WO2020136863A1 - Plate-type heat exchanger and heat pump device - Google Patents

Plate-type heat exchanger and heat pump device Download PDF

Info

Publication number
WO2020136863A1
WO2020136863A1 PCT/JP2018/048446 JP2018048446W WO2020136863A1 WO 2020136863 A1 WO2020136863 A1 WO 2020136863A1 JP 2018048446 W JP2018048446 W JP 2018048446W WO 2020136863 A1 WO2020136863 A1 WO 2020136863A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat transfer
main plate
heat exchanger
transfer plate
Prior art date
Application number
PCT/JP2018/048446
Other languages
French (fr)
Japanese (ja)
Inventor
進一 内野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020562264A priority Critical patent/JP6947314B2/en
Priority to PCT/JP2018/048446 priority patent/WO2020136863A1/en
Publication of WO2020136863A1 publication Critical patent/WO2020136863A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Definitions

  • the present invention relates to a plate heat exchanger that performs heat exchange between a first fluid and a second fluid, and a heat pump device including the plate heat exchanger.
  • the plate heat exchanger is a heat exchanger configured by stacking a plurality of substantially rectangular heat transfer plates, forming a flow path between adjacent heat transfer plates, and forming a first fluid in the flow path. By alternately flowing the second fluid in the stacking direction, heat exchange is performed between the first fluid and the second fluid.
  • this plate heat exchanger in the related art, there is one that measures the temperature of the second fluid circulating in the refrigeration cycle by a temperature sensor provided on the side surface of the heat transfer plate (see, for example, Patent Document 1).
  • the contact area of the first fluid and the contact area of the second fluid on the side surface of the plate-type heat exchanger have substantially the same ratio. Therefore, even if the temperature sensor is provided at the position of the side surface facing the second fluid, there is a problem that the temperature of the first fluid is easily affected and the detection accuracy of the second fluid deteriorates.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a plate heat exchanger and a heat pump device capable of increasing the detection accuracy of the temperature of the second fluid in the plate heat exchanger. To aim.
  • the heat transfer plates each having a rectangular plate-shaped main plate portion and a wall portion projecting from an edge of the main plate portion to one side of the plate-shaped surface are alternately formed on the main plate.
  • the main plate portion is provided with a convex portion protruding from a plate-shaped surface opposite to the surface from which the wall portion protrudes, and the convex portion is ,
  • the main plate portion is formed intermittently or continuously along one long side of the main plate portion, and abuts on the wall portion of the heat transfer plate that is adjacent and adjacent to the protruding side of the main plate portion, Is provided with an elongated portion so as to be in contact with the other long side, and with the elongated portion of the heat transfer plate serving as a reference, the heat transfer plate that faces the elongated portion and is adjacent to the side on which the wall portion protrudes.
  • the distance to the convex portion of the heat plate is configured to be smaller than the distance from the elongated portion to the convex portion of the heat transfer plate that is adjacent and adjacent to the protruding side of the heat conducting plate. ..
  • the heat transfer plates each having a rectangular plate-shaped main plate portion and a wall portion projecting from an edge of the main plate portion to one side of the plate-shaped surface are alternately formed on the main plate.
  • a plate heat exchanger that is alternately formed in the stacking direction, by stacking the plurality of heat transfer plates, four sides formed by the plurality of wall portions at positions corresponding to the four sides of the main plate portion. At least one of the four side portions is configured such that the contact area of the second fluid is larger than the contact area of the first fluid.
  • the heat transfer plates having a rectangular plate-shaped main plate portion and a wall portion projecting from an edge of the main plate portion to one side of the plate-shaped surface are alternately provided on the main plate portion.
  • a plurality of layers are formed by reversing by 180 degrees with respect to an axis extending perpendicularly from the center of the plate-shaped surface, and a first flow path through which the first fluid flows and a second flow path through which the second fluid flows between the heat transfer plates.
  • the main plate portion is provided with a convex portion protruding from a plate-shaped surface opposite to the surface from which the wall portion protrudes, and the convex portion is,
  • the main plate portion is formed intermittently or continuously along one long side of the main plate portion, and abuts on the wall portion of the heat transfer plate that is adjacent and adjacent to the protruding side of the main plate portion.
  • the heat transfer provided with an elongated portion so as to be in contact with the other long side and facing the elongated portion of the heat transfer plate next to the side where the wall portion projects from the elongated portion.
  • the distance to the convex portion of the plate is configured to be smaller than the distance from the long portion to the convex portion of the heat transfer plate that is adjacent and adjacent to the side on which the convex portion protrudes, and in the wall portion.
  • a temperature detecting means installation portion for installing a temperature detecting means for detecting the temperature of the second fluid is provided in a portion facing the second fluid, and a compressor for compressing the second fluid, air, and the The second fluid, which includes an air heat exchanger that exchanges heat with the second fluid, an expansion valve that lowers the pressure of the second fluid, and a pressure container that holds the excess second fluid, circulates.
  • a second fluid circuit and temperature detecting means installed in the temperature detecting means installation section are provided.
  • the plate heat exchanger of the present invention can improve the detection accuracy when detecting the temperature of the second fluid from the side surface of the plate heat exchanger. Further, the plate heat exchanger of the present invention can improve the detection accuracy when detecting the temperature of the second fluid from the side portion of the plate heat exchanger.
  • the temperature detection means is installed in the temperature detection means installation portion, whereby the detection accuracy of the temperature of the second fluid can be improved.
  • FIG. 1 is a schematic view of the inside of a housing of an outdoor unit showing Embodiment 1 of the present invention.
  • FIG. 3 is an exploded perspective view of the plate heat exchanger used in the first embodiment of the present invention. It is a perspective view of the plate-type heat exchanger used for Embodiment 1 of this invention.
  • FIG. 3 is a front view of the heat transfer plate used in the first embodiment of the present invention. It is an enlarged view of the heat transfer plate used in Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of a heat transfer plate used in Embodiment 1 of the present invention. It is sectional drawing of the plate heat exchanger used for Embodiment 1 of this invention. It is sectional drawing of the plate heat exchanger used for Embodiment 1 of this invention. It is a front view of the heat transfer plate used for Embodiment 2 of this invention. It is an enlarged view of the heat transfer plate used for Embodiment 2 of this invention. It is sectional drawing of the heat transfer plate used for Embodiment 2 of this invention. It is sectional drawing of the plate-type heat exchanger used for Embodiment 2 of this invention. It is sectional drawing of the plate-type heat exchanger used for Embodiment 2 of this invention. It is sectional drawing of the plate-type heat exchanger used for Embodiment 2 of this invention.
  • FIG. 1 is a refrigerant circuit diagram
  • FIG. 2 is an external view of a casing 20 of the outdoor unit 1
  • FIG. 3 is a schematic view of the inside of the casing 20 of the outdoor unit 1 seen from above.
  • the lateral direction of the rectangular main plate portion 70a which will be described later, is defined as the "lateral direction”
  • the longitudinal direction of the main plate portion 70a is defined as the "longitudinal direction”.
  • the outdoor unit 1 as a heat pump device includes a refrigerant circuit 2a as a second fluid circuit.
  • the refrigerant circuit 2a includes a plate heat exchanger 3, a compressor 4 having a muffler 4a, a four-way valve 5, an air heat exchanger 6, a pressure vessel 7, an electronic expansion valve 8a, an electronic expansion valve 8b, and a refrigerant pipe connecting them. It is composed of 10.
  • the plate heat exchanger 3 is a heat exchanger configured by stacking a plurality of substantially rectangular heat transfer plates, forms a flow path between adjacent heat transfer plates, and connects the first fluid to the flow path. By alternately flowing the second fluid in the stacking direction, heat exchange is performed between the first fluid and the second fluid.
  • the water W that carries thermal energy to the outside of the outdoor unit 1 will be described as the first fluid
  • the refrigerant R that circulates in the refrigerant circuit 2a will be described as the second fluid.
  • water is used as the first fluid in the present embodiment
  • a liquid heat medium may be used.
  • the liquid heat medium include calcium oxide aqueous solution, ethylene glycol aqueous solution, and alcohol.
  • R32 is used as the refrigerant R as the second fluid, a refrigerant such as R410A, CO2, or HC may be used.
  • the air heat exchanger 6 exchanges heat between the air and the refrigerant R, and the pressure vessel 7 stores the refrigerant R.
  • the electronic expansion valve 8a and the electronic expansion valve 8b are used as a pressure reducing device for reducing the pressure of the refrigerant R.
  • the four-way valve 5 is configured to be able to switch the flow path of the refrigerant between the heating mode and the cooling mode.
  • the refrigerant circuit 2a When the refrigerant circuit 2a is set to the heating mode, the refrigerant R that has become high temperature and high pressure in the compressor 4 is transferred to the plate heat exchanger 3 (from the refrigerant pipe connection port 3c to the refrigerant pipe connection port 3d) to the electronic device.
  • a closed circuit is configured so that the expansion valve 8b, the pressure vessel 7, the electronic expansion valve 8a, the air heat exchanger 6, the muffler 4a, and the compressor 4 circulate in this order.
  • the refrigerant circuit 2a when the refrigerant circuit 2a is set in the cooling mode, the refrigerant R that has become high temperature and high pressure in the compressor 4 is supplied to the air heat exchanger 6, the electronic expansion valve 8a, the pressure vessel 7, and the electronic expansion valve 8b.
  • a closed circuit is configured so that the plate heat exchanger 3 (from the refrigerant pipe connection port 3d to the refrigerant pipe connection port 3c), the muffler 4a, and the compressor 4 circulate in this order.
  • Temperature sensors 11, 12, 13, and 14 are attached to the side surfaces of the refrigerant pipe 10 and the plate heat exchanger 3, respectively, to detect the temperature of the refrigerant R flowing through the refrigerant circuit 2a.
  • the outdoor unit 1 includes a control device 15, a storage device 16, and a computing device 17 for controlling the operation of each part.
  • the temperature sensor 11 is for detecting the temperature of the refrigerant pipe 10 on the outlet side of the compressor 4, and is fixed to the refrigerant pipe 10 on the outlet side of the compressor 4.
  • the temperature sensor 12 is for detecting the temperature of the air heat exchanger 6, and is fixed to the refrigerant pipe 10 near the air heat exchanger 6.
  • the temperature sensor 13 is for detecting the temperature of the refrigerant pipe 10 that connects the plate heat exchanger 3 and the electronic expansion valve 8b, and is fixed to the refrigerant pipe 10.
  • the temperature sensor 14 is for detecting the temperature of the refrigerant R flowing in the plate heat exchanger 3, and is fixed to the side surface of the plate heat exchanger 3.
  • the housing 20 of the outdoor unit 1 includes a grill 20a from which air is blown.
  • the outdoor unit 1 has a blower room 21 and a machine room 22, and the blower room 21 and the machine room 22 are separated by a separator 23.
  • the outdoor unit 1 includes an electrical component box that houses electrical components on the machine room 22.
  • the air heat exchanger 6, the fan 24, and the like are arranged in the blower chamber 21, and the outside air is blown to the air heat exchanger 6 by the operation of the fan 24.
  • a compressor 4 In the machine room 22, a compressor 4, a pressure vessel 7, a four-way valve 5 (not shown in FIG. 3), a plate heat exchanger 3, electronic expansion valves 8a and 8b (not shown in FIG. 3), etc. are arranged. Has been done.
  • FIG. 4 is an exploded perspective view of the plate heat exchanger 3
  • FIG. 5 is a perspective view of the plate heat exchanger 3
  • FIG. 6 is a front view of the heat transfer plates 40 and 41.
  • FIG. 7 is an enlarged view of the heat transfer plates 40 and 41.
  • 8A is a cross-sectional view of the heat transfer plates 40 and 41 seen from the position AA of FIG. 6, and
  • FIG. 8B is a cross-sectional view of the heat transfer plates 40 and 41 of BB of FIG.
  • FIG. 7 is a cross-sectional view seen from the position
  • (c) is a cross-sectional view of the heat transfer plates 40, 41 seen from the position CC in FIG.
  • FIG. 6 is a cross-sectional view seen from the position DD of FIG. 9 is a sectional view of the plate heat exchanger 3 as seen from the position BB in FIG. 6, and FIG. 10 is a sectional view of the plate heat exchanger 3 as seen from the position CC in FIG. It is a figure.
  • the reinforcing plate 44 is formed in a substantially rectangular plate shape, and the water pipe connection port 1a, the water pipe connection port 1b, the refrigerant pipe connection port 1c, and the refrigerant pipe connection port 1d are provided at the four corners of the substantially rectangular shape.
  • the outer plate 42 is for sealing the leakage of the refrigerant R and the water W, is formed in a substantially rectangular plate shape like the reinforcing plate 44, and has the first opening 46 and the second opening 47 at the four corners. , A third opening 48, and a fourth opening 49 are formed.
  • the outer plate 43 is formed in a substantially rectangular plate shape like the outer plate 42 and the like. The outer plate 43 is not provided with the first opening 46, the second opening 47, the third opening 48, and the fourth opening 49, unlike the outer plate 42.
  • Each heat transfer plate 40 is formed in a substantially rectangular plate shape, and a first opening 50, a second opening 51, a third opening 52, and a fourth opening 53 are formed at four corners.
  • Each heat transfer plate 41 is formed in a substantially rectangular plate shape, and a first opening 54, a second opening 55, a third opening 56, and a fourth opening 57 are formed at four corners.
  • a plurality of convex portions 61 and 62 are formed on the heat transfer plates 40 and 41, respectively.
  • the convex portions 61 and 62 are formed in a substantially V shape when viewed from the front side.
  • the water pipe connection port 1a, the first opening 46, the first opening 50, and the first opening 54 overlap in the stacking direction
  • the second opening 51 and the second opening 55 overlap in the stacking direction
  • the refrigerant pipe connection port 1c, the third opening 48, the third opening 52, and the third opening 56 overlap in the stacking direction
  • the refrigerant pipe The connection port 1d, the fourth opening 49, the fourth opening 53, and the fourth opening 57 overlap in the stacking direction.
  • the heat transfer plates 40, 41, the outer plates 42, 43, and the reinforcing plates 44, 45 are stacked so that the outer peripheral wall portions of the heat transfer plates 40, 41, and the reinforcing plates 44, 45 overlap each other, and are joined by brazing.
  • the first flow path 63 in which the water W that has flowed in from the water pipe connection port 1a flows out from the water pipe connection port 1b is formed between the back surface of the heat transfer plate 40 and the front surface of the heat transfer plate 41.
  • the second flow path 64 in which the refrigerant R flowing in from the refrigerant pipe connection port 1c flows out from the refrigerant pipe connection port 1d is formed between the back surface of the heat transfer plate 41 and the front surface of the heat transfer plate 40.
  • the water W that has flowed into the first flow path 63 is configured to gradually spread in the lateral direction, flow in the longitudinal direction, and flow out from the second openings 51 and 55.
  • the water W flowing out from the openings 51, 55 is configured to flow through a passage hole formed by overlapping the openings 51, 55 and flow out from the water pipe connection port 1b to the outside.
  • the refrigerant R flowing into the second flow path 64 is configured to gradually spread in the lateral direction, flow in the longitudinal direction, and flow out from the fourth openings 53 and 57.
  • the refrigerant R flowing out from the fourth openings 53 and 57 is configured to flow through a passage hole formed by overlapping the fourth openings 53 and 57 and flow out to the outside from the refrigerant pipe connection port 1d.
  • the heat transfer plate 40 includes a main plate portion 70a having a substantially rectangular plate shape, wall portions 71a, 72a, 73a, 74a provided around the main plate portion 70a, and plural main plate portions 70a.
  • the projection 61 is provided.
  • the main plate portion 70a is provided with a first opening portion 50, a second opening portion 51, a third opening portion 52, a fourth opening portion 53, and a plurality of convex portions 61.
  • the wall portions 71a, 72a, 73a, 74a are formed so as to project from one side edge of the main plate portion 70a to one side of the plate-shaped surface.
  • the wall portions 71a, 72a, 73a, 74a are formed so as to project from the peripheral edge of the main plate portion 70a to one side of the plate-shaped surface.
  • the wall portion in the present invention is formed so as to project to the back side in the stacking direction.
  • the wall portions 71a and 72a are formed continuously on the long side of the main plate portion 70a, and the wall portion 71a and the wall portion 72a are formed such that the distance between them increases as the distance from the main plate portion 70a increases. That is, the wall portion 71a and the wall portion 72a are formed in a tapered shape.
  • the wall portions 73a and 74a are formed continuously on the short sides of the main plate portion 70a, and the wall portion 73a and the wall portion 74a are formed such that the distance between them increases as the distance from the main plate portion 70a increases. That is, the wall portion 73a and the wall portion 74a are formed in a tapered shape.
  • a first opening 50, a second opening 51, a third opening 52, and a fourth opening 53 are formed at the four corners of the main plate portion 70a.
  • the first opening 50 is formed at a corner of the main plate 70a formed by the wall 71a and the wall 74a
  • the second opening 51 is formed at a corner of the main plate 70a formed by the wall 71a and the wall 73a.
  • the third opening 52 is formed at the corner of the main plate 70a formed by the wall 72a and the wall 73a
  • the fourth opening 53 is formed at the corner of the main plate 70a formed by the wall 72a and the wall 74a. Is formed on.
  • the main plate portion 70a is formed with a high portion 75a in which a portion around the first opening 50 protrudes in a direction opposite to a direction in which the wall portions 71a, 72a, 73a, 74a protrude.
  • the high part 75a has a trapezoidal elevation when viewed from the front side.
  • the main plate portion 70a is formed with a high portion 76a in which a portion around the second opening portion 51 projects in a direction opposite to the direction in which the wall portions 71a, 72a, 73a, 74a project.
  • the high portion 76a has a trapezoidal elevation when viewed from the front side.
  • the projection length L1 of the wall portion 71a from the main plate portion 70a is formed to be longer than the projection length L2 of the wall portion 72a from the main plate portion 70a.
  • the protrusion length L1 is 6 mm and the protrusion length L2 is 4.7 mm.
  • the tip E1 of the wall portion 71a and the tip E2 of the wall portion 72b are aligned so that the wall portion H1 has a double structure and the side surface of the plate heat exchanger 3 is increased in strength. be able to.
  • the side portion H1 mentioned here is configured by a plurality of wall portions 71a and a plurality of wall portions 72b.
  • the tip end E3 of the wall portion 71b and the tip end E4 of the wall portion 72a are configured to be aligned with each other, the wall portion H2 also has a double structure, and the strength of the side surface of the plate heat exchanger 3 is similarly increased. Can be increased.
  • the side portion H2 is composed of a plurality of wall portions 71b and a plurality of wall portions 72a.
  • the side portion H1 is also a part of the side surface of the plate heat exchanger 3, and similarly, the side portion H2 is also a part of the side surface of the plate heat exchanger 3.
  • the tip E1 of the wall portion 71a and the tip E2 of the wall portion 72b are configured to be aligned, but the protrusion length of the wall portion 71a is increased to form a double wall structure. If possible, the same effect as described above can be obtained, and it is not necessary to configure the tips E1 and E2 to be aligned with each other.
  • the tip E1 of the wall portion 71a may be formed at least up to the position of the front surface portion of the wall portion 72b. With this configuration, the side surface of the second flow path 64 can be doubly covered with the wall portion 71a and the wall portion 72b on the back side thereof, and the strength of the side surface of the second flow path 64 can be increased.
  • the side surface of the first flow path 63 is the wall portion 71a, the rear wall portion 72b thereof, and the rear wall portion thereof. It can be triple-covered with 71a, and the strength of the side surface of the first flow path 63 can be increased. Similar changes may be made to the relationship between the tip E3 and the tip E4.
  • Main plate part 70a, wall parts 71a, 72a, 73a, 74a, first opening part 50, second opening part 51, third opening part 52, fourth opening part 53, a plurality of convex parts 61, and high parts 75a, 76a. Are formed by pressing a plate material.
  • the convex portion 61 is formed such that the middle valley portion of the V-shape faces one end in the longitudinal direction of the main plate portion 70a and both ends of the V-shape face the other end in the longitudinal direction of the main plate portion 70a. ..
  • the protruding height of the convex portion 61 from the main plate portion 70a is formed to be the same as the protruding height of the high portions 75a and 76a from the main plate portion 70a.
  • the protruding height of the convex portion 61 from the main plate portion 70a may be smaller than the protruding height of the high portions 75a and 76a from the main plate portion 70a.
  • one end of the V-shaped ends of the protrusion 61 is close to the wall 72a, and the other end is formed at a position spaced from the long side of the wall 71a by a predetermined distance.
  • the distance from the one end to the wall portion 72a is smaller than the distance from the other end to the wall portion 71a.
  • Each convex portion 61 is formed from a long side of the main plate portion 70a on the side of the wall portion 72a to a position at a predetermined distance from the long side of the wall portion 71a.
  • the long side on the wall 72a side corresponds to one long side according to the claims of the present application
  • the long side on the wall 71a side corresponds to the other long side according to the claims of the present application.
  • the main plate portion 70a is formed on the wall portion 71a side of the plurality of convex portions 61.
  • a long portion Fa having no protruding shape is formed. That is, by forming a plurality of convex portions 61 formed at a predetermined interval from the long side of the main plate portion 70a on the side of the wall portion 71a in an array along the longitudinal direction of the main plate portion 70a, the wall of the main plate portion 70a is formed.
  • a long portion Fa which is a region that is a part of the main plate portion 70a and in which the convex portion 61 is not formed, is formed on the long side of the portion 71a side.
  • the convex portion 61 is not included in the constituent requirements of the main plate portion 70a.
  • the convex portion 61 is intermittently formed along the long side of the main plate portion 70a on the side of the wall portion 72a as surrounded by the two-dot chain line on the right side of FIG. 7, and the long portion Fa is As shown by being surrounded by a two-dot chain line on the left side of FIG. 7, it is formed so as to be in contact with the long side of the main plate portion 70a on the wall portion 71a side.
  • the short-side length of the long portion Fa is 1.75 mm
  • the short-side length of the main plate portion 70a is 93 mm.
  • the ratio of the length in the widthwise direction of the long portion Fa to the length in the widthwise direction of the main plate portion 70a is preferably “1.2:100 to 4:100”, and is “2:100” in the present embodiment. ..
  • the ratio of the length in the short direction of the long portion Fa to the length in the short direction of the main plate portion 70a to be “1.2:100 to 4:100”
  • the long portion Fa and the convex portion 62 on the back side thereof are formed. It is possible to preferably maintain the contact state with and the area for forming the long portion Fa on the main plate portion 70a as small as possible.
  • the long portion Fa and the convex portion 62 on the back surface thereof are brought into contact with each other.
  • the state can be maintained more preferably, and the area for forming the long portion Fa on the main plate portion 70a can be reduced as much as possible.
  • the long portion Fa of the heat transfer plate 40 and the main plate portion 70b of the heat transfer plate 41 on the rear side thereof are separated by a distance K1. Since the long portion Fa of the heat transfer plate 40 and the main plate portion 70b of the heat transfer plate 41 on the front side thereof are separated by a distance K2 (K1 ⁇ K2), The temperatures of the refrigerant R and the water W are transmitted at substantially the same ratio.
  • the side portion H1 formed of the walls 71a and 72b has a larger contact area with the refrigerant R than a contact area with the water W.
  • the temperature sensor 14 is attached to the wall 71a. Therefore, the temperature sensor 14 joined to the wall portion 71a can detect the temperature of the refrigerant R while suppressing the influence of the water W.
  • the controller 15 reads the temperature data detected by the temperature sensor 14, and the arithmetic unit 17 calculates the temperature of the refrigerant R flowing in the plate heat exchanger 3 based on the temperature data.
  • the temperature transfer between the water W and the refrigerant R is not the same ratio, and the refrigerant R is more than the water W. Since the rate of temperature transfer increases, the temperature sensor 14 can improve the detection accuracy of the temperature of the refrigerant R. In addition, since the temperature sensor 14 increases the detection accuracy of the temperature of the refrigerant R, the outdoor unit 1 increases the calculation accuracy of the pressure saturation temperature data by the control device 15 and improves the control accuracy of the electronic expansion valves 8a and 8b. Can be increased.
  • the protrusion length L1 of the wall portion 71a from the main plate portion 70a is formed to be longer than the protrusion length L2 of the wall portion 72a from the main plate portion 70a.
  • the jointable width S1 of the temperature sensor 14 is configured to be approximately twice the width S2 of the second flow path 64 of the refrigerant R in the stacking direction. Therefore, it is not necessary to use a small temperature sensor corresponding to the width S2, and the temperature sensor 14 having a size corresponding to the width S1 can be used, so that temperature detection can be performed at low cost.
  • the protruding height of the convex portion 61 from the main plate portion 70a is the same as the protruding height of the high portions 75a and 76a from the main plate portion 70a. Therefore, both the convex portion 61 and the high portions 75a and 76a of the heat transfer plate 40 come into contact with the main plate portion 70b of the heat transfer plate 41 located on the front surface side of the heat transfer plate 40, so that the plate type heat The strength of the exchanger 3 can be increased. Further, in the heat transfer plate 41, the protruding height of the convex portion 62 from the main plate portion 70b is formed to be the same as the protruding height of the high portions 75b and 76b from the main plate portion 70b.
  • both the convex portion 62 and the high portions 75b and 76b of the heat transfer plate 41 come into contact with the main plate portion 70a of the heat transfer plate 40 located on the front surface side of the heat transfer plate 41, so that the plate type heat The strength of the exchanger 3 can be increased.
  • the total number of the heat transfer plates 40 and the heat transfer plates 41 is an odd number.
  • the flow path closest to the outer plate 42 constitutes the first flow path 63 through which the water W flows, and the water W is formed between the outer plate 43 and the heat transfer plate 40 adjacent to the outer plate 43. Is configured to flow. Therefore, in the plate heat exchanger 3, the water (W) is present between the refrigerant R and the reinforcing plates 44 and 45, so that the heat (cold air) of the refrigerant R is exchanged through the reinforcing plates 44 and 45 into the plate heat exchanger. The energy loss can be suppressed by suppressing the discharge to the outside of the container 3.
  • Embodiment 2 An outdoor unit equipped with the plate heat exchanger 80 according to Embodiment 2 of the present invention will be described with reference to FIGS. 11 to 17. 11 to 17, the same reference numerals as those in FIGS. 1 to 10 denote the same or corresponding parts.
  • the outdoor unit provided with the plate heat exchanger 80 of the second embodiment is obtained by changing the convex portions 61 and 62 of the heat transfer plates 40 and 41 of the first embodiment.
  • FIG. 11 is a front view of the heat transfer plates 81 and 82.
  • FIG. 12 is an enlarged view of the heat transfer plates 81 and 82.
  • 13A is a cross-sectional view of the heat transfer plates 81 and 82 seen from the position EE of FIG. 11, and
  • FIG. 13B is a cross-sectional view of the heat transfer plates 81 and 82 of II of FIG.
  • FIG. 12 is a cross-sectional view seen from the position
  • (c) is a cross-sectional view of the heat transfer plates 81, 82 seen from the position JJ in FIG. 11, and
  • (d) is a view showing the heat transfer plates 81, 82.
  • 11 is a cross-sectional view as seen from the position HH of 11.
  • FIG. 14 is a cross-sectional view of the plate heat exchanger 80 as seen from the position FF in FIG. 11, and FIG. 15 is a cross section of the plate heat exchanger 80 as seen from the position GG in FIG. It is a figure.
  • 16 is a cross-sectional view of the plate heat exchanger 80 as seen from the position I-I of FIG. 11, and FIG. 17 is a cross-section of the plate heat exchanger 80 as seen from the position JJ of FIG. It is a figure.
  • the plate heat exchanger 80 (see FIGS. 14 and 15) of the present embodiment includes heat transfer plates 81 and 82 as shown in FIGS. 11 and 13.
  • the heat transfer plate 81 includes a plurality of protrusions 83 and a plurality of protrusions 84.
  • the convex portion 83 and the convex strip portion 84 are formed in a substantially V shape when viewed from the front side.
  • the plurality of convex portions 83 are formed at the central positions in the longitudinal direction of the main plate portion 70a.
  • Each convex portion 83 is formed from a long side of the main plate portion 70a on the side of the wall portion 72a to a position spaced from the long side of the wall portion 71a by a predetermined distance.
  • the main plate portion 70a is provided on the wall portion 71a side of the plurality of convex portions 83.
  • a long portion Fc having no protruding shape is formed. That is, by forming a plurality of convex portions 83 formed at a predetermined interval from the long side of the main plate portion 70a on the side of the wall portion 71a so as to be arranged along the longitudinal direction of the main plate portion 70a, the wall of the main plate portion 70a is formed.
  • a long portion Fc which is a region that is a part of the main plate portion 70a and in which the convex portion 83 is not formed, is formed on the long side of the portion 71a side.
  • the convex portion 83 is intermittently formed along the long side on the wall portion 72a side of the main plate portion 70a as shown by being surrounded by the two-dot chain line on the right side of FIG. 12, and the long portion Fc is As shown by being surrounded by a two-dot chain line on the left side of FIG. 12, the main plate portion 70a is formed so as to be in contact with the long side of the wall portion 71a of the main plate portion 70a.
  • the main plate portion 70a is formed with a plurality of ridges 84 at positions on both sides in the longitudinal direction of the elongated portion Fc.
  • Each protruding portion 84 is formed from the long side of the main plate portion 70a on the side of the wall portion 72a to the long side of the wall portion 71a.
  • the constituent features of the main plate portion 70a do not include the convex portion 83 and the convex streak portion 84.
  • the temperature sensor 14 is provided at a position corresponding to the elongated portion Fc in the longitudinal direction, and is joined to the wall portion 71 a of the heat transfer plate 81 by brazing. Has been done. Furthermore, the temperature sensor 14 is attached to a portion of the wall portion 71a facing the refrigerant R.
  • the heat transfer plate 82 has the same shape as the heat transfer plate 81, and the reference numerals in parentheses correspond to the configuration of each part of the heat transfer plate 82. That is, the first opening portion 54, the second opening portion 55, the third opening portion 56, the fourth opening portion 57, the protruding portion 85, the protruding portion 86, the main plate portion 70b, the wall portions 71b and 72b of the heat transfer plate 82, The first opening 50, the second opening 51, the third opening 52, the fourth opening 53, and the convex portion 83 of the heat transfer plate 81 are respectively included in the heat transfer plate 81.
  • the contact state between the heat transfer plate 81 and the heat transfer plate 82 will be described.
  • the elongated portion Fc of the main plate portion 70a of the heat transfer plate 81 is separated from the main plate portion 70b of the heat transfer plate 82 located on the back side. This distance is shown as a distance K5 in FIG.
  • the elongated portion Fc of the main plate portion 70a of the heat transfer plate 81 is separated from the main plate portion 70b of the heat transfer plate 82 located on the front surface side. This separated distance is shown as a distance K6 in FIG.
  • the plate heat exchanger 80 is configured such that the distance K5 and the distance K6 are substantially the same.
  • the elongated portion Fd of the main plate portion 70b of the heat transfer plate 82 is separated from the main plate portion 70a of the heat transfer plate 81 located on the rear surface side. This distance is shown as a distance K7 in FIG.
  • the elongated portion Fd of the main plate portion 70b of the heat transfer plate 82 is formed separately from the main plate portion 70a of the heat transfer plate 81 located on the front surface side. This separated distance is shown as a distance K8 in FIG.
  • the plate heat exchanger 80 is configured such that the distance K7 and the distance K8 are substantially the same.
  • the high portions 75a and 76a are configured to abut against the main plate portion 70a of the heat transfer plate 82 located on the front side thereof, and the high portions 75b and 76b are located on the front side thereof.
  • the heat transfer plate 81 is configured to come into contact with the main plate portion 70a.
  • FIG. 18 is a front view of the heat transfer plates 91 and 92.
  • 19A is a cross-sectional view of the heat transfer plates 91 and 92 seen from the position KK of FIG. 18, and
  • FIG. 19B is a cross-sectional view of the heat transfer plates 91 and 92 of LL of FIG. 19 is a cross-sectional view seen from the position
  • FIG. 19C is a cross-sectional view of the heat transfer plates 91 and 92 seen from the position MM in FIG. 18,
  • FIG. 19D is a cross-sectional view of the heat transfer plates 91 and 92.
  • FIG. 18 is a cross-sectional view seen from the position NN of 18.
  • 20 is a sectional view of the plate heat exchanger 90 seen from the position LL in FIG. 18, and
  • FIG. 21 is a sectional view of the plate heat exchanger 90 seen from the position MM in FIG. It is a figure.
  • the contact state with the long-side portion Fb on the front surface side which will be described later, is further improved. It is possible to maintain it suitably, and it is possible to reduce the area where the convex portion 93 is formed on the main plate portion 70a as much as possible.
  • the convex portion 93 of the heat transfer plate 91 is configured to come into contact with the wall portion 71 b and the elongated portion Fb of the heat transfer plate 92. Therefore, at the cross-sectional positions of FIGS. 20 and 21, only the water W comes into contact with the side portion H2 including the wall portions 71b and 72a without coming into contact with the refrigerant R. That is, the convex portion 93 of the heat transfer plate 91 is in contact with the wall portion 71 b of the heat transfer plate 92 that is adjacent and adjacent to the side where the convex portion 93 projects.
  • the elongated portion Fb of the main plate portion 70b of the heat transfer plate 92 is in contact with the convex portion 93 of the heat transfer plate 91 located next to the side where the walls 71b, 72b, 73b, 74b project.
  • the elongated portion Fb of the main plate portion 70b of the heat transfer plate 92 is formed separately from the convex portion 93 of the heat transfer plate 91 located on the front surface side. That is, with reference to the long portion Fb of the heat transfer plate 92, the distance from the long portion Fb to the convex portion 93 of the heat transfer plate 91 that is adjacent and adjacent to the side on which the walls 71b, 72b, 73b, and 74b project is determined. The distance from the long portion Fb to the convex portion 93 of the heat transfer plate 91 that is adjacent and adjacent to the side where the convex portion 94 projects is smaller than the distance.
  • the elongated portion Fa of the main plate portion 70a of the heat transfer plate 91 is in contact with the convex portion 94 of the heat transfer plate 92 located next to the side where the walls 71a, 72a, 73a, 74a project.
  • the elongated portion Fa of the main plate portion 70a of the heat transfer plate 91 is formed separately from the convex portion 94 of the heat transfer plate 92 located on the front surface side. That is, with reference to the long portion Fa of the heat transfer plate 91, the distance from the long portion Fa to the convex portion 94 of the heat transfer plate 92 that is adjacent and adjacent to the side on which the wall portions 71a, 72a, 73a, and 74a protrude. The distance is smaller than the distance from the long portion Fa to the convex portion 94 of the heat transfer plate 92 that is adjacent and adjacent to the side on which the convex portion 93 projects.
  • the convex portion 61 is not in contact with the main plate portion 70b of the heat transfer plate 92 located on the front surface side, but is configured to be in contact with the main plate portion 70b depending on the sectional position. ..
  • the convex portion 62 is not in contact with the main plate portion 70a of the heat transfer plate 91 located on the front side thereof, but is configured to be in contact with the main plate portion 70a depending on the cross-sectional position. Has been done.
  • the high portions 75a and 76a are configured to abut against the main plate portion 70b of the heat transfer plate 92 located on the front side thereof, and the high portions 75b and 76b are located on the front side thereof.
  • the heat transfer plate 91 is configured to come into contact with the main plate portion 70a.
  • the convex portion 93 of the heat transfer plate 91 abuts against the elongated portion Fb of the main plate portion 70b of the heat transfer plate 92 located on the front side thereof, and heat transfer is performed.
  • the convex portion 94 of the plate 92 is in contact with the elongated portion Fa of the main plate portion 70a of the heat transfer plate 91 located on the front side thereof. Since the heat transfer plate 91 is laminated by rotating the heat transfer plate 92 by 180 degrees with respect to the axis Z extending perpendicularly from the center of the plate-shaped surfaces of the main plate portions 70a and 70b, the heat transfer plate 92 abuts in this manner.
  • the side portion H1 including the wall portions 71a and 72b has the wall portion 71a and the elongated portion Fa of the heat transfer plate 91 and the convex portion 94 of the heat transfer plate 92 on the back side thereof. Since the long portion Fa of the heat transfer plate 91 and the convex portion 94 of the heat transfer plate 92 on the front surface thereof are in contact with each other and separated from each other, the temperature from only the refrigerant R is transmitted.
  • the side portion H1 composed of the wall portions 71a and 72b has the convex portion of the wall portion 71a and the elongated portion Fa of the heat transfer plate 91 and the heat transfer plate 92 on the rear side thereof even at the cross-sectional position shown in FIG. Since the portion 94 abuts and the long portion Fa of the heat transfer plate 91 and the convex portion 94 of the heat transfer plate 92 on the front side thereof are separated from each other, the temperature from only the refrigerant R is transmitted. It
  • the distance K9 from the long portion Fa to the convex portion 62 of the heat transfer plate 41 that is adjacent and adjacent to the side where the walls 71a, 72a, 73a, and 74a project is: It is configured to be smaller than the distance K10 from the long portion Fa to the convex portion 62 of the heat transfer plate 41 that is adjacent and opposite to the side where the convex portion 61 projects. Therefore, at the cross-sectional position in FIG. 22, the side surface H1 including the walls 71a and 72b has a larger contact area with the refrigerant R than with the water W.
  • the temperature transfer between the water W and the refrigerant R is not at the same ratio, and the temperature transfer between the refrigerant R and the water W is higher. Therefore, the temperature sensor 14 can improve the detection accuracy of the temperature of the refrigerant R.
  • Embodiment 5 An outdoor unit including the plate heat exchanger 110 according to the fifth embodiment of the present invention will be described with reference to FIGS. 23 and 24. 23 and 24, the same reference numerals as those in FIGS. 18 to 21 indicate the same or corresponding portions.
  • the outdoor unit equipped with the plate heat exchanger 110 of the fifth embodiment has the height of the convex portions 61, 62, 93, 94 of the heat transfer plates 91, 92 of the third embodiment lower than that of the third embodiment. It was done.
  • the convex portion 93 of the heat transfer plate 91 is configured to contact the wall portion 71b of the heat transfer plate 92, and is spaced from the long portion Fb of the heat transfer plate 92. It is configured.
  • the convex portion 94 of the heat transfer plate 92 is configured to come into contact with the wall portion 71a of the heat transfer plate 91, and is spaced apart from the long portion Fa of the heat transfer plate 91.
  • FIG. 23 is a cross-sectional view of the plate heat exchanger 110 corresponding to the position LL in FIG. 18, but with the elongated portion Fa of the heat transfer plate 91 as a reference, the elongated portion Fa to the wall portion 71a,
  • the distance K11 to the convex portion 94 of the heat transfer plate 92, which is adjacent to and opposes the side on which the protrusions 72a, 73a, and 74a are projected, is the same as the distance K11 of the heat transfer plate 92 that is adjacent and adjacent to the side on which the convex portion 93 projects from the long portion Fa. It is configured to be smaller than the distance K12 to the convex portion 94.
  • the distance K13 to the convex portion 94 of the heat transfer plate 92 that is adjacent and is opposed to the side on which the protruding portions 71a, 72a, 73a, and 74a are adjacent is the heat transfer plate that is adjacent and that is adjacent to the side on which the convex portion 93 is protruded from the long portion Fa. It is configured to be smaller than the distance K14 to the convex portion 94 of 92.
  • the side portion H1 including the wall portions 71a and 72b has a larger contact area with the refrigerant R than a contact area with the water W. Therefore, regarding the temperature transfer to the side surface of the plate heat exchanger 110 on the side where the temperature sensor 14 is joined, the temperature transfer between the water W and the refrigerant R is not the same ratio, and the temperature transfer between the refrigerant R and the water W is higher. Therefore, the temperature sensor 14 can improve the detection accuracy of the temperature of the refrigerant R.
  • FIG. 25 An outdoor unit including a plate heat exchanger 120 according to Embodiment 6 of the present invention will be described with reference to FIG. Note that, in FIG. 25, the same reference numerals as those in FIGS. 1 to 10 indicate the same or corresponding portions. While the convex portions 61 and 62 of the first embodiment are formed by pressing the heat transfer plates 40 and 41, the outdoor unit including the plate heat exchanger 120 of the sixth embodiment has a convex shape. The parts 121 and 122 are formed separately from the heat transfer plates 40 and 41. As shown in FIG. 25, a plurality of convex portions 121 are attached to a portion of the main plate portion 70a of the heat transfer plate 40 excluding the long portion Fa.
  • the side portion H1 including the wall portions 71a and 72b has a larger contact area with the refrigerant R than a contact area with the water W. Therefore, regarding the temperature transfer to the side surface of the plate heat exchanger 120 on the side where the temperature sensor 14 is joined, the temperature transfer between the water W and the refrigerant R is not the same ratio, and the temperature transfer between the refrigerant R and the water W is higher. Therefore, the temperature sensor 14 can improve the detection accuracy of the temperature of the refrigerant R.
  • the convex portions 121 and 122 are formed separately from the heat transfer plates 40 and 41 in the sixth embodiment, the convex portion 121 is integrated with the heat transfer plate 40, and the convex portion 122 is further connected to the heat transfer plate. It may be integrated with 41. Even with this structure, the same effect can be obtained.
  • the projections 93 and 94 of the third embodiment may be provided in the second embodiment.
  • the ridges 84 and 86 are formed over the entire area in the lateral direction.
  • the height can be increased as compared with the portions 83 and 85.
  • the temperature detected by the temperature sensor 14 joined to the wall portion 71a depends on the temperature based on the refrigerant R, and the refrigerant R flowing in the plate heat exchanger 3 with higher accuracy than the temperature sensor 14 of the first embodiment. The temperature of can be detected.
  • the convex portions 83, 85 of the second embodiment may be configured to have a low height, like the plate heat exchanger 100 of the fourth embodiment. Even with this configuration, the side portion H1 including the walls 71a and 72b has a larger contact area with the refrigerant R than the contact area with the water W, and the temperature R of the refrigerant R by the temperature sensor 14 is larger. The temperature detection accuracy can be improved.
  • the convex portions 121 and 122 of the sixth embodiment may be configured to have a low height, like the plate heat exchanger 100 of the fourth embodiment. Even with this configuration, the side portion H1 including the walls 71a and 72b has a larger contact area with the refrigerant R than the contact area with the water W, and the temperature R of the refrigerant R by the temperature sensor 14 is larger. The temperature detection accuracy can be improved.
  • the four-way valve 5 is provided to switch the flow of the refrigerant R so that the heating mode and the cooling mode can be switched, but the structure is not limited to this.
  • the four-way valve 5 may be omitted from the refrigerant circuit 2a, and the refrigerant circuit 2a may be configured to perform only one of the heating mode and the cooling mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This plate-type heat exchanger 3 is formed by rotating, by 180 degrees, heat transfer plates 40 and 41 180-degrees and stacking the heat transfer plates 40 and 41 and constitutesto configure a first flow passagesth 63 through which water W flows and a second flow passagesth 64 through which a refrigerant R flows. Elongated sections Fa, and Fb are formed at one long side of main plate sections 70a, and 70b, and protruding sections 61, and 62 are formed at the other long side. The protruding section 62 of each heat transfer plateblade 41 is configured so as to be in contact with a wall section 71a and the elongated section Fa of each heat transfer blade plate 40. Therefore, whereby only the refrigerant R and not the water W comes into contact with side sections H1 that comprise wall sections 71a, and 72b. As a result, a temperature sensor 14 joined to the wall section 71a canis able to exhibit improved temperature detection accuracy of the refrigerant R.

