WO2020136788A1 - Centrifugal blower, blower device, air conditioner, and refrigeration cycle device - Google Patents

Centrifugal blower, blower device, air conditioner, and refrigeration cycle device Download PDF

Info

Publication number
WO2020136788A1
WO2020136788A1 PCT/JP2018/048063 JP2018048063W WO2020136788A1 WO 2020136788 A1 WO2020136788 A1 WO 2020136788A1 JP 2018048063 W JP2018048063 W JP 2018048063W WO 2020136788 A1 WO2020136788 A1 WO 2020136788A1
Authority
WO
WIPO (PCT)
Prior art keywords
bell mouth
curvature
radius
centrifugal blower
wall portion
Prior art date
Application number
PCT/JP2018/048063
Other languages
French (fr)
Japanese (ja)
Inventor
拓矢 寺本
弘恭 林
一也 道上
亮 堀江
貴宏 山谷
堤 博司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020562037A priority Critical patent/JP7130061B2/en
Priority to PCT/JP2018/048063 priority patent/WO2020136788A1/en
Priority to CN201880100304.1A priority patent/CN113195903B/en
Priority to EP18944300.5A priority patent/EP3904696B1/en
Priority to ES18944300T priority patent/ES2945787T3/en
Publication of WO2020136788A1 publication Critical patent/WO2020136788A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the present invention relates to a centrifugal blower having a casing equipped with a bell mouth, a blower equipped with the same, an air conditioner, and a refrigeration cycle apparatus.
  • a curved surface formed by a wall that shrinks from the outer peripheral side to the inner peripheral direction and a wall that is located on the downstream side of intake air with respect to the curved surface and expands from the inner peripheral side to the outer peripheral direction.
  • the curvature radius of the curved surface in the contraction direction from the outer peripheral side to the inner peripheral direction is defined as the curvature radius Y
  • the curvature radius of the curved surface in the expansion direction from the inner peripheral side to the outer peripheral direction is defined as the curvature radius Z.
  • the radius of curvature of the curved surface of the bell mouth becomes small, so that the air flow is easily separated from the bell mouth and noise May worsen.
  • the present invention is for solving the above problems, and even if the bell mouth is inflated in the radial direction or the axial direction of the rotating shaft, a centrifugal blower for reducing noise, and the same are provided. And an air conditioner and a refrigeration cycle apparatus.
  • a centrifugal blower stores an impeller having a disk-shaped main plate and a plurality of blades installed at a peripheral portion of the main plate, an impeller, and rectifies gas sucked into the impeller.
  • a fan casing having a bell mouth, wherein the bell mouth forms a suction port through which a gas flowing into the fan casing passes, and the bell mouth is directed from an upstream end to a downstream end in a direction of an air flow sucked into the fan casing. It has an air intake part formed so that the opening diameter becomes gradually smaller, and in the vertical section of the bell mouth, one end of the upstream end and the downstream end is the end of the long axis, and the other end.
  • the end is defined as the end of the short axis, and the intersection of the long axis and the short axis defines a virtual ellipse located on the outer peripheral side with respect to the rotation axis of the impeller than the downstream end.
  • the air intake portion has an imaginary first tangent line that contacts the upstream end portion of the ellipse and the downstream end portion of the ellipse.
  • the wall portion between the upstream end portion and the downstream end portion swells in the direction away from the first outline line based on the intersection point. It is something that is going out.
  • the air intake portion is surrounded by a virtual first tangent line that contacts the upstream end of the ellipse, a virtual second tangent line that contacts the downstream end of the ellipse, and a first contour line.
  • the wall portion between the upstream end portion and the downstream end portion swells in the direction away from the first outline with the intersection as the reference. Since the centrifugal blower is provided with the configuration, the curvature of the bell mouth near the downstream end, which is the innermost diameter of the bell mouth, approaches the axial direction of the rotating shaft.
  • the centrifugal blower can cause the fast airflow flowing into the bell mouth to extend from the outer peripheral side to the inner peripheral side of the bell mouth, and can smoothly turn the gas flow in the axial direction in the air intake portion.
  • the centrifugal blower can suppress the separation of the airflow in the vicinity of the downstream end that is the innermost diameter in the bell mouth, and can suppress the inflow of the turbulent airflow into the impeller, thereby suppressing noise.
  • FIG. 3 is a partial cross-sectional view of the centrifugal blower of FIG. 2 taken along the line AA. It is an enlarged view of the B section of the bell mouth of FIG.
  • FIG. 6 is a partially enlarged view of a bell mouth of the centrifugal blower according to Embodiment 2 of the present invention. It is a partially expanded view of a bell mouth of a centrifugal blower according to Embodiment 3 of the present invention.
  • FIG. 4 It is a partially expanded view of a bell mouth of a centrifugal blower according to Embodiment 4 of the present invention. It is a partially expanded view of a bell mouth of a centrifugal blower according to Embodiment 5 of the present invention. It is the elements on larger scale of the bell mouth of the centrifugal fan concerning Embodiment 6 of the present invention. It is a partially expanded view of a bell mouth of a centrifugal blower according to Embodiment 7 of the present invention. It is the elements on larger scale of the bell mouth of the centrifugal fan concerning Embodiment 8 of the present invention. It is a side view of the centrifugal air blower concerning Embodiment 9 of the present invention.
  • FIG. 9 It is a side view of the centrifugal air blower concerning Embodiment 9 of the present invention.
  • FIG. 13 is a sectional view of the centrifugal blower of FIG. 12 taken along the line BB. It is CC sectional view taken on the line of the centrifugal blower of FIG. It is a figure which shows the structure of the air blower concerning Embodiment 10 of this invention. It is a perspective view of the air conditioning apparatus which concerns on Embodiment 11 of this invention. It is a figure which shows the internal structure of the air conditioning apparatus which concerns on Embodiment 11 of this invention. It is sectional drawing of the air conditioning apparatus which concerns on Embodiment 11 of this invention. It is another sectional view of the air harmony device concerning Embodiment 11 of the present invention. It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 12 of this invention.
  • Embodiment 1 is a perspective view of a centrifugal blower 1 according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view of the centrifugal blower 1 of FIG. 1 viewed from the suction port 5 side.
  • FIG. 3 is a partial cross-sectional view of the centrifugal blower 1 of FIG. 2 taken along the line AA. The arrows shown in FIG. 3 indicate the flow of air flowing through the centrifugal blower 1.
  • the basic structure of the centrifugal blower 1 will be described with reference to FIGS. 1 to 3.
  • the centrifugal blower 1 is, for example, a multi-blade centrifugal type centrifugal blower 1 such as a sirocco fan or a turbo fan, and includes an impeller 2 that generates an air flow and a fan casing 4 that houses the impeller 2.
  • the impeller 2 is rotationally driven by a motor or the like (not shown), and the centrifugal force generated by the rotation forcedly sends air outward in the radial direction.
  • the impeller 2 has a disc-shaped main plate 2a and a plurality of blades 2d installed on a peripheral edge 2a1 of the main plate 2a.
  • a shaft portion 2b is provided at the center of the main plate 2a.
  • a fan motor (not shown) is connected to the center of the shaft portion 2b, and the impeller 2 is rotated by the driving force of the motor.
  • a ring-shaped side plate 2c facing the main plate 2a is provided at an end of the plurality of blades 2d opposite to the main plate 2a. have.
  • the side plate 2c maintains the positional relationship of the tips of the blades 2d and reinforces the plurality of blades 2d.
  • the impeller 2 may have a structure without the side plate 2c. When the impeller 2 has the side plate 2c, one end of each of the plurality of blades 2d is connected to the main plate 2a and the other end is connected to the side plate 2c.
  • the plurality of blades 2d are arranged between the main plate 2a and the side plate 2c.
  • the impeller 2 is formed into a cylindrical shape by a main plate 2a and a plurality of blades 2d, and a suction port 2e of the impeller 2 is provided on the side plate 2c side opposite to the main plate 2a in the axial direction of the rotation axis RS of the shaft portion 2b. Is formed.
  • the plurality of blades 2d are arranged in a circle around the shaft 2b, and the base ends are fixed on the surface of the main plate 2a.
  • the plurality of blades 2d are provided on both sides of the main plate 2a in the axial direction of the rotation axis RS of the shaft portion 2b.
  • the blades 2d are arranged on the peripheral edge portion 2a1 of the main plate 2a at regular intervals.
  • Each blade 2d is formed in a curved rectangular plate shape, for example, and is installed along the radial direction or inclined at a predetermined angle with respect to the radial direction.
  • the impeller 2 has the above-described configuration, and when it is rotated, the air sucked into the space surrounded by the main plate 2a and the plurality of blades 2d is passed between the blade 2d and the adjacent blade 2d, As shown in FIG. 3, it can be fed outward in the radial direction.
  • each blade 2d is provided so as to rise substantially perpendicularly to the main plate 2a, but the present invention is not limited to this configuration, and each blade 2d is perpendicular to the main plate 2a. And may be inclined.
  • the fan casing 4 surrounds the impeller 2 and rectifies the air blown from the impeller 2.
  • the fan casing 4 has a scroll portion 41 and a discharge portion 42.
  • the scroll portion 41 forms an air passage that converts the dynamic pressure of the airflow generated by the impeller 2 into static pressure.
  • the scroll portion 41 covers the impeller 2 from the axial direction of the rotation axis RS of the shaft portion 2b forming the impeller 2, and the side wall 4a having the suction port 5 for taking in air, and the impeller 2 of the shaft portion 2b.
  • a peripheral wall 4c that surrounds the rotation axis RS in the radial direction.
  • the scroll portion 41 is positioned between the discharge portion 42 and the winding start portion 41a of the peripheral wall 4c to form a curved surface, and the airflow generated by the impeller 2 is discharged to the discharge port 42a via the scroll portion 41.
  • the radial direction of the shaft portion 2b is a direction perpendicular to the shaft portion 2b.
  • the inner space of the scroll portion 41 configured by the peripheral wall 4c and the side wall 4a is a space in which the air blown out from the impeller 2 flows along the peripheral wall 4c.
  • the side wall 4 a is arranged perpendicular to the axial direction of the rotation axis RS of the impeller 2 and covers the impeller 2.
  • a suction port 5 is formed in the side wall 4 a of the fan casing 4 so that air can flow between the impeller 2 and the outside of the fan casing 4.
  • the suction port 5 is formed in a circular shape, and is arranged so that the center of the suction port 5 and the center of the shaft portion 2b of the impeller 2 substantially coincide with each other. Due to the configuration of the side wall 4a, the air in the vicinity of the suction port 5 flows smoothly and efficiently flows into the impeller 2 from the suction port 5. As shown in FIGS.
  • the centrifugal blower 1 is a double-suction type fan casing having side walls 4a having suction ports 5 formed on both sides of a main plate 2a in the axial direction of a rotation axis RS of a shaft portion 2b.
  • the fan casing 4 has two side walls 4a, and the side walls 4a are arranged to face each other.
  • the peripheral wall 4c surrounds the impeller 2 in the radial direction of the shaft portion 2b and constitutes an inner peripheral surface facing the plurality of blades 2d.
  • the peripheral wall 4c is arranged parallel to the axial direction of the rotation axis RS of the impeller 2 and covers the impeller 2.
  • the peripheral wall 4c has a discharge portion 42 on the side away from the tongue portion 43 along the rotation direction R of the impeller 2 from the winding start portion 41a located at the boundary between the tongue portion 43 and the scroll portion 41. Is provided up to the winding end portion 41b located at the boundary between the scroll portion 41 and the scroll portion 41.
  • the winding start portion 41a is an end portion on the upstream side of the air flow generated by the rotation of the impeller 2 in the peripheral wall 4c forming the curved surface, and the winding end portion 41b is the downstream end of the air flow generated by the rotation of the impeller 2. Side end.
  • the peripheral wall 4c has a width in the axial direction of the rotation axis RS of the impeller 2. As shown in FIG. 2, the peripheral wall 4c is formed in a spiral shape defined by a predetermined enlargement ratio in which the distance from the rotation axis RS formed by the shaft portion 2b gradually increases in the rotation direction R of the impeller 2. To be done. That is, in the peripheral wall 4c, the gap between the peripheral wall 4c and the outer circumference of the impeller 2 is enlarged at a predetermined ratio from the tongue portion 43 to the discharge portion 42, and the flow passage area of air is gradually increased.
  • the spiral shape defined by the predetermined enlargement ratio includes, for example, a logarithmic spiral, an Archimedes spiral, or a spiral shape based on an involute curve or the like.
  • the inner peripheral surface of the peripheral wall 4c forms a curved surface that smoothly curves along the circumferential direction of the impeller 2 from a winding start portion 41a that is a spiral start to a winding end portion 41b that is a spiral end. ..
  • the air sent from the impeller 2 smoothly flows in the gap between the impeller 2 and the peripheral wall 4c toward the discharge portion 42. Therefore, in the fan casing 4, the static pressure of air efficiently increases from the tongue portion 43 toward the discharge portion 42.
  • the discharge part 42 forms a discharge port 42a through which the airflow generated by the impeller 2 and passed through the scroll part 41 is discharged.
  • the discharge part 42 is configured by a hollow tube having a rectangular cross section orthogonal to the flow direction of the air flowing along the peripheral wall 4c. As shown in FIGS. 1 and 2, the discharge part 42 guides the air sent out from the impeller 2 and flowing in the gap between the peripheral wall 4 c and the impeller 2 to the outside of the fan casing 4. Forming a path.
  • the discharge part 42 includes an extension plate 42b, a diffuser plate 42c, a first side plate 42d, a second side plate 42e, and the like.
  • the extending plate 42b is smoothly continuous with the winding end portion 41b on the downstream side of the peripheral wall 4c and is integrally formed with the peripheral wall 4c.
  • the diffuser plate 42c is integrally formed with the tongue portion 43 of the fan casing 4, and faces the extension plate 42b.
  • the diffuser plate 42c is formed at a predetermined angle with the extending plate 42b so that the cross-sectional area of the flow path gradually increases along the air flow direction in the discharge part 42.
  • the first side plate 42d is formed integrally with the side wall 4a of the fan casing 4
  • the second side plate 42e is formed integrally with the side wall 4a on the opposite side of the fan casing 4.
  • the 1st side plate 42d and the 2nd side plate 42e which oppose are formed between the extended plate 42b and the diffuser plate 42c.
  • the extension plate 42b, the diffuser plate 42c, the first side plate 42d, and the second side plate 42e form a flow channel having a rectangular cross section.
  • a tongue portion 43 is formed between the diffuser plate 42c of the discharge portion 42 and the winding start portion 41a of the peripheral wall 4c.
  • the tongue portion 43 is a convex portion that is provided at the boundary between the scroll portion 41 and the discharge portion 42 and bulges inside the fan casing 4.
  • the tongue portion 43 extends in the fan casing 4 in a direction parallel to the axial direction of the rotation axis RS of the shaft portion 2b.
  • the tongue portion 43 guides the airflow generated by the impeller 2 to the discharge port 42a via the scroll portion 41.
  • the tongue portion 43 is formed with a predetermined radius of curvature, and the peripheral wall 4c is smoothly connected to the diffuser plate 42c via the tongue portion 43.
  • the tongue part 43 becomes a branch point of the air flow path. That is, at the inflow port of the ejection part 42, an air flow toward the ejection port 42a and an air flow re-inflowing from the tongue part 43 to the upstream side are formed. Further, the static pressure of the air flow flowing into the discharge portion 42 rises while passing through the fan casing 4, and becomes higher than that in the fan casing 4. Therefore, the tongue portion 43 has a function of partitioning such a pressure difference, and also has a function of guiding the air flowing into the discharge portion 42 to each flow path by the curved surface.
  • the suction port 5 provided on the side wall 4 a is formed by the bell mouth 3.
  • the bell mouth 3 rectifies the gas sucked into the impeller 2 and causes the gas to flow into the suction port 2e of the impeller 2.
  • the bell mouth 3 is formed such that the opening diameter gradually decreases from the outside to the inside of the fan casing 4.
  • the bell mouth 3 is installed upstream of the impeller 2 in the flow direction of the gas sucked into the fan casing 4.
  • the bell mouth 3 is formed at a position facing the suction port 2e of the impeller 2.
  • the bell mouth 3 has an air intake portion 3c that guides the air flow sucked into the fan casing 4 into the fan casing 4.
  • the air intake part 3c is formed in a tubular shape, and the inner peripheral surface of the air intake part 3c forms the suction port 5.
  • the gas flowing from the outside to the inside of the fan casing 4 passes through the suction port 5.
  • the air intake portion 3c has an opening diameter from the upstream end portion 3a, which is the upstream end portion in the direction of the air flow sucked into the fan casing 4 through the suction port 5, to the downstream end portion 3b, which is the downstream end portion. It is formed to be gradually smaller. That is, the air intake portion 3c is provided so as to extend in the axial direction of the rotation shaft RS, and the air passage is narrowed from the upstream side to the downstream side of the air flow sucked into the fan casing 4 through the suction port 5. Has been formed.
  • the bell mouth 3 is formed in an annular shape in a plan view as viewed in the axial direction of the rotation axis RS, the upstream end portion 3a forms an outer edge portion, and the downstream end portion 3b forms an inner edge portion. Therefore, the upstream end 3a is the outermost diameter portion of the bell mouth 3, and is the most enlarged portion of the bell mouth 3 formed in a tubular shape.
  • the downstream end portion 3b is the innermost portion of the bell mouth 3, and is the most contracted portion of the bell mouth 3 formed in a tubular shape.
  • the air intake portion 3c has a circular cross section in a rotation surface centered on the axial direction of the rotation axis RS, and a surface forming the suction port 5 is formed into a curved surface. Therefore, in the air intake part 3c, as shown in FIG. 3, in the vertical cross section of the bell mouth 3, the wall part 3c1 forming the suction port 5 is formed in an arc shape.
  • FIG. 4 is an enlarged view of part B of the bell mouth 3 of FIG.
  • the rotation axis RS is described to explain the positional relationship between the rotation axis RS, the downstream end portion 3b, and the intersection EC.
  • an ellipse EL is an imaginary line in which the upstream end 3a of the bell mouth 3 is the first end E1 of the short axis MI and the downstream end 3b of the bell mouth 3 is the second end E2 of the long axis MA. It is an ellipse.
  • the virtual ellipse EL has a short axis MI extending from the upstream end 3a into the fan casing 4 and a long axis MA extending from the downstream end 3b in a direction parallel to the radial direction of the impeller 2 in the vertical cross section of the bell mouth 3.
  • the intersection EC is the intersection of the short axis MI and the long axis MA, and is the center point of the virtual ellipse EL.
  • the upstream end 3a is the outermost diameter portion of the bell mouth 3 in the radial direction
  • the downstream end 3b is the innermost diameter portion of the bell mouth 3.
  • the virtual ellipse EL has one end of the upstream end 3a and the downstream end 3b as the end of the major axis MA and the other end as the end of the minor axis MI.
  • the intersection EC of the long axis MA and the short axis MI is located on the outer peripheral side with respect to the rotation axis RS of the impeller 2 with respect to the downstream end portion 3b.
  • the first outline L1 is the outline of the shortest distance connecting the upstream end 3a and the downstream end 3b in the outline of the ellipse EL.
  • the first tangent line HT is a virtual tangent line that contacts the first end E1 of the ellipse EL
  • the second tangent line VT is a virtual tangent line that contacts the second end E2 of the ellipse EL. That is, the first tangent line HT is a virtual tangent line that contacts the upstream end 3a of the ellipse EL
  • the second tangent line VT is a virtual tangent line that contacts the downstream end 3b of the ellipse EL.
  • the curved surface ES is a virtual surface created by the locus of the first outline L1 when the ellipse EL is rotated about the rotation axis RS.
  • the arrow F1 is an arrow indicating the direction in which the gas flows when the air intake portion 3c of the bell mouth 3 has the shape of the curved surface ES.
  • the arrow F2 is an arrow indicating the direction in which the gas flows along the air intake portion 3c of the bell mouth 3 in the centrifugal blower 1 of the first embodiment.
  • the wall portion 3c1 of the air intake portion 3c has the upstream end portion 3a as the first end portion E1 of the short axis MI and the downstream end portion 3b between the upstream end portion 3a and the downstream end portion 3b. It bulges toward the inner peripheral side of the bell mouth 3 from the first outer shape line L1 of the virtual ellipse EL which is the second end E2 of the major axis MA.
  • the wall part 3c1 between the upstream end part 3a and the downstream end part 3b swells in the direction away from the first outline L1 with the intersection EC as a reference. Therefore, as shown in FIG. 4, the air intake portion 3c is formed in a curved shape that draws an arc in the vertical cross section of the bell mouth 3.
  • the air intake portion 3c includes a virtual first tangent line HT that contacts the first end E1 of the ellipse EL, a virtual second tangent line VT that contacts the second end E2 of the ellipse EL, and a first outline L1. It swells within the enclosed area.
  • the air intake part 3c is composed of a virtual first tangent line HT that contacts the upstream end 3a of the ellipse EL, a virtual second tangent line VT that contacts the downstream end 3b of the ellipse EL, and a first outline L1.
  • the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in the direction away from the first outline L1 with the intersection EC as a reference.
  • the bell mouth 3 of the centrifugal blower 1 expands a general bell mouth in the radial direction and the axial direction.
  • the centrifugal blower 1 has a shape in which the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in the direction away from the first outline L1 on the basis of the intersection EC, so that the downstream end portion having the innermost diameter is formed.
  • the curvature of the bell mouth 3 near 3b approaches the axial direction.
  • the air intake part 3c is surrounded by an imaginary first tangent line HT that contacts the upstream end 3a of the ellipse EL, an imaginary second tangent line VT that contacts the downstream end 3b of the ellipse EL, and a first outline L1.
  • the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b swells in the direction away from the first outline L1 with the intersection EC as a reference.
  • the centrifugal blower 1 can cause the fast airflow flowing into the bell mouth 3 to extend from the outer peripheral side to the inner peripheral side of the bell mouth 3, and can easily turn the gas flow in the axial direction in the air intake portion 3c. ..
  • the centrifugal blower 1 can suppress the separation of the air flow in the vicinity of the downstream end portion 3b, which is the innermost diameter, in the bell mouth 3, and can suppress the inflow of the turbulent air flow into the impeller 2, thereby reducing noise. Can be suppressed.
  • the bell mouth 3 suppresses the separation of the air flow in the vicinity of the downstream end portion 3b that is the innermost diameter, and can suppress the inflow of the turbulent air flow into the impeller 2, so that the centrifugal blower 1 efficiently takes in the air. be able to. If the centrifugal blower 1 according to the first embodiment is not applied, that is, if the general bell mouth is expanded in the radial direction and the axial direction of the rotation axis, the shape of the bell mouth is along the ellipse EL. The air flow may separate from the bell mouth on the inner peripheral side.
  • the bell mouth 3 of the centrifugal blower 1 according to the first embodiment has the above-described configuration, so that air flow separation near the downstream end 3b, which is the innermost diameter, can be reduced.
  • FIG. 5 is a partially enlarged view of bell mouth 3A of centrifugal fan 1A according to the second embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 of FIGS. 1 to 4 are designated by the same reference numerals, and the description thereof will be omitted.
  • the centrifugal blower 1A according to the second embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3A are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3A of the centrifugal blower 1A according to the second embodiment will be mainly described with reference to FIG.
  • the distance between the upstream end 3a and the downstream end 3b of the bell mouth 3A in the axial direction of the rotation axis RS is defined as the first axial direction distance D1.
  • the first axial distance D1 is the rotation axis RS when the upstream end 3a and the downstream end 3b of the bell mouth 3A are projected onto the rotation axis RS in the direction perpendicular to the rotation axis RS. It is the distance between the upstream end 3a and the downstream end 3b at the projected position.
  • the first axial distance D1 is also the minor axis MI radius of the virtual ellipse EL.
  • the first axial direction distance D1 is also the distance between the upstream end 3a and the intersection EC of the virtual ellipse EL.
  • a distance between the upstream end 3a and the downstream end 3b of the bell mouth 3A in the radial direction of the rotation axis RS is defined as a first radial distance D2.
  • the first radial distance D2 is the distance between the upstream end portion 3a and the downstream end portion 3b of the bell mouth 3A that appear on the same virtual plane in a plan view seen in the axial direction of the rotation axis RS. Is.
  • the first radial direction distance D2 is the major axis radius of the virtual ellipse EL. That is, the first radial distance D2 is also the distance between the downstream end 3b and the intersection EC of the virtual ellipse EL.
  • the bell mouth 3A is formed so as to satisfy the relationship of the first radial direction distance D2>the first axial direction distance D1.
  • a portion satisfying the relationship of the first radial direction distance D2>the first axial direction distance D1 may be formed on the entire circumference of the bell mouth 3 or may be formed partially in the circumferential direction. May be.
  • the bell mouth 3A of the centrifugal blower 1A expands a general bell mouth in the radial direction.
  • the centrifugal blower 1A has a wall end 3c1 between the upstream end 3a and the downstream end 3b, which has a shape bulging in a direction away from the first outline L1 on the basis of the intersection EC, so that the downstream end having the innermost diameter is formed.
  • the curvature of the bell mouth 3A near 3b approaches the axial direction.
  • the bell mouth 3A is formed so as to satisfy the relationship of the first radial direction distance D2>the first axial direction distance D1.
  • the centrifugal blower 1A has a shape in which the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outline L1 with the intersection EC as a reference. Therefore, in the centrifugal blower 1A, the curvature of the bell mouth 3A near the downstream end 3b, which is the innermost diameter of the bell mouth 3A, approaches the axial direction of the rotation axis RS.
  • the centrifugal blower 1A can cause a fast airflow flowing into the bell mouth 3A to flow from the outer peripheral side to the inner peripheral side of the bell mouth 3A, and reasonably turn the gas flow in the air intake portion 3c in the axial direction. ..
  • the centrifugal blower 1A can suppress the separation of the air flow in the vicinity of the downstream end 3b, which is the innermost diameter, in the bell mouth 3A, and can suppress the inflow of the disturbed air flow into the impeller 2, thereby reducing noise. Can be suppressed.
  • the separation of the airflow in the vicinity of the downstream end portion 3b, which is the innermost diameter, is suppressed, and the turbulent airflow into the impeller 2 can be suppressed, so that the centrifugal blower 1A efficiently takes in air. be able to.
  • the centrifugal blower 1A according to the second embodiment is not applied, that is, if a general bell mouth is expanded in the radial direction, the shape is along the ellipse EL, the bell mouth is located inside the bell mouth. Airflow may separate. Since the bell mouth 3A of the centrifugal blower 1A has the above-mentioned configuration, it is possible to reduce air flow separation near the downstream end 3b, which is the innermost diameter.
  • FIG. 6 is a partially enlarged view of bell mouth 3B of centrifugal fan 1B according to the third embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 5 are given the same reference numerals and the description thereof will be omitted.
  • the centrifugal blower 1B according to the third embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3B are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3B of the centrifugal blower 1B according to the third embodiment will be mainly described with reference to FIG.
  • the ellipse FL is an imaginary line in which the upstream end 3a of the bell mouth 3B is the first end G1 of the long axis MA2 and the downstream end 3b of the bell mouth 3B is the second end G2 of the short axis MI2. It is an ellipse. More specifically, the virtual ellipse FL is a direction parallel to the major axis MA2 extending from the upstream end 3a into the fan casing 4 and the direction parallel to the radial direction of the impeller 2 from the downstream end 3b in the vertical cross section of the bell mouth 3B. And a short axis MI2 extending to.
  • the intersection EC is the intersection of the short axis MI2 and the long axis MA2, and is the center of the virtual ellipse FL.
  • the virtual ellipse FL has one end of the upstream end 3a and the downstream end 3b as the end of the major axis MA2 and the other end as the end of the minor axis MI2.
  • the intersection EC of the long axis MA2 and the short axis MI2 is located on the outer peripheral side with respect to the rotation axis RS of the impeller 2 with respect to the downstream end 3b.
  • the first outline L1 is the outline of the shortest distance connecting the upstream end 3a and the downstream end 3b in the outline of the ellipse FL.
  • the first tangent line HT2 is a virtual tangent line that contacts the first end G1 of the ellipse FL
  • the second tangent line VT2 is a virtual tangent line that contacts the second end G2 of the ellipse FL. That is, the first tangent line HT2 is a virtual tangent line that contacts the upstream end 3a of the ellipse FL
  • the second tangent line VT2 is a virtual tangent line that contacts the downstream end 3b of the ellipse FL.
  • the wall portion 3c1 of the air intake portion 3c has the upstream end portion 3a as the first end portion G1 of the long axis MA2 between the upstream end portion 3a and the downstream end portion 3b. It bulges toward the inner peripheral side of the bell mouth 3B from the first outer shape line L1 of the virtual ellipse FL which is the second end G2 of the short axis MI2.
  • the wall part 3c1 between the upstream end part 3a and the downstream end part 3b swells in the direction away from the first outline L1 with the intersection EC as a reference. Therefore, as shown in FIG. 6, the air intake portion 3c is formed in a curved shape that draws an arc in the vertical cross section of the bell mouth 3B.
  • the air intake portion 3c includes a virtual first tangent line HT2 that contacts the first end portion G1 of the ellipse FL, a virtual second tangent line VT2 that contacts the second end portion G2 of the ellipse FL, and a first contour line L1. It swells within the enclosed area.
  • the air intake portion 3c is composed of a virtual first tangent line HT2 contacting the upstream end portion 3a of the ellipse FL, a virtual second tangent line VT2 contacting the downstream end portion 3b of the ellipse FL, and the first contour line L1.
  • the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in the direction away from the first outline L1 with the intersection EC as a reference.
  • the bell mouth 3B of the centrifugal blower 1B is a general bell mouth expanded in the axial direction.
  • the centrifugal blower 1B has a wall end 3c1 between the upstream end 3a and the downstream end 3b, which has a shape that bulges in a direction away from the first outline L1 on the basis of the intersection EC, so that the downstream end having the innermost diameter is formed.
  • the curvature of the bell mouth 3 near 3b approaches the axial direction.
  • the distance between the upstream end 3a and the downstream end 3b of the bell mouth 3B in the axial direction of the rotation axis RS is defined as the second axial distance D3.
  • the second axial direction distance D3 is set on the rotation axis RS. It is the distance between the upstream end 3a and the downstream end 3b at the projected position.
  • the second axial distance D3 is the major axis radius of the virtual ellipse FL.
  • the second axial distance D3 is also the distance between the upstream end 3a and the intersection EC of the virtual ellipse FL.
  • a distance between the upstream end 3a and the downstream end 3b of the bell mouth 3B in the radial direction of the rotation axis RS is defined as a second radial distance D4.
  • the second radial distance D4 is the distance between the upstream end portion 3a and the downstream end portion 3b of the bell mouth 3B that appear on the same virtual plane in a plan view seen in the axial direction of the rotation axis RS. Is.
  • the second radial direction distance D4 is the minor axis radius of the virtual ellipse FL. That is, the second radial distance D4 is also the distance between the downstream end 3b and the intersection EC of the virtual ellipse FL.
  • the bell mouth 3B is formed so as to satisfy the relationship of the second radial distance D4 ⁇ the second axial distance D3.
  • a portion satisfying the relationship of the second radial distance D4 ⁇ the second axial distance D3 may be formed on the entire circumference of the bell mouth 3B or may be partially formed in the circumferential direction. May be.
  • the bell mouth 3B of the centrifugal blower 1B is a general bell mouth expanded in the axial direction of the rotation axis RS.
  • the centrifugal blower 1B has a wall end 3c1 between the upstream end 3a and the downstream end 3b, which has a shape that bulges in a direction away from the first outline L1 on the basis of the intersection EC, so that the downstream end having the innermost diameter is formed.
  • the curvature of the bell mouth 3B near 3b approaches the axial direction.
  • the bell mouth 3B is formed so as to satisfy the relationship of the second radial distance D4 ⁇ the second axial distance D3.
  • the centrifugal blower 1B has a shape in which the wall 3c1 between the upstream end 3a and the downstream end 3b bulges in the direction away from the first outline L1 on the basis of the intersection EC in the vertical cross section of the bell mouth 3B. .. Therefore, in the centrifugal blower 1B, the curvature of the bell mouth 3B near the downstream end 3b, which is the innermost diameter of the bell mouth 3B, approaches the axial direction of the rotation axis RS.
  • the centrifugal blower 1B can cause the fast airflow flowing into the bell mouth 3B to go along the inner circumference side from the outer circumference side of the bell mouth 3B, and can reasonably turn the gas flow in the air intake section 3c in the axial direction. ..
  • the centrifugal blower 1B can suppress the separation of the airflow in the bell mouth 3B in the vicinity of the downstream end portion 3b, which is the innermost diameter, and can suppress the inflow of the disturbed airflow into the impeller 2, thereby reducing the noise. Can be suppressed.
  • the bell mouth 3B suppresses the separation of the air flow in the vicinity of the downstream end portion 3b, which is the innermost diameter, and can suppress the inflow of the turbulent air flow into the impeller 2, so that the centrifugal blower 1B efficiently takes in the air. be able to. If the centrifugal blower 1B according to the third embodiment is not applied, that is, if a general bell mouth is expanded in the axial direction of the rotation axis, the shape is along the ellipse FL, the inner circumference side of the bell mouth is The airflow may peel off from the bell mouth.
