WO2020136302A1 - Method for detecting ballistocardiography signals and implementation system - Google Patents

Method for detecting ballistocardiography signals and implementation system Download PDF

Info

Publication number
WO2020136302A1
WO2020136302A1 PCT/ES2019/070884 ES2019070884W WO2020136302A1 WO 2020136302 A1 WO2020136302 A1 WO 2020136302A1 ES 2019070884 W ES2019070884 W ES 2019070884W WO 2020136302 A1 WO2020136302 A1 WO 2020136302A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
analog
stage
sensor
pass
Prior art date
Application number
PCT/ES2019/070884
Other languages
Spanish (es)
French (fr)
Inventor
Alberto PALMA LÓPEZ
Celso MARTÍNEZ BLANQUE
Encarnación CASTILLO MORALES
Antonio GARCÍA RIOS
Luis Fermín CAPITÁN VALLVEY
Antonio MARTÍNEZ OLMOS
Miguel Ángel CARVAJAL RODRÍGUEZ
Pablo ESCOBEDO ARAQUE
Original Assignee
Universidad De Granada
Lo Monaco Hogar, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada, Lo Monaco Hogar, S.L. filed Critical Universidad De Granada
Publication of WO2020136302A1 publication Critical patent/WO2020136302A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present invention can be categorized within the field of physics, specifically in the area of the measurement of physiological parameters by physical means and, in particular, from a ballistocardiogram.
  • a ballistocardiogram consists of recording the mechanical movement of the heart by monitoring force or acceleration from the chest, or alternatively taking remote measurements of blood pumping activity due to the heartbeat. With this remote monitoring, the need to place electrodes or other probes on the body is avoided, allowing non-invasive measurement, without altering the subject in their daily life or during rest.
  • the current Balstocardiography systems can be integrated into everyday objects such as beds, chairs or weighing scales, so that it is a non-invasive technique for the subject.
  • the BCG offers good prospects in preventive medicine, for example, in the detection of physical or mental stress, in the early detection of coronary problems or in the monitoring of sleep quality.
  • the BCG waveform is capable of providing an estimate of the blood volume of each beat and of the time intervals, making it possible to monitor the general functionality of the heart, the rhythm and the variability of the heart rhythm. It also allows us to extract useful information to evaluate certain disorders such as problems with the aortic valve or problems in the coronary arteries, which have a very direct impact on predicting the life expectancy of the subject.
  • Recent signal processing algorithms for estimating heart rate from BCG can be divided into two groups: those that provide the heart rate averaged over several seconds, and those that detect each beat individually.
  • the signal is divided into time segments and for each segment the average heart rate is estimated by finding the maximum of the autocorrelation function, or the power spectral density.
  • Other alternatives average over a number of reference points or apply empirical decomposition.
  • these systems cannot provide information for analysis of cardiac variability or classification of sleep stages.
  • BCG is pre-processed using various techniques such as low-pass filtering [S. Junnila, A. Akhbardeh, A. Várri, and T. Koivistoinen, “An EMFi-film sensor based ballistocardiographic chair: Performance and cycle extraction method,” IEEE Work. Signal Process. Syst. SiPS Des. Implement., Vol. 2005, pp. 373-377, 2005 or, noise reduction by transform wavelet [X. Zhu et al. , "Real-Time Monitoring of Respiration Rhythm and Pulse Rate During Sleep," IEEE Trans. Bio ed. Eng., Vol.
  • WO2018020064 a methodology and system is proposed to detect mechanical systolic events from the longitudinal BCG, in which a transfer function is applied to said signal that compensates the dynamic response of the subject's body, so that the function global is flat and phase zero in the range of frequencies of interest, thus reflecting only the signal corresponding to the mechanical events that occur in the heart and the aortic root.
  • the main difficulty associated with the measurement of cross-sectional BCG is their variability and which continues to be a challenge in obtaining methods and devices that have a high correlation with standardized ECG-based techniques.
  • the faithful and non-invasive detection of the appearance of each individual heartbeat from the BCG would allow to assess the state of heart health more quickly and comfortably even over long periods of time, which would be very useful for complex analysis of cardiac variability and estimation of phases during sleep.
  • the present invention describes a method and a device for detecting heart rhythm from the ballistocardiogram (BCG) obtained by non-invasive means.
  • BCG ballistocardiogram
  • the first object of the present invention is a method, hereinafter “method of the invention", that allows obtaining, reliably, the reference points that allow the heartbeats to be temporarily positioned.
  • a second object of the invention is a device, hereinafter “device of the invention", that allows the execution of the method of the invention.
  • object of the present invention are the various devices used for resting subjects that comprise the device of the invention, in particular mattresses that comprise the device of the invention.
  • an object of the invention is a computer program that implements the method of the invention.
  • this invention can be especially interesting for monitoring a subject's heart rate for long periods of time for the prevention of certain cardiovascular diseases and for the evaluation of sleep quality, by estimating the various phases of sleep. Furthermore, the non-invasive and home application nature of this invention allows this monitoring in a known and comfortable environment for the subject, providing information not altered by stress due to the hospital environment. On the other hand, this type of technology allows savings in the cost of health systems by not needing hospitalization or medical personnel on site.
  • FIG. 1 Schematic representation of the device of the invention.
  • A represents a sensor capable of obtaining the BCG, which sends the electronic signal to an analog processing stage, in which (B) represents a stage of conversion of the sensor output to voltage, (C) represents a stage of voltage amplification, (D) represents an analog filtering stage and communicates with a digital stage, where (E) represents the analog-to-digital converter, (6) represents the processor that houses the digital processing procedure of the signal and obtain the heart rate and (G) represents the module for presenting and transmitting the system result
  • FIG. 2 Transformation of the digitized BCG using the procedure proposed in this invention. The following are represented from top to bottom: 1) Digitized BCG signal (step 2), 2) Differences between consecutive maximums and minimums of the signal (step 4); 3) Filtered low-pass anterior signal for both positive and negative envelope reconstruction (step 5); 4) Signal product of the square of the previous signal (step 6) in which the maximums that are considered the reference points that indicate the temporal position of each heartbeat are clearly seen.
  • Figure 3 Histogram of the difference between the heart rate measured with the reference ECG and that measured with our invention with a 60-second BCG mobile processing window.
