WO2020136791A1 - Electromagnetic wave filter and spatial magnetic field control system - Google Patents

Electromagnetic wave filter and spatial magnetic field control system Download PDF

Info

Publication number
WO2020136791A1
WO2020136791A1 PCT/JP2018/048072 JP2018048072W WO2020136791A1 WO 2020136791 A1 WO2020136791 A1 WO 2020136791A1 JP 2018048072 W JP2018048072 W JP 2018048072W WO 2020136791 A1 WO2020136791 A1 WO 2020136791A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave filter
electric field
communication area
antenna
Prior art date
Application number
PCT/JP2018/048072
Other languages
French (fr)
Japanese (ja)
Inventor
甲斐 学
泰光 伴
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2018/048072 priority Critical patent/WO2020136791A1/en
Priority to JP2020562039A priority patent/JP6989033B2/en
Publication of WO2020136791A1 publication Critical patent/WO2020136791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices

Definitions

  • the present invention relates to an electromagnetic wave filter for controlling electromagnetic waves and a space electromagnetic field control system.
  • a wireless router and access point By installing a wireless router and access point (AP), terminals etc. can communicate wirelessly.
  • Sensors and terminals using the IoT (Intenet Of Things) technology may have different wireless communication systems co-located in the same area.
  • WiFi registered trademark
  • 5 GHz band 2.4 GHz band
  • WiFi registered trademark
  • 2.4 GHz band or 5 GHz band is used in factories, hospitals, restaurants, etc., and even in a mixed environment, it is easy to construct a wireless communication system for each communication system.
  • Security is required.
  • the dipole antenna mainly used for wireless routers and APs spreads out a circular electric wave toward the communication area, extra electric wave leaks out of the desired area, and the electric wave, wall, and metal surface of the adjacent AP Due to the interference with the reflected waves, null spots are generated in which the radio waves weaken.
  • an electromagnetic wave filter that controls the electromagnetic field in the space radiated from the antenna.
  • a vehicle-mounted radar technique in which a metal slit plate having a plurality of slits is arranged in the radiation direction of an antenna to reduce reflected waves of side lobes (for example, refer to Patent Document 1 below).
  • Patent Document 1 a technique of varying the beam width by allowing the reflector having a slit to pass only the polarized waves orthogonal to the slit for the V and H polarized waves of the primary radiator.
  • JP, 2006-029834 A Japanese Patent Laid-Open No. 11-214920 JP-A-63-026006
  • Patent Documents 1 and 2 only arranging a metal plate (reflector) having a slit in front of the antenna cannot perform polarization control but radio wave area control. Further, in Patent Document 3 and Non-Patent Document 1, in addition to using an arrayed reflector, it is not possible to use radio waves radiated by a general-purpose wireless router or AP.
  • the present invention aims to be able to confine radio waves in a specific communication area.
  • the electromagnetic wave filter is an electromagnetic wave filter that is provided on the emitting direction of the radio waves of the antenna and controls the electric field distribution, and is made of a conductor, and has a plurality of bent curved surfaces and openings formed on the bent curved surfaces. It is required that the electric field has a slot and has a substantially constant electric field within a predetermined communication area, and the electric field is suddenly weakened outside the communication area.
  • radio waves it is possible to confine radio waves in a specific communication area.
  • FIG. 1 is a diagram showing an electromagnetic wave filter according to an embodiment.
  • FIG. 2 is a diagram showing a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter according to the embodiment is oblique.
  • FIG. 3 is a diagram showing a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter according to the embodiment is more oblique.
  • FIG. 4A is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment.
  • Part 1 is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment.
  • Part 2 is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment.
  • Part 2 is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment.
  • Part 2 is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment.
  • Part 2 is a diagram showing a case where the incident angle of the electromagnetic wave on the
  • FIG. 5B is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment.
  • FIG. 6A is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment.
  • Part 5 FIG. 6B is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment.
  • Part 6) FIG. 7 is an explanatory diagram of a communication area by the electromagnetic wave filter according to the embodiment.
  • FIG. 8A is a diagram showing a configuration example of a spatial electromagnetic field control system including the electromagnetic wave filter according to the exemplary embodiment.
  • Part 1 FIG. 8B is a diagram showing a configuration example of a spatial electromagnetic field control system including the electromagnetic wave filter according to the exemplary embodiment.
  • Part 2 FIG.
  • FIG. 9 is a diagram illustrating a hardware configuration example of a transmitter of the spatial electromagnetic field control system according to the exemplary embodiment.
  • FIG. 10 is a diagram illustrating a hardware configuration example of a terminal of the spatial electromagnetic field control system according to the exemplary embodiment.
  • FIG. 11 is a diagram showing a configuration example of the electromagnetic wave filter used for the simulation according to the embodiment.
  • FIG. 12 is a diagram showing a simulation result of the electric field distribution of the electromagnetic wave filter according to the embodiment.
  • FIG. 13 is a diagram showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used.
  • Part 1 Part 1
  • FIG. 14 is a diagram showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used.
  • Part 2 Part 2
  • FIG. 15A is a diagram showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used.
  • FIG. 15B is a diagram showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used.
  • FIG. 16 is a diagram in which the communication area of the spatial electromagnetic field control system according to the embodiment is scaled up.
  • FIG. 17 is a diagram showing a plurality of communication areas of the space electromagnetic field control system according to the embodiment.
  • FIG. 18 is a diagram showing a construction example of a plurality of communication areas of the spatial electromagnetic field control system according to the exemplary embodiment.
  • FIG. 19 is a diagram illustrating a communication area using the electromagnetic wave filter according to the embodiment.
  • FIG. 20 is a diagram showing an electric field distribution when the width of the electromagnetic wave filter according to the embodiment is changed.
  • FIG. 21 is a diagram showing a state in which the height of the electromagnetic wave filter according to the embodiment is changed.
  • FIG. 22 is a diagram showing an application example of the space electromagnetic field control system according to the embodiment.
  • the electromagnetic wave filter according to the embodiment is provided in the emission direction of an electric wave emitted from an antenna of a transmitter including a wireless communication router or an access point (AP), and traps the electric wave in a specific communication area.
  • the electromagnetic wave filter traps the electric wave within the communication area by controlling the electromagnetic wave so that the electric wave strength (electric field) is almost constant in the communication area and the electric wave strength (electric field) is suddenly weakened outside the communication area.
  • the spatial electromagnetic field control system includes the above-mentioned electromagnetic wave filter, a transmitter that transmits a radio wave, and a receiver that receives a radio wave transmitted by the transmitter when located within a specific communication area.
  • the transmitter is the above-mentioned router or access point (AP)
  • the receiver is a terminal (smartphone, portable personal computer (PC), etc.) held by a user who can move to a specific communication area.
  • FIG. 1 is a diagram showing an electromagnetic wave filter according to an embodiment.
  • FIG. 1A is a partial side sectional view
  • FIG. 1B is a partial front view.
  • the electromagnetic wave filter 100 is formed in a substantially wavy shape by bending a conductor such as a metal plate.
  • the conductor is, for example, a metal plate made of copper, aluminum, iron or the like, or a metal layer made of copper or the like provided on one side or both sides of a high frequency substrate (for example, a dielectric base material (for example, 1 mm in thickness) such as glass epoxy). (For example, the thickness is 18 microns).
  • the angle ⁇ is 30 degrees, and in this case, the bent folding surface 101 forms an inverted V-shape with two sides of the substantially triangular shape between the folding surface 101 and the adjacent folding curved surface 101.
  • the inverted V-shape is continuously formed in the X-axis direction to have a substantially wavy shape.
  • FIG. 1B shows a partial view of the bent curved surface 101.
  • a slot 102 having a predetermined width W and a length L is formed in the folded curved surface 101 along a direction orthogonal to the electromagnetic wave incident direction.
  • the width W of the slot 102 is about a minute width (for example, 2 mm) that allows radio waves to pass therethrough.
  • a plurality of the slots 102 are formed at a predetermined interval in the depth direction Z of the curved surface 101 shown in FIG.
  • the double slot in which the slot 102 is provided in each of the adjacent folding curved surfaces 101 has been described, but the present invention is not limited to this, and the slot 102 may be provided in only one of the adjacent folding curved surfaces 101 (single slot).
  • the double slot and the single slot can be appropriately selected according to the shape in a specific communication area and the intensity distribution of a radio wave desired in the communication area.
  • the electromagnetic wave filter 100 has been described as having the curved surface 101 having an inverted V shape, but as will be described later in detail, the electromagnetic wave filter 100 has an optimal angle ⁇ and has an inverted V shape and a V shape. It has a corrugated shape that is arranged alternately.
  • a router or an AP is arranged on one incident surface 100a (front side of the lower part of the figure) of the electromagnetic wave filter 100, and a radio wave (electromagnetic wave) radiated from an antenna of a transmitter of the router or AP is incident on the incident surface 100a. ..
  • FIG. 1 shows a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter 100 is 0°, that is, the electromagnetic wave enters the electromagnetic wave filter 100 from the front direction.
  • the slot 102 When an electromagnetic wave is incident from the front direction of FIG. 1, the slot 102 is positioned at an angle of Lsin ⁇ with respect to the wavelength ⁇ a/2 of the electromagnetic wave in the front direction with respect to the electromagnetic wave filter 100, and Lsin ⁇ becomes small. ..
  • the electromagnetic wave filter 100 when the electromagnetic wave is incident on the incident surface 100a from the front direction, the ratio of the electromagnetic wave to be reflected (ref.) is increased, and thus the ratio of transmitted (pass) is decreased to be input. Attenuates a lot of electromagnetic power.
  • FIG. 2 is a diagram showing a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter according to the embodiment is oblique.
  • the incident angle of the electromagnetic wave with respect to the X axis is ⁇ (30°), that is, the length L of the slot 102 of the electromagnetic wave filter 100 is substantially the same as the wavelength ⁇ a/2 of the electromagnetic wave, and the electromagnetic wave is obliquely incident. Shows the case of incidence.
  • the L of the slot 102 is located at substantially the same size with respect to the electromagnetic wave filter 100 with respect to the wavelength ⁇ a/2 of the electromagnetic wave in the oblique direction.
  • the ratio of reflecting (ref.) the electromagnetic wave becomes small, and thus the ratio of transmitting (pass) becomes large, and a large amount of the power of the inputted electromagnetic wave passes.
  • FIG. 3 is a diagram showing a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter according to the embodiment is more oblique.
  • the incident angle ⁇ of the electromagnetic wave with respect to the X axis is further inclined in the X axis direction than in FIG. 2 (about 15°). This shows the case where only a small amount of light is incident on.
  • the electromagnetic wave filter 100 has a larger rate of reflecting (ref.) the electromagnetic wave that is obliquely incident to the incident surface 100a, and thus the electromagnetic wave is transmitted.
  • the ratio of the input electromagnetic waves becomes small, and the power of the input electromagnetic wave is largely attenuated.
  • FIG. 4 (FIG. 4A, FIG. 4B) to FIG. 6 (FIG. 6A, FIG. 6B) are diagrams showing characteristic examples according to conditions of the electromagnetic wave filter according to the embodiment.
  • the electric field state of the radio wave transmitted through the electromagnetic wave filter when the angle of the electromagnetic wave filter is changed with respect to the antenna of the transmitter using the electromagnetic field simulator will be described.
  • the bent curved surface 101 is located on the Y-axis plane, and the antenna 400 of the transmitter is a dipole antenna having a length of 27 mm along the Z-axis direction, and It is located on the near side of the folding curved surface 101 in the figure (at a position of -30 mm).
  • the bent curved surface 101 is a square of 120 mm in length and width on the Y-axis surface, and the slot 102 has an opening of 27 mm along a direction orthogonal to the direction of the antenna 400 (polarization direction).
  • FIG. 4A(b) is a table showing the electric field E when the angle ⁇ is changed between the X- and Y-axes about the Z-axis of the electromagnetic wave filter (folded curved surface 101) for the fixed antenna 400.
  • the electric field E is a value on the inner side (at a position of 110 mm) of the folding curved surface 101 in the Y-axis direction.
  • the dotted line in the figure is the characteristic curve of the sin curve.
  • FIG. 4B(a) to 4(d) show the radio wave distribution corresponding to FIG. 4A(b), and the electromagnetic wave filter 100 (folded curved surface 101) is placed between the X and Y axes about the Z axis with respect to the antenna 400.
  • FIG. 6 is a diagram showing a state of a radio wave distribution when the angle ⁇ is changed by. Each of these figures shows an electric field distribution in an area including the antenna 400 and the electromagnetic wave filter 100 and having an area of 200 mm in the X-axis direction and 160 mm in the Y-axis direction.
  • the curved surface 101 is located on the Y axis (90° with respect to the X axis), and the electromagnetic wave filter 100 is arranged in the polarization direction of the antenna 400 having a length along the Z axis.
  • the electromagnetic wave filter 100 allows many radio waves to pass through the slot 102. It is shown that the transmission power Ppass is large in the range along the Y axis on the side that has passed through the electromagnetic wave filter 100 (the upper side in the figure).
  • the bent curved surface 101 is positioned at an angle of 60° with respect to the Y axis.
  • the range of the transmission power Ppass is shown on the upper left side after passing through the slot 102.
  • the electric field at the top of the chart (position Ya) is 45 V/m.
  • the bent curved surface 101 is positioned at an angle of 30° with respect to the Y axis.
  • the range of the transmission power Ppass is shown on the upper left side after passing through the slot 102, and it is shown that the transmission power is smaller than that in FIG. 4B(b).
  • the electric field at the top of the chart (position Ya) is 10 V/m.
  • the bent curved surface 101 is positioned at an angle of 15° with respect to the Y axis.
  • the range of the transmission power Ppass is shown on the left side after passing through the slot 102, and it is shown that the transmission power is smaller than that in FIG. 4B(c).
  • the electric field at the top of the chart (position Ya) is 14 V/m.
  • the angle ( ⁇ ) at which the transmitted wave is the minimum and the reflected wave is the maximum is 30°, the optimum value is obtained in the case of multiple slots.
  • the electromagnetic wave filter 100 shown in FIG. 5A (a) has two bent curved surfaces 101 formed by bending a metal plate or the like, and the two bent curved surfaces 101 are convex in the incident direction of electromagnetic waves (Y axis front side). Slots 102 are formed on each of the bent curved surfaces 101 so as to project.
  • the two folding curved surfaces 101 are inclined by 30° with respect to the Y axis, as in FIG. 1.
  • the antenna 400 of the transmitter is a dipole antenna having a length of 27 mm along the Z-axis direction, as in FIG. 4A, and is on the front side of the folding curved surface 101 in the Y-axis direction (at a position of ⁇ 30 mm). Is located in.
  • each of the two bent curved surfaces 101 is a square having a length and width of 120 mm, and the slot 102 has an opening of 27 mm along a direction orthogonal to the direction of the antenna 400 (polarization direction).
  • FIG. 5A(b) is a chart showing the electric field E when the angle ⁇ of the electromagnetic wave filter 100 is changed about the Z axis with respect to the fixed antenna 400 between the X and Y axes.
  • This electric field E is a value on the back side (at a position of 110 mm) of the electromagnetic wave filter 100 in the Y-axis direction.
  • the dotted line in the figure is the characteristic curve of the sin curve.
  • FIGS. 5B(a) to 5(d) show a radio wave distribution corresponding to FIG. 5A(b), and the angle ⁇ is changed with respect to the antenna 400 about the Z axis of the electromagnetic wave filter 100 between the X and Y axes. It is a figure which shows the state of a radio wave distribution at the time of making it.
  • the electromagnetic wave filter 100 is located on the Y axis (90° with respect to the X axis), and the electromagnetic wave filter 100 is in the polarization direction of the antenna 400 having a length along the Z axis.
  • the electromagnetic wave filter 100 allows many radio waves to pass through the slot 102. It is shown that the transmission power Ppass is large in the range along the Y axis on the side that has passed through the electromagnetic wave filter 100 (the upper side in the figure).
  • FIGS. 5B(b) to 5(d) show a state in which the electromagnetic wave filter 100 is positioned at an angle of 60°, 30°, and 15° with respect to the Y axis. Even with these inclinations, the range of the transmission power Ppass is shown in the range along the Y-axis on the side where the electromagnetic wave filter 100 is transmitted through the slot 102 (the upper side in the drawing).
  • the electric field at the top of the chart (position Ya) is 70 V/m when ⁇ is 90°, 60 V/m when ⁇ is 60°, 35 V/m when ⁇ is 30°, and 15° when ⁇ is 30°. Sometimes it is 25 V/m. It is shown that the smaller ⁇ is, the shorter the slot length seen from the antenna 400 (dipole antenna) becomes, and the smaller the generated electric field Ev becomes.
  • the electromagnetic wave filter 100 shown in FIG. 6A (a) has two bent curved surfaces 101 formed by bending a metal plate or the like, and the two bent curved surfaces 101 are provided in a concave shape that spreads in the electromagnetic wave incident direction (Y axis front side). A slot 102 is formed on each bent surface 101.
  • the two folding curved surfaces 101 are inclined by 30° with respect to the Y axis, as in FIG. 1.
  • FIG. 6A(b) is a chart showing the electric field E when the angle ⁇ of the electromagnetic wave filter 100 is changed about the Z axis between the X and Y axes with respect to the fixed antenna 400.
  • This electric field E is a value on the back side (at a position of 110 mm) of the electromagnetic wave filter 100 in the Y-axis direction.
  • the dotted line in the figure is the characteristic curve of the sin curve.
  • 6B(a) to 6(d) show a radio wave distribution corresponding to FIG. 6A(b), in which the angle ⁇ is changed with respect to the antenna 400 about the Z axis of the electromagnetic wave filter 100 between the X and Y axes. It is a figure which shows the state of a radio wave distribution at the time of making it.
  • the electromagnetic wave filter 100 is located on the Y axis (90° with respect to the X axis), and the electromagnetic wave filter 100 is arranged in the polarization direction of the antenna 400 having a length along the Z axis.
  • the electromagnetic wave filter 100 allows many radio waves to pass through the slot 102. It is shown that the transmission power Ppass is large in the range along the Y axis on the side that has passed through the electromagnetic wave filter 100 (the upper side in the figure).
  • FIGS. 6B(b) to 6B(d) show a state in which the electromagnetic wave filter 100 is positioned at an angle of 60°, 30°, and 15° with respect to the Y axis. Even with these inclinations, the range of the transmission power Ppass is shown in the range along the Y-axis on the side where the electromagnetic wave filter 100 is transmitted through the slot 102 (the upper side in the drawing).
  • the electric field at the top of the chart (position Ya) is 65 V/m when ⁇ is 90°, 62 V/m when ⁇ is 60°, 40 V/m when ⁇ is 30°, and 15° when ⁇ is 30°. Sometimes it is 10 V/m. It is shown that the smaller ⁇ is, the shorter the slot length seen from the antenna 400 (dipole antenna) is, and thus the smaller the electric field Ev is.
  • FIG. 6A(b) shows the characteristics of the electric field distribution Evr and the characteristics of the electric field Ev of the above-mentioned convex electromagnetic wave filter 100 (FIG. 5A(b)).
  • the electromagnetic wave filter 100 preferably has a shape obtained by combining the convex shape shown in FIG. 5 (FIG. 5A(a)) and the concave shape shown in FIG. 6 (FIG. 6A(a)). (Corresponding to Figure 1).
  • FIG. 7 is an explanatory diagram of a communication area by the electromagnetic wave filter according to the embodiment.