  • the bell mouth 3B of the centrifugal blower 1B according to the third embodiment has the above-described configuration, so that air flow separation near the downstream end 3b, which is the innermost diameter, can be reduced.
  • FIG. 7 is a partially enlarged view of bell mouth 3C of centrifugal fan 1C according to the fourth embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 6 are designated by the same reference numerals and the description thereof will be omitted.
  • the centrifugal blower 1C according to the fourth embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3C are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to.
  • the bell mouth 3C of the centrifugal blower 1C according to the fourth embodiment will be mainly described with reference to FIG.
  • the bell mouth 3C represents an example in which a general bell mouth is enlarged in the radial direction.
  • the bell mouth 3C of the centrifugal blower 1C has wall portions that form curved surfaces having different radii of curvature between the upstream end portion 3a and the downstream end portion 3b.
  • the bell mouth 3C has a first wall S1 that is continuously and integrally formed from the downstream end 3b to the upstream end 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3C.
  • the first wall portion S1, the second wall portion S2, and the third wall portion S3 form a curved surface that is convex toward the inner diameter side of the bell mouth 3C.
  • the first wall portion S1, the second wall portion S2, and the third wall portion S3 are each formed in an arc shape in the vertical cross section of the bell mouth 3C, and form curved surfaces having different curvature radii.
  • the radius of curvature of the first wall portion S1 is the first radius of curvature a
  • the radius of curvature of the second wall portion S2 is the second radius of curvature b
  • the radius of curvature of the third wall portion S3 is It is defined as the third radius of curvature c.
  • the bell mouth 3C is configured such that the first wall portion S1, the second wall portion S2, and the third wall portion S3 satisfy the relationship of third curvature radius c>first curvature radius a>second curvature radius b. ..
  • the bell mouth 3C expands a general bell mouth in the radial direction.
  • the centrifugal blower 1C has a shape in which a wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outline L1 on the basis of the intersection EC in the vertical cross section of the bell mouth 3C.
  • the bell mouth 3C has a first wall portion S1, a second wall portion S2, and a third wall portion S3 that are continuously and integrally formed from the inner peripheral side to the outer peripheral side of the bell mouth 3C.
  • the bell mouth 3C is configured such that the first wall portion S1, the second wall portion S2, and the third wall portion S3 satisfy the relationship of third curvature radius c>first curvature radius a>second curvature radius b.
  • the fast airflow flowing into the bell mouth 3C is caused to follow the third wall portion S3 having the large third curvature radius c on the outer peripheral side, and then the second mouth having the smallest second curvature radius b.
  • the wall S2 allows the air flow to follow the bell mouth 3C as it is.
  • the bell mouth 3C has the first wall portion S1 having the second largest radius of curvature a and diverts the flow in the axial direction of the rotation axis RS without difficulty.
  • the bell mouth 3C having the configuration and the function, it is possible to suppress the separation of the airflow from the outer edge portion to the inner edge portion, and to suppress the inflow of the disturbed airflow into the impeller 2, thereby suppressing the noise. You can Further, in the bell mouth 3C, separation of the airflow near the downstream end portion 3b, which is the innermost diameter, is suppressed, and the disturbed airflow into the impeller 2 can be suppressed, so that the centrifugal blower 1C efficiently takes in air. be able to.
  • FIG. 8 is a partially enlarged view of bell mouth 3D of centrifugal blower 1D according to the fifth embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 7 are designated by the same reference numerals and the description thereof will be omitted.
  • the centrifugal blower 1D according to the fifth embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3D are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to.
  • the bell mouth 3D of the centrifugal blower 1D according to the fifth embodiment will be mainly described with reference to FIG.
  • the bell mouth 3D represents an example in which a general bell mouth is enlarged in the radial direction.
  • the bell mouth 3D of the centrifugal blower 1D has walls that form curved surfaces with different radii of curvature between the upstream end 3a and the downstream end 3b.
  • the bell mouth 3D has a first wall S11 that is integrally formed continuously from the downstream end 3b to the upstream end 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3D.
  • the first wall portion S11 and the second wall portion S12 form a curved surface that is convex toward the inner diameter side of the bell mouth 3D.
  • the first wall portion S11 and the second wall portion S12 are each formed in an arc shape in the vertical cross section of the bell mouth 3D, and form curved surfaces having different curvature radii.
  • the radius of curvature of the first wall portion S11 is defined as the first radius of curvature a1
  • the radius of curvature of the second wall portion S12 is defined as the second radius of curvature c1.
  • the bellmouth 3D is configured such that the first wall portion S11 and the second wall portion S12 satisfy the relationship of second curvature radius c1>first curvature radius a1.
  • the bell mouth 3D expands a general bell mouth in the radial direction.
  • the centrifugal blower 1D has a shape in which a wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outer shape line L1 on the basis of the intersection EC in the vertical cross section of the bell mouth 3D.
  • the bell mouth 3D has a first wall portion S11 and a second wall portion S12 that are continuously and integrally formed from the inner peripheral side to the outer peripheral side of the bell mouth 3D.
  • the two wall portions S12 are configured to satisfy the relationship of the second curvature radius c1>the first curvature radius a1.
  • the fast airflow flowing into the bell mouth 3D is caused to follow the second wall portion S12 having the large second curvature radius c1 on the outer peripheral side, and subsequently, the first wall portion having the large first curvature radius a1.
  • the flow is naturally turned in the axial direction of the rotation axis RS.
  • the bell mouth 3D having the configuration and the function can suppress the separation of the airflow from the outer edge portion to the inner edge portion, and can suppress the inflow of the turbulent airflow into the impeller 2, thereby suppressing the noise.
  • FIG. 9 is a partially enlarged view of bell mouth 3E of centrifugal fan 1E according to the sixth embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1E and the like in FIGS. 1 to 8 are designated by the same reference numerals and the description thereof will be omitted.
  • the centrifugal blower 1E according to the sixth embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3E are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to.
  • the bell mouth 3E of the centrifugal blower 1E according to the sixth embodiment represents an example in which a general bell mouth is enlarged in the axial direction of the rotation axis.
  • the bell mouth 3E of the centrifugal blower 1E has wall portions that form curved surfaces having different radii of curvature between the upstream end portion 3a and the downstream end portion 3b.
  • the bell mouth 3E has a first wall S21 that is integrally formed continuously from the downstream end 3b to the upstream end 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3E.
  • a second wall portion S22 and a third wall portion S23 The first wall portion S21, the second wall portion S22, and the third wall portion S23 form a curved surface that is convex toward the inner diameter side of the bell mouth 3E.
  • the first wall portion S21, the second wall portion S22, and the third wall portion S23 are each formed in a circular arc shape in the vertical cross section of the bell mouth 3E, and form curved surfaces having different curvature radii.
  • the radius of curvature of the first wall portion S21 is the first radius of curvature a2
  • the radius of curvature of the second wall portion S22 is the second radius of curvature b2
  • the radius of curvature of the third wall portion S23 is. It is defined as the third radius of curvature c2.
  • the bell mouth 3E is configured such that the first wall portion S21, the second wall portion S22, and the third wall portion S23 satisfy the relationship of the first curvature radius a2>the third curvature radius c2>the second curvature radius b2. ..
  • the bell mouth 3E expands a general bell mouth in the axial direction of the rotating shaft.
  • the centrifugal blower 1E has a shape in which a wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outline L1 in the vertical cross section of the bell mouth 3E with the intersection EC as a reference.
  • the bell mouth 3E has a first wall portion S21, a second wall portion S22, and a third wall portion S23 that are continuously and integrally formed from the inner peripheral side to the outer peripheral side of the bell mouth 3E.
  • the bell mouth 3E is configured such that the first wall portion S21, the second wall portion S22, and the third wall portion S23 satisfy the relationship of the first curvature radius a2>the third curvature radius c2>the second curvature radius b2. To be done. Therefore, in the bell mouth 3E, the fast airflow flowing into the bell mouth 3E is caused to follow the third wall portion S23 having the large third curvature radius c2 on the outer peripheral side, and then the second mouth having the smallest second curvature radius b2.
  • the wall portion S22 allows the air flow to follow the bell mouth 3E as it is.
  • the bell mouth 3E has the first wall portion S21 having the first largest radius of curvature a2, and diverts the flow in the axial direction of the rotation axis RS without difficulty.
  • the bell mouth 3E having the configuration and the function can suppress the separation of the airflow from the outer edge portion to the inner edge portion, and can suppress the inflow of the turbulent airflow into the impeller 2, thereby suppressing the noise.
  • FIG. 10 is a partially enlarged view of bell mouth 3F of centrifugal fan 1F according to the seventh embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 9 are designated by the same reference numerals and the description thereof will be omitted.
  • the centrifugal blower 1F according to the seventh embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3F are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to.
  • the bell mouth 3F of the centrifugal blower 1F according to the seventh embodiment will be mainly described with reference to FIG.
  • the bell mouth 3F represents an example in which a general bell mouth is enlarged in the axial direction of the rotation axis.
  • the bell mouth 3F of the centrifugal blower 1F has wall portions that form curved surfaces with different radii of curvature between the upstream end portion 3a and the downstream end portion 3b.
  • the bell mouth 3F has a first wall portion S31 that is continuously and integrally formed from the downstream end portion 3b to the upstream end portion 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3F.
  • a second wall portion S32 a second wall portion S32.
  • the first wall portion S31 and the second wall portion S32 form a curved surface that is convex toward the inner diameter side of the bell mouth 3F.
  • the first wall portion S31 and the second wall portion S32 are each formed in an arc shape in the vertical cross section of the bell mouth 3F, and form curved surfaces having different radii of curvature.
  • the radius of curvature of the first wall portion S31 is defined as a first radius of curvature a3
  • the radius of curvature of the second wall portion S32 is defined as a second radius of curvature c3.
  • the bell mouth 3F is configured such that the first wall portion S31 and the second wall portion S32 satisfy the relationship of the first curvature radius a3>the second curvature radius c3.
  • the bell mouth 3F expands a general bell mouth in the axial direction of the rotating shaft.
  • the centrifugal blower 1F has a shape in which a wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outline L1 in the vertical cross section of the bell mouth 3F with the intersection EC as a reference.
  • the bell mouth 3F has a first wall portion S31 and a second wall portion S32 that are continuously and integrally formed from the inner peripheral side to the outer peripheral side of the bell mouth 3F.
  • the two wall portions S32 are configured to satisfy the relationship of the first curvature radius a3>the second curvature radius c3.
  • the fast airflow flowing into the bell mouth 3F is caused to follow the second wall portion S32 having the large second curvature radius c3 on the outer peripheral side, and then the first having the largest first curvature radius a1.
  • the wall portion S31 diverts the flow in the axial direction of the rotation axis RS without difficulty.
  • the bell mouth 3F having the configuration and the function can suppress the separation of the airflow from the outer edge portion to the inner edge portion, and can suppress the inflow of the turbulent airflow into the impeller 2, thereby suppressing the noise.
  • FIG. 11 is a partially enlarged view of bell mouth 3G of centrifugal fan 1G according to the eighth embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 10 are designated by the same reference numerals and the description thereof will be omitted.
  • the centrifugal blower 1G according to the eighth embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configuration of parts other than the bell mouth 3G is the same as that of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3G of the centrifugal blower 1G according to the eighth embodiment will be mainly described with reference to FIG.
  • the bell mouth 3G has a downstream end 3b arranged on a virtual first plane P1 perpendicular to the rotation axis RS.
  • the downstream end 3b of the bell mouth 3G is formed in a ring shape in the bell mouth 3G, and the virtual first plane P1 including the downstream end 3b formed in a ring shape is with respect to the rotation axis RS. It is a vertical plane.
  • the bell mouth 3G has the upstream end portion 3a arranged on a virtual second plane P2 perpendicular to the rotation axis RS.
  • the upstream end 3a of the bell mouth 3G is formed in a ring shape in the bell mouth 3G
  • the virtual second plane P2 including the upstream end 3a formed in a ring shape is with respect to the rotation axis RS. It is a vertical plane.
  • the virtual first plane P1 and the virtual second plane P2 are parallel to each other.
  • the downstream end 3b is arranged on the virtual first plane P1 that is perpendicular to the rotation axis RS. Further, the bell mouth 3G has the upstream end portion 3a arranged on a virtual second plane P2 perpendicular to the rotation axis RS. Since the bell mouth 3G has the configuration, pressure fluctuation due to the gas sucked into the centrifugal blower 1G is less likely to occur. Therefore, when the centrifugal blower 1G is mounted on a unit such as an outdoor unit, the influence of the internal pressure loss can be minimized.
  • FIG. 12 is a side view of a centrifugal blower 1H according to the ninth embodiment of the present invention.
  • FIG. 13 is a sectional view of the centrifugal blower 1H of FIG. 12 taken along the line BB.
  • FIG. 14 is a sectional view taken along line CC of the centrifugal blower 1H in FIG. It should be noted that parts having the same configurations as those of the centrifugal blower 1 to the centrifugal blower 1G of FIGS. 1 to 11 are designated by the same reference numerals, and the description thereof will be omitted.
  • the bell mouth 3 of the centrifugal blower 1H is compared with the position of the tongue portion 43 in the range between the tongue portion 43 and one rotation in the circumferential direction along the rotation direction R of the impeller 2.
  • the wall portion 3c1 forming the air intake portion 3c has a portion in which the width is expanded in the radial direction.
  • the bell mouth 3 has a radial width along the rotation direction R of the impeller 2 in the direction from the tongue 43 toward the winding end 41b and back to the tongue 43. Is gradually expanded in the order of W1, W2, and W3, and is gradually reduced in the order of W3, W4, and W1.
  • the width of the wall portion 3c1 of the air intake portion 3c gradually increases in the radial direction and reaches the maximum.
  • the width of the wall portion 3c1 is gradually returned to the original size while returning from the enlarged position to the tongue portion 43.
  • the configuration of the bell mouth 3 shown in FIGS. 12, 13 and 14 is an example. In the circumferential direction of the bell mouth 3, the position where the width of the wall portion 3c1 of the air intake portion 3c is maximized in the radial direction is determined by, for example, the relationship with the device in which the centrifugal blower 1H is installed.
  • the bell mouth 3 shown in FIGS. 13 and 14 has the same configuration with the suction ports 5 on both sides of the double suction type centrifugal blower 1, but each suction port 5 has a wall portion 3c1 having a different expanded width.
  • the bell mouth 3 may be included.
  • the bell mouth 3 expands in the radial direction in the width of the wall portion 3c1 of the air intake portion 3c in a range in which the bell mouth 3 makes one rotation in the circumferential direction along the rotation direction R of the impeller 2 from the tongue portion 43.
  • the radius of curvature on the inner peripheral side of the wall portion 3c1 is gradually increased.
  • the wall portion 3c1 of the air intake portion 3c has the maximum radius of curvature on the inner peripheral side in the range in which the wall portion 3c1 rotates in the circumferential direction from the tongue portion 43 in the circumferential direction R of the impeller 2 once.
  • the inner peripheral side is a portion of the wall portion 3c1 of the air intake portion 3c in a range closer to the downstream end portion 3b than the upstream end portion 3a.
  • the air intake portion 3c of the bell mouth 3 has a radial width of the wall portion 3c1 in the circumferential direction while returning from the portion of the wall portion 3c1 having the maximum radius of curvature on the inner peripheral side to the tongue portion 43. While being reduced, the radius of curvature of the inner peripheral side of the wall portion 3c1 is gradually reduced.
  • the curvature radius on the inner circumference side gradually increases in the circumferential direction while returning from the wall portion 3c1 having the maximum curvature radius on the inner circumference side to the tongue portion 43.
  • the tongue portion 43 is formed so as to return to the original radius of curvature.
  • the width of the wall portion 3c1 of the air intake portion 3c increases in the radial direction and the radius of curvature on the inner circumferential side of the wall portion 3c1 increases, so that the radial direction of the wall portion 3c1 increases.
  • the width is reduced and the radius of curvature on the inner peripheral side of the wall portion 3c1 is reduced.
  • the configuration of the bell mouth 3 shown in FIGS. 12, 13, and 14 is an example.
  • the position where the radius of curvature on the inner circumferential side of the wall portion 3c1 of the air intake portion 3c has the maximum value is determined by, for example, the relationship with the device in which the centrifugal blower 1H is installed. ..
  • the bell mouth 3 shown in FIGS. 13 and 14 has the same configuration with the suction ports 5 on both sides of the double suction type centrifugal blower 1, but each suction port 5 has a wall portion 3c1 having a different curvature radius.
  • the bell mouth 3 may be included.
  • the formation position of the upstream end portion 3a of the bell mouth 3 with respect to the main plate 2a of the impeller 2 changes as the radius of curvature on the inner peripheral side of the wall portion 3c1 forming the air intake portion 3c increases.
  • the distance between the upstream end portion 3a of the bell mouth 3 and the main plate 2a of the impeller 2 increases as the radius of curvature of the inner peripheral side of the wall portion 3c1 increases. .. That is, the position of the upstream end portion 3 a of the bell mouth 3 with respect to the main plate 2 a of the impeller 2 changes along the rotation direction R of the impeller 2.
  • the bell mouth 3 of the centrifugal blower 1H expands the size of the radial wall of the air intake portion 3c at positions other than the tongue portion 43 in the circumferential direction, and the radius of curvature of the bell mouth 3 on the inner peripheral side increases. Is formed.
  • the centrifugal blower 1H has the configuration described above, and thereby reduces the separation of the fast airflow flowing through the bell mouth 3 from the bell mouth 3. Therefore, the centrifugal blower 1H can improve the blowing efficiency and reduce noise.
  • FIG. 15 is a figure which shows the structure of the air blower 30 which concerns on Embodiment 10 of this invention. Parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS.
  • the air blower 30 according to the tenth embodiment is, for example, a ventilation fan, a desk fan, or the like.
  • the blower 30 includes any one of the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, and a case 7 that houses the centrifugal blower 1 and the like.
  • any one of the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments is used.
  • the case 7 has two openings, a suction port 71 and a discharge port 72.
  • the blower device 30 is formed at a position where the suction port 71 and the discharge port 72 face each other.
  • the blower device 30 is not necessarily formed at a position where the suction port 71 and the discharge port 72 face each other, such that one of the suction port 71 and the discharge port 72 is formed above or below the centrifugal blower 1. It does not have to be.
  • a partition plate 73 partitions a space SP1 having a portion where the suction port 71 is formed and a space SP2 having a portion where the discharge port 72 is formed.
  • the centrifugal blower 1 is installed such that the suction port 5 is located in the space SP1 on the side where the suction port 71 is formed and the discharge port 42a is located in the space SP2 on the side where the discharge port 72 is formed.
  • blower device 30 when the impeller 2 is rotated by driving the motor 6, air is sucked into the case 7 through the suction port 71.
  • the air sucked into the case 7 is guided by the bell mouth 3 and sucked into the impeller 2.
  • the air sucked into the impeller 2 is blown out toward the outside in the radial direction of the impeller 2.
  • the air blown from the impeller 2 passes through the inside of the fan casing 4, and then is blown from the discharge port 42 a of the fan casing 4 and the discharge port 72 of the case 7.
  • blower device 30 since the blower device 30 according to the tenth embodiment includes the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, noise can be reduced and air can be taken in efficiently.
  • FIG. 16 is a perspective view of the air conditioning apparatus 40 which concerns on Embodiment 11 of this invention.
  • FIG. 17 is a figure which shows the internal structure of the air conditioning apparatus 40 which concerns on Embodiment 11 of this invention.
  • FIG. 18 is sectional drawing of the air conditioning apparatus 40 which concerns on Embodiment 11 of this invention.
  • FIG. 19 is another cross-sectional view of the air conditioning apparatus 40 according to Embodiment 11 of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 of FIGS. 1 to 15 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG.
  • the air conditioner 40 according to the eleventh embodiment is a position facing any one or more of the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, and the discharge port 42a of the centrifugal blower 1 or the like. And a heat exchanger 10 arranged in the. Further, the air conditioning apparatus 40 according to the eleventh embodiment includes the case 16 installed behind the ceiling of the room to be air-conditioned.
  • the centrifugal blower 1 is referred to, any one of the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments is used.
  • the bell mouth 3 is indicated, any one of the bell mouth 3 to the bell mouth 3G described above is used.
  • the case 16 has a rectangular parallelepiped shape including an upper surface portion 16a, a lower surface portion 16b, and a side surface portion 16c.
  • the shape of the case 16 is not limited to a rectangular parallelepiped shape, and may be another shape such as a columnar shape, a prismatic shape, a conical shape, a shape having a plurality of corners, or a shape having a plurality of curved surfaces. It may be.
  • the case 16 has a side surface portion 16c in which a case discharge port 17 is formed, as one of the side surface portions 16c.
  • the case ejection port 17 is formed in a rectangular shape as shown in FIG.
  • the shape of the case discharge port 17 is not limited to the rectangular shape, and may be, for example, a circular shape, an oval shape, or any other shape.
  • the case 16 has a side surface portion 16c in which a case suction port 18 is formed on a surface of the side surface portion 16c, which is a surface behind the surface in which the case discharge port 17 is formed.
  • the case suction port 18 is formed in a rectangular shape as shown in FIG.
  • the shape of the case suction port 18 is not limited to the rectangular shape, and may be, for example, a circular shape, an oval shape, or another shape.
  • a filter for removing dust in the air may be arranged in the case suction port 18.
  • the centrifugal blower 1 includes an impeller 2 and a fan casing 4 in which a bell mouth 3 is formed.
  • the fan motor 9 is supported by a motor support 9a fixed to the upper surface 16a of the case 16.
  • the fan motor 9 has an output shaft 6a.
  • the output shaft 6a is arranged so as to extend parallel to the surface of the side surface portion 16c on which the case suction port 18 is formed and the surface on which the case discharge port 17 is formed.
  • two impellers 2 are attached to the output shaft 6a.
  • the impeller 2 forms a flow of air that is sucked into the case 16 from the case suction port 18 and is blown from the case discharge port 17 to the air-conditioned space.
  • the centrifugal blower 1 arranged in the case 16 is not limited to two, and may be one or three or more.
  • the above-described configuration of changing the curvature of the bell mouth 3 can be applied to the entire circumference of the bell mouth 3, but the case suction is included in the entire circumference of the bell mouth 3.
  • the above-mentioned effects are more remarkably exhibited. That is, it is effective to apply the above-described configuration of changing the curvature of the bell mouth 3 to a portion of the entire circumference of the bell mouth 3 where the flow rate of the airflow flowing into the bell mouth 3 increases.
  • the centrifugal blower 1 is attached to the partition plate 19, and the inner space of the case 16 includes a space SP11 on the suction side of the fan casing 4 and a space SP12 on the blowout side of the fan casing 4. It is partitioned by a partition plate 19.
  • the heat exchanger 10 is arranged at a position facing the discharge port 42a of the centrifugal blower 1, and is arranged in the case 16 on the air passage of the air discharged by the centrifugal blower 1.
  • the heat exchanger 10 adjusts the temperature of the air sucked into the case 16 through the case suction port 18 and blown from the case discharge port 17 into the air-conditioned space.
  • the heat exchanger 10 may have a known structure.
  • the case suction port 18 may be formed at a position vertical to the axial direction of the rotation axis RS of the centrifugal blower 1.
  • the case suction port 18a is formed on the lower surface portion 16b. Good.
  • the configuration of the curvature change of the bell mouth 3 described above can be applied to the entire circumference of the bell mouth 3 in the centrifugal blower 1 used in the air conditioner 40.
  • the above-mentioned effects are more remarkably exhibited. That is, it is effective to apply the above-described configuration of changing the curvature of the bell mouth 3 to a portion of the entire circumference of the bell mouth 3 where the flow rate of the airflow flowing into the bell mouth 3 increases.
  • the air in the air-conditioned space is sucked into the case 16 through the case suction port 18 or the case suction port 18a.
  • the air sucked into the case 16 is guided by the bell mouth 3 and sucked into the impeller 2.
  • the air sucked into the impeller 2 is blown out toward the outside in the radial direction of the impeller 2.
  • the air blown out from the impeller 2 passes through the inside of the fan casing 4, then is blown out from the discharge port 42 a of the fan casing 4, and is supplied to the heat exchanger 10.
  • the air supplied to the heat exchanger 10 is heat-exchanged when passing through the heat exchanger 10, and the temperature and humidity are adjusted.
  • the air that has passed through the heat exchanger 10 is blown out from the case outlet 17 into the air-conditioned space.
  • the air conditioner 40 according to the eleventh embodiment includes the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, noise can be reduced and air can be taken in efficiently.
  • Twelfth Embodiment [Refrigeration cycle device 50] 20 is a figure which shows the structure of the refrigerating-cycle apparatus 50 which concerns on Embodiment 12 of this invention.
  • the indoor unit 200 of the refrigeration cycle apparatus 50 according to the twelfth embodiment the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments are used.
  • the refrigeration cycle device 50 is described as being used for air conditioning purposes, but the refrigeration cycle device 50 is not limited to being used for air conditioning purposes.
  • the refrigeration cycle device 50 is used for refrigerating or air conditioning applications such as a refrigerator or a freezer, a vending machine, an air conditioner, a refrigerating device, and a water heater.
  • the refrigeration cycle device 50 heats or cools the room to perform air conditioning by transferring heat between the outside air and the air in the room via the refrigerant.
  • the refrigeration cycle device 50 according to the twelfth embodiment includes an outdoor unit 100 and an indoor unit 200.
  • the outdoor unit 100 and the indoor unit 200 are pipe-connected by a refrigerant pipe 300 and a refrigerant pipe 400 to form a refrigerant circuit in which a refrigerant circulates.
  • the refrigerant pipe 300 is a gas pipe through which a vapor-phase refrigerant flows
  • the refrigerant pipe 400 is a liquid pipe through which a liquid-phase refrigerant flows.
  • a gas-liquid two-phase refrigerant may flow through the refrigerant pipe 400.
  • the compressor 101, the flow path switching device 102, the outdoor heat exchanger 103, the expansion valve 105, and the indoor heat exchanger 201 are sequentially connected via the refrigerant pipe.
  • the outdoor unit 100 has a compressor 101, a flow path switching device 102, an outdoor heat exchanger 103, and an expansion valve 105.
  • the compressor 101 compresses the drawn refrigerant and discharges it.
  • the compressor 101 may include an inverter device, and the inverter device may change the operating frequency to change the capacity of the compressor 101.
  • the capacity of the compressor 101 is the amount of refrigerant sent out per unit time.
  • the flow path switching device 102 is, for example, a four-way valve, and is a device that switches the direction of the refrigerant flow path.
  • the refrigeration cycle device 50 can realize the heating operation or the cooling operation by switching the flow of the refrigerant using the flow path switching device 102 based on the instruction from the control device 110.
  • the outdoor heat exchanger 103 exchanges heat between the refrigerant and the outdoor air.
  • the outdoor heat exchanger 103 functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the refrigerant pipe 400 and the outdoor air to evaporate and evaporate the refrigerant.
  • the outdoor heat exchanger 103 functions as a condenser, and performs heat exchange between the refrigerant that has been compressed by the compressor 101 that has flowed in from the flow path switching device 102 side and the outdoor air, and removes the refrigerant. Condensate and liquefy.
  • the outdoor heat exchanger 103 is provided with an outdoor blower 104 in order to improve the efficiency of heat exchange between the refrigerant and the outdoor air.
  • the outdoor blower 104 may be equipped with an inverter device to change the operating frequency of the fan motor to change the rotation speed of the fan.
  • the expansion valve 105 is an expansion device (flow rate control means), and functions as an expansion valve by adjusting the flow rate of the refrigerant flowing through the expansion valve 105, and adjusts the pressure of the refrigerant by changing the opening. For example, when the expansion valve 105 is composed of an electronic expansion valve or the like, the opening degree is adjusted based on an instruction from the control device 110.
  • the indoor unit 200 has an indoor heat exchanger 201 that performs heat exchange between the refrigerant and indoor air, and an indoor blower 202 that adjusts the flow of air through which the indoor heat exchanger 201 performs heat exchange.
  • the indoor heat exchanger 201 acts as a condenser during the heating operation, and performs heat exchange between the refrigerant flowing from the refrigerant pipe 300 and the indoor air to condense and liquefy the refrigerant, and to the refrigerant pipe 400 side. Drain.
  • the indoor heat exchanger 201 functions as an evaporator during cooling operation, performs heat exchange between the refrigerant that has been brought to a low pressure state by the expansion valve 105 and indoor air, and causes the refrigerant to deprive the heat of the air to evaporate. To vaporize and flow out to the refrigerant pipe 300 side.
  • the indoor blower 202 is provided so as to face the indoor heat exchanger 201. As the indoor blower 202, any one or more of the centrifugal blower 1 to the centrifugal blower 1H according to the first to eighth embodiments is applied.
  • the operation speed of the indoor blower 202 is determined by the user setting.
  • An inverter device may be attached to the indoor blower 202 to change the operating frequency of a fan motor (not shown) to change the rotation speed of the impeller 2.
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 201 of the indoor unit 200, evaporates by heat exchange with the indoor air blown by the indoor blower 202, and becomes a low-temperature low-pressure gas refrigerant to become the indoor heat exchanger. It flows out from 201. At this time, the indoor air cooled by the heat absorbed by the refrigerant becomes conditioned air and is blown out from the discharge port of the indoor unit 200 to the air-conditioned space. The gas refrigerant flowing out from the indoor heat exchanger 201 is sucked into the compressor 101 via the flow path switching device 102 and is compressed again. The above operation is repeated.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the indoor heat exchanger 201 of the indoor unit 200 via the flow path switching device 102.
  • the gas refrigerant flowing into the indoor heat exchanger 201 is condensed by heat exchange with the indoor air blown by the indoor blower 202, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 201.
  • the room air heated by receiving heat from the gas refrigerant becomes conditioned air and is blown out from the discharge port of the indoor unit 200 to the air conditioned space.
  • the refrigerant flowing out from the indoor heat exchanger 201 is expanded and decompressed by the expansion valve 105 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 103 of the outdoor unit 100, evaporates by heat exchange with the outside air blown by the outdoor blower 104, and becomes a low-temperature low-pressure gas refrigerant to become the outdoor heat exchanger 103. Drained from.
  • the gas refrigerant flowing out of the outdoor heat exchanger 103 is sucked into the compressor 101 via the flow path switching device 102 and is compressed again. The above operation is repeated.
  • the refrigeration cycle apparatus 50 includes the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, noise can be reduced and air can be taken in efficiently.
  • the bell mouth 3C has a first wall portion integrally formed continuously from the downstream end portion 3b to the upstream end portion 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3C. It has S1, the 2nd wall S2, and the 3rd wall S3.
  • the bell mouth 3C has three wall portions with different radii of curvature, but the bell mouth 3C may have four or more wall portions with different radii of curvature.
  • the bell mouth 3E has a first wall continuously and integrally formed from the downstream end 3b to the upstream end 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3E. It has a part S21, a second wall part S22, and a third wall part S23.
  • the bell mouth 3E has three wall portions with different radii of curvature, but the bell mouth 3E may have four or more wall portions with different radii of curvature.
  • centrifugal blower 1 centrifugal blower, 1A centrifugal blower, 1B centrifugal blower, 1C centrifugal blower, 1D centrifugal blower, 1E centrifugal blower, 1F centrifugal blower, 1G centrifugal blower, 1H centrifugal blower, 2 impeller, 2a main plate, 2a1, peripheral portion, 2b shaft part 2c side plate, 2d blade, 2e suction port, 3 bell mouth, 3A bell mouth, 3B bell mouth, 3C bell mouth, 3D bell mouth, 3E bell mouth, 3F bell mouth, 3G bell mouth, 3a upstream end, 3b downstream End part, 3c air intake part, 3c1 wall part, 4 fan casing, 4a side wall, 4c peripheral wall, 5 suction port, 6 motor, 6a output shaft, 7 case, 9 fan motor, 9a motor support, 10 heat exchanger, 16 cases, 16a upper surface part, 16b lower surface part, 16c side surface part, 17 case discharge port,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