Description

プレート式熱交換器およびヒートポンプ装置Plate heat exchanger and heat pump device
 この発明は、第1流体と第2流体との間で熱交換を行うプレート式熱交換器および、そのプレート式熱交換器を備えたヒートポンプ装置に関する。 The present invention relates to a plate heat exchanger that performs heat exchange between a first fluid and a second fluid, and a heat pump device including the plate heat exchanger.
プレート式熱交換器とは、複数の略矩形の伝熱プレートを積層して構成された熱交換器であり、隣接する伝熱プレート間に流路を形成し、該流路に第1流体と第2流体とを積層方向に交互に流すことにより、第1流体と第2流体との間で熱交換を行うものである。このプレート式熱交換器において、従来技術では、冷凍サイクルを循環する第2流体の温度を、伝熱プレートの側面に設けた温度センサで測定するものがあった(例えば、特許文献1参照)。 The plate heat exchanger is a heat exchanger configured by stacking a plurality of substantially rectangular heat transfer plates, forming a flow path between adjacent heat transfer plates, and forming a first fluid in the flow path. By alternately flowing the second fluid in the stacking direction, heat exchange is performed between the first fluid and the second fluid. In this plate heat exchanger, in the related art, there is one that measures the temperature of the second fluid circulating in the refrigeration cycle by a temperature sensor provided on the side surface of the heat transfer plate (see, for example, Patent Document 1).
特開2013-124836号公報JP, 2013-124836, A
 しかしながら、上記のプレート式熱交換器は、プレート式熱交換器の側面は、第1流体の接触面積と第2流体の接触面積とがほぼ同割合となる構成となっている。そのため、温度センサを第2流体に対向する側面の位置に設けても、第1流体の温度影響を受けやすく、第2流体の検出精度が悪化するという問題があった。 However, in the plate-type heat exchanger described above, the contact area of the first fluid and the contact area of the second fluid on the side surface of the plate-type heat exchanger have substantially the same ratio. Therefore, even if the temperature sensor is provided at the position of the side surface facing the second fluid, there is a problem that the temperature of the first fluid is easily affected and the detection accuracy of the second fluid deteriorates.
 この発明は上記した問題点を解決するためになされたものであり、プレート式熱交換器内の第2流体の温度の検出精度を高めることができるプレート式熱交換器およびヒートポンプ装置を得ることを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a plate heat exchanger and a heat pump device capable of increasing the detection accuracy of the temperature of the second fluid in the plate heat exchanger. To aim.
 この発明に係るプレート式熱交換器は、矩形で板状の主板部と前記主板部の縁から板状の面の一方側へ突出させた壁部とを有した伝熱プレートを交互に前記主板部の板状面の中心から垂直に延びる軸を基準に180度反転して複数積層し、前記伝熱プレート間に第1流体が流れる第1流路と第2流体が流れる第2流路とを積層方向に交互に形成するプレート式熱交換器において、前記主板部には、前記壁部が突出した面とは反対側の板状の面から突出する凸部が設けられ、前記凸部は、前記主板部の一方の長辺に沿って断続的にまたは連続的に形成され、且つ該凸部が突出する側の隣で対向する前記伝熱プレートの前記壁部に当接し、前記主板部は、他方の長辺に接して沿うように長尺部を備え、前記伝熱プレートの前記長尺部を基準として、前記長尺部から前記壁部が突出する側の隣で対向する前記伝熱プレートの前記凸部までの距離は、前記長尺部から前記凸部が突出する側の隣で対向する前記伝熱プレートの前記凸部までの距離よりも小さくなるよう構成されたものである。 In the plate heat exchanger according to the present invention, the heat transfer plates each having a rectangular plate-shaped main plate portion and a wall portion projecting from an edge of the main plate portion to one side of the plate-shaped surface are alternately formed on the main plate. A first flow path through which the first fluid flows and a second flow path through which the second fluid flows between the heat transfer plates by stacking a plurality of layers by reversing 180 degrees with respect to an axis that extends vertically from the center of the plate-shaped surface of the portion. In the plate-type heat exchanger that alternately forms in the stacking direction, the main plate portion is provided with a convex portion protruding from a plate-shaped surface opposite to the surface from which the wall portion protrudes, and the convex portion is , The main plate portion is formed intermittently or continuously along one long side of the main plate portion, and abuts on the wall portion of the heat transfer plate that is adjacent and adjacent to the protruding side of the main plate portion, Is provided with an elongated portion so as to be in contact with the other long side, and with the elongated portion of the heat transfer plate serving as a reference, the heat transfer plate that faces the elongated portion and is adjacent to the side on which the wall portion protrudes. The distance to the convex portion of the heat plate is configured to be smaller than the distance from the elongated portion to the convex portion of the heat transfer plate that is adjacent and adjacent to the protruding side of the heat conducting plate. ..
 この発明に係るプレート式熱交換器は、矩形で板状の主板部と前記主板部の縁から板状の面の一方側へ突出させた壁部とを有した伝熱プレートを交互に前記主板部の板状面の中心から垂直に延びる軸を基準に180度反転して複数積層し、前記伝熱プレート間に第1流体が流れる第1流路と第2流体が流れる第2流路とを積層方向に交互に形成するプレート式熱交換器において、前記複数の伝熱プレートを積層することで前記主板部の四つの辺に対応する位置に前記複数の壁部によって構成される四つの側部を備え、前記四つの側部のうちの少なくとも一つの側部は、前記第1流体の接触面積よりも前記第2流体の接触面積が大きくなるように構成されたものである。 In the plate heat exchanger according to the present invention, the heat transfer plates each having a rectangular plate-shaped main plate portion and a wall portion projecting from an edge of the main plate portion to one side of the plate-shaped surface are alternately formed on the main plate. A first flow path through which the first fluid flows and a second flow path through which the second fluid flows between the heat transfer plates by stacking a plurality of layers by reversing 180 degrees with respect to an axis that extends vertically from the center of the plate-shaped surface of the portion. In a plate heat exchanger that is alternately formed in the stacking direction, by stacking the plurality of heat transfer plates, four sides formed by the plurality of wall portions at positions corresponding to the four sides of the main plate portion. At least one of the four side portions is configured such that the contact area of the second fluid is larger than the contact area of the first fluid.
 また、この発明に係るヒートポンプ装置は、矩形で板状の主板部と前記主板部の縁から板状の面の一方側へ突出させた壁部とを有した伝熱プレートを交互に前記主板部の板状面の中心から垂直に延びる軸を基準に180度反転して複数積層し、前記伝熱プレート間に第1流体が流れる第1流路と第2流体が流れる第2流路とを積層方向に交互に形成するプレート式熱交換器において、前記主板部には、前記壁部が突出した面とは反対側の板状の面から突出する凸部が設けられ、前記凸部は、前記主板部の一方の長辺に沿って断続的にまたは連続的に形成され、且つ該凸部が突出する側の隣で対向する前記伝熱プレートの前記壁部に当接し、前記主板部は、他方の長辺に接して沿うように長尺部を備え、前記伝熱プレートの前記長尺部を基準として、前記長尺部から前記壁部が突出する側の隣で対向する前記伝熱プレートの前記凸部までの距離は、前記長尺部から前記凸部が突出する側の隣で対向する前記伝熱プレートの前記凸部までの距離よりも小さくなるよう構成され、前記壁部における前記第2流体と対向する部分に前記第2流体の温度を検出する温度検出手段を設置するための温度検出手段設置部が設けられ、前記第2流体の圧縮を行う圧縮機と、空気と前記第2流体との熱交換を行う空気熱交換器と、前記第2流体の圧力を低下させる膨張弁と、余剰の前記第2流体を保留する圧力容器とを備えた前記第2流体が循環する第2流体回路と、前記温度検出手段設置部に設置された温度検出手段と、を備えたものである。 Further, in the heat pump device according to the present invention, the heat transfer plates having a rectangular plate-shaped main plate portion and a wall portion projecting from an edge of the main plate portion to one side of the plate-shaped surface are alternately provided on the main plate portion. A plurality of layers are formed by reversing by 180 degrees with respect to an axis extending perpendicularly from the center of the plate-shaped surface, and a first flow path through which the first fluid flows and a second flow path through which the second fluid flows between the heat transfer plates. In the plate heat exchanger formed alternately in the stacking direction, the main plate portion is provided with a convex portion protruding from a plate-shaped surface opposite to the surface from which the wall portion protrudes, and the convex portion is, The main plate portion is formed intermittently or continuously along one long side of the main plate portion, and abuts on the wall portion of the heat transfer plate that is adjacent and adjacent to the protruding side of the main plate portion. , The heat transfer provided with an elongated portion so as to be in contact with the other long side and facing the elongated portion of the heat transfer plate next to the side where the wall portion projects from the elongated portion. The distance to the convex portion of the plate is configured to be smaller than the distance from the long portion to the convex portion of the heat transfer plate that is adjacent and adjacent to the side on which the convex portion protrudes, and in the wall portion. A temperature detecting means installation portion for installing a temperature detecting means for detecting the temperature of the second fluid is provided in a portion facing the second fluid, and a compressor for compressing the second fluid, air, and the The second fluid, which includes an air heat exchanger that exchanges heat with the second fluid, an expansion valve that lowers the pressure of the second fluid, and a pressure container that holds the excess second fluid, circulates. A second fluid circuit and temperature detecting means installed in the temperature detecting means installation section are provided.
 この発明のプレート式熱交換器は、プレート式熱交換器の側面から第2流体の温度を検出する際の検出精度を高めることができる。
 また、この発明のプレート式熱交換器は、プレート式熱交換器の側部から第2流体の温度を検出する際の検出精度を高めることができる。
 この発明のヒートポンプ装置は、温度検出手段設置部に温度検出手段を設置することにより、第2流体の温度の検出精度を高めることができる。
The plate heat exchanger of the present invention can improve the detection accuracy when detecting the temperature of the second fluid from the side surface of the plate heat exchanger.
Further, the plate heat exchanger of the present invention can improve the detection accuracy when detecting the temperature of the second fluid from the side portion of the plate heat exchanger.
In the heat pump device of the present invention, the temperature detection means is installed in the temperature detection means installation portion, whereby the detection accuracy of the temperature of the second fluid can be improved.
この発明の実施の形態1を示す冷媒回路図である。It is a refrigerant circuit diagram showing Embodiment 1 of this invention. この発明の実施の形態1を示す室外機の筐体の外形図である。It is an outline view of the case of the outdoor unit showing Embodiment 1 of this invention. この発明の実施の形態1を示す室外機の筐体内部の概略図である。1 is a schematic view of the inside of a housing of an outdoor unit showing Embodiment 1 of the present invention. この発明の実施の形態1に用いられるプレート式熱交換器の分解斜視図である。FIG. 3 is an exploded perspective view of the plate heat exchanger used in the first embodiment of the present invention. この発明の実施の形態1に用いられるプレート式熱交換器の斜視図である。It is a perspective view of the plate-type heat exchanger used for Embodiment 1 of this invention. この発明の実施の形態1に用いられる伝熱プレートの正面図である。FIG. 3 is a front view of the heat transfer plate used in the first embodiment of the present invention. この発明の実施の形態1に用いられる伝熱プレートの拡大図である。It is an enlarged view of the heat transfer plate used in Embodiment 1 of the present invention. この発明の実施の形態1に用いられる伝熱プレートの断面図である。FIG. 3 is a cross-sectional view of a heat transfer plate used in Embodiment 1 of the present invention. この発明の実施の形態1に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate heat exchanger used for Embodiment 1 of this invention. この発明の実施の形態1に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate heat exchanger used for Embodiment 1 of this invention. この発明の実施の形態2に用いられる伝熱プレートの正面図である。It is a front view of the heat transfer plate used for Embodiment 2 of this invention. この発明の実施の形態2に用いられる伝熱プレートの拡大図である。It is an enlarged view of the heat transfer plate used for Embodiment 2 of this invention. この発明の実施の形態2に用いられる伝熱プレートの断面図である。It is sectional drawing of the heat transfer plate used for Embodiment 2 of this invention. この発明の実施の形態2に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate-type heat exchanger used for Embodiment 2 of this invention. この発明の実施の形態2に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate-type heat exchanger used for Embodiment 2 of this invention. この発明の実施の形態2に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate-type heat exchanger used for Embodiment 2 of this invention. この発明の実施の形態2に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate-type heat exchanger used for Embodiment 2 of this invention. この発明の実施の形態3に用いられる伝熱プレートの正面図である。It is a front view of the heat transfer plate used for Embodiment 3 of this invention. この発明の実施の形態3に用いられる伝熱プレートの断面図である。It is sectional drawing of the heat transfer plate used for Embodiment 3 of this invention. この発明の実施の形態3に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate heat exchanger used for Embodiment 3 of this invention. この発明の実施の形態3に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate heat exchanger used for Embodiment 3 of this invention. この発明の実施の形態4に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate-type heat exchanger used for Embodiment 4 of this invention. この発明の実施の形態5に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate type heat exchanger used for Embodiment 5 of this invention. この発明の実施の形態5に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate type heat exchanger used for Embodiment 5 of this invention. この発明の実施の形態6に用いられるプレート式熱交換器の断面図である。It is sectional drawing of the plate heat exchanger used for Embodiment 6 of this invention.
実施の形態1.
この発明のプレート式熱交換器を備えたヒートポンプ装置について、図1から図10を用いて説明する。図1は冷媒回路図、図2は室外機1の筐体20の外形図、図3は室外機1の筐体20内部を上方から見た概略図である。
なお、本実施形態では、後述する矩形の主板部70aの短手方向を「短手方向」、主板部70aの長手方向を「長手方向」と定義している。
Embodiment 1.
A heat pump device including the plate heat exchanger of the present invention will be described with reference to FIGS. 1 to 10. FIG. 1 is a refrigerant circuit diagram, FIG. 2 is an external view of a casing 20 of the outdoor unit 1, and FIG. 3 is a schematic view of the inside of the casing 20 of the outdoor unit 1 seen from above.
In this embodiment, the lateral direction of the rectangular main plate portion 70a, which will be described later, is defined as the "lateral direction", and the longitudinal direction of the main plate portion 70a is defined as the "longitudinal direction".
ヒートポンプ装置としての室外機1は、図1に示すように、第2流体回路としての冷媒回路2aを備えている。冷媒回路2aは、プレート式熱交換器3、マフラー4aを有する圧縮機4、四方弁5、空気熱交換器6、圧力容器7、電子膨張弁8a、電子膨張弁8bと、それらを繋ぐ冷媒配管10で構成されている。
プレート式熱交換器3は、複数の略矩形の伝熱プレートを積層して構成された熱交換器であり、隣接する伝熱プレート間に流路を形成し、該流路に第1流体と第2流体とを積層方向に交互に流すことにより、第1流体と第2流体との間で熱交換を行うものである。 本実施の形態では、室外機1の外へ熱エネルギーを搬送する水Wを第1流体、冷媒回路2a内を循環する冷媒Rを第2流体として説明する。
なお、本実施の形態では、第1流体として水を用いているが、液状の熱媒体を用いてもよい。液状の熱媒体としては、例えば、酸化カルシウム水溶液、エチレングリコール水溶液、アルコールなどがある。また、第2流体としての冷媒RはR32を用いているが、R410A、CO2、HC等の冷媒を用いてもよい。
As shown in FIG. 1, the outdoor unit 1 as a heat pump device includes a refrigerant circuit 2a as a second fluid circuit. The refrigerant circuit 2a includes a plate heat exchanger 3, a compressor 4 having a muffler 4a, a four-way valve 5, an air heat exchanger 6, a pressure vessel 7, an electronic expansion valve 8a, an electronic expansion valve 8b, and a refrigerant pipe connecting them. It is composed of 10.
The plate heat exchanger 3 is a heat exchanger configured by stacking a plurality of substantially rectangular heat transfer plates, forms a flow path between adjacent heat transfer plates, and connects the first fluid to the flow path. By alternately flowing the second fluid in the stacking direction, heat exchange is performed between the first fluid and the second fluid. In the present embodiment, the water W that carries thermal energy to the outside of the outdoor unit 1 will be described as the first fluid, and the refrigerant R that circulates in the refrigerant circuit 2a will be described as the second fluid.
Although water is used as the first fluid in the present embodiment, a liquid heat medium may be used. Examples of the liquid heat medium include calcium oxide aqueous solution, ethylene glycol aqueous solution, and alcohol. Although R32 is used as the refrigerant R as the second fluid, a refrigerant such as R410A, CO2, or HC may be used.
プレート式熱交換器3は、水配管接続口3a、水配管接続口3b、冷媒配管接続口3c、冷媒配管接続口3dを備えている。水配管接続口3a、水配管接続口3bは水Wが循環する水回路2b(第1流体回路)に接続されている。水回路2bには、給湯器、ラジエータ、床暖房、パネルヒータ、ファルコンベクタなどの放熱器に水を利用する装置(図示せず)が接続される。
圧縮機4は冷媒Rの圧縮を行い、四方弁5は冷媒Rの流れを切替える。空気熱交換器6は、空気と冷媒Rとの熱交換を行い、圧力容器7は冷媒Rを貯留する。電子膨張弁8a及び電子膨張弁8bは、冷媒Rの圧力を低下させる減圧装置として使用する。
The plate heat exchanger 3 includes a water pipe connection port 3a, a water pipe connection port 3b, a refrigerant pipe connection port 3c, and a refrigerant pipe connection port 3d. The water pipe connection port 3a and the water pipe connection port 3b are connected to a water circuit 2b (first fluid circuit) through which the water W circulates. To the water circuit 2b, a device (not shown) that uses water is connected to a radiator such as a water heater, a radiator, a floor heater, a panel heater, and a falcon vector.
The compressor 4 compresses the refrigerant R, and the four-way valve 5 switches the flow of the refrigerant R. The air heat exchanger 6 exchanges heat between the air and the refrigerant R, and the pressure vessel 7 stores the refrigerant R. The electronic expansion valve 8a and the electronic expansion valve 8b are used as a pressure reducing device for reducing the pressure of the refrigerant R.
四方弁5は、加熱モードと冷却モードとで冷媒の流路を切り替え可能に構成されている。
冷媒回路2aは、加熱モードに設定されている場合には、圧縮機4で高温高圧になった冷媒Rを、プレート式熱交換器3(冷媒配管接続口3cから冷媒配管接続口3d)、電子膨張弁8b、圧力容器7、電子膨張弁8a、空気熱交換器6、マフラー4a、圧縮機4の順に循環するように閉回路を構成する。
一方、冷媒回路2aは、冷却モードに設定されている場合には、圧縮機4で高温高圧になった冷媒Rを、空気熱交換器6、電子膨張弁8a、圧力容器7、電子膨張弁8b、プレート式熱交換器3(冷媒配管接続口3dから冷媒配管接続口3c)、マフラー4a、圧縮機4の順に循環するように閉回路を構成する。
The four-way valve 5 is configured to be able to switch the flow path of the refrigerant between the heating mode and the cooling mode.
When the refrigerant circuit 2a is set to the heating mode, the refrigerant R that has become high temperature and high pressure in the compressor 4 is transferred to the plate heat exchanger 3 (from the refrigerant pipe connection port 3c to the refrigerant pipe connection port 3d) to the electronic device. A closed circuit is configured so that the expansion valve 8b, the pressure vessel 7, the electronic expansion valve 8a, the air heat exchanger 6, the muffler 4a, and the compressor 4 circulate in this order.
On the other hand, when the refrigerant circuit 2a is set in the cooling mode, the refrigerant R that has become high temperature and high pressure in the compressor 4 is supplied to the air heat exchanger 6, the electronic expansion valve 8a, the pressure vessel 7, and the electronic expansion valve 8b. A closed circuit is configured so that the plate heat exchanger 3 (from the refrigerant pipe connection port 3d to the refrigerant pipe connection port 3c), the muffler 4a, and the compressor 4 circulate in this order.
冷媒配管10およびプレート式熱交換器3の側面には、それぞれ温度センサ11、12、13、14が取り付けられており、それぞれ冷媒回路2aを流れる冷媒Rの温度を検出している。室外機1には、冷媒回路2aの他に、各部の動作を制御するための制御装置15、記憶装置16、演算装置17を備えている。
温度センサ11は、圧縮機4の出口側の冷媒配管10の温度を検出するためのものであり、圧縮機4の出口側の冷媒配管10に固定されている。温度センサ12は、空気熱交換器6の温度を検出するためのものであり、空気熱交換器6近傍の冷媒配管10に固定されている。温度センサ13は、プレート式熱交換器3と電子膨張弁8bとをつなぐ冷媒配管10の温度を検出するためのものであり、その冷媒配管10に固定されている。温度センサ14は、プレート式熱交換器3内を流れる冷媒Rの温度を検出するためのものであり、プレート式熱交換器3の側面に固定されている。
Temperature sensors 11, 12, 13, and 14 are attached to the side surfaces of the refrigerant pipe 10 and the plate heat exchanger 3, respectively, to detect the temperature of the refrigerant R flowing through the refrigerant circuit 2a. In addition to the refrigerant circuit 2a, the outdoor unit 1 includes a control device 15, a storage device 16, and a computing device 17 for controlling the operation of each part.
The temperature sensor 11 is for detecting the temperature of the refrigerant pipe 10 on the outlet side of the compressor 4, and is fixed to the refrigerant pipe 10 on the outlet side of the compressor 4. The temperature sensor 12 is for detecting the temperature of the air heat exchanger 6, and is fixed to the refrigerant pipe 10 near the air heat exchanger 6. The temperature sensor 13 is for detecting the temperature of the refrigerant pipe 10 that connects the plate heat exchanger 3 and the electronic expansion valve 8b, and is fixed to the refrigerant pipe 10. The temperature sensor 14 is for detecting the temperature of the refrigerant R flowing in the plate heat exchanger 3, and is fixed to the side surface of the plate heat exchanger 3.
温度センサ11、12、13、14は、検出値を制御装置15に送信可能なように接続されている。制御装置15は、四方弁5の切り替え動作、および電子膨張弁8a、8bの開度を調整可能なように接続されている 。
制御装置15は、例えばマイコンで構成され、温度センサ11、12、13、14で検出した温度データを読み込んで記憶装置16に記憶する。演算装置17は、記憶装置16から温度センサ14の温度データを読み出し、その温度データに基づいて冷媒Rの圧力飽和温度を算出し、その算出した冷媒Rの圧力飽和温度を圧力飽和温度データとして記憶装置16に記憶する。また、制御装置15は、記憶装置16からの温度データおよび圧力飽和温度データを読み出し、その温度および圧力に基づいて電子膨張弁8a、8bを制御する。
The temperature sensors 11, 12, 13, 14 are connected so that the detected values can be transmitted to the control device 15. The control device 15 is connected so that the switching operation of the four-way valve 5 and the opening degrees of the electronic expansion valves 8a and 8b can be adjusted.
The control device 15 is composed of, for example, a microcomputer, reads the temperature data detected by the temperature sensors 11, 12, 13, and 14 and stores the temperature data in the storage device 16. The computing device 17 reads the temperature data of the temperature sensor 14 from the storage device 16, calculates the pressure saturation temperature of the refrigerant R based on the temperature data, and stores the calculated pressure saturation temperature of the refrigerant R as pressure saturation temperature data. Stored in device 16. Further, the control device 15 reads the temperature data and the pressure saturation temperature data from the storage device 16 and controls the electronic expansion valves 8a and 8b based on the temperature and the pressure.
室外機1の筐体20は、図2に示すように、空気が吹出されるグリル20aを備える。室外機1は、図3に示すように、送風機室21、機械室22を有しており、送風機室21と機械室22とはセパレータ23で仕切られている。図示はしないが、室外機1は、機械室22の上に電気部品を収納する電気品箱を備えている。
送風機室21には、空気熱交換器6やファン24等が配置されており、ファン24が動作することにより空気熱交換器6に外気が送風される。
As shown in FIG. 2, the housing 20 of the outdoor unit 1 includes a grill 20a from which air is blown. As shown in FIG. 3, the outdoor unit 1 has a blower room 21 and a machine room 22, and the blower room 21 and the machine room 22 are separated by a separator 23. Although not shown, the outdoor unit 1 includes an electrical component box that houses electrical components on the machine room 22.
The air heat exchanger 6, the fan 24, and the like are arranged in the blower chamber 21, and the outside air is blown to the air heat exchanger 6 by the operation of the fan 24.
また、機械室22には、圧縮機4、圧力容器7、四方弁5(図3では図示しない)、プレート式熱交換器3、電子膨張弁8a、8b(図3では図示しない)等が配置されている。 In the machine room 22, a compressor 4, a pressure vessel 7, a four-way valve 5 (not shown in FIG. 3), a plate heat exchanger 3, electronic expansion valves 8a and 8b (not shown in FIG. 3), etc. are arranged. Has been done.
次に、プレート式熱交換器3の構成について図4~図10を用いて説明する。
 図4は、プレート式熱交換器3の分解斜視図であり、図5は、プレート式熱交換器3の斜視図であり、図6は、伝熱プレート40、41の正面図である。図7は、伝熱プレート40、41の拡大図である。図8の(a)は、伝熱プレート40、41を図6のA-Aの位置から見た断面図であり、(b)は、伝熱プレート40、41を図6のB-Bの位置から見た断面図であり、(c)は、伝熱プレート40、41を図6のC-Cの位置から見た断面図であり、(d)は、伝熱プレート40、41を図6のD-Dの位置から見た断面図である。図9は、プレート式熱交換器3を図6のB-Bの位置から見た断面図であり、図10は、プレート式熱交換器3を図6のC-Cの位置から見た断面図である。
Next, the configuration of the plate heat exchanger 3 will be described with reference to FIGS. 4 to 10.