  • the communication area of the electromagnetic wave filter 100 having a combination of the convex shape and the concave shape described above and the intensity (electric field) of the radio wave in each of the states A to C are shown.
  • An AP antenna 400 is provided at a position apart from the electromagnetic wave filter 100 by a predetermined distance (upper part in the drawing). Numerical values in the figure are, for example, the strength of radio waves (for example, received power mw).
  • the communication area 700 can receive a radio wave having a substantially constant intensity (10 to 12).
  • the strength is sharply reduced (intensity 1), and the communication is impossible.
  • the electromagnetic wave filter 100 of the embodiment when the user's terminal (MS) 710 is located in the communication area 700, it is possible to receive a radio wave with a constant radio wave intensity. Further, when the user's terminal (MS) 710 is located in the communication-disabled area 701, the strength of the received radio wave may be sharply weakened so that it cannot be received. That is, the electromagnetic wave filter 100 of the embodiment can radiate (transmit) the radio wave radiated from the general-purpose AP (antenna 400) so that the radio wave intensity becomes constant only within the predetermined communication area 700.
  • FIG. 8 is a diagram showing a configuration example of a space electromagnetic field control system including an electromagnetic wave filter according to the embodiment.
  • FIG. 8A is an exploded perspective view of the space electromagnetic field control system 800
  • FIG. 8B is a view showing a mounting state.
  • the spatial electromagnetic field control system 800 includes a transmitter (AP) 810, the electromagnetic wave filter 100 described above, and a cover 820.
  • AP 810 radiates a ⁇ /4 vertically polarized radio wave from antenna 400.
  • the electromagnetic wave filter 100 is arranged at a predetermined distance from the AP 810 (antenna 400) and is housed in the cover 820.
  • the cover 820 is formed in a box shape that covers the electromagnetic wave filter 100 and the AP 810 with a material that transmits radio waves, for example, ABS resin.
  • the AP 810 is described as a transmitter, but the AP 810 also transmits/receives data to/from a terminal described later and has a function of a receiver.
  • the cover 820 can be easily attached to a desired wall or ceiling 830 installation site via bolts 821.
  • This space electromagnetic field control system 800 can be configured by accommodating the general-purpose AP 810 and the electromagnetic wave filter 100 described above in the cover 820, and can be manufactured easily and at low cost. Then, by attaching the cover 820 to a desired installation location, the radio waves emitted by the AP 810 can be communicated only with the terminal (MS) 710 located within the predetermined communication area 700.
  • MS terminal
  • FIG. 9 is a diagram illustrating a hardware configuration example of a transmitter of the spatial electromagnetic field control system according to the exemplary embodiment.
  • the transmitter (AP) 810 has a general-purpose hardware configuration, and includes a CPU 901, a RAM 902, an RF-front end 903, a signal processing unit 904, an operation unit interface (IF) 905, a LAN port 906, a power supply port 907, and an antenna 400. including.
  • the CPU 901 executes the control program stored in the ROM, the RAM 902, etc. to control the entire AP 810, and uses the RAM 902 as a work area at this time.
  • the RF-front end 903 transmits/receives data via the antenna 400 under the control of the wireless transmission/reception of the signal processing unit 904.
  • the operation unit interface (IF) 905 is an interface for performing operation settings by the user. Data to be transmitted/received is input/output via the LAN port 906.
  • the AP 810 operates based on the power supplied from the power port 907.
  • FIG. 10 is a diagram showing a hardware configuration example of a terminal of the spatial electromagnetic field control system according to the exemplary embodiment.
  • the terminal (MS) 710 includes a CPU 1001, a RAM 1002, an RF-front end 1003, a signal processing unit 1004, and an operation unit interface (IF) 1005. Further, it includes a sensor 1006, a speaker 1007, a microphone 1008, a camera 1009, a keyboard 1010, a display 1011, a power source 1012, and an antenna 1013.
  • the terminal (MS) 710 has each general-purpose hardware configuration such as a smartphone.
  • the CPU 1001 executes a control program stored in the ROM, the RAM 1002, and the like to control the entire terminal (MS) 710, and uses the RAM 1002 as a work area at this time.
  • the RF-front end 1003 transmits/receives data via the antenna 1013 under the control of wireless transmission/reception of the signal processing unit 1004.
  • the operation unit interface (IF) 1005 is an interface for performing operation settings by the user.
  • the terminal (MS) 710 transmits the data input from the sensor 1006, the microphone 1008, the camera 1009, and the keyboard 1010, and displays the received data on the display 1011.
  • the terminal (MS) 710 operates based on a power source supplied from a power source 1012 such as a built-in battery.
  • a power source 1012 such as a built-in battery.
  • FIG. 10 a configuration example of a smartphone or the like has been described as the terminal 710, but the terminal 710 also includes a simple one including a sensor such as an IoT sensor, a CPU, a memory, an RFID, and the like.
  • FIG. 11 is a diagram showing a configuration example of the electromagnetic wave filter used for the simulation according to the embodiment.
  • the electromagnetic wave filter 100 has a height (Z axis) and a width (X axis) of 200 mm ⁇ 390 mm, and a vertical length (Y axis) of 26 mm.
  • the electromagnetic wave filter 100 has a double-slot structure, and each bent curved surface 101 is formed in a wave shape inclined by 30° with respect to the Y axis.
  • the length of one folding curved surface 101 is 30 mm, and the slot 102 is formed in each folding curved surface 101 with an opening width of 27 mm ⁇ 2 mm.
  • a plurality of slots 102 are provided at intervals of 27 mm in the Z-axis direction.
  • FIG. 12 is a diagram showing a simulation result of an electric field distribution of the electromagnetic wave filter according to the embodiment.
  • the vertical and horizontal directions show the electric field distribution on the XY plane in the space of 300 mm ⁇ 600 mm, and it can be seen that the electric field distribution of the electromagnetic wave filter 100 is confined in a rectangular shape. That is, it has an electric field distribution that spreads in the X-axis direction, which is the width of the electromagnetic wave filter 100, and the electric field strength is similarly low at the boundary (three sides) of the space on the transmission side of the electromagnetic wave filter 100, resulting in a rectangular space.
  • the electric field distribution adapted to was obtained.
  • FIGS. 15A and 15B are diagrams showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used.
  • FIG. 13A is a polar coordinate diagram (Smith chart) of the complex reflection coefficient ⁇ showing the input impedance characteristic, and the characteristic line S shows that the matching with the antenna 400 is good.
  • FIG. 13B shows the reflection characteristic (S11) of the input, where the horizontal axis is the frequency and the vertical axis is the reflection amount, and it is shown that the broadband frequency characteristic can be maintained. It is also shown that the resonance point f0 (5 GHz) is not displaced even in the configuration using the electromagnetic wave filter 100.
  • FIG. 14A shows the XY plane gain characteristic
  • FIG. 14B shows the three-dimensional (3D) gain characteristic. It is shown that a favorable gain characteristic of ⁇ 2 to 4.5 dBi can be obtained in the desired radiation direction (+Y axis direction).
  • FIG. 15A and 15B are diagrams showing electric field values at a predetermined distance from the electromagnetic wave filter 100.
  • the horizontal axis of FIG. 15B is the distance 0 mm to 600 mm in the horizontal direction (X axis) of the space, and the vertical axis is the electric field strength at each distance.
  • a substantially constant electric field strength is obtained in a predetermined range 1501 (400 mm) up to a distance of 100 to 500 mm. Further, it is shown that the electric field strength sharply decreases in a range (distance 0 mm to 100 mm and distance 500 mm to 600 mm) outside the predetermined range 1501 (400 mm).
  • FIG. 16 is a diagram in which the communication area of the space electromagnetic field control system according to the embodiment is scaled up.
  • a scaled up communication area of a predetermined vertical and horizontal range (1500 mm ⁇ 3000 mm) is used. Shows a construction example of.
  • the example in FIG. 16 shows a case where the analysis space (300 mm ⁇ 600 mm) is scaled up by about 5 times.
  • the distance between the antenna 400 of the AP 810 and the electromagnetic wave filter 100 was 30 mm, and the distance between the electromagnetic wave filter 100 and the communication area 700 was 1200 mm.
  • the range of the communication area 700 in which the electric field is constant can be 1000 mm in the X-axis direction.
  • the example in FIG. 16 is an example in which the communication frequency (f0) is 5 GHz, and therefore, for example, if f0 is 2.4 GHz, each numerical value in FIG. 16 is approximately doubled, and the range of the communication area 700 is the X axis. Approximately 2000 mm in the direction.
  • FIG. 17 is a diagram showing a plurality of communication areas of the spatial electromagnetic field control system according to the embodiment.
  • FIG. 18 is a diagram showing a construction example of a plurality of communication areas of the spatial electromagnetic field control system according to the exemplary embodiment.
  • FIG. 18A is a communication area using the electromagnetic wave filter 100 according to the embodiment.
  • FIG. 18B shows a communication area using a conventional dipole antenna for comparison. All of these figures are simulation results of the electric field distribution, and the vertical and horizontal (X, Y) range is 5 m ⁇ 20 m.
  • FIG. 18A shows a state in which two APs 810 (antenna 400) are arranged adjacent to each other at a predetermined distance (10 m) corresponding to two communication areas.
  • the AP 810 (antenna 400) is arranged at different positions in the Y-axis direction, and the radiation directions are opposite to each other.
  • 18A shows a state where only one AP 810 (antenna 400) is arranged in the lower half portion.
  • the adjacent communication area 700(A) and communication area 700(B) each have a range of 6 m in the X-axis direction, and both ends of the communication area 700 have a distance of 0. It has an incommunicable area 701 of 5 m each (total of 1 m).
  • the AP 810 (antenna 400) can be narrowed down to 7 m in the X-axis direction, preventing interference between the adjacent communication areas 700 (A) and 700 (B) and only within the accident communication area 700. Communication is possible.
  • the uncommunicable area 1801 is located at a long distance from both ends of the communication area 1800 in the X-axis direction. positioned.
  • the APs 810 are arranged at intervals of 10 m as in the embodiment.
  • the incommunicable area (guard area) 1801 of the communication area 1800(A) overlaps with the other communication area 1800(B).
  • the guard area 1801 of the communication area 1800(B) overlaps with the other communication area 1800(A).
  • one communication area 1800(A) interferes with another adjacent communication area 1800(B), and communication within one communication area 1800 is impossible. In this case, it is necessary to take measures such as different encryption for each communication area 1800, and security must be ensured.
  • FIG. 19 is a diagram illustrating a communication area using the electromagnetic wave filter according to the embodiment.
  • a communication area using the electromagnetic wave filter 100 according to the embodiment and a communication area using an antenna of the related art will be compared.
  • FIG. 19A is a diagram showing an electric field distribution using the electromagnetic wave filter 100 according to the embodiment.
  • FIG. 19(b) is a diagram showing an electric field distribution by the conventional dipole antenna, and
  • FIG. 19(c) is a diagram showing an electric field distribution by the conventional planar patch antenna.
  • the electric field distribution of the electromagnetic wave filter 100 according to the embodiment is enclosed in a rectangular shape.
  • the electric field distribution adapted to the space is obtained.
  • the radio waves radiated from the antenna 400 are spread radially (substantially circular).
  • the dipole antenna 400 alone has a predetermined electric field strength even at the ends (0 mm, 600 mm) on the X-axis, for example, and radio waves cannot be confined in a rectangular area.
  • the patch antenna 1901 shown in FIG. 19C the radio waves radiated from the patch antenna 1901 are spread radially and the radio waves cannot be confined in the rectangular area.
  • the radio waves radiated from the antenna 400 can be confined in a rectangular area such as a room.
  • FIG. 20 is a diagram showing an electric field distribution when the size of the width of the electromagnetic wave filter according to the embodiment is changed.
  • the width (X axis) of the electromagnetic wave filter 100 is 390 mm, but in FIG. 20, the width of the electromagnetic wave filter 100 is 630 mm and the width of the space area is 700 mm.
  • the width of the electromagnetic wave filter 100 is increased, the electric field strength at both ends of the width (X axis) can be more rapidly reduced. Therefore, the larger the width of the electromagnetic wave filter 100, the more the radio waves can be confined in the rectangular communication area. Since the width (X axis) of the electromagnetic wave filter 100 corresponds to the width of the space electromagnetic field control system 800 (cover 820), it is desirable that the width is appropriate from the viewpoint of practicality.
  • FIG. 21 is a diagram showing a state in which the height of the electromagnetic wave filter according to the embodiment is changed.
  • the height (Z axis) of the electromagnetic wave filter 100 is set to 26 mm (see FIG. 11).
  • 21A the height (Z axis) of the electromagnetic wave filter 100 was 140 mm
  • FIG. 21B the height (Z axis) of the electromagnetic wave filter 100 was 90 mm.
  • the electric field distribution in this case was almost the same as the above-mentioned electric field distribution (see FIG. 19 and the like).
  • the electric field distribution in the XY plane does not change regardless of the height (Z axis) of the electromagnetic wave filter 100.
  • FIG. 22 is a diagram showing an application example of the space electromagnetic field control system according to the embodiment.
  • the space electromagnetic field control system 800 of the embodiment the following 1. ⁇ 3. Applicable to 1. It is possible to construct a radio-wave closed space for each adjacent desired communication area. 2. It can prevent unwanted radiation outside the desired area and reduce the risk of interception in public places. 3. It is possible to provide a wireless environment in a space where electromagnetic waves are a concern.
  • a component equipped with an IoT sensor conveyed on the lanes L1 to L3 for each of the manufacturing lines (lanes) L1 to L3 of the factory. And management of materials.
  • the above-mentioned space electromagnetic field control system 800 (the cover 820 housing the AP 810 and the electromagnetic wave filter 100) is arranged for each of the lanes L1 to L3. Thereby, independent communication areas 700 can be constructed in the lanes L1 to L3.
  • the IoT sensor (corresponding to the terminal 710) carried on the lane L1 can communicate with the AP 810 on the lane L1 when it is located in the communication area 700.
  • the IoT sensor (corresponding to the terminal 710) is not located in the communication area 700 of the APs 810 of the other lanes L2 and L3, and does not communicate with the AP 810 of these other lanes L2 and L3.
  • Radio waves in the communication area 700 of the lane L1 do not leak to the communication areas 700 of the other adjacent lanes L2 and L3, so that the communication data between the AP 810 and the IoT sensor (corresponding to the terminal 710) in the lane L1 is transmitted.
  • Security can be secured. Furthermore, security measures such as special encryption can be eliminated.
  • the lane it is not limited to the application example to the lane, but it can be applied to provide information for each adjacent booth at an exhibition hall or an aquarium, and to ensure security at different departments (islands of desks) adjacent to each other in the same office. Also, it can be applied to secure security at different stores adjacent to each other in the same building, and to manage reading by only the person to be checked at an entrance gate where exhibitions and festivals are crowded.
  • ⁇ 2. Can be applied to, for example, a waiting room at a station or an airport, a seat of a train or an airplane, a seat of a restaurant or the like.
  • the space electromagnetic field control system 800 (the cover 820 that houses the AP 810 and the electromagnetic wave filter 100) is arranged on the ceiling or floor of each of the train sheets N1 to N3. ..
  • the communication areas 700 that are independent of the sheets N1 to N3 can be constructed.
  • the radio waves in the communication area 700 of the sheet N1 do not leak to the communication areas 700 of the other adjacent sheets N2 and N3, communication data between the AP 810 and the user terminal 710 (MS) on the sheet N1.
  • the security of can be secured. Furthermore, security measures such as special encryption can be eliminated.
  • ⁇ above 3. Can be applied to, for example, a hospital or a server room.
  • the communication area 700 can be constructed only in a predetermined area, unnecessary electromagnetic waves are not given to the medical equipment in the hospital and the server. That is, according to the embodiment, it is possible to construct the communication area 700 in which radio waves are confined even in a hospital or a server room.
  • the electromagnetic wave filter of the above-described embodiment is provided on the direction of emission of radio waves from the antenna and controls the electric field distribution.
  • This electromagnetic wave filter is made of a conductor, has a plurality of bent curved surfaces, and has slots formed on the bent curved surfaces to form a substantially constant electric field in a predetermined communication area.
  • the electric field is sharply weakened outside the communication area. Thereby, the radio waves can be confined within the communication area.
  • the bent surface has a predetermined angle with respect to the incident direction of the radio wave of the antenna, the slot is opened with a predetermined length in the direction orthogonal to the polarization direction of the antenna, and the length is equal to the wavelength of the radio wave. It may be about 1 ⁇ 2.
  • the angle of the curved surface may be such that the transmitted wave is the smallest and the reflected wave is the largest when the slot is used alone.
  • the slot located on the direction of emission of radio waves from the antenna has a low radio wave transmittance and a high radio wave reflectance.
  • the slot having the bent surface at the portion having the predetermined angle has a large transmittance and a small reflectance of the radio wave obliquely incident from the antenna.
  • the radio wave incident further obliquely from the antenna has a low transmittance and a high reflectance.
  • the radio wave emitted from the antenna at the fixed position is transmitted or reflected at different angles for each slot, and the intensity of the radio wave after passing through each slot can be controlled, and a communication area of a predetermined shape can be constructed. ..
  • the electromagnetic wave filter may have a substantially wave-shaped shape in which a bent surface has a V-shape and an inverted V-shape having a predetermined angle with respect to the incident direction of radio waves, and are alternately arranged.
  • the angle of the curved surface is 30°.
  • the angle of the curved surface of the electromagnetic wave filter may be a predetermined angle based on the electric field distribution and electric field strength in the communication area. Thereby, for example, a substantially rectangular communication area can be constructed.
  • the width of the entire bent surface of the electromagnetic wave filter can be a predetermined width according to the size of the communication area. By enlarging the electromagnetic wave filter in the width direction, it becomes possible to suppress the electromagnetic waves from entering the communication area.
  • the space electromagnetic field control system of the embodiment can be configured by the above electromagnetic wave filter, an access point equipped with an antenna, and a cover that houses the access point and the electromagnetic wave filter.
  • the cover can be easily attached to a place where a predetermined communication area is constructed.
  • the movable terminal can communicate with the access point only when it is located in the communication area.
  • terminals located in the communication area can communicate only with access points in this communication area. Since each communication area does not interfere with an adjacent communication area, security can be maintained even if a different encryption means for each communication area is unnecessary.
  • the plurality of communication areas may be arranged with an interval such that the incommunicable areas having a predetermined electric field located at both ends of the communication area do not overlap the incommunicable areas of other adjacent communication areas. This allows the communication areas to be as close to each other as possible. In other words, the distance between adjacent access points can be made as short as possible, and the communication areas can be divided and arranged even in a small space.
  • Electromagnetic wave filter 100a Incident surface 101 Folded curved surface 102 Slot 400, 1013 Antenna (dipole antenna) 700 Communication Area 701 Incommunicable Area 710 Terminal 800 Spatial Electromagnetic Field Control System 810 AP (Access Point) 820 Cover 830 Ceiling 901, 1001 CPU 902,1002 RAM 903, 1003 RF-front end 904, 1004 Signal processing unit 1800 Communication area 1801 Communication disabled area (guard area)