This centrifugal blower comprises an impeller having a disc-shaped main plate and a blade, and a fan casing having a bell mouth, wherein the bell mouth has an air intake part that forms an inlet port and is formed such that an opening diameter gradually decreases from an upstream end portion to a downstream end portion in the direction of an airflow suctioned into the fan casing, a virtual ellipse is defined in which in a vertical cross-section of the bell mouth, one end portion among the upstream end portion and the downstream end portion is set as an end portion of a long axis, the other end portion thereamong is set as an end portion of a short axis, and an intersection between the long axis and the short axis is located on an outer peripheral side from the downstream end portion with respect to a rotation axis of the impeller, and when an outline of the shortest distance connecting the upstream end portion and the downstream end portion is defined as a first outline in an elliptic outline, within a range in which the air intake part is surrounded by a first virtual tangent line in contact with the upstream end portion of the ellipse, a second virtual tangent line in contact with the downstream end portion of the ellipse, and the first outline, a wall part between the upstream end portion and the downstream end portion becomes swollen in a direction away from the first outline with the intersection as a reference.

Description

遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置Centrifugal blower, blower, air conditioner and refrigeration cycle device
 本発明は、ベルマウスを備えたケーシングを有する遠心送風機並びにこれを備えた送風装置、空気調和装置及び冷凍サイクル装置に関する。 The present invention relates to a centrifugal blower having a casing equipped with a bell mouth, a blower equipped with the same, an air conditioner, and a refrigeration cycle apparatus.
 従来、遠心送風機のベルマウスでは、外周側から内周方向への縮小する壁が構成する曲面と、当該曲面に対して吸気の下流側に位置し、内周側から外周方向への拡大する壁が構成する曲面と、を有する遠心送風機が提案されている(例えば、特許文献1参照)。ここで当該遠心送風機において、外周側から内周方向への縮小方向における曲面の曲率半径を曲率半径Yと定義し、内周側から外周方向への拡大方向における曲面の曲率半径を曲率半径Zと定義する。この場合、特許文献1の遠心送風機は、ベルマウスの形状が曲率半径Y>曲率半径Zとなる関係を有するため、吸込口で気流の流れが滑らかになり騒音改善の効果を得ることができる。 Conventionally, in a bell blower of a centrifugal blower, a curved surface formed by a wall that shrinks from the outer peripheral side to the inner peripheral direction and a wall that is located on the downstream side of intake air with respect to the curved surface and expands from the inner peripheral side to the outer peripheral direction. Has been proposed (see, for example, Patent Document 1). Here, in the centrifugal blower, the curvature radius of the curved surface in the contraction direction from the outer peripheral side to the inner peripheral direction is defined as the curvature radius Y, and the curvature radius of the curved surface in the expansion direction from the inner peripheral side to the outer peripheral direction is defined as the curvature radius Z. Define. In this case, in the centrifugal blower of Patent Document 1, since the shape of the bell mouth has a relationship of the curvature radius Y>the curvature radius Z, the flow of the airflow becomes smooth at the suction port, and the effect of improving noise can be obtained.
米国特許出願公開第2006/0034686号明細書U.S. Patent Application Publication No. 2006/0034686
 しかしながら、更なる特性改善のためにベルマウスを半径方向又は回転軸の軸方向に膨ませた形状では、ベルマウスの曲面の曲率半径が小さくなるため、ベルマウスから気流が剥離し易くなり、騒音が悪化する場合がある。 However, in the case where the bell mouth is expanded in the radial direction or the axial direction of the rotating shaft for further improvement in characteristics, the radius of curvature of the curved surface of the bell mouth becomes small, so that the air flow is easily separated from the bell mouth and noise May worsen.
 本発明は、上記のような課題を解決するためのものであり、ベルマウスを半径方向又は回転軸の軸方向に膨らんだ形状であっても、騒音の低減を図る遠心送風機、並びにこれを備えた送風装置、空気調和装置及び冷凍サイクル装置を提供するものである。 The present invention is for solving the above problems, and even if the bell mouth is inflated in the radial direction or the axial direction of the rotating shaft, a centrifugal blower for reducing noise, and the same are provided. And an air conditioner and a refrigeration cycle apparatus.
 本発明に係る遠心送風機は、円盤状の主板と、主板の周縁部に設置される複数枚の羽根と、を有する羽根車と、羽根車を収納し、羽根車に吸入される気体を整流するベルマウスを有するファンケーシングと、を備え、ベルマウスは、ファンケーシング内に流入する気体が通過する吸込口を形成し、ファンケーシングに吸い込まれる気流の方向において上流端部から下流端部に向かって開口径が次第に小さくなるように形成された空気取込部を有し、ベルマウスの垂直断面において、上流端部及び下流端部のうち、一方の端部を長軸の端部とし、他方の端部を短軸の端部とし、長軸と短軸との交点が、羽根車の回転軸に対して下流端部よりも外周側に位置する仮想の楕円を定義し、楕円の外形線において、上流端部と下流端部と結ぶ最短距離の外形線を第1外形線と定義した場合に、空気取込部は、楕円の上流端部と接する仮想の第1接線と、楕円の下流端部と接する仮想の第2接線と、第1外形線と、で囲まれる範囲内において、交点を基準として上流端部と下流端部との間の壁部が第1外形線から離れる方向に膨らんでいるものである。 A centrifugal blower according to the present invention stores an impeller having a disk-shaped main plate and a plurality of blades installed at a peripheral portion of the main plate, an impeller, and rectifies gas sucked into the impeller. A fan casing having a bell mouth, wherein the bell mouth forms a suction port through which a gas flowing into the fan casing passes, and the bell mouth is directed from an upstream end to a downstream end in a direction of an air flow sucked into the fan casing. It has an air intake part formed so that the opening diameter becomes gradually smaller, and in the vertical section of the bell mouth, one end of the upstream end and the downstream end is the end of the long axis, and the other end. The end is defined as the end of the short axis, and the intersection of the long axis and the short axis defines a virtual ellipse located on the outer peripheral side with respect to the rotation axis of the impeller than the downstream end. If the outermost line connecting the upstream end portion and the downstream end portion is defined as the first outer shape line, the air intake portion has an imaginary first tangent line that contacts the upstream end portion of the ellipse and the downstream end portion of the ellipse. Within the range surrounded by the imaginary second tangent line that contacts the portion and the first outline, the wall portion between the upstream end portion and the downstream end portion swells in the direction away from the first outline line based on the intersection point. It is something that is going out.
 本発明に係る遠心送風機は、空気取込部が、楕円の上流端部と接する仮想の第1接線と、楕円の下流端部と接する仮想の第2接線と、第1外形線と、で囲まれる範囲内において、交点を基準として上流端部と下流端部との間の壁部が第1外形線から離れる方向に膨らんでいる。遠心送風機は、当該構成を備えていることで、ベルマウスの最内径となる下流端部近傍のベルマウスの曲率が回転軸の軸方向に近づく。そのため、遠心送風機は、ベルマウスに流入する速い気流をベルマウスの外周側から内周側に沿わせ、空気取込部において気体の流れを無理なく軸方向に転向させることができる。その結果、遠心送風機は、ベルマウスにおいて、最内径となる下流端部近傍での気流の剥離を抑制することができ、羽根車への乱れた気流の流入を抑制できることで、騒音を抑制することができる。 In the centrifugal blower according to the present invention, the air intake portion is surrounded by a virtual first tangent line that contacts the upstream end of the ellipse, a virtual second tangent line that contacts the downstream end of the ellipse, and a first contour line. Within the range, the wall portion between the upstream end portion and the downstream end portion swells in the direction away from the first outline with the intersection as the reference. Since the centrifugal blower is provided with the configuration, the curvature of the bell mouth near the downstream end, which is the innermost diameter of the bell mouth, approaches the axial direction of the rotating shaft. Therefore, the centrifugal blower can cause the fast airflow flowing into the bell mouth to extend from the outer peripheral side to the inner peripheral side of the bell mouth, and can smoothly turn the gas flow in the axial direction in the air intake portion. As a result, the centrifugal blower can suppress the separation of the airflow in the vicinity of the downstream end that is the innermost diameter in the bell mouth, and can suppress the inflow of the turbulent airflow into the impeller, thereby suppressing noise. You can
本発明の実施の形態1に係る遠心送風機の斜視図である。It is a perspective view of the centrifugal fan concerning Embodiment 1 of the present invention. 図1の遠心送風機を吸込口側から見た側面図である。It is the side view which looked at the centrifugal fan of FIG. 1 from the suction inlet side. 図2の遠心送風機のA-A線位置における部分断面図である。FIG. 3 is a partial cross-sectional view of the centrifugal blower of FIG. 2 taken along the line AA. 図3のベルマウスのB部の拡大図である。It is an enlarged view of the B section of the bell mouth of FIG. 本発明の実施の形態2に係る遠心送風機のベルマウスの部分拡大図である。FIG. 6 is a partially enlarged view of a bell mouth of the centrifugal blower according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る遠心送風機のベルマウスの部分拡大図である。It is a partially expanded view of a bell mouth of a centrifugal blower according to Embodiment 3 of the present invention. 本発明の実施の形態4に係る遠心送風機のベルマウスの部分拡大図である。It is a partially expanded view of a bell mouth of a centrifugal blower according to Embodiment 4 of the present invention. 本発明の実施の形態5に係る遠心送風機のベルマウスの部分拡大図である。It is a partially expanded view of a bell mouth of a centrifugal blower according to Embodiment 5 of the present invention. 本発明の実施の形態6に係る遠心送風機のベルマウスの部分拡大図である。It is the elements on larger scale of the bell mouth of the centrifugal fan concerning Embodiment 6 of the present invention. 本発明の実施の形態7に係る遠心送風機のベルマウスの部分拡大図である。It is a partially expanded view of a bell mouth of a centrifugal blower according to Embodiment 7 of the present invention. 本発明の実施の形態8に係る遠心送風機のベルマウスの部分拡大図である。It is the elements on larger scale of the bell mouth of the centrifugal fan concerning Embodiment 8 of the present invention. 本発明の実施の形態9に係る遠心送風機の側面図である。It is a side view of the centrifugal air blower concerning Embodiment 9 of the present invention. 図12の遠心送風機のB-B線断面図である。FIG. 13 is a sectional view of the centrifugal blower of FIG. 12 taken along the line BB. 図12の遠心送風機のC-C線断面図である。It is CC sectional view taken on the line of the centrifugal blower of FIG. 本発明の実施の形態10に係る送風装置の構成を示す図である。It is a figure which shows the structure of the air blower concerning Embodiment 10 of this invention. 本発明の実施の形態11に係る空気調和装置の斜視図である。It is a perspective view of the air conditioning apparatus which concerns on Embodiment 11 of this invention. 本発明の実施の形態11に係る空気調和装置の内部構成を示す図である。It is a figure which shows the internal structure of the air conditioning apparatus which concerns on Embodiment 11 of this invention. 本発明の実施の形態11に係る空気調和装置の断面図である。It is sectional drawing of the air conditioning apparatus which concerns on Embodiment 11 of this invention. 本発明の実施の形態11に係る空気調和装置の他の断面図である。It is another sectional view of the air harmony device concerning Embodiment 11 of the present invention. 本発明の実施の形態12に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 12 of this invention.
 以下、本発明の実施の形態に係る遠心送風機1~遠心送風機1H、並びに、送風装置30、空気調和装置40及び冷凍サイクル装置50について図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。 Hereinafter, the centrifugal blower 1 to the centrifugal blower 1H, the blower 30, the air conditioner 40, and the refrigeration cycle device 50 according to the embodiment of the present invention will be described with reference to the drawings. In the following drawings including FIG. 1, the relative dimensional relationship and shape of each component may be different from the actual one. In addition, in the following drawings, the components denoted by the same reference numerals are the same or equivalent, and this is common to all the texts of the specification. In addition, to facilitate understanding, terms indicating directions (for example, “up”, “down”, “right”, “left”, “front”, “rear”, etc.) are used as appropriate, but these notations are For convenience of description, such description is merely provided, and the arrangement and orientation of the device or parts are not limited.
実施の形態1.
[遠心送風機1]
 図1は、本発明の実施の形態1に係る遠心送風機1の斜視図である。図2は、図1の遠心送風機1を吸込口5側から見た側面図である。図3は、図2の遠心送風機1のA-A線位置における部分断面図である。なお、図3に示す矢印は、遠心送風機1内を流れる空気の流れを示したものである。図1~図3を用いて、遠心送風機1の基本的な構造について説明する。遠心送風機1は、例えば、シロッコファン、あるいは、ターボファン等の多翼遠心型の遠心送風機1であり、気流を発生させる羽根車2と、羽根車2を収納するファンケーシング4とを有する。
Embodiment 1.
[Centrifugal blower 1]
1 is a perspective view of a centrifugal blower 1 according to Embodiment 1 of the present invention. FIG. 2 is a side view of the centrifugal blower 1 of FIG. 1 viewed from the suction port 5 side. FIG. 3 is a partial cross-sectional view of the centrifugal blower 1 of FIG. 2 taken along the line AA. The arrows shown in FIG. 3 indicate the flow of air flowing through the centrifugal blower 1. The basic structure of the centrifugal blower 1 will be described with reference to FIGS. 1 to 3. The centrifugal blower 1 is, for example, a multi-blade centrifugal type centrifugal blower 1 such as a sirocco fan or a turbo fan, and includes an impeller 2 that generates an air flow and a fan casing 4 that houses the impeller 2.
(羽根車2)
 羽根車2は、モータ等(図示は省略)によって回転駆動され、回転で生じる遠心力により、半径方向外方へ空気を強制的に送出する。羽根車2は、図1に示すように、円盤状の主板2aと、主板2aの周縁部2a1に設置される複数枚の羽根2dと、を有する。主板2aの中心部には、軸部2bが設けられている。軸部2bの中央には、ファンモータ(図示は省略)が接続され、羽根車2はモータの駆動力によって回転する。
(Impeller 2)
The impeller 2 is rotationally driven by a motor or the like (not shown), and the centrifugal force generated by the rotation forcedly sends air outward in the radial direction. As shown in FIG. 1, the impeller 2 has a disc-shaped main plate 2a and a plurality of blades 2d installed on a peripheral edge 2a1 of the main plate 2a. A shaft portion 2b is provided at the center of the main plate 2a. A fan motor (not shown) is connected to the center of the shaft portion 2b, and the impeller 2 is rotated by the driving force of the motor.
 また、羽根車2は、軸部2bの回転軸RSの軸方向において、図3に示すように、複数の羽根2dの主板2aと反対側の端部に主板2aに対向するリング状の側板2cを有している。側板2cは、複数の羽根2dを連結することで、各羽根2dの先端の位置関係を維持し、かつ、複数の羽根2dを補強している。なお、羽根車2は、側板2cを備えない構造であってもよい。羽根車2が側板2cを有する場合、複数の羽根2dのそれぞれは、一端が主板2aと接続され、他端が側板2cと接続されている。したがって、複数の羽根2dは、主板2aと側板2cとの間に配置されている。羽根車2は、主板2aと複数の羽根2dとにより円筒形状に構成され、軸部2bの回転軸RSの軸方向において、主板2aと反対側の側板2c側に、羽根車2の吸込口2eを形成している。 Further, in the impeller 2, as shown in FIG. 3, in the axial direction of the rotation axis RS of the shaft portion 2b, a ring-shaped side plate 2c facing the main plate 2a is provided at an end of the plurality of blades 2d opposite to the main plate 2a. have. By connecting the plurality of blades 2d, the side plate 2c maintains the positional relationship of the tips of the blades 2d and reinforces the plurality of blades 2d. The impeller 2 may have a structure without the side plate 2c. When the impeller 2 has the side plate 2c, one end of each of the plurality of blades 2d is connected to the main plate 2a and the other end is connected to the side plate 2c. Therefore, the plurality of blades 2d are arranged between the main plate 2a and the side plate 2c. The impeller 2 is formed into a cylindrical shape by a main plate 2a and a plurality of blades 2d, and a suction port 2e of the impeller 2 is provided on the side plate 2c side opposite to the main plate 2a in the axial direction of the rotation axis RS of the shaft portion 2b. Is formed.
 複数の羽根2dは、軸部2bを中心とする円周状に配置され、基端が主板2aの面上に固定されている。複数の羽根2dは、軸部2bの回転軸RSの軸方向において、主板2aの両側に設けられている。各羽根2dは、主板2aの周縁部2a1に、互いに一定の間隔をあけて配置されている。各羽根2dは、例えば湾曲した長方形の板状に形成されており、半径方向に沿うように、又は半径方向に対して所定の角度で傾斜して設置される。 The plurality of blades 2d are arranged in a circle around the shaft 2b, and the base ends are fixed on the surface of the main plate 2a. The plurality of blades 2d are provided on both sides of the main plate 2a in the axial direction of the rotation axis RS of the shaft portion 2b. The blades 2d are arranged on the peripheral edge portion 2a1 of the main plate 2a at regular intervals. Each blade 2d is formed in a curved rectangular plate shape, for example, and is installed along the radial direction or inclined at a predetermined angle with respect to the radial direction.
 羽根車2は、上記のような構成を備え、回転されることで、主板2aと複数の羽根2dとで囲まれる空間に吸込んだ空気を羽根2dと隣接する羽根2dとの間に通して、図3に示すように、半径方向外方に送り出すことができる。なお、実施の形態1において、各羽根2dは主板2aに対してほぼ垂直に立ち上がるように設けられているが、当該構成に限定されものではなく、各羽根2dは、主板2aの垂直方向に対して傾斜して設けられてもよい。 The impeller 2 has the above-described configuration, and when it is rotated, the air sucked into the space surrounded by the main plate 2a and the plurality of blades 2d is passed between the blade 2d and the adjacent blade 2d, As shown in FIG. 3, it can be fed outward in the radial direction. In the first embodiment, each blade 2d is provided so as to rise substantially perpendicularly to the main plate 2a, but the present invention is not limited to this configuration, and each blade 2d is perpendicular to the main plate 2a. And may be inclined.
(ファンケーシング4)
 ファンケーシング4は、羽根車2を囲んでおり、羽根車2から吹き出された空気を整流する。ファンケーシング4は、スクロール部41と、吐出部42と、を有する。
(Fan casing 4)
The fan casing 4 surrounds the impeller 2 and rectifies the air blown from the impeller 2. The fan casing 4 has a scroll portion 41 and a discharge portion 42.
(スクロール部41)
 スクロール部41は、羽根車2が発生させた気流の動圧を静圧に変換する風路を形成する。スクロール部41は、羽根車2を構成する軸部2bの回転軸RSの軸方向から羽根車2を覆い、空気を取り込む吸込口5が形成された側壁4aと、羽根車2を軸部2bの回転軸RSの径方向から囲む周壁4cと、を有する。また、スクロール部41は、吐出部42と周壁4cの巻始部41aとの間に位置して曲面を構成し、羽根車2が発生させた気流を、スクロール部41を介して吐出口42aに導く舌部43を有する。なお、軸部2bの径方向とは、軸部2bに垂直な方向である。周壁4c及び側壁4aにより構成されるスクロール部41の内部空間は、羽根車2から吹き出された空気が周壁4cに沿って流れる空間となっている。
(Scroll part 41)
The scroll portion 41 forms an air passage that converts the dynamic pressure of the airflow generated by the impeller 2 into static pressure. The scroll portion 41 covers the impeller 2 from the axial direction of the rotation axis RS of the shaft portion 2b forming the impeller 2, and the side wall 4a having the suction port 5 for taking in air, and the impeller 2 of the shaft portion 2b. And a peripheral wall 4c that surrounds the rotation axis RS in the radial direction. Further, the scroll portion 41 is positioned between the discharge portion 42 and the winding start portion 41a of the peripheral wall 4c to form a curved surface, and the airflow generated by the impeller 2 is discharged to the discharge port 42a via the scroll portion 41. It has a tongue 43 to guide it. The radial direction of the shaft portion 2b is a direction perpendicular to the shaft portion 2b. The inner space of the scroll portion 41 configured by the peripheral wall 4c and the side wall 4a is a space in which the air blown out from the impeller 2 flows along the peripheral wall 4c.
(側壁4a)
 側壁4aは、羽根車2の回転軸RSの軸方向に対して垂直に配置されて羽根車2を覆う。ファンケーシング4の側壁4aには、羽根車2とファンケーシング4の外部との間を空気が流通できるように、吸込口5が形成されている。吸込口5は円形状に形成され、吸込口5の中心と羽根車2の軸部2bの中心とがほぼ一致するように配設される。側壁4aの当該構成により、吸込口5近傍の空気は滑らかに流動し、また、吸込口5から羽根車2に効率よく流入する。図1~図3に示すように、遠心送風機1は、軸部2bの回転軸RSの軸方向において、主板2aの両側に、吸込口5が形成された側壁4aを有する両吸込タイプのファンケーシング4を有する。すなわち、遠心送風機1は、ファンケーシング4が側壁4aを二つ有し、側壁4aはそれぞれ対向するように配置されている。
(Side wall 4a)
The side wall 4 a is arranged perpendicular to the axial direction of the rotation axis RS of the impeller 2 and covers the impeller 2. A suction port 5 is formed in the side wall 4 a of the fan casing 4 so that air can flow between the impeller 2 and the outside of the fan casing 4. The suction port 5 is formed in a circular shape, and is arranged so that the center of the suction port 5 and the center of the shaft portion 2b of the impeller 2 substantially coincide with each other. Due to the configuration of the side wall 4a, the air in the vicinity of the suction port 5 flows smoothly and efficiently flows into the impeller 2 from the suction port 5. As shown in FIGS. 1 to 3, the centrifugal blower 1 is a double-suction type fan casing having side walls 4a having suction ports 5 formed on both sides of a main plate 2a in the axial direction of a rotation axis RS of a shaft portion 2b. Have 4. That is, in the centrifugal blower 1, the fan casing 4 has two side walls 4a, and the side walls 4a are arranged to face each other.
(周壁4c)
 周壁4cは、羽根車2を軸部2bの径方向から囲み、複数の羽根2dと対向する内周面を構成する。周壁4cは、羽根車2の回転軸RSの軸方向と平行に配置されて羽根車2を覆う。周壁4cは、図2に示すように、舌部43とスクロール部41との境界に位置する巻始部41aから羽根車2の回転方向Rに沿って舌部43から離れた側の吐出部42とスクロール部41との境界に位置する巻終部41bまで設けられている。巻始部41aは、湾曲面を構成する周壁4cにおいて、羽根車2の回転により発生する気流の上流側の端部であり、巻終部41bは、羽根車2の回転により発生する気流の下流側の端部である。
(Peripheral wall 4c)
The peripheral wall 4c surrounds the impeller 2 in the radial direction of the shaft portion 2b and constitutes an inner peripheral surface facing the plurality of blades 2d. The peripheral wall 4c is arranged parallel to the axial direction of the rotation axis RS of the impeller 2 and covers the impeller 2. As shown in FIG. 2, the peripheral wall 4c has a discharge portion 42 on the side away from the tongue portion 43 along the rotation direction R of the impeller 2 from the winding start portion 41a located at the boundary between the tongue portion 43 and the scroll portion 41. Is provided up to the winding end portion 41b located at the boundary between the scroll portion 41 and the scroll portion 41. The winding start portion 41a is an end portion on the upstream side of the air flow generated by the rotation of the impeller 2 in the peripheral wall 4c forming the curved surface, and the winding end portion 41b is the downstream end of the air flow generated by the rotation of the impeller 2. Side end.
 周壁4cは、羽根車2の回転軸RSの軸方向に幅がある。周壁4cは、図2に示すように、軸部2bが構成する回転軸RSからの距離が、羽根車2の回転方向Rに進むに従い次第に遠くなる所定の拡大率で定義される渦巻形状に形成される。つまり、周壁4cは、舌部43から吐出部42にかけて、周壁4cと羽根車2の外周との間隙は所定の割合で拡大し、また、空気の流路面積は次第に大きくなる。なお、所定の拡大率で定義される渦巻形状としては、例えば、対数螺旋、アルキメデス螺旋、あるいは、インボリュート曲線等に基づく渦巻形状がある。周壁4cの内周面は、渦巻形状の巻始めとなる巻始部41aから渦巻形状の巻終りとなる巻終部41bまで羽根車2の周方向に沿って滑らかに湾曲する湾曲面を構成する。このような構成により、羽根車2から送り出された空気は、吐出部42の方向へ羽根車2と周壁4cとの間隙を滑らかに流動する。このため、ファンケーシング4内では、舌部43から吐出部42へ向かって空気の静圧が効率よく上昇する。 The peripheral wall 4c has a width in the axial direction of the rotation axis RS of the impeller 2. As shown in FIG. 2, the peripheral wall 4c is formed in a spiral shape defined by a predetermined enlargement ratio in which the distance from the rotation axis RS formed by the shaft portion 2b gradually increases in the rotation direction R of the impeller 2. To be done. That is, in the peripheral wall 4c, the gap between the peripheral wall 4c and the outer circumference of the impeller 2 is enlarged at a predetermined ratio from the tongue portion 43 to the discharge portion 42, and the flow passage area of air is gradually increased. The spiral shape defined by the predetermined enlargement ratio includes, for example, a logarithmic spiral, an Archimedes spiral, or a spiral shape based on an involute curve or the like. The inner peripheral surface of the peripheral wall 4c forms a curved surface that smoothly curves along the circumferential direction of the impeller 2 from a winding start portion 41a that is a spiral start to a winding end portion 41b that is a spiral end. .. With such a configuration, the air sent from the impeller 2 smoothly flows in the gap between the impeller 2 and the peripheral wall 4c toward the discharge portion 42. Therefore, in the fan casing 4, the static pressure of air efficiently increases from the tongue portion 43 toward the discharge portion 42.
(吐出部42)
 吐出部42は、羽根車2が発生させ、スクロール部41を通過した気流が吐出される吐出口42aを形成する。吐出部42は、周壁4cに沿って流動する空気の流れ方向に直交する断面が、矩形状となる中空の管で構成される。図1及び図2に示すように、吐出部42は、羽根車2から送り出されて周壁4cと羽根車2との間隙を流動する空気を、ファンケーシング4の外部へ排出するように案内する流路を形成する。
(Discharge part 42)
The discharge part 42 forms a discharge port 42a through which the airflow generated by the impeller 2 and passed through the scroll part 41 is discharged. The discharge part 42 is configured by a hollow tube having a rectangular cross section orthogonal to the flow direction of the air flowing along the peripheral wall 4c. As shown in FIGS. 1 and 2, the discharge part 42 guides the air sent out from the impeller 2 and flowing in the gap between the peripheral wall 4 c and the impeller 2 to the outside of the fan casing 4. Forming a path.
 吐出部42は、図1に示すように、延設板42bと、ディフューザ板42cと、第1側板42dと、第2側板42eと等で構成される。延設板42bは、周壁4cの下流側の巻終部41bに滑らかに連続して、周壁4cと一体に形成される。ディフューザ板42cは、ファンケーシング4の舌部43と一体に形成されており、延設板42bと対向する。ディフューザ板42cは、吐出部42内の空気の流れ方向に沿って流路の断面積が次第に拡大するように、延設板42bと所定の角度を有して形成されている。第1側板42dは、ファンケーシング4の側壁4aと一体に形成されており、第2側板42eは、ファンケーシング4の反対側の側壁4aと一体に形成されている。そして、対向する第1側板42dと第2側板42eとは、延設板42bとディフューザ板42cとの間に形成されている。このように、吐出部42は、延設板42b、ディフューザ板42c、第1側板42d及び第2側板42eにより、断面矩形状の流路が形成されている。 As shown in FIG. 1, the discharge part 42 includes an extension plate 42b, a diffuser plate 42c, a first side plate 42d, a second side plate 42e, and the like. The extending plate 42b is smoothly continuous with the winding end portion 41b on the downstream side of the peripheral wall 4c and is integrally formed with the peripheral wall 4c. The diffuser plate 42c is integrally formed with the tongue portion 43 of the fan casing 4, and faces the extension plate 42b. The diffuser plate 42c is formed at a predetermined angle with the extending plate 42b so that the cross-sectional area of the flow path gradually increases along the air flow direction in the discharge part 42. The first side plate 42d is formed integrally with the side wall 4a of the fan casing 4, and the second side plate 42e is formed integrally with the side wall 4a on the opposite side of the fan casing 4. And the 1st side plate 42d and the 2nd side plate 42e which oppose are formed between the extended plate 42b and the diffuser plate 42c. As described above, in the discharge unit 42, the extension plate 42b, the diffuser plate 42c, the first side plate 42d, and the second side plate 42e form a flow channel having a rectangular cross section.
(舌部43)
 ファンケーシング4において、吐出部42のディフューザ板42cと、周壁4cの巻始部41aとの間に舌部43が形成されている。舌部43は、スクロール部41と吐出部42との境界部分に設けられ、ファンケーシング4の内部に膨出する凸部である。舌部43は、ファンケーシング4において、軸部2bの回転軸RSの軸方向と平行な方向に延びている。舌部43は、羽根車2が発生させた気流を、スクロール部41を介して吐出口42aに導く。
(Tongue 43)
In the fan casing 4, a tongue portion 43 is formed between the diffuser plate 42c of the discharge portion 42 and the winding start portion 41a of the peripheral wall 4c. The tongue portion 43 is a convex portion that is provided at the boundary between the scroll portion 41 and the discharge portion 42 and bulges inside the fan casing 4. The tongue portion 43 extends in the fan casing 4 in a direction parallel to the axial direction of the rotation axis RS of the shaft portion 2b. The tongue portion 43 guides the airflow generated by the impeller 2 to the discharge port 42a via the scroll portion 41.
 舌部43は、所定の曲率半径で形成されており、周壁4cは、舌部43を介してディフューザ板42cと滑らかに接続されている。吸込口5から羽根車2を通過して送り出された空気が、ファンケーシング4によって集められて吐出部42に流入する際、舌部43が空気の流路の分岐点となる。すなわち、吐出部42の流入口では、吐出口42aへ向かう気流と及び舌部43から上流側へ再流入する気流とが形成される。また、吐出部42に流入する空気流れは、ファンケーシング4を通過する間に静圧が上昇し、ファンケーシング4内よりも高圧となる。そのため、舌部43は、このような圧力差を仕切る機能を有すると共に、曲面により、吐出部42に流入する空気を各流路へ導く機能を備えている。 The tongue portion 43 is formed with a predetermined radius of curvature, and the peripheral wall 4c is smoothly connected to the diffuser plate 42c via the tongue portion 43. When the air sent out from the suction port 5 through the impeller 2 is collected by the fan casing 4 and flows into the discharge part 42, the tongue part 43 becomes a branch point of the air flow path. That is, at the inflow port of the ejection part 42, an air flow toward the ejection port 42a and an air flow re-inflowing from the tongue part 43 to the upstream side are formed. Further, the static pressure of the air flow flowing into the discharge portion 42 rises while passing through the fan casing 4, and becomes higher than that in the fan casing 4. Therefore, the tongue portion 43 has a function of partitioning such a pressure difference, and also has a function of guiding the air flowing into the discharge portion 42 to each flow path by the curved surface.
(ベルマウス3)
 側壁4aに設けられた吸込口5は、ベルマウス3によって形成されている。ベルマウス3は、羽根車2に吸入される気体を整流して羽根車2の吸込口2eに流入させる。ベルマウス3は、ファンケーシング4の外部から内部に向けて開口径が次第に小さくなるように形成されている。ファンケーシング4に吸い込まれる気体の流れ方向において、ベルマウス3は、羽根車2の上流側に設置されている。ベルマウス3は、羽根車2の吸込口2eに対向する位置に形成されている。ベルマウス3は、ファンケーシング4に吸い込まれる気流をファンケーシング4内に案内する空気取込部3cを有する。
(Bellmouth 3)
The suction port 5 provided on the side wall 4 a is formed by the bell mouth 3. The bell mouth 3 rectifies the gas sucked into the impeller 2 and causes the gas to flow into the suction port 2e of the impeller 2. The bell mouth 3 is formed such that the opening diameter gradually decreases from the outside to the inside of the fan casing 4. The bell mouth 3 is installed upstream of the impeller 2 in the flow direction of the gas sucked into the fan casing 4. The bell mouth 3 is formed at a position facing the suction port 2e of the impeller 2. The bell mouth 3 has an air intake portion 3c that guides the air flow sucked into the fan casing 4 into the fan casing 4.
 空気取込部3cは、筒状に形成されており、空気取込部3cの内周面が吸込口5を形成する。ファンケーシング4の外部から内部に流入する気体は、この吸込口5を通過する。空気取込部3cは、吸込口5を通じてファンケーシング4に吸い込まれる気流の方向において上流側の端部である上流端部3aから下流側の端部である下流端部3bに向かって開口径が次第に小さくなるように形成されている。すなわち、空気取込部3cは、回転軸RSの軸心方向に延びるように設けられており、吸込口5を通じてファンケーシング4に吸い込まれる気流の上流から下流に向かって風路が狭くなるように形成されている。 The air intake part 3c is formed in a tubular shape, and the inner peripheral surface of the air intake part 3c forms the suction port 5. The gas flowing from the outside to the inside of the fan casing 4 passes through the suction port 5. The air intake portion 3c has an opening diameter from the upstream end portion 3a, which is the upstream end portion in the direction of the air flow sucked into the fan casing 4 through the suction port 5, to the downstream end portion 3b, which is the downstream end portion. It is formed to be gradually smaller. That is, the air intake portion 3c is provided so as to extend in the axial direction of the rotation shaft RS, and the air passage is narrowed from the upstream side to the downstream side of the air flow sucked into the fan casing 4 through the suction port 5. Has been formed.
 ベルマウス3は、回転軸RSの軸方向に見た平面視において、環状に形成されており、上流端部3aは、外縁部分を形成し、下流端部3bは、内縁部分を形成する。従って、上流端部3aは、ベルマウス3における最外径の部分であり、筒状に形成されたベルマウス3の最も拡大した部分である。また、下流端部3bは、ベルマウス3における最内径の部分であり、筒状に形成されたベルマウス3の最も縮小した部分である。 The bell mouth 3 is formed in an annular shape in a plan view as viewed in the axial direction of the rotation axis RS, the upstream end portion 3a forms an outer edge portion, and the downstream end portion 3b forms an inner edge portion. Therefore, the upstream end 3a is the outermost diameter portion of the bell mouth 3, and is the most enlarged portion of the bell mouth 3 formed in a tubular shape. The downstream end portion 3b is the innermost portion of the bell mouth 3, and is the most contracted portion of the bell mouth 3 formed in a tubular shape.