FIG. 4 is an exploded perspective view of the plate heat exchanger 3, FIG. 5 is a perspective view of the plate heat exchanger 3, and FIG. 6 is a front view of the heat transfer plates 40 and 41. FIG. 7 is an enlarged view of the heat transfer plates 40 and 41. 8A is a cross-sectional view of the heat transfer plates 40 and 41 seen from the position AA of FIG. 6, and FIG. 8B is a cross-sectional view of the heat transfer plates 40 and 41 of BB of FIG. FIG. 7 is a cross-sectional view seen from the position, (c) is a cross-sectional view of the heat transfer plates 40, 41 seen from the position CC in FIG. 6, and (d) is a view showing the heat transfer plates 40, 41. 6 is a cross-sectional view seen from the position DD of FIG. 9 is a sectional view of the plate heat exchanger 3 as seen from the position BB in FIG. 6, and FIG. 10 is a sectional view of the plate heat exchanger 3 as seen from the position CC in FIG. It is a figure.
プレート式熱交換器3は、図4に示すように、伝熱プレート40、41、外側プレート42、43、補強プレート44、45を備えている。プレート式熱交換器3は、前面側から背面側へ向けて、補強プレート44、外側プレート42、伝熱プレート40、41、40、41、40、41、40、41、40、外側プレート43、補強プレート45の順で積層されている。
 なお、本実施形態では、図4及び図5で示すように、プレート式熱交換器3における補強プレート44が設けられている側を前面側、補強プレート45が設けられている側を背面側と定義している。
As shown in FIG. 4, the plate heat exchanger 3 includes heat transfer plates 40 and 41, outer plates 42 and 43, and reinforcing plates 44 and 45. The plate heat exchanger 3 includes a reinforcing plate 44, an outer plate 42, heat transfer plates 40, 41, 40, 41, 40, 41, 40, 41, 40, and an outer plate 43 from the front surface side to the back surface side. The reinforcing plates 45 are laminated in this order.
In this embodiment, as shown in FIGS. 4 and 5, the side of the plate heat exchanger 3 where the reinforcing plate 44 is provided is the front side, and the side where the reinforcing plate 45 is provided is the back side. It is defined.
図4に示すように、補強プレート44は略矩形の板状に形成され、略矩形の四隅に、水配管接続口1a 、水配管接続口1b、冷媒配管接続口1c、冷媒配管接続口1dが形成されている。
外側プレート42は、冷媒Rや水Wの漏れを封止するためのものであり、補強プレート44と同様に略矩形の板状に形成され、四隅に第1開口部46、第2開口部47、第3開口部48、第4開口部49が形成されている。外側プレート43は、外側プレート42等と同様に、略矩形の板状に形成される。外側プレート43には、外側プレート42のような第1開口部46、第2開口部47、第3開口部48、第4開口部49が設けられていない。
As shown in FIG. 4, the reinforcing plate 44 is formed in a substantially rectangular plate shape, and the water pipe connection port 1a, the water pipe connection port 1b, the refrigerant pipe connection port 1c, and the refrigerant pipe connection port 1d are provided at the four corners of the substantially rectangular shape. Has been formed.
The outer plate 42 is for sealing the leakage of the refrigerant R and the water W, is formed in a substantially rectangular plate shape like the reinforcing plate 44, and has the first opening 46 and the second opening 47 at the four corners. , A third opening 48, and a fourth opening 49 are formed. The outer plate 43 is formed in a substantially rectangular plate shape like the outer plate 42 and the like. The outer plate 43 is not provided with the first opening 46, the second opening 47, the third opening 48, and the fourth opening 49, unlike the outer plate 42.
プレート式熱交換器3は、略矩形の伝熱プレート40、41を交互に積層させ、それらの伝熱プレート40、41間に冷媒Rと水Wを交互に流通させて熱交換を行うものである。図4~図10では、説明の便宜上伝熱プレート40を5枚、伝熱プレート41を4枚として説明している。また、伝熱プレート40と、伝熱プレート41は同じ形状のものを主板部70a、70b板状面の中心から垂直に延びる軸Zを基準に180度回転させたものである。 The plate heat exchanger 3 is configured to alternately stack substantially rectangular heat transfer plates 40 and 41, and to alternately exchange the refrigerant R and the water W between the heat transfer plates 40 and 41 to perform heat exchange. is there. 4 to 10, it is assumed that the heat transfer plates 40 are 5 and the heat transfer plates 41 are 4 for convenience of description. Further, the heat transfer plate 40 and the heat transfer plate 41 are the same in shape and rotated by 180 degrees with respect to the axis Z extending vertically from the center of the plate-shaped surfaces of the main plate portions 70a and 70b.
各伝熱プレート40は、略矩形の板状に形成され、四隅に第1開口部50、第2開口部51、第3開口部52、第4開口部53が形成されている。各伝熱プレート41は、略矩形の板状に形成され、四隅に第1開口部54、第2開口部55、第3開口部56、第4開口部57が形成されている。また、各伝熱プレート40、41には、複数の凸部61、62がそれぞれ形成されている。凸部61、62は、前面側から見た場合に、略V字状に形成されている。ここで、プレート式熱交換器3は伝熱プレート40と伝熱プレート41を主板部70a、70bの板状面の中心から垂直に延びる軸Zを基準に180度回転させて積層された構成であるので、積層された状態においては、伝熱プレート40に形成された凸部61と伝熱プレート41に形成された凸部62とでは略V字状の向きが逆向きになるよう構成されている。
このように、向きの異なる略V字状の凸部61、62が重なり合う構成にすることにより、伝熱プレート40と伝熱プレート41との間に複雑な流れを引き起こす流路が形成される。
Each heat transfer plate 40 is formed in a substantially rectangular plate shape, and a first opening 50, a second opening 51, a third opening 52, and a fourth opening 53 are formed at four corners. Each heat transfer plate 41 is formed in a substantially rectangular plate shape, and a first opening 54, a second opening 55, a third opening 56, and a fourth opening 57 are formed at four corners. A plurality of convex portions 61 and 62 are formed on the heat transfer plates 40 and 41, respectively. The convex portions 61 and 62 are formed in a substantially V shape when viewed from the front side. Here, the plate heat exchanger 3 has a configuration in which the heat transfer plate 40 and the heat transfer plate 41 are laminated by rotating them by 180 degrees with respect to an axis Z extending perpendicularly from the center of the plate-like surfaces of the main plate portions 70a and 70b. Therefore, in the stacked state, the convex portion 61 formed on the heat transfer plate 40 and the convex portion 62 formed on the heat transfer plate 41 are configured such that the substantially V-shaped directions are opposite to each other. There is.
In this way, the configuration in which the substantially V-shaped convex portions 61 and 62 having different directions are overlapped with each other forms a flow path that causes a complicated flow between the heat transfer plate 40 and the heat transfer plate 41.
プレート式熱交換器3は、水配管接続口1a、第1開口部46、第1開口部50、及び第1開口部54が積層方向で重なり、水配管接続口1b、第2開口部47、第2開口部51、及び第2開口部55が積層方向で重なり、冷媒配管接続口1c、第3開口部48、第3開口部52、及び第3開口部56が積層方向で重なり、冷媒配管接続口1d、第4開口部49、第4開口部53、及び第4開口部57が積層方向で重なっている。
そして、伝熱プレート40、41、外側プレート42、43、及び補強プレート44、45の外周の壁部が重なるように積層され、ロウにより接合されている。
In the plate heat exchanger 3, the water pipe connection port 1a, the first opening 46, the first opening 50, and the first opening 54 overlap in the stacking direction, and the water pipe connection port 1b, the second opening 47, The second opening 51 and the second opening 55 overlap in the stacking direction, and the refrigerant pipe connection port 1c, the third opening 48, the third opening 52, and the third opening 56 overlap in the stacking direction, and the refrigerant pipe The connection port 1d, the fourth opening 49, the fourth opening 53, and the fourth opening 57 overlap in the stacking direction.
Then, the heat transfer plates 40, 41, the outer plates 42, 43, and the reinforcing plates 44, 45 are stacked so that the outer peripheral wall portions of the heat transfer plates 40, 41, and the reinforcing plates 44, 45 overlap each other, and are joined by brazing.
これにより、水配管接続口1aから流入した水Wが水配管接続口1bから流出する第1流路63が、伝熱プレート40の背面と伝熱プレート41の前面との間に形成される。同様に、冷媒配管接続口1cから流入した冷媒Rが冷媒配管接続口1dから流出する第2流路64が、伝熱プレート41の背面と伝熱プレート40の前面との間に形成される。 Thereby, the first flow path 63 in which the water W that has flowed in from the water pipe connection port 1a flows out from the water pipe connection port 1b is formed between the back surface of the heat transfer plate 40 and the front surface of the heat transfer plate 41. Similarly, the second flow path 64 in which the refrigerant R flowing in from the refrigerant pipe connection port 1c flows out from the refrigerant pipe connection port 1d is formed between the back surface of the heat transfer plate 41 and the front surface of the heat transfer plate 40.
外部から水配管接続口1aに流入した水Wは、伝熱プレート40、41の第1開口部50、54が重なり合うことで形成された通路孔を流れ、各第1流路63へ流入するように構成されている。第1流路63へ流入した水Wは、短手方向へ徐々に広がりながら、長手方向へ流れて、第2開口部51、55から流出するように構成されている。開口部51、55から流出した水Wは、開口部51、55が重なり合うことで形成された通路孔を流れ、水配管接続口1bから外部へ流出するように構成されている。
同様に、外部から冷媒配管接続口1cへ流入した冷媒Rは、各伝熱プレート40、41の第3開口部52、56が重なり合うことで形成された通路孔を流れ、各第2流路64へ流入するように構成されている。第2流路64へ流入した冷媒Rは、短手方向へ徐々に広がりながら、長手方向へ流れて、第4開口部53、57から流出するように構成されている。第4開口部53、57から流出した冷媒Rは、第4開口部53、57が重なり合うことで形成された通路孔を流れ、冷媒配管接続口1dから外部へ流出するように構成されている。
The water W that has flowed into the water pipe connection port 1 a from the outside flows through the passage holes formed by overlapping the first openings 50 and 54 of the heat transfer plates 40 and 41 and flows into the respective first flow paths 63. Is configured. The water W that has flowed into the first flow path 63 is configured to gradually spread in the lateral direction, flow in the longitudinal direction, and flow out from the second openings 51 and 55. The water W flowing out from the openings 51, 55 is configured to flow through a passage hole formed by overlapping the openings 51, 55 and flow out from the water pipe connection port 1b to the outside.
Similarly, the refrigerant R that has flowed into the refrigerant pipe connection port 1c from the outside flows through the passage holes formed by overlapping the third openings 52 and 56 of the heat transfer plates 40 and 41, and the second flow paths 64. Is configured to flow into. The refrigerant R flowing into the second flow path 64 is configured to gradually spread in the lateral direction, flow in the longitudinal direction, and flow out from the fourth openings 53 and 57. The refrigerant R flowing out from the fourth openings 53 and 57 is configured to flow through a passage hole formed by overlapping the fourth openings 53 and 57 and flow out to the outside from the refrigerant pipe connection port 1d.
次に、伝熱プレート40の詳細な構成について説明する。
伝熱プレート40は、図6及び図8に示すように、略矩形の板状をなしている主板部70a、主板部70aの周囲に設けられた壁部71a、72a、73a、74a、複数の凸部61を備えている。主板部70aには、第1開口部50、第2開口部51、第3開口部52、第4開口部53、及び複数の凸部61が形成されている。壁部71a、72a、73a、74aは、主板部70aの各辺の縁から板状の面の一方側へ突出させるように形成されている。すなわち、壁部71a、72a、73a、74aは、主板部70aの周縁から板状の面の一方側へ突出させるように形成されている。
なお、本発明における壁部は、積層方向における背面側に突出するように形成されている。
Next, the detailed configuration of the heat transfer plate 40 will be described.
As shown in FIGS. 6 and 8, the heat transfer plate 40 includes a main plate portion 70a having a substantially rectangular plate shape, wall portions 71a, 72a, 73a, 74a provided around the main plate portion 70a, and plural main plate portions 70a. The projection 61 is provided. The main plate portion 70a is provided with a first opening portion 50, a second opening portion 51, a third opening portion 52, a fourth opening portion 53, and a plurality of convex portions 61. The wall portions 71a, 72a, 73a, 74a are formed so as to project from one side edge of the main plate portion 70a to one side of the plate-shaped surface. That is, the wall portions 71a, 72a, 73a, 74a are formed so as to project from the peripheral edge of the main plate portion 70a to one side of the plate-shaped surface.
The wall portion in the present invention is formed so as to project to the back side in the stacking direction.
壁部71a、72aは、主板部70aの長辺に連続して形成されており、壁部71aと壁部72aとは、主板部70aから離れるにつれ互いの間隔が広がるように形成されている。すなわち、壁部71aと壁部72aとはテーパー状に形成されている。
壁部73a、74aは、主板部70aの短辺に連続して形成されており、壁部73aと壁部74aとは、主板部70aから離れるにつれ互いの間隔が広がるように形成されている。すなわち、壁部73aと壁部74aとはテーパー状に形成されている。
The wall portions 71a and 72a are formed continuously on the long side of the main plate portion 70a, and the wall portion 71a and the wall portion 72a are formed such that the distance between them increases as the distance from the main plate portion 70a increases. That is, the wall portion 71a and the wall portion 72a are formed in a tapered shape.
The wall portions 73a and 74a are formed continuously on the short sides of the main plate portion 70a, and the wall portion 73a and the wall portion 74a are formed such that the distance between them increases as the distance from the main plate portion 70a increases. That is, the wall portion 73a and the wall portion 74a are formed in a tapered shape.
主板部70aの四隅には、第1開口部50、第2開口部51、第3開口部52、第4開口部53が形成されている。
第1開口部50は壁部71aと壁部74aとがなす主板部70aの隅部に形成され、第2開口部51は壁部71aと壁部73aとがなす主板部70aの隅部に形成され、第3開口部52は壁部72aと壁部73aとがなす主板部70aの隅部に形成され、第4開口部53は壁部72aと壁部74aとがなす主板部70aの隅部に形成されている。
主板部70aには、第1開口部50の周囲の部分が、壁部71a、72a、73a、74aが突出する方向とは逆方向へ突出した高部75aが形成されている。高部75aは前面側から見て台形状をなす盛り上がりとなっている。
同様に、主板部70aには、第2開口部51の周囲の部分が、壁部71a、72a、73a、74aが突出する方向とは逆方向へ突出した高部76aが形成されている。高部76aは前面側から見て台形状をなす盛り上がりとなっている。
A first opening 50, a second opening 51, a third opening 52, and a fourth opening 53 are formed at the four corners of the main plate portion 70a.
The first opening 50 is formed at a corner of the main plate 70a formed by the wall 71a and the wall 74a, and the second opening 51 is formed at a corner of the main plate 70a formed by the wall 71a and the wall 73a. The third opening 52 is formed at the corner of the main plate 70a formed by the wall 72a and the wall 73a, and the fourth opening 53 is formed at the corner of the main plate 70a formed by the wall 72a and the wall 74a. Is formed on.
The main plate portion 70a is formed with a high portion 75a in which a portion around the first opening 50 protrudes in a direction opposite to a direction in which the wall portions 71a, 72a, 73a, 74a protrude. The high part 75a has a trapezoidal elevation when viewed from the front side.
Similarly, the main plate portion 70a is formed with a high portion 76a in which a portion around the second opening portion 51 projects in a direction opposite to the direction in which the wall portions 71a, 72a, 73a, 74a project. The high portion 76a has a trapezoidal elevation when viewed from the front side.
壁部71aの主板部70aからの突出長さL1は、図8に示すように、壁部72aの主板部70aからの突出長さL2よりも長くなるように形成されている。なお、本実施の形態では、突出長さL1は6mm、突出長さL2は4.7mmとしている。
 このように壁部71aを壁部72aより長い構成にすることにより、伝熱プレート40と伝熱プレート41との積層状態において、図9に示すように、伝熱プレート40の壁部71aの先端E1と、伝熱プレート40の背面に位置する伝熱プレート41の壁部72b(壁部72bは後述する)の先端E2とが揃うように構成されている。このように、壁部71aの先端E1と、壁部72bの先端E2とが揃うように構成されていることにより、壁部H1が二重構造となりプレート式熱交換器3の側面の強度を高めることができる。なお、ここでいう側部H1とは、複数の壁部71aと複数の壁部72bとで構成されるものである。また、壁部71bの先端E3と、壁部72aの先端E4とが揃うように構成されていることにより、同様に、壁部H2が二重構造となりプレート式熱交換器3の側面の強度を高めることができる。側部H2とは、複数の壁部71bと複数の壁部72aとで構成されるものである。側部H1はプレート式熱交換器3の側面の一部でもあり、同様に、側部H2はプレート式熱交換器3の側面の一部でもある。
As shown in FIG. 8, the projection length L1 of the wall portion 71a from the main plate portion 70a is formed to be longer than the projection length L2 of the wall portion 72a from the main plate portion 70a. In the present embodiment, the protrusion length L1 is 6 mm and the protrusion length L2 is 4.7 mm.
By thus making the wall portion 71a longer than the wall portion 72a, as shown in FIG. 9, in the stacked state of the heat transfer plate 40 and the heat transfer plate 41, the tip of the wall portion 71a of the heat transfer plate 40 is formed. E1 and the end portion E2 of the wall portion 72b (the wall portion 72b will be described later) of the heat transfer plate 41 located on the back surface of the heat transfer plate 40 are configured to be aligned with each other. In this manner, the tip E1 of the wall portion 71a and the tip E2 of the wall portion 72b are aligned so that the wall portion H1 has a double structure and the side surface of the plate heat exchanger 3 is increased in strength. be able to. In addition, the side portion H1 mentioned here is configured by a plurality of wall portions 71a and a plurality of wall portions 72b. Further, since the tip end E3 of the wall portion 71b and the tip end E4 of the wall portion 72a are configured to be aligned with each other, the wall portion H2 also has a double structure, and the strength of the side surface of the plate heat exchanger 3 is similarly increased. Can be increased. The side portion H2 is composed of a plurality of wall portions 71b and a plurality of wall portions 72a. The side portion H1 is also a part of the side surface of the plate heat exchanger 3, and similarly, the side portion H2 is also a part of the side surface of the plate heat exchanger 3.
なお、本実施の形態では、壁部71aの先端E1と、壁部72bの先端E2とが揃うように構成したが、壁部71aの突出長さを長くして壁部の二重構造を形成できれば上記と同様の効果を得ることができるものであり、互いの先端E1、E2を揃うように構成しなくてもよい。壁部71aの先端E1は少なくとも壁部72bの前面部の位置まで形成されていればよい。かかる構成によれば、第二流路64の側面を壁部71aとその背面側の壁部72bとにより二重に覆うことができ、第二流路64の側面の強度を高めることができる。壁部71aの先端E1を壁部72bの先端E2の位置まで形成した場合には、第一流路63の側面を壁部71aと、その背面側の壁部72bと、さらにその背面側の壁部71aとにより三重に覆うことができ、第一流路63の側面の強度を高めることができる。先端E3と先端E4との関係についても同様の変更としてもよい。
主板部70a、壁部71a、72a、73a、74a、第1開口部50、第2開口部51、第3開口部52、第4開口部53、複数の凸部61、及び高部75a、76aは、板材をプレス加工することによって形成されている。 
In the present embodiment, the tip E1 of the wall portion 71a and the tip E2 of the wall portion 72b are configured to be aligned, but the protrusion length of the wall portion 71a is increased to form a double wall structure. If possible, the same effect as described above can be obtained, and it is not necessary to configure the tips E1 and E2 to be aligned with each other. The tip E1 of the wall portion 71a may be formed at least up to the position of the front surface portion of the wall portion 72b. With this configuration, the side surface of the second flow path 64 can be doubly covered with the wall portion 71a and the wall portion 72b on the back side thereof, and the strength of the side surface of the second flow path 64 can be increased. When the tip E1 of the wall portion 71a is formed to the position of the tip E2 of the wall portion 72b, the side surface of the first flow path 63 is the wall portion 71a, the rear wall portion 72b thereof, and the rear wall portion thereof. It can be triple-covered with 71a, and the strength of the side surface of the first flow path 63 can be increased. Similar changes may be made to the relationship between the tip E3 and the tip E4.
Main plate part 70a, wall parts 71a, 72a, 73a, 74a, first opening part 50, second opening part 51, third opening part 52, fourth opening part 53, a plurality of convex parts 61, and high parts 75a, 76a. Are formed by pressing a plate material.
主板部70aにおける高部75a、76aを除いた部位には、図6に示すように、主板部70aの長手方向(以下、単に長手方向という)に沿って凸部61が配列された状態で形成されている。凸部61は、前面側から見てV字形状の突出となっており、V字の中間の谷となる部分が壁部73aを向き、V字の両端が壁部74aを向くように形成されている。すなわち、凸部61は、V字の中間の谷となる部分が主板部70aの長手方向の一端を向き、V字の両端が主板部70aの長手方向の他端を向くように形成されている。
凸部61の主板部70aからの突出高さは、高部75a、76aの主板部70aからの突出高さと同じとなるように形成されている。なお、凸部61の主板部70aからの突出高さを、高部75a、76aの主板部70aからの突出高さよりも小さく形成してもよい。
As shown in FIG. 6, the main plate portion 70a is formed in a state where the convex portions 61 are arranged along the longitudinal direction of the main plate portion 70a (hereinafter, simply referred to as the longitudinal direction), except for the high portions 75a and 76a. Has been done. The convex portion 61 has a V-shaped protrusion when viewed from the front side, and is formed such that the middle valley of the V-shape faces the wall portion 73a and both ends of the V-shape face the wall portion 74a. ing. That is, the convex portion 61 is formed such that the middle valley portion of the V-shape faces one end in the longitudinal direction of the main plate portion 70a and both ends of the V-shape face the other end in the longitudinal direction of the main plate portion 70a. ..
The protruding height of the convex portion 61 from the main plate portion 70a is formed to be the same as the protruding height of the high portions 75a and 76a from the main plate portion 70a. The protruding height of the convex portion 61 from the main plate portion 70a may be smaller than the protruding height of the high portions 75a and 76a from the main plate portion 70a.
すなわち、突部61のV字の両端のうちの一端は壁部72aに近接しており、他端は壁部71aの長辺から所定間隔をおいた位置に形成されている。かかる構成により、当該一端から壁部72aまでの距離は、当該他端から壁部71aまでの距離よりも小さくなっている。
各凸部61は、主板部70aの壁部72a側の長辺から、壁部71aの長辺から所定間隔をおいた位置まで形成されている。
なお、壁部72a側の長辺は、本願請求項に係る一方の長辺に相当し、壁部71a側の長辺は、本願請求項に係る他方の長辺に相当する。
That is, one end of the V-shaped ends of the protrusion 61 is close to the wall 72a, and the other end is formed at a position spaced from the long side of the wall 71a by a predetermined distance. With this configuration, the distance from the one end to the wall portion 72a is smaller than the distance from the other end to the wall portion 71a.
Each convex portion 61 is formed from a long side of the main plate portion 70a on the side of the wall portion 72a to a position at a predetermined distance from the long side of the wall portion 71a.
The long side on the wall 72a side corresponds to one long side according to the claims of the present application, and the long side on the wall 71a side corresponds to the other long side according to the claims of the present application.
複数の凸部61が、主板部70aの壁部71a側の長辺から所定間隔をおいた位置まで形成されていることにより、複数の凸部61の壁部71a側には、主板部70aが突出した形状を有していない長尺部Faが形成されている。すなわち、主板部70aの壁部71a側の長辺から所定間隔をおいて形成した複数の凸部61を、主板部70aの長手方向に沿って配列させて形成することにより、主板部70aの壁部71a側の長辺側には、主板部70aの一部であるとともに凸部61が形成されていない領域である長尺部Faが形成されている。なお、主板部70aの構成要件には、凸部61を含んでいない。 Since the plurality of convex portions 61 are formed from the long side on the wall portion 71a side of the main plate portion 70a to a position spaced by a predetermined distance, the main plate portion 70a is formed on the wall portion 71a side of the plurality of convex portions 61. A long portion Fa having no protruding shape is formed. That is, by forming a plurality of convex portions 61 formed at a predetermined interval from the long side of the main plate portion 70a on the side of the wall portion 71a in an array along the longitudinal direction of the main plate portion 70a, the wall of the main plate portion 70a is formed. A long portion Fa, which is a region that is a part of the main plate portion 70a and in which the convex portion 61 is not formed, is formed on the long side of the portion 71a side. In addition, the convex portion 61 is not included in the constituent requirements of the main plate portion 70a.
すなわち、凸部61は、図7の右側の二点鎖線で囲んで示したように主板部70aの壁部72a側の長辺に沿って断続的に形成され、且つ、長尺部Faは、図7の左側の二点鎖線で囲んで示したように主板部70aの壁部71a側の長辺に接して沿うように形成されている。 That is, the convex portion 61 is intermittently formed along the long side of the main plate portion 70a on the side of the wall portion 72a as surrounded by the two-dot chain line on the right side of FIG. 7, and the long portion Fa is As shown by being surrounded by a two-dot chain line on the left side of FIG. 7, it is formed so as to be in contact with the long side of the main plate portion 70a on the wall portion 71a side.
本実施形態では、長尺部Faの短手方向長さを1.75mm、主板部70aの短手方向長さを93mmとしている。長尺部Faの短手方向長さと主板部70aの短手方向長さの比は、「1.2:100~4:100」が望ましく、本実施の形態では、「2:100」としている。長尺部Faの短手方向長さと主板部70aの短手方向長さの比を「1.2:100~4:100」とすることで、長尺部Faとその背面側の凸部62との当接状態を好適に維持でき、かつ、主板部70a上に長尺部Faを構成させる面積を極力少なくすることが可能となる。また、長尺部Faの短手方向長さと主板部70aの短手方向長さの比を「2:100」とすることで、長尺部Faとその背面側の凸部62との当接状態をよりいっそう好適に維持でき、かつ、主板部70a上に長尺部Faを構成させる面積を極力少なくすることが可能となる。 In the present embodiment, the short-side length of the long portion Fa is 1.75 mm, and the short-side length of the main plate portion 70a is 93 mm. The ratio of the length in the widthwise direction of the long portion Fa to the length in the widthwise direction of the main plate portion 70a is preferably “1.2:100 to 4:100”, and is “2:100” in the present embodiment. .. By setting the ratio of the length in the short direction of the long portion Fa to the length in the short direction of the main plate portion 70a to be “1.2:100 to 4:100”, the long portion Fa and the convex portion 62 on the back side thereof are formed. It is possible to preferably maintain the contact state with and the area for forming the long portion Fa on the main plate portion 70a as small as possible. Further, by setting the ratio of the short-side length of the long portion Fa to the short-side length of the main plate portion 70a to "2:100", the long portion Fa and the convex portion 62 on the back surface thereof are brought into contact with each other. The state can be maintained more preferably, and the area for forming the long portion Fa on the main plate portion 70a can be reduced as much as possible.
