番目の置換変異の変異率である。)
    により算出される、請求項11に記載の方法。
    The Age signature score is represented by the following formula (1):
    Figure JPOXMLDOC01-appb-M000001
    (In the above formula, n=96, i means the i-th substitution mutation in the 96 types of substitution classification shown in FIG. 1, and Mi is the mutation rate of the i-th substitution mutation in the mutation catalog. Or the number of mutations, and KAi is the mutation rate of the i-th substitution mutation in the Age signature.)
    The method according to claim 11, calculated by:
  13.  BRCAシグネチャースコアが下記式(2):
    Figure JPOXMLDOC01-appb-M000002
    (上記式中、n=96であり、iは、図1に記載の96種の置換分類のうちi番目の置換変異を意味し、Miは、前記変異カタログのi番目の置換変異の変異率または変異数であり、KBiは、BRCAシグネチャーのi番目の置換変異の変異率である。)
    により算出される、請求項11に記載の方法。
    The BRCA signature score is represented by the following formula (2):
    Figure JPOXMLDOC01-appb-M000002
    (In the above formula, n=96, i means the i-th substitution mutation in the 96 types of substitution classification shown in FIG. 1, and Mi is the mutation rate of the i-th substitution mutation in the mutation catalog. Or the mutation number, KBi is the mutation rate of the i-th substitution mutation of the BRCA signature.)
    The method according to claim 11, calculated by:
  14.  前記工程(3)において、Ageシグネチャースコアと、BRCAシグネチャースコアとの和に対するBRCAシグネチャースコアの比率A(%)を算出することにより、BRCAシグネチャーの寄与の優位性を評価する、請求項9および11~13のいずれか一項に記載の方法。 The superiority of the contribution of the BRCA signature is evaluated by calculating the ratio A (%) of the BRCA signature score to the sum of the Age signature score and the BRCA signature score in the step (3). 14. The method according to any one of 13 to 13.
  15.  前記工程(3)において、CからTへの置換以外の置換変異のスコア(BRCAシグネチャースコア)と、CからTへの置換変異のスコア(Ageシグネチャースコア)との和に対するCからTへの置換以外の置換変異のスコアの比率B(%)を算出することにより、BRCAシグネチャーの寄与の優位性を評価する、請求項9および11~13のいずれか一項に記載の方法。 In the step (3), the substitution of C to T with respect to the sum of the substitution mutation score (BRCA signature score) other than the substitution of C to T and the substitution mutation score of C to T (Age signature score) The method according to any one of claims 9 and 11 to 13, wherein the superiority of the contribution of the BRCA signature is evaluated by calculating the ratio B (%) of the scores of substitution mutations other than.
  16.  比率A(%)が50%を超える場合に、前記(a1)を満たすと判定する、請求項14に記載の方法。 The method according to claim 14, wherein it is determined that the condition (a1) is satisfied when the ratio A (%) exceeds 50%.
  17.  比率B(%)が50%を超える場合に、前記(a1)を満たすと判定する、請求項15に記載の方法。 The method according to claim 15, wherein it is determined that the condition (a1) is satisfied when the ratio B (%) exceeds 50%.
  18.  下記工程(4)~(6):
    (4)AgeシグネチャーおよびBRCAシグネチャーを少なくとも含む変異シグネチャーを準備すること、
    (5)変異カタログに対する変異シグネチャーそれぞれの寄与度を評価すること、および
    (6)Ageシグネチャーの寄与度に対するBRCAシグネチャーの寄与度の優位性を評価すること
    をさらに含んでなる、請求項1~8のいずれか一項に記載の方法。
    The following steps (4) to (6):
    (4) Providing a mutant signature including at least an Age signature and a BRCA signature,
    9. The method according to claim 1, further comprising (5) evaluating the contribution of each of the mutation signatures to the mutation catalog, and (6) evaluating the superiority of the contribution of the BRCA signature to the contribution of the Age signature. The method according to any one of 1.
  19.  (7)前記変異シグネチャー全体に対するBRCAシグネチャーの寄与度を評価することをさらに含んでなる、請求項18に記載の方法。 19. The method of claim 18, further comprising (7) assessing the contribution of a BRCA signature to the overall mutation signature.
  20.  前記変異シグネチャーが、COSMICデータベースの30種の変異シグネチャー(COSMIC version 2)の全部または一部を含む、請求項18に記載の方法。 The method according to claim 18, wherein the mutation signature includes all or a part of 30 kinds of mutation signatures (COSMIC version 2) in the COSMIC database.
  21.  前記工程(5)において、変異カタログに対する変異シグネチャーの寄与度をdeconstructSigs解析により評価する、請求項18に記載の方法。 The method according to claim 18, wherein in the step (5), the contribution degree of the mutation signature to the mutation catalog is evaluated by the destructStructs analysis.