 空気取込部3cは、回転軸RSの軸方向を中心とした回転面における断面の形状が円弧状に形成されており、吸込口5を形成する面は、曲面で形成されている。したがって、空気取込部3cは、図3に示すように、ベルマウス3の垂直断面において、吸込口5を形成する壁部3c1が、円弧状に形成されている。 The air intake portion 3c has a circular cross section in a rotation surface centered on the axial direction of the rotation axis RS, and a surface forming the suction port 5 is formed into a curved surface. Therefore, in the air intake part 3c, as shown in FIG. 3, in the vertical cross section of the bell mouth 3, the wall part 3c1 forming the suction port 5 is formed in an arc shape.
 図4は、図3のベルマウス3のB部の拡大図である。次に、図4に示すように、ベルマウス3の断面図を用いてベルマウス3の詳細な構成について説明する。なお、回転軸RSは、回転軸RSと下流端部3bと交点ECとの位置関係を説明するために記載したものである。図4において、楕円ELは、ベルマウス3の上流端部3aを短軸MIの第1端部E1とし、ベルマウス3の下流端部3bを長軸MAの第2端部E2とする仮想の楕円である。仮想の楕円ELは、ベルマウス3の垂直断面において、上流端部3aからファンケーシング4内に延びる短軸MIと、下流端部3bから羽根車2の径方向と平行な方向に延びる長軸MAとを有する。交点ECは、短軸MIと、長軸MAとの交点であり、仮想の楕円ELの中心点である。 FIG. 4 is an enlarged view of part B of the bell mouth 3 of FIG. Next, as shown in FIG. 4, a detailed configuration of the bell mouth 3 will be described with reference to a sectional view of the bell mouth 3. The rotation axis RS is described to explain the positional relationship between the rotation axis RS, the downstream end portion 3b, and the intersection EC. In FIG. 4, an ellipse EL is an imaginary line in which the upstream end 3a of the bell mouth 3 is the first end E1 of the short axis MI and the downstream end 3b of the bell mouth 3 is the second end E2 of the long axis MA. It is an ellipse. The virtual ellipse EL has a short axis MI extending from the upstream end 3a into the fan casing 4 and a long axis MA extending from the downstream end 3b in a direction parallel to the radial direction of the impeller 2 in the vertical cross section of the bell mouth 3. Have and. The intersection EC is the intersection of the short axis MI and the long axis MA, and is the center point of the virtual ellipse EL.
 上流端部3aは、径方向において、ベルマウス3の最外径の部分であり、下流端部3bは、ベルマウス3の最内径の部分である。仮想の楕円ELは、ベルマウス3の垂直断面において、上流端部3a及び下流端部3bのうち、一方の端部を長軸MAの端部とし、他方の端部を短軸MIの端部とし、長軸MAと短軸MIとの交点ECが、羽根車2の回転軸RSに対して下流端部3bよりも外周側に位置する。 The upstream end 3a is the outermost diameter portion of the bell mouth 3 in the radial direction, and the downstream end 3b is the innermost diameter portion of the bell mouth 3. In the vertical cross section of the bell mouth 3, the virtual ellipse EL has one end of the upstream end 3a and the downstream end 3b as the end of the major axis MA and the other end as the end of the minor axis MI. The intersection EC of the long axis MA and the short axis MI is located on the outer peripheral side with respect to the rotation axis RS of the impeller 2 with respect to the downstream end portion 3b.
 第1外形線L1は、図4に示すように、楕円ELの外形線において、上流端部3aと下流端部3bとを結ぶ最短距離の外形線である。 As shown in FIG. 4, the first outline L1 is the outline of the shortest distance connecting the upstream end 3a and the downstream end 3b in the outline of the ellipse EL.
 第1接線HTは、楕円ELの第1端部E1と接する仮想の接線であり、第2接線VTは、楕円ELの第2端部E2と接する仮想の接線である。すなわち、第1接線HTは、楕円ELの上流端部3aと接する仮想の接線であり、第2接線VTは、楕円ELの下流端部3bと接する仮想の接線である。 The first tangent line HT is a virtual tangent line that contacts the first end E1 of the ellipse EL, and the second tangent line VT is a virtual tangent line that contacts the second end E2 of the ellipse EL. That is, the first tangent line HT is a virtual tangent line that contacts the upstream end 3a of the ellipse EL, and the second tangent line VT is a virtual tangent line that contacts the downstream end 3b of the ellipse EL.
 曲面ESは、回転軸RSを中心として楕円ELを回転させたときの第1外形線L1の軌跡が作る仮想の面である。矢印F1は、ベルマウス3の空気取込部3cが曲面ESの形状であった場合に、気体が流れる方向を表す矢印である。矢印F2は、実施の形態1の遠心送風機1におけるベルマウス3の空気取込部3cに沿って、気体が流れる方向を表わす矢印である。 The curved surface ES is a virtual surface created by the locus of the first outline L1 when the ellipse EL is rotated about the rotation axis RS. The arrow F1 is an arrow indicating the direction in which the gas flows when the air intake portion 3c of the bell mouth 3 has the shape of the curved surface ES. The arrow F2 is an arrow indicating the direction in which the gas flows along the air intake portion 3c of the bell mouth 3 in the centrifugal blower 1 of the first embodiment.
 ベルマウス3は、空気取込部3cの壁部3c1が、上流端部3aと下流端部3bとの間で、上流端部3aを短軸MIの第1端部E1とし下流端部3bを長軸MAの第2端部E2とする仮想の楕円ELの第1外形線L1からベルマウス3の内周側に膨らんでいる。換言すれば、空気取込部3cは、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らんでいる。そのため、空気取込部3cは、図4に示すように、ベルマウス3の垂直断面において弧を描く曲線状に形成されている。 In the bell mouth 3, the wall portion 3c1 of the air intake portion 3c has the upstream end portion 3a as the first end portion E1 of the short axis MI and the downstream end portion 3b between the upstream end portion 3a and the downstream end portion 3b. It bulges toward the inner peripheral side of the bell mouth 3 from the first outer shape line L1 of the virtual ellipse EL which is the second end E2 of the major axis MA. In other words, in the air intake part 3c, the wall part 3c1 between the upstream end part 3a and the downstream end part 3b swells in the direction away from the first outline L1 with the intersection EC as a reference. Therefore, as shown in FIG. 4, the air intake portion 3c is formed in a curved shape that draws an arc in the vertical cross section of the bell mouth 3.
 空気取込部3cは、楕円ELの第1端部E1と接する仮想の第1接線HTと、楕円ELの第2端部E2と接する仮想の第2接線VTと、第1外形線L1とで囲まれる範囲内で膨らんでいる。 The air intake portion 3c includes a virtual first tangent line HT that contacts the first end E1 of the ellipse EL, a virtual second tangent line VT that contacts the second end E2 of the ellipse EL, and a first outline L1. It swells within the enclosed area.
 すなわち、空気取込部3cは、楕円ELの上流端部3aと接する仮想の第1接線HTと、楕円ELの下流端部3bと接する仮想の第2接線VTと、第1外形線L1とで囲まれる範囲内において、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らんでいる。なお、遠心送風機1のベルマウス3は、一般的なベルマウスを半径方向及び軸方向に拡大するものである。遠心送風機1は、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を持つことで、最内径となる下流端部3b近傍のベルマウス3の曲率が軸方向に近づく。 That is, the air intake part 3c is composed of a virtual first tangent line HT that contacts the upstream end 3a of the ellipse EL, a virtual second tangent line VT that contacts the downstream end 3b of the ellipse EL, and a first outline L1. Within the enclosed range, the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in the direction away from the first outline L1 with the intersection EC as a reference. The bell mouth 3 of the centrifugal blower 1 expands a general bell mouth in the radial direction and the axial direction. The centrifugal blower 1 has a shape in which the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in the direction away from the first outline L1 on the basis of the intersection EC, so that the downstream end portion having the innermost diameter is formed. The curvature of the bell mouth 3 near 3b approaches the axial direction.
[遠心送風機1の動作]
 羽根車2が回転すると、ファンケーシング4の外の空気は、吸込口5を通じてファンケーシング4の内部に吸い込まれる。ファンケーシング4の内部に吸い込まれる空気は、ベルマウス3の空気取込部3cに沿って流れ、羽根車2に吸い込まれる。羽根車2に吸い込まれた空気は、複数の羽根2dの間を通る過程で、動圧と静圧が付加された気流となって羽根車2の径方向外側に向かって吹き出される。羽根車2から吹き出された気流は、スクロール部41において周壁4cの内側と羽根2dとの間を案内される間に動圧が静圧に変換される。そして、羽根車2から吹き出された気流は、スクロール部41を通過後、吐出部42に形成された吐出口42aからファンケーシング4の外へ吹き出される。
[Operation of centrifugal blower 1]
When the impeller 2 rotates, the air outside the fan casing 4 is sucked into the fan casing 4 through the suction port 5. The air sucked into the fan casing 4 flows along the air intake portion 3c of the bell mouth 3 and is sucked into the impeller 2. The air sucked into the impeller 2 becomes an airflow to which dynamic pressure and static pressure are applied in the process of passing between the plurality of blades 2d, and is blown out toward the radially outer side of the impeller 2. The dynamic pressure of the air flow blown out from the impeller 2 is converted into static pressure while being guided between the inside of the peripheral wall 4c and the blade 2d in the scroll portion 41. Then, the airflow blown out from the impeller 2 passes through the scroll portion 41, and then is blown out of the fan casing 4 from the discharge port 42a formed in the discharge portion 42.
[遠心送風機1の作用効果]
 空気取込部3cは、楕円ELの上流端部3aと接する仮想の第1接線HTと、楕円ELの下流端部3bと接する仮想の第2接線VTと、第1外形線L1と、で囲まれる範囲内において、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らんでいる。遠心送風機1は、当該構成を備えることで、ベルマウス3の最内径となる下流端部3b近傍のベルマウス3の曲率が回転軸RSの軸方向に近づく。そのため、遠心送風機1は、ベルマウス3に流入する速い気流をベルマウス3の外周側から内周側に沿わせ、空気取込部3cにおいて気体の流れを無理なく軸方向に転向させることができる。その結果、遠心送風機1は、ベルマウス3において、最内径となる下流端部3b近傍での気流の剥離を抑制することができ、羽根車2への乱れた気流の流入を抑制できることで、騒音を抑制することができる。また、ベルマウス3は、最内径となる下流端部3b近傍での気流の剥離が抑制され、羽根車2への乱れた気流の流入を抑制できることで、遠心送風機1は、空気を効率よく取り込むことができる。もし、実施の形態1に係る遠心送風機1を適用しない場合、すなわち、一般的なベルマウスを半径方向かつ回転軸の軸方向に拡大する場合に楕円ELに沿った形状であると、ベルマウスの内周側でベルマウスから気流が剥離する場合がある。実施の形態1に係る遠心送風機1のベルマウス3は、上記の構成を有することで、最内径となる下流端部3b近傍での気流の剥離を低減することができる。
[Effect of centrifugal blower 1]
The air intake part 3c is surrounded by an imaginary first tangent line HT that contacts the upstream end 3a of the ellipse EL, an imaginary second tangent line VT that contacts the downstream end 3b of the ellipse EL, and a first outline L1. Within the range, the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b swells in the direction away from the first outline L1 with the intersection EC as a reference. With the configuration of the centrifugal blower 1, the curvature of the bell mouth 3 near the downstream end 3b, which is the innermost diameter of the bell mouth 3, approaches the axial direction of the rotation axis RS. Therefore, the centrifugal blower 1 can cause the fast airflow flowing into the bell mouth 3 to extend from the outer peripheral side to the inner peripheral side of the bell mouth 3, and can easily turn the gas flow in the axial direction in the air intake portion 3c. .. As a result, the centrifugal blower 1 can suppress the separation of the air flow in the vicinity of the downstream end portion 3b, which is the innermost diameter, in the bell mouth 3, and can suppress the inflow of the turbulent air flow into the impeller 2, thereby reducing noise. Can be suppressed. Further, the bell mouth 3 suppresses the separation of the air flow in the vicinity of the downstream end portion 3b that is the innermost diameter, and can suppress the inflow of the turbulent air flow into the impeller 2, so that the centrifugal blower 1 efficiently takes in the air. be able to. If the centrifugal blower 1 according to the first embodiment is not applied, that is, if the general bell mouth is expanded in the radial direction and the axial direction of the rotation axis, the shape of the bell mouth is along the ellipse EL. The air flow may separate from the bell mouth on the inner peripheral side. The bell mouth 3 of the centrifugal blower 1 according to the first embodiment has the above-described configuration, so that air flow separation near the downstream end 3b, which is the innermost diameter, can be reduced.
実施の形態2.
 図5は、本発明の実施の形態2に係る遠心送風機1Aのベルマウス3Aの部分拡大図である。なお、図1~図4の遠心送風機1と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態2に係る遠心送風機1Aは、実施の形態1に係る遠心送風機1のベルマウス3の構成を更に特定したものであり、ベルマウス3A以外の他の部分の構成は、実施の形態1に係る遠心送風機1と同様である。従って、以下の説明では、図5を用いて、実施の形態2に係る遠心送風機1Aのベルマウス3Aの構成を中心に説明する。
Embodiment 2.
FIG. 5 is a partially enlarged view of bell mouth 3A of centrifugal fan 1A according to the second embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 of FIGS. 1 to 4 are designated by the same reference numerals, and the description thereof will be omitted. The centrifugal blower 1A according to the second embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3A are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3A of the centrifugal blower 1A according to the second embodiment will be mainly described with reference to FIG.
 回転軸RSの軸方向において、ベルマウス3Aの上流端部3aと下流端部3bとの間の距離を第1軸方向距離D1と定義する。換言すれば、第1軸方向距離D1は、ベルマウス3Aの上流端部3aと下流端部3bとを、回転軸RSに対して垂直方向に回転軸RSに投影した場合に、回転軸RSに投影された位置における上流端部3aと下流端部3bとの間の距離である。なお、第1軸方向距離D1は、仮想の楕円ELの短軸MI半径でもある。すなわち、第1軸方向距離D1は、上流端部3aと仮想の楕円ELの交点ECとの間の距離でもある。また、回転軸RSの径方向において、ベルマウス3Aの上流端部3aと下流端部3bとの間の距離を第1径方向距離D2と定義する。換言すれば、第1径方向距離D2は、回転軸RSの軸方向に見た平面視において、仮想の同一平面上に現れるベルマウス3Aの上流端部3aと下流端部3bとの間の距離である。なお、第1径方向距離D2は、仮想の楕円ELの長軸半径である。すなわち、第1径方向距離D2は、下流端部3bと仮想の楕円ELの交点ECとの間の距離でもある。 The distance between the upstream end 3a and the downstream end 3b of the bell mouth 3A in the axial direction of the rotation axis RS is defined as the first axial direction distance D1. In other words, the first axial distance D1 is the rotation axis RS when the upstream end 3a and the downstream end 3b of the bell mouth 3A are projected onto the rotation axis RS in the direction perpendicular to the rotation axis RS. It is the distance between the upstream end 3a and the downstream end 3b at the projected position. The first axial distance D1 is also the minor axis MI radius of the virtual ellipse EL. That is, the first axial direction distance D1 is also the distance between the upstream end 3a and the intersection EC of the virtual ellipse EL. Further, a distance between the upstream end 3a and the downstream end 3b of the bell mouth 3A in the radial direction of the rotation axis RS is defined as a first radial distance D2. In other words, the first radial distance D2 is the distance between the upstream end portion 3a and the downstream end portion 3b of the bell mouth 3A that appear on the same virtual plane in a plan view seen in the axial direction of the rotation axis RS. Is. The first radial direction distance D2 is the major axis radius of the virtual ellipse EL. That is, the first radial distance D2 is also the distance between the downstream end 3b and the intersection EC of the virtual ellipse EL.
 ベルマウス3Aは、第1径方向距離D2>第1軸方向距離D1の関係を満たすように形成されている。なお、ベルマウス3Aは、第1径方向距離D2>第1軸方向距離D1の関係を満たす部分が、ベルマウス3の全周に形成されてもよく、又は、周方向において部分的に形成されてもよい。遠心送風機1Aのベルマウス3Aは、一般的なベルマウスを半径方向に拡大するものである。遠心送風機1Aは、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を有することで、最内径となる下流端部3b近傍のベルマウス3Aの曲率が軸方向に近づく。 The bell mouth 3A is formed so as to satisfy the relationship of the first radial direction distance D2>the first axial direction distance D1. In the bell mouth 3A, a portion satisfying the relationship of the first radial direction distance D2>the first axial direction distance D1 may be formed on the entire circumference of the bell mouth 3 or may be formed partially in the circumferential direction. May be. The bell mouth 3A of the centrifugal blower 1A expands a general bell mouth in the radial direction. The centrifugal blower 1A has a wall end 3c1 between the upstream end 3a and the downstream end 3b, which has a shape bulging in a direction away from the first outline L1 on the basis of the intersection EC, so that the downstream end having the innermost diameter is formed. The curvature of the bell mouth 3A near 3b approaches the axial direction.
[遠心送風機1Aの作用効果]
 以上のように、ベルマウス3Aは、第1径方向距離D2>第1軸方向距離D1の関係を満たすように形成されている。そして、遠心送風機1Aは、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を有する。そのため、遠心送風機1Aは、ベルマウス3Aの最内径となる下流端部3b近傍のベルマウス3Aの曲率が回転軸RSの軸方向に近づく。そして、遠心送風機1Aは、ベルマウス3Aに流入する速い気流をベルマウス3Aの外周側から内周側に沿わせ、空気取込部3cにおいて気体の流れを無理なく軸方向に転向させることができる。その結果、遠心送風機1Aは、ベルマウス3Aにおいて、最内径となる下流端部3b近傍での気流の剥離を抑制することができ、羽根車2への乱れた気流の流入を抑制できることで騒音を抑制することができる。また、ベルマウス3Aは、最内径となる下流端部3b近傍での気流の剥離が抑制され、羽根車2への乱れた気流の流入を抑制できることで、遠心送風機1Aは、空気を効率よく取り込むことができる。もし実施の形態2に係る遠心送風機1Aを適用しない場合、すなわち、一般的なベルマウスを半径方向に拡大する場合に楕円ELに沿った形状であると、ベルマウスの内周側でベルマウスから気流が剥離する場合がある。遠心送風機1Aのベルマウス3Aは、上記の構成を有することで、最内径となる下流端部3b近傍での気流の剥離を低減することができる。
[Effect of centrifugal blower 1A]
As described above, the bell mouth 3A is formed so as to satisfy the relationship of the first radial direction distance D2>the first axial direction distance D1. The centrifugal blower 1A has a shape in which the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outline L1 with the intersection EC as a reference. Therefore, in the centrifugal blower 1A, the curvature of the bell mouth 3A near the downstream end 3b, which is the innermost diameter of the bell mouth 3A, approaches the axial direction of the rotation axis RS. Then, the centrifugal blower 1A can cause a fast airflow flowing into the bell mouth 3A to flow from the outer peripheral side to the inner peripheral side of the bell mouth 3A, and reasonably turn the gas flow in the air intake portion 3c in the axial direction. .. As a result, the centrifugal blower 1A can suppress the separation of the air flow in the vicinity of the downstream end 3b, which is the innermost diameter, in the bell mouth 3A, and can suppress the inflow of the disturbed air flow into the impeller 2, thereby reducing noise. Can be suppressed. Further, in the bell mouth 3A, the separation of the airflow in the vicinity of the downstream end portion 3b, which is the innermost diameter, is suppressed, and the turbulent airflow into the impeller 2 can be suppressed, so that the centrifugal blower 1A efficiently takes in air. be able to. If the centrifugal blower 1A according to the second embodiment is not applied, that is, if a general bell mouth is expanded in the radial direction, the shape is along the ellipse EL, the bell mouth is located inside the bell mouth. Airflow may separate. Since the bell mouth 3A of the centrifugal blower 1A has the above-mentioned configuration, it is possible to reduce air flow separation near the downstream end 3b, which is the innermost diameter.
実施の形態3.
 図6は、本発明の実施の形態3に係る遠心送風機1Bのベルマウス3Bの部分拡大図である。なお、図1~図5の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態3に係る遠心送風機1Bは、実施の形態1に係る遠心送風機1のベルマウス3の構成を更に特定するものであり、ベルマウス3B以外の他の部分の構成は、実施の形態1に係る遠心送風機1と同様である。従って、以下の説明では、図6を用いて、実施の形態3に係る遠心送風機1Bのベルマウス3Bの構成を中心に説明する。
Embodiment 3.
FIG. 6 is a partially enlarged view of bell mouth 3B of centrifugal fan 1B according to the third embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 5 are given the same reference numerals and the description thereof will be omitted. The centrifugal blower 1B according to the third embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3B are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3B of the centrifugal blower 1B according to the third embodiment will be mainly described with reference to FIG.
 図6において、楕円FLは、ベルマウス3Bの上流端部3aを長軸MA2の第1端部G1とし、ベルマウス3Bの下流端部3bを短軸MI2の第2端部G2とする仮想の楕円である。より詳細には、仮想の楕円FLは、ベルマウス3Bの垂直断面において、上流端部3aからファンケーシング4内に延びる長軸MA2と、下流端部3bから羽根車2の径方向と平行な方向に延びる短軸MI2とを有する。交点ECは、短軸MI2と、長軸MA2との交点であり、仮想の楕円FLの中心点である。 In FIG. 6, the ellipse FL is an imaginary line in which the upstream end 3a of the bell mouth 3B is the first end G1 of the long axis MA2 and the downstream end 3b of the bell mouth 3B is the second end G2 of the short axis MI2. It is an ellipse. More specifically, the virtual ellipse FL is a direction parallel to the major axis MA2 extending from the upstream end 3a into the fan casing 4 and the direction parallel to the radial direction of the impeller 2 from the downstream end 3b in the vertical cross section of the bell mouth 3B. And a short axis MI2 extending to. The intersection EC is the intersection of the short axis MI2 and the long axis MA2, and is the center of the virtual ellipse FL.
 仮想の楕円FLは、ベルマウス3Bの垂直断面において、上流端部3a及び下流端部3bのうち、一方の端部を長軸MA2の端部とし、他方の端部を短軸MI2の端部とし、長軸MA2と短軸MI2との交点ECが、羽根車2の回転軸RSに対して下流端部3bよりも外周側に位置する。 In the vertical cross section of the bell mouth 3B, the virtual ellipse FL has one end of the upstream end 3a and the downstream end 3b as the end of the major axis MA2 and the other end as the end of the minor axis MI2. The intersection EC of the long axis MA2 and the short axis MI2 is located on the outer peripheral side with respect to the rotation axis RS of the impeller 2 with respect to the downstream end 3b.
 第1外形線L1は、図6に示すように、楕円FLの外形線において、上流端部3aと下流端部3bとを結ぶ最短距離の外形線である。 As shown in FIG. 6, the first outline L1 is the outline of the shortest distance connecting the upstream end 3a and the downstream end 3b in the outline of the ellipse FL.
 第1接線HT2は、楕円FLの第1端部G1と接する仮想の接線であり、第2接線VT2は、楕円FLの第2端部G2と接する仮想の接線である。すなわち、第1接線HT2は、楕円FLの上流端部3aと接する仮想の接線であり、第2接線VT2は、楕円FLの下流端部3bと接する仮想の接線である。 The first tangent line HT2 is a virtual tangent line that contacts the first end G1 of the ellipse FL, and the second tangent line VT2 is a virtual tangent line that contacts the second end G2 of the ellipse FL. That is, the first tangent line HT2 is a virtual tangent line that contacts the upstream end 3a of the ellipse FL, and the second tangent line VT2 is a virtual tangent line that contacts the downstream end 3b of the ellipse FL.
 ベルマウス3Bは、空気取込部3cの壁部3c1が、上流端部3aと下流端部3bとの間で、上流端部3aを長軸MA2の第1端部G1とし下流端部3bを短軸MI2の第2端部G2とする仮想の楕円FLの第1外形線L1からベルマウス3Bの内周側に膨らんでいる。換言すれば、空気取込部3cは、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らんでいる。そのため、空気取込部3cは、図6に示すように、ベルマウス3Bの垂直断面において弧を描く曲線状に形成されている。 In the bell mouth 3B, the wall portion 3c1 of the air intake portion 3c has the upstream end portion 3a as the first end portion G1 of the long axis MA2 between the upstream end portion 3a and the downstream end portion 3b. It bulges toward the inner peripheral side of the bell mouth 3B from the first outer shape line L1 of the virtual ellipse FL which is the second end G2 of the short axis MI2. In other words, in the air intake part 3c, the wall part 3c1 between the upstream end part 3a and the downstream end part 3b swells in the direction away from the first outline L1 with the intersection EC as a reference. Therefore, as shown in FIG. 6, the air intake portion 3c is formed in a curved shape that draws an arc in the vertical cross section of the bell mouth 3B.
 空気取込部3cは、楕円FLの第1端部G1と接する仮想の第1接線HT2と、楕円FLの第2端部G2と接する仮想の第2接線VT2と、第1外形線L1とで囲まれる範囲内で膨らんでいる。 The air intake portion 3c includes a virtual first tangent line HT2 that contacts the first end portion G1 of the ellipse FL, a virtual second tangent line VT2 that contacts the second end portion G2 of the ellipse FL, and a first contour line L1. It swells within the enclosed area.
 すなわち、空気取込部3cは、楕円FLの上流端部3aと接する仮想の第1接線HT2と、楕円FLの下流端部3bと接する仮想の第2接線VT2と、第1外形線L1とで囲まれる範囲内において、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らんでいる。なお、遠心送風機1Bのベルマウス3Bは、一般的なベルマウスを軸方向に拡大するものである。遠心送風機1Bは、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を有することで、最内径となる下流端部3b近傍のベルマウス3の曲率が軸方向に近づく。 That is, the air intake portion 3c is composed of a virtual first tangent line HT2 contacting the upstream end portion 3a of the ellipse FL, a virtual second tangent line VT2 contacting the downstream end portion 3b of the ellipse FL, and the first contour line L1. Within the enclosed range, the wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in the direction away from the first outline L1 with the intersection EC as a reference. The bell mouth 3B of the centrifugal blower 1B is a general bell mouth expanded in the axial direction. The centrifugal blower 1B has a wall end 3c1 between the upstream end 3a and the downstream end 3b, which has a shape that bulges in a direction away from the first outline L1 on the basis of the intersection EC, so that the downstream end having the innermost diameter is formed. The curvature of the bell mouth 3 near 3b approaches the axial direction.
 図6に示すように、回転軸RSの軸方向におけるベルマウス3Bの上流端部3aと下流端部3bとの間の距離を第2軸方向距離D3と定義する。換言すれば、第2軸方向距離D3は、ベルマウス3Bの上流端部3aと下流端部3bとを、回転軸RSに対して垂直方向に回転軸RSに投影した場合に、回転軸RSに投影された位置における上流端部3aと下流端部3bとの間の距離である。なお、第2軸方向距離D3は、仮想の楕円FLの長軸半径である。すなわち、第2軸方向距離D3は、上流端部3aと仮想の楕円FLの交点ECとの間の距離でもある。また、回転軸RSの径方向において、ベルマウス3Bの上流端部3aと下流端部3bとの間の距離を第2径方向距離D4と定義する。換言すれば、第2径方向距離D4は、回転軸RSの軸方向に見た平面視において、仮想の同一平面上に現れるベルマウス3Bの上流端部3aと下流端部3bとの間の距離である。なお、第2径方向距離D4は、仮想の楕円FLの短軸半径である。すなわち、第2径方向距離D4は、下流端部3bと仮想の楕円FLの交点ECとの間の距離でもある。 As shown in FIG. 6, the distance between the upstream end 3a and the downstream end 3b of the bell mouth 3B in the axial direction of the rotation axis RS is defined as the second axial distance D3. In other words, when the upstream end portion 3a and the downstream end portion 3b of the bell mouth 3B are projected on the rotation axis RS in the direction perpendicular to the rotation axis RS, the second axial direction distance D3 is set on the rotation axis RS. It is the distance between the upstream end 3a and the downstream end 3b at the projected position. The second axial distance D3 is the major axis radius of the virtual ellipse FL. That is, the second axial distance D3 is also the distance between the upstream end 3a and the intersection EC of the virtual ellipse FL. In addition, a distance between the upstream end 3a and the downstream end 3b of the bell mouth 3B in the radial direction of the rotation axis RS is defined as a second radial distance D4. In other words, the second radial distance D4 is the distance between the upstream end portion 3a and the downstream end portion 3b of the bell mouth 3B that appear on the same virtual plane in a plan view seen in the axial direction of the rotation axis RS. Is. The second radial direction distance D4 is the minor axis radius of the virtual ellipse FL. That is, the second radial distance D4 is also the distance between the downstream end 3b and the intersection EC of the virtual ellipse FL.
 ベルマウス3Bは、第2径方向距離D4<第2軸方向距離D3の関係を満たすように形成されている。なお、ベルマウス3Bは、第2径方向距離D4<第2軸方向距離D3の関係を満たす部分が、ベルマウス3Bの全周に形成されてもよく、又は、周方向において部分的に形成されてもよい。遠心送風機1Bのベルマウス3Bは、一般的なベルマウスを回転軸RSの軸方向に拡大したものである。遠心送風機1Bは、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を有することで、最内径となる下流端部3b近傍のベルマウス3Bの曲率が軸方向に近づいている。 The bell mouth 3B is formed so as to satisfy the relationship of the second radial distance D4<the second axial distance D3. In the bell mouth 3B, a portion satisfying the relationship of the second radial distance D4<the second axial distance D3 may be formed on the entire circumference of the bell mouth 3B or may be partially formed in the circumferential direction. May be. The bell mouth 3B of the centrifugal blower 1B is a general bell mouth expanded in the axial direction of the rotation axis RS. The centrifugal blower 1B has a wall end 3c1 between the upstream end 3a and the downstream end 3b, which has a shape that bulges in a direction away from the first outline L1 on the basis of the intersection EC, so that the downstream end having the innermost diameter is formed. The curvature of the bell mouth 3B near 3b approaches the axial direction.
[遠心送風機1Bの作用効果]
 以上のように、ベルマウス3Bは、第2径方向距離D4<第2軸方向距離D3の関係を満たすように形成されている。そして、遠心送風機1Bは、ベルマウス3Bの垂直断面において、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を有する。そのため、遠心送風機1Bは、ベルマウス3Bの最内径となる下流端部3b近傍のベルマウス3Bの曲率が回転軸RSの軸方向に近づく。そして、遠心送風機1Bは、ベルマウス3Bに流入する速い気流をベルマウス3Bの外周側から内周側に沿わせ、空気取込部3cにおいて気体の流れを無理なく軸方向に転向させることができる。その結果、遠心送風機1Bは、ベルマウス3Bにおいて、最内径となる下流端部3b近傍での気流の剥離を抑制することができ、羽根車2への乱れた気流の流入を抑制できることで、騒音を抑制することができる。また、ベルマウス3Bは、最内径となる下流端部3b近傍での気流の剥離が抑制され、羽根車2への乱れた気流の流入を抑制できることで、遠心送風機1Bは、空気を効率よく取り込むことができる。もし、実施の形態3に係る遠心送風機1Bを適用しない場合、すなわち、一般的なベルマウスを回転軸の軸方向に拡大する場合に楕円FLに沿った形状であると、ベルマウスの内周側でベルマウスから気流が剥離する場合がある。実施の形態3に係る遠心送風機1Bのベルマウス3Bは、上記の構成を有することで、最内径となる下流端部3b近傍での気流の剥離を低減することができる。
[Effect of centrifugal blower 1B]
As described above, the bell mouth 3B is formed so as to satisfy the relationship of the second radial distance D4<the second axial distance D3. The centrifugal blower 1B has a shape in which the wall 3c1 between the upstream end 3a and the downstream end 3b bulges in the direction away from the first outline L1 on the basis of the intersection EC in the vertical cross section of the bell mouth 3B. .. Therefore, in the centrifugal blower 1B, the curvature of the bell mouth 3B near the downstream end 3b, which is the innermost diameter of the bell mouth 3B, approaches the axial direction of the rotation axis RS. Then, the centrifugal blower 1B can cause the fast airflow flowing into the bell mouth 3B to go along the inner circumference side from the outer circumference side of the bell mouth 3B, and can reasonably turn the gas flow in the air intake section 3c in the axial direction. .. As a result, the centrifugal blower 1B can suppress the separation of the airflow in the bell mouth 3B in the vicinity of the downstream end portion 3b, which is the innermost diameter, and can suppress the inflow of the disturbed airflow into the impeller 2, thereby reducing the noise. Can be suppressed. Further, the bell mouth 3B suppresses the separation of the air flow in the vicinity of the downstream end portion 3b, which is the innermost diameter, and can suppress the inflow of the turbulent air flow into the impeller 2, so that the centrifugal blower 1B efficiently takes in the air. be able to. If the centrifugal blower 1B according to the third embodiment is not applied, that is, if a general bell mouth is expanded in the axial direction of the rotation axis, the shape is along the ellipse FL, the inner circumference side of the bell mouth is The airflow may peel off from the bell mouth. The bell mouth 3B of the centrifugal blower 1B according to the third embodiment has the above-described configuration, so that air flow separation near the downstream end 3b, which is the innermost diameter, can be reduced.
実施の形態4.
 図7は、本発明の実施の形態4に係る遠心送風機1Cのベルマウス3Cの部分拡大図である。なお、図1~図6の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態4に係る遠心送風機1Cは、実施の形態1に係る遠心送風機1のベルマウス3の構成を更に特定するものであり、ベルマウス3C以外の他の部分の構成は、実施の形態1に係る遠心送風機1と同様である。従って、以下の説明では、図7を用いて、実施の形態4に係る遠心送風機1Cのベルマウス3Cの構成を中心に説明する。なお、ベルマウス3Cは、一般的なベルマウスを半径方向に拡大する場合の一例を表わすものである。
Fourth Embodiment
FIG. 7 is a partially enlarged view of bell mouth 3C of centrifugal fan 1C according to the fourth embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 6 are designated by the same reference numerals and the description thereof will be omitted. The centrifugal blower 1C according to the fourth embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3C are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3C of the centrifugal blower 1C according to the fourth embodiment will be mainly described with reference to FIG. The bell mouth 3C represents an example in which a general bell mouth is enlarged in the radial direction.