次に、伝熱プレート41の詳細な構成について説明する。
 伝熱プレート41は、図6及び図8に示すように、伝熱プレート40と同形状をなしており、カッコで示す符号が伝熱プレート41の各部の構成に対応している。
 すなわち、伝熱プレート41における第1開口部54、第2開口部55、第3開口部56、第4開口部57、凸部62、主板部70b、壁部71b、72b、73b、74b、高部75b、76b、長尺部Fbのそれぞれは、伝熱プレート40における第1開口部50、第2開口部51、第3開口部52、第4開口部53、凸部61、主板部70a、壁部71a、72a、73a、74a、高部75a、76a、長尺部Faにそれぞれ対応している。そのため、伝熱プレート41の各部の説明は省略する。なお、主板部70bの構成要件には、凸部62を含んでいない。
Next, the detailed configuration of the heat transfer plate 41 will be described.
As shown in FIGS. 6 and 8, the heat transfer plate 41 has the same shape as the heat transfer plate 40, and the reference numerals in parentheses correspond to the configurations of the respective parts of the heat transfer plate 41.
That is, the first opening portion 54, the second opening portion 55, the third opening portion 56, the fourth opening portion 57, the convex portion 62, the main plate portion 70b, the wall portions 71b, 72b, 73b, 74b, and the high portions of the heat transfer plate 41 are high. Each of the portions 75b and 76b and the elongated portion Fb has a first opening portion 50, a second opening portion 51, a third opening portion 52, a fourth opening portion 53, a convex portion 61, a main plate portion 70a in the heat transfer plate 40. They correspond to the wall portions 71a, 72a, 73a, 74a, the high portions 75a, 76a, and the long portion Fa, respectively. Therefore, description of each part of the heat transfer plate 41 is omitted. In addition, the convex portion 62 is not included in the constituent requirements of the main plate portion 70b.
 次に、伝熱プレート40と伝熱プレート41との接触状態を説明する。
プレート式熱交換器3は伝熱プレート40と伝熱プレート41を主板部70a、70bの板状面の中心から垂直に延びる軸Zを基準に180度回転させて積層された構成である。そのため、積層された状態においては、壁部71aと壁部72bとが、壁部72aと壁部71bとが、壁部73aと壁部74bとが、壁部74aと壁部73bとがそれぞれ重なるように構成されている。
Next, the contact state between the heat transfer plate 40 and the heat transfer plate 41 will be described.
The plate heat exchanger 3 has a structure in which the heat transfer plate 40 and the heat transfer plate 41 are laminated by rotating them by 180 degrees with respect to an axis Z extending vertically from the center of the plate-like surfaces of the main plate portions 70a and 70b. Therefore, in the stacked state, the wall portion 71a and the wall portion 72b overlap, the wall portion 72a and the wall portion 71b overlap, the wall portion 73a and the wall portion 74b overlap, and the wall portion 74a and the wall portion 73b overlap. Is configured.
図9に示すように、伝熱プレート40の主板部70aの長尺部Faは、背面側に位置する伝熱プレート41の主板部70bと離れて構成されている。この離れた距離を図9では、距離K1として示している。また、伝熱プレート40の主板部70aの長尺部Faは、前面側に位置する伝熱プレート41の主板部70bと離れて構成されている。この離れた距離を図9では、距離K2として示している。プレート式熱交換器3は、距離K1と距離K2とが、ほぼ同じになるように構成されている。 As shown in FIG. 9, the elongated portion Fa of the main plate portion 70a of the heat transfer plate 40 is separated from the main plate portion 70b of the heat transfer plate 41 located on the back side. This distance is shown as the distance K1 in FIG. Further, the elongated portion Fa of the main plate portion 70a of the heat transfer plate 40 is formed separately from the main plate portion 70b of the heat transfer plate 41 located on the front surface side. This distance is shown as a distance K2 in FIG. The plate heat exchanger 3 is configured such that the distance K1 and the distance K2 are substantially the same.
図9に示すように、伝熱プレート41の主板部70bの長尺部Fbは、背面側に位置する伝熱プレート40の主板部70aと離れて構成されている。この離れた距離を図9では、距離K3として示している。また、伝熱プレート41の主板部70bの長尺部Fbは、前面側に位置する伝熱プレート40の主板部70aと離れて構成されている。この離れた距離を図9では、距離K4として示している。プレート式熱交換器3は、距離K3と距離K4とが、ほぼ同じになるように構成されている。 As shown in FIG. 9, the elongated portion Fb of the main plate portion 70b of the heat transfer plate 41 is separated from the main plate portion 70a of the heat transfer plate 40 located on the back surface side. This distance is shown as the distance K3 in FIG. The elongated portion Fb of the main plate portion 70b of the heat transfer plate 41 is formed separately from the main plate portion 70a of the heat transfer plate 40 located on the front surface side. This distance is shown as a distance K4 in FIG. The plate heat exchanger 3 is configured such that the distance K3 and the distance K4 are substantially the same.
 図10に示すように、伝熱プレート40の凸部61は、伝熱プレート41の壁部71b及び長尺部Fbに当接するように構成されている。このため、図10の断面位置においては、壁部71b、72aからなる側部H2には、冷媒Rが接触することなく、水Wのみが接触する。すなわち、伝熱プレート40の凸部61は、その凸部61が突出する側の隣で対向する伝熱プレート41の壁部71bに当接されている。また、伝熱プレート41の主板部70bの長尺部Fbは、壁部71b、72b、73b、74bが突出する側の隣に位置する伝熱プレート40の凸部61と当接されている。 As shown in FIG. 10, the convex portion 61 of the heat transfer plate 40 is configured to come into contact with the wall portion 71b and the elongated portion Fb of the heat transfer plate 41. Therefore, at the cross-sectional position of FIG. 10, the coolant H does not come into contact with the side portion H2 including the walls 71b and 72a, but only the water W comes into contact therewith. That is, the convex portion 61 of the heat transfer plate 40 is in contact with the wall portion 71b of the heat transfer plate 41 that is adjacent and adjacent to the side on which the convex portion 61 projects. Further, the elongated portion Fb of the main plate portion 70b of the heat transfer plate 41 is in contact with the convex portion 61 of the heat transfer plate 40 located next to the side where the walls 71b, 72b, 73b, 74b project.
一方、伝熱プレート41の主板部70bの長尺部Fbは、前面側に位置する伝熱プレート40の凸部61と離れて構成されている。
すなわち、伝熱プレート41の長尺部Fbを基準として、長尺部Fbから壁部71b、72b、73b、74bが突出する側の隣で対向する伝熱プレート40の凸部61までの距離は、長尺部Fbから凸部62が突出する側の隣で対向する伝熱プレート40の凸部61までの距離よりも小さくなるように構成されている。
On the other hand, the elongated portion Fb of the main plate portion 70b of the heat transfer plate 41 is formed separately from the convex portion 61 of the heat transfer plate 40 located on the front surface side.
That is, based on the elongated portion Fb of the heat transfer plate 41, the distance from the elongated portion Fb to the convex portion 61 of the heat transfer plate 40 that is adjacent and adjacent to the side on which the walls 71b, 72b, 73b, and 74b project is determined. The distance is smaller than the distance from the long portion Fb to the convex portion 61 of the heat transfer plate 40 that is adjacent and adjacent to the side on which the convex portion 62 projects.
 図10に示すように、伝熱プレート41の凸部62は、伝熱プレート40の壁部71a及び長尺部Faに当接するように構成されている。このため、図10の断面位置においては、壁部71a、72bからなる側部H1には、水Wが接触することなく、冷媒Rのみが接触する。すなわち、伝熱プレート41の凸部62は、その凸部62が突出する側の隣で対向する伝熱プレート40の壁部71aに当接されている。また、伝熱プレート40の主板部70aの長尺部Faは、壁部71a、72a、73a、74aが突出する側の隣に位置する伝熱プレート41の凸部62と当接されている。 As shown in FIG. 10, the convex portion 62 of the heat transfer plate 41 is configured to come into contact with the wall portion 71 a and the elongated portion Fa of the heat transfer plate 40. Therefore, at the cross-sectional position of FIG. 10, only the refrigerant R comes into contact with the side portion H1 including the wall portions 71a and 72b without coming into contact with the water W. That is, the convex portion 62 of the heat transfer plate 41 is in contact with the wall portion 71 a of the heat transfer plate 40 that is adjacent and adjacent to the side where the convex portion 62 projects. Further, the elongated portion Fa of the main plate portion 70a of the heat transfer plate 40 is in contact with the convex portion 62 of the heat transfer plate 41 located next to the side where the walls 71a, 72a, 73a, 74a project.
一方、伝熱プレート40の主板部70aの長尺部Faは、前面側に位置する伝熱プレート41の凸部62と離れて構成されている。
すなわち、伝熱プレート40の長尺部Faを基準として、長尺部Faから壁部71a、72a、73a、74aが突出する側の隣で対向する伝熱プレート41の凸部62までの距離は、長尺部Faから凸部61が突出する側の隣で対向する伝熱プレート41の凸部62までの距離よりも小さくなるように構成されている。
伝熱プレート41は伝熱プレート40を主板部70a、70bの板状面の中心から垂直に延びる軸Zを基準に180度回転して積層されているので、伝熱プレート40と伝熱プレート41とは上記のように当接する。
On the other hand, the elongated portion Fa of the main plate portion 70a of the heat transfer plate 40 is formed separately from the convex portion 62 of the heat transfer plate 41 located on the front surface side.
That is, with the long portion Fa of the heat transfer plate 40 as a reference, the distance from the long portion Fa to the convex portion 62 of the heat transfer plate 41 that is adjacent and adjacent to the side where the wall portions 71a, 72a, 73a, and 74a protrude. The distance is smaller than the distance from the long portion Fa to the convex portion 62 of the heat transfer plate 41 that is adjacent and adjacent to the side on which the convex portion 61 projects.
The heat transfer plate 41 is laminated by rotating the heat transfer plate 40 by 180 degrees with respect to the axis Z extending perpendicularly from the center of the plate-like surfaces of the main plate portions 70a and 70b, so that the heat transfer plate 40 and the heat transfer plate 41 are laminated. And abut as described above.
 図9の断面位置では、凸部61は、その前面側に位置する伝熱プレート41の主板部70bに対して当接していないが、断面位置によっては当接するように構成されている。同様に、図9の断面位置では、凸部62は、その前面側に位置する伝熱プレート40の主板部70aに対して当接していないが、断面位置によっては当接するように構成されている。また、図示はしないが、高部75a、76aは、その前面側に位置する伝熱プレート41の主板部70bに対して当接するように構成され、高部75b、76bは、その前面側に位置する伝熱プレート40の主板部70aに対して当接するように構成されている。 At the cross-sectional position of FIG. 9, the convex portion 61 is not in contact with the main plate portion 70b of the heat transfer plate 41 located on the front surface side thereof, but is configured to be in contact with the main plate portion 70b depending on the cross-sectional position. Similarly, at the cross-sectional position of FIG. 9, the convex portion 62 does not abut against the main plate portion 70a of the heat transfer plate 40 located on the front side thereof, but is configured to abut depending on the cross-sectional position. .. Although not shown, the high portions 75a and 76a are configured to abut against the main plate portion 70b of the heat transfer plate 41 located on the front side thereof, and the high portions 75b and 76b are located on the front side thereof. The heat transfer plate 40 is configured to come into contact with the main plate portion 70a.
プレート式熱交換器3は、同じ形状の伝熱プレート40と伝熱プレート41とを主板部70a、70bの板状面の中心から垂直に延びる軸Zを基準に180度回転した状態で積層しているため、積層した状態では、壁部71aと壁部72bとが当接し、壁部72aと壁部71bとが当接するように構成されている。 The plate heat exchanger 3 is formed by stacking a heat transfer plate 40 and a heat transfer plate 41 having the same shape in a state of being rotated by 180 degrees with respect to an axis Z extending vertically from the center of the plate-like surfaces of the main plate portions 70a and 70b. Therefore, in the stacked state, the wall portion 71a and the wall portion 72b are in contact with each other, and the wall portion 72a and the wall portion 71b are in contact with each other.
温度センサ14は、図6に示すように、長手方向において長尺部Faに対応する位置に設けられており、伝熱プレート40の壁部71aに対してロウにより接合されている。さらに述べると、温度センサ14は壁部71aにおける水Wと対向する面積よりも冷媒Rと対向する面積が多くなる部分に貼り付けられている。積層方向における壁部71aへの温度センサ14の接合可能な幅S1は、図9に示すように、冷媒Rの第2流路64の積層方向の幅S2の約二倍となるように構成されている。このため、一辺の幅が幅S1の長さとなる温度センサを壁部71aに貼り付けることができるため、この温度センサよりも小型の温度センサ(例えば、一辺の幅が幅S2の長さとなる温度センサ)を用いる場合よりも安価に温度検出を行うことができる。 As shown in FIG. 6, the temperature sensor 14 is provided at a position corresponding to the long portion Fa in the longitudinal direction, and is joined to the wall portion 71a of the heat transfer plate 40 by brazing. Furthermore, the temperature sensor 14 is attached to a portion of the wall portion 71a where the area facing the coolant R is larger than the area facing the water W. As shown in FIG. 9, the width S1 of the temperature sensor 14 that can be joined to the wall portion 71a in the stacking direction is configured to be approximately twice the width S2 of the second flow path 64 of the refrigerant R in the stacking direction. ing. Therefore, a temperature sensor having a width of one side having a length of the width S1 can be attached to the wall portion 71a. Therefore, a temperature sensor smaller than the temperature sensor (for example, a temperature having a width of one side having a length of the width S2) can be attached. The temperature can be detected at a lower cost than when a sensor is used.
本実施の形態では幅S1は、4mmとしているが、これは、例えば3mm~7mmの範囲で設定してもよい。このように壁部71aの突出長さを壁部72bより長くする構成とすることで、一辺の幅が4mmの温度センサを壁部71aに貼り付けることができるため、この温度センサよりも小型の温度センサを用いる場合よりも安価に温度検出を行うことができる。
なお、本実施の形態では、温度センサ14は、幅S2に対応したものを接合しているが、複数の壁部71aを跨るように接合してもよい。
温度センサ14は、本願請求項の温度検出手段に相当し、壁部71aは、本願請求項の温度検出手段設置部に相当する。
In the present embodiment, the width S1 is set to 4 mm, but this may be set in the range of 3 mm to 7 mm, for example. In this way, by making the projection length of the wall portion 71a longer than the wall portion 72b, a temperature sensor having a side width of 4 mm can be attached to the wall portion 71a, which is smaller than the temperature sensor. The temperature can be detected at a lower cost than when using the temperature sensor.
In addition, in the present embodiment, the temperature sensor 14 is joined to correspond to the width S2, but may be joined to span the plurality of wall portions 71a.
The temperature sensor 14 corresponds to the temperature detecting means in the claims of the present application, and the wall portion 71a corresponds to the temperature detecting means installation portion in the claims of the present application.
 次に、このように構成された室外機1の動作について説明する。
プレート式熱交換器3で水Wを加熱する場合には、図1に示すように、圧縮機4で冷媒Rを圧縮して高圧・高温のガス冷媒とし、四方弁5を介してプレート式熱交換器3の一方の冷媒配管接続口3cに供給する。プレート式熱交換器3では、冷媒Rと水Wとが対向流となり、冷媒Rと水Wとの間で熱交換が行われて、水Wが加熱される。プレート式熱交換器3の他方の冷媒配管接続口3dを出た液冷媒は、電子膨張弁8bで過冷却(サブクールをつける)されて圧力容器7に入る。さらに、電子膨張弁8aで減圧されて二相冷媒となり、空気熱交換器6で蒸発し低圧のガス冷媒となり、四方弁5を介して吸入マフラー4aから圧縮機4に戻る。プレート式熱交換器3で加熱された高温の水は、図示しない給湯タンク、ファンコイルユニット等に供給される。
Next, the operation of the outdoor unit 1 thus configured will be described.
When the water W is heated by the plate heat exchanger 3, as shown in FIG. 1, the refrigerant R is compressed by the compressor 4 into a high-pressure/high-temperature gas refrigerant, and the plate heat is passed through the four-way valve 5. Supply to one refrigerant pipe connection port 3c of the exchanger 3. In the plate heat exchanger 3, the refrigerant R and the water W are in counterflow, heat exchange is performed between the refrigerant R and the water W, and the water W is heated. The liquid refrigerant exiting the other refrigerant pipe connection port 3d of the plate heat exchanger 3 is supercooled (subcooled) by the electronic expansion valve 8b and enters the pressure vessel 7. Further, the pressure is reduced by the electronic expansion valve 8a to become a two-phase refrigerant, which is evaporated in the air heat exchanger 6 to become a low-pressure gas refrigerant, and returns from the suction muffler 4a to the compressor 4 via the four-way valve 5. The high-temperature water heated by the plate heat exchanger 3 is supplied to a hot water tank, a fan coil unit, etc., which are not shown.
  また、プレート式熱交換器3で水Wを冷却する場合は、図1に対して冷媒Rの流れは上記と逆方向になるように四方弁5が切り換えられる。圧縮機4で冷媒Rを圧縮して高圧・高温のガス冷媒とし、四方弁5を介して空気熱交換器6に供給する。空気熱交換器6を出た液冷媒は、電子膨張弁8aで過冷却されて圧力容器7に入る。さらに、電子膨張弁8bで減圧されて二相冷媒となり冷媒配管接続口3dに供給され、プレート式熱交換器3で蒸発し低圧のガス冷媒となる。プレート式熱交換器3では、冷媒Rと水Wとが対向流となり、冷媒Rと水Wとの間で熱交換が行われて、水Wが冷却される。プレート式熱交換器3の冷媒配管接続口3cから出た低圧のガス冷媒は、四方弁5を介して吸入マフラー4aから圧縮機4に戻る。プレート式熱交換器3で冷却された水Wは、例えばファンコイルユニットに供給され冷房等に利用される。 Further, when the water W is cooled by the plate heat exchanger 3, the four-way valve 5 is switched so that the flow of the refrigerant R is in the opposite direction to the above with respect to FIG. The refrigerant R is compressed by the compressor 4 into a high-pressure/high-temperature gas refrigerant, and is supplied to the air heat exchanger 6 via the four-way valve 5. The liquid refrigerant discharged from the air heat exchanger 6 is supercooled by the electronic expansion valve 8a and enters the pressure vessel 7. Further, the pressure is reduced by the electronic expansion valve 8b to become a two-phase refrigerant, which is supplied to the refrigerant pipe connection port 3d and evaporated by the plate heat exchanger 3 to become a low-pressure gas refrigerant. In the plate heat exchanger 3, the refrigerant R and the water W are in counterflow, heat exchange is performed between the refrigerant R and the water W, and the water W is cooled. The low-pressure gas refrigerant discharged from the refrigerant pipe connection port 3c of the plate heat exchanger 3 returns to the compressor 4 from the suction muffler 4a via the four-way valve 5. The water W cooled by the plate heat exchanger 3 is supplied to, for example, a fan coil unit and used for cooling or the like.
次に、プレート式熱交換器3の作用について説明する。
壁部71a、72bから構成される側部H1は、図10で示す断面位置では、伝熱プレート40の壁部71a及び長尺部Faとその背面側の伝熱プレート41の凸部62とが当接し、且つ伝熱プレート40の長尺部Faとその前面側の伝熱プレート41の凸部62とが離れる構成となっていることから、冷媒Rのみからの温度が伝達される。
一方、壁部71a、72bから構成される側部H1は、図9で示す断面位置では、伝熱プレート40の長尺部Faとその背面側の伝熱プレート41の主板部70bとが距離K1だけ離れた構成とされ、且つ伝熱プレート40の長尺部Faとその前面側の伝熱プレート41の主板部70bとが距離K2(K1≒K2)だけ離れた構成とされていることから、冷媒Rと水Wとの温度がほぼ同割合で伝達される。
図9及び図10の状態を総合的に考えると、壁部71a、72bから構成される側部H1は、水Wとの接触面積よりも、冷媒Rとの接触面積の方が大きくなる。
Next, the operation of the plate heat exchanger 3 will be described.
In the side portion H1 composed of the wall portions 71a and 72b, at the cross-sectional position shown in FIG. 10, the wall portion 71a and the elongated portion Fa of the heat transfer plate 40 and the convex portion 62 of the heat transfer plate 41 on the back side thereof are formed. Since the long portion Fa of the heat transfer plate 40 is in contact with the convex portion 62 of the heat transfer plate 41 on the front side of the heat transfer plate 40, the temperature is transmitted only from the refrigerant R.
On the other hand, in the side portion H1 including the wall portions 71a and 72b, at the cross-sectional position shown in FIG. 9, the long portion Fa of the heat transfer plate 40 and the main plate portion 70b of the heat transfer plate 41 on the rear side thereof are separated by a distance K1. Since the long portion Fa of the heat transfer plate 40 and the main plate portion 70b of the heat transfer plate 41 on the front side thereof are separated by a distance K2 (K1≈K2), The temperatures of the refrigerant R and the water W are transmitted at substantially the same ratio.
Considering the states of FIG. 9 and FIG. 10 comprehensively, the side portion H1 formed of the walls 71a and 72b has a larger contact area with the refrigerant R than a contact area with the water W.
本実施の形態においては、図6、図9及び図10に示されるように、温度センサ14は、壁部71aに取り付けられている。このため、壁部71aに接合された温度センサ14は、水Wによる影響を抑制しつつ冷媒Rの温度を検出することができる。
制御装置15は、温度センサ14で検出した温度データを読み、演算装置17はその温度データに基づいて、プレート式熱交換器3内を流れる冷媒Rの温度を算出する。
In the present embodiment, as shown in FIGS. 6, 9 and 10, the temperature sensor 14 is attached to the wall 71a. Therefore, the temperature sensor 14 joined to the wall portion 71a can detect the temperature of the refrigerant R while suppressing the influence of the water W.
The controller 15 reads the temperature data detected by the temperature sensor 14, and the arithmetic unit 17 calculates the temperature of the refrigerant R flowing in the plate heat exchanger 3 based on the temperature data.
 このように、プレート式熱交換器3における温度センサ14を接合した側の側面への温度伝達は、水Wと冷媒Rとの温度伝達が同割合ではなく、冷媒Rの方が水Wよりも温度伝達の割合が多くなるため、温度センサ14は、冷媒Rの温度の検出精度を高めることができる。
加えて、温度センサ14による冷媒Rの温度の検出精度が高くなることによって、室外機1は、制御装置15による圧力飽和温度データの算出精度が高くなり、電子膨張弁8a、8bの制御精度を高めることができる。
As described above, regarding the temperature transfer to the side surface of the plate heat exchanger 3 on the side where the temperature sensor 14 is joined, the temperature transfer between the water W and the refrigerant R is not the same ratio, and the refrigerant R is more than the water W. Since the rate of temperature transfer increases, the temperature sensor 14 can improve the detection accuracy of the temperature of the refrigerant R.
In addition, since the temperature sensor 14 increases the detection accuracy of the temperature of the refrigerant R, the outdoor unit 1 increases the calculation accuracy of the pressure saturation temperature data by the control device 15 and improves the control accuracy of the electronic expansion valves 8a and 8b. Can be increased.
 また、図8に示すように、壁部71aの主板部70aからの突出長さL1を、壁部72aの主板部70aからの突出長さL2よりも長くなるように形成し、この結果、図9に示すように、温度センサ14の接合可能な幅S1を、冷媒Rの第2流路64の積層方向の幅S2の約二倍となるように構成した。したがって、幅S2に対応した小型の温度センサを用いる必要がなく、幅S1に対応した大きさの温度センサ14を用いることができるため、低コストで温度検出を行うことができる。 In addition, as shown in FIG. 8, the protrusion length L1 of the wall portion 71a from the main plate portion 70a is formed to be longer than the protrusion length L2 of the wall portion 72a from the main plate portion 70a. As shown in FIG. 9, the jointable width S1 of the temperature sensor 14 is configured to be approximately twice the width S2 of the second flow path 64 of the refrigerant R in the stacking direction. Therefore, it is not necessary to use a small temperature sensor corresponding to the width S2, and the temperature sensor 14 having a size corresponding to the width S1 can be used, so that temperature detection can be performed at low cost.
伝熱プレート40においては、凸部61の主板部70aからの突出高さが、高部75a、76aの主板部70aからの突出高さと同じとなるように形成されている。このため、伝熱プレート40の凸部61と高部75a、76aとの両方が、伝熱プレート40の前面側に位置する伝熱プレート41の主板部70bに対して当接するため、プレート式熱交換器3の強度を高めることができる。
また、伝熱プレート41においては、凸部62の主板部70bからの突出高さが、高部75b、76bの主板部70bからの突出高さと同じとなるように形成されている。このため、伝熱プレート41の凸部62と高部75b、76bとの両方が、伝熱プレート41の前面側に位置する伝熱プレート40の主板部70aに対して当接するため、プレート式熱交換器3の強度を高めることができる。
In the heat transfer plate 40, the protruding height of the convex portion 61 from the main plate portion 70a is the same as the protruding height of the high portions 75a and 76a from the main plate portion 70a. Therefore, both the convex portion 61 and the high portions 75a and 76a of the heat transfer plate 40 come into contact with the main plate portion 70b of the heat transfer plate 41 located on the front surface side of the heat transfer plate 40, so that the plate type heat The strength of the exchanger 3 can be increased.
Further, in the heat transfer plate 41, the protruding height of the convex portion 62 from the main plate portion 70b is formed to be the same as the protruding height of the high portions 75b and 76b from the main plate portion 70b. Therefore, both the convex portion 62 and the high portions 75b and 76b of the heat transfer plate 41 come into contact with the main plate portion 70a of the heat transfer plate 40 located on the front surface side of the heat transfer plate 41, so that the plate type heat The strength of the exchanger 3 can be increased.