  • the invention consists of a method and an apparatus for detecting the heartbeat from balistocardiographic signals, also called a balistocardiogram.
  • the innovative solution proposed in the present invention consists in the application of a processing algorithm to the BCG that allows it to increase its amplitude in the event of events of closure of the heart valves and, in this way, isolate and detect reference points that allow identifying reliably the occurrence of a heartbeat. Also, since BCG It can be registered by sensors that are not in direct contact with the subject and integrated into everyday objects (mattress, chair or scale for people), allowing maximum freedom of movement and avoiding the discomfort of being attached to one or more electrodes with cables.
  • balistocardiogram or "BCG” is understood to be a record of the vibrations of the body caused by the mechanical activity of the heart.
  • Low-pass filtering is understood to mean, respectively, an analog or digital filtering, characterized by allowing the lowest frequencies to pass through and attenuating the highest frequencies. Similarly, “high-pass filtering allows higher frequencies to pass and lower frequencies to be attenuated.
  • stage refers to a subsystem or set of components, which comprises the elements necessary to carry out a certain signal processing function.
  • the present invention refers to a procedure of the invention ”) to measure the heart rate from a ballistocardiogram (BCG) obtained by a sensor capable of transducing mechanical vibration in said electrical signal, comprising the following stages:
  • This stage reduces noise and electrical interference and increases the signal-to-noise ratio for efficient subsequent digital processing.
  • the width of the employee passband will be between 0.1 and 40 Hz, preferably between 0.15 and 25 Hz.
  • Digitalization of the analog signal preferably with a sampling frequency greater than 1 KHz and a minimum resolution of 10 bits.
  • the absolute maximums and minimums are acquired and stored.
  • a signal is generated that contains, in the time positions of each maximum and minimum, a value corresponding to the difference of each consecutive maximum and minimum.
  • Stage 5 Construction, through digital low-pass filtering, of two continuous signals, one with the positive points of the discrete signal generated in the previous step, and the other with the negative ones. These two signals form the envelopes of the positive and negative values respectively.
  • the construction of the two signals is carried out by means of digital low-pass filtering.
  • the bandwidth used for filtering will be between 1 Hz and 25 Hz.
  • Stage 6. Creation of a new signal product of the square of the two signals from the previous step.
  • This signal is proportional to the area and therefore to the power of the signal whose envelopes are those of the previous step. That is, detection consists of looking for the regions where energy is concentrated, that is, where both signals are distanced. The result is a signal with very sharp peaks in the regions where the oscillations due to the presence of each beat occur. These pulses vary in amplitude, but their characteristic is that they are very well defined with respect to the signal background in areas where there are no beats.
  • a beat is associated with each one of the maximums identified in the previous stage, which correspond to the regions where the oscillations caused by the heart beat occur. In this way, an estimate of the heart rate can be obtained with the necessary precision.
  • Another object of the present invention is a system that allows the process of the invention to be carried out.
  • the system of the invention in its most general embodiment, comprises three juxtaposed stages (or blocks of components), which execute the process steps consecutively (Figure 1):
  • Vibration transduction stage comprising a sensor or sensor array (A) capable of transducing a mechanical vibration to an electrical signal.
  • Analog conditioning stage comprising:
  • Stage 1 collects the vibrations produced by the heartbeat and converts them to actionable electrical signals for the following stages.
  • Stage 2 is used to adapt the level of the signal obtained by the sensor to an analog-digital converter with a useful signal-to-noise ratio.
  • Stage 3 performs the digital conversion and processing of the BCG to obtain the reference points for determining the heart rate.
  • the senor (1) is a capacitive sensor.
  • the capacitive sensor is a coaxial cable with a dielectric with a piezoelectric effect to improve shielding against electromagnetic interference.
  • the capacitive sensor is replaced by an assembly comprising an LED light source and a photodetector that collects the light emitted by said LED, so that when the LED light is transmitted by the means between them (affected by vibration of heart movement) is modulated by vibration.
  • This signal modulated by the vibration presents a similar aspect to the BCG from which to extract the information of the appearance of the beats.
  • the voltage conversion means comprise a load-voltage amplifier or also called a transimpedance amplifier.
  • the analog processing stage in turn comprises a voltage gain stage (C) for those environments with a high presence of electronic noise and electromagnetic interference.
  • the processor is physically separated from the rest of the stages and the system includes means capable of communication (data exchange) with the processor.
  • Figure 1 the system of the invention consists of the following three juxtaposed stages:
  • Stage 1 Vibration transduction stage, formed by a capacitive sensor (A),
  • Stage 2 Analog conditioning stage, consisting of:
  • Stage 3 Digital computing and presentation / transmission stage consisting of:
  • E a signal digitizer of at least 10 bits resolution
  • F a processor that includes the indicated procedure for digital signal processing and extraction of the time between heartbeats
  • a mobile phone which is wirelessly connected to the above circuit to receive the information and present it to the user.
  • the capacitive sensor generates charge by piezoelectric effect (A) due to the vibration transmitted to it by the human body and by various intervening solid means (textiles, wood, metals) caused by the mechanical movement of the heart.
  • A piezoelectric effect
  • various intervening solid means textiles, wood, metals
  • Said capacitive sensor consists of a thin and flexible sheet forming a capacity of plane-parallel sheets.
  • This generated load is converted to voltage in a load amplifier (B) to which, later and still within the analog domain, a band-pass filter (D) with lower and upper cut-off frequencies of 0.15 Hz and 25 Hz, respectively.
  • B load amplifier
  • D band-pass filter
  • the result consisting of heart rate as a function of time is displayed on a screen or is transmitted wirelessly (G) to another device (for example, a mobile device) through the corresponding data transmission and presentation modules.
  • the senor was placed under a mattress, imperceptibly, for monitoring the subject during sleep in order to use the heart rate and its variability to assess the quality of the sleep by estimating its phases, along with other indicators.