 遠心送風機1Cのベルマウス3Cは、上流端部3aと下流端部3bとの間で、曲率半径の異なる曲面を構成する壁部を有している。図7に示すように、ベルマウス3Cは、下流端部3bから上流端部3aにかけて、すなわち、ベルマウス3Cの内周側から外周側にかけて、連続して一体に形成された第1壁部S1と、第2壁部S2と、第3壁部S3とを有する。第1壁部S1、第2壁部S2及び第3壁部S3は、ベルマウス3Cの内径側に凸となるような曲面を構成する。第1壁部S1、第2壁部S2及び第3壁部S3は、ベルマウス3Cの垂直断面において、それぞれ円弧状に形成されており、それぞれ異なる曲率半径の曲面を構成する。ここで、ベルマウス3Cの垂直断面において、第1壁部S1の曲率半径を第1曲率半径a、第2壁部S2の曲率半径を第2曲率半径b、第3壁部S3の曲率半径を第3曲率半径cと定義する。ベルマウス3Cは、第1壁部S1、第2壁部S2及び第3壁部S3が、第3曲率半径c>第1曲率半径a>第2曲率半径bの関係を満たすように構成される。 The bell mouth 3C of the centrifugal blower 1C has wall portions that form curved surfaces having different radii of curvature between the upstream end portion 3a and the downstream end portion 3b. As shown in FIG. 7, the bell mouth 3C has a first wall S1 that is continuously and integrally formed from the downstream end 3b to the upstream end 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3C. And a second wall portion S2 and a third wall portion S3. The first wall portion S1, the second wall portion S2, and the third wall portion S3 form a curved surface that is convex toward the inner diameter side of the bell mouth 3C. The first wall portion S1, the second wall portion S2, and the third wall portion S3 are each formed in an arc shape in the vertical cross section of the bell mouth 3C, and form curved surfaces having different curvature radii. Here, in the vertical cross section of the bell mouth 3C, the radius of curvature of the first wall portion S1 is the first radius of curvature a, the radius of curvature of the second wall portion S2 is the second radius of curvature b, and the radius of curvature of the third wall portion S3 is It is defined as the third radius of curvature c. The bell mouth 3C is configured such that the first wall portion S1, the second wall portion S2, and the third wall portion S3 satisfy the relationship of third curvature radius c>first curvature radius a>second curvature radius b. ..
[遠心送風機1Cの作用効果]
 ベルマウス3Cは、一般的なベルマウスを半径方向に拡大するものである。遠心送風機1Cは、ベルマウス3Cの垂直断面において、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を有する。また、ベルマウス3Cは、ベルマウス3Cの内周側から外周側にかけて、連続して一体に形成された第1壁部S1と、第2壁部S2と、第3壁部S3とを有する。そして、ベルマウス3Cは、第1壁部S1、第2壁部S2及び第3壁部S3が、第3曲率半径c>第1曲率半径a>第2曲率半径bの関係を満たすように構成される。そのため、ベルマウス3Cは、ベルマウス3Cに流入する速い気流を外周側の大きな第3曲率半径cを有する第3壁部S3に沿わせ、続いて一番小さな第2曲率半径bを有する第2壁部S2で気流をそのままベルマウス3Cに沿わせる。更に、ベルマウス3Cは、2番目に大きな第1曲率半径aを持つ第1壁部S1で、流れを無理なく回転軸RSの軸方向に転向させる。ベルマウス3Cは、当該構成及び作用を有することにより、外縁部から内縁部にかけての気流の剥離を抑制することができ、羽根車2への乱れた気流の流入を抑制できることで騒音を抑制することができる。また、ベルマウス3Cは、最内径となる下流端部3b近傍での気流の剥離が抑制され、羽根車2への乱れた気流の流入を抑制できることで、遠心送風機1Cは、空気を効率よく取り込むことができる。
[Effect of centrifugal blower 1C]
The bell mouth 3C expands a general bell mouth in the radial direction. The centrifugal blower 1C has a shape in which a wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outline L1 on the basis of the intersection EC in the vertical cross section of the bell mouth 3C. Further, the bell mouth 3C has a first wall portion S1, a second wall portion S2, and a third wall portion S3 that are continuously and integrally formed from the inner peripheral side to the outer peripheral side of the bell mouth 3C. Then, the bell mouth 3C is configured such that the first wall portion S1, the second wall portion S2, and the third wall portion S3 satisfy the relationship of third curvature radius c>first curvature radius a>second curvature radius b. To be done. Therefore, in the bell mouth 3C, the fast airflow flowing into the bell mouth 3C is caused to follow the third wall portion S3 having the large third curvature radius c on the outer peripheral side, and then the second mouth having the smallest second curvature radius b. The wall S2 allows the air flow to follow the bell mouth 3C as it is. Further, the bell mouth 3C has the first wall portion S1 having the second largest radius of curvature a and diverts the flow in the axial direction of the rotation axis RS without difficulty. Due to the bell mouth 3C having the configuration and the function, it is possible to suppress the separation of the airflow from the outer edge portion to the inner edge portion, and to suppress the inflow of the disturbed airflow into the impeller 2, thereby suppressing the noise. You can Further, in the bell mouth 3C, separation of the airflow near the downstream end portion 3b, which is the innermost diameter, is suppressed, and the disturbed airflow into the impeller 2 can be suppressed, so that the centrifugal blower 1C efficiently takes in air. be able to.
実施の形態5.
 図8は、本発明の実施の形態5に係る遠心送風機1Dのベルマウス3Dの部分拡大図である。なお、図1~図7の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態5に係る遠心送風機1Dは、実施の形態1に係る遠心送風機1のベルマウス3の構成を更に特定するものであり、ベルマウス3D以外の他の部分の構成は、実施の形態1に係る遠心送風機1と同様である。従って、以下の説明では、図8を用いて、実施の形態5に係る遠心送風機1Dのベルマウス3Dの構成を中心に説明する。なお、ベルマウス3Dは、一般的なベルマウスを半径方向に拡大する場合の一例を表わすものである。
Embodiment 5.
FIG. 8 is a partially enlarged view of bell mouth 3D of centrifugal blower 1D according to the fifth embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 7 are designated by the same reference numerals and the description thereof will be omitted. The centrifugal blower 1D according to the fifth embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3D are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3D of the centrifugal blower 1D according to the fifth embodiment will be mainly described with reference to FIG. The bell mouth 3D represents an example in which a general bell mouth is enlarged in the radial direction.
 遠心送風機1Dのベルマウス3Dは、上流端部3aと下流端部3bとの間で、曲率半径の異なる曲面を構成する壁部を有している。図8に示すように、ベルマウス3Dは、下流端部3bから上流端部3aにかけて、すなわち、ベルマウス3Dの内周側から外周側にかけて、連続して一体に形成された第1壁部S11と、第2壁部S12とを有する。第1壁部S11及び第2壁部S12は、ベルマウス3Dの内径側に凸となるような曲面を構成する。第1壁部S11及び第2壁部S12は、ベルマウス3Dの垂直断面において、それぞれ円弧状に形成されており、それぞれ異なる曲率半径の曲面を構成する。ここで、ベルマウス3Dの垂直断面において、第1壁部S11の曲率半径を第1曲率半径a1、第2壁部S12の曲率半径を第2曲率半径c1と定義する。ベルマウス3Dは、第1壁部S11及び第2壁部S12が、第2曲率半径c1>第1曲率半径a1の関係を満たすように構成される。 The bell mouth 3D of the centrifugal blower 1D has walls that form curved surfaces with different radii of curvature between the upstream end 3a and the downstream end 3b. As shown in FIG. 8, the bell mouth 3D has a first wall S11 that is integrally formed continuously from the downstream end 3b to the upstream end 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3D. And a second wall S12. The first wall portion S11 and the second wall portion S12 form a curved surface that is convex toward the inner diameter side of the bell mouth 3D. The first wall portion S11 and the second wall portion S12 are each formed in an arc shape in the vertical cross section of the bell mouth 3D, and form curved surfaces having different curvature radii. Here, in the vertical cross section of the bell mouth 3D, the radius of curvature of the first wall portion S11 is defined as the first radius of curvature a1 and the radius of curvature of the second wall portion S12 is defined as the second radius of curvature c1. The bellmouth 3D is configured such that the first wall portion S11 and the second wall portion S12 satisfy the relationship of second curvature radius c1>first curvature radius a1.
[遠心送風機1Dの作用効果]
 ベルマウス3Dは、一般的なベルマウスを半径方向に拡大するものである。遠心送風機1Dは、ベルマウス3Dの垂直断面において、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を有する。また、ベルマウス3Dは、ベルマウス3Dの内周側から外周側にかけて、連続して一体に形成された第1壁部S11と第2壁部S12とを有し、第1壁部S11及び第2壁部S12が、第2曲率半径c1>第1曲率半径a1の関係を満たすように構成される。そのため、ベルマウス3Dは、ベルマウス3Dに流入する速い気流を外周側の大きな第2曲率半径c1を有する第2壁部S12に沿わせ、続いて大きな第1曲率半径a1を持つ第1壁部S11で、流れを無理なく回転軸RSの軸方向に転向させる。ベルマウス3Dは、当該構成及び作用を有することにより、外縁部から内縁部にかけての気流の剥離を抑制することができ、羽根車2への乱れた気流の流入を抑制できることで騒音を抑制することができる。また、ベルマウス3Dは、最内径となる下流端部3b近傍での気流の剥離が抑制され、羽根車2への乱れた気流の流入を抑制できることで、遠心送風機1Dは、空気を効率よく取り込むことができる。
[Effect of centrifugal blower 1D]
The bell mouth 3D expands a general bell mouth in the radial direction. The centrifugal blower 1D has a shape in which a wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outer shape line L1 on the basis of the intersection EC in the vertical cross section of the bell mouth 3D. Further, the bell mouth 3D has a first wall portion S11 and a second wall portion S12 that are continuously and integrally formed from the inner peripheral side to the outer peripheral side of the bell mouth 3D. The two wall portions S12 are configured to satisfy the relationship of the second curvature radius c1>the first curvature radius a1. Therefore, in the bell mouth 3D, the fast airflow flowing into the bell mouth 3D is caused to follow the second wall portion S12 having the large second curvature radius c1 on the outer peripheral side, and subsequently, the first wall portion having the large first curvature radius a1. In S11, the flow is naturally turned in the axial direction of the rotation axis RS. The bell mouth 3D having the configuration and the function can suppress the separation of the airflow from the outer edge portion to the inner edge portion, and can suppress the inflow of the turbulent airflow into the impeller 2, thereby suppressing the noise. You can Further, in the bell mouth 3D, the separation of the air flow near the downstream end portion 3b, which is the innermost diameter, is suppressed, and the turbulent air flow into the impeller 2 can be suppressed, so that the centrifugal blower 1D efficiently takes in the air. be able to.
実施の形態6.
 図9は、本発明の実施の形態6に係る遠心送風機1Eのベルマウス3Eの部分拡大図である。なお、図1~図8の遠心送風機1E等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態6に係る遠心送風機1Eは、実施の形態1に係る遠心送風機1のベルマウス3の構成を更に特定するものであり、ベルマウス3E以外の他の部分の構成は、実施の形態1に係る遠心送風機1と同様である。従って、以下の説明では、図9を用いて、実施の形態6に係る遠心送風機1Eのベルマウス3Eの構成を中心に説明する。なお、ベルマウス3Eは、一般的なベルマウスを回転軸の軸方向に拡大する場合の一例を表わすものである。
Sixth Embodiment
FIG. 9 is a partially enlarged view of bell mouth 3E of centrifugal fan 1E according to the sixth embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1E and the like in FIGS. 1 to 8 are designated by the same reference numerals and the description thereof will be omitted. The centrifugal blower 1E according to the sixth embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3E are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3E of the centrifugal blower 1E according to the sixth embodiment will be mainly described with reference to FIG. The bell mouth 3E represents an example in which a general bell mouth is enlarged in the axial direction of the rotation axis.
 遠心送風機1Eのベルマウス3Eは、上流端部3aと下流端部3bとの間で、曲率半径の異なる曲面を構成する壁部を有している。図9に示すように、ベルマウス3Eは、下流端部3bから上流端部3aにかけて、すなわち、ベルマウス3Eの内周側から外周側にかけて、連続して一体に形成された第1壁部S21と、第2壁部S22と、第3壁部S23とを有する。第1壁部S21、第2壁部S22及び第3壁部S23は、ベルマウス3Eの内径側に凸となるような曲面を構成する。第1壁部S21、第2壁部S22及び第3壁部S23は、ベルマウス3Eの垂直断面において、それぞれ円弧状に形成されており、それぞれ異なる曲率半径の曲面を構成する。ここで、ベルマウス3Eの垂直断面において、第1壁部S21の曲率半径を第1曲率半径a2、第2壁部S22の曲率半径を第2曲率半径b2、第3壁部S23の曲率半径を第3曲率半径c2と定義する。ベルマウス3Eは、第1壁部S21、第2壁部S22及び第3壁部S23が、第1曲率半径a2>第3曲率半径c2>第2曲率半径b2の関係を満たすように構成される。 The bell mouth 3E of the centrifugal blower 1E has wall portions that form curved surfaces having different radii of curvature between the upstream end portion 3a and the downstream end portion 3b. As shown in FIG. 9, the bell mouth 3E has a first wall S21 that is integrally formed continuously from the downstream end 3b to the upstream end 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3E. And a second wall portion S22 and a third wall portion S23. The first wall portion S21, the second wall portion S22, and the third wall portion S23 form a curved surface that is convex toward the inner diameter side of the bell mouth 3E. The first wall portion S21, the second wall portion S22, and the third wall portion S23 are each formed in a circular arc shape in the vertical cross section of the bell mouth 3E, and form curved surfaces having different curvature radii. Here, in the vertical cross section of the bell mouth 3E, the radius of curvature of the first wall portion S21 is the first radius of curvature a2, the radius of curvature of the second wall portion S22 is the second radius of curvature b2, and the radius of curvature of the third wall portion S23 is. It is defined as the third radius of curvature c2. The bell mouth 3E is configured such that the first wall portion S21, the second wall portion S22, and the third wall portion S23 satisfy the relationship of the first curvature radius a2>the third curvature radius c2>the second curvature radius b2. ..
[遠心送風機1Eの作用効果]
 ベルマウス3Eは、一般的なベルマウスを回転軸の軸方向に拡大するものである。遠心送風機1Eは、ベルマウス3Eの垂直断面において、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を有する。また、ベルマウス3Eは、ベルマウス3Eの内周側から外周側にかけて、連続して一体に形成された第1壁部S21と、第2壁部S22と、第3壁部S23とを有する。そして、ベルマウス3Eは、第1壁部S21、第2壁部S22及び第3壁部S23が、第1曲率半径a2>第3曲率半径c2>第2曲率半径b2の関係を満たすように構成される。そのため、ベルマウス3Eは、ベルマウス3Eに流入する速い気流を外周側の大きな第3曲率半径c2を有する第3壁部S23に沿わせ、続いて一番小さな第2曲率半径b2を有する第2壁部S22で気流をそのままベルマウス3Eに沿わせる。更に、ベルマウス3Eは、1番目に大きな第1曲率半径a2を持つ第1壁部S21で、流れを無理なく回転軸RSの軸方向に転向させる。ベルマウス3Eは、当該構成及び作用を有することにより、外縁部から内縁部にかけての気流の剥離を抑制することができ、羽根車2への乱れた気流の流入を抑制できることで騒音を抑制することができる。また、ベルマウス3Eは、最内径となる下流端部3b近傍での気流の剥離が抑制され、羽根車2への乱れた気流の流入を抑制できることで、遠心送風機1Eは、空気を効率よく取り込むことができる。
[Effect of centrifugal blower 1E]
The bell mouth 3E expands a general bell mouth in the axial direction of the rotating shaft. The centrifugal blower 1E has a shape in which a wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outline L1 in the vertical cross section of the bell mouth 3E with the intersection EC as a reference. Further, the bell mouth 3E has a first wall portion S21, a second wall portion S22, and a third wall portion S23 that are continuously and integrally formed from the inner peripheral side to the outer peripheral side of the bell mouth 3E. Then, the bell mouth 3E is configured such that the first wall portion S21, the second wall portion S22, and the third wall portion S23 satisfy the relationship of the first curvature radius a2>the third curvature radius c2>the second curvature radius b2. To be done. Therefore, in the bell mouth 3E, the fast airflow flowing into the bell mouth 3E is caused to follow the third wall portion S23 having the large third curvature radius c2 on the outer peripheral side, and then the second mouth having the smallest second curvature radius b2. The wall portion S22 allows the air flow to follow the bell mouth 3E as it is. Further, the bell mouth 3E has the first wall portion S21 having the first largest radius of curvature a2, and diverts the flow in the axial direction of the rotation axis RS without difficulty. The bell mouth 3E having the configuration and the function can suppress the separation of the airflow from the outer edge portion to the inner edge portion, and can suppress the inflow of the turbulent airflow into the impeller 2, thereby suppressing the noise. You can Further, in the bell mouth 3E, the separation of the airflow near the downstream end portion 3b, which is the innermost diameter, is suppressed, and the turbulent airflow into the impeller 2 can be suppressed, so that the centrifugal blower 1E efficiently takes in the air. be able to.
実施の形態7.
 図10は、本発明の実施の形態7に係る遠心送風機1Fのベルマウス3Fの部分拡大図である。なお、図1~図9の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態7に係る遠心送風機1Fは、実施の形態1に係る遠心送風機1のベルマウス3の構成を更に特定するものであり、ベルマウス3F以外の他の部分の構成は、実施の形態1に係る遠心送風機1と同様である。従って、以下の説明では、図10を用いて、実施の形態7に係る遠心送風機1Fのベルマウス3Fの構成を中心に説明する。なお、ベルマウス3Fは、一般的なベルマウスを回転軸の軸方向に拡大する場合の一例を表わすものである。
Embodiment 7.
FIG. 10 is a partially enlarged view of bell mouth 3F of centrifugal fan 1F according to the seventh embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 9 are designated by the same reference numerals and the description thereof will be omitted. The centrifugal blower 1F according to the seventh embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configurations of parts other than the bell mouth 3F are the same as those of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3F of the centrifugal blower 1F according to the seventh embodiment will be mainly described with reference to FIG. The bell mouth 3F represents an example in which a general bell mouth is enlarged in the axial direction of the rotation axis.
 遠心送風機1Fのベルマウス3Fは、上流端部3aと下流端部3bとの間で、曲率半径の異なる曲面を構成する壁部を有している。図10に示すように、ベルマウス3Fは、下流端部3bから上流端部3aにかけて、すなわち、ベルマウス3Fの内周側から外周側にかけて、連続して一体に形成された第1壁部S31と、第2壁部S32とを有する。第1壁部S31及び第2壁部S32は、ベルマウス3Fの内径側に凸となるような曲面を構成する。第1壁部S31及び第2壁部S32は、ベルマウス3Fの垂直断面において、それぞれ円弧状に形成されており、それぞれ異なる曲率半径の曲面を構成する。ここで、ベルマウス3Fの垂直断面において、第1壁部S31の曲率半径を第1曲率半径a3、第2壁部S32の曲率半径を第2曲率半径c3と定義する。ベルマウス3Fは、第1壁部S31及び第2壁部S32が、第1曲率半径a3>第2曲率半径c3の関係を満たすように構成される。 The bell mouth 3F of the centrifugal blower 1F has wall portions that form curved surfaces with different radii of curvature between the upstream end portion 3a and the downstream end portion 3b. As shown in FIG. 10, the bell mouth 3F has a first wall portion S31 that is continuously and integrally formed from the downstream end portion 3b to the upstream end portion 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3F. And a second wall portion S32. The first wall portion S31 and the second wall portion S32 form a curved surface that is convex toward the inner diameter side of the bell mouth 3F. The first wall portion S31 and the second wall portion S32 are each formed in an arc shape in the vertical cross section of the bell mouth 3F, and form curved surfaces having different radii of curvature. Here, in the vertical cross section of the bell mouth 3F, the radius of curvature of the first wall portion S31 is defined as a first radius of curvature a3, and the radius of curvature of the second wall portion S32 is defined as a second radius of curvature c3. The bell mouth 3F is configured such that the first wall portion S31 and the second wall portion S32 satisfy the relationship of the first curvature radius a3>the second curvature radius c3.
[遠心送風機1Fの作用効果]
 ベルマウス3Fは、一般的なベルマウスを回転軸の軸方向に拡大するものである。遠心送風機1Fは、ベルマウス3Fの垂直断面において、交点ECを基準として上流端部3aと下流端部3bとの間の壁部3c1が第1外形線L1から離れる方向に膨らむ形状を有する。また、ベルマウス3Fは、ベルマウス3Fの内周側から外周側にかけて、連続して一体に形成された第1壁部S31と第2壁部S32とを有し、第1壁部S31及び第2壁部S32が、第1曲率半径a3>第2曲率半径c3の関係を満たすように構成される。そのため、ベルマウス3Fは、ベルマウス3Fに流入する速い気流を外周側の大きな第2曲率半径c3を有する第2壁部S32に沿わせ、続いて1番大きな第1曲率半径a1を持つ第1壁部S31で、流れを無理なく回転軸RSの軸方向に転向させる。ベルマウス3Fは、当該構成及び作用を有することにより、外縁部から内縁部にかけての気流の剥離を抑制することができ、羽根車2への乱れた気流の流入を抑制できることで騒音を抑制することができる。また、ベルマウス3Fは、最内径となる下流端部3b近傍での気流の剥離が抑制され、羽根車2への乱れた気流の流入を抑制できることで、遠心送風機1Eは、空気を効率よく取り込むことができる。
[Effect of centrifugal blower 1F]
The bell mouth 3F expands a general bell mouth in the axial direction of the rotating shaft. The centrifugal blower 1F has a shape in which a wall portion 3c1 between the upstream end portion 3a and the downstream end portion 3b bulges in a direction away from the first outline L1 in the vertical cross section of the bell mouth 3F with the intersection EC as a reference. Further, the bell mouth 3F has a first wall portion S31 and a second wall portion S32 that are continuously and integrally formed from the inner peripheral side to the outer peripheral side of the bell mouth 3F. The two wall portions S32 are configured to satisfy the relationship of the first curvature radius a3>the second curvature radius c3. Therefore, in the bell mouth 3F, the fast airflow flowing into the bell mouth 3F is caused to follow the second wall portion S32 having the large second curvature radius c3 on the outer peripheral side, and then the first having the largest first curvature radius a1. The wall portion S31 diverts the flow in the axial direction of the rotation axis RS without difficulty. The bell mouth 3F having the configuration and the function can suppress the separation of the airflow from the outer edge portion to the inner edge portion, and can suppress the inflow of the turbulent airflow into the impeller 2, thereby suppressing the noise. You can Further, in the bell mouth 3F, separation of the airflow near the downstream end portion 3b, which is the innermost diameter, is suppressed, and the disturbed airflow into the impeller 2 can be suppressed, so that the centrifugal blower 1E efficiently takes in air. be able to.
実施の形態8.
 図11は、本発明の実施の形態8に係る遠心送風機1Gのベルマウス3Gの部分拡大図である。なお、図1~図10の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態8に係る遠心送風機1Gは、実施の形態1に係る遠心送風機1のベルマウス3の構成を更に特定するものであり、ベルマウス3G以外の他の部分の構成は、実施の形態1に係る遠心送風機1と同様である。従って、以下の説明では、図11を用いて、実施の形態8に係る遠心送風機1Gのベルマウス3Gの構成を中心に説明する。
Eighth embodiment.
FIG. 11 is a partially enlarged view of bell mouth 3G of centrifugal fan 1G according to the eighth embodiment of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. 1 to 10 are designated by the same reference numerals and the description thereof will be omitted. The centrifugal blower 1G according to the eighth embodiment further specifies the configuration of the bell mouth 3 of the centrifugal blower 1 according to the first embodiment, and the configuration of parts other than the bell mouth 3G is the same as that of the first embodiment. It is similar to the centrifugal blower 1 according to. Therefore, in the following description, the configuration of the bell mouth 3G of the centrifugal blower 1G according to the eighth embodiment will be mainly described with reference to FIG.
 ベルマウス3Gは、回転軸RSに垂直な仮想の第1平面P1に下流端部3bが配置されている。換言すれば、ベルマウス3Gの下流端部3bは、ベルマウス3Gにおいて環状に形成されており、環状に形成された下流端部3bを含む仮想の第1平面P1は、回転軸RSに対して垂直な平面である。また、ベルマウス3Gは、回転軸RSに垂直な仮想の第2平面P2に上流端部3aが配置されている。換言すれば、ベルマウス3Gの上流端部3aは、ベルマウス3Gにおいて環状に形成されており、環状に形成された上流端部3aを含む仮想の第2平面P2は、回転軸RSに対して垂直な平面である。そして、仮想の第1平面P1と仮想の第2平面P2とは平行である。 The bell mouth 3G has a downstream end 3b arranged on a virtual first plane P1 perpendicular to the rotation axis RS. In other words, the downstream end 3b of the bell mouth 3G is formed in a ring shape in the bell mouth 3G, and the virtual first plane P1 including the downstream end 3b formed in a ring shape is with respect to the rotation axis RS. It is a vertical plane. Further, the bell mouth 3G has the upstream end portion 3a arranged on a virtual second plane P2 perpendicular to the rotation axis RS. In other words, the upstream end 3a of the bell mouth 3G is formed in a ring shape in the bell mouth 3G, and the virtual second plane P2 including the upstream end 3a formed in a ring shape is with respect to the rotation axis RS. It is a vertical plane. The virtual first plane P1 and the virtual second plane P2 are parallel to each other.
[遠心送風機1Gの作用効果]
 以上のように、ベルマウス3Gは、回転軸RSに垂直な仮想の第1平面P1上に下流端部3bが配置されている。また、ベルマウス3Gは、回転軸RSに垂直な仮想の第2平面P2上に上流端部3aが配置されている。ベルマウス3Gは、当該構成を有することで、遠心送風機1Gに吸入する気体による圧力変動が起こりにくくなる。そのため、遠心送風機1Gは、例えば室外機等のユニットに実装された際に機内圧損の影響を最小限に抑えることができる。
[Effect of centrifugal blower 1G]
As described above, in the bell mouth 3G, the downstream end 3b is arranged on the virtual first plane P1 that is perpendicular to the rotation axis RS. Further, the bell mouth 3G has the upstream end portion 3a arranged on a virtual second plane P2 perpendicular to the rotation axis RS. Since the bell mouth 3G has the configuration, pressure fluctuation due to the gas sucked into the centrifugal blower 1G is less likely to occur. Therefore, when the centrifugal blower 1G is mounted on a unit such as an outdoor unit, the influence of the internal pressure loss can be minimized.
実施の形態9.
 図12は、本発明の実施の形態9に係る遠心送風機1Hの側面図である。図13は、図12の遠心送風機1HのB-B線断面図である。図14は、図12の遠心送風機1HのC-C線断面図である。なお、図1~図11の遠心送風機1~遠心送風機1G等と同一の構成を有する部位には同一の符号を付してその説明を省略する。
Ninth Embodiment
FIG. 12 is a side view of a centrifugal blower 1H according to the ninth embodiment of the present invention. FIG. 13 is a sectional view of the centrifugal blower 1H of FIG. 12 taken along the line BB. FIG. 14 is a sectional view taken along line CC of the centrifugal blower 1H in FIG. It should be noted that parts having the same configurations as those of the centrifugal blower 1 to the centrifugal blower 1G of FIGS. 1 to 11 are designated by the same reference numerals, and the description thereof will be omitted.
 遠心送風機1Hのベルマウス3は、図12に示すように、舌部43から羽根車2の回転方向Rに沿って周方向に1周回転する間の範囲おいて、舌部43の位置と比較して空気取込部3cを構成する壁部3c1の幅が径方向に拡大している部分を有する。例えば、図13及び図14に示すように、ベルマウス3は、羽根車2の回転方向Rに沿って、舌部43から巻終部41bに向い舌部43に戻る方向において、径方向の幅がW1、W2、W3の順に徐々に拡大し、W3、W4、W1の順に徐々に縮小している。 As shown in FIG. 12, the bell mouth 3 of the centrifugal blower 1H is compared with the position of the tongue portion 43 in the range between the tongue portion 43 and one rotation in the circumferential direction along the rotation direction R of the impeller 2. Thus, the wall portion 3c1 forming the air intake portion 3c has a portion in which the width is expanded in the radial direction. For example, as shown in FIGS. 13 and 14, the bell mouth 3 has a radial width along the rotation direction R of the impeller 2 in the direction from the tongue 43 toward the winding end 41b and back to the tongue 43. Is gradually expanded in the order of W1, W2, and W3, and is gradually reduced in the order of W3, W4, and W1.
 すなわち、ベルマウス3は、舌部43から羽根車2の回転方向Rに沿って1周回転する間に、空気取込部3cの壁部3c1の幅が径方向に徐々に拡大し、最大に拡大した位置から舌部43に戻る間に壁部3c1の幅が元の大きさに徐々に戻るように形成されている。なお、図12、図13及び図14に示すベルマウス3の構成は一例である。ベルマウス3の周方向において、空気取込部3cの壁部3c1の幅が径方向に最大に拡大する位置は、例えば、遠心送風機1Hが設置される機器との関係によって決定される。また、図13及び図14に示すベルマウス3は、両吸込タイプの遠心送風機1の両側の吸込口5で同じ構成に形成されているが、吸込口5毎に異なる拡大幅の壁部3c1を有するベルマウス3で構成されてもよい。 That is, while the bell mouth 3 rotates once along the rotation direction R of the impeller 2 from the tongue portion 43, the width of the wall portion 3c1 of the air intake portion 3c gradually increases in the radial direction and reaches the maximum. The width of the wall portion 3c1 is gradually returned to the original size while returning from the enlarged position to the tongue portion 43. The configuration of the bell mouth 3 shown in FIGS. 12, 13 and 14 is an example. In the circumferential direction of the bell mouth 3, the position where the width of the wall portion 3c1 of the air intake portion 3c is maximized in the radial direction is determined by, for example, the relationship with the device in which the centrifugal blower 1H is installed. In addition, the bell mouth 3 shown in FIGS. 13 and 14 has the same configuration with the suction ports 5 on both sides of the double suction type centrifugal blower 1, but each suction port 5 has a wall portion 3c1 having a different expanded width. The bell mouth 3 may be included.
 また、ベルマウス3は、舌部43から羽根車2の回転方向Rに沿って周方向に1周回転する間の範囲において、空気取込部3cの壁部3c1の幅が径方向へ拡大すると共に、壁部3c1の内周側の曲率半径が徐々に大きくなるように形成されている。そして、空気取込部3cの壁部3c1は、舌部43から羽根車2の回転方向Rに沿って周方向に1周回転する間の範囲において、内周側の曲率半径が最大値を持つ部分を有する。なお、内周側とは、空気取込部3cの壁部3c1において、上流端部3aに対して下流端部3bに近い範囲の部分である。 Further, the bell mouth 3 expands in the radial direction in the width of the wall portion 3c1 of the air intake portion 3c in a range in which the bell mouth 3 makes one rotation in the circumferential direction along the rotation direction R of the impeller 2 from the tongue portion 43. At the same time, the radius of curvature on the inner peripheral side of the wall portion 3c1 is gradually increased. The wall portion 3c1 of the air intake portion 3c has the maximum radius of curvature on the inner peripheral side in the range in which the wall portion 3c1 rotates in the circumferential direction from the tongue portion 43 in the circumferential direction R of the impeller 2 once. Have parts. The inner peripheral side is a portion of the wall portion 3c1 of the air intake portion 3c in a range closer to the downstream end portion 3b than the upstream end portion 3a.
 また、ベルマウス3の空気取込部3cは、内周側の曲率半径が最大値を持つ壁部3c1の部分から舌部43に戻る間の周方向において、壁部3c1の径方向の幅が縮小すると共に、壁部3c1の内周側の曲率半径が徐々に小さくなるように形成されている。そして、ベルマウス3の空気取込部3cは、内周側の曲率半径が最大値を持つ壁部3c1の部分から舌部43に戻る間の周方向において、内周側の曲率半径が徐々に舌部43における元の曲率半径の大きさに戻るように形成されている。 Further, the air intake portion 3c of the bell mouth 3 has a radial width of the wall portion 3c1 in the circumferential direction while returning from the portion of the wall portion 3c1 having the maximum radius of curvature on the inner peripheral side to the tongue portion 43. While being reduced, the radius of curvature of the inner peripheral side of the wall portion 3c1 is gradually reduced. In the air intake portion 3c of the bell mouth 3, the curvature radius on the inner circumference side gradually increases in the circumferential direction while returning from the wall portion 3c1 having the maximum curvature radius on the inner circumference side to the tongue portion 43. The tongue portion 43 is formed so as to return to the original radius of curvature.
 すなわち、ベルマウス3は、周方向において、空気取込部3cの壁部3c1の幅が径方向に拡大すると共に壁部3c1の内周側の曲率半径が大きくなり、壁部3c1の径方向の幅が縮小すると共に壁部3c1の内周側の曲率半径の小さくなるように形成されている。なお、上述したように、図12、図13及び図14に示すベルマウス3の構成は一例である。ベルマウス3の周方向において、空気取込部3cの壁部3c1の、内周側の曲率半径が最大値を持つ位置は、例えば、遠心送風機1Hが設置される機器との関係によって決定される。また、図13及び図14に示すベルマウス3は、両吸込タイプの遠心送風機1の両側の吸込口5で同じ構成に形成されているが、吸込口5毎に異なる曲率半径の壁部3c1を有するベルマウス3で構成されてもよい。 That is, in the bell mouth 3, in the circumferential direction, the width of the wall portion 3c1 of the air intake portion 3c increases in the radial direction and the radius of curvature on the inner circumferential side of the wall portion 3c1 increases, so that the radial direction of the wall portion 3c1 increases. The width is reduced and the radius of curvature on the inner peripheral side of the wall portion 3c1 is reduced. As described above, the configuration of the bell mouth 3 shown in FIGS. 12, 13, and 14 is an example. In the circumferential direction of the bell mouth 3, the position where the radius of curvature on the inner circumferential side of the wall portion 3c1 of the air intake portion 3c has the maximum value is determined by, for example, the relationship with the device in which the centrifugal blower 1H is installed. .. In addition, the bell mouth 3 shown in FIGS. 13 and 14 has the same configuration with the suction ports 5 on both sides of the double suction type centrifugal blower 1, but each suction port 5 has a wall portion 3c1 having a different curvature radius. The bell mouth 3 may be included.