 また、プレート式熱交換器3は、図9に示すように、伝熱プレート40と伝熱プレート41との合計枚数が奇数となっている。そして、外側プレート42に最も近い流路は、水Wが流れる第1流路63が構成されており、かつ外側プレート43と、その外側プレート43に隣接した伝熱プレート40との間を水Wが流れるように構成されている。そのため、プレート式熱交換器3では、冷媒Rと補強プレート44、45との間に水Wが介在することによって、冷媒Rの熱(冷気)が補強プレート44、45を介してプレート式熱交換器3の外に放出されることを抑制し、エネルギーロスを抑制できる。 Further, in the plate heat exchanger 3, as shown in FIG. 9, the total number of the heat transfer plates 40 and the heat transfer plates 41 is an odd number. The flow path closest to the outer plate 42 constitutes the first flow path 63 through which the water W flows, and the water W is formed between the outer plate 43 and the heat transfer plate 40 adjacent to the outer plate 43. Is configured to flow. Therefore, in the plate heat exchanger 3, the water (W) is present between the refrigerant R and the reinforcing plates 44 and 45, so that the heat (cold air) of the refrigerant R is exchanged through the reinforcing plates 44 and 45 into the plate heat exchanger. The energy loss can be suppressed by suppressing the discharge to the outside of the container 3.
実施の形態2.
 この発明の実施の形態2のプレート式熱交換器80を備えた室外機について図11~図17を用いて説明する。なお、図11~図17中、図1~図10と同一符号は同一又は相当部分を示す。この実施の形態2のプレート式熱交換器80を備えた室外機は実施の形態1の伝熱プレート40、41の凸部61、62を変更したものである。
Embodiment 2.
An outdoor unit equipped with the plate heat exchanger 80 according to Embodiment 2 of the present invention will be described with reference to FIGS. 11 to 17. 11 to 17, the same reference numerals as those in FIGS. 1 to 10 denote the same or corresponding parts. The outdoor unit provided with the plate heat exchanger 80 of the second embodiment is obtained by changing the convex portions 61 and 62 of the heat transfer plates 40 and 41 of the first embodiment.
 図11は、伝熱プレート81、82の正面図である。図12は、伝熱プレート81、82の拡大図である。図13の(a)は、伝熱プレート81、82を図11のE-Eの位置から見た断面図であり、(b)は、伝熱プレート81、82を図11のI-Iの位置から見た断面図であり、(c)は、伝熱プレート81、82を図11のJ-Jの位置から見た断面図であり、(d)は、伝熱プレート81、82を図11のH-Hの位置から見た断面図である。図14は、プレート式熱交換器80を図11のF-Fの位置から見た断面図であり、図15は、プレート式熱交換器80を図11のG-Gの位置から見た断面図である。図16は、プレート式熱交換器80を図11のI-Iの位置から見た断面図であり、図17は、プレート式熱交換器80を図11のJ-Jの位置から見た断面図である。
本実施の形態のプレート式熱交換器80(図14、図15参照)は、図11及び図13に示すように、伝熱プレート81、82を備えている。
FIG. 11 is a front view of the heat transfer plates 81 and 82. FIG. 12 is an enlarged view of the heat transfer plates 81 and 82. 13A is a cross-sectional view of the heat transfer plates 81 and 82 seen from the position EE of FIG. 11, and FIG. 13B is a cross-sectional view of the heat transfer plates 81 and 82 of II of FIG. FIG. 12 is a cross-sectional view seen from the position, (c) is a cross-sectional view of the heat transfer plates 81, 82 seen from the position JJ in FIG. 11, and (d) is a view showing the heat transfer plates 81, 82. 11 is a cross-sectional view as seen from the position HH of 11. 14 is a cross-sectional view of the plate heat exchanger 80 as seen from the position FF in FIG. 11, and FIG. 15 is a cross section of the plate heat exchanger 80 as seen from the position GG in FIG. It is a figure. 16 is a cross-sectional view of the plate heat exchanger 80 as seen from the position I-I of FIG. 11, and FIG. 17 is a cross-section of the plate heat exchanger 80 as seen from the position JJ of FIG. It is a figure.
The plate heat exchanger 80 (see FIGS. 14 and 15) of the present embodiment includes heat transfer plates 81 and 82 as shown in FIGS. 11 and 13.
まず、伝熱プレート81の詳細な構成について説明する。
 伝熱プレート81は、複数の凸部83及び複数の凸条部84を備えている。凸部83及び凸条部84は、前面側から見た場合に、略V字状に形成されている。
 複数の凸部83は、主板部70aの長手方向の中央位置に形成されている。各凸部83は、主板部70aの壁部72a側の長辺から、壁部71aの長辺から所定間隔をおいた位置まで形成されている。
First, the detailed configuration of the heat transfer plate 81 will be described.
The heat transfer plate 81 includes a plurality of protrusions 83 and a plurality of protrusions 84. The convex portion 83 and the convex strip portion 84 are formed in a substantially V shape when viewed from the front side.
The plurality of convex portions 83 are formed at the central positions in the longitudinal direction of the main plate portion 70a. Each convex portion 83 is formed from a long side of the main plate portion 70a on the side of the wall portion 72a to a position spaced from the long side of the wall portion 71a by a predetermined distance.
複数の凸部83が、主板部70aの壁部71a側の長辺から所定間隔をおいた位置まで形成されていることにより、複数の凸部83の壁部71a側には、主板部70aが突出した形状を有していない長尺部Fcが形成されている。すなわち、主板部70aの壁部71a側の長辺から所定間隔をおいて形成した複数の凸部83を、主板部70aの長手方向に沿って配列させて形成することにより、主板部70aの壁部71a側の長辺側には、主板部70aの一部であるとともに凸部83が形成されていない領域である長尺部Fcが形成されている。 Since the plurality of convex portions 83 are formed from the long side on the wall portion 71a side of the main plate portion 70a to a position spaced by a predetermined distance, the main plate portion 70a is provided on the wall portion 71a side of the plurality of convex portions 83. A long portion Fc having no protruding shape is formed. That is, by forming a plurality of convex portions 83 formed at a predetermined interval from the long side of the main plate portion 70a on the side of the wall portion 71a so as to be arranged along the longitudinal direction of the main plate portion 70a, the wall of the main plate portion 70a is formed. A long portion Fc, which is a region that is a part of the main plate portion 70a and in which the convex portion 83 is not formed, is formed on the long side of the portion 71a side.
すなわち、凸部83は、図12の右側の二点鎖線で囲んで示したように主板部70aの壁部72a側の長辺に沿って断続的に形成され、且つ、長尺部Fcは、図12の左側の二点鎖線で囲んで示したように主板部70aの壁部71a側の長辺側に接して沿うように形成されている。 That is, the convex portion 83 is intermittently formed along the long side on the wall portion 72a side of the main plate portion 70a as shown by being surrounded by the two-dot chain line on the right side of FIG. 12, and the long portion Fc is As shown by being surrounded by a two-dot chain line on the left side of FIG. 12, the main plate portion 70a is formed so as to be in contact with the long side of the wall portion 71a of the main plate portion 70a.
 主板部70aには、長尺部Fcにおける長手方向両側の位置に複数の凸条部84がそれぞれ形成されている。各凸条部84は、主板部70aの壁部72a側の長辺から壁部71aの長辺まで形成されている。なお、主板部70aの構成要件には、凸部83および凸条部84を含んでいない。 The main plate portion 70a is formed with a plurality of ridges 84 at positions on both sides in the longitudinal direction of the elongated portion Fc. Each protruding portion 84 is formed from the long side of the main plate portion 70a on the side of the wall portion 72a to the long side of the wall portion 71a. The constituent features of the main plate portion 70a do not include the convex portion 83 and the convex streak portion 84.
温度センサ14は、図11、図14、及び図15に示すように、長手方向において長尺部Fcに対応する位置に設けられており、伝熱プレート81の壁部71aに対してロウにより接合されている。さらに述べると、温度センサ14は壁部71aにおける冷媒Rと対向する部分に貼り付けられている。 As shown in FIGS. 11, 14, and 15, the temperature sensor 14 is provided at a position corresponding to the elongated portion Fc in the longitudinal direction, and is joined to the wall portion 71 a of the heat transfer plate 81 by brazing. Has been done. Furthermore, the temperature sensor 14 is attached to a portion of the wall portion 71a facing the refrigerant R.
次に、伝熱プレート82の詳細な構成について説明する。
 伝熱プレート82は、図11及び図13に示すように、伝熱プレート81と同形状をなしており、カッコで示す符号が伝熱プレート82の各部の構成に対応している。
 すなわち、伝熱プレート82における第1開口部54、第2開口部55、第3開口部56、第4開口部57、凸部85、凸条部86、主板部70b、壁部71b、72b、73b、74b、高部75b、76b、長尺部Fdのそれぞれは、伝熱プレート81における第1開口部50、第2開口部51、第3開口部52、第4開口部53、凸部83、凸条部84、主板部70a、壁部71a、72a、73a、74a、高部75a、76a、長尺部Fcにそれぞれ対応している。そのため、伝熱プレート82の各部の説明は省略する。なお、主板部70bの構成要件には、凸部85および凸条部86を含んでいない。
Next, the detailed configuration of the heat transfer plate 82 will be described.
As shown in FIGS. 11 and 13, the heat transfer plate 82 has the same shape as the heat transfer plate 81, and the reference numerals in parentheses correspond to the configuration of each part of the heat transfer plate 82.
That is, the first opening portion 54, the second opening portion 55, the third opening portion 56, the fourth opening portion 57, the protruding portion 85, the protruding portion 86, the main plate portion 70b, the wall portions 71b and 72b of the heat transfer plate 82, The first opening 50, the second opening 51, the third opening 52, the fourth opening 53, and the convex portion 83 of the heat transfer plate 81 are respectively included in the heat transfer plate 81. The ridge portion 84, the main plate portion 70a, the wall portions 71a, 72a, 73a, 74a, the high portions 75a, 76a, and the elongated portion Fc, respectively. Therefore, description of each part of the heat transfer plate 82 is omitted. The constituent requirements of the main plate portion 70b do not include the convex portion 85 and the convex streak portion 86.
 次に、伝熱プレート81と伝熱プレート82との接触状態を説明する。
図14に示すように、伝熱プレート81の主板部70aの長尺部Fcは、背面側に位置する伝熱プレート82の主板部70bと離れて構成されている。この離れた距離を図14では、距離K5として示している。また、伝熱プレート81の主板部70aの長尺部Fcは、前面側に位置する伝熱プレート82の主板部70bと離れて構成されている。この離れた距離を図14では、距離K6として示している。プレート式熱交換器80は、距離K5と距離K6とが、ほぼ同じになるように構成されている。
Next, the contact state between the heat transfer plate 81 and the heat transfer plate 82 will be described.
As shown in FIG. 14, the elongated portion Fc of the main plate portion 70a of the heat transfer plate 81 is separated from the main plate portion 70b of the heat transfer plate 82 located on the back side. This distance is shown as a distance K5 in FIG. The elongated portion Fc of the main plate portion 70a of the heat transfer plate 81 is separated from the main plate portion 70b of the heat transfer plate 82 located on the front surface side. This separated distance is shown as a distance K6 in FIG. The plate heat exchanger 80 is configured such that the distance K5 and the distance K6 are substantially the same.
図14に示すように、伝熱プレート82の主板部70bの長尺部Fdは、背面側に位置する伝熱プレート81の主板部70aと離れて構成されている。この離れた距離を図14では、距離K7として示している。また、伝熱プレート82の主板部70bの長尺部Fdは、前面側に位置する伝熱プレート81の主板部70aと離れて構成されている。この離れた距離を図14では、距離K8として示している。プレート式熱交換器80は、距離K7と距離K8とが、ほぼ同じになるように構成されている。 As shown in FIG. 14, the elongated portion Fd of the main plate portion 70b of the heat transfer plate 82 is separated from the main plate portion 70a of the heat transfer plate 81 located on the rear surface side. This distance is shown as a distance K7 in FIG. The elongated portion Fd of the main plate portion 70b of the heat transfer plate 82 is formed separately from the main plate portion 70a of the heat transfer plate 81 located on the front surface side. This separated distance is shown as a distance K8 in FIG. The plate heat exchanger 80 is configured such that the distance K7 and the distance K8 are substantially the same.
 図15に示すように、伝熱プレート81の凸部83は、伝熱プレート82の壁部71b及び長尺部Fdに当接するように構成されている。このため、図15の断面位置においては、壁部71b、72aからなる側部H2には、冷媒Rが接触することなく、水Wのみが接触する。すなわち、伝熱プレート81の凸部83は、その凸部83が突出する側の隣で対向する伝熱プレート82の壁部71bに当接されている。また、伝熱プレート82の主板部70bの長尺部Fdは、壁部71b、72b、73b、74bが突出する側の隣に位置する伝熱プレート81の凸部83と当接されている。 As shown in FIG. 15, the convex portion 83 of the heat transfer plate 81 is configured to come into contact with the wall portion 71b and the elongated portion Fd of the heat transfer plate 82. Therefore, at the cross-sectional position of FIG. 15, only the water W comes into contact with the side portion H2 formed of the wall portions 71b and 72a without coming into contact with the refrigerant R. That is, the convex portion 83 of the heat transfer plate 81 is in contact with the wall portion 71b of the heat transfer plate 82 that is adjacent to and on the side where the convex portion 83 protrudes. The elongated portion Fd of the main plate portion 70b of the heat transfer plate 82 is in contact with the convex portion 83 of the heat transfer plate 81 located next to the side where the walls 71b, 72b, 73b, 74b project.
一方、伝熱プレート82の主板部70bの長尺部Fdは、前面側に位置する伝熱プレート81の凸部83と離れて構成されている。
すなわち、伝熱プレート82の長尺部Fdを基準として、長尺部Fdから壁部71b、72b、73b、74bが突出する側の隣で対向する伝熱プレート81の凸部83までの距離は、長尺部Fdから凸部85が突出する側の隣で対向する伝熱プレート81の凸部83までの距離よりも小さくなるように構成されている。
On the other hand, the elongated portion Fd of the main plate portion 70b of the heat transfer plate 82 is formed apart from the convex portion 83 of the heat transfer plate 81 located on the front surface side.
That is, with reference to the elongated portion Fd of the heat transfer plate 82, the distance from the elongated portion Fd to the convex portion 83 of the heat transfer plate 81 that is adjacent and adjacent to the side where the walls 71b, 72b, 73b, 74b project is determined. The distance is smaller than the distance from the long portion Fd to the convex portion 83 of the heat transfer plate 81 that is adjacent and opposite to the side where the convex portion 85 projects.
図15に示すように、伝熱プレート82の凸部85は、伝熱プレート81の壁部71a及び長尺部Fcに当接するように構成されている。このため、図15の断面位置においては、壁部71a、72bからなる側部H1には、水Wが接触することなく、冷媒Rのみが接触する。すなわち、伝熱プレート82の凸部85は、その凸部85が突出する側の隣で対向する伝熱プレート81の壁部71aに当接されている。また、伝熱プレート81の主板部70aの長尺部Fcは、壁部71a、72a、73a、74aが突出する側の隣に位置する伝熱プレート82の凸部85と当接されている。 As shown in FIG. 15, the convex portion 85 of the heat transfer plate 82 is configured to come into contact with the wall portion 71 a and the elongated portion Fc of the heat transfer plate 81. Therefore, at the cross-sectional position of FIG. 15, only the refrigerant R comes into contact with the side portion H1 including the walls 71a and 72b without coming into contact with the water W. That is, the convex portion 85 of the heat transfer plate 82 is in contact with the wall portion 71a of the heat transfer plate 81 that is adjacent to and on the side where the convex portion 85 protrudes. The elongated portion Fc of the main plate portion 70a of the heat transfer plate 81 is in contact with the convex portion 85 of the heat transfer plate 82 located next to the side where the walls 71a, 72a, 73a, 74a project.
一方、伝熱プレート81の主板部70aの長尺部Fcは、前面側に位置する伝熱プレート82の凸部85と離れて構成されている。
すなわち、伝熱プレート81の長尺部Fcを基準として、長尺部Fcから壁部71a、72a、73a、74aが突出する側の隣で対向する伝熱プレート82の凸部85までの距離は、長尺部Fcから凸部83が突出する側の隣で対向する伝熱プレート82の凸部85までの距離よりも小さくなるように構成されている。
On the other hand, the elongated portion Fc of the main plate portion 70a of the heat transfer plate 81 is formed separately from the convex portion 85 of the heat transfer plate 82 located on the front surface side.
That is, based on the elongated portion Fc of the heat transfer plate 81, the distance from the elongated portion Fc to the convex portion 85 of the heat transfer plate 82 that is adjacent and adjacent to the side on which the walls 71a, 72a, 73a, and 74a protrude. The distance is smaller than the distance from the elongated portion Fc to the convex portion 85 of the heat transfer plate 82 that is adjacent and adjacent to the protruding side of the convex portion 83.
 図14及び図16の断面位置では、凸部83及び凸条部84は、その前面側に位置する伝熱プレート82の主板部70bに対して当接していないが、断面位置によっては当接するように構成されている。同様に、図14及び図16の断面位置では、凸部85及び凸条部86は、その前面側に位置する伝熱プレート81の主板部70aに対して当接していないが、断面位置によっては当接するように構成されている。
また、図示はしないが、高部75a、76aは、その前面側に位置する伝熱プレート82の主板部70aに対して当接するように構成され、高部75b、76bは、その前面側に位置する伝熱プレート81の主板部70aに対して当接するように構成されている。
At the cross-sectional position of FIGS. 14 and 16, the convex portion 83 and the convex strip portion 84 do not abut on the main plate portion 70b of the heat transfer plate 82 located on the front surface side thereof, but they may abut on the cross-sectional position. Is configured. Similarly, at the cross-sectional positions of FIGS. 14 and 16, the convex portion 85 and the convex streak portion 86 are not in contact with the main plate portion 70a of the heat transfer plate 81 located on the front side thereof, but depending on the cross-sectional position. It is configured to abut.
Although not shown, the high portions 75a and 76a are configured to abut against the main plate portion 70a of the heat transfer plate 82 located on the front side thereof, and the high portions 75b and 76b are located on the front side thereof. The heat transfer plate 81 is configured to come into contact with the main plate portion 70a.
 このように構成されたプレート式熱交換器80を備えた室外機においても、実施の形態1の室外機1と同様の動作を奏する。
 また、第2の実施の形態では、第1の実施の形態と同様の効果を奏するとともに、以下の効果を奏する。
 長手方向における温度センサ14が設けられていない位置では、図16、図17で示すように、凸条部84、86は、短手方向の全域にわたって形成されているため、この部分での熱交換効率を、凸部83、85部分に比して高めることができる。
The outdoor unit including the plate heat exchanger 80 configured in this manner also performs the same operation as the outdoor unit 1 of the first embodiment.
In addition, the second embodiment has the same effects as those of the first embodiment, and also has the following effects.
At the position where the temperature sensor 14 is not provided in the longitudinal direction, as shown in FIGS. 16 and 17, since the ridges 84 and 86 are formed over the entire area in the lateral direction, heat exchange in this portion is performed. The efficiency can be increased as compared with the convex portions 83 and 85.
実施の形態3.
 この発明の実施の形態3のプレート式熱交換器90を備えた室外機について図18~図21を用いて説明する。なお、図18~図21中、図1~図10と同一符号は同一又は相当部分を示す。この実施の形態3のプレート式熱交換器90を備えた室外機は実施の形態1の伝熱プレート40、41の凸部61、62の形状を一部変更し、かつ凸部93、94を追加したものである。
Embodiment 3.
An outdoor unit equipped with the plate heat exchanger 90 according to Embodiment 3 of the present invention will be described with reference to FIGS. 18 to 21. 18 to 21, the same reference numerals as those in FIGS. 1 to 10 indicate the same or corresponding portions. The outdoor unit including the plate heat exchanger 90 according to the third embodiment partially changes the shapes of the convex portions 61 and 62 of the heat transfer plates 40 and 41 according to the first embodiment, and has the convex portions 93 and 94. It was added.
図18は、伝熱プレート91、92の正面図である。図19の(a)は、伝熱プレート91、92を図18のK-Kの位置から見た断面図であり、(b)は、伝熱プレート91、92を図18のL-Lの位置から見た断面図であり、(c)は、伝熱プレート91、92を図18のM-Mの位置から見た断面図であり、(d)は、伝熱プレート91、92を図18のN-Nの位置から見た断面図である。図20は、プレート式熱交換器90を図18のL-Lの位置から見た断面図であり、図21は、プレート式熱交換器90を図18のM-Mの位置から見た断面図である。 FIG. 18 is a front view of the heat transfer plates 91 and 92. 19A is a cross-sectional view of the heat transfer plates 91 and 92 seen from the position KK of FIG. 18, and FIG. 19B is a cross-sectional view of the heat transfer plates 91 and 92 of LL of FIG. 19 is a cross-sectional view seen from the position, FIG. 19C is a cross-sectional view of the heat transfer plates 91 and 92 seen from the position MM in FIG. 18, and FIG. 19D is a cross-sectional view of the heat transfer plates 91 and 92. FIG. 18 is a cross-sectional view seen from the position NN of 18. 20 is a sectional view of the plate heat exchanger 90 seen from the position LL in FIG. 18, and FIG. 21 is a sectional view of the plate heat exchanger 90 seen from the position MM in FIG. It is a figure.
本実施の形態のプレート式熱交換器90(図20、図21参照)は、図18、図19に示すように、伝熱プレート91、92を備えている。
まず、伝熱プレート91の詳細な構成について説明する。
伝熱プレート91には、主板部70aの壁部72a側に近接して凸部93が形成されている。凸部93は、長手方向に沿って延びるように形成されている。凸部93は、先端面93aが平面となるように形成されており、その平面は、凸部61の頂点と同じ高さになるように形成されている。凸部93は、主板部70aから突出するように形成されており、板材をプレス加工することによって形成されている。
主板部70aの壁部72a側の長辺から長尺部Faまで形成されている複数の凸部61は、主板部70aの壁部72a側の長辺に沿って連続的に形成された凸部93に連続して形成されている。なお、主板部70aの構成要件には、凸部61、93を含んでいない。
The plate heat exchanger 90 (see FIGS. 20 and 21) of the present embodiment includes heat transfer plates 91 and 92, as shown in FIGS. 18 and 19.
First, the detailed configuration of the heat transfer plate 91 will be described.
A convex portion 93 is formed on the heat transfer plate 91 close to the wall portion 72a side of the main plate portion 70a. The convex portion 93 is formed so as to extend along the longitudinal direction. The convex portion 93 is formed such that the tip end surface 93 a is a flat surface, and the flat surface is formed to have the same height as the apex of the convex portion 61. The convex portion 93 is formed so as to protrude from the main plate portion 70a, and is formed by pressing a plate material.
The plurality of convex portions 61 formed from the long side on the wall portion 72a side of the main plate portion 70a to the long portion Fa is a convex portion formed continuously along the long side on the wall portion 72a side of the main plate portion 70a. It is formed continuously at 93. The constituent requirements of the main plate portion 70a do not include the convex portions 61 and 93.
本実施形態では、凸部93の短手方向長さを1.75mmとしている。凸部93の短手方向長さと主板部70aの短手方向長さの比は、「1.2:100~4:100」が望ましく、本実施の形態では、「2:100」としている。凸部93の短手方向長さと主板部70aの短手方向長さの比を「1.2:100~4:100」とすることで、後述する前面側の長尺部Fbとの当接状態を好適に維持でき、かつ、主板部70a上に凸部93を構成させる面積を極力少なくすることが可能となる。また、凸部93の短手方向長さと主板部70aの短手方向長さの比を「2:100」とすることで、後述する前面側の長尺部Fbとの当接状態をよりいっそう好適に維持でき、かつ、主板部70a上に凸部93を構成させる面積を極力少なくすることが可能となる。 In this embodiment, the lateral length of the convex portion 93 is 1.75 mm. The ratio of the short-side length of the convex portion 93 to the short-side length of the main plate portion 70a is preferably “1.2:100 to 4:100”, and is “2:100” in the present embodiment. By setting the ratio of the short-side length of the convex portion 93 and the short-side length of the main plate portion 70a to "1.2:100 to 4:100", the contact with the long-side portion Fb on the front surface side described later. The state can be preferably maintained, and the area for forming the convex portion 93 on the main plate portion 70a can be reduced as much as possible. Further, by setting the ratio of the short-side length of the convex portion 93 and the short-side length of the main plate portion 70a to “2:100”, the contact state with the long-side portion Fb on the front surface side, which will be described later, is further improved. It is possible to maintain it suitably, and it is possible to reduce the area where the convex portion 93 is formed on the main plate portion 70a as much as possible.
次に、伝熱プレート92の詳細な構成について説明する。
 伝熱プレート92は、図18、図19に示すように、伝熱プレート91と同形状をなしており、カッコで示す符号が伝熱プレート92の各部の構成に対応している。
 すなわち、伝熱プレート92における第1開口部54、第2開口部55、第3開口部56、第4開口部57、凸部62、主板部70b、壁部71b、72b、73b、74b、高部75b、76b、凸部94、先端面94a、長尺部Fbのそれぞれは、伝熱プレート91における第1開口部50、第2開口部51、第3開口部52、第4開口部53、凸部61、主板部70a、壁部71a、72a、73a、74a、高部75a、76a、凸部93、先端面93a、長尺部Faにそれぞれ対応している。そのため、伝熱プレート92の各部の説明は省略する。なお、主板部70bの構成要件には、凸部62、94を含んでいない。
Next, the detailed configuration of the heat transfer plate 92 will be described.
As shown in FIGS. 18 and 19, the heat transfer plate 92 has the same shape as the heat transfer plate 91, and the reference numerals in parentheses correspond to the configurations of the respective parts of the heat transfer plate 92.
That is, the first opening portion 54, the second opening portion 55, the third opening portion 56, the fourth opening portion 57, the convex portion 62, the main plate portion 70b, the wall portions 71b, 72b, 73b and 74b, and the height of the heat transfer plate 92 are high. Each of the portions 75b and 76b, the convex portion 94, the tip surface 94a, and the elongated portion Fb has a first opening portion 50, a second opening portion 51, a third opening portion 52, a fourth opening portion 53 in the heat transfer plate 91. It corresponds to the convex portion 61, the main plate portion 70a, the wall portions 71a, 72a, 73a, 74a, the high portions 75a, 76a, the convex portion 93, the tip surface 93a, and the long portion Fa, respectively. Therefore, description of each part of the heat transfer plate 92 is omitted. The constituent requirements of the main plate portion 70b do not include the convex portions 62 and 94.
 次に、伝熱プレート91と伝熱プレート92との接触状態を説明する。
図20及び図21に示すように、伝熱プレート91の凸部93は、伝熱プレート92の壁部71b及び長尺部Fbに当接するように構成されている。このため、図20及び図21の断面位置においては、壁部71b、72aからなる側部H2には、冷媒Rが接触することなく、水Wのみが接触する。すなわち、伝熱プレート91の凸部93は、その凸部93が突出する側の隣で対向する伝熱プレート92の壁部71bに当接されている。また、伝熱プレート92の主板部70bの長尺部Fbは、壁部71b、72b、73b、74bが突出する側の隣に位置する伝熱プレート91の凸部93と当接されている。
