WO2020135891A1 - 激光平行度检测仪 - Google Patents

激光平行度检测仪 Download PDF

Info

Publication number
WO2020135891A1
WO2020135891A1 PCT/CN2020/070192 CN2020070192W WO2020135891A1 WO 2020135891 A1 WO2020135891 A1 WO 2020135891A1 CN 2020070192 W CN2020070192 W CN 2020070192W WO 2020135891 A1 WO2020135891 A1 WO 2020135891A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
reflected
detection
beam splitter
Prior art date
Application number
PCT/CN2020/070192
Other languages
English (en)
French (fr)
Inventor
张曙光
Original Assignee
茂莱(南京)仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂莱(南京)仪器有限公司 filed Critical 茂莱(南京)仪器有限公司
Publication of WO2020135891A1 publication Critical patent/WO2020135891A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the utility model relates to a laser parallelism detector, which belongs to the field of optical detection.
  • the technical problem to be solved by the utility model is to provide a laser parallelism detector.
  • the system uses the half-wavelength of the laser as a measurement unit to perform non-contact scanning on the measured surface.
  • the detection accuracy reaches sub-micron level. Improve the detection accuracy, reliability and efficiency. It can meet the detection of parallelism of high-precision parts.
  • a laser parallelism detector includes a laser interference system and a worktable, the laser interference system includes a detection optical path and a reference optical path, and the worktable includes a moving platform for carrying the measured object and parallel flat glass for reflecting the laser; The parallel flat glass reflects the laser light in the detection light path; and further includes a collection and display device for collecting and displaying images of the detection light path and the reference light path.
  • the detection optical path includes a laser, a polarizer I, a beam splitter, a wave plate I, and a reflector, and the laser light emitted by the laser passes through the polarizer I, the beam splitter, and the wave plate I in turn, and then is reflected by the reflector to the parallel flat plate
  • the laser beam is reflected by the parallel flat glass and then returns to the beam splitter and is reflected by the beam splitter at 90 degrees to form detection light.
  • the reference optical path includes a wave plate II and a reference mirror. The laser light emitted by the laser passes through the polarizer I It is partially reflected by the beam splitter and then reflected by the original path of the reference mirror after passing through the wave plate II. The reflected laser light is returned to the rear of the beam splitter again to form reference light; the detection light and the reference light form interference light and are collected by the display device Collection and display.
  • the collection and display device includes a camera and a display screen, the camera collects interference light and sends an image to the display screen for display; a polarizer II is also placed on the front end of the camera.
  • the mobile platform includes a fixed part and a moving part.
  • the moving part moves horizontally relative to the fixed part in a pneumatic manner; the bottom of the fixed part is fixedly connected to a base; the test part is placed on the moving part, and the parallel flat plate is placed on the test part glass.
  • the utility model uses the principle of laser interference to detect the parallelism of parts, and uses the half-wavelength of the laser as the measurement unit to perform non-contact scanning on the measured surface.
  • the detection accuracy reaches sub-micron level. Improve the detection accuracy, reliability and efficiency. It can meet the detection of parallelism of high-precision parts.