 ベルマウス3は、空気取込部3cを構成する壁部3c1の内周側の曲率半径の拡大に伴い、羽根車2の主板2aに対するベルマウス3の上流端部3aの形成位置が変化している。より詳細には、ベルマウス3の周方向において、壁部3c1の内周側の曲率半径の拡大に伴い、ベルマウス3の上流端部3aは、羽根車2の主板2aとの距離が拡大する。すなわち、羽根車2の主板2aに対するベルマウス3の上流端部3aの位置は、羽根車2の回転方向Rに沿って変化する。 In the bell mouth 3, the formation position of the upstream end portion 3a of the bell mouth 3 with respect to the main plate 2a of the impeller 2 changes as the radius of curvature on the inner peripheral side of the wall portion 3c1 forming the air intake portion 3c increases. There is. More specifically, in the circumferential direction of the bell mouth 3, the distance between the upstream end portion 3a of the bell mouth 3 and the main plate 2a of the impeller 2 increases as the radius of curvature of the inner peripheral side of the wall portion 3c1 increases. .. That is, the position of the upstream end portion 3 a of the bell mouth 3 with respect to the main plate 2 a of the impeller 2 changes along the rotation direction R of the impeller 2.
[遠心送風機1Hの作用効果]
 遠心送風機1Hのベルマウス3は、周方向において舌部43以外の位置で、空気取込部3cの径方向の壁の大きさを拡大し、ベルマウス3の内周側の曲率半径が大きくなるように形成されている。遠心送風機1Hは、当該構成を有することで、ベルマウス3を流れる速い気流のベルマウス3からの剥離を低減する。そのため、遠心送風機1Hは、送風効率を上げることができ、また、騒音を低減することができる。
[Effect of centrifugal blower 1H]
The bell mouth 3 of the centrifugal blower 1H expands the size of the radial wall of the air intake portion 3c at positions other than the tongue portion 43 in the circumferential direction, and the radius of curvature of the bell mouth 3 on the inner peripheral side increases. Is formed. The centrifugal blower 1H has the configuration described above, and thereby reduces the separation of the fast airflow flowing through the bell mouth 3 from the bell mouth 3. Therefore, the centrifugal blower 1H can improve the blowing efficiency and reduce noise.
実施の形態10.
[送風装置30]
 図15は、本発明の実施の形態10に係る送風装置30の構成を示す図である。図1~図14の遠心送風機1等と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態10に係る送風装置30は、例えば、換気扇、卓上ファンなどである。送風装置30は、実施の形態1~実施の形態9に係る遠心送風機1~遠心送風機1Hのいずれか1つと、遠心送風機1等を収容するケース7とを備えている。なお、以下の説明において、遠心送風機1と示す場合には、実施の形態1~実施の形態9に係る遠心送風機1~遠心送風機1Hのいずれか1つを用いるものである。ケース7には、吸込口71及び吐出口72の二つの開口が形成されている。送風装置30は、図15に示すように、吸込口71と吐出口72とが対向する位置に形成されている。なお、送風装置30は、例えば、吸込口71又は吐出口72のいずれか一方が遠心送風機1の上方又は下方に形成されているなど、必ずしも吸込口71と吐出口72とが対向する位置に形成されていなくてもよい。ケース7内は、吸込口71が形成されている部分を備えた空間SP1と吐出口72が形成されている部分を備えた空間SP2とが、仕切板73で仕切られている。遠心送風機1は、吸込口71が形成されている側の空間SP1に吸込口5が位置し、吐出口72が形成されている側の空間SP2に吐出口42aが位置する状態で設置される。
Embodiment 10.
[Blower 30]
FIG. 15: is a figure which shows the structure of the air blower 30 which concerns on Embodiment 10 of this invention. Parts having the same configurations as those of the centrifugal blower 1 and the like shown in FIGS. The air blower 30 according to the tenth embodiment is, for example, a ventilation fan, a desk fan, or the like. The blower 30 includes any one of the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, and a case 7 that houses the centrifugal blower 1 and the like. In the following description, when the centrifugal blower 1 is referred to, any one of the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments is used. The case 7 has two openings, a suction port 71 and a discharge port 72. As shown in FIG. 15, the blower device 30 is formed at a position where the suction port 71 and the discharge port 72 face each other. The blower device 30 is not necessarily formed at a position where the suction port 71 and the discharge port 72 face each other, such that one of the suction port 71 and the discharge port 72 is formed above or below the centrifugal blower 1. It does not have to be. In the case 7, a partition plate 73 partitions a space SP1 having a portion where the suction port 71 is formed and a space SP2 having a portion where the discharge port 72 is formed. The centrifugal blower 1 is installed such that the suction port 5 is located in the space SP1 on the side where the suction port 71 is formed and the discharge port 42a is located in the space SP2 on the side where the discharge port 72 is formed.
 送風装置30は、モータ6の駆動によって羽根車2が回転すると、吸込口71を通じてケース7の内部に空気が吸い込まれる。ケース7の内部に吸い込まれた空気は、ベルマウス3に案内され、羽根車2に吸い込まれる。羽根車2に吸い込まれた空気は、羽根車2の径方向外側に向かって吹き出される。羽根車2から吹き出された空気は、ファンケーシング4の内部を通過後、ファンケーシング4の吐出口42aから吹き出され、ケース7の吐出口72から吹き出される。 In the blower device 30, when the impeller 2 is rotated by driving the motor 6, air is sucked into the case 7 through the suction port 71. The air sucked into the case 7 is guided by the bell mouth 3 and sucked into the impeller 2. The air sucked into the impeller 2 is blown out toward the outside in the radial direction of the impeller 2. The air blown from the impeller 2 passes through the inside of the fan casing 4, and then is blown from the discharge port 42 a of the fan casing 4 and the discharge port 72 of the case 7.
 実施の形態10に係る送風装置30は、実施の形態1~実施の形態9に係る遠心送風機1~遠心送風機1Hを備えるため、騒音の低減を実現でき、空気を効率よく取り込むことができる。 Since the blower device 30 according to the tenth embodiment includes the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, noise can be reduced and air can be taken in efficiently.
実施の形態11.
[空気調和装置40]
 図16は、本発明の実施の形態11に係る空気調和装置40の斜視図である。図17は、本発明の実施の形態11に係る空気調和装置40の内部構成を示す図である。図18は、本発明の実施の形態11に係る空気調和装置40の断面図である。図19は、本発明の実施の形態11に係る空気調和装置40の他の断面図である。なお、図1~図15の遠心送風機1と同一の構成を有する部位には同一の符号を付してその説明を省略する。また、図17では、空気調和装置40の内部構成を示すために、上面部16aは省略している。実施の形態11に係る空気調和装置40は、実施の形態1~実施の形態9に係る遠心送風機1~遠心送風機1Hのいずれか1つ以上と、遠心送風機1等の吐出口42aと対向する位置に配置された熱交換器10と、を備える。また、実施の形態11に係る空気調和装置40は、空調対象の部屋の天井裏に設置されたケース16を備えている。なお、以下の説明において、遠心送風機1と示す場合には、実施の形態1~実施の形態9に係る遠心送風機1~遠心送風機1Hのいずれか1つを用いるものである。また、ベルマウス3と示す場合には、前述したベルマウス3~ベルマウス3Gのいずれか1つを用いるものである。
Eleventh Embodiment
[Air conditioner 40]
FIG. 16: is a perspective view of the air conditioning apparatus 40 which concerns on Embodiment 11 of this invention. FIG. 17: is a figure which shows the internal structure of the air conditioning apparatus 40 which concerns on Embodiment 11 of this invention. FIG. 18: is sectional drawing of the air conditioning apparatus 40 which concerns on Embodiment 11 of this invention. FIG. 19 is another cross-sectional view of the air conditioning apparatus 40 according to Embodiment 11 of the present invention. It should be noted that parts having the same configurations as those of the centrifugal blower 1 of FIGS. 1 to 15 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 17, the upper surface portion 16a is omitted in order to show the internal configuration of the air conditioner 40. The air conditioner 40 according to the eleventh embodiment is a position facing any one or more of the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, and the discharge port 42a of the centrifugal blower 1 or the like. And a heat exchanger 10 arranged in the. Further, the air conditioning apparatus 40 according to the eleventh embodiment includes the case 16 installed behind the ceiling of the room to be air-conditioned. In the following description, when the centrifugal blower 1 is referred to, any one of the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments is used. When the bell mouth 3 is indicated, any one of the bell mouth 3 to the bell mouth 3G described above is used.
(ケース16)
 ケース16は、図16に示すように、上面部16a、下面部16b及び側面部16cを含む直方体状に形成されている。なお、ケース16の形状は、直方体状に限定されるものではなく、例えば、円柱形状、角柱状、円錐状、複数の角部を有する形状、複数の曲面部を有する形状等、他の形状であってもよい。ケース16は、側面部16cの1つとして、ケース吐出口17が形成された側面部16cを有する。ケース吐出口17の形状は、図16で示すように矩形状に形成されている。なお、ケース吐出口17の形状は、矩形状に限定されるものではなく、例えば、円形状、オーバル形状等でもよく、他の形状であってもよい。ケース16は、側面部16cのうち、ケース吐出口17が形成された面の裏となる面に、ケース吸込口18が形成された側面部16cを有している。ケース吸込口18の形状は、図17で示すように矩形状に形成されている。なお、ケース吸込口18の形状は、矩形状に限定されるものではなく、例えば、円形状、オーバル形状等でもよく、他の形状であってもよい。ケース吸込口18には、空気中の塵埃を取り除くフィルタが配置されてもよい。
(Case 16)
As shown in FIG. 16, the case 16 has a rectangular parallelepiped shape including an upper surface portion 16a, a lower surface portion 16b, and a side surface portion 16c. The shape of the case 16 is not limited to a rectangular parallelepiped shape, and may be another shape such as a columnar shape, a prismatic shape, a conical shape, a shape having a plurality of corners, or a shape having a plurality of curved surfaces. It may be. The case 16 has a side surface portion 16c in which a case discharge port 17 is formed, as one of the side surface portions 16c. The case ejection port 17 is formed in a rectangular shape as shown in FIG. The shape of the case discharge port 17 is not limited to the rectangular shape, and may be, for example, a circular shape, an oval shape, or any other shape. The case 16 has a side surface portion 16c in which a case suction port 18 is formed on a surface of the side surface portion 16c, which is a surface behind the surface in which the case discharge port 17 is formed. The case suction port 18 is formed in a rectangular shape as shown in FIG. The shape of the case suction port 18 is not limited to the rectangular shape, and may be, for example, a circular shape, an oval shape, or another shape. A filter for removing dust in the air may be arranged in the case suction port 18.
 ケース16の内部には、二つの遠心送風機1と、ファンモータ9と、熱交換器10とが収容されている。遠心送風機1は、羽根車2と、ベルマウス3が形成されたファンケーシング4とを備えている。ファンモータ9は、ケース16の上面部16aに固定されたモータサポート9aによって支持されている。ファンモータ9は、出力軸6aを有する。出力軸6aは、側面部16cのうち、ケース吸込口18が形成された面及びケース吐出口17が形成された面に対して平行に延びるように配置されている。空気調和装置40は、図17に示すように、二つの羽根車2が出力軸6aに取り付けられている。羽根車2は、ケース吸込口18からケース16内に吸い込まれ、ケース吐出口17から空調対象空間へと吹き出される空気の流れを形成する。なお、ケース16内に配置される遠心送風機1は、二つに限定されるものではなく、一つ又は三つ以上でもよい。なお、空気調和装置40に使用される遠心送風機1には、上述したベルマウス3の曲率変化の構成を、ベルマウス3の全周に適用できるが、ベルマウス3の全周の内、ケース吸込口18に対向する部分に適用した場合に、上述した効果がより顕著に発揮される。つまり、ベルマウス3の全周の内、ベルマウス3に流入する気流の流量が多くなる部分に上述したベルマウス3の曲率変化の構成を適用すると効果的である。 Inside the case 16, two centrifugal blowers 1, a fan motor 9, and a heat exchanger 10 are housed. The centrifugal blower 1 includes an impeller 2 and a fan casing 4 in which a bell mouth 3 is formed. The fan motor 9 is supported by a motor support 9a fixed to the upper surface 16a of the case 16. The fan motor 9 has an output shaft 6a. The output shaft 6a is arranged so as to extend parallel to the surface of the side surface portion 16c on which the case suction port 18 is formed and the surface on which the case discharge port 17 is formed. In the air conditioner 40, as shown in FIG. 17, two impellers 2 are attached to the output shaft 6a. The impeller 2 forms a flow of air that is sucked into the case 16 from the case suction port 18 and is blown from the case discharge port 17 to the air-conditioned space. The centrifugal blower 1 arranged in the case 16 is not limited to two, and may be one or three or more. In the centrifugal blower 1 used in the air conditioner 40, the above-described configuration of changing the curvature of the bell mouth 3 can be applied to the entire circumference of the bell mouth 3, but the case suction is included in the entire circumference of the bell mouth 3. When applied to the portion facing the mouth 18, the above-mentioned effects are more remarkably exhibited. That is, it is effective to apply the above-described configuration of changing the curvature of the bell mouth 3 to a portion of the entire circumference of the bell mouth 3 where the flow rate of the airflow flowing into the bell mouth 3 increases.
 遠心送風機1は、図17に示すように、仕切板19に取り付けられており、ケース16の内部空間は、ファンケーシング4の吸い込み側の空間SP11と、ファンケーシング4の吹き出し側の空間SP12とが、仕切板19によって仕切られている。 As shown in FIG. 17, the centrifugal blower 1 is attached to the partition plate 19, and the inner space of the case 16 includes a space SP11 on the suction side of the fan casing 4 and a space SP12 on the blowout side of the fan casing 4. It is partitioned by a partition plate 19.
 熱交換器10は、図18に示すように、遠心送風機1の吐出口42aと対向する位置に配置され、ケース16内において、遠心送風機1が吐出する空気の風路上に配置されている。熱交換器10は、ケース吸込口18からケース16内に吸い込まれ、ケース吐出口17から空調対象空間へと吹き出される空気の温度を調整する。なお、熱交換器10は、公知の構造のものを適用できる。また、ケース吸込口18は、遠心送風機1の回転軸RSの軸方向に垂直な位置に形成されていればよく、例えば、図19に示すように下面部16bにケース吸込口18aが形成されてもよい。この場合、空気調和装置40に使用される遠心送風機1には、上述したベルマウス3の曲率変化の構成を、ベルマウス3の全周に適用できるが、ベルマウス3の全周の内、ケース吸込口18aに対向する部分に適用した場合に、上述した効果がより顕著に発揮される。つまり、ベルマウス3の全周の内、ベルマウス3に流入する気流の流量が多くなる部分に上述したベルマウス3の曲率変化の構成を適用すると効果的である。 As shown in FIG. 18, the heat exchanger 10 is arranged at a position facing the discharge port 42a of the centrifugal blower 1, and is arranged in the case 16 on the air passage of the air discharged by the centrifugal blower 1. The heat exchanger 10 adjusts the temperature of the air sucked into the case 16 through the case suction port 18 and blown from the case discharge port 17 into the air-conditioned space. The heat exchanger 10 may have a known structure. Further, the case suction port 18 may be formed at a position vertical to the axial direction of the rotation axis RS of the centrifugal blower 1. For example, as shown in FIG. 19, the case suction port 18a is formed on the lower surface portion 16b. Good. In this case, the configuration of the curvature change of the bell mouth 3 described above can be applied to the entire circumference of the bell mouth 3 in the centrifugal blower 1 used in the air conditioner 40. When applied to the portion facing the suction port 18a, the above-mentioned effects are more remarkably exhibited. That is, it is effective to apply the above-described configuration of changing the curvature of the bell mouth 3 to a portion of the entire circumference of the bell mouth 3 where the flow rate of the airflow flowing into the bell mouth 3 increases.
 モータ6の駆動によって、羽根車2が回転すると、空調対象空間の空気は、ケース吸込口18又はケース吸込口18aを通じてケース16の内部に吸い込まれる。ケース16の内部に吸い込まれた空気は、ベルマウス3に案内され、羽根車2に吸い込まれる。羽根車2に吸い込まれた空気は、羽根車2の径方向外側に向かって吹き出される。羽根車2から吹き出された空気は、ファンケーシング4の内部を通過後、ファンケーシング4の吐出口42aから吹き出され、熱交換器10に供給される。熱交換器10に供給された空気は、熱交換器10を通過する際に、熱交換され、温度及び湿度調整される。熱交換器10を通過した空気は、ケース吐出口17から空調対象空間に吹き出される。 When the impeller 2 is rotated by driving the motor 6, the air in the air-conditioned space is sucked into the case 16 through the case suction port 18 or the case suction port 18a. The air sucked into the case 16 is guided by the bell mouth 3 and sucked into the impeller 2. The air sucked into the impeller 2 is blown out toward the outside in the radial direction of the impeller 2. The air blown out from the impeller 2 passes through the inside of the fan casing 4, then is blown out from the discharge port 42 a of the fan casing 4, and is supplied to the heat exchanger 10. The air supplied to the heat exchanger 10 is heat-exchanged when passing through the heat exchanger 10, and the temperature and humidity are adjusted. The air that has passed through the heat exchanger 10 is blown out from the case outlet 17 into the air-conditioned space.
 実施の形態11に係る空気調和装置40は、実施の形態1~実施の形態9に係る遠心送風機1~遠心送風機1Hを備えるため、騒音の低減を実現でき、空気を効率よく取り込むことができる。 Since the air conditioner 40 according to the eleventh embodiment includes the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, noise can be reduced and air can be taken in efficiently.
実施の形態12.
[冷凍サイクル装置50]
 図20は、本発明の実施の形態12に係る冷凍サイクル装置50の構成を示す図である。なお、実施の形態12に係る冷凍サイクル装置50の室内機200には、実施の形態1~実施の形態9に係る遠心送風機1~遠心送風機1Hが用いられる。また、以下の説明では、冷凍サイクル装置50について、空調用途に使用される場合について説明するが、冷凍サイクル装置50は、空調用途に使用されるものに限定されるものではない。冷凍サイクル装置50は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途又は空調用途に使用される。
Twelfth Embodiment
[Refrigeration cycle device 50]
20: is a figure which shows the structure of the refrigerating-cycle apparatus 50 which concerns on Embodiment 12 of this invention. In addition, as the indoor unit 200 of the refrigeration cycle apparatus 50 according to the twelfth embodiment, the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments are used. Further, in the following description, the refrigeration cycle device 50 is described as being used for air conditioning purposes, but the refrigeration cycle device 50 is not limited to being used for air conditioning purposes. The refrigeration cycle device 50 is used for refrigerating or air conditioning applications such as a refrigerator or a freezer, a vending machine, an air conditioner, a refrigerating device, and a water heater.
 実施の形態12に係る冷凍サイクル装置50は、冷媒を介して外気と室内の空気の間で熱を移動させることにより、室内を暖房又は冷房して空気調和を行う。実施の形態12に係る冷凍サイクル装置50は、室外機100と、室内機200とを有する。冷凍サイクル装置50は、室外機100と室内機200とが冷媒配管300及び冷媒配管400により配管接続されて、冷媒が循環する冷媒回路が構成されている。冷媒配管300は、気相の冷媒が流れるガス配管であり、冷媒配管400は、液相の冷媒が流れる液配管である。なお、冷媒配管400には、気液二相の冷媒を流してもよい。そして、冷凍サイクル装置50の冷媒回路では、圧縮機101、流路切替装置102、室外熱交換器103、膨張弁105、室内熱交換器201が冷媒配管を介して順次接続されている。 The refrigeration cycle device 50 according to the twelfth embodiment heats or cools the room to perform air conditioning by transferring heat between the outside air and the air in the room via the refrigerant. The refrigeration cycle device 50 according to the twelfth embodiment includes an outdoor unit 100 and an indoor unit 200. In the refrigeration cycle device 50, the outdoor unit 100 and the indoor unit 200 are pipe-connected by a refrigerant pipe 300 and a refrigerant pipe 400 to form a refrigerant circuit in which a refrigerant circulates. The refrigerant pipe 300 is a gas pipe through which a vapor-phase refrigerant flows, and the refrigerant pipe 400 is a liquid pipe through which a liquid-phase refrigerant flows. Note that a gas-liquid two-phase refrigerant may flow through the refrigerant pipe 400. In the refrigerant circuit of the refrigeration cycle device 50, the compressor 101, the flow path switching device 102, the outdoor heat exchanger 103, the expansion valve 105, and the indoor heat exchanger 201 are sequentially connected via the refrigerant pipe.
(室外機100)
 室外機100は、圧縮機101、流路切替装置102、室外熱交換器103、及び膨張弁105を有している。圧縮機101は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機101は、インバータ装置を備えていてもよく、インバータ装置によって運転周波数を変化させて、圧縮機101の容量を変更することができるように構成されてもよい。なお、圧縮機101の容量とは、単位時間当たりに送り出す冷媒の量である。流路切替装置102は、例えば四方弁であり、冷媒流路の方向の切り換えが行われる装置である。冷凍サイクル装置50は、制御装置110からの指示に基づいて、流路切替装置102を用いて冷媒の流れを切り換えることで、暖房運転又は冷房運転を実現することができる。
(Outdoor unit 100)
The outdoor unit 100 has a compressor 101, a flow path switching device 102, an outdoor heat exchanger 103, and an expansion valve 105. The compressor 101 compresses the drawn refrigerant and discharges it. Here, the compressor 101 may include an inverter device, and the inverter device may change the operating frequency to change the capacity of the compressor 101. The capacity of the compressor 101 is the amount of refrigerant sent out per unit time. The flow path switching device 102 is, for example, a four-way valve, and is a device that switches the direction of the refrigerant flow path. The refrigeration cycle device 50 can realize the heating operation or the cooling operation by switching the flow of the refrigerant using the flow path switching device 102 based on the instruction from the control device 110.
 室外熱交換器103は、冷媒と室外空気との熱交換を行う。室外熱交換器103は、暖房運転時には蒸発器の働きをし、冷媒配管400から流入した低圧の冷媒と室外空気との間で熱交換を行って冷媒を蒸発させて気化させる。室外熱交換器103は、冷房運転時には、凝縮器の働きをし、流路切替装置102側から流入した圧縮機101で圧縮済の冷媒と室外空気との間で熱交換を行って、冷媒を凝縮させて液化させる。室外熱交換器103には、冷媒と室外空気との間の熱交換の効率を高めるために、室外送風機104が設けられている。室外送風機104は、インバータ装置を取り付け、ファンモータの運転周波数を変化させてファンの回転速度を変更してもよい。膨張弁105は、絞り装置(流量制御手段)であり、膨張弁105を流れる冷媒の流量を調節することにより、膨張弁として機能し、開度を変化させることで、冷媒の圧力を調整する。例えば、膨張弁105が、電子式膨張弁等で構成された場合は、制御装置110の指示に基づいて開度調整が行われる。 The outdoor heat exchanger 103 exchanges heat between the refrigerant and the outdoor air. The outdoor heat exchanger 103 functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the refrigerant pipe 400 and the outdoor air to evaporate and evaporate the refrigerant. During the cooling operation, the outdoor heat exchanger 103 functions as a condenser, and performs heat exchange between the refrigerant that has been compressed by the compressor 101 that has flowed in from the flow path switching device 102 side and the outdoor air, and removes the refrigerant. Condensate and liquefy. The outdoor heat exchanger 103 is provided with an outdoor blower 104 in order to improve the efficiency of heat exchange between the refrigerant and the outdoor air. The outdoor blower 104 may be equipped with an inverter device to change the operating frequency of the fan motor to change the rotation speed of the fan. The expansion valve 105 is an expansion device (flow rate control means), and functions as an expansion valve by adjusting the flow rate of the refrigerant flowing through the expansion valve 105, and adjusts the pressure of the refrigerant by changing the opening. For example, when the expansion valve 105 is composed of an electronic expansion valve or the like, the opening degree is adjusted based on an instruction from the control device 110.
(室内機200)
 室内機200は、冷媒と室内空気との間で熱交換を行う室内熱交換器201及び、室内熱交換器201が熱交換を行う空気の流れを調整する室内送風機202を有する。室内熱交換器201は、暖房運転時には、凝縮器の働きをし、冷媒配管300から流入した冷媒と室内空気との間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管400側に流出させる。室内熱交換器201は、冷房運転時には蒸発器の働きをし、膨張弁105によって低圧状態にされた冷媒と室内空気との間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、冷媒配管300側に流出させる。室内送風機202は、室内熱交換器201と対面するように設けられている。室内送風機202には、実施の形態1~実施の形態8に係る遠心送風機1~遠心送風機1Hのいずれか1つ以上が適用される。室内送風機202の運転速度は、ユーザの設定により決定される。室内送風機202には、インバータ装置を取り付け、ファンモータ(図示は省略)の運転周波数を変化させて羽根車2の回転速度を変更してもよい。
(Indoor unit 200)
The indoor unit 200 has an indoor heat exchanger 201 that performs heat exchange between the refrigerant and indoor air, and an indoor blower 202 that adjusts the flow of air through which the indoor heat exchanger 201 performs heat exchange. The indoor heat exchanger 201 acts as a condenser during the heating operation, and performs heat exchange between the refrigerant flowing from the refrigerant pipe 300 and the indoor air to condense and liquefy the refrigerant, and to the refrigerant pipe 400 side. Drain. The indoor heat exchanger 201 functions as an evaporator during cooling operation, performs heat exchange between the refrigerant that has been brought to a low pressure state by the expansion valve 105 and indoor air, and causes the refrigerant to deprive the heat of the air to evaporate. To vaporize and flow out to the refrigerant pipe 300 side. The indoor blower 202 is provided so as to face the indoor heat exchanger 201. As the indoor blower 202, any one or more of the centrifugal blower 1 to the centrifugal blower 1H according to the first to eighth embodiments is applied. The operation speed of the indoor blower 202 is determined by the user setting. An inverter device may be attached to the indoor blower 202 to change the operating frequency of a fan motor (not shown) to change the rotation speed of the impeller 2.
[冷凍サイクル装置50の動作例]
 次に、冷凍サイクル装置50の動作例として冷房運転動作を説明する。圧縮機101によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置102を経由して、室外熱交換器103に流入する。室外熱交換器103に流入したガス冷媒は、室外送風機104により送風される外気との熱交換により凝縮し、低温の冷媒となって、室外熱交換器103から流出する。室外熱交換器103から流出した冷媒は、膨張弁105によって膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機200の室内熱交換器201に流入し、室内送風機202により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器201から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、空調空気となって、室内機200の吐出口から空調対象空間に吹き出される。室内熱交換器201から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。
[Operation Example of Refrigeration Cycle Device 50]
Next, a cooling operation operation will be described as an operation example of the refrigeration cycle apparatus 50. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the outdoor heat exchanger 103 via the flow path switching device 102. The gas refrigerant flowing into the outdoor heat exchanger 103 is condensed by heat exchange with the outside air blown by the outdoor blower 104, becomes a low-temperature refrigerant, and flows out from the outdoor heat exchanger 103. The refrigerant flowing out of the outdoor heat exchanger 103 is expanded and decompressed by the expansion valve 105 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the indoor heat exchanger 201 of the indoor unit 200, evaporates by heat exchange with the indoor air blown by the indoor blower 202, and becomes a low-temperature low-pressure gas refrigerant to become the indoor heat exchanger. It flows out from 201. At this time, the indoor air cooled by the heat absorbed by the refrigerant becomes conditioned air and is blown out from the discharge port of the indoor unit 200 to the air-conditioned space. The gas refrigerant flowing out from the indoor heat exchanger 201 is sucked into the compressor 101 via the flow path switching device 102 and is compressed again. The above operation is repeated.
 次に、冷凍サイクル装置50の動作例として暖房運転動作を説明する。圧縮機101によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置102を経由して、室内機200の室内熱交換器201に流入する。室内熱交換器201に流入したガス冷媒は、室内送風機202により送風される室内空気との熱交換により凝縮し、低温の冷媒となって、室内熱交換器201から流出する。このとき、ガス冷媒から熱を受け取り暖められた室内空気は、空調空気となって、室内機200の吐出口から空調対象空間に吹き出される。室内熱交換器201から流出した冷媒は、膨張弁105によって膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室外機100の室外熱交換器103に流入し、室外送風機104により送風される外気との熱交換により蒸発し、低温低圧のガス冷媒となって室外熱交換器103から流出する。室外熱交換器103から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。 Next, a heating operation operation will be described as an operation example of the refrigeration cycle apparatus 50. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the indoor heat exchanger 201 of the indoor unit 200 via the flow path switching device 102. The gas refrigerant flowing into the indoor heat exchanger 201 is condensed by heat exchange with the indoor air blown by the indoor blower 202, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 201. At this time, the room air heated by receiving heat from the gas refrigerant becomes conditioned air and is blown out from the discharge port of the indoor unit 200 to the air conditioned space. The refrigerant flowing out from the indoor heat exchanger 201 is expanded and decompressed by the expansion valve 105 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 103 of the outdoor unit 100, evaporates by heat exchange with the outside air blown by the outdoor blower 104, and becomes a low-temperature low-pressure gas refrigerant to become the outdoor heat exchanger 103. Drained from. The gas refrigerant flowing out of the outdoor heat exchanger 103 is sucked into the compressor 101 via the flow path switching device 102 and is compressed again. The above operation is repeated.
 実施の形態12に係る冷凍サイクル装置50は、実施の形態1~実施の形態9に係る遠心送風機1~遠心送風機1Hを備えるため、騒音の低減を実現でき、空気を効率よく取り込むことができる。 Since the refrigeration cycle apparatus 50 according to the twelfth embodiment includes the centrifugal blower 1 to the centrifugal blower 1H according to the first to ninth embodiments, noise can be reduced and air can be taken in efficiently.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。例えば、実施の形態4において、ベルマウス3Cは、下流端部3bから上流端部3aにかけて、すなわち、ベルマウス3Cの内周側から外周側にかけて、連続して一体に形成された第1壁部S1と、第2壁部S2と、第3壁部S3とを有する。ベルマウス3Cは、曲率半径の異なる3つの壁部を有しているが、ベルマウス3Cは、曲率半径の異なる4つ以上の壁部を有してもよい。同様に、実施の形態6において、ベルマウス3Eは、下流端部3bから上流端部3aにかけて、すなわち、ベルマウス3Eの内周側から外周側にかけて、連続して一体に形成された第1壁部S21と、第2壁部S22と、第3壁部S23とを有する。ベルマウス3Eは、曲率半径の異なる3つの壁部を有しているが、ベルマウス3Eは、曲率半径の異なる4つ以上の壁部を有してもよい。 The configurations shown in the above embodiments show an example of the content of the present invention, and can be combined with other known techniques, and the configurations of the configurations are possible without departing from the gist of the present invention. It is also possible to omit or change parts. For example, in the fourth embodiment, the bell mouth 3C has a first wall portion integrally formed continuously from the downstream end portion 3b to the upstream end portion 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3C. It has S1, the 2nd wall S2, and the 3rd wall S3. The bell mouth 3C has three wall portions with different radii of curvature, but the bell mouth 3C may have four or more wall portions with different radii of curvature. Similarly, in the sixth embodiment, the bell mouth 3E has a first wall continuously and integrally formed from the downstream end 3b to the upstream end 3a, that is, from the inner peripheral side to the outer peripheral side of the bell mouth 3E. It has a part S21, a second wall part S22, and a third wall part S23. The bell mouth 3E has three wall portions with different radii of curvature, but the bell mouth 3E may have four or more wall portions with different radii of curvature.
 1 遠心送風機、1A 遠心送風機、1B 遠心送風機、1C 遠心送風機、1D 遠心送風機、1E 遠心送風機、1F 遠心送風機、1G 遠心送風機、1H 遠心送風機、2 羽根車、2a 主板、2a1 周縁部、2b 軸部、2c 側板、2d 羽根、2e 吸込口、3 ベルマウス、3A ベルマウス、3B ベルマウス、3C ベルマウス、3D ベルマウス、3E ベルマウス、3F ベルマウス、3G ベルマウス、3a 上流端部、3b 下流端部、3c 空気取込部、3c1 壁部、4 ファンケーシング、4a 側壁、4c 周壁、5 吸込口、6 モータ、6a 出力軸、7 ケース、9 ファンモータ、9a モータサポート、10 熱交換器、16 ケース、16a 上面部、16b 下面部、16c 側面部、17 ケース吐出口、18 ケース吸込口、18a ケース吸込口、19 仕切板、30 送風装置、40 空気調和装置、41 スクロール部、41a 巻始部、41b 巻終部、42 吐出部、42a 吐出口、42b 延設板、42c ディフューザ板、42d 第1側板、42e 第2側板、43 舌部、50 冷凍サイクル装置、71 吸込口、72 吐出口、73 仕切板、100 室外機、101 圧縮機、102 流路切替装置、103 室外熱交換器、104 室外送風機、105 膨張弁、110 制御装置、200 室内機、201 室内熱交換器、202 室内送風機、300 冷媒配管、400 冷媒配管。 1 centrifugal blower, 1A centrifugal blower, 1B centrifugal blower, 1C centrifugal blower, 1D centrifugal blower, 1E centrifugal blower, 1F centrifugal blower, 1G centrifugal blower, 1H centrifugal blower, 2 impeller, 2a main plate, 2a1, peripheral portion, 2b shaft part 2c side plate, 2d blade, 2e suction port, 3 bell mouth, 3A bell mouth, 3B bell mouth, 3C bell mouth, 3D bell mouth, 3E bell mouth, 3F bell mouth, 3G bell mouth, 3a upstream end, 3b downstream End part, 3c air intake part, 3c1 wall part, 4 fan casing, 4a side wall, 4c peripheral wall, 5 suction port, 6 motor, 6a output shaft, 7 case, 9 fan motor, 9a motor support, 10 heat exchanger, 16 cases, 16a upper surface part, 16b lower surface part, 16c side surface part, 17 case discharge port, 18 case suction port, 18a case suction port, 19 partition plate, 30 air blower, 40 air conditioner, 41 scroll part, 41a winding start Part, 41b winding end part, 42 discharge part, 42a discharge port, 42b extended plate, 42c diffuser plate, 42d first side plate, 42e second side plate, 43 tongue part, 50 refrigeration cycle device, 71 suction port, 72 discharge port , 73 partition plate, 100 outdoor unit, 101 compressor, 102 flow path switching device, 103 outdoor heat exchanger, 104 outdoor blower, 105 expansion valve, 110 control device, 200 indoor unit, 201 indoor heat exchanger, 202 indoor blower , 300 refrigerant piping, 400 refrigerant piping.