Abstract

An electromagnetic wave filter (100) is provided on the radio wave emission direction of an access point (400) which has a general-purpose dipole antenna, and controls the distribution of an electric field. This electromagnetic wave filter (100) is formed of a conductor, has a plurality of bent surfaces (101) and slots that are formed so as to form openings in the bent surfaces (101), sets the electric field to be substantially constant inside a prescribed communication area (700), and sets the electric field to become drastically weak outside the communication area so as to form an uncommunicable area (701). Each of the bent surfaces (101) has a prescribed angle to the emission direction. Each of the slots forms an opening having a prescribed length in a direction orthogonal to the polarization direction of the antenna, and said length is about 1/2 of the wavelength of the radio wave.

Description

電磁波フィルタおよび空間電磁界制御システムElectromagnetic wave filter and spatial electromagnetic field control system
 本発明は、電磁波を制御する電磁波フィルタおよび空間電磁界制御システムに関する。 The present invention relates to an electromagnetic wave filter for controlling electromagnetic waves and a space electromagnetic field control system.
 無線ルータやアクセスポイント(AP)の設置により端末等が無線通信できる。IoT(Inteenet Of Things)技術を用いたセンサや端末は、異なる無線通信システムが同じエリアに混在して配置されることがある。例えば、2.4GHz帯や5GHz帯の通信周波数のWiFi(登録商標)は、工場、病院、飲食店等で用いられ、混在した環境においても、各通信システム別に無線通信システムの構築の容易性や、セキュリティの確保が求められている。 By installing a wireless router and access point (AP), terminals etc. can communicate wirelessly. Sensors and terminals using the IoT (Intenet Of Things) technology may have different wireless communication systems co-located in the same area. For example, WiFi (registered trademark) having a communication frequency of 2.4 GHz band or 5 GHz band is used in factories, hospitals, restaurants, etc., and even in a mixed environment, it is easy to construct a wireless communication system for each communication system. , Security is required.
 無線ルータやAPに主に用いられるダイポールアンテナは、通信エリアに向かって電波が円状に広がるため、所望するエリア外に余分な電波の漏れや、隣接するAPの電波や壁、金属面からの反射波との干渉により、電波が弱くなるヌルスポットが生じている。 Since the dipole antenna mainly used for wireless routers and APs spreads out a circular electric wave toward the communication area, extra electric wave leaks out of the desired area, and the electric wave, wall, and metal surface of the adjacent AP Due to the interference with the reflected waves, null spots are generated in which the radio waves weaken.
 従来技術として、アンテナから放射された空間の電磁界を制御する電磁波フィルタがある。例えば、アンテナの放射方向上に複数のスリットを有する金属スリット板を配置し、サイドローブの反射波を低減した車載用レーダの技術がある(例えば、下記特許文献1参照。)。また、一次放射器のV,H偏波を、スリットを有する反射器によりスリットに直交する偏波のみ通過させてビーム幅を可変する技術がある(例えば、下記特許文献2参照。)。また、放射素子の小反射板を、間隙を空けて複数配置し、小反射板の交換が容易で大きな反射板のアンテナと等価にした技術がある(例えば、下記特許文献3参照。)。また、基板上にミリ波用の多数のアンテナの開口面を大きくアレイ化して配置することでビームを絞り、ゲート等の所定エリアで一定の電界値(フレネルゾーン)を形成する技術がある(例えば、下記非特許文献1参照。)。 As a conventional technology, there is an electromagnetic wave filter that controls the electromagnetic field in the space radiated from the antenna. For example, there is a vehicle-mounted radar technique in which a metal slit plate having a plurality of slits is arranged in the radiation direction of an antenna to reduce reflected waves of side lobes (for example, refer to Patent Document 1 below). In addition, there is a technique of varying the beam width by allowing the reflector having a slit to pass only the polarized waves orthogonal to the slit for the V and H polarized waves of the primary radiator (see, for example, Patent Document 2 below). In addition, there is a technique in which a plurality of small reflecting plates of a radiating element are arranged with a gap therebetween, and the small reflecting plates can be easily replaced and are equivalent to an antenna of a large reflecting plate (for example, refer to Patent Document 3 below). In addition, there is a technique in which a large number of millimeter-wave antenna aperture surfaces are arranged in a large array on a substrate to narrow the beam and form a constant electric field value (Fresnel zone) in a predetermined area such as a gate (for example, , Non-Patent Document 1 below).
特開2006-029834号公報JP, 2006-029834, A 特開平11-214920号公報Japanese Patent Laid-Open No. 11-214920 特開昭63-026006号公報JP-A-63-026006
 しかしながら、上記従来の技術では、汎用の無線ルータやAPを用いた無線通信において、電波を特定の通信エリアに閉じ込めることができなかった。特許文献1,2のようにアンテナ前方にスリットを有する金属板(反射器)を配置しただけでは偏波制御しか行えず電波のエリア制御が行えない。また、特許文献3、非特許文献1は、アレイ化した反射板を用いることに加え、汎用の無線ルータやAPが放射する電波を用いることができない。 However, with the above-mentioned conventional technology, it was not possible to confine radio waves to a specific communication area in wireless communication using a general-purpose wireless router or AP. As in Patent Documents 1 and 2, only arranging a metal plate (reflector) having a slit in front of the antenna cannot perform polarization control but radio wave area control. Further, in Patent Document 3 and Non-Patent Document 1, in addition to using an arrayed reflector, it is not possible to use radio waves radiated by a general-purpose wireless router or AP.
 一つの側面では、本発明は、特定の通信エリアに電波を閉じ込めることができることを目的とする。 In one aspect, the present invention aims to be able to confine radio waves in a specific communication area.
 一つの案では、電磁波フィルタは、アンテナの電波の出射方向上に設けられ、電界分布を制御する電磁波フィルタであって、導電体からなり、複数の折曲面と、前記折曲面に開口形成されたスロットとを有し、所定の通信エリア内でほぼ一定な電界とし、前記通信エリア外で急激に電界を弱くする、ことを要件とする。 In one proposal, the electromagnetic wave filter is an electromagnetic wave filter that is provided on the emitting direction of the radio waves of the antenna and controls the electric field distribution, and is made of a conductor, and has a plurality of bent curved surfaces and openings formed on the bent curved surfaces. It is required that the electric field has a slot and has a substantially constant electric field within a predetermined communication area, and the electric field is suddenly weakened outside the communication area.
 一つの実施形態によれば、特定の通信エリアに電波を閉じ込めることができるという効果を奏する。 According to one embodiment, it is possible to confine radio waves in a specific communication area.
図1は、実施の形態にかかる電磁波フィルタを示す図である。FIG. 1 is a diagram showing an electromagnetic wave filter according to an embodiment. 図2は、実施の形態にかかる電磁波フィルタに対する電磁波の入射角度が斜めの場合を示す図である。FIG. 2 is a diagram showing a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter according to the embodiment is oblique. 図3は、実施の形態にかかる電磁波フィルタに対する電磁波の入射角度がより斜めの場合を示す図である。FIG. 3 is a diagram showing a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter according to the embodiment is more oblique. 図4Aは、実施の形態にかかる電磁波フィルタの条件別の特性例を示す図である。(その1)FIG. 4A is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment. (Part 1) 図4Bは、実施の形態にかかる電磁波フィルタの条件別の特性例を示す図である。(その2)FIG. 4B is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment. (Part 2) 図5Aは、実施の形態にかかる電磁波フィルタの条件別の特性例を示す図である。(その3)FIG. 5A is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment. (Part 3) 図5Bは、実施の形態にかかる電磁波フィルタの条件別の特性例を示す図である。(その4)FIG. 5B is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment. (Part 4) 図6Aは、実施の形態にかかる電磁波フィルタの条件別の特性例を示す図である。(その5)FIG. 6A is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment. (Part 5) 図6Bは、実施の形態にかかる電磁波フィルタの条件別の特性例を示す図である。(その6)FIG. 6B is a diagram showing a characteristic example of each condition of the electromagnetic wave filter according to the exemplary embodiment. (Part 6) 図7は、実施の形態にかかる電磁波フィルタによる通信エリアの説明図である。FIG. 7 is an explanatory diagram of a communication area by the electromagnetic wave filter according to the embodiment. 図8Aは、実施の形態にかかる電磁波フィルタを備えた空間電磁界制御システムの構成例を示す図である。(その1)FIG. 8A is a diagram showing a configuration example of a spatial electromagnetic field control system including the electromagnetic wave filter according to the exemplary embodiment. (Part 1) 図8Bは、実施の形態にかかる電磁波フィルタを備えた空間電磁界制御システムの構成例を示す図である。(その2)FIG. 8B is a diagram showing a configuration example of a spatial electromagnetic field control system including the electromagnetic wave filter according to the exemplary embodiment. (Part 2) 図9は、実施の形態にかかる空間電磁界制御システムの送信機のハードウェア構成例を示す図である。FIG. 9 is a diagram illustrating a hardware configuration example of a transmitter of the spatial electromagnetic field control system according to the exemplary embodiment. 図10は、実施の形態にかかる空間電磁界制御システムの端末のハードウェア構成例を示す図である。FIG. 10 is a diagram illustrating a hardware configuration example of a terminal of the spatial electromagnetic field control system according to the exemplary embodiment. 図11は、実施の形態にかかるシミュレーションに用いた電磁波フィルタの構成例を示す図である。FIG. 11 is a diagram showing a configuration example of the electromagnetic wave filter used for the simulation according to the embodiment. 図12は、実施の形態にかかる電磁波フィルタの電界分布のシミュレーション結果を示す図である。FIG. 12 is a diagram showing a simulation result of the electric field distribution of the electromagnetic wave filter according to the embodiment. 図13は、実施の形態にかかる電磁波フィルタを用いた際の各種アンテナ特性を示す図である。(その1)FIG. 13 is a diagram showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used. (Part 1) 図14は、実施の形態にかかる電磁波フィルタを用いた際の各種アンテナ特性を示す図である。(その2)FIG. 14 is a diagram showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used. (Part 2) 図15Aは、実施の形態にかかる電磁波フィルタを用いた際の各種アンテナ特性を示す図である。(その3)FIG. 15A is a diagram showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used. (Part 3) 図15Bは、実施の形態にかかる電磁波フィルタを用いた際の各種アンテナ特性を示す図である。(その4)FIG. 15B is a diagram showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used. (Part 4) 図16は、実施の形態にかかる空間電磁界制御システムの通信エリアをスケールアップした図である。FIG. 16 is a diagram in which the communication area of the spatial electromagnetic field control system according to the embodiment is scaled up. 図17は、実施の形態にかかる空間電磁界制御システムの複数の通信エリアを示す図である。FIG. 17 is a diagram showing a plurality of communication areas of the space electromagnetic field control system according to the embodiment. 図18は、実施の形態にかかる空間電磁界制御システムの複数の通信エリアの構築例を示す図である。FIG. 18 is a diagram showing a construction example of a plurality of communication areas of the spatial electromagnetic field control system according to the exemplary embodiment. 図19は、実施の形態にかかる電磁波フィルタを用いた通信エリアを説明する図である。FIG. 19 is a diagram illustrating a communication area using the electromagnetic wave filter according to the embodiment. 図20は、実施の形態にかかる電磁波フィルタの幅の大きさを変えたときの電界分布を示す図である。FIG. 20 is a diagram showing an electric field distribution when the width of the electromagnetic wave filter according to the embodiment is changed. 図21は、実施の形態にかかる電磁波フィルタの高さを変えた状態を示す図である。FIG. 21 is a diagram showing a state in which the height of the electromagnetic wave filter according to the embodiment is changed. 図22は、実施の形態にかかる空間電磁界制御システムの適用例を示す図である。FIG. 22 is a diagram showing an application example of the space electromagnetic field control system according to the embodiment.
(実施の形態)
 以下、本発明の電磁波フィルタおよび空間電磁界制御システムの実施の形態を説明する。実施の形態にかかる電磁波フィルタは、無線通信のルータやアクセスポイント(AP)からなる送信器のアンテナが出射する電波の出射方向上に設けられ、特定の通信エリアに電波を閉じ込める。電磁波フィルタは、通信エリア内ではほぼ一定な電波強度(電界)とし、通信エリア外では急激に電波強度(電界)が弱くなるように電磁波を制御することで、電波を通信エリア内に閉じ込める。
(Embodiment)
Hereinafter, embodiments of the electromagnetic wave filter and the spatial electromagnetic field control system of the present invention will be described. The electromagnetic wave filter according to the embodiment is provided in the emission direction of an electric wave emitted from an antenna of a transmitter including a wireless communication router or an access point (AP), and traps the electric wave in a specific communication area. The electromagnetic wave filter traps the electric wave within the communication area by controlling the electromagnetic wave so that the electric wave strength (electric field) is almost constant in the communication area and the electric wave strength (electric field) is suddenly weakened outside the communication area.
 また、実施の形態にかかる空間電磁界制御システムは、上記の電磁波フィルタと、無線電波を送信する送信機と、特定の通信エリア内に位置したときに送信機が送信する電波を受信する受信機とを含む。例えば、送信機は、上記のルータやアクセスポイント(AP)であり、受信機は、特定の通信エリアに移動自在なユーザが保持する端末(スマートフォン、携帯型パーソナルコンピュータ(PC)等)である。 In addition, the spatial electromagnetic field control system according to the embodiment includes the above-mentioned electromagnetic wave filter, a transmitter that transmits a radio wave, and a receiver that receives a radio wave transmitted by the transmitter when located within a specific communication area. Including and For example, the transmitter is the above-mentioned router or access point (AP), and the receiver is a terminal (smartphone, portable personal computer (PC), etc.) held by a user who can move to a specific communication area.
 図1は、実施の形態にかかる電磁波フィルタを示す図である。図1(a)は一部側断面図、図1(b)は部分正面図である。図1(a)に示すように、電磁波フィルタ100は、金属板等の導電体を折り曲げることで、略波状に形成されている。導電体は、例えば、銅、アルミニウム、鉄等の金属板や、高周波基板(例えば、ガラスエポキシ等の誘電体基材(例えば、厚さ1mm))の片面または両面に設けた銅等の金属層(例えば厚さ18ミクロン)の部分を指す。 FIG. 1 is a diagram showing an electromagnetic wave filter according to an embodiment. FIG. 1A is a partial side sectional view, and FIG. 1B is a partial front view. As shown in FIG. 1A, the electromagnetic wave filter 100 is formed in a substantially wavy shape by bending a conductor such as a metal plate. The conductor is, for example, a metal plate made of copper, aluminum, iron or the like, or a metal layer made of copper or the like provided on one side or both sides of a high frequency substrate (for example, a dielectric base material (for example, 1 mm in thickness) such as glass epoxy). (For example, the thickness is 18 microns).
 図1(a)の例では、角度θが30度であり、この場合、折り曲げられた折曲面101は、隣接する折曲面101との間で略三角形のうち2辺による逆V字形を形成し、電磁波フィルタ100は、逆V字形がX軸方向に連続して略波状に形成されている。 In the example of FIG. 1A, the angle θ is 30 degrees, and in this case, the bent folding surface 101 forms an inverted V-shape with two sides of the substantially triangular shape between the folding surface 101 and the adjacent folding curved surface 101. In the electromagnetic wave filter 100, the inverted V-shape is continuously formed in the X-axis direction to have a substantially wavy shape.
 図1(b)には折曲面101の部分図を示す。この折曲面101には、電磁波の入射方向と直交する方向に沿って所定の幅Wおよび長さLを有するスロット102が開口形成されている。スロット102の幅Wは、電波を透過させる微小な幅(例えば2mm)程度である。スロット102の長さLは、例えば、電波(電磁波)の波長λに対し、L=λa/2の関係を有する。このスロット102は、図1(a)に示す折曲面101の奥行方向Zに所定間隔を有して複数形成されている。 FIG. 1B shows a partial view of the bent curved surface 101. A slot 102 having a predetermined width W and a length L is formed in the folded curved surface 101 along a direction orthogonal to the electromagnetic wave incident direction. The width W of the slot 102 is about a minute width (for example, 2 mm) that allows radio waves to pass therethrough. The length L of the slot 102 has a relationship of L=λa/2 with respect to the wavelength λ of radio waves (electromagnetic waves), for example. A plurality of the slots 102 are formed at a predetermined interval in the depth direction Z of the curved surface 101 shown in FIG.
 図1の例では、隣接する折曲面101のいずれにもスロット102を設けるダブルスロットを説明したが、これに限らず、隣接する折曲面101の一方にのみスロット102を設けてもよい(シングルスロット)。例えば、特定の通信エリア内の形状や、通信エリア内で所望する無線電波の強度分布に応じて、ダブルスロットとシングルスロットを適宜選択できる。 In the example of FIG. 1, the double slot in which the slot 102 is provided in each of the adjacent folding curved surfaces 101 has been described, but the present invention is not limited to this, and the slot 102 may be provided in only one of the adjacent folding curved surfaces 101 (single slot). ). For example, the double slot and the single slot can be appropriately selected according to the shape in a specific communication area and the intensity distribution of a radio wave desired in the communication area.
 また、上記の説明では、電磁波フィルタ100は、折曲面101が逆V字形であると説明したが、詳細は後述するように、最適な角度θを有して、逆V字形とV字形とを交互に組み合わせて配置した波型の形状となっている。 Further, in the above description, the electromagnetic wave filter 100 has been described as having the curved surface 101 having an inverted V shape, but as will be described later in detail, the electromagnetic wave filter 100 has an optimal angle θ and has an inverted V shape and a V shape. It has a corrugated shape that is arranged alternately.
 電磁波フィルタ100の一方の入射面100a(図下部の正面側)にはルータやAPが配置され、これらルータやAPの送信機のアンテナから放射された電波(電磁波)が入射面100aに入射される。 A router or an AP is arranged on one incident surface 100a (front side of the lower part of the figure) of the electromagnetic wave filter 100, and a radio wave (electromagnetic wave) radiated from an antenna of a transmitter of the router or AP is incident on the incident surface 100a. ..
 次に、図1~図3を用いて、電磁波フィルタ100への電磁波の入射角度別の透過および反射の特性の概要を説明する。図1には、電磁波フィルタ100に対する電磁波の入射角度が0°、すなわち電磁波フィルタ100に対し正面方向から電磁波が入射する場合を示している。 Next, an outline of transmission and reflection characteristics of electromagnetic waves incident on the electromagnetic wave filter 100 for each incident angle will be described with reference to FIGS. 1 to 3. FIG. 1 shows a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter 100 is 0°, that is, the electromagnetic wave enters the electromagnetic wave filter 100 from the front direction.
 図1の正面方向からの電磁波の入射時、電磁波フィルタ100に対して、正面方向の電磁波の波長λa/2に対して、スロット102はLsinθで傾いた状態で位置することとなり、Lsinθが小さくなる。これにより、電磁波フィルタ100は、入射面100aに対し正面方向から電磁波が入射したとき、電磁波を反射(ref.)させる割合が大きくなり、これにより透過(pass)させる割合が小さくなり、入力される電磁波のパワーを多く減衰させる。 When an electromagnetic wave is incident from the front direction of FIG. 1, the slot 102 is positioned at an angle of Lsinθ with respect to the wavelength λa/2 of the electromagnetic wave in the front direction with respect to the electromagnetic wave filter 100, and Lsinθ becomes small. .. Thereby, in the electromagnetic wave filter 100, when the electromagnetic wave is incident on the incident surface 100a from the front direction, the ratio of the electromagnetic wave to be reflected (ref.) is increased, and thus the ratio of transmitted (pass) is decreased to be input. Attenuates a lot of electromagnetic power.
 例えば、図1に示す入射角度0°(X軸に対し90°)において、入射面100aに入力される電磁波のパワーPin=100(100%)であるとする。この場合、反射パワーPref.=100×0.8=80(80%)となり、透過パワーPpass=100×0.2=20(20%)となる。 For example, assume that at the incident angle of 0° (90° with respect to the X axis) shown in FIG. 1, the power Pin of the electromagnetic wave input to the incident surface 100a is Pin=100 (100%). In this case, the reflection power Pref. =100×0.8=80 (80%), and the transmission power Ppass=100×0.2=20 (20%).
 図2は、実施の形態にかかる電磁波フィルタに対する電磁波の入射角度が斜めの場合を示す図である。図2には、X軸に対し電磁波の入射角度がθ(30°)、すなわち電磁波の波長λa/2に対し、電磁波フィルタ100のスロット102の長さLがほぼ同じ大きさで斜め方向から電磁波が入射する場合を示している。 FIG. 2 is a diagram showing a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter according to the embodiment is oblique. In FIG. 2, the incident angle of the electromagnetic wave with respect to the X axis is θ (30°), that is, the length L of the slot 102 of the electromagnetic wave filter 100 is substantially the same as the wavelength λa/2 of the electromagnetic wave, and the electromagnetic wave is obliquely incident. Shows the case of incidence.
 図2の斜め方向からの電磁波の入射時、電磁波フィルタ100に対して、斜め方向の電磁波の波長λa/2に対して、スロット102のLがほぼ同じ大きさで位置することとなる。この場合、電磁波を反射(ref.)させる割合が小さくなり、これにより透過(pass)させる割合が大きくなり、入力される電磁波のパワーを多く通過させる。 When the electromagnetic wave is incident from the oblique direction in FIG. 2, the L of the slot 102 is located at substantially the same size with respect to the electromagnetic wave filter 100 with respect to the wavelength λa/2 of the electromagnetic wave in the oblique direction. In this case, the ratio of reflecting (ref.) the electromagnetic wave becomes small, and thus the ratio of transmitting (pass) becomes large, and a large amount of the power of the inputted electromagnetic wave passes.