Next, a contact state between the heat transfer plate 91 and the heat transfer plate 92 will be described.
As shown in FIGS. 20 and 21, the convex portion 93 of the heat transfer plate 91 is configured to come into contact with the wall portion 71 b and the elongated portion Fb of the heat transfer plate 92. Therefore, at the cross-sectional positions of FIGS. 20 and 21, only the water W comes into contact with the side portion H2 including the wall portions 71b and 72a without coming into contact with the refrigerant R. That is, the convex portion 93 of the heat transfer plate 91 is in contact with the wall portion 71 b of the heat transfer plate 92 that is adjacent and adjacent to the side where the convex portion 93 projects. The elongated portion Fb of the main plate portion 70b of the heat transfer plate 92 is in contact with the convex portion 93 of the heat transfer plate 91 located next to the side where the walls 71b, 72b, 73b, 74b project.
一方、伝熱プレート92の主板部70bの長尺部Fbは、前面側に位置する伝熱プレート91の凸部93と離れて構成されている。
すなわち、伝熱プレート92の長尺部Fbを基準として、長尺部Fbから壁部71b、72b、73b、74bが突出する側の隣で対向する伝熱プレート91の凸部93までの距離は、長尺部Fbから凸部94が突出する側の隣で対向する伝熱プレート91の凸部93までの距離よりも小さくなるように構成されている。
On the other hand, the elongated portion Fb of the main plate portion 70b of the heat transfer plate 92 is formed separately from the convex portion 93 of the heat transfer plate 91 located on the front surface side.
That is, with reference to the long portion Fb of the heat transfer plate 92, the distance from the long portion Fb to the convex portion 93 of the heat transfer plate 91 that is adjacent and adjacent to the side on which the walls 71b, 72b, 73b, and 74b project is determined. The distance from the long portion Fb to the convex portion 93 of the heat transfer plate 91 that is adjacent and adjacent to the side where the convex portion 94 projects is smaller than the distance.
図20及び図21に示すように、伝熱プレート92の凸部94は、伝熱プレート91の壁部71a及び長尺部Faに当接するように構成されている。このため、図20及び図21の断面位置においては、壁部71a、72bからなる側部H1には、水Wが接触することなく、冷媒Rのみが接触する。すなわち、伝熱プレート92の凸部94は、その凸部93が突出する側の隣で対向する伝熱プレート91の壁部71aに当接されている。また、伝熱プレート91の主板部70aの長尺部Faは、壁部71a、72a、73a、74aが突出する側の隣に位置する伝熱プレート92の凸部94と当接されている。 As shown in FIGS. 20 and 21, the convex portion 94 of the heat transfer plate 92 is configured to come into contact with the wall portion 71 a and the elongated portion Fa of the heat transfer plate 91. Therefore, at the cross-sectional positions of FIGS. 20 and 21, only the refrigerant R comes into contact with the side portion H1 including the wall portions 71a and 72b without coming into contact with the water W. That is, the convex portion 94 of the heat transfer plate 92 is in contact with the wall portion 71a of the heat transfer plate 91 that is adjacent to and opposes the side on which the convex portion 93 projects. Further, the elongated portion Fa of the main plate portion 70a of the heat transfer plate 91 is in contact with the convex portion 94 of the heat transfer plate 92 located next to the side where the walls 71a, 72a, 73a, 74a project.
一方、伝熱プレート91の主板部70aの長尺部Faは、前面側に位置する伝熱プレート92の凸部94と離れて構成されている。
すなわち、伝熱プレート91の長尺部Faを基準として、長尺部Faから壁部71a、72a、73a、74aが突出する側の隣で対向する伝熱プレート92の凸部94までの距離は、長尺部Faから凸部93が突出する側の隣で対向する伝熱プレート92の凸部94までの距離よりも小さくなるように構成されている。
On the other hand, the elongated portion Fa of the main plate portion 70a of the heat transfer plate 91 is formed separately from the convex portion 94 of the heat transfer plate 92 located on the front surface side.
That is, with reference to the long portion Fa of the heat transfer plate 91, the distance from the long portion Fa to the convex portion 94 of the heat transfer plate 92 that is adjacent and adjacent to the side on which the wall portions 71a, 72a, 73a, and 74a protrude. The distance is smaller than the distance from the long portion Fa to the convex portion 94 of the heat transfer plate 92 that is adjacent and adjacent to the side on which the convex portion 93 projects.
 図20及び図21の断面位置では、凸部61は、その前面側に位置する伝熱プレート92の主板部70bに対して当接していないが、断面位置によっては当接するように構成されている。同様に、図20及び図21の断面位置では、凸部62は、その前面側に位置する伝熱プレート91の主板部70aに対して当接していないが、断面位置によっては当接するように構成されている。 20 and 21, the convex portion 61 is not in contact with the main plate portion 70b of the heat transfer plate 92 located on the front surface side, but is configured to be in contact with the main plate portion 70b depending on the sectional position. .. Similarly, at the cross-sectional positions of FIGS. 20 and 21, the convex portion 62 is not in contact with the main plate portion 70a of the heat transfer plate 91 located on the front side thereof, but is configured to be in contact with the main plate portion 70a depending on the cross-sectional position. Has been done.
また、図示はしないが、高部75a、76aは、その前面側に位置する伝熱プレート92の主板部70bに対して当接するように構成され、高部75b、76bは、その前面側に位置する伝熱プレート91の主板部70aに対して当接するように構成されている。
 加えて、図20及び図21の断面位置では、伝熱プレート91の凸部93は、その前面側に位置する伝熱プレート92の主板部70bにおける長尺部Fbに対して当接し、伝熱プレート92の凸部94は、その前面側に位置する伝熱プレート91の主板部70aにおける長尺部Faに対して当接している。伝熱プレート91は伝熱プレート92を主板部70a、70bの板状面の中心から垂直に延びる軸Zを基準に180度回転して積層されているので、このように当接する。
Although not shown, the high portions 75a and 76a are configured to abut against the main plate portion 70b of the heat transfer plate 92 located on the front side thereof, and the high portions 75b and 76b are located on the front side thereof. The heat transfer plate 91 is configured to come into contact with the main plate portion 70a.
In addition, at the cross-sectional positions of FIGS. 20 and 21, the convex portion 93 of the heat transfer plate 91 abuts against the elongated portion Fb of the main plate portion 70b of the heat transfer plate 92 located on the front side thereof, and heat transfer is performed. The convex portion 94 of the plate 92 is in contact with the elongated portion Fa of the main plate portion 70a of the heat transfer plate 91 located on the front side thereof. Since the heat transfer plate 91 is laminated by rotating the heat transfer plate 92 by 180 degrees with respect to the axis Z extending perpendicularly from the center of the plate-shaped surfaces of the main plate portions 70a and 70b, the heat transfer plate 92 abuts in this manner.
 このように構成されたプレート式熱交換器90を備えた室外機においても、実施の形態1の室外機1と同様の動作を奏する。
 また、第3の実施の形態では、第1の実施の形態と同様の効果を奏するとともに、以下の効果を奏する。
The outdoor unit including the plate heat exchanger 90 configured in this manner also performs the same operation as the outdoor unit 1 of the first embodiment.
In addition, the third embodiment has the same effects as those of the first embodiment, and also has the following effects.
壁部71a、72bから構成される側部H1は、図20で示す断面位置では、伝熱プレート91の壁部71a及び長尺部Faとその背面側の伝熱プレート92の凸部94とが当接し、且つ伝熱プレート91の長尺部Faとその前面側の伝熱プレート92の凸部94とが離れる構成となっていることから、冷媒Rのみからの温度が伝達される。
同様に、壁部71a、72bから構成される側部H1は、図21で示す断面位置においても、伝熱プレート91の壁部71a及び長尺部Faとその背面側の伝熱プレート92の凸部94とが当接し、且つ伝熱プレート91の長尺部Faとその前面側の伝熱プレート92の凸部94とが離れる構成となっていることから、冷媒Rのみからの温度が伝達される。
At the cross-sectional position shown in FIG. 20, the side portion H1 including the wall portions 71a and 72b has the wall portion 71a and the elongated portion Fa of the heat transfer plate 91 and the convex portion 94 of the heat transfer plate 92 on the back side thereof. Since the long portion Fa of the heat transfer plate 91 and the convex portion 94 of the heat transfer plate 92 on the front surface thereof are in contact with each other and separated from each other, the temperature from only the refrigerant R is transmitted.
Similarly, the side portion H1 composed of the wall portions 71a and 72b has the convex portion of the wall portion 71a and the elongated portion Fa of the heat transfer plate 91 and the heat transfer plate 92 on the rear side thereof even at the cross-sectional position shown in FIG. Since the portion 94 abuts and the long portion Fa of the heat transfer plate 91 and the convex portion 94 of the heat transfer plate 92 on the front side thereof are separated from each other, the temperature from only the refrigerant R is transmitted. It
 図20及び図21の状態を総合的に考えると、壁部71aに接合された温度センサ14が検出する温度は、冷媒Rに基づく温度によるものとなり、実施の形態1温度センサ14よりも精度よくプレート式熱交換器3内を流れる冷媒Rの温度を検出ことができる。
 このため、第3の実施の形態の制御装置15は、第1の実施の形態の制御装置15に比して、プレート式熱交換器3内を流れる冷媒Rの温度を精度よく算出することができる。
Considering the states of FIG. 20 and FIG. 21 comprehensively, the temperature detected by the temperature sensor 14 joined to the wall portion 71a depends on the temperature based on the refrigerant R, and is more accurate than the temperature sensor 14 of the first embodiment. The temperature of the refrigerant R flowing through the plate heat exchanger 3 can be detected.
Therefore, the control device 15 of the third embodiment can calculate the temperature of the refrigerant R flowing in the plate heat exchanger 3 more accurately than the control device 15 of the first embodiment. it can.
実施の形態4.
 この発明の実施の形態4のプレート式熱交換器100を備えた室外機について図22を用いて説明する。なお、図22中、図1~図10と同一符号は同一又は相当部分を示す。この実施の形態4のプレート式熱交換器100を備えた室外機は実施の形態1の伝熱プレート40、41の凸部61、62の高さを実施の形態1よりも低くしたものである。
 図22に示すように、伝熱プレート40の凸部61は、伝熱プレート41の壁部71bに当接するように構成され、伝熱プレート41の長尺部Fbとは間隔をおいて構成されている。また、伝熱プレート41の凸部62は、伝熱プレート40の壁部71aに当接するように構成され、伝熱プレート40の長尺部Faとは間隔をおいて構成されている。
Fourth Embodiment
An outdoor unit equipped with the plate heat exchanger 100 according to Embodiment 4 of the present invention will be described with reference to FIG. 22, the same reference numerals as those in FIGS. 1 to 10 indicate the same or corresponding parts. The outdoor unit provided with the plate heat exchanger 100 of the fourth embodiment is one in which the heights of the convex portions 61, 62 of the heat transfer plates 40, 41 of the first embodiment are lower than those of the first embodiment. ..
As shown in FIG. 22, the convex portion 61 of the heat transfer plate 40 is configured to abut against the wall portion 71b of the heat transfer plate 41, and is spaced apart from the long portion Fb of the heat transfer plate 41. ing. Further, the convex portion 62 of the heat transfer plate 41 is configured to come into contact with the wall portion 71 a of the heat transfer plate 40, and is spaced apart from the long portion Fa of the heat transfer plate 40.
伝熱プレート40の長尺部Faを基準として、長尺部Faから壁部71a、72a、73a、74aが突出する側の隣で対向する伝熱プレート41の凸部62までの距離K9は、長尺部Faから凸部61が突出する側の隣で対向する伝熱プレート41の凸部62までの距離K10よりも小さくなるように構成されている。
このため、図22の断面位置においては、壁部71a、72bから構成される側部H1は、水Wとの接触面積よりも、冷媒Rとの接触面積の方が大きくなる。
 従って、プレート式熱交換器100における温度センサ14を接合した側の側面への温度伝達は、水Wと冷媒Rとの温度伝達が同割合ではなく、冷媒Rの方が水Wよりも温度伝達の割合が多くなるため、温度センサ14は、冷媒Rの温度の検出精度を高めることができる。
With reference to the long portion Fa of the heat transfer plate 40, the distance K9 from the long portion Fa to the convex portion 62 of the heat transfer plate 41 that is adjacent and adjacent to the side where the walls 71a, 72a, 73a, and 74a project is: It is configured to be smaller than the distance K10 from the long portion Fa to the convex portion 62 of the heat transfer plate 41 that is adjacent and opposite to the side where the convex portion 61 projects.
Therefore, at the cross-sectional position in FIG. 22, the side surface H1 including the walls 71a and 72b has a larger contact area with the refrigerant R than with the water W.
Therefore, regarding the temperature transfer to the side surface of the plate heat exchanger 100 on the side where the temperature sensor 14 is joined, the temperature transfer between the water W and the refrigerant R is not at the same ratio, and the temperature transfer between the refrigerant R and the water W is higher. Therefore, the temperature sensor 14 can improve the detection accuracy of the temperature of the refrigerant R.
実施の形態5.
 この発明の実施の形態5のプレート式熱交換器110を備えた室外機について図23及び図24を用いて説明する。なお、図23及び図24中、図18~図21と同一符号は同一又は相当部分を示す。この実施の形態5のプレート式熱交換器110を備えた室外機は実施の形態3の伝熱プレート91、92の凸部61、62、93、94の高さを実施の形態3よりも低くしたものである。
 図23及び図24に示すように、伝熱プレート91の凸部93は、伝熱プレート92の壁部71bに当接するように構成され、伝熱プレート92の長尺部Fbとは間隔をおいて構成されている。伝熱プレート92の凸部94は、伝熱プレート91の壁部71aに当接するように構成され、伝熱プレート91の長尺部Faとは間隔をおいて構成されている。
Embodiment 5.
An outdoor unit including the plate heat exchanger 110 according to the fifth embodiment of the present invention will be described with reference to FIGS. 23 and 24. 23 and 24, the same reference numerals as those in FIGS. 18 to 21 indicate the same or corresponding portions. The outdoor unit equipped with the plate heat exchanger 110 of the fifth embodiment has the height of the convex portions 61, 62, 93, 94 of the heat transfer plates 91, 92 of the third embodiment lower than that of the third embodiment. It was done.
As shown in FIGS. 23 and 24, the convex portion 93 of the heat transfer plate 91 is configured to contact the wall portion 71b of the heat transfer plate 92, and is spaced from the long portion Fb of the heat transfer plate 92. It is configured. The convex portion 94 of the heat transfer plate 92 is configured to come into contact with the wall portion 71a of the heat transfer plate 91, and is spaced apart from the long portion Fa of the heat transfer plate 91.
 図23は、図18のL-Lの位置に対応したプレート式熱交換器110の断面図であるが、伝熱プレート91の長尺部Faを基準として、長尺部Faから壁部71a、72a、73a、74aが突出する側の隣で対向する伝熱プレート92の凸部94までの距離K11は、長尺部Faから凸部93が突出する側の隣で対向する伝熱プレート92の凸部94までの距離K12よりも小さくなるように構成されている。
また、図24は、図18のM-Mの位置に対応したプレート式熱交換器110の断面図であるが、伝熱プレート91の長尺部Faを基準として、長尺部Faから壁部71a、72a、73a、74aが突出する側の隣で対向する伝熱プレート92の凸部94までの距離K13は、長尺部Faから凸部93が突出する側の隣で対向する伝熱プレート92の凸部94までの距離K14よりも小さくなるように構成されている。
FIG. 23 is a cross-sectional view of the plate heat exchanger 110 corresponding to the position LL in FIG. 18, but with the elongated portion Fa of the heat transfer plate 91 as a reference, the elongated portion Fa to the wall portion 71a, The distance K11 to the convex portion 94 of the heat transfer plate 92, which is adjacent to and opposes the side on which the protrusions 72a, 73a, and 74a are projected, is the same as the distance K11 of the heat transfer plate 92 that is adjacent and adjacent to the side on which the convex portion 93 projects from the long portion Fa. It is configured to be smaller than the distance K12 to the convex portion 94.
FIG. 24 is a cross-sectional view of the plate heat exchanger 110 corresponding to the position MM in FIG. 18, but with the long portion Fa of the heat transfer plate 91 as a reference, the long portion Fa to the wall portion is used. The distance K13 to the convex portion 94 of the heat transfer plate 92 that is adjacent and is opposed to the side on which the protruding portions 71a, 72a, 73a, and 74a are adjacent is the heat transfer plate that is adjacent and that is adjacent to the side on which the convex portion 93 is protruded from the long portion Fa. It is configured to be smaller than the distance K14 to the convex portion 94 of 92.
このため、壁部71a、72bから構成される側部H1は、水Wとの接触面積よりも、冷媒Rとの接触面積の方が大きくなる。
 従って、プレート式熱交換器110における温度センサ14を接合した側の側面への温度伝達は、水Wと冷媒Rとの温度伝達が同割合ではなく、冷媒Rの方が水Wよりも温度伝達の割合が多くなるため、温度センサ14は、冷媒Rの温度の検出精度を高めることができる。
Therefore, the side portion H1 including the wall portions 71a and 72b has a larger contact area with the refrigerant R than a contact area with the water W.
Therefore, regarding the temperature transfer to the side surface of the plate heat exchanger 110 on the side where the temperature sensor 14 is joined, the temperature transfer between the water W and the refrigerant R is not the same ratio, and the temperature transfer between the refrigerant R and the water W is higher. Therefore, the temperature sensor 14 can improve the detection accuracy of the temperature of the refrigerant R.
実施の形態6.
 この発明の実施の形態6のプレート式熱交換器120を備えた室外機について図25を用いて説明する。なお、図25中、図1~図10と同一符号は同一又は相当部分を示す。実施の形態1の凸部61、62が伝熱プレート40、41をプレス加工して成形されていたのに対し、この実施の形態6のプレート式熱交換器120を備えた室外機は、凸部121、122を伝熱プレート40、41とは別体で形成したものである。
 図25に示すように、伝熱プレート40の主板部70aの長尺部Faを除いた部位には、複数の凸部121が取り付けられている。また、伝熱プレート41の主板部70bの長尺部Fbを除いた部位には、複数の凸部122が取り付けられている。伝熱プレート40の凸部121のいくつかは、伝熱プレート41の壁部71b及び長尺部Fbに当接するように構成されている。また、伝熱プレート41の凸部122のいくつかは、伝熱プレート40の壁部71a及び長尺部Faに当接するように構成されている。
Sixth Embodiment
An outdoor unit including a plate heat exchanger 120 according to Embodiment 6 of the present invention will be described with reference to FIG. Note that, in FIG. 25, the same reference numerals as those in FIGS. 1 to 10 indicate the same or corresponding portions. While the convex portions 61 and 62 of the first embodiment are formed by pressing the heat transfer plates 40 and 41, the outdoor unit including the plate heat exchanger 120 of the sixth embodiment has a convex shape. The parts 121 and 122 are formed separately from the heat transfer plates 40 and 41.
As shown in FIG. 25, a plurality of convex portions 121 are attached to a portion of the main plate portion 70a of the heat transfer plate 40 excluding the long portion Fa. In addition, a plurality of convex portions 122 are attached to the main plate portion 70b of the heat transfer plate 41 excluding the elongated portion Fb. Some of the convex portions 121 of the heat transfer plate 40 are configured to come into contact with the wall portion 71b and the elongated portion Fb of the heat transfer plate 41. Further, some of the convex portions 122 of the heat transfer plate 41 are configured to abut on the wall portion 71 a and the elongated portion Fa of the heat transfer plate 40.
このため、壁部71a、72bから構成される側部H1は、水Wとの接触面積よりも、冷媒Rとの接触面積の方が大きくなる。
 従って、プレート式熱交換器120における温度センサ14を接合した側の側面への温度伝達は、水Wと冷媒Rとの温度伝達が同割合ではなく、冷媒Rの方が水Wよりも温度伝達の割合が多くなるため、温度センサ14は、冷媒Rの温度の検出精度を高めることができる。
 なお、実施の形態6では、凸部121、122を伝熱プレート40、41とは別体で形成したが、凸部121を伝熱プレート40と一体に、さらには凸部122を伝熱プレート41と一体に構成してもよい。このように構成しても、同様の効果を奏する。
Therefore, the side portion H1 including the wall portions 71a and 72b has a larger contact area with the refrigerant R than a contact area with the water W.
Therefore, regarding the temperature transfer to the side surface of the plate heat exchanger 120 on the side where the temperature sensor 14 is joined, the temperature transfer between the water W and the refrigerant R is not the same ratio, and the temperature transfer between the refrigerant R and the water W is higher. Therefore, the temperature sensor 14 can improve the detection accuracy of the temperature of the refrigerant R.
Although the convex portions 121 and 122 are formed separately from the heat transfer plates 40 and 41 in the sixth embodiment, the convex portion 121 is integrated with the heat transfer plate 40, and the convex portion 122 is further connected to the heat transfer plate. It may be integrated with 41. Even with this structure, the same effect can be obtained.
 なお、第2の実施の形態に対して、第3の実施の形態の凸部93、94を設けるように構成してもよい。このように構成すると、長手方向における温度センサ14が設けられていない位置では、凸条部84、86は、短手方向の全域にわたって形成されているため、この部分での熱交換効率を、凸部83、85部分に比して高めることができる。加えて、壁部71aに接合された温度センサ14が検出する温度は、冷媒Rに基づく温度によるものとなり、実施の形態1温度センサ14よりも精度よくプレート式熱交換器3内を流れる冷媒Rの温度を検出ことができる。 The projections 93 and 94 of the third embodiment may be provided in the second embodiment. According to this structure, at the position where the temperature sensor 14 is not provided in the longitudinal direction, the ridges 84 and 86 are formed over the entire area in the lateral direction. The height can be increased as compared with the portions 83 and 85. In addition, the temperature detected by the temperature sensor 14 joined to the wall portion 71a depends on the temperature based on the refrigerant R, and the refrigerant R flowing in the plate heat exchanger 3 with higher accuracy than the temperature sensor 14 of the first embodiment. The temperature of can be detected.
 なお、第2の実施の形態の凸部83、85を、実施の形態4のプレート式熱交換器100のように、高さを低くなるように構成してもよい。このように構成しても、壁部71a、72bから構成される側部H1は、水Wとの接触面積よりも、冷媒Rとの接触面積の方が大きくなり、温度センサ14による冷媒Rの温度の検出精度を高めることができる。 Note that the convex portions 83, 85 of the second embodiment may be configured to have a low height, like the plate heat exchanger 100 of the fourth embodiment. Even with this configuration, the side portion H1 including the walls 71a and 72b has a larger contact area with the refrigerant R than the contact area with the water W, and the temperature R of the refrigerant R by the temperature sensor 14 is larger. The temperature detection accuracy can be improved.
 なお、第6の実施の形態の凸部121、122を、実施の形態4のプレート式熱交換器100のように、高さを低くなるように構成してもよい。このように構成しても、壁部71a、72bから構成される側部H1は、水Wとの接触面積よりも、冷媒Rとの接触面積の方が大きくなり、温度センサ14による冷媒Rの温度の検出精度を高めることができる。 Note that the convex portions 121 and 122 of the sixth embodiment may be configured to have a low height, like the plate heat exchanger 100 of the fourth embodiment. Even with this configuration, the side portion H1 including the walls 71a and 72b has a larger contact area with the refrigerant R than the contact area with the water W, and the temperature R of the refrigerant R by the temperature sensor 14 is larger. The temperature detection accuracy can be improved.
 なお、上記各実施形態の冷媒回路2aでは、四方弁5を設けて冷媒Rの流れを切り替えて、加熱モードと冷却モードに切り替え可能に構成していたが、これに限らない構成でもよい。例えば、冷媒回路2aから四方弁5を省略し、加熱モードおよび冷却モードのうち一方もモードのみを行うように冷媒回路2aを構成してもよい。 In addition, in the refrigerant circuit 2a of each of the above-described embodiments, the four-way valve 5 is provided to switch the flow of the refrigerant R so that the heating mode and the cooling mode can be switched, but the structure is not limited to this. For example, the four-way valve 5 may be omitted from the refrigerant circuit 2a, and the refrigerant circuit 2a may be configured to perform only one of the heating mode and the cooling mode.
1 室外機
2a 冷媒回路
2b 水回路
3、80、90、100、110、120 プレート式熱交換器
3a、3b 水配管接続口
3c、3d 冷媒配管接続口
4 圧縮機
4a マフラー
5 四方弁
6 空気熱交換器
7 圧力容器
8a、8b 電子膨張弁
10 冷媒配管
11、12、13、14 温度センサ
15 制御装置
16 記憶装置
17 演算装置
20 筐体
20a グリル
21 送風機室
22 機械室
23 セパレータ
24 ファン
40、41、81、82、91、92 伝熱プレート
42、43 外側プレート
44、45 補強プレート
46、50、54 第1開口部
47、51、55 第2開口部
48、52、56 第3開口部
49、53、57 第4開口部
61、62、83、85、121、122 凸部
84、86 凸条部
63 第1流路
64 第2流路
70a、70b 主板部、
71a、71b、72a、72b、73a、73b、74a、74b 壁部
75a、75b、76a、76b 高部
93、94 凸部
93a、94a 先端面
E1、E2、E3、E4 先端
Fa、Fb、Fc、Fd 長尺部
H1、H2 側部
K1、K2、K3、K4、K5、K6、K7、K8、K9、K10、K11、K12、K13、K14 距離
L1、L2 長さ
S1、S2 幅
R 冷媒
W 水
Z 軸
1 Outdoor unit 2a Refrigerant circuit 2b Water circuit 3, 80, 90, 100, 110, 120 Plate heat exchanger 3a, 3b Water pipe connection port 3c, 3d Refrigerant pipe connection port 4 Compressor 4a Muffler 5 Four-way valve 6 Air heat Exchanger 7 Pressure vessel 8a, 8b Electronic expansion valve 10 Refrigerant piping 11, 12, 13, 14 Temperature sensor 15 Control device 16 Storage device 17 Computing device 20 Housing 20a Grill 21 Blower room 22 Machine room 23 Separator 24 Fans 40, 41 , 81, 82, 91, 92 Heat transfer plates 42, 43 Outer plates 44, 45 Reinforcing plates 46, 50, 54 First openings 47, 51, 55 Second openings 48, 52, 56 Third openings 49, 53, 57 4th opening part 61, 62, 83, 85, 121, 122 convex part 84, 86 convex line part 63 1st flow path 64 2nd flow path 70a, 70b Main plate part,
71a, 71b, 72a, 72b, 73a, 73b, 74a, 74b Wall part 75a, 75b, 76a, 76b High part 93, 94 Convex part 93a, 94a Tip surface E1, E2, E3, E4 Tip Fa, Fb, Fc, Fd Long part H1, H2 Side part K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11, K12, K13, K14 Distance L1, L2 Length S1, S2 Width R Refrigerant W Water Z axis