Claims (14)

  1.  円盤状の主板と、前記主板の周縁部に設置される複数枚の羽根と、を有する羽根車と、
     前記羽根車を収納し、前記羽根車に吸入される気体を整流するベルマウスを有するファンケーシングと、
    を備え、
     前記ベルマウスは、
     前記ファンケーシング内に流入する気体が通過する吸込口を形成し、前記ファンケーシングに吸い込まれる気流の方向において上流端部から下流端部に向かって開口径が次第に小さくなるように形成された空気取込部を有し、
     前記ベルマウスの垂直断面において、前記上流端部及び前記下流端部のうち、一方の端部を長軸の端部とし、他方の端部を短軸の端部とし、前記長軸と前記短軸との交点が、前記羽根車の回転軸に対して前記下流端部よりも外周側に位置する仮想の楕円を定義し、
     前記楕円の外形線において、前記上流端部と前記下流端部とを結ぶ最短距離の前記外形線を第1外形線と定義した場合に、
     前記空気取込部は、
     前記楕円の前記上流端部と接する仮想の第1接線と、前記楕円の前記下流端部と接する仮想の第2接線と、前記第1外形線と、で囲まれる範囲内において、前記交点を基準として前記上流端部と前記下流端部との間の壁部が前記第1外形線から離れる方向に膨らんでいる遠心送風機。
    An impeller having a disk-shaped main plate and a plurality of blades installed on a peripheral portion of the main plate,
    A fan casing that houses the impeller and has a bell mouth that rectifies the gas sucked into the impeller;
    Equipped with
    The bell mouth is
    An air intake formed to form a suction port through which the gas flowing into the fan casing passes, and the opening diameter of which gradually decreases from the upstream end toward the downstream end in the direction of the air flow sucked into the fan casing. Has a recess,
    In the vertical cross section of the bell mouth, one of the upstream end and the downstream end is an end of the long axis, the other end is an end of the short axis, and the long axis and the short axis. The intersection with the axis defines a virtual ellipse located on the outer peripheral side with respect to the rotation axis of the impeller from the downstream end,
    In the outline of the ellipse, when the outline of the shortest distance connecting the upstream end and the downstream end is defined as the first outline,
    The air intake section,
    Within the range surrounded by a virtual first tangent line that contacts the upstream end of the ellipse, a virtual second tangent line that contacts the downstream end of the ellipse, and the first outline, the intersection is a reference. As a centrifugal blower, a wall portion between the upstream end portion and the downstream end portion swells in a direction away from the first outline.
  2.  前記楕円は、
     前記ベルマウスの垂直断面において、前記上流端部から前記ファンケーシング内に延びる前記短軸と、前記下流端部から前記羽根車の径方向と平行な方向に延びる前記長軸とからなる請求項1に記載の遠心送風機。
    The ellipse is
    The vertical axis of the bell mouth comprises the minor axis extending from the upstream end into the fan casing, and the major axis extending from the downstream end in a direction parallel to a radial direction of the impeller. Centrifugal blower described in.
  3.  前記楕円は、
     前記ベルマウスの垂直断面において、前記上流端部から前記ファンケーシング内に延びる前記長軸と、前記下流端部から前記羽根車の径方向と平行な方向に延びる前記短軸とからなる請求項1に記載の遠心送風機。
    The ellipse is
    The vertical axis of the bell mouth comprises the long axis extending from the upstream end into the fan casing, and the short axis extending from the downstream end in a direction parallel to the radial direction of the impeller. Centrifugal blower described in.
  4.  前記ベルマウスの垂直断面において、
     前記上流端部と前記楕円の前記交点との間の距離を第1軸方向距離と定義し、
     前記下流端部と前記楕円の前記交点との間の距離を第1径方向距離と定義した場合に、
     前記ベルマウスは、
     第1径方向距離>第1軸方向距離の関係を満たすように形成されている請求項1又は請求項2に記載の遠心送風機。
    In the vertical section of the bell mouth,
    The distance between the upstream end and the intersection of the ellipse is defined as the first axial distance,
    When the distance between the downstream end and the intersection of the ellipse is defined as the first radial distance,
    The bell mouth is
    The centrifugal blower according to claim 1 or 2, wherein the centrifugal blower is formed so as to satisfy a relationship of a first radial direction distance> a first axial direction distance.
  5.  前記ベルマウスの垂直断面において、
     前記上流端部と前記楕円の前記交点との間の距離を第2軸方向距離と定義し、
     前記下流端部と前記楕円の前記交点との間の距離を第2径方向距離と定義した場合に、
     前記ベルマウスは、
     第2径方向距離<第2軸方向距離の関係を満たすように形成されている請求項1又は請求項3に記載の遠心送風機。
    In the vertical section of the bell mouth,
    The distance between the upstream end and the intersection of the ellipse is defined as the second axial distance,
    When the distance between the downstream end and the intersection of the ellipse is defined as the second radial distance,
    The bell mouth is
    The centrifugal blower according to claim 1 or 3, wherein the centrifugal blower is formed so as to satisfy the relationship of the second radial distance<the second axial distance.
  6.  前記ベルマウスは、
     前記下流端部から前記上流端部にかけて、連続して一体に形成された第1壁部と、第2壁部と、第3壁部とを有し、
     前記第1壁部、前記第2壁部及び前記第3壁部は、前記ベルマウスの垂直断面において、それぞれ円弧状に形成されており、それぞれ異なる曲率半径の曲面を構成し、
     前記第1壁部の曲率半径を第1曲率半径、前記第2壁部の曲率半径を第2曲率半径、前記第3壁部の曲率半径を第3曲率半径と定義した場合に、
     前記ベルマウスは、
     第3曲率半径>第1曲率半径>第2曲率半径の関係を満たす請求項1又は請求項2に記載の遠心送風機。
    The bell mouth is
    A first wall portion, a second wall portion, and a third wall portion that are continuously and integrally formed from the downstream end portion to the upstream end portion,
    The first wall portion, the second wall portion, and the third wall portion are each formed in an arc shape in a vertical cross section of the bell mouth, and each form a curved surface having a different radius of curvature,
    When the radius of curvature of the first wall is defined as a first radius of curvature, the radius of curvature of the second wall is defined as a second radius of curvature, and the radius of curvature of the third wall is defined as a third radius of curvature,
    The bell mouth is
    The centrifugal blower according to claim 1 or 2, which satisfies a relationship of third curvature radius>first curvature radius>second curvature radius.
  7.  前記ベルマウスは、
     前記下流端部から前記上流端部にかけて、連続して一体に形成された第1壁部と、第2壁部と、を有し、
     前記第1壁部及び前記第2壁部は、前記ベルマウスの垂直断面において、それぞれ円弧状に形成されており、それぞれ異なる曲率半径の曲面を構成し、
     前記第1壁部の曲率半径を第1曲率半径、前記第2壁部の曲率半径を第2曲率半径と定義した場合に、
     前記ベルマウスは、
     第2曲率半径>第1曲率半径の関係を満たす請求項1又は請求項2に記載の遠心送風機。
    The bell mouth is
    A first wall portion and a second wall portion that are continuously and integrally formed from the downstream end portion to the upstream end portion,
    The first wall portion and the second wall portion are each formed in an arc shape in a vertical cross section of the bell mouth, and form curved surfaces having different radii of curvature,
    When the radius of curvature of the first wall is defined as a first radius of curvature and the radius of curvature of the second wall is defined as a second radius of curvature,
    The bell mouth is
    The centrifugal blower according to claim 1 or 2, wherein the relationship of the second radius of curvature>the first radius of curvature is satisfied.
  8.  前記ベルマウスは、
     前記下流端部から前記上流端部にかけて、連続して一体に形成された第1壁部と、第2壁部と、第3壁部とを有し、
     前記第1壁部、前記第2壁部及び前記第3壁部は、前記ベルマウスの垂直断面において、それぞれ円弧状に形成されており、それぞれ異なる曲率半径の曲面を構成し、
     前記第1壁部の曲率半径を第1曲率半径、前記第2壁部の曲率半径を第2曲率半径、前記第3壁部の曲率半径を第3曲率半径と定義した場合に、
     前記ベルマウスは、
     第1曲率半径>第3曲率半径>第2曲率半径の関係を満たす請求項1又は請求項3に記載の遠心送風機。
    The bell mouth is
    A first wall portion, a second wall portion, and a third wall portion that are continuously and integrally formed from the downstream end portion to the upstream end portion,
    The first wall portion, the second wall portion, and the third wall portion are each formed in an arc shape in a vertical cross section of the bell mouth, and each form a curved surface having a different radius of curvature,
    When the radius of curvature of the first wall is defined as a first radius of curvature, the radius of curvature of the second wall is defined as a second radius of curvature, and the radius of curvature of the third wall is defined as a third radius of curvature,
    The bell mouth is
    The centrifugal blower according to claim 1 or 3, wherein the relationship of the first radius of curvature>the third radius of curvature>the second radius of curvature is satisfied.
  9.  前記ベルマウスは、
     前記下流端部から前記上流端部にかけて、連続して一体に形成された第1壁部と、第2壁部と、を有し、
     前記第1壁部及び前記第2壁部は、前記ベルマウスの垂直断面において、それぞれ円弧状に形成されており、それぞれ異なる曲率半径の曲面を構成し、
     前記第1壁部の曲率半径を第1曲率半径、前記第2壁部の曲率半径を第2曲率半径と定義した場合に、
     前記ベルマウスは、
     第1曲率半径>第2曲率半径の関係を満たす請求項1又は請求項3に記載の遠心送風機。
    The bell mouth is
    A first wall portion and a second wall portion that are continuously and integrally formed from the downstream end portion to the upstream end portion,
    The first wall portion and the second wall portion are each formed in an arc shape in a vertical cross section of the bell mouth, and form curved surfaces having different radii of curvature,
    When the radius of curvature of the first wall is defined as a first radius of curvature and the radius of curvature of the second wall is defined as a second radius of curvature,
    The bell mouth is
    The centrifugal blower according to claim 1 or 3, wherein the relationship of the first radius of curvature>the second radius of curvature is satisfied.
  10.  前記ベルマウスは、
     前記羽根車の回転軸に垂直な仮想の第1平面に前記下流端部が配置されており、
     前記第1平面に平行な第2平面に前記上流端部が配置されている請求項1~9のいずれか1項に記載の遠心送風機。
    The bell mouth is
    The downstream end is arranged on a virtual first plane perpendicular to the rotation axis of the impeller,
    The centrifugal blower according to any one of claims 1 to 9, wherein the upstream end portion is arranged on a second plane parallel to the first plane.
  11.  前記空気取込部は、
     舌部から前記羽根車の回転方向に沿って周方向に1周する間に、前記舌部の位置と比較して径方向に拡大すると共に、内周側の曲率半径が大きくなるように形成されている部分を有する請求項1~10のいずれか1項に記載の遠心送風機。
    The air intake section,
    It is formed so as to expand radially in comparison with the position of the tongue and to have a larger radius of curvature on the inner peripheral side during one round in the circumferential direction along the rotation direction of the impeller from the tongue. The centrifugal blower according to any one of claims 1 to 10, further comprising a portion having
  12.  請求項1~11のいずれか1項に記載の遠心送風機と、
     当該遠心送風機を収容するケースと、
    を備えた送風装置。
    A centrifugal blower according to any one of claims 1 to 11,
    A case accommodating the centrifugal blower,
    Blower equipped with.
  13.  請求項1~11のいずれか1項に記載の遠心送風機と、
     当該遠心送風機の吐出口と対向する位置に配置された熱交換器と、
    を備える空気調和装置。
    A centrifugal blower according to any one of claims 1 to 11,
    A heat exchanger arranged at a position facing the discharge port of the centrifugal blower,
    An air conditioner equipped with.
  14.  請求項1~11のいずれか1項に記載の遠心送風機を備えた冷凍サイクル装置。 A refrigeration cycle apparatus equipped with the centrifugal blower according to any one of claims 1 to 11.
PCT/JP2018/048063 2018-12-27 2018-12-27 Centrifugal blower, blower device, air conditioner, and refrigeration cycle device WO2020136788A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020562037A JP7130061B2 (en) 2018-12-27 2018-12-27 Centrifugal blowers, blowers, air conditioners and refrigeration cycle devices
PCT/JP2018/048063 WO2020136788A1 (en) 2018-12-27 2018-12-27 Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
CN201880100304.1A CN113195903B (en) 2018-12-27 2018-12-27 Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
EP18944300.5A EP3904696B1 (en) 2018-12-27 2018-12-27 Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
ES18944300T ES2945787T3 (en) 2018-12-27 2018-12-27 Centrifugal blower, blower device, air conditioner and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048063 WO2020136788A1 (en) 2018-12-27 2018-12-27 Centrifugal blower, blower device, air conditioner, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020136788A1 true WO2020136788A1 (en) 2020-07-02