Abstract

The present invention relates to a method for detecting heartbeats by means of a ballistocardiography signal. By means of the increase in the signal-to-noise ratio and the increase in the power of the signal at the moment of systole, the method allows the reference points that indicate each heartbeat to be reliably identified. In particular, the method is carried out using a system to which the invention also relates.

Description

DESCRIPCIÓN DESCRIPTION
PROCEDIMIENTO PARA LA DETECCIÓN DE SEÑALES BALISTOCARDIOGRÁFICAS YPROCEDURE FOR THE DETECTION OF BALLISTOCARDIOGRAPHIC AND
SISTEMA QUE LO IMPLEMENTA SYSTEM THAT IMPLEMENTS IT
SECTOR DE LA TÉCNICA TECHNICAL SECTOR
La presente invención se puede categorizar dentro del sector de la física, concretamente en el área de la medida de parámetros fisiológicos por medios físicos y, en particular, a partir de un balistocardiograma. The present invention can be categorized within the field of physics, specifically in the area of the measurement of physiological parameters by physical means and, in particular, from a ballistocardiogram.
Su campo de aplicación es el de la medicina, y en particular en el del diagnóstico asociado a la medición del movimiento de alguna parte del cuerpo, en particular, la balistocardiografía, o dispositivos que permiten la evaluación simultánea del sistema cardiovascular y de diferentes tipos de condiciones corporales Its field of application is that of medicine, and in particular that of the diagnosis associated with the measurement of movement of some part of the body, in particular, ballistocardiography, or devices that allow the simultaneous evaluation of the cardiovascular system and of different types of body conditions
ESTADO DE LA TÉCNICA STATE OF THE ART
Balistocardiograma Ballistocardiogram
Un balistocardiograma (BCG) consiste en el registro del movimiento mecánico del corazón mediante la monitorización de la fuerza o aceleración desde el pecho, o alternativamente tomando medidas remotas de la actividad de bombeo sanguíneo debido al latido cardiaco. Con esta monitorización remota se evita la necesidad de colocar electrodos u otras sondas sobre el cuerpo, lo que permite la medida no invasiva, sin alterar al sujeto en su vida cotidiana o durante el descanso. Los sistemas actuales de Balistocardiografía se pueden integrar en objetos cotidianos tales como camas, sillas o básculas de pesaje, de manera que sea una técnica no invasiva para el sujeto. El BCG ofrece buenas perspectivas en medicina preventiva, por ejemplo, en la detección de estrés físico o mental, en la detección temprana de problemas coronarios o en la monitorización de la calidad del sueño. La forma de onda del BCG es capaz de proporcionar una estimación del volumen de sangre de cada latido y de los intervalos temporales, lo que hace posible monitorizar la funcionalidad general del corazón, el ritmo y la variabilidad del ritmo cardiaco. También permite extraer información útil para evaluar ciertos trastornos tales como problemas en la válvula aórtica o problemas en las arterias coronarias, que inciden muy directamente en la predicción de la expectativa de vida del sujeto. A ballistocardiogram (BCG) consists of recording the mechanical movement of the heart by monitoring force or acceleration from the chest, or alternatively taking remote measurements of blood pumping activity due to the heartbeat. With this remote monitoring, the need to place electrodes or other probes on the body is avoided, allowing non-invasive measurement, without altering the subject in their daily life or during rest. The current Balistocardiography systems can be integrated into everyday objects such as beds, chairs or weighing scales, so that it is a non-invasive technique for the subject. The BCG offers good prospects in preventive medicine, for example, in the detection of physical or mental stress, in the early detection of coronary problems or in the monitoring of sleep quality. The BCG waveform is capable of providing an estimate of the blood volume of each beat and of the time intervals, making it possible to monitor the general functionality of the heart, the rhythm and the variability of the heart rhythm. It also allows us to extract useful information to evaluate certain disorders such as problems with the aortic valve or problems in the coronary arteries, which have a very direct impact on predicting the life expectancy of the subject.
Tradicionalmente se definen tres ejes de medida para los registros del BCG: longitudinal (cabeza-pies), transversal (lateral a lateral) y dorsoventral (pecho-espalda). Históricamente, la mayoría de sistemas de registro BCG han sido en el eje longitudinal debido a que se corresponde con el eje principal de flujo sanguíneo, incluyendo medidas con báscula. Entre éstos últimos, una alternativa adicional propone una metodología para detectar eventos sistólicos mecánicos a partir del BCG, en la que a dicha señal se aplica una función de transferencia que compensa la respuesta dinámica del cuerpo del sujeto para que el BCG refleje únicamente la señal correspondiente a los eventos mecánicos acontecidos en el corazón y en la raíz aórtica. Traditionally, three axes of measurement are defined for BCG records: longitudinal (head-to-foot), transverse (lateral to lateral) and dorsoventral (chest-back). Historically, Most BCG recording systems have been on the longitudinal axis because it corresponds to the main axis of blood flow, including scale measurements. Among the latter, an additional alternative proposes a methodology to detect mechanical systolic events from the BCG, in which a transfer function is applied to said signal that compensates the dynamic response of the subject's body so that the BCG reflects only the corresponding signal. to the mechanical events that take place in the heart and in the aortic root.
Recientemente, se han introducido sistemas de registro no invasivos, de forma particular los alojados en alguno de los elementos de una cama. En estos sistemas, el eje exacto de medición no es longitudinal si no transversal, dorsoventral o una combinación de ambos (a partir de aquí denominaremos eje trasversal a todas estas combinaciones), dependiendo de la posición del sujeto respeto al sensor. Este hecho, junto con la dificultad de la introducción del modelado mecánico de los elementos de la cama (colchón, somier, etc.), producen BCG mucho más variables que aquéllas registradas en el eje longitudinal o mediante electrocardiografía (ECG) [O. T. Inan et al.,“Ballistocardiography and Seismocardiography : Ballistocardiography and Seismocardiography : A Review of Recent Advances,” IEEE J. Biomed. Heal. Informatics, vol. 19, no. 4, pp. 1414-1427, 2015] Recently, non-invasive recording systems have been introduced, particularly those housed in some of the elements of a bed. In these systems, the exact measurement axis is not longitudinal but rather transverse, dorsoventral or a combination of both (from now on we will call all these combinations the transversal axis), depending on the position of the subject with respect to the sensor. This fact, together with the difficulty of introducing the mechanical modeling of the elements of the bed (mattress, bed base, etc.), produce BCG much more variable than those recorded on the longitudinal axis or by electrocardiography (ECG) [O. T. Inan et al., “Ballistocardiography and Seismocardiography: Ballistocardiography and Seismocardiography: A Review of Recent Advances,” IEEE J. Biomed. Heal. Informatics, vol. 19, no. 4, pp. 1414-1427, 2015]
Detección de ritmo cardiaco a partir del BCG Heart rate detection from BCG
Los algoritmos de procesado de señal recientes para la estimación del ritmo cardiaco a partir del BCG se pueden dividir en dos grupos: aquéllos que proporcionan el ritmo cardiaco promediado a lo largo de varios segundos y los que detectan cada latido de forma individual. En el primer caso, la señal se divide en segmentos temporales y para cada segmento el ritmo cardiaco promedio se estima hallando el máximo de la función de autocorrelación, o de la densidad espectral de potencia. Otras alternativas hacen un promedio sobre un número de puntos de referencia o aplican descomposición empírica. Sin embargo, estos sistemas no pueden proporcionar información para análisis de variabilidad cardiaca o clasificación de las etapas del sueño. Recent signal processing algorithms for estimating heart rate from BCG can be divided into two groups: those that provide the heart rate averaged over several seconds, and those that detect each beat individually. In the first case, the signal is divided into time segments and for each segment the average heart rate is estimated by finding the maximum of the autocorrelation function, or the power spectral density. Other alternatives average over a number of reference points or apply empirical decomposition. However, these systems cannot provide information for analysis of cardiac variability or classification of sleep stages.