  • FIG. 1 is a schematic structural diagram of a laser parallelism detector of the present invention.
  • the laser parallelism detector of the present invention includes a laser interference system and a worktable.
  • the laser interference system includes a detection optical path and a reference optical path.
  • the worktable includes a mobile platform 12 for carrying the test object 11 and a
  • the parallel flat glass 10 reflecting the laser light; the parallel flat glass 10 reflects the laser light in the detection light path; and further includes a collection and display device for collecting and displaying images of the detection light path and the reference light path.
  • the detection optical path includes a laser 1, a polarizer I2, a beam splitter 3, a wave plate I6, and a mirror 7.
  • the laser light emitted by the laser 1 passes through the polarizing plate I2, the beam splitter 3, and the wave plate I6 in order, and then is reflected by the reflecting mirror 7 onto the parallel flat glass 10. After the laser beam is reflected by the parallel flat glass 10, the original path returns to the beam splitter 3 and is reflected by the beam splitter 3 at 90 degrees to form detection light.
  • the reference optical path includes the wave plate II4 and the reference mirror 5.
  • the laser light emitted by the laser 1 passes through the polarizing plate I2, is partially reflected by the beam splitter 3, passes through the wave plate II4, and is reflected by the reference mirror 5 in the original path.
  • the reflected laser light returns to the beam splitting again
  • the rear part of the mirror 3 is partially transmitted to form reference light.
  • the detection light and the reference light form interference light and are collected and displayed by the collection and display device.
  • the collection and display device includes a camera 9 and a display screen 14.
  • the camera 9 collects interference light and sends an image to the display screen 14 for display; a polarizer II8 is also placed on the front end of the camera 9 and the polarizer II8 is used to polarize the interference light.
  • the moving platform 12 includes a fixed part and a moving part, and the moving part moves horizontally relative to the fixed part by an air floatation method.
  • a base 13 is fixedly connected to the bottom end of the fixed part; a test piece 11 is placed on the moving part, and a parallel flat glass 10 is placed on the test piece 11.
  • the laser scans the test plane.
  • the change of the optical path in the sweeping range appears as the change of interference fringes, and is displayed by the display screen 14.
  • Changing the optical path by 1/2 wavelength produces an interference fringe.
  • the parallel difference of the measured plane can be directly read out, and its declination A can be calculated according to the following formula:
  • n is the number of movements of the interference fringe
  • the wavelength is the laser wavelength
  • D is the length swept.
  • the change in an interference fringe is 0.266 microns in elevation. By subdividing the fringe changes, you can also get an elevation change of about 0.1 microns.
  • a precision parallel flat glass 10 needs to be placed on the upper surface of the test piece 11.
  • the purpose of placing the parallel flat glass 10 is to enable the surface of the test object 11 that cannot reflect light to reflect the laser light. At the same time, it solves the problem that the results measured by the altimeter or three-coordinate tester do not match the actual installation surface.