Family

ID=71126179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048063 WO2020136788A1 (en) 2018-12-27 2018-12-27 Centrifugal blower, blower device, air conditioner, and refrigeration cycle device

Country Status (5)

Country Link
EP (1) EP3904696B1 (en)
JP (1) JP7130061B2 (en)
CN (1) CN113195903B (en)
ES (1) ES2945787T3 (en)
WO (1) WO2020136788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234286A (en) * 2021-12-10 2022-03-25 珠海格力电器股份有限公司 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316448A (en) * 2003-04-11 2004-11-11 Daikin Ind Ltd Centrifugal blower
US20060034686A1 (en) 2004-08-11 2006-02-16 Smiley William A Iii Fan inlet and housing for a centrifugal blower whose impeller has forward curved fan blades
JP2017110626A (en) * 2015-12-16 2017-06-22 株式会社デンソー Centrifugal blower

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215437A (en) * 1991-12-19 1993-06-01 Carrier Corporation Inlet orifice and centrifugal flow fan assembly
US5478201A (en) * 1994-06-13 1995-12-26 Carrier Corporation Centrifugal fan inlet orifice and impeller assembly
US6042335A (en) * 1998-05-04 2000-03-28 Carrier Corporation Centrifugal flow fan and fan/orifice assembly
JP4276363B2 (en) * 2000-07-31 2009-06-10 株式会社小松製作所 Method for forming porous sound absorbing material used for noise reduction mechanism of fan device
US7014422B2 (en) * 2003-06-13 2006-03-21 American Standard International Inc. Rounded blower housing with increased airflow
CN100375850C (en) * 2003-07-25 2008-03-19 乐金电子(天津)电器有限公司 Belling arrangement for centrifugal fans

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316448A (en) * 2003-04-11 2004-11-11 Daikin Ind Ltd Centrifugal blower
US20060034686A1 (en) 2004-08-11 2006-02-16 Smiley William A Iii Fan inlet and housing for a centrifugal blower whose impeller has forward curved fan blades
JP2017110626A (en) * 2015-12-16 2017-06-22 株式会社デンソー Centrifugal blower

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904696A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234286A (en) * 2021-12-10 2022-03-25 珠海格力电器股份有限公司 Air conditioner
CN114234286B (en) * 2021-12-10 2023-03-28 珠海格力电器股份有限公司 Air conditioner

Also Published As

Publication number Publication date
CN113195903A (en) 2021-07-30
EP3904696A1 (en) 2021-11-03
ES2945787T3 (en) 2023-07-07
CN113195903B (en) 2023-02-03
JP7130061B2 (en) 2022-09-02
EP3904696A4 (en) 2022-02-16
JPWO2020136788A1 (en) 2021-09-09
EP3904696B1 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
CN111279085B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
JP6984043B2 (en) Centrifugal blower, blower, air conditioner and refrigeration cycle device
JP7031061B2 (en) Centrifugal blower, blower, air conditioner and refrigeration cycle device
WO2019224869A1 (en) Centrifugal air blower, air blowing device, air conditioning device, and refrigeration cycle device
JP6960464B2 (en) Centrifugal blower, blower, air conditioner and refrigeration cycle device
WO2020044540A1 (en) Centrifugal blower, blower device, air conditioning device, and refrigeration cycle device
AU2019450775B2 (en) Centrifugal fan, air-conditioning apparatus, and refrigeration cycle apparatus
WO2020136788A1 (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
US11885339B2 (en) Turbo fan, air sending device, air-conditioning device, and refrigeration cycle device
JP7301236B2 (en) SCROLL CASING FOR CENTRIFUGAL BLOWER, CENTRIFUGAL BLOWER INCLUDING THIS SCROLL CASING, AIR CONDITIONER AND REFRIGERATION CYCLE DEVICE
JP7258099B2 (en) Air conditioning equipment and refrigeration cycle equipment
TWI832906B (en) Centrifugal blowers, air conditioning units and refrigeration cycle units
WO2023058228A1 (en) Centrifugal blower, air conditioning device, and refrigeration cycle device
WO2024038573A1 (en) Blower fan, multi-blade centrifugal blower, and air-conditioning indoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562037

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018944300

Country of ref document: EP

Effective date: 20210727