De los algoritmos que detectan individualmente cada latido, muchos lo hacen detectando máximos de pendiente u otros puntos de referencia del BCG. En algunos casos, el BCG es pre-procesado aplicando diversas técnicas tales como, filtrado paso bajo [S. Junnila, A. Akhbardeh, A. Várri, and T. Koivistoinen,“An EMFi-film sensor based ballistocardiographic chair: Performance and cycle extraction method,” IEEE Work. Signal Process. Syst. SiPS Des. Implement., vol. 2005, pp. 373-377, 2005 o, eliminación de ruido mediante transformada wavelet [X. Zhu et al. ,“Real-Time Monitoring of Respiration Rhyth and Pulse Rate During Sleep,” IEEE Trans. Bio ed. Eng., vol. 53, no. 12, pp. 2553-2563, 2006.]. Estos algoritmos que se basan en la detección de puntos de referencia presentan falta de fiabilidad para los BCG transversales debido a la gran variabilidad de esas señales con el cambio de posición del sujeto y, por tanto, la pérdida de dichos puntos. Of the algorithms that individually detect each beat, many do so by detecting slope maxima or other BCG reference points. In some cases, BCG is pre-processed using various techniques such as low-pass filtering [S. Junnila, A. Akhbardeh, A. Várri, and T. Koivistoinen, “An EMFi-film sensor based ballistocardiographic chair: Performance and cycle extraction method,” IEEE Work. Signal Process. Syst. SiPS Des. Implement., Vol. 2005, pp. 373-377, 2005 or, noise reduction by transform wavelet [X. Zhu et al. , "Real-Time Monitoring of Respiration Rhythm and Pulse Rate During Sleep," IEEE Trans. Bio ed. Eng., Vol. 53, no. 12, pp. 2553-2563, 2006.]. These algorithms that are based on the detection of reference points present unreliability for the transverse BCGs due to the great variability of these signals with the change of position of the subject and, therefore, the loss of said points.
En la última década, se ha propuesto otra alternativa basada en la detección del cierre de las válvulas del corazón durante el latido. Una alternativa en esta línea estima el intervalo temporal entre latidos mediante un algoritmo basado en técnicas de aprendizaje no supervisadas que se adapta a cada señal de forma individual, obteniendo un conjunto de parámetros empleados en tres métodos independientes para localizar cada latido. Los principales inconvenientes de esta técnica recaen en la necesidad de un periodo de entrenamiento del sistema, sin salida útil, y su falta de viabilidad en caso de patrones repetidos no coincidentes en cada latido del corazón [C. Brüser, K. Stadlthanner, S. De Waele, and S. Leonhardt,“Adaptive beat-to-beat heart rate estimation in ballistocardiograms,” IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 5, pp. 778-786, 2011.]. In the last decade, another alternative has been proposed based on the detection of the closure of the heart valves during the beat. An alternative in this line estimates the time interval between beats using an algorithm based on unsupervised learning techniques that adapts to each signal individually, obtaining a set of parameters used in three independent methods to locate each beat. The main drawbacks of this technique lie in the need for a period of system training, with no useful output, and its lack of viability in case of repeated mismatched patterns in each heartbeat [C. Brüser, K. Stadlthanner, S. De Waele, and S. Leonhardt, “Adaptive beat-to-beat heart rate estimation in ballistocardiograms,” IEEE Trans. Inf. Technol. Biomed., Vol. 15, no. 5, pp. 778-786, 2011.].
Otras patentes que describen invenciones similares son W0200907392, WO2010145009, US8262582 y WO2018020064. Other patents that describe similar inventions are W0200907392, WO2010145009, US8262582 and WO2018020064.
Por ejemplo, en WO2018020064, se propone una metodología y sistema para detectar eventos sistólicos mecánicos a partir del BCG longitudinal, en la que a dicha señal se aplica una función de transferencia que compense la respuesta dinámica del cuerpo del sujeto, de manera que la función global sea plana y de fase cero en el rango de frecuencias de interés, reflejando así únicamente la señal correspondiente a los eventos mecánicos acontecidos en el corazón y en la raíz aórtica. For example, in WO2018020064, a methodology and system is proposed to detect mechanical systolic events from the longitudinal BCG, in which a transfer function is applied to said signal that compensates the dynamic response of the subject's body, so that the function global is flat and phase zero in the range of frequencies of interest, thus reflecting only the signal corresponding to the mechanical events that occur in the heart and the aortic root.
Otra aproximación hace uso de un matriz de sensores aplicando la transformada rápida de Fourier junto con el análisis del cepstrum al BCG para determinar los intervalos entre latidos propuesto en US8262582. Another approach makes use of a sensor array by applying the fast Fourier transform along with the cepstrum analysis to the BCG to determine the intervals between beats proposed in US8262582.
La principal dificultad asociada a la medida de BCG transversales es la variabilidad de las mismas y que sigue siendo un reto para la obtención de métodos y dispositivos que presenten una alta correlación con las técnicas estandarizadas basadas en ECG. La detección fiel y no invasiva de la aparición de cada latido individual a partir del BCG permitiría evaluar el estado de salud del corazón de forma más rápida y cómoda incluso durante períodos de tiempo largos, lo que sería de gran utilidad para el análisis complejo de la variabilidad cardiaca y la estimación de las fases durante el sueño. The main difficulty associated with the measurement of cross-sectional BCG is their variability and which continues to be a challenge in obtaining methods and devices that have a high correlation with standardized ECG-based techniques. The faithful and non-invasive detection of the appearance of each individual heartbeat from the BCG would allow to assess the state of heart health more quickly and comfortably even over long periods of time, which would be very useful for complex analysis of cardiac variability and estimation of phases during sleep.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención describe un procedimiento y un dispositivo para la detección del ritmo cardiaco a partir del balistocardiograma (BCG) obtenida por medios no invasivos. The present invention describes a method and a device for detecting heart rhythm from the ballistocardiogram (BCG) obtained by non-invasive means.
Así, el primer objeto de la presente invención es un procedimiento, en adelante“procedimiento de la invención”, que permite la obtención, de manera fiable, de los puntos de referencia que permiten posicionar temporalmente los latidos del corazón. Thus, the first object of the present invention is a method, hereinafter "method of the invention", that allows obtaining, reliably, the reference points that allow the heartbeats to be temporarily positioned.
Un segundo objeto de la invención es un dispositivo, en adelante“dispositivo de la invención”, que permite la ejecución del procedimiento de la invención. A second object of the invention is a device, hereinafter "device of the invention", that allows the execution of the method of the invention.
También son objeto de la presente invención los distintos dispositivos empleados para el reposo de sujetos que comprenden el dispositivo de la invención, en particular colchones que comprenden el dispositivo de la invención. Also object of the present invention are the various devices used for resting subjects that comprise the device of the invention, in particular mattresses that comprise the device of the invention.
Finalmente, es objeto de la invención un programa de ordenador que implementa el procedimiento de la invención. Finally, an object of the invention is a computer program that implements the method of the invention.
La utilización de esta invención puede resultar especialmente interesante para la monitorización durante largos periodos de tiempo del ritmo cardiaco de un sujeto para la prevención de ciertas enfermedades cardiovasculares y para la evaluación de la calidad del sueño, mediante la estimación de las diversas fases del mismo. Además, el carácter no invasivo y de aplicación en los hogares de esta invención permite esta monitorización en un ambiente conocido y confortable para el sujeto, proporcionando información no alterada por el estrés debido al medio hospitalario. Por otro lado, este tipo de tecnologías permiten un ahorro en el gasto de los sistemas de salud al no necesitar hospitalización ni personal médico in situ. BREVE DESCRIPCIÓN DE LAS FIGURAS The use of this invention can be especially interesting for monitoring a subject's heart rate for long periods of time for the prevention of certain cardiovascular diseases and for the evaluation of sleep quality, by estimating the various phases of sleep. Furthermore, the non-invasive and home application nature of this invention allows this monitoring in a known and comfortable environment for the subject, providing information not altered by stress due to the hospital environment. On the other hand, this type of technology allows savings in the cost of health systems by not needing hospitalization or medical personnel on site. BRIEF DESCRIPTION OF THE FIGURES