 例えば、図2に示す入射角度0°の場合、入射面100aに入力される電磁波のパワーPin=100のとき、反射パワーPref.=100×0.2=20となり、透過パワーPpass=100×0.8=80となる。 For example, in the case of the incident angle of 0° shown in FIG. 2, when the power Pin of the electromagnetic wave input to the incident surface 100a is 100, the reflected power Pref. =100×0.2=20, and the transmission power Ppass=100×0.8=80.
 図3は、実施の形態にかかる電磁波フィルタに対する電磁波の入射角度がより斜めの場合を示す図である。図3の例では、X軸に対し電磁波の入射角度θが、図2よりもさらにX軸方向に傾いている場合であり(15°程度)、電磁波フィルタ100の折曲面101にあたって、スロット102部分に少ししか入射しない場合を示している。 FIG. 3 is a diagram showing a case where the incident angle of the electromagnetic wave on the electromagnetic wave filter according to the embodiment is more oblique. In the example of FIG. 3, the incident angle θ of the electromagnetic wave with respect to the X axis is further inclined in the X axis direction than in FIG. 2 (about 15°). This shows the case where only a small amount of light is incident on.
 図3のように、より斜め方向からの電磁波の入射時、電磁波フィルタ100は、入射面100aに対し斜め方向から入射する電磁波を反射(ref.)させる割合が大きくなり、これにより透過(pass)させる割合が小さくなり、入力される電磁波のパワーを多く減衰させる。 As shown in FIG. 3, when the electromagnetic wave is incident from a more oblique direction, the electromagnetic wave filter 100 has a larger rate of reflecting (ref.) the electromagnetic wave that is obliquely incident to the incident surface 100a, and thus the electromagnetic wave is transmitted. The ratio of the input electromagnetic waves becomes small, and the power of the input electromagnetic wave is largely attenuated.
 例えば、図3に示す入射角度15°の場合、入射面100aに入力される電磁波のパワーPin=100のとき、反射パワーPref.=100×0.8=80となり、透過パワーPpass=100×0.2=20となる。 For example, in the case of an incident angle of 15° shown in FIG. 3, when the power Pin of the electromagnetic wave input to the incident surface 100a is 100, the reflected power Pref. =100×0.8=80, and the transmission power Ppass=100×0.2=20.
 図1~図3に示すように、電磁波フィルタ100は、入射面100aに対し正面方向(X軸に対し90°)から入射される電磁波に対し反射の割合が高い。また、入射面100aに対し所定角度(例えばX軸に対しθ=30°)から入射される電磁波に対し透過の割合が高い。さらに、処置角度よりも斜めの角度(例えばX軸に対しθ=15°)から入射される電磁波に対しては反射の割合が高い。 As shown in FIGS. 1 to 3, the electromagnetic wave filter 100 has a high reflection ratio with respect to the electromagnetic wave incident on the incident surface 100a from the front direction (90° with respect to the X axis). Further, the electromagnetic wave incident on the incident surface 100a at a predetermined angle (for example, θ=30° with respect to the X axis) has a high transmission rate. Furthermore, the ratio of reflection is high for electromagnetic waves incident from an angle (eg, θ=15° with respect to the X axis) that is oblique to the treatment angle.
 図4(図4A,図4B)~図6(図6A,図6B)は、実施の形態にかかる電磁波フィルタの条件別の特性例を示す図である。電磁界シミュレータを用い、送信機のアンテナに対して電磁波フィルタの角度を変えた場合の電磁波フィルタを透過した電波の電界状態を説明する。 FIG. 4 (FIG. 4A, FIG. 4B) to FIG. 6 (FIG. 6A, FIG. 6B) are diagrams showing characteristic examples according to conditions of the electromagnetic wave filter according to the embodiment. The electric field state of the radio wave transmitted through the electromagnetic wave filter when the angle of the electromagnetic wave filter is changed with respect to the antenna of the transmitter using the electromagnetic field simulator will be described.
 はじめに、図4(図4A,図4B)を用いて単体のスロット102が設けられた電磁波フィルタ100(折曲面101)に対する電磁波の入射角度を変えたときの電界(E)分布を説明する。 First, the electric field (E) distribution when the incident angle of the electromagnetic wave with respect to the electromagnetic wave filter 100 (folded curved surface 101) provided with the single slot 102 is changed will be described with reference to FIG. 4 (FIGS. 4A and 4B).
 図4A(a)に示すように、折曲面101はY軸平面上に位置し、送信機のアンテナ400は、Z軸方向に沿って27mmの長さを有するダイポールアンテナであり、Y軸方向で折曲面101の図中手前側(-30mmの位置)に位置している。折曲面101はY軸面上で縦横120mmの正方形であり、スロット102はアンテナ400の方向(偏波方向)と直交する方向に沿って27mmの開口を有している。送信機のアンテナ400から放射される電波の中心周波数f0=5GHz、入射面100aに入力される電磁波のパワーPin=1Wとした。 As shown in FIG. 4A (a), the bent curved surface 101 is located on the Y-axis plane, and the antenna 400 of the transmitter is a dipole antenna having a length of 27 mm along the Z-axis direction, and It is located on the near side of the folding curved surface 101 in the figure (at a position of -30 mm). The bent curved surface 101 is a square of 120 mm in length and width on the Y-axis surface, and the slot 102 has an opening of 27 mm along a direction orthogonal to the direction of the antenna 400 (polarization direction). The center frequency f0 of the radio wave radiated from the antenna 400 of the transmitter was set to f0=5 GHz, and the power of the electromagnetic wave input to the incident surface 100a was set to Pin=1W.
 図4A(b)は、固定したアンテナ400に対し、電磁波フィルタ(折曲面101)をZ軸を中心にX,Y軸間で角度θを変化させた場合の電界Eを示す図表である。この電界Eは、Y軸方向で折曲面101の奥側(110mmの位置)での値である。なお、図中点線は、sinカーブの特性線である。 FIG. 4A(b) is a table showing the electric field E when the angle θ is changed between the X- and Y-axes about the Z-axis of the electromagnetic wave filter (folded curved surface 101) for the fixed antenna 400. The electric field E is a value on the inner side (at a position of 110 mm) of the folding curved surface 101 in the Y-axis direction. The dotted line in the figure is the characteristic curve of the sin curve.
 また、図4B(a)~(d)は、図4A(b)に対応した電波分布であり、アンテナ400に対し、電磁波フィルタ100(折曲面101)をZ軸を中心にX,Y軸間で角度θを変化させた場合の電波分布の状態を示す図である。これらの各図には、アンテナ400と電磁波フィルタ100を含み、X軸方向に200mm、Y軸方向に160mmのエリアの電界分布を示す。 4B(a) to 4(d) show the radio wave distribution corresponding to FIG. 4A(b), and the electromagnetic wave filter 100 (folded curved surface 101) is placed between the X and Y axes about the Z axis with respect to the antenna 400. FIG. 6 is a diagram showing a state of a radio wave distribution when the angle θ is changed by. Each of these figures shows an electric field distribution in an area including the antenna 400 and the electromagnetic wave filter 100 and having an area of 200 mm in the X-axis direction and 160 mm in the Y-axis direction.
 図4B(a)には、折曲面101がY軸上(X軸に対して90°)に位置しており、Z軸に沿った長さのアンテナ400の偏波方向に対して電磁波フィルタ100(スロット102)が直交した(θ=90°)状態を示す。スロット102に対して電波が真正面(θ=90°)から入射する場合、電磁波フィルタ100はスロット102を介して多くの電波を透過させる。そして、電磁波フィルタ100を透過した側(図中上部側)ではY軸に沿った範囲で透過パワーPpassが大きいことが示されている。この際、図表の最上部の位置Ya(Y=110mm)における電界は67V/mである。 In FIG. 4B(a), the curved surface 101 is located on the Y axis (90° with respect to the X axis), and the electromagnetic wave filter 100 is arranged in the polarization direction of the antenna 400 having a length along the Z axis. The state where the (slot 102) is orthogonal (θ=90°) is shown. When a radio wave enters the slot 102 from directly in front (θ=90°), the electromagnetic wave filter 100 allows many radio waves to pass through the slot 102. It is shown that the transmission power Ppass is large in the range along the Y axis on the side that has passed through the electromagnetic wave filter 100 (the upper side in the figure). At this time, the electric field at the uppermost position Ya (Y=110 mm) in the chart is 67 V/m.
 図4B(b)には、折曲面101がY軸に対し60°傾いて位置した状態である。電磁波フィルタ100はスロット102を透過した左上側に透過パワーPpassの範囲が示されている。この際、図表の最上部(位置Ya)における電界は45V/mである。 In FIG. 4B(b), the bent curved surface 101 is positioned at an angle of 60° with respect to the Y axis. In the electromagnetic wave filter 100, the range of the transmission power Ppass is shown on the upper left side after passing through the slot 102. At this time, the electric field at the top of the chart (position Ya) is 45 V/m.
 図4B(c)には、折曲面101がY軸に対し30°傾いて位置した状態である。電磁波フィルタ100はスロット102を透過した左上側に透過パワーPpassの範囲が示され、図4B(b)よりも透過パワーが小さいことが示されている。この際、図表の最上部(位置Ya)における電界は10V/mである。 In FIG. 4B(c), the bent curved surface 101 is positioned at an angle of 30° with respect to the Y axis. In the electromagnetic wave filter 100, the range of the transmission power Ppass is shown on the upper left side after passing through the slot 102, and it is shown that the transmission power is smaller than that in FIG. 4B(b). At this time, the electric field at the top of the chart (position Ya) is 10 V/m.
 図4B(d)には、折曲面101がY軸に対し15°傾いて位置した状態である。電磁波フィルタ100はスロット102を透過した左側に透過パワーPpassの範囲が示され、図4B(c)よりも透過パワーが小さいことが示されている。この際、図表の最上部(位置Ya)における電界は14V/mである。 In FIG. 4B(d), the bent curved surface 101 is positioned at an angle of 15° with respect to the Y axis. In the electromagnetic wave filter 100, the range of the transmission power Ppass is shown on the left side after passing through the slot 102, and it is shown that the transmission power is smaller than that in FIG. 4B(c). At this time, the electric field at the top of the chart (position Ya) is 14 V/m.
 図4A(a)に示した電磁波フィルタ100のスロット102の場合、図4B(a)~(d)に示したように、真正面(θ=90°)から電波が入射されたときには、透過率が大きい。一方、スロット102に対して一定の角度を有して電波が入射された場合には、透過率が小さくなる。 In the case of the slot 102 of the electromagnetic wave filter 100 shown in FIG. 4A (a), as shown in FIGS. 4B (a) to (B), when the radio wave is incident from directly in front (θ=90°), the transmittance is large. On the other hand, when a radio wave is incident on the slot 102 at a certain angle, the transmittance becomes small.
 ここで、図4A(b)に示した位置Yaの電界強度Eは、Y軸に対する角度θが90°のときはE=67(V/m)であり、傾斜角度を小さくするにしたがいsinカーブに沿ってEが減少していく。角度θが30°のとき最も電界強度Eが小さく(E=10V/m)、角度θが15°のときには、再度電界強度Eが増加する(E=14V/m)。図4A(b)の特性でみると、透過波が最小で反射波が最大となる角度(θ)が30°のとき、複数スロット化時の最適値となる。 Here, the electric field intensity E at the position Ya shown in FIG. 4A(b) is E=67 (V/m) when the angle θ with respect to the Y axis is 90°, and the sin curve is reduced as the tilt angle is reduced. E decreases along with. When the angle θ is 30°, the electric field strength E is the smallest (E=10 V/m), and when the angle θ is 15°, the electric field strength E increases again (E=14 V/m). According to the characteristics of FIG. 4A(b), when the angle (θ) at which the transmitted wave is the minimum and the reflected wave is the maximum is 30°, the optimum value is obtained in the case of multiple slots.
 次に、図5(図5A,図5B)および図6(図6A,図6B)を用いてダブルスロットが設けられた電磁波フィルタ100(折曲面101)に対する電磁波の入射角度を変えたときの電界(E)分布を説明する。 Next, referring to FIG. 5 (FIG. 5A, FIG. 5B) and FIG. 6 (FIG. 6A, FIG. 6B), the electric field when the incident angle of the electromagnetic wave with respect to the electromagnetic wave filter 100 (folded curved surface 101) provided with the double slot is changed. (E) The distribution will be described.
 はじめに、図5A(a)に示す電磁波フィルタ100は、金属板等を折り曲げた2つの折曲面101を有し、2つの折曲面101は、電磁波の入射方向(Y軸手前側)に凸状に突出して設けられ、各折曲面101にスロット102が形成されている。2つの折曲面101は、図1同様にY軸に対し30°ずつ傾斜している。 First, the electromagnetic wave filter 100 shown in FIG. 5A (a) has two bent curved surfaces 101 formed by bending a metal plate or the like, and the two bent curved surfaces 101 are convex in the incident direction of electromagnetic waves (Y axis front side). Slots 102 are formed on each of the bent curved surfaces 101 so as to project. The two folding curved surfaces 101 are inclined by 30° with respect to the Y axis, as in FIG. 1.
 なお、送信機のアンテナ400は、図4Aと同様に、Z軸方向に沿って27mmの長さを有するダイポールアンテナであり、Y軸方向で折曲面101の図中手前側(-30mmの位置)に位置している。 Note that the antenna 400 of the transmitter is a dipole antenna having a length of 27 mm along the Z-axis direction, as in FIG. 4A, and is on the front side of the folding curved surface 101 in the Y-axis direction (at a position of −30 mm). Is located in.
 また、2つの折曲面101はそれぞれ縦横120mmの正方形であり、スロット102はアンテナ400の方向(偏波方向)と直交する方向に沿ってそれぞれ27mmの開口を有している。送信機のアンテナ400から放射される電波の中心周波数f0=5GHz、入射面100aに入力される電磁波のパワーPin=1Wとした。 Also, each of the two bent curved surfaces 101 is a square having a length and width of 120 mm, and the slot 102 has an opening of 27 mm along a direction orthogonal to the direction of the antenna 400 (polarization direction). The center frequency f0 of the radio wave radiated from the antenna 400 of the transmitter was set to f0=5 GHz, and the power of the electromagnetic wave input to the incident surface 100a was set to Pin=1W.
 図5A(b)は、固定したアンテナ400に対し、電磁波フィルタ100をZ軸を中心にX,Y軸間で角度θを変化させた場合の電界Eを示す図表である。この電界Eは、Y軸方向で電磁波フィルタ100の奥側(110mmの位置)での値である。なお、図中点線は、sinカーブの特性線である。 FIG. 5A(b) is a chart showing the electric field E when the angle θ of the electromagnetic wave filter 100 is changed about the Z axis with respect to the fixed antenna 400 between the X and Y axes. This electric field E is a value on the back side (at a position of 110 mm) of the electromagnetic wave filter 100 in the Y-axis direction. The dotted line in the figure is the characteristic curve of the sin curve.
 また、図5B(a)~(d)は、図5A(b)に対応した電波分布であり、アンテナ400に対し、電磁波フィルタ100をZ軸を中心にX,Y軸間で角度θを変化させた場合の電波分布の状態を示す図である。 Further, FIGS. 5B(a) to 5(d) show a radio wave distribution corresponding to FIG. 5A(b), and the angle θ is changed with respect to the antenna 400 about the Z axis of the electromagnetic wave filter 100 between the X and Y axes. It is a figure which shows the state of a radio wave distribution at the time of making it.
 図5B(a)には、電磁波フィルタ100がY軸上(X軸に対して90°)に位置しており、Z軸に沿った長さのアンテナ400の偏波方向に対して電磁波フィルタ100(スロット102)が直交した(θ=90°)状態を示す。スロット102に対して電波が真正面(θ=90°)から入射する場合、電磁波フィルタ100はスロット102を介して多くの電波を透過させる。そして、電磁波フィルタ100を透過した側(図中上部側)ではY軸に沿った範囲で透過パワーPpassが大きいことが示されている。 In FIG. 5B(a), the electromagnetic wave filter 100 is located on the Y axis (90° with respect to the X axis), and the electromagnetic wave filter 100 is in the polarization direction of the antenna 400 having a length along the Z axis. The state where the (slot 102) is orthogonal (θ=90°) is shown. When a radio wave enters the slot 102 from directly in front (θ=90°), the electromagnetic wave filter 100 allows many radio waves to pass through the slot 102. It is shown that the transmission power Ppass is large in the range along the Y axis on the side that has passed through the electromagnetic wave filter 100 (the upper side in the figure).
 図5B(b)~(d)は、それぞれ電磁波フィルタ100がY軸に対し60°、30°、15°傾いて位置した状態である。これらの傾きでも電磁波フィルタ100はスロット102を透過した側(図中上部側)でY軸に沿った範囲で透過パワーPpassの範囲が示されている。 FIGS. 5B(b) to 5(d) show a state in which the electromagnetic wave filter 100 is positioned at an angle of 60°, 30°, and 15° with respect to the Y axis. Even with these inclinations, the range of the transmission power Ppass is shown in the range along the Y-axis on the side where the electromagnetic wave filter 100 is transmitted through the slot 102 (the upper side in the drawing).
 この際、図表の最上部(位置Ya)における電界は、θが90°のとき70V/m、θが60°のとき60V/m、θが30°のとき35V/m、θが15°のとき25V/mである。θが小さいほどアンテナ400(ダイポールアンテナ)から見えるスロット長が短くなるため、発生電界Evが小さくなることが示されている。 At this time, the electric field at the top of the chart (position Ya) is 70 V/m when θ is 90°, 60 V/m when θ is 60°, 35 V/m when θ is 30°, and 15° when θ is 30°. Sometimes it is 25 V/m. It is shown that the smaller θ is, the shorter the slot length seen from the antenna 400 (dipole antenna) becomes, and the smaller the generated electric field Ev becomes.
 次に、図6(図6A,図6B)を用いてダブルスロットが設けられた電磁波フィルタ100(折曲面101)に対する電磁波の入射角度を変えたときの電界(E)分布を説明する。 Next, the electric field (E) distribution when the incident angle of the electromagnetic wave with respect to the electromagnetic wave filter 100 (folded curved surface 101) provided with the double slot is changed will be described with reference to FIG. 6 (FIGS. 6A and 6B).
 図6A(a)に示す電磁波フィルタ100は、金属板等を折り曲げた2つの折曲面101を有し、2つの折曲面101は、電磁波の入射方向(Y軸手前側)に広がる凹状に設けられ、各折曲面101にスロット102が形成されている。2つの折曲面101は、図1同様にY軸に対し30°ずつ傾斜している。 The electromagnetic wave filter 100 shown in FIG. 6A (a) has two bent curved surfaces 101 formed by bending a metal plate or the like, and the two bent curved surfaces 101 are provided in a concave shape that spreads in the electromagnetic wave incident direction (Y axis front side). A slot 102 is formed on each bent surface 101. The two folding curved surfaces 101 are inclined by 30° with respect to the Y axis, as in FIG. 1.
 図6A(b)は、固定したアンテナ400に対し、電磁波フィルタ100をZ軸を中心にX,Y軸間で角度θを変化させた場合の電界Eを示す図表である。この電界Eは、Y軸方向で電磁波フィルタ100の奥側(110mmの位置)での値である。なお、図中点線は、sinカーブの特性線である。 FIG. 6A(b) is a chart showing the electric field E when the angle θ of the electromagnetic wave filter 100 is changed about the Z axis between the X and Y axes with respect to the fixed antenna 400. This electric field E is a value on the back side (at a position of 110 mm) of the electromagnetic wave filter 100 in the Y-axis direction. The dotted line in the figure is the characteristic curve of the sin curve.
 また、図6B(a)~(d)は、図6A(b)に対応した電波分布であり、アンテナ400に対し、電磁波フィルタ100をZ軸を中心にX,Y軸間で角度θを変化させた場合の電波分布の状態を示す図である。 6B(a) to 6(d) show a radio wave distribution corresponding to FIG. 6A(b), in which the angle θ is changed with respect to the antenna 400 about the Z axis of the electromagnetic wave filter 100 between the X and Y axes. It is a figure which shows the state of a radio wave distribution at the time of making it.
 図6B(a)には、電磁波フィルタ100がY軸上(X軸に対して90°)に位置しており、Z軸に沿った長さのアンテナ400の偏波方向に対して電磁波フィルタ100(スロット102)が直交した(θ=90°)状態を示す。スロット102に対して電波が真正面(θ=90°)から入射する場合、電磁波フィルタ100はスロット102を介して多くの電波を透過させる。そして、電磁波フィルタ100を透過した側(図中上部側)ではY軸に沿った範囲で透過パワーPpassが大きいことが示されている。 In FIG. 6B(a), the electromagnetic wave filter 100 is located on the Y axis (90° with respect to the X axis), and the electromagnetic wave filter 100 is arranged in the polarization direction of the antenna 400 having a length along the Z axis. The state where the (slot 102) is orthogonal (θ=90°) is shown. When a radio wave enters the slot 102 from directly in front (θ=90°), the electromagnetic wave filter 100 allows many radio waves to pass through the slot 102. It is shown that the transmission power Ppass is large in the range along the Y axis on the side that has passed through the electromagnetic wave filter 100 (the upper side in the figure).
 図6B(b)~(d)は、それぞれ電磁波フィルタ100がY軸に対し60°、30°、15°傾いて位置した状態である。これらの傾きでも電磁波フィルタ100はスロット102を透過した側(図中上部側)でY軸に沿った範囲で透過パワーPpassの範囲が示されている。 FIGS. 6B(b) to 6B(d) show a state in which the electromagnetic wave filter 100 is positioned at an angle of 60°, 30°, and 15° with respect to the Y axis. Even with these inclinations, the range of the transmission power Ppass is shown in the range along the Y-axis on the side where the electromagnetic wave filter 100 is transmitted through the slot 102 (the upper side in the drawing).
 この際、図表の最上部(位置Ya)における電界は、θが90°のとき65V/m、θが60°のとき62V/m、θが30°のとき40V/m、θが15°のとき10V/mである。θが小さいほどアンテナ400(ダイポールアンテナ)から見えるスロット長が短くなるため、電界Evが小さくなることが示されている。 At this time, the electric field at the top of the chart (position Ya) is 65 V/m when θ is 90°, 62 V/m when θ is 60°, 40 V/m when θ is 30°, and 15° when θ is 30°. Sometimes it is 10 V/m. It is shown that the smaller θ is, the shorter the slot length seen from the antenna 400 (dipole antenna) is, and thus the smaller the electric field Ev is.
 ここで、図6A(b)には、電界分布Evrの特性と、上述した凸状の電磁波フィルタ100(図5A(b))の電界Evの特性を示している。この図6A(b)の特性でみると、θ=30°付近でθの変化に対する電界分布Evrと電界Evがバランスよく同じ値になる最適値が得られる。すなわち、電磁波フィルタ100は、ダブルスロットの構成の場合、図5(図5A(a))に示した凸状と、図6(図6A(a))に示した凹状とを組み合わせた形状が適している(図1相当)。 Here, FIG. 6A(b) shows the characteristics of the electric field distribution Evr and the characteristics of the electric field Ev of the above-mentioned convex electromagnetic wave filter 100 (FIG. 5A(b)). According to the characteristics shown in FIG. 6A(b), an optimum value is obtained in which the electric field distribution Evr and the electric field Ev are well balanced and have the same value in the vicinity of θ=30° with respect to the change of θ. That is, in the case of the double slot configuration, the electromagnetic wave filter 100 preferably has a shape obtained by combining the convex shape shown in FIG. 5 (FIG. 5A(a)) and the concave shape shown in FIG. 6 (FIG. 6A(a)). (Corresponding to Figure 1).