  22.  前記工程(6)において、Ageシグネチャーの寄与度と、BRCAシグネチャーの寄与度との和に対するBRCAシグネチャーの寄与度の比率C(%)を算出することにより、BRCAシグネチャーの寄与度の優位性を評価する、請求項18に記載の方法。 In the step (6), the contribution ratio of the BRCA signature is evaluated by calculating the ratio C (%) of the contribution ratio of the BRCA signature to the sum of the contribution ratio of the Age signature and the contribution ratio of the BRCA signature. 19. The method of claim 18, wherein
  23.  前記工程(6)において、Ageシグネチャーの寄与度と、BRCAシグネチャーの寄与度との和に対するBRCAシグネチャーの寄与度の比率C(%)を算出することにより、BRCAシグネチャーの寄与度の優位性を評価し、かつ、
     前記工程(7)において、前記変異シグネチャーの寄与度の和(1)に対するBRCAシグネチャーの寄与度の比率D(%)を算出することにより、BRCAシグネチャーの寄与度を評価する、請求項19に記載の方法。
    In the step (6), the contribution ratio of the BRCA signature is evaluated by calculating the ratio C (%) of the contribution ratio of the BRCA signature to the sum of the contribution ratio of the Age signature and the contribution ratio of the BRCA signature. And
    The contribution of the BRCA signature is evaluated by calculating the ratio D(%) of the contribution of the BRCA signature to the sum (1) of the contributions of the mutant signatures in the step (7). the method of.
  24.  比率C(%)が50%を超える場合に、前記(a1)を満たすと判定する、請求項22に記載の方法。 The method according to claim 22, wherein when the ratio C (%) exceeds 50%, it is determined that the condition (a1) is satisfied.
  25.  比率C(%)が50%を超え、かつ、比率D(%)がk%(k=15~40)を超える場合に、前記(a1)を満たすと判定する、請求項23に記載の方法。 The method according to claim 23, wherein when the ratio C (%) exceeds 50% and the ratio D (%) exceeds k% (k=15 to 40), it is determined that (a1) is satisfied. ..
  26.  条件(A)の(a1)および(a2)の両方が満たされる場合に、前記癌細胞がPARP阻害剤に対して感受性を有する癌細胞集団を含むと判定する工程を含む、請求項1~25のいずれか一項に記載の方法。 The method according to any one of claims 1 to 25, which comprises determining that the cancer cell contains a cancer cell population susceptible to a PARP inhibitor when both (a1) and (a2) of the condition (A) are satisfied. The method according to any one of 1.
  27.  対象の被験試料について網羅的メチル化解析を実施する工程をさらに含んでなり、(B)BRCA1のプロモーター領域のメチル化がPARP阻害剤に対して感受性を有する癌の存在を示す、請求項1~26のいずれか一項に記載の方法。 The method according to claim 1, further comprising the step of performing an exhaustive methylation analysis on the test sample of interest, wherein (B) methylation of the promoter region of BRCA1 indicates the presence of a cancer sensitive to a PARP inhibitor. 27. The method according to any one of 26.
  28.  相同組換修復不全(HRD)を有する癌を検出する方法であって、
     癌細胞から得られた核酸試料について配列解析を実施して変異カタログを作成する工程を含んでなり、(A)(a1)変異カタログに対するBRCAシグネチャーの寄与が、変異カタログに対するAgeシグネチャーの寄与を上回り、かつ(a2)サイクリンE1増幅が不存在であることが、相同組換修復不全を有する癌の存在を示す、検出方法。
    A method for detecting cancer having homologous recombinant repair deficiency (HRD), comprising:
    Comprising the step of performing a sequence analysis on a nucleic acid sample obtained from a cancer cell to create a mutation catalog, wherein (A)(a1) the contribution of the BRCA signature to the mutation catalog exceeds the contribution of the Age signature to the mutation catalog. And (a2) the absence of cyclin E1 amplification indicates the presence of a cancer having a homologous recombination repair deficiency.
  29.  対象の被験試料について網羅的メチル化解析を実施する工程をさらに含んでなり、(B)BRCA1のプロモーター領域のメチル化が相同組換修復不全を有する癌の存在を示す、請求項28に記載の検出方法。 29. The method of claim 28, further comprising the step of performing an exhaustive methylation analysis on the test sample of interest, wherein (B) methylation of the promoter region of BRCA1 indicates the presence of a cancer with a homologous recombination repair deficiency. Detection method.
  30.  PARP阻害剤による癌患者の治療方法であって、請求項1~27のいずれか一項に記載の方法を実施してPARP阻害剤に対して感受性を有する癌を有する癌患者を特定するか、あるいは請求項28または29に記載の方法を実施して相同組換修復不全を有する癌を有する癌患者を特定し、次いで、該患者に有効量のPARP阻害剤を投与することを含んでなる、治療方法。 A method for treating a cancer patient with a PARP inhibitor, wherein the method according to any one of claims 1 to 27 is performed to identify a cancer patient having a cancer sensitive to the PARP inhibitor, Alternatively, comprising performing the method of claim 28 or 29 to identify a cancer patient having a cancer with homologous recombination repair deficiency, and then administering to said patient an effective amount of a PARP inhibitor. Method of treatment.
  31.  PARP阻害剤を有効成分として含んでなる癌治療剤であって、前記治療が請求項30に記載の方法により行われることを特徴とする、癌治療剤。