Abstract

一种激光平行度检测仪,包括激光干涉系统和工作台,激光干涉系统包括检测光路和参考光路,工作台包括用于承载被测件(11)的移动平台(12)和用于反射激光的平行平板玻璃(10),平行平板玻璃(10)在检测光路中对激光反射;还包括用于对检测光路和参考光路的图像进行采集和显示的采集显示装置。激光平行度检测仪属于利用激光干涉原理检测零件平行度的装置,以激光的半波长为计量单位,对被测面进行非接触扫描,检测的精度达到亚微米级,提高了检测的精度,可靠性和效率,能够满足高精度零件平行度的检测。

Description

激光平行度检测仪 技术领域
本实用新型涉及激光平行度检测仪,属于光学检测领域。
背景技术
目前对于要求高的零件平行度的测试,多采用三坐标测量仪或高精度的测高仪在被测面上随机抽查若干个点的方法来确定被侧面的空间位置。可以看出,除非被侧面是严格的镜面,否则,所定义的面并非实际的安装面。实际的安装面是由被侧面上三个最高点确定的。使用上述仪器随机测得的点,不可能正好都是被侧面上的最高点。所测得的结果必然存在偏差。同时,这种测量方法费力费时,效率很低。不可能对批量零件进行全检。
实用新型内容
实用新型目的:本实用新型所要解决的技术问题是提供激光平行度检测仪,该系统以激光的半波长为计量单位,对被测面进行非接触扫描。检测的精度达到亚微米级。提高了检测的精度,可靠性和效率。能够满足高精度零件平行度的检测。
为了达到上述目的,本实用新型所采用的技术方案是:
激光平行度检测仪,包括激光干涉系统和工作台,所述激光干涉系统包括检测光路和参考光路,所述工作台包括用于承载被测件的移动平台和用于反射激光的平行平板玻璃;所述平行平板玻璃在检测光路中对激光反射;还包括用于对检测光路和参考光路的图像进行采集和显示的采集显示装置。
其中,所述检测光路包括激光器、偏振片I、分束镜、波片I和反射镜,激光器发出的激光依次穿过偏振片I、分束镜、波片I后由反射镜反射到平行平板玻璃上,激光由平行平板玻璃反射后原路返回到分束镜上并由分束镜90度反射形成检测光;所述参考光路包括波片II和参考镜,激光器发出的激光经过偏振片I后由分束镜部分反射后经过波片II后由参考镜原路反射,反射的激光再次返回到分束镜后部分透射形成参考光;检测光和参考光形成干涉光并由采集显示装置进行采集和显示。
其中,所述采集显示装置包括摄像机和显示屏,摄像机采集干涉光并将图像发送给显示屏显示;所述摄像机前端还放置有偏振片II。
其中,所述移动平台包括固定部和移动部,移动部通过气动方式相对固定部水平移 动;固定部底端固定连接有底座;移动部上放置有被测件,被测件上放置有平行平板玻璃。
与现有技术相比,本实用新型具有的有益效果是:
本实用新型利用激光干涉原理检测零件平行度的装置,以激光的半波长为计量单位,对被测面进行非接触扫描。检测的精度达到亚微米级。提高了检测的精度,可靠性和效率。能够满足高精度零件平行度的检测。
附图说明
图1为本实用新型激光平行度检测仪的结构示意图。
具体实施方式
下面结合说明书附图对本实用新型作进一步的说明。
如图1所示,本实用新型激光平行度检测仪,包括激光干涉系统和工作台,激光干涉系统包括检测光路和参考光路,工作台包括用于承载被测件11的移动平台12和用于反射激光的平行平板玻璃10;平行平板玻璃10在检测光路中对激光反射;还包括用于对检测光路和参考光路的图像进行采集和显示的采集显示装置。
其中,检测光路包括激光器1、偏振片I2、分束镜3、波片I6和反射镜7。
激光器1发出的激光依次穿过偏振片I2、分束镜3、波片I6后由反射镜7反射到平行平板玻璃10上。激光由平行平板玻璃10反射后原路返回到分束镜3上并由分束镜3进行90度反射形成检测光。
参考光路包括波片II4和参考镜5,激光器1发出的激光经过偏振片I2后由分束镜3部分反射后经过波片II4后由参考镜5原路反射,反射的激光再次返回到分束镜3后部分透射形成参考光。
检测光和参考光形成干涉光并由采集显示装置进行采集和显示。
采集显示装置包括摄像机9和显示屏14,摄像机9采集干涉光并将图像发送给显示屏14显示;摄像机9前端还放置有偏振片II8,偏振片II8用于对干涉光进行偏振处理。
移动平台12包括固定部和移动部,移动部通过气浮方式相对固定部水平移动。固定部底端固定连接有底座13;移动部上放置有被测件11,被测件11上放置有平行平板玻璃10。
随着被测件11在移动平台12上沿要求的测试方向移动,激光对被测平面进行扫描。扫过范围光程的变化表现成干涉条纹的变化,并由显示屏14显示。光程改变1/2波长产 生一个干涉条纹。根据条纹变化的多少,可以直接读出被测平面的平行差,并按下列公式计算出其偏角A:
A=1/2*n*λ/2*206.265/D秒
其中n为干涉条纹移动数,入为激光波长,D为被扫过的长度。
如果采用的激光波长为0.532微米,一个干涉条纹的变化即为0.266微米的高程变化。对条纹变化进行细分,还可以得出0.1微米左右的高程变化量。
这样做时,在被测件11的上表面需放置一块精密平行平板玻璃10。放置平行平板玻璃10的目的是使不能反光的被测件11表面也能够反射激光。同时解决一般用测高仪或三坐标测试仪测得的结果与实际的安装面不符的问题。

Claims (4)