 図7は、実施の形態にかかる電磁波フィルタによる通信エリアの説明図である。上述した凸状と凹状を組み合わせた電磁波フィルタ100の通信エリアと、各状態A~C別の電波の強さ(電界)を示す。電磁波フィルタ100から所定距離離れた位置(図の上部)には、APのアンテナ400が設けられる。図中の数値は、例えば、電波の強度(例えば受信電力mw)である。 FIG. 7 is an explanatory diagram of a communication area by the electromagnetic wave filter according to the embodiment. The communication area of the electromagnetic wave filter 100 having a combination of the convex shape and the concave shape described above and the intensity (electric field) of the radio wave in each of the states A to C are shown. An AP antenna 400 is provided at a position apart from the electromagnetic wave filter 100 by a predetermined distance (upper part in the drawing). Numerical values in the figure are, for example, the strength of radio waves (for example, received power mw).
(1)電磁波フィルタ100部分における電波の透過および反射状態は、
 状態A(θ=90°)では、受信電波の強度が100とすると、反射(Pref.)は100×0.8=80、透過(Ppass)は100×0.2=20となる。
 状態B(θ=30°)では、状態AよりAP(アンテナ400)からの距離が大きいため、受信電波の強度が小さく70となった場合、反射(Pref.)は70×0.2=14、透過(Ppass)は70×0.8=56となる。
 状態C(θ=15°)では、状態BよりAP(アンテナ400)からの距離が大きいため、受信電波の強度が小さく50となった場合、反射(Pref.)は×0.8=40、透過(Ppass)は×0.2=10となる。
(1) The transmission and reflection states of radio waves in the electromagnetic wave filter 100 portion are
In the state A (θ=90°), assuming that the intensity of the received radio wave is 100, the reflection (Pref.) is 100×0.8=80 and the transmission (Ppass) is 100×0.2=20.
In the state B (θ=30°), the distance from the AP (antenna 400) is larger than that in the state A. Therefore, when the intensity of the received radio wave is small and becomes 70, the reflection (Pref.) is 70×0.2=14. , And the transmission (Ppass) is 70×0.8=56.
In the state C (θ=15°), the distance from the AP (antenna 400) is larger than that in the state B, so that when the intensity of the received radio wave is small and is 50, the reflection (Pref.) is ×0.8=40, The transmission (Ppass) is ×0.2=10.
(2)通信エリア700(および通信不能エリア701)における電波の強度は、
 状態A’(θ=90°)では、AP(電磁波フィルタ100)からの距離減衰により強度は10となる。
 状態B’(θ=30°)では、状態A’より電磁波フィルタ100からの距離が大きいため、強度は12となる。
 状態C’(θ=15°)では、状態B’より電磁波フィルタ100からの距離が大きいため、強度は1となる。
(2) The strength of the radio wave in the communication area 700 (and incommunicable area 701) is
In the state A′ (θ=90°), the intensity becomes 10 due to the distance attenuation from the AP (electromagnetic wave filter 100).
In the state B′ (θ=30°), the intensity is 12 because the distance from the electromagnetic wave filter 100 is larger than that in the state A′.
In the state C′ (θ=15°), the intensity is 1 because the distance from the electromagnetic wave filter 100 is larger than that in the state B′.
 図7に示すように実施の形態の電磁波フィルタ100によれば、通信エリア700では、ほぼ一定な強度(10~12)の電波を受信できる。加えて、通信不能エリア701では、急激に強度が低下し(強度1)、通信できない状態が示されている。このように、実施の形態の電磁波フィルタ100によれば、通信エリア700内にユーザの端末(MS)710が位置しているときには、一定な電波強度で電波を受信できる。また、通信不能エリア701内にユーザの端末(MS)710が位置しているときには、受信電波の強度が急激に弱まり、受信できなくなるようにすることができる。すなわち、実施の形態の電磁波フィルタ100は、汎用のAP(アンテナ400)から放射された電波を所定の通信エリア700内でのみ一定な電波強度となるように放射(透過)できる。 As shown in FIG. 7, according to the electromagnetic wave filter 100 of the embodiment, the communication area 700 can receive a radio wave having a substantially constant intensity (10 to 12). In addition, in the incommunicable area 701, the strength is sharply reduced (intensity 1), and the communication is impossible. As described above, according to the electromagnetic wave filter 100 of the embodiment, when the user's terminal (MS) 710 is located in the communication area 700, it is possible to receive a radio wave with a constant radio wave intensity. Further, when the user's terminal (MS) 710 is located in the communication-disabled area 701, the strength of the received radio wave may be sharply weakened so that it cannot be received. That is, the electromagnetic wave filter 100 of the embodiment can radiate (transmit) the radio wave radiated from the general-purpose AP (antenna 400) so that the radio wave intensity becomes constant only within the predetermined communication area 700.
 図8(図8A,図8B)は、実施の形態にかかる電磁波フィルタを備えた空間電磁界制御システムの構成例を示す図である。図8Aは空間電磁界制御システム800の分解斜視図、図8Bは取り付け状態を示す図である。 FIG. 8 (FIGS. 8A and 8B) is a diagram showing a configuration example of a space electromagnetic field control system including an electromagnetic wave filter according to the embodiment. FIG. 8A is an exploded perspective view of the space electromagnetic field control system 800, and FIG. 8B is a view showing a mounting state.
 図8Aに示すように、空間電磁界制御システム800は、送信機(AP)810と、上述した電磁波フィルタ100と、カバー820を含む。AP810は、アンテナ400からλ/4の縦偏波の電波を放射する。電磁波フィルタ100は、上述したように、AP810(アンテナ400)から所定距離離して配置され、カバー820内に収容される。カバー820は、電波を透過させる材質、例えば、ABS樹脂により電磁波フィルタ100とAP810を覆うボックス形状に成形される。なお、実施の形態では、AP810を送信機として説明するが、AP810は、後述する端末との間でデータを送受信し、受信機の機能も有している。 As shown in FIG. 8A, the spatial electromagnetic field control system 800 includes a transmitter (AP) 810, the electromagnetic wave filter 100 described above, and a cover 820. AP 810 radiates a λ/4 vertically polarized radio wave from antenna 400. As described above, the electromagnetic wave filter 100 is arranged at a predetermined distance from the AP 810 (antenna 400) and is housed in the cover 820. The cover 820 is formed in a box shape that covers the electromagnetic wave filter 100 and the AP 810 with a material that transmits radio waves, for example, ABS resin. In the embodiment, the AP 810 is described as a transmitter, but the AP 810 also transmits/receives data to/from a terminal described later and has a function of a receiver.
 そして、図8Bに示すように、カバー820内に電磁波フィルタ100とAP810を収容した状態で、カバー820を所望する壁あるいは天井830の設置個所にボルト821を介して簡単に取り付けることができる。 Then, as shown in FIG. 8B, with the electromagnetic wave filter 100 and the AP 810 housed in the cover 820, the cover 820 can be easily attached to a desired wall or ceiling 830 installation site via bolts 821.
 この空間電磁界制御システム800は、汎用のAP810と、上述した電磁波フィルタ100をカバー820に収容して構成でき、簡単かつ低コストに製造できる。そして、所望の設置個所にカバー820を取り付けることで、AP810が放射する電波を、所定の通信エリア700内に位置する端末(MS)710との間でのみ通信することができるようになる。 This space electromagnetic field control system 800 can be configured by accommodating the general-purpose AP 810 and the electromagnetic wave filter 100 described above in the cover 820, and can be manufactured easily and at low cost. Then, by attaching the cover 820 to a desired installation location, the radio waves emitted by the AP 810 can be communicated only with the terminal (MS) 710 located within the predetermined communication area 700.
 図9は、実施の形態にかかる空間電磁界制御システムの送信機のハードウェア構成例を示す図である。送信機(AP)810は、汎用の各ハードウェア構成であり、CPU901、RAM902、RF-フロントエンド903、信号処理部904、操作部インタフェース(IF)905、LANポート906、電源ポート907、アンテナ400を含む。 FIG. 9 is a diagram illustrating a hardware configuration example of a transmitter of the spatial electromagnetic field control system according to the exemplary embodiment. The transmitter (AP) 810 has a general-purpose hardware configuration, and includes a CPU 901, a RAM 902, an RF-front end 903, a signal processing unit 904, an operation unit interface (IF) 905, a LAN port 906, a power supply port 907, and an antenna 400. including.
 CPU901は、ROMやRAM902等に格納された制御プログラムを実行し、AP810の全体を制御し、この際、RAM902を作業領域として使用する。RF-フロントエンド903は、信号処理部904の無線送受信にかかる制御により、データをアンテナ400を介して送受信する。操作部インタフェース(IF)905は、ユーザによる操作設定を行うためのインタフェースである。送受信するデータは、LANポート906を介して入出力される。AP810は、電源ポート907から供給される電源に基づき動作する。 The CPU 901 executes the control program stored in the ROM, the RAM 902, etc. to control the entire AP 810, and uses the RAM 902 as a work area at this time. The RF-front end 903 transmits/receives data via the antenna 400 under the control of the wireless transmission/reception of the signal processing unit 904. The operation unit interface (IF) 905 is an interface for performing operation settings by the user. Data to be transmitted/received is input/output via the LAN port 906. The AP 810 operates based on the power supplied from the power port 907.
 図10は、実施の形態にかかる空間電磁界制御システムの端末のハードウェア構成例を示す図である。端末(MS)710は、CPU1001、RAM1002、RF-フロントエンド1003、信号処理部1004、操作部インタフェース(IF)1005を含む。さらに、センサ1006、スピーカ1007、マイク1008、カメラ1009、キーボード1010、ディスプレイ1011、パワーソース1012、アンテナ1013を含む。端末(MS)710は、例えば、スマートフォン等の汎用の各ハードウェア構成を有する。 FIG. 10 is a diagram showing a hardware configuration example of a terminal of the spatial electromagnetic field control system according to the exemplary embodiment. The terminal (MS) 710 includes a CPU 1001, a RAM 1002, an RF-front end 1003, a signal processing unit 1004, and an operation unit interface (IF) 1005. Further, it includes a sensor 1006, a speaker 1007, a microphone 1008, a camera 1009, a keyboard 1010, a display 1011, a power source 1012, and an antenna 1013. The terminal (MS) 710 has each general-purpose hardware configuration such as a smartphone.
 CPU1001は、ROMやRAM1002等に格納された制御プログラムを実行し、端末(MS)710の全体を制御し、この際、RAM1002を作業領域として使用する。RF-フロントエンド1003は、信号処理部1004の無線送受信にかかる制御により、データをアンテナ1013を介して送受信する。操作部インタフェース(IF)1005は、ユーザによる操作設定を行うためのインタフェースである。 The CPU 1001 executes a control program stored in the ROM, the RAM 1002, and the like to control the entire terminal (MS) 710, and uses the RAM 1002 as a work area at this time. The RF-front end 1003 transmits/receives data via the antenna 1013 under the control of wireless transmission/reception of the signal processing unit 1004. The operation unit interface (IF) 1005 is an interface for performing operation settings by the user.
 端末(MS)710は、CPU1001の制御により、センサ1006やマイク1008、カメラ1009、キーボード1010から入力されたデータを送信し、受信したデータをディスプレイ1011に表示する。端末(MS)710は、例えば、内蔵バッテリ等のパワーソース1012から供給される電源に基づき動作する。図10の例では、端末710としてスマートフォン等の構成例を説明したが、端末710としては、IoTセンサ等のセンサ、CPU、メモリ、RFID等を含む簡素なものも含む。 Under the control of the CPU 1001, the terminal (MS) 710 transmits the data input from the sensor 1006, the microphone 1008, the camera 1009, and the keyboard 1010, and displays the received data on the display 1011. The terminal (MS) 710 operates based on a power source supplied from a power source 1012 such as a built-in battery. In the example of FIG. 10, a configuration example of a smartphone or the like has been described as the terminal 710, but the terminal 710 also includes a simple one including a sensor such as an IoT sensor, a CPU, a memory, an RFID, and the like.
(空間電磁界制御システムによる通信エリアの電界分布のシミュレーション)
 次に、空間電磁界制御システムによる通信エリアの電界分布を説明する。通信周波数f0=5GHz(λ=60mm)、電磁波フィルタ100に対する入力パワーを1Wとした。
(Simulation of electric field distribution in communication area by spatial electromagnetic field control system)
Next, the electric field distribution in the communication area by the spatial electromagnetic field control system will be described. The communication frequency f0 was 5 GHz (λ=60 mm), and the input power to the electromagnetic wave filter 100 was 1 W.
 図11は、実施の形態にかかるシミュレーションに用いた電磁波フィルタの構成例を示す図である。電磁波フィルタ100は、高さ(Z軸)と幅(X軸)が200mm×390mmであり、縦の長さ(Y軸)は26mmである。この電磁波フィルタ100は、ダブルスロットの構造により各折曲面101がY軸に対してそれぞれ30°ずつ傾斜した波状に形成されている。一つの折曲面101は縦幅が30mmであり、各折曲面101には、スロット102は27mm×2mmの開口幅を有して形成されている。各スロット102は、Z軸方向上で27mm間隔で複数設けられている。 FIG. 11 is a diagram showing a configuration example of the electromagnetic wave filter used for the simulation according to the embodiment. The electromagnetic wave filter 100 has a height (Z axis) and a width (X axis) of 200 mm×390 mm, and a vertical length (Y axis) of 26 mm. The electromagnetic wave filter 100 has a double-slot structure, and each bent curved surface 101 is formed in a wave shape inclined by 30° with respect to the Y axis. The length of one folding curved surface 101 is 30 mm, and the slot 102 is formed in each folding curved surface 101 with an opening width of 27 mm×2 mm. A plurality of slots 102 are provided at intervals of 27 mm in the Z-axis direction.
 図12は、実施の形態にかかる電磁波フィルタの電界分布のシミュレーション結果を示す図である。縦横が300mm×600mmの空間におけるX-Y平面上での電界分布を示しており、電磁波フィルタ100の電界分布は、矩形状に閉じ込められていることがわかる。すなわち、電磁波フィルタ100の幅であるX軸方向に広がりを有する電界分布を有し、電磁波フィルタ100の透過側の空間の境界(3辺)部分では同様に電界強度が低くなり、矩形状の空間に適応した電界分布が得られた。 FIG. 12 is a diagram showing a simulation result of an electric field distribution of the electromagnetic wave filter according to the embodiment. The vertical and horizontal directions show the electric field distribution on the XY plane in the space of 300 mm×600 mm, and it can be seen that the electric field distribution of the electromagnetic wave filter 100 is confined in a rectangular shape. That is, it has an electric field distribution that spreads in the X-axis direction, which is the width of the electromagnetic wave filter 100, and the electric field strength is similarly low at the boundary (three sides) of the space on the transmission side of the electromagnetic wave filter 100, resulting in a rectangular space. The electric field distribution adapted to was obtained.
 図13~図15(図15A,図15B)は、実施の形態にかかる電磁波フィルタを用いた際の各種アンテナ特性を示す図である。図13(a)は入力インピーダンス特性を示す複素反射係数Γの極座標図(スミスチャート)であり、特性線Sはアンテナ400との整合性が良好であることが示されている。図13(b)は入力の反射特性(S11)を示し、横軸が周波数、縦軸が反射量であり、広帯域な周波数特性を維持できることが示されている。そして、電磁波フィルタ100を用いた構成においても、共振点f0(5GHz)がずれていないことが示されている。 13 to 15 (FIGS. 15A and 15B) are diagrams showing various antenna characteristics when the electromagnetic wave filter according to the embodiment is used. FIG. 13A is a polar coordinate diagram (Smith chart) of the complex reflection coefficient Γ showing the input impedance characteristic, and the characteristic line S shows that the matching with the antenna 400 is good. FIG. 13B shows the reflection characteristic (S11) of the input, where the horizontal axis is the frequency and the vertical axis is the reflection amount, and it is shown that the broadband frequency characteristic can be maintained. It is also shown that the resonance point f0 (5 GHz) is not displaced even in the configuration using the electromagnetic wave filter 100.
 図14(a)はXY面のゲイン特性であり、図14(b)は3次元(3D)のゲイン特性である。これらには、所望する放射方向(+Y軸方向)に対し、-2~4.5dBiの良好なゲイン特性が得られることが示されている。 FIG. 14A shows the XY plane gain characteristic, and FIG. 14B shows the three-dimensional (3D) gain characteristic. It is shown that a favorable gain characteristic of −2 to 4.5 dBi can be obtained in the desired radiation direction (+Y axis direction).
 図15A,図15Bは、電磁波フィルタ100から所定距離上の電界値を示す図である。図15Aに示すように、電磁波フィルタ100から所定距離離れた(Y=200mm)上の電界値を図15Bに示す。図15Bの横軸は空間の横方向(X軸)の距離0mm~600mmであり、縦軸は各距離での電界強度である。図15Bに示すように、距離100~500mmまでの所定範囲1501(400mm)においてほぼ一定な電界強度が得られている。また、この所定範囲1501(400mm)よりも外の範囲(距離0mm~100mmと、距離500mm~600mm)においては電界強度が急激に低下していることが示されている。 15A and 15B are diagrams showing electric field values at a predetermined distance from the electromagnetic wave filter 100. As shown in FIG. 15A, the electric field value above a predetermined distance (Y=200 mm) from the electromagnetic wave filter 100 is shown in FIG. 15B. The horizontal axis of FIG. 15B is the distance 0 mm to 600 mm in the horizontal direction (X axis) of the space, and the vertical axis is the electric field strength at each distance. As shown in FIG. 15B, a substantially constant electric field strength is obtained in a predetermined range 1501 (400 mm) up to a distance of 100 to 500 mm. Further, it is shown that the electric field strength sharply decreases in a range (distance 0 mm to 100 mm and distance 500 mm to 600 mm) outside the predetermined range 1501 (400 mm).
 図16は、実施の形態にかかる空間電磁界制御システムの通信エリアをスケールアップした図である。ここで、実際の計算機を用いたシミュレーションでは、メモリの制約上数mの範囲の空間の計算は不可能であり、図示の例では、スケールアップした縦横の所定範囲(1500mm×3000mm)の通信エリアの構築例を示している。 FIG. 16 is a diagram in which the communication area of the space electromagnetic field control system according to the embodiment is scaled up. Here, in a simulation using an actual computer, it is not possible to calculate a space within a range of several meters due to memory constraints, and in the illustrated example, a scaled up communication area of a predetermined vertical and horizontal range (1500 mm×3000 mm) is used. Shows a construction example of.
 図16の例では、解析空間(300mm×600mm)を約5倍にスケールアップした場合を示す。AP810のアンテナ400と電磁波フィルタ100の間の距離を30mm、電磁波フィルタ100と通信エリア700の間の距離を1200mmとした。このスケールアップにより、電界一定な通信エリア700の範囲はX軸方向に1000mmが得られる。なお、図16の例は、通信周波数(f0)が5GHzの例であるため、例えば、f0が2.4GHzであれば図16の各数値は約2倍となり、通信エリア700の範囲はX軸方向に約2000mmとなる。 The example in FIG. 16 shows a case where the analysis space (300 mm×600 mm) is scaled up by about 5 times. The distance between the antenna 400 of the AP 810 and the electromagnetic wave filter 100 was 30 mm, and the distance between the electromagnetic wave filter 100 and the communication area 700 was 1200 mm. With this scale-up, the range of the communication area 700 in which the electric field is constant can be 1000 mm in the X-axis direction. Note that the example in FIG. 16 is an example in which the communication frequency (f0) is 5 GHz, and therefore, for example, if f0 is 2.4 GHz, each numerical value in FIG. 16 is approximately doubled, and the range of the communication area 700 is the X axis. Approximately 2000 mm in the direction.
 図17は、実施の形態にかかる空間電磁界制御システムの複数の通信エリアを示す図である。この図17には、図16に示すスケールアップした各通信エリアをX軸方向に複数配置した状態を示す(f0=5GHz)。このように、複数の通信エリア700(A,B,C,…)を少しの間隔を有して隣接して設けることで、各通信エリア700内だけでの通信を行うことができるようになる。図17の例では、通信エリア700(B)は、隣接する通信エリア700(A)と、通信エリア700(C)の干渉を受けることがない。 FIG. 17 is a diagram showing a plurality of communication areas of the spatial electromagnetic field control system according to the embodiment. FIG. 17 shows a state in which a plurality of scaled-up communication areas shown in FIG. 16 are arranged in the X-axis direction (f0=5 GHz). In this way, by providing a plurality of communication areas 700 (A, B, C,...) Adjacent to each other with a small gap, it becomes possible to perform communication only within each communication area 700. .. In the example of FIG. 17, the communication area 700(B) is not interfered with by the adjacent communication area 700(A) and the communication area 700(C).
 図18は、実施の形態にかかる空間電磁界制御システムの複数の通信エリアの構築例を示す図である。図18(a)は実施の形態にかかる電磁波フィルタ100を用いた通信エリアである。図18(b)は比較用の従来のダイポールアンテナによる通信エリアである。これらの図は、いずれも電界分布のシミュレーション結果であり、縦横(X,Y)の範囲は5m×20mである。 FIG. 18 is a diagram showing a construction example of a plurality of communication areas of the spatial electromagnetic field control system according to the exemplary embodiment. FIG. 18A is a communication area using the electromagnetic wave filter 100 according to the embodiment. FIG. 18B shows a communication area using a conventional dipole antenna for comparison. All of these figures are simulation results of the electric field distribution, and the vertical and horizontal (X, Y) range is 5 m×20 m.
 図18(a)の上半部には2つの通信エリアに対応して、2つのAP810(アンテナ400)を所定距離(10m)離して隣接配置した状態を示す。ここで、AP810(アンテナ400)をY軸方向で異なる位置に配置し、また、放射方向が対向する方向となっている。また、図18(a)の下半部には一つのAP810(アンテナ400)のみを配置した状態を示す。 The upper half of FIG. 18A shows a state in which two APs 810 (antenna 400) are arranged adjacent to each other at a predetermined distance (10 m) corresponding to two communication areas. Here, the AP 810 (antenna 400) is arranged at different positions in the Y-axis direction, and the radiation directions are opposite to each other. 18A shows a state where only one AP 810 (antenna 400) is arranged in the lower half portion.