     
    A therapeutic agent for cancer comprising a PARP inhibitor as an active ingredient, wherein the treatment is carried out by the method according to claim 30.

PCT/JP2019/039415 2018-12-28 2019-10-04 Method for predicting susceptibility of cancer to parp inhibitors, and method for detecting cancer having homologous recombination repair deficiency WO2020137076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562373A JPWO2020137076A1 (en) 2018-12-28 2019-10-04 Methods for Predicting Cancer Sensitivity to PARP Inhibitors and Methods for Detecting Cancers with Homologous Recombination Deficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-248619 2018-12-28
JP2018248619 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137076A1 true WO2020137076A1 (en) 2020-07-02

Family

ID=71126192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039415 WO2020137076A1 (en) 2018-12-28 2019-10-04 Method for predicting susceptibility of cancer to parp inhibitors, and method for detecting cancer having homologous recombination repair deficiency

Country Status (2)

Country Link
JP (1) JPWO2020137076A1 (en)
WO (1) WO2020137076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694752A (en) * 2022-03-09 2022-07-01 至本医疗科技(上海)有限公司 Method, computing device and medium for predicting homologous recombination repair defects

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016523511A (en) * 2013-04-05 2016-08-12 ミリアド・ジェネティックス・インコーポレイテッド Methods and materials for assessing homologous recombination defects

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016523511A (en) * 2013-04-05 2016-08-12 ミリアド・ジェネティックス・インコーポレイテッド Methods and materials for assessing homologous recombination defects