Claims (11)

  1. 矩形で板状の主板部と前記主板部の縁から板状の面の一方側へ突出させた壁部とを有した伝熱プレートを交互に前記主板部の板状面の中心から垂直に延びる軸を基準に180度反転して複数積層し、前記伝熱プレート間に第1流体が流れる第1流路と第2流体が流れる第2流路とを積層方向に交互に形成するプレート式熱交換器において、
    前記主板部には、前記壁部が突出した面とは反対側の板状の面から突出する凸部が設けられ、
    前記凸部は、前記主板部の一方の長辺に沿って断続的にまたは連続的に形成され、且つ該凸部が突出する側の隣で対向する前記伝熱プレートの前記壁部に当接し、
    前記主板部は、他方の長辺に接して沿うように長尺部を備え、
     前記伝熱プレートの前記長尺部を基準として、前記長尺部から前記壁部が突出する側の隣で対向する前記伝熱プレートの前記凸部までの距離は、前記長尺部から前記凸部が突出する側の隣で対向する前記伝熱プレートの前記凸部までの距離よりも小さくなるよう構成された
    プレート式熱交換器。
    Heat transfer plates each having a rectangular plate-shaped main plate portion and a wall portion protruding from one edge of the main plate portion to one side of the plate-shaped surface extend alternately from the center of the plate-shaped surface of the main plate portion. A plate-type heat that is inverted by 180 degrees with respect to the axis and is laminated to form a plurality of first flow passages through which the first fluid flows and second flow passages through which the second fluid flows alternately between the heat transfer plates in the stacking direction. In the exchanger,
    The main plate portion is provided with a convex portion protruding from a plate-shaped surface on the side opposite to the surface from which the wall portion protrudes,
    The convex portion is formed intermittently or continuously along one long side of the main plate portion, and abuts on the wall portion of the heat transfer plate that is adjacent to the protruding side of the main plate portion and is adjacent to the protruding side. ,
    The main plate portion is provided with a long portion so as to be in contact with the other long side,
    With reference to the elongated portion of the heat transfer plate, the distance from the elongated portion to the convex portion of the heat transfer plate that is adjacent and adjacent to the side where the wall portion protrudes is the distance from the elongated portion to the convex portion. A plate-type heat exchanger configured to be smaller than a distance to the convex portion of the heat transfer plate that is adjacent and adjacent to the side where the portion projects.
  2.  前記凸部は、該凸部が突出する側の隣で対向する前記伝熱プレートの前記長尺部に当接されている請求項1に記載のプレート式熱交換器。 The plate heat exchanger according to claim 1, wherein the convex portion is in contact with the elongated portion of the heat transfer plate that is adjacent and adjacent to a side where the convex portion projects.
  3.  前記凸部は、前記主板部の前記一方の長辺から前記長尺部まで延びるように形成されている
    請求項1又は請求項2に記載のプレート式熱交換器。
    The plate heat exchanger according to claim 1 or 2, wherein the convex portion is formed so as to extend from the one long side of the main plate portion to the long portion.
  4.  前記主板部の一方の長辺に沿って形成されている凸部は連続的に形成されたものであり、
     前記主板部の前記一方の長辺から前記長尺部まで形成されている凸部は複数形成されている
    請求項1から請求項3のうちいずれか一項に記載のプレート式熱交換器。
    The convex portion formed along one long side of the main plate portion is formed continuously,
    The plate heat exchanger according to any one of claims 1 to 3, wherein a plurality of convex portions formed from the one long side of the main plate portion to the long portion are formed.
  5.  前記主板部には、前記長尺部における前記主板部の長手方向の両側の位置に、前記主板部の一方の長辺から前記主板部の他方の長辺まで形成された凸条部を備えた
    請求項1から請求項4のうちいずれか一項に記載のプレート式熱交換器。
    The main plate portion is provided with ridge portions formed at positions on both sides in the longitudinal direction of the main plate portion in the long portion from one long side of the main plate portion to the other long side of the main plate portion. The plate heat exchanger according to any one of claims 1 to 4.
  6.  前記他方の長辺に対応した前記壁部と、前記一方の長辺に対応した前記壁部とは、主板部から離れるにつれ互いの間隔が広がるように形成され、
    前記他方の長辺に対応した前記壁部の前記主板部からの突出長さは、前記一方の長辺に対応した前記壁部の前記主板部からの突出長さよりも長くなるように構成されている
    請求項1から請求項5のうちいずれか一項に記載のプレート式熱交換器。
    The wall portion corresponding to the other long side, and the wall portion corresponding to the one long side are formed such that the distance between them widens as the distance from the main plate portion increases,
    The protrusion length from the main plate portion of the wall portion corresponding to the other long side is configured to be longer than the protrusion length from the main plate portion of the wall portion corresponding to the one long side. The plate heat exchanger according to any one of claims 1 to 5.
  7.  前記伝熱プレートの前記一方の長辺に対応した前記壁部の先端と、前記積層方向で隣の伝熱プレートの前記他方の長辺に対応した前記壁部の先端とが揃うように構成されている
    請求項6に記載のプレート式熱交換器。
    The tip of the wall portion corresponding to the one long side of the heat transfer plate and the tip of the wall portion corresponding to the other long side of the adjacent heat transfer plate in the stacking direction are configured to be aligned. The plate type heat exchanger according to claim 6.
  8.  前記壁部における前記第2流体と対向する部分に前記第2流体の温度を検出する温度検出手段を設置するための温度検出手段設置部が設けられている請求項1から請求項7のうちいずれか一項に記載のプレート式熱交換器。 8. A temperature detecting means installation portion for installing a temperature detecting means for detecting the temperature of the second fluid is provided at a portion of the wall portion facing the second fluid. The plate heat exchanger according to 1 above.
  9. 矩形で板状の主板部と前記主板部の縁から板状の面の一方側へ突出させた壁部とを有した伝熱プレートを交互に前記主板部の板状面の中心から垂直に延びる軸を基準に180度反転して複数積層し、前記伝熱プレート間に第1流体が流れる第1流路と第2流体が流れる第2流路とを積層方向に交互に形成するプレート式熱交換器において、
     前記複数の伝熱プレートを積層することで前記主板部の四つの辺に対応する位置に前記複数の壁部によって構成される四つの側部を備え、
     前記四つの側部のうちの少なくとも一つの側部は、前記第1流体の接触面積よりも前記第2流体の接触面積が大きくなるように構成されている
    プレート式熱交換器。
    Heat transfer plates each having a rectangular plate-shaped main plate portion and a wall portion protruding from one edge of the main plate portion to one side of the plate-shaped surface extend alternately from the center of the plate-shaped surface of the main plate portion. A plate-type heat that is inverted by 180 degrees with respect to the axis and is laminated to form a plurality of first flow passages through which the first fluid flows and second flow passages through which the second fluid flows alternately between the heat transfer plates in the stacking direction. In the exchanger,
    By laminating the plurality of heat transfer plates, four side portions configured by the plurality of wall portions are provided at positions corresponding to the four sides of the main plate portion,
    A plate heat exchanger in which at least one of the four side portions is configured such that the contact area of the second fluid is larger than the contact area of the first fluid.
  10. 前記第1流体の接触面積よりも前記第2流体の接触面積が大きくなるように構成された前記側部における前記第2流体と対向する部分に前記第2流体の温度を検出する温度検出手段を設置するための温度検出手段設置部が設けられている請求項9に記載のプレート式熱交換器。 Temperature detecting means for detecting the temperature of the second fluid is provided at a portion of the side portion facing the second fluid, the temperature detecting means being configured such that the contact area of the second fluid is larger than the contact area of the first fluid. The plate heat exchanger according to claim 9, further comprising a temperature detecting means installation portion for installation.
  11.  請求項8又は請求項10に記載のプレート式熱交換器と、前記第2流体の圧縮を行う圧縮機と、空気と前記第2流体との熱交換を行う空気熱交換器と、前記第2流体の圧力を低下させる膨張弁と、余剰の前記第2流体を保留する圧力容器とを備えた前記第2流体が循環する第2流体回路と、
     前記温度検出手段設置部に設置された温度検出手段と、
    を備えたヒートポンプ装置。
    The plate heat exchanger according to claim 8 or 10, a compressor that compresses the second fluid, an air heat exchanger that performs heat exchange between air and the second fluid, and the second heat exchanger. A second fluid circuit, in which the second fluid circulates, including an expansion valve that lowers the pressure of the fluid, and a pressure container that retains the excess second fluid,
    Temperature detecting means installed in the temperature detecting means installation section,
    Heat pump device.
PCT/JP2018/048446 2018-12-28 2018-12-28 Plate-type heat exchanger and heat pump device WO2020136863A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020562264A JP6947314B2 (en) 2018-12-28 2018-12-28 Plate heat exchanger and heat pump device
PCT/JP2018/048446 WO2020136863A1 (en) 2018-12-28 2018-12-28 Plate-type heat exchanger and heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048446 WO2020136863A1 (en) 2018-12-28 2018-12-28 Plate-type heat exchanger and heat pump device