Para completar la descripción y ayudar en la compresión de las características de la invención, se acompaña como parte integrante de esta descripción un conjunto de figuras en las que, con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complete the description and help in understanding the characteristics of the invention, a set of figures is included as an integral part of this description in which, by way of illustration and not limitation, the following has been represented:
Figura 1.- Representación esquemática del dispositivo de la invención. (A) representa un sensor capaz de obtener el BCG, que envía la señal electrónica a una etapa de procesamiento analógico, en la que (B) representa una etapa de conversión de la salida del sensor a voltaje, (C) representa una etapa de amplificación de voltaje, (D) representa una etapa de filtrado analógico y que se comunica con una etapa y digital, en la que (E) representa el convertidor de analógica a digital, (6) representa el procesador que aloja el procedimiento de procesado digital de la señal y obtiene el ritmo cardiaco y (G) representa el módulo de presentación y transmisión del resultado del sistema Figure 1.- Schematic representation of the device of the invention. (A) represents a sensor capable of obtaining the BCG, which sends the electronic signal to an analog processing stage, in which (B) represents a stage of conversion of the sensor output to voltage, (C) represents a stage of voltage amplification, (D) represents an analog filtering stage and communicates with a digital stage, where (E) represents the analog-to-digital converter, (6) represents the processor that houses the digital processing procedure of the signal and obtain the heart rate and (G) represents the module for presenting and transmitting the system result
Figura 2.- Transformación del BCG digitalizado mediante el procedimiento propuesto en esta invención. De arriba abajo se representa: 1) Señal BCG digitalizada (paso 2), 2) Diferencias entre máximos y mínimos consecutivos de la señal (paso 4); 3) Señal anterior filtrada paso- bajo para reconstrucción de envolventes tanto positiva como negativa (paso 5); 4) Señal producto del cuadrado de la señal anterior (paso 6) en la que se aprecian claramente los máximos que se consideran los puntos de referencia que señalan la posición temporal de cada latido del corazón. Figure 2.- Transformation of the digitized BCG using the procedure proposed in this invention. The following are represented from top to bottom: 1) Digitized BCG signal (step 2), 2) Differences between consecutive maximums and minimums of the signal (step 4); 3) Filtered low-pass anterior signal for both positive and negative envelope reconstruction (step 5); 4) Signal product of the square of the previous signal (step 6) in which the maximums that are considered the reference points that indicate the temporal position of each heartbeat are clearly seen.
Figura 3.- Histograma de la diferencia entre el ritmo cardiaco medido con ECG de referencia y el medido con nuestra invención con una ventana móvil de procesado de 60 s del BCG. Figure 3.- Histogram of the difference between the heart rate measured with the reference ECG and that measured with our invention with a 60-second BCG mobile processing window.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
La invención consiste en un procedimiento y un aparato para detectar el latido cardiaco a partir de señales balistocardiográficas, también denominado balistocardiograma. La solución innovadora propuesta en la presente invención consiste en la aplicación de un algoritmo de procesado al BCG que permite aumentar su amplitud en los casos de eventos de cierre de las válvulas cardiacas y, de esta manera, aislar y detectar puntos de referencia que permiten identificar de manera fiable la aparición de un latido del corazón. Además, dado que el BCG se puede registrar mediante sensores que no estén en contacto directo con el sujeto e integrados en objetos cotidianos (colchón, silla o báscula para personas) se permite la máxima libertad de movimiento del mismo y se evita la incomodidad de estar unido a uno o más electrodos con cables. The invention consists of a method and an apparatus for detecting the heartbeat from balistocardiographic signals, also called a balistocardiogram. The innovative solution proposed in the present invention consists in the application of a processing algorithm to the BCG that allows it to increase its amplitude in the event of events of closure of the heart valves and, in this way, isolate and detect reference points that allow identifying reliably the occurrence of a heartbeat. Also, since BCG It can be registered by sensors that are not in direct contact with the subject and integrated into everyday objects (mattress, chair or scale for people), allowing maximum freedom of movement and avoiding the discomfort of being attached to one or more electrodes with cables.
Definiciones Definitions
A lo largo de la presente invención se entenderá por balistocardiograma o“BCG" un registro de las vibraciones del cuerpo causado por la actividad mecánica del corazón. Throughout the present invention, a balistocardiogram or "BCG" is understood to be a record of the vibrations of the body caused by the mechanical activity of the heart.
Por “filtrado paso-baja’’ se entiende, respectivamente a un filtrado, analógico o digital, caracterizado por permitir el paso de ¡as frecuencias más bajas y atenuar las frecuencias más altas. Análogamente, el“filtrado paso-alta permite el paso de las frecuencias más altas y atenuar las frecuencias más bajas. "Low-pass filtering" is understood to mean, respectively, an analog or digital filtering, characterized by allowing the lowest frequencies to pass through and attenuating the highest frequencies. Similarly, "high-pass filtering allows higher frequencies to pass and lower frequencies to be attenuated.
Cuando se trata de un elemento físico, el término“etapa” se refiere a un subsistema o conjunto de componentes, que comprende los elementos necesarios para llevar a cabo una determinada función de procesamiento de señal. When it comes to a physical element, the term "stage" refers to a subsystem or set of components, which comprises the elements necessary to carry out a certain signal processing function.
A lo largo de la descripción y las reivindicaciones la palabra " comprende " y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Throughout the description and claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge in part from the description and in part from the practice of the invention.
A lo largo de este documento se empleará una notación que utiliza en símbolo como separador decimal. Throughout this document we will use a notation that uses the symbol as a decimal separator.
Procedimiento de la invención Invention procedure
En su primer aspecto, la presente invención se refiere a un procedimiento rocedimiento de la invención”) para medir el ritmo cardiaco a partir de un balistocardiograma (BCG) obtenido por un sensor capaz de transducir vibración mecánica en dicha señal eléctrica, que comprende las siguientes etapas: In its first aspect, the present invention refers to a procedure of the invention ") to measure the heart rate from a ballistocardiogram (BCG) obtained by a sensor capable of transducing mechanical vibration in said electrical signal, comprising the following stages:
1. Filtrado analógico, en paso-alta y paso-baja, del BCG analógico 1. Analog, high-pass and low-pass filtering of the analog BCG
2. Conversión analógica-digital. 2. Analog to digital conversion.
3. Identificación de los máximos y mínimos de la señal digitalizada. 4. Creación una señal discretizada formada por impulsos en las posiciones donde hay máximos o mínimos y cuya amplitud es la diferencia entre cada máximo y mínimo consecutivos. 3. Identification of the maximums and minimums of the digitized signal. 4. Creation of a discretized signal formed by impulses in the positions where there are maximums or minimums and whose amplitude is the difference between each consecutive maximum and minimum.
5. Construcción, mediante un filtrado paso-baja digital, de dos señales continuas, una con los puntos positivos de la señal discreta generada en el paso anterior, y otra con los negativos. 5. Construction, through digital low-pass filtering, of two continuous signals, one with the positive points of the discrete signal generated in the previous step, and the other with the negative ones.
6. Creación de una nueva señal producto del cuadrado de las dos señales del paso anterior. 6. Creation of a new signal product of the square of the two signals from the previous step.
7. Detección de los máximos de la señal creada en el paso anterior. 7. Detection of the maximums of the signal created in the previous step.