 この図18(a)に示すように、隣接する通信エリア700(A)、通信エリア700(B)は、それぞれX軸方向に6mの範囲を有し、通信エリア700の両端にはそれぞれ0.5mずつ(計1m)の通信不能エリア701を有する。この場合、AP810(アンテナ400)は、それぞれX軸方向に7mまで狭めることもでき、隣接する通信エリア700(A)、通信エリア700(B)間の干渉を防いで事故の通信エリア700内だけでの通信が可能となる。 As shown in FIG. 18A, the adjacent communication area 700(A) and communication area 700(B) each have a range of 6 m in the X-axis direction, and both ends of the communication area 700 have a distance of 0. It has an incommunicable area 701 of 5 m each (total of 1 m). In this case, the AP 810 (antenna 400) can be narrowed down to 7 m in the X-axis direction, preventing interference between the adjacent communication areas 700 (A) and 700 (B) and only within the accident communication area 700. Communication is possible.
 これに対し、図18(b)に示す従来のダイポールアンテナ(アンテナ400)では、下半部の図に示すように、通信エリア1800の両端から通信不能エリア1801がX軸方向にそれぞれ長い距離で位置している。ここで、図18(a)に示すように、実施の形態と同様にAP810(アンテナ400)を10mの間隔で配置したとする。この場合、通信エリア1800(A)の通信不能エリア(ガードエリア)1801が他の通信エリア1800(B)に重なってしまう。同様に、通信エリア1800(B)のガードエリア1801が他の通信エリア1800(A)に重なってしまう。 On the other hand, in the conventional dipole antenna (antenna 400) shown in FIG. 18(b), as shown in the lower half of the figure, the uncommunicable area 1801 is located at a long distance from both ends of the communication area 1800 in the X-axis direction. positioned. Here, as shown in FIG. 18A, it is assumed that the APs 810 (antennas 400) are arranged at intervals of 10 m as in the embodiment. In this case, the incommunicable area (guard area) 1801 of the communication area 1800(A) overlaps with the other communication area 1800(B). Similarly, the guard area 1801 of the communication area 1800(B) overlaps with the other communication area 1800(A).
 これにより、従来技術では、一つの通信エリア1800(A)が隣接する他の通信エリア1800(B)に干渉し、一つの通信エリア1800内だけでの通信ができなくなる。この場合、各通信エリア1800毎に異なる暗号化を施す等の対策が必要となり、セキュリティを確保しなければならなくなる。 Due to this, in the conventional technology, one communication area 1800(A) interferes with another adjacent communication area 1800(B), and communication within one communication area 1800 is impossible. In this case, it is necessary to take measures such as different encryption for each communication area 1800, and security must be ensured.
 図19は、実施の形態にかかる電磁波フィルタを用いた通信エリアを説明する図である。図19を用いて、実施の形態にかかる電磁波フィルタ100を用いた通信エリアと、従来技術のアンテナによる通信エリアとを比較する。図19(a)は、実施の形態にかかる電磁波フィルタ100を用いた電界分布を示す図である。図19(b)は、従来のダイポールアンテナによる電界分布を示す図、図19(c)は、従来の平面状のパッチアンテナによる電界分布を示す図である。 FIG. 19 is a diagram illustrating a communication area using the electromagnetic wave filter according to the embodiment. With reference to FIG. 19, a communication area using the electromagnetic wave filter 100 according to the embodiment and a communication area using an antenna of the related art will be compared. FIG. 19A is a diagram showing an electric field distribution using the electromagnetic wave filter 100 according to the embodiment. FIG. 19(b) is a diagram showing an electric field distribution by the conventional dipole antenna, and FIG. 19(c) is a diagram showing an electric field distribution by the conventional planar patch antenna.
 図19(a)に示すように、実施の形態にかかる電磁波フィルタ100の電界分布は、矩形状に閉じ込められている。この場合、電磁波フィルタ100の幅であるX軸方向に広がりを有する電界分布を有し、電磁波フィルタ100の透過側の空間の境界(3辺)部分では同様に電界強度が低くなり、矩形状の空間に適応した電界分布が得られている。 As shown in FIG. 19A, the electric field distribution of the electromagnetic wave filter 100 according to the embodiment is enclosed in a rectangular shape. In this case, there is an electric field distribution that spreads in the X-axis direction, which is the width of the electromagnetic wave filter 100, and the electric field strength similarly decreases at the boundary (three sides) of the space on the transmission side of the electromagnetic wave filter 100, resulting in a rectangular shape. The electric field distribution adapted to the space is obtained.
 これに対し、図19(b)に示すダイポールアンテナ400のみの電界分布では、アンテナ400から放射される電波は、放射状(略円形状)に広がる形となる。このダイポールアンテナ400のみでは、例えば、X軸上の端部(0mm,600mm)においても、所定の電界強度を有しており、矩形のエリア内に電波を閉じ込めることができない。図19(c)に示すパッチアンテナ1901についても同様に、パッチアンテナ1901から放射される電波は、放射状に広がる形となり、矩形のエリア内に電波を閉じ込めることができない。 On the other hand, in the electric field distribution of only the dipole antenna 400 shown in FIG. 19(b), the radio waves radiated from the antenna 400 are spread radially (substantially circular). The dipole antenna 400 alone has a predetermined electric field strength even at the ends (0 mm, 600 mm) on the X-axis, for example, and radio waves cannot be confined in a rectangular area. Similarly for the patch antenna 1901 shown in FIG. 19C, the radio waves radiated from the patch antenna 1901 are spread radially and the radio waves cannot be confined in the rectangular area.
 このように、実施の形態にかかる電磁波フィルタ100を用いることで、アンテナ400から放射された電波を部屋などの矩形のエリアに閉じ込めることができる。 As described above, by using the electromagnetic wave filter 100 according to the embodiment, the radio waves radiated from the antenna 400 can be confined in a rectangular area such as a room.
 図20は、実施の形態にかかる電磁波フィルタの幅の大きさを変えたときの電界分布を示す図である。上述した説明では、電磁波フィルタ100の幅(X軸)を390mmとしたが、図20では電磁波フィルタ100の幅を630mmとし、空間のエリアの幅は700mmとした。電磁波フィルタ100の幅を大きくしたとき、幅(X軸)両端部での電界の強度をより急激に小さくできるようになる。したがって、電磁波フィルタ100の幅は大きい方が矩形の通信エリア内に電波をより閉じ込めることができるようになる。電磁波フィルタ100の幅(X軸)は、空間電磁界制御システム800(カバー820)の幅に相当するため、実用性の観点から適宜な幅とすることが望ましい。 FIG. 20 is a diagram showing an electric field distribution when the size of the width of the electromagnetic wave filter according to the embodiment is changed. In the above description, the width (X axis) of the electromagnetic wave filter 100 is 390 mm, but in FIG. 20, the width of the electromagnetic wave filter 100 is 630 mm and the width of the space area is 700 mm. When the width of the electromagnetic wave filter 100 is increased, the electric field strength at both ends of the width (X axis) can be more rapidly reduced. Therefore, the larger the width of the electromagnetic wave filter 100, the more the radio waves can be confined in the rectangular communication area. Since the width (X axis) of the electromagnetic wave filter 100 corresponds to the width of the space electromagnetic field control system 800 (cover 820), it is desirable that the width is appropriate from the viewpoint of practicality.
 図21は、実施の形態にかかる電磁波フィルタの高さを変えた状態を示す図である。上述した説明では、電磁波フィルタ100の高さ(Z軸)を26mmとした(図11参照)。図21(a)は、電磁波フィルタ100の高さ(Z軸)を140mm、図21(b)は、電磁波フィルタ100の高さ(Z軸)を90mmとした。この場合の電界分布は、いずれも上述した電界分布(図19等参照)とほぼ同様であった。このように、電磁波フィルタ100の高さ(Z軸)が大小いずれであってもXY面内の電界分布は変わらない。 FIG. 21 is a diagram showing a state in which the height of the electromagnetic wave filter according to the embodiment is changed. In the above description, the height (Z axis) of the electromagnetic wave filter 100 is set to 26 mm (see FIG. 11). 21A, the height (Z axis) of the electromagnetic wave filter 100 was 140 mm, and in FIG. 21B, the height (Z axis) of the electromagnetic wave filter 100 was 90 mm. The electric field distribution in this case was almost the same as the above-mentioned electric field distribution (see FIG. 19 and the like). As described above, the electric field distribution in the XY plane does not change regardless of the height (Z axis) of the electromagnetic wave filter 100.
 図22は、実施の形態にかかる空間電磁界制御システムの適用例を示す図である。実施の形態の空間電磁界制御システム800によれば、下記1.~3.に適用できる。
1.隣接する所望の通信エリア毎に電波的な閉空間を構築することができる。
2.所望エリア外へ不要放射を防ぎ、公共の場での傍受リスクを低減できる。
3.電磁波が懸念される空間への無線環境の提供が行える。
FIG. 22 is a diagram showing an application example of the space electromagnetic field control system according to the embodiment. According to the space electromagnetic field control system 800 of the embodiment, the following 1. ~3. Applicable to
1. It is possible to construct a radio-wave closed space for each adjacent desired communication area.
2. It can prevent unwanted radiation outside the desired area and reduce the risk of interception in public places.
3. It is possible to provide a wireless environment in a space where electromagnetic waves are a concern.
 上記1.については、例えば、図22(a)に示すように、工場の各製造ライン(レーン)L1~L3毎に、レーンL1~L3上で搬送されるIoTセンサ(端末710に相当)を搭載した部品や資材の管理を行うことができる。 Above 1. 22A, for example, as shown in FIG. 22A, a component equipped with an IoT sensor (corresponding to the terminal 710) conveyed on the lanes L1 to L3 for each of the manufacturing lines (lanes) L1 to L3 of the factory. And management of materials.
 レーンL1~L3毎に上述した空間電磁界制御システム800(AP810と電磁波フィルタ100を収容するカバー820)を配置する。これにより、レーンL1~L3でそれぞれ独立した通信エリア700を構築できる。例えば、レーンL1上で搬送されるIoTセンサ(端末710に相当)は、通信エリア700に位置した際にレーンL1上のAP810と通信を行うことができる。この際、IoTセンサ(端末710に相当)は、他のレーンL2,L3のAP810の通信エリア700には位置しておらず、これら他のレーンL2,L3のAP810とは通信を行わない。レーンL1の通信エリア700内での電波は、隣接する他のレーンL2,L3の通信エリア700に漏れないため、レーンL1でのAP810とIoTセンサ(端末710に相当)との間の通信データのセキュリティを確保できる。さらに、特別な暗号化等のセキュリティ対策も不要にできる。 The above-mentioned space electromagnetic field control system 800 (the cover 820 housing the AP 810 and the electromagnetic wave filter 100) is arranged for each of the lanes L1 to L3. Thereby, independent communication areas 700 can be constructed in the lanes L1 to L3. For example, the IoT sensor (corresponding to the terminal 710) carried on the lane L1 can communicate with the AP 810 on the lane L1 when it is located in the communication area 700. At this time, the IoT sensor (corresponding to the terminal 710) is not located in the communication area 700 of the APs 810 of the other lanes L2 and L3, and does not communicate with the AP 810 of these other lanes L2 and L3. Radio waves in the communication area 700 of the lane L1 do not leak to the communication areas 700 of the other adjacent lanes L2 and L3, so that the communication data between the AP 810 and the IoT sensor (corresponding to the terminal 710) in the lane L1 is transmitted. Security can be secured. Furthermore, security measures such as special encryption can be eliminated.
 また、レーンへの適用例に限らず、展示場や水族館等での隣接する各ブース毎の情報提供、同一事務所内で隣接する異部門(机の島)でのセキュリティ確保にも適用できる。また、同一ビル内で隣接する異店舗でのセキュリティ確保、展示会やフェスタの混雑した入場ゲートでチェック対象者だけの読取管理、にも適用できる。 Also, it is not limited to the application example to the lane, but it can be applied to provide information for each adjacent booth at an exhibition hall or an aquarium, and to ensure security at different departments (islands of desks) adjacent to each other in the same office. Also, it can be applied to secure security at different stores adjacent to each other in the same building, and to manage reading by only the person to be checked at an entrance gate where exhibitions and festivals are crowded.
 上記2.については、例えば、駅や空港の待合室、電車や航空機のシート、飲食店等の座席に適用することができる。例えば、図22(b)に示すように、電車の各シートN1~N3毎に天井あるいは床面に、上述した空間電磁界制御システム800(AP810と電磁波フィルタ100を収容するカバー820)を配置する。これにより、シートN1~N3でそれぞれ独立した通信エリア700を構築できる。そして、シートN1の通信エリア700内での電波は、隣接する他のシートN2,N3の通信エリア700に漏れないため、シートN1でのAP810とユーザの端末710(MS)との間の通信データのセキュリティを確保できる。さらに、特別な暗号化等のセキュリティ対策も不要にできる。 ↑ 2. Can be applied to, for example, a waiting room at a station or an airport, a seat of a train or an airplane, a seat of a restaurant or the like. For example, as shown in FIG. 22B, the space electromagnetic field control system 800 (the cover 820 that houses the AP 810 and the electromagnetic wave filter 100) is arranged on the ceiling or floor of each of the train sheets N1 to N3. .. As a result, the communication areas 700 that are independent of the sheets N1 to N3 can be constructed. Then, since the radio waves in the communication area 700 of the sheet N1 do not leak to the communication areas 700 of the other adjacent sheets N2 and N3, communication data between the AP 810 and the user terminal 710 (MS) on the sheet N1. The security of can be secured. Furthermore, security measures such as special encryption can be eliminated.
 上記3.については、例えば、病院やサーバルーム等に適用できる。実施の形態によれば、所定のエリアのみ通信エリア700を構築できるため、病院内の診療用の機器や、サーバに対して不要な電磁波を与えない。すなわち、実施の形態によれば、病院やサーバルーム内においても、電波を閉じ込めた通信エリア700を構築することができる。 ↑ above 3. Can be applied to, for example, a hospital or a server room. According to the embodiment, since the communication area 700 can be constructed only in a predetermined area, unnecessary electromagnetic waves are not given to the medical equipment in the hospital and the server. That is, according to the embodiment, it is possible to construct the communication area 700 in which radio waves are confined even in a hospital or a server room.
 以上説明した実施の形態の電磁波フィルタは、アンテナの電波の出射方向上に設けられ、電界分布を制御する。この電磁波フィルタは、導電体からなり、複数の折曲面と、折曲面に開口形成されたスロットとを有し、所定の通信エリア内をほぼ一定な電界にする。また、通信エリア外で急激に電界を弱くする。これにより、電波を通信エリア内に閉じ込めることができる。 The electromagnetic wave filter of the above-described embodiment is provided on the direction of emission of radio waves from the antenna and controls the electric field distribution. This electromagnetic wave filter is made of a conductor, has a plurality of bent curved surfaces, and has slots formed on the bent curved surfaces to form a substantially constant electric field in a predetermined communication area. In addition, the electric field is sharply weakened outside the communication area. Thereby, the radio waves can be confined within the communication area.
 このような電磁波フィルタを汎用の無線ルータやAPと組み合わせることで、通信エリア外への電波の漏れを簡単な構成で防ぐことができ、また、セキュリティ性を向上できるようになる。例えば、異なる無線通信システムの端末やセンサが互いに干渉しないよう通信エリアを分けて配置できるようになる。この場合、異なる無線通信システム別の暗号化等の手段を不要にできる。 By combining such an electromagnetic wave filter with a general-purpose wireless router or AP, it is possible to prevent leakage of radio waves outside the communication area with a simple configuration and improve security. For example, it becomes possible to arrange the communication areas so that terminals and sensors of different wireless communication systems do not interfere with each other. In this case, means such as encryption for each different wireless communication system can be eliminated.
 また、折曲面は、アンテナの電波の入射方向に対し所定の角度を有し、スロットは、アンテナの偏波方向と直交する方向に所定の長さで開口され、長さは、電波の波長のおよそ1/2としてもよい。また、折曲面の角度は、スロットを単体としたとき、透過波が最も小さく、反射波が最も大きくなる角度にしてもよい。これにより、アンテナの電波の出射方向上に位置するスロットは、電波の透過率が小さく、反射率が大きい。さらに、所定角度を有する部分の折曲面のスロットは、アンテナから斜めに入射される電波の透過率が大きく、反射率は小さい。アンテナからさらに斜めに入射される電波は透過率が小さく、反射率が大きくなる。これにより、固定位置のアンテナから出射される電波が各スロット別に異なる角度で透過あるいは反射して各スロット部分を透過後の電波の強さを制御でき、所定形状の通信エリアを構築できるようになる。 Further, the bent surface has a predetermined angle with respect to the incident direction of the radio wave of the antenna, the slot is opened with a predetermined length in the direction orthogonal to the polarization direction of the antenna, and the length is equal to the wavelength of the radio wave. It may be about ½. The angle of the curved surface may be such that the transmitted wave is the smallest and the reflected wave is the largest when the slot is used alone. As a result, the slot located on the direction of emission of radio waves from the antenna has a low radio wave transmittance and a high radio wave reflectance. Further, the slot having the bent surface at the portion having the predetermined angle has a large transmittance and a small reflectance of the radio wave obliquely incident from the antenna. The radio wave incident further obliquely from the antenna has a low transmittance and a high reflectance. As a result, the radio wave emitted from the antenna at the fixed position is transmitted or reflected at different angles for each slot, and the intensity of the radio wave after passing through each slot can be controlled, and a communication area of a predetermined shape can be constructed. ..
 例えば、電磁波フィルタは、折曲面が電波の入射方向に対し所定の角度を有するV字形および逆V字形を交互に組み合わせて配置した略波型の形状とすることができる。例えば、折曲面の角度は30°である。また、電磁波フィルタの折曲面の角度は、通信エリア内の電界分布と電界強度に基づく所定角度にしてもよい。これにより、例えば、略矩形状の通信エリアを構築できるようになる。 For example, the electromagnetic wave filter may have a substantially wave-shaped shape in which a bent surface has a V-shape and an inverted V-shape having a predetermined angle with respect to the incident direction of radio waves, and are alternately arranged. For example, the angle of the curved surface is 30°. The angle of the curved surface of the electromagnetic wave filter may be a predetermined angle based on the electric field distribution and electric field strength in the communication area. Thereby, for example, a substantially rectangular communication area can be constructed.
 また、電磁波フィルタの折曲面全体の幅は、通信エリアの大きさに応じた所定の幅とすることができる。電磁波フィルタを幅方向に大きくすることで、通信エリアに対する電波の回り込みを抑制できるようになる。 Also, the width of the entire bent surface of the electromagnetic wave filter can be a predetermined width according to the size of the communication area. By enlarging the electromagnetic wave filter in the width direction, it becomes possible to suppress the electromagnetic waves from entering the communication area.
 また、実施の形態の空間電磁界制御システムは、上記の電磁波フィルタと、アンテナを備えたアクセスポイントと、アクセスポイントおよび電磁波フィルタを収容するカバーで構成できる。カバーは、所定の通信エリアを構築する箇所に簡単に取り付けることができる。また、移動可能な端末は、通信エリア内に位置した状態のときのみ、アクセスポイントと通信することができる。 Further, the space electromagnetic field control system of the embodiment can be configured by the above electromagnetic wave filter, an access point equipped with an antenna, and a cover that houses the access point and the electromagnetic wave filter. The cover can be easily attached to a place where a predetermined communication area is constructed. Further, the movable terminal can communicate with the access point only when it is located in the communication area.
 また、通信エリアを所定の間隔を有して複数隣接して配置することで、通信エリアに位置する端末は、この通信エリアのアクセスポイントのみと通信を行うことができる。各通信エリアは隣接する通信エリアに対して干渉しないため、通信エリアごとに異なる暗号化等の手段を不要にしてもセキュリティを維持できる。 Also, by arranging a plurality of communication areas adjacent to each other with a predetermined interval, terminals located in the communication area can communicate only with access points in this communication area. Since each communication area does not interfere with an adjacent communication area, security can be maintained even if a different encryption means for each communication area is unnecessary.
 また、複数の通信エリアは、通信エリアの両端に位置する所定の電界を有する通信不能エリアが、隣接する他の通信エリアの通信不能エリアと重ならない間隔を有して配置してもよい。これにより、できるだけ通信エリアを近接させることができる。言い換えれば、隣接するアクセスポイントの距離をできるだけ近接させることができるようになり、小さい空間においても通信エリアを区切って配置できるようになる。 Also, the plurality of communication areas may be arranged with an interval such that the incommunicable areas having a predetermined electric field located at both ends of the communication area do not overlap the incommunicable areas of other adjacent communication areas. This allows the communication areas to be as close to each other as possible. In other words, the distance between adjacent access points can be made as short as possible, and the communication areas can be divided and arranged even in a small space.
 100 電磁波フィルタ
 100a 入射面
 101 折曲面
 102 スロット
 400,1013 アンテナ(ダイポールアンテナ)
 700 通信エリア
 701 通信不能エリア
 710 端末
 800 空間電磁界制御システム
 810 AP(アクセスポイント)
 820 カバー
 830 天井
 901,1001 CPU
 902,1002 RAM
 903,1003 RF-フロントエンド
 904,1004 信号処理部
1800 通信エリア
1801 通信不能エリア(ガードエリア)
100 Electromagnetic wave filter 100a Incident surface 101 Folded curved surface 102 Slot 400, 1013 Antenna (dipole antenna)
700 Communication Area 701 Incommunicable Area 710 Terminal 800 Spatial Electromagnetic Field Control System 810 AP (Access Point)
820 Cover 830 Ceiling 901, 1001 CPU
902,1002 RAM
903, 1003 RF- front end 904, 1004 Signal processing unit 1800 Communication area 1801 Communication disabled area (guard area)