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HODGSON DARREN R; DOUGHERTY BRIAN A; LAI ZHONGWU; FIELDING ANITRA; GRINSTED LYNDA; SPENCER STUART; O’CONNOR MARK J; HO TONY W; ROB: "Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes", BRITISH JOURNAL OF CANCER, vol. 119, no. 11, 24 October 2018 (2018-10-24), pages 1401 - 1409, XP036871225 *
ODA, KATSUTOSHI ET AL.: "Non-official translation: A multi-center, phase II study of Olaparib (a PARP inhibitor) maintenance therapy in primary ovarian cancer patients, using an exome sequencing-based biomarker for homologous recombination deficiency", ABSTRACTS FOR THE 56TH ANNUAL MEETING OF JAPAN SOCIETY OF CLINICAL ONCOLOGY, October 2018 (2018-10-01) *
STRONACH E.A. ET AL.: "Biomarker assessment of HR deficiency, tumor BRCA1/2mutations, and CCNE1 copy number in ovarian cancer: associations with clinical outcome following platinum monotherapy", MOL. CANCER RES., vol. 16, no. 7, July 2018 (2018-07-01), pages 1103 - 1111, XP055539341, DOI: 10.1158/1541-7786.MCR-18-0034 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694752A (en) * 2022-03-09 2022-07-01 至本医疗科技(上海)有限公司 Method, computing device and medium for predicting homologous recombination repair defects
CN114694752B (en) * 2022-03-09 2023-03-10 至本医疗科技(上海)有限公司 Method, computing device and medium for predicting homologous recombination repair defects

Also Published As

Publication number Publication date
JPWO2020137076A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US11984195B2 (en) Methylation pattern analysis of tissues in a DNA mixture
Na et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death
TWI636255B (en) Mutational analysis of plasma dna for cancer detection
Elkashef et al. IDH mutation, competitive inhibition of FTO, and RNA methylation
TW201718871A (en) Methylation pattern analysis of haplotypes in tissues in a DNA mixture
JP2022515200A (en) Tumor classification based on predicted tumor gene mutation amount
Fehringer et al. Association of the 15q25 and 5p15 lung cancer susceptibility regions with gene expression in lung tumor tissue
US20210292845A1 (en) Identifying methylation patterns that discriminate or indicate a cancer condition
Gautam et al. Genome-wide admixture and association analysis identifies African ancestry–specific risk loci of eosinophilic esophagitis in African Americans
WO2020137076A1 (en) Method for predicting susceptibility of cancer to parp inhibitors, and method for detecting cancer having homologous recombination repair deficiency
US20210102199A1 (en) Fragment size characterization of cell-free dna mutations from clonal hematopoiesis
WO2020092101A1 (en) Consensus molecular subtypes sidedness classification
US20110014625A1 (en) System and Method for Determining the Health of a Subject Using Polymorphic Risk Markers
KR101920158B1 (en) Methylation marker for diagnosing chronic obstructive pulmonary disease
Erdem et al. Multigene panel testing for hereditary breast cancer: An analysis of 70 BRCA-negative turkish patients
KR20200044123A (en) COMPREHENSIVE GENOMIC TRANSCRIPTOMIC TUMOR-NORMAL GENE PANEL ANALYSIS FOR ENHANCED PRECISION IN PATIENTS WITH CANCER
Leite et al. Assessment of microsatellite instability in colorectal cancer patients from Brazil
Saeidi et al. Homologous recombination repair gene mutations in Malaysian prostate cancer patients
CN115982644B (en) Esophageal squamous cell carcinoma classification model construction and data processing method
WO2023125787A1 (en) Biomarkers for colorectal cancer treatment
Yan et al. Mutational Analysis of OCT4+ and OCT4− Circulating Tumour Cells by Single Cell Whole Exome Sequencing in Stage I Non-Small Cell Lung Cancer Patients
Ambreen et al. Molecular Parallelisms and Divergences Between Human and Canine Cancers Would a dog be an appropriate experimental model for human cancers?
Yu et al. Bioinformatic analysis the expression and clinical significance of CDRT15 in cholangiocarcinoma using TCGA database
WO2023081117A1 (en) Immunotherapy targeting
WO2018202666A1 (en) Cpg-site methylation markers in colorectal cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905108

Country of ref document: EP

Kind code of ref document: A1