8. Asociación de cada máximo con un latido cardiaco. 8. Association of each maximum with a heartbeat.
A continuación, se describen con mayor detalle cada una de las etapas: Each of the stages is described in more detail below:
Etapa 1.- Filtrado analógico, en paso-alta y paso-baja, del BCG analógico Stage 1.- Analog filtering, in high-pass and low-pass, of the analog BCG
Esta etapa permite reducir el ruido e interferencias eléctricas y aumentar la relación señal- ruido para un posterior procesado digital eficiente. This stage reduces noise and electrical interference and increases the signal-to-noise ratio for efficient subsequent digital processing.
En una realización particular, el ancho de la banda pasante de empleado estará entre 0,1 y 40 Hz, preferentemente entre 0,15 y 25 Hz. In a particular embodiment, the width of the employee passband will be between 0.1 and 40 Hz, preferably between 0.15 and 25 Hz.
Etapa 2.- Conversión analógica-digital. Stage 2.- Analog to digital conversion.
Digitalización de la señal analógica, preferentemente con una frecuencia de muestro superior a 1 KHz y una resolución mínima de 10 bits. Digitalization of the analog signal, preferably with a sampling frequency greater than 1 KHz and a minimum resolution of 10 bits.
Etapa 3.- Identificación de los máximos y mínimos. Stage 3.- Identification of the maximums and minimums.
En la señal digitalizada, se adquieren y almacenan los máximos y mínimos absolutos. In the digitized signal, the absolute maximums and minimums are acquired and stored.
Etapa 4 Señal discretizada. Stage 4 Discretized signal.
En esta etapa, se genera una señal que contiene, en las posiciones temporales de cada máximo y mínimo, un valor correspondiente a la diferencia de cada máximo y mínimo consecutivo. At this stage, a signal is generated that contains, in the time positions of each maximum and minimum, a value corresponding to the difference of each consecutive maximum and minimum.
Etapa 5.- Construcción, mediante un filtrado paso-baja digital, de dos señales continuas, una con los puntos positivos de la señal discreta qenerada en el paso anterior, y otra con los negativos. Estas dos señales forman las envolventes de los valores positivos y negativos respectivamente. En una realización preferente, la construcción de las dos señales se lleva a cabo mediante un filtrado paso-baja digital. De forma preferente, el ancho de banda empleado para el filtrado estará comprendido entre 1 Hz y 25 Hz. Stage 5.- Construction, through digital low-pass filtering, of two continuous signals, one with the positive points of the discrete signal generated in the previous step, and the other with the negative ones. These two signals form the envelopes of the positive and negative values respectively. In a preferred embodiment, the construction of the two signals is carried out by means of digital low-pass filtering. Preferably, the bandwidth used for filtering will be between 1 Hz and 25 Hz.
Etapa 6.- Creación de una nueva señal producto del cuadrado de las dos señales del paso anterior. Stage 6.- Creation of a new signal product of the square of the two signals from the previous step.
Esta señal es proporcional al área y por tanto a la potencia de la señal cuyas envolventes son las del paso anterior. Es decir, la detección consiste en buscar las regiones donde se concentra la energía, esto es, donde ambas señales se distancian. El resultado es una señal con picos muy acentuados en las regiones donde se producen las oscilaciones debidas a la presencia de cada latido. Estos pulsos varían en amplitud, pero su característica es que están muy bien definidos respecto al fondo de la señal en zonas donde no existen latidos. This signal is proportional to the area and therefore to the power of the signal whose envelopes are those of the previous step. That is, detection consists of looking for the regions where energy is concentrated, that is, where both signals are distanced. The result is a signal with very sharp peaks in the regions where the oscillations due to the presence of each beat occur. These pulses vary in amplitude, but their characteristic is that they are very well defined with respect to the signal background in areas where there are no beats.
Etapa 7.- Detección de los máximos de la señal creada en el paso anterior. Stage 7.- Detection of the maximums of the signal created in the previous step.
Al generar una señal en la que sus máximos están muy bien definidos respecto al fondo de la señal en zonas donde no existen latidos, se permite identificar dichos máximos con mayor precisión, ya que esta señal posee picos muy acentuados en las regiones donde se producen las oscilaciones causadas por los latidos cardiacos. By generating a signal in which its maxima are very well defined with respect to the signal background in areas where there are no beats, it is possible to identify these maxima with greater precision, since this signal has very sharp peaks in the regions where the oscillations caused by heartbeat.
Etapa 8.- Asociación de cada máximo con un latido cardiaco. Stage 8.- Association of each maximum with a heartbeat.
En esta última etapa se asocia un latido a cada uno de los máximos identificados en la etapa anterior, que se corresponden con las regiones donde se producen las oscilaciones causadas por los latidos cardiacos. De esta forma se puede obtener una estimación de la frecuencia cardiaca con la precisión necesaria. In this last stage, a beat is associated with each one of the maximums identified in the previous stage, which correspond to the regions where the oscillations caused by the heart beat occur. In this way, an estimate of the heart rate can be obtained with the necessary precision.
Sistema de la Invención Invention System
Otro objeto de la presente invención es un sistema que permite llevar a cabo el procedimiento de la invención. Another object of the present invention is a system that allows the process of the invention to be carried out.
El sistema de la invención, en su realización más general, comprende tres etapas (o bloques de componentes) yuxtapuestas, que ejecutan las etapas de procedimiento de forma consecutiva (figura 1): The system of the invention, in its most general embodiment, comprises three juxtaposed stages (or blocks of components), which execute the process steps consecutively (Figure 1):
1. Etapa de transducción de vibraciones, que comprende un sensor o matriz de sensores (A) capaces de transducir una vibración mecánica a una señal eléctrica. 2. Etapa de acondicionamiento analógico, que comprende: 1. Vibration transduction stage, comprising a sensor or sensor array (A) capable of transducing a mechanical vibration to an electrical signal. 2. Analog conditioning stage, comprising:
• Medios para la conversión de señal del sensor a voltaje (B). • Means for converting the sensor signal to voltage (B).
• Medios para llevar a cabo un filtrado analógico tanto paso-alto como paso-bajo (D). • Means for performing both high-pass and low-pass analog filtering (D).
3. Etapa de cómputo digital y presentación/transmisión de resultados que comprende:3. Digital computing stage and presentation / transmission of results comprising:
• Medios para llevar a cabo una conversión de analógico a digital (E) • Means to carry out an analog to digital conversion (E)
• Medios de cómputo (F) capaces de llevar a cabo el procedimiento de la invención a partir de los datos digitalizados. • Computing means (F) capable of carrying out the method of the invention from the digitized data.
• Medios de presentación y transmisión de señales digitales (G) • Means of presentation and transmission of digital signals (G)
La Etapa 1 recoge las vibraciones producidas por el latido cardiaco y las convierte a señales eléctricas procesables por las etapas siguientes. Stage 1 collects the vibrations produced by the heartbeat and converts them to actionable electrical signals for the following stages.
La Etapa 2 se emplea para adaptar el nivel de la señal obtenida por el sensor a un convertidor analógico-digital con una relación señal-ruido útil. Stage 2 is used to adapt the level of the signal obtained by the sensor to an analog-digital converter with a useful signal-to-noise ratio.
La Etapa 3 realiza la conversión y procesamiento digital del BCG para la obtención de los puntos de referencia para la determinación de la frecuencia cardiaca. Stage 3 performs the digital conversion and processing of the BCG to obtain the reference points for determining the heart rate.
En una realización particular, el sensor (1) es un sensor capacitivo. De forma aún más particular, el sensor capacitivo es un cable coaxial con un dieléctrico con efecto piezoeléctrico para mejorar el apantallamiento frente a interferencias electromagnéticas. In a particular embodiment, the sensor (1) is a capacitive sensor. Even more particularly, the capacitive sensor is a coaxial cable with a dielectric with a piezoelectric effect to improve shielding against electromagnetic interference.