Claims (10)

  1.  アンテナの電波の出射方向上に設けられ、電界分布を制御する電磁波フィルタであって、
     導電体からなり、複数の折曲面と、前記折曲面に開口形成されたスロットとを有し、所定の通信エリア内をほぼ一定な電界とし、前記通信エリア外で急激に電界を弱くする、
     ことを特徴とする電磁波フィルタ。
    An electromagnetic wave filter which is provided on the emitting direction of the radio waves of the antenna and controls the electric field distribution,
    It is made of a conductor and has a plurality of bent curved surfaces and a slot formed in the bent curved surfaces, and a substantially constant electric field is formed in a predetermined communication area, and the electric field is sharply weakened outside the communication area.
    An electromagnetic wave filter characterized by the above.
  2.  前記折曲面は、前記出射方向に対し所定の角度をなし、
     前記スロットは、前記アンテナの偏波方向と直交する方向に所定の長さで開口され、前記長さは、電波の波長のおよそ1/2であることを特徴とする請求項1に記載の電磁波フィルタ。
    The bent surface forms a predetermined angle with respect to the emission direction,
    The electromagnetic wave according to claim 1, wherein the slot is opened with a predetermined length in a direction orthogonal to a polarization direction of the antenna, and the length is about ½ of a wavelength of a radio wave. filter.
  3.  前記折曲面の前記角度は、前記スロットを単体としたとき、透過波が最も小さく、反射波が最も大きくなる角度であることを特徴とする請求項2に記載の電磁波フィルタ。 The electromagnetic wave filter according to claim 2, wherein the angle of the curved surface is the angle at which the transmitted wave is the smallest and the reflected wave is the largest when the slot is used alone.
  4.  前記折曲面は、前記出射方向に対し所定の角度を有するV字形および逆V字形を交互に組み合わせて配置した略波型の形状であることを特徴とする請求項1に記載の電磁波フィルタ。 The electromagnetic wave filter according to claim 1, wherein the bent curved surface has a substantially wavy shape in which V-shaped and inverted V-shaped having a predetermined angle with respect to the emission direction are alternately arranged.
  5.  さらに、前記折曲面の前記角度は、前記通信エリア内の電界分布と電界強度に基づく所定角度であることを特徴とする請求項4に記載の電磁波フィルタ。 The electromagnetic wave filter according to claim 4, wherein the angle of the curved surface is a predetermined angle based on the electric field distribution and electric field strength in the communication area.
  6.  前記折曲面の前記角度は30°であることを特徴とする請求項2に記載の電磁波フィルタ。 The electromagnetic wave filter according to claim 2, wherein the angle of the bent surface is 30°.
  7.  前記折曲面全体の幅は、前記通信エリアの大きさに応じた所定の幅であることを特徴とする請求項1~6のいずれか一つに記載の電磁波フィルタ。 The electromagnetic wave filter according to any one of claims 1 to 6, wherein the entire width of the curved surface is a predetermined width according to the size of the communication area.
  8.  アンテナを備えたアクセスポイントと、
     前記アンテナの電波の出射方向上に設けられ、電界分布を制御する電磁波フィルタと、
     前記アクセスポイントおよび前記電磁波フィルタを収容し、所定の通信エリアを構築する箇所に取り付けられるカバーと、
     前記通信エリア内に位置したとき、前記アクセスポイントと通信する端末と、を備え、
     前記電磁波フィルタは、
     導電体からなり、複数の折曲面と、前記折曲面に開口形成されたスロットとを有し、所定の通信エリア内をほぼ一定な電界とし、前記通信エリア外で急激に電界を弱くする、
     ことを特徴とする空間電磁界制御システム。
    An access point with an antenna,
    An electromagnetic wave filter provided on the emitting direction of the radio wave of the antenna and controlling the electric field distribution,
    A cover that accommodates the access point and the electromagnetic wave filter and is attached to a portion that builds a predetermined communication area,
    A terminal that communicates with the access point when located in the communication area,
    The electromagnetic wave filter,
    It is made of a conductor and has a plurality of bent curved surfaces and a slot formed in the bent curved surfaces, and a substantially constant electric field is formed in a predetermined communication area, and the electric field is sharply weakened outside the communication area.
    A space electromagnetic field control system characterized by the above.
  9.  前記通信エリアを所定の間隔を有して複数隣接して配置したことを特徴とする請求項8に記載の空間電磁界制御システム。 The space electromagnetic field control system according to claim 8, wherein a plurality of the communication areas are arranged adjacent to each other with a predetermined interval.
  10.  複数の前記通信エリアは、前記通信エリアの両端に位置する所定の電界を有する通信不能エリアが、隣接する他の通信エリアの通信不能エリアと重ならない間隔を有して配置したことを特徴とする請求項9に記載の空間電磁界制御システム。 The plurality of communication areas are arranged such that communication-disabled areas having a predetermined electric field located at both ends of the communication area do not overlap communication-disabled areas of other adjacent communication areas. The space electromagnetic field control system according to claim 9.
PCT/JP2018/048072 2018-12-27 2018-12-27 Electromagnetic wave filter and spatial magnetic field control system WO2020136791A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/048072 WO2020136791A1 (en) 2018-12-27 2018-12-27 Electromagnetic wave filter and spatial magnetic field control system
JP2020562039A JP6989033B2 (en) 2018-12-27 2018-12-27 Electromagnetic wave filter and space electromagnetic field control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048072 WO2020136791A1 (en) 2018-12-27 2018-12-27 Electromagnetic wave filter and spatial magnetic field control system