Publications (1)

Publication Number Publication Date
WO2020136863A1 true WO2020136863A1 (en) 2020-07-02

Family

ID=71127887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048446 WO2020136863A1 (en) 2018-12-28 2018-12-28 Plate-type heat exchanger and heat pump device

Country Status (2)

Country Link
JP (1) JP6947314B2 (en)
WO (1) WO2020136863A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265289A (en) * 1993-03-11 1994-09-20 Hitachi Ltd Plate type heat exchanger
JP2002107090A (en) * 2000-09-29 2002-04-10 Hisaka Works Ltd Plate-type heat exchanger and producing method
JP2011089690A (en) * 2009-10-22 2011-05-06 Hitachi Appliances Inc Air conditioner
WO2011062118A1 (en) * 2009-11-19 2011-05-26 三菱電機株式会社 Plate-type heat exchanger and heat pump device
JP2013124836A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265289A (en) * 1993-03-11 1994-09-20 Hitachi Ltd Plate type heat exchanger
JP2002107090A (en) * 2000-09-29 2002-04-10 Hisaka Works Ltd Plate-type heat exchanger and producing method
JP2011089690A (en) * 2009-10-22 2011-05-06 Hitachi Appliances Inc Air conditioner
WO2011062118A1 (en) * 2009-11-19 2011-05-26 三菱電機株式会社 Plate-type heat exchanger and heat pump device
JP2013124836A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2020136863A1 (en) 2021-09-09
JP6947314B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6641544B1 (en) Plate heat exchanger and heat pump device provided with the same
CN108603732B (en) Plate heat exchanger and heat pump type heating and hot water supply system provided with plate heat exchanger
JP6116683B2 (en) Laminated header, heat exchanger, and air conditioner
CN110073154B (en) Distributor, heat exchanger, and refrigeration cycle device
CN111819415B (en) Plate heat exchanger, heat pump device provided with same, and heat pump type cooling/heating/water heating system provided with heat pump device
WO2012143998A1 (en) Plate-type heat exchanger, and heat pump device
CN112997045B (en) Plate heat exchanger, heat pump device, and heat pump type cooling/heating hot water supply system
JP6594598B1 (en) Plate type heat exchanger, heat pump device provided with plate type heat exchanger, and heat pump type heating hot water supply system provided with heat pump device
JP6005266B2 (en) Laminated header, heat exchanger, and air conditioner
CN109564067B (en) Heat exchanger and refrigeration system using the same
US10222141B2 (en) Stacking type header, heat exchanger and air-conditioning apparatus
EP2998680B1 (en) Laminated header, heat exchanger, and air conditioner
JP2012112591A (en) Evaporator and refrigeration system equipped with the same
JP5754969B2 (en) Plate heat exchanger and heat pump device
WO2013114474A1 (en) Stacked heat exchanger, heat pump system equipped therewith, and method for manufacturing stacked heat exchanger
JP6727398B2 (en) Heat exchanger and air conditioner
WO2020136863A1 (en) Plate-type heat exchanger and heat pump device
JP7301224B2 (en) Plate heat exchangers, refrigeration cycle equipment and heat transfer equipment
JP2014074508A (en) Cascade heat exchanger
WO2024089805A1 (en) Heat exchanger and refrigeration cycle device comprising said heat exchanger
WO2021140611A1 (en) Plate-type heat exchanger, heat pump device equipped with plate-type heat exchanger, and heat pump-type heating system equipped with heat pump device
WO2024014495A1 (en) Heat exchanger, refrigerant cycle device, and hot water supply apparatus
JP6827179B2 (en) Heat exchanger and refrigeration system using it
JP2020118367A (en) Plate fin lamination type heat exchanger, and refrigeration system using the same
JP2018100795A (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944934

Country of ref document: EP

Kind code of ref document: A1