En otra realización particular, el sensor capacitivo se sustituye por un conjunto que comprende una fuente de luz LED y un fotodetector que recoja la luz emitida por dicho LED, de forma que al ser transmitida la luz del LED por los medios entre ambos (afectados por la vibración del movimiento del corazón) es modulada por la vibración. Dicha señal modulada por la vibración presenta un aspecto similar al BCG de la que extraer la información de la aparición de los latidos. In another particular embodiment, the capacitive sensor is replaced by an assembly comprising an LED light source and a photodetector that collects the light emitted by said LED, so that when the LED light is transmitted by the means between them (affected by vibration of heart movement) is modulated by vibration. This signal modulated by the vibration presents a similar aspect to the BCG from which to extract the information of the appearance of the beats.
En otra realización particular, los medios de conversión a voltaje comprenden un amplificador carga-voltaje o también denominado de transimpedancia. In another particular embodiment, the voltage conversion means comprise a load-voltage amplifier or also called a transimpedance amplifier.
En otra realización preferente, la etapa de procesado analógico comprende a su vez una etapa de ganancia de voltaje (C) para aquellos ambientes de elevada presencia de ruido electrónico e interferencia electromagnética. En una realización equivalente, el procesador está físicamente separado del resto de etapas y el sistema comprende medios aptos para la comunicación (intercambio de datos) con el procesador. In another preferred embodiment, the analog processing stage in turn comprises a voltage gain stage (C) for those environments with a high presence of electronic noise and electromagnetic interference. In an equivalent embodiment, the processor is physically separated from the rest of the stages and the system includes means capable of communication (data exchange) with the processor.
MODOS DE REALIZACIÓN DE LA INVENCIÓN MODES OF CARRYING OUT THE INVENTION
Los siguientes ejemplos y dibujos se proporcionan a modo de ejemplo, y no se pretende que sean limitativos de la presente invención. The following examples and drawings are provided by way of example, and are not intended to be limiting of the present invention.
Sistema de la invención: System of the invention:
En un primer modo de realización (Figura 1), el sistema de la invención consiste en las siguientes tres etapas yuxtapuestas: In a first embodiment (Figure 1), the system of the invention consists of the following three juxtaposed stages:
• Etapa 1 : Etapa de transducción de vibraciones, formada por un sensor capacitivo (A),• Stage 1: Vibration transduction stage, formed by a capacitive sensor (A),
• Etapa 2: Etapa de acondicionamiento analógico, formada por: • Stage 2: Analog conditioning stage, consisting of:
o un amplificador de carga (B) or a charging amplifier (B)
o un filtro paso-alta y filtro paso baja frecuencias inferior y superior de corte de 0,15 Hz y 25 Hz, respectivamente (D) or a high-pass filter and low-pass filter lower and upper cutoff frequencies of 0.15 Hz and 25 Hz, respectively (D)
o una etapa de ganancia de voltaje (C). or a voltage gain stage (C).
• Etapa 3: Etapa de cómputo digital y presentación/transmisión formada por: • Stage 3: Digital computing and presentation / transmission stage consisting of:
o un digitalizador de señales de al menos 10 bits de resolución (E). o un procesador que incluya el procedimiento indicado para el procesamiento digital de la señal y la extracción del tiempo entre latidos (F). or a signal digitizer of at least 10 bits resolution (E). or a processor that includes the indicated procedure for digital signal processing and extraction of the time between heartbeats (F).
o una pantalla LCD para presentar los resultados al usuario (G) or an LCD screen to present the results to the user (G)
o Un circuito electrónico con antena para transmisión inalámbrica (bluetooth o Wifi) de la información. (G) o An electronic circuit with antenna for wireless transmission (bluetooth or Wifi) of the information. (G)
o Un teléfono móvil, que conectado inalámbricamente al circuito anterior para recibir la información y presentarla al usuario.
Figure imgf000012_0001
o A mobile phone, which is wirelessly connected to the above circuit to receive the information and present it to the user.
Figure imgf000012_0001
El sensor capacitivo genera carga por efecto piezoeléctrico (A) debido a la vibración que le llega transmitida por el cuerpo humano y por diversos medios sólidos interpuestos (textiles, madera, metales) originado por el movimiento mecánico del corazón. The capacitive sensor generates charge by piezoelectric effect (A) due to the vibration transmitted to it by the human body and by various intervening solid means (textiles, wood, metals) caused by the mechanical movement of the heart.
Dicho sensor capacitivo consiste en una lámina delgada y flexible formando una capacidad de láminas plano-paralelas. Said capacitive sensor consists of a thin and flexible sheet forming a capacity of plane-parallel sheets.
De esta manera, no es perceptible ni se requiere el contacto directo del sensor con la superficie corporal, para mayor confort del sujeto. In this way, direct contact of the sensor with the body surface, for greater comfort of the subject.
Esta carga generada se convierte a voltaje en un amplificador de carga (B) al que, posteriormente y aún dentro del domino analógico, se le aplica un filtro paso-banda (D) con frecuencias inferior y superior de corte de 0, 15 Hz y 25 Hz, respectivamente. This generated load is converted to voltage in a load amplifier (B) to which, later and still within the analog domain, a band-pass filter (D) with lower and upper cut-off frequencies of 0.15 Hz and 25 Hz, respectively.
A continuación, tras la digitalización de la señal (E), se le aplica el procedimiento digital enunciado anteriormente en una unidad de cómputo (F). El resultado constituido por la frecuencia cardiaca en función del tiempo se presenta en una pantalla o es transmitido inalámbricamente (G) a otro dispositivo (por ejemplo, un dispositivo móvil) a través de los correspondientes módulos de presentación y transmisión de datos. Then, after digitizing the signal (E), the digital procedure stated above is applied to it in a computing unit (F). The result consisting of heart rate as a function of time is displayed on a screen or is transmitted wirelessly (G) to another device (for example, a mobile device) through the corresponding data transmission and presentation modules.
Ensayos realizados Tests carried out
Para llevar a cabo la adquisición de señales (formación del BCG), el sensor se colocó bajo un colchón, de forma imperceptible, para la monitorización del sujeto durante el sueño con el objetivo de utilizar el ritmo cardiaco y su variabilidad para evaluar la calidad del sueño mediante la estimación de las fases del mismo, junto con otros indicadores. To carry out the acquisition of signals (BCG formation), the sensor was placed under a mattress, imperceptibly, for monitoring the subject during sleep in order to use the heart rate and its variability to assess the quality of the sleep by estimating its phases, along with other indicators.
Resultados de los ensayos Test results
Se acompañan en la Figura 3 los resultados obtenidos mediante la realización de la invención descrita, en la que se muestra el histograma de la diferencia entre el ritmo cardiaco obtenido por una técnica estándar ECG y nuestra invención propuesta. De esta figura se deduce una correlación de más del 70% entre ambas señales admitiendo un error experimental de ± 4 latidos por minuto. Accompanying in Figure 3 are the results obtained by carrying out the described invention, which shows the histogram of the difference between the heart rate obtained by a standard ECG technique and our proposed invention. From this figure a correlation of more than 70% is deduced between both signals admitting an experimental error of ± 4 beats per minute.
Una vez descrita suficientemente la invención, así como varios modos de realización preferentes, sólo debe añadirse que es posible realizar modificaciones en su constitución, materiales empleados, en la elección de los elementos y sensores empleados para detectar el BCG y en los métodos para identificar los puntos de referencia de la señal correspondiente a la actividad mecánica acontecida en el corazón y la raíz aórtica, sin apartarse del alcance de la invención, definido en las siguientes reivindicaciones. Once the invention has been sufficiently described, as well as several preferred embodiments, it should only be added that it is possible to make modifications in its constitution, materials used, in the choice of elements and sensors used to detect BCG and in the methods to identify the reference points of the signal corresponding to the mechanical activity occurring in the heart and the aortic root, without departing from the scope of the invention, defined in the following claims.