Publications (1)

Publication Number Publication Date
WO2020136791A1 true WO2020136791A1 (en) 2020-07-02

Family

ID=71126376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048072 WO2020136791A1 (en) 2018-12-27 2018-12-27 Electromagnetic wave filter and spatial magnetic field control system

Country Status (2)

Country Link
JP (1) JP6989033B2 (en)
WO (1) WO2020136791A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056798B2 (en) * 2019-03-01 2022-04-19 富士通株式会社 Electromagnetic wave control device and space electromagnetic field control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441740B1 (en) * 1998-02-27 2002-08-27 Intermec Ip Corp. Radio frequency identification transponder having a reflector
JP2003123111A (en) * 2001-10-18 2003-04-25 Mitsubishi Electric Corp Radio wave leakage limiting wall to be used for communication system between road and vehicle
US20090153412A1 (en) * 2007-12-18 2009-06-18 Bing Chiang Antenna slot windows for electronic device
US20170302001A1 (en) * 2016-04-19 2017-10-19 Rosemount Tank Radar Ab Floating roof target plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169268A (en) * 1976-04-19 1979-09-25 The United States Of America As Represented By The Secretary Of The Air Force Metallic grating spatial filter for directional beam forming antenna
US4314255A (en) * 1980-04-08 1982-02-02 General Dynamics, Electronics Division Electromagnetic angle filter including two staggered, identical, periodically perforated conductive plates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441740B1 (en) * 1998-02-27 2002-08-27 Intermec Ip Corp. Radio frequency identification transponder having a reflector
JP2003123111A (en) * 2001-10-18 2003-04-25 Mitsubishi Electric Corp Radio wave leakage limiting wall to be used for communication system between road and vehicle
US20090153412A1 (en) * 2007-12-18 2009-06-18 Bing Chiang Antenna slot windows for electronic device
US20170302001A1 (en) * 2016-04-19 2017-10-19 Rosemount Tank Radar Ab Floating roof target plate

Also Published As

Publication number Publication date
JPWO2020136791A1 (en) 2021-09-27
JP6989033B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
Mathur et al. 8‐port multibeam planar UWB‐MIMO antenna with pattern and polarisation diversity
TWI635290B (en) Antenna radiation pattern measurement system for multipath scenario application
US8860619B2 (en) Wireless device and multi-antenna system having dual open-slot radiators
Dimitriou et al. Room-coverage improvements in UHF RFID with commodity hardware [wireless corner]
Stratidakis et al. Optimal position and orientation study of reconfigurable intelligent surfaces in a mobile user environment
George et al. Enclosed mmWave wearable networks: Feasibility and performance
WO2020136791A1 (en) Electromagnetic wave filter and spatial magnetic field control system
US10454316B2 (en) Antenna configurations for wireless power and communication, and supplemental visual signals
Oluwafemi et al. Radio frequency peak and average power density from mobile base stations in Ekiti State, Nigeria
CN109239472B (en) Antenna radiation pattern measuring system applied to multi-path environment
Oliveri et al. Features and potentialities of static passive EM skins for NLOS specular wireless links
JP5958737B2 (en) Radio wave propagation environment control structure
JP7056798B2 (en) Electromagnetic wave control device and space electromagnetic field control system
WO2022091660A1 (en) Reflection unit and wireless transmission system
JP2650234B2 (en) Indoor communication system
JP6322905B2 (en) Mobile terminal location determination device
Vedenkin et al. Antenna arrays focused on broadband signals
Imran et al. IEEE Access Special Section: Antenna and Propagation for 5G and Beyond
Ellahi et al. Phased array antenna for the application of device free localization in indoor environments
Ma et al. Smart Antenna with Capability of Beam Switching for 5G Applications
Liu et al. Radio Frequency Electromagnetic Field Exposure Compliance Assessments of Smart Surfaces: Two Approximate Approaches
WO2023223896A1 (en) Reflector
Lim Vulnerability of wireless point-to-point systems to interception
Babu ANALYSIS AND DESIGN OF A MULTI-BAND MICROSTRIP PATCH ANTENNA
Brás Sectorial antennas for WSN localization system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944301

Country of ref document: EP

Kind code of ref document: A1