Claims

REIVINDICACIONES
1.- Procedimiento para medir el ritmo cardiaco a partir de un balistocardiograma, que comprende las siguientes etapas: 1.- Procedure to measure heart rate from a ballistocardiogram, which includes the following stages:
• Filtrado analógico, en paso-alta y paso-baja, del balistocardiograma analógico.• Analog filtering, in high-pass and low-pass, of the analog balistocardiogram.
• Conversión analógica-digital. • Analog to digital conversion.
• Identificación de los máximos y mínimos de la señal digitalizada • Identification of the maximums and minimums of the digitized signal
• Creación una señal discretizada formada por impulsos en las posiciones donde hay máximos o mínimos y cuya amplitud es la diferencia entre cada máximo y mínimo consecutivos. • Creation of a discretized signal formed by impulses in the positions where there are maximums or minimums and whose amplitude is the difference between each consecutive maximum and minimum.
• Construcción, mediante un filtrado paso-baja digital, de dos señales continuas, una con los puntos positivos de la señal discreta generada en el paso anterior, y otra con los negativos. • Construction, through digital low-pass filtering, of two continuous signals, one with the positive points of the discrete signal generated in the previous step, and the other with the negative ones.
• Creación de una nueva señal producto del cuadrado de las dos señales del paso anterior. • Creation of a new signal product of the square of the two signals from the previous step.
• Identificación de los máximos de la señal generada en la etapa anterior como los puntos de referencia que permiten la identificación de cada latido del corazón. • Identification of the maximums of the signal generated in the previous stage as the reference points that allow the identification of each heartbeat.
2.- Procedimiento según reivindicación anterior, caracterizado por que el ancho de la banda pasante de interés empleado en el filtrado analógico está entre 0,1 y 40 Hz, preferentemente entre 0,15 y 25 Hz. 2.- Procedure according to the previous claim, characterized in that the width of the passing band of interest used in the analog filtering is between 0.1 and 40 Hz, preferably between 0.15 and 25 Hz.
3.- Procedimiento, según reivindicaciones 1 o 2, caracterizado por que ancho de banda empleado para el filtrado paso-baja digital está comprendido entre 1 Hz y 25 Hz. 3. Procedure, according to claims 1 or 2, characterized in that the bandwidth used for digital low-pass filtering is between 1 Hz and 25 Hz.
4 - Sistema para medir el ritmo cardiaco a partir de un balistocardiograma (BCG) que comprende las siguientes etapas yuxtapuestas, que ejecutan las etapas del procedimiento según cualquiera de las reivindicaciones anteriores: 4 - System for measuring heart rate from a ballistocardiogram (BCG) comprising the following juxtaposed steps, which execute the steps of the procedure according to any of the preceding claims:
1. Etapa de transducción de vibraciones, que comprende un sensor o matriz de sensores (A) capaces de transducir una vibración mecánica a una señal eléctrica. 1. Vibration transduction stage, comprising a sensor or sensor array (A) capable of transducing a mechanical vibration to an electrical signal.
2. Etapa de acondicionamiento analógico, que comprende: 2. Analog conditioning stage, comprising:
• Medios para la conversión de señal del sensor a voltaje. • Means for converting the sensor signal to voltage.
• Medios para llevar a cabo un filtrado analógico tanto paso-alto como paso-bajo. • Means for performing both high-pass and low-pass analog filtering.
3. Etapa de cómputo digital y presentación/transmisión de resultados que comprende: • Medios para llevar a cabo una conversión de analógico a digital 3. Digital computing stage and presentation / transmission of results comprising: • Means to carry out an analog-to-digital conversion
• Medios de cómputo capaces de llevar a cabo el procedimiento de la invención a partir de los datos digitalizados. • Computing means capable of carrying out the procedure of the invention from the digitized data.
• Medios de presentación y transmisión de señales digitales • Means of presentation and transmission of digital signals
5.- Sistema, según reivindicación anterior, en el que el sensor empleado es un sensor capacitivo. 5.- System according to the previous claim, in which the sensor used is a capacitive sensor.
6.- Sistema según reivindicación anterior en el que el sensor capacitivo es un cable coaxial con un dieléctrico con efecto piezoeléctrico para mejorar el apantallamiento frente a interferencias electromagnéticas. 6.- System according to the previous claim, in which the capacitive sensor is a coaxial cable with a dielectric with a piezoelectric effect to improve the shielding against electromagnetic interference.
7.- Sistema según reivindicación 4, en el que el sensor empleado que comprende una fuente de luz LED y un fotodetector que recoja la luz emitida por dicho LED 7.- System according to claim 4, in which the sensor used which comprises an LED light source and a photodetector that collects the light emitted by said LED
8.- Sistema según cualquiera de las reivindicaciones 4 a 7, en el que los medios de conversión a voltaje comprenden un amplificador carga-voltaje. 9.- Sistema según cualquiera de las reivindicaciones 4 a 8, en el que la etapa de procesado analógico comprende a su vez una etapa de ganancia de voltaje. 8. System according to any of claims 4 to 7, wherein the voltage conversion means comprise a load-voltage amplifier. 9. System according to any of claims 4 to 8, wherein the analog processing stage in turn comprises a voltage gain stage.
PCT/ES2019/070884 2018-12-28 2019-12-26 Method for detecting ballistocardiography signals and implementation system WO2020136302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201831292A ES2769914A1 (en) 2018-12-28 2018-12-28 PROCEDURE FOR THE DETECTION OF BALLISTOCARDIOGRAPHIC SIGNALS AND THE SYSTEM THAT IMPLEMENTS IT (Machine-translation by Google Translate, not legally binding)
ESP201831292 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020136302A1 true WO2020136302A1 (en) 2020-07-02

Family

ID=71112136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070884 WO2020136302A1 (en) 2018-12-28 2019-12-26 Method for detecting ballistocardiography signals and implementation system

Country Status (2)

Country Link
ES (1) ES2769914A1 (en)
WO (1) WO2020136302A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113017613A (en) * 2021-03-03 2021-06-25 四川大学华西医院 Artificial intelligence-based cardiac shock wave signal processing method and computer equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135985A1 (en) * 2007-05-02 2008-11-13 Earlysense Ltd Monitoring, predicting and treating clinical episodes
WO2011013048A1 (en) * 2009-07-31 2011-02-03 Koninklijke Philips Electronics N.V. Method and apparatus for the analysis of a ballistocardiogram signal
WO2013093690A1 (en) * 2011-12-20 2013-06-27 Koninklijke Philips Electronics N.V. Method and apparatus for monitoring the baroreceptor reflex of a user

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135985A1 (en) * 2007-05-02 2008-11-13 Earlysense Ltd Monitoring, predicting and treating clinical episodes
WO2011013048A1 (en) * 2009-07-31 2011-02-03 Koninklijke Philips Electronics N.V. Method and apparatus for the analysis of a ballistocardiogram signal
WO2013093690A1 (en) * 2011-12-20 2013-06-27 Koninklijke Philips Electronics N.V. Method and apparatus for monitoring the baroreceptor reflex of a user

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113017613A (en) * 2021-03-03 2021-06-25 四川大学华西医院 Artificial intelligence-based cardiac shock wave signal processing method and computer equipment
CN113017613B (en) * 2021-03-03 2022-05-06 四川大学华西医院 Artificial intelligence-based cardiac shock wave signal processing method and computer equipment

Also Published As

Publication number Publication date
ES2769914A1 (en) 2020-06-29

Similar Documents

Publication Publication Date Title
US11234651B2 (en) Apparatus, system and method for medical analyses of seated individual
JP6130474B2 (en) Weight scale device and pulse wave velocity acquisition method
US9814397B2 (en) Scale-based systems and methods for monitoring heart function
JP6351504B2 (en) Device for obtaining cardiovascular information by measuring between two limbs
KR100697211B1 (en) System and method for estimation blood pressure by use of unconstrained pulse transit time measurement
US20200129078A1 (en) Blood Pressure Calculation Method and Device
Ciaccio et al. Tonometric arterial pulse sensor with noise cancellation
WO2020136302A1 (en) Method for detecting ballistocardiography signals and implementation system
JP2024516573A (en) Physiological parameter sensing system and method - Patents.com
JP2022547784A (en) Non-invasive, real-time, beat-to-beat ambulatory blood pressure monitoring
Huang et al. The non-contact heart rate measurement system for monitoring HRV
Armanfard et al. Development of a Smart Home-Based Package for Unobtrusive Physiological Monitoring
Pinheiro et al. A survey on unobtrusive measurements of the cardiovascular function and their practical implementation in wheelchairs
Vashisth et al. Real time acquisition, processing and analysis of human carotid pulse waveforms using MATLAB
Jegan et al. Methodological role of mathematics to estimate human blood pressure through biosensors
US20210330205A1 (en) Apparatus, computer-accessible medium, system and method for detection, analysis and use of fetal heart rate and movement
Klauth et al. Optimization and evaluation of a mobile IMU-based ballistocardiography system
Postolache et al. Comparative analysis of two systems for unobtrusive heart signal acquisition and characterization
Pinheiro et al. Wheelchair user's cardiovascular evaluation system to support physiotherapy sessions
Amorós et al. Pulse Arrival Time estimation based on Electrocardiography and Bioimpedance measurements in non-standard points

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901715

Country of ref document: EP

Kind code of ref document: A1