  1. 激光平行度检测仪,其特征在于:包括激光干涉系统和工作台,所述激光干涉系统包括检测光路和参考光路,所述工作台包括用于承载被测件的移动平台和用于反射激光的平行平板玻璃;所述平行平板玻璃在检测光路中对激光反射;还包括用于对检测光路和参考光路的图像进行采集和显示的采集显示装置。
  2. 根据权利要求1所述的激光平行度检测仪,其特征在于:所述检测光路包括激光器、偏振片I、分束镜、波片I和反射镜,激光器发出的激光依次穿过偏振片I、分束镜、波片I后由反射镜反射到平行平板玻璃上,激光由平行平板玻璃反射后原路返回到分束镜上并由分束镜90度反射形成检测光;所述参考光路包括波片II和参考镜,激光器发出的激光经过偏振片I后由分束镜部分反射后经过波片II后由参考镜原路反射,反射的激光再次返回到分束镜后部分透射形成参考光;检测光和参考光形成干涉光并由采集显示装置进行采集和显示。
  3. 根据权利要求1所述的激光平行度检测仪,其特征在于:所述采集显示装置包括摄像机和显示屏,摄像机采集干涉光并将图像发送给显示屏显示;所述摄像机前端还放置有偏振片II。
  4. 根据权利要求1所述的激光平行度检测仪,其特征在于:所述移动平台包括固定部和移动部,移动部通过气动方式相对固定部水平移动;固定部底端固定连接有底座;移动部上放置有被测件,被测件上放置有平行平板玻璃。
PCT/CN2020/070192 2018-12-25 2020-01-03 激光平行度检测仪 WO2020135891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201822196614.8U CN209246966U (zh) 2018-12-25 2018-12-25 激光平行度检测仪
CN201822196614.8 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020135891A1 true WO2020135891A1 (zh) 2020-07-02

Family

ID=67534678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070192 WO2020135891A1 (zh) 2018-12-25 2020-01-03 激光平行度检测仪

Country Status (2)

Country Link
CN (1) CN209246966U (zh)
WO (1) WO2020135891A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209246966U (zh) * 2018-12-25 2019-08-13 茂莱(南京)仪器有限公司 激光平行度检测仪
CN111958120B (zh) * 2020-08-12 2022-03-04 华清创智光电科技(清远)有限公司 平面校准装置及其激光打标机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504615B1 (en) * 1998-03-09 2003-01-07 Super Silicon Crystal Research Institute Corporation Optical instrument for measuring shape of wafer
CN2597944Y (zh) * 2003-01-17 2004-01-07 中国科学院国家天文台南京天文光学技术研究所 一种测量工件平行度的装置
CN1624421A (zh) * 2003-12-01 2005-06-08 富士能株式会社 平行度测定方法
CN101221044A (zh) * 2008-01-29 2008-07-16 北京理工大学 大距离光线平行调整的装置与方法
CN102538714A (zh) * 2011-12-29 2012-07-04 中国科学院长春光学精密机械与物理研究所 一种平面高精度平行度的检测装置
CN103144036A (zh) * 2012-12-31 2013-06-12 南京理工大学 环抛阶段磨削量在线监测装置及磨削量在线监测方法
CN103727901A (zh) * 2014-01-14 2014-04-16 中国科学院长春光学精密机械与物理研究所 基于波长移相法检测平面间平行度的方法
CN106524951A (zh) * 2016-12-07 2017-03-22 福建福晶科技股份有限公司 一种测量锗窗片平行度的方法及其装置
CN207472217U (zh) * 2017-10-09 2018-06-08 茂莱(南京)仪器有限公司 一种零件平行度检测仪
CN209246966U (zh) * 2018-12-25 2019-08-13 茂莱(南京)仪器有限公司 激光平行度检测仪

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504615B1 (en) * 1998-03-09 2003-01-07 Super Silicon Crystal Research Institute Corporation Optical instrument for measuring shape of wafer
CN2597944Y (zh) * 2003-01-17 2004-01-07 中国科学院国家天文台南京天文光学技术研究所 一种测量工件平行度的装置
CN1624421A (zh) * 2003-12-01 2005-06-08 富士能株式会社 平行度测定方法
CN101221044A (zh) * 2008-01-29 2008-07-16 北京理工大学 大距离光线平行调整的装置与方法
CN102538714A (zh) * 2011-12-29 2012-07-04 中国科学院长春光学精密机械与物理研究所 一种平面高精度平行度的检测装置
CN103144036A (zh) * 2012-12-31 2013-06-12 南京理工大学 环抛阶段磨削量在线监测装置及磨削量在线监测方法
CN103727901A (zh) * 2014-01-14 2014-04-16 中国科学院长春光学精密机械与物理研究所 基于波长移相法检测平面间平行度的方法
CN106524951A (zh) * 2016-12-07 2017-03-22 福建福晶科技股份有限公司 一种测量锗窗片平行度的方法及其装置
CN207472217U (zh) * 2017-10-09 2018-06-08 茂莱(南京)仪器有限公司 一种零件平行度检测仪
CN209246966U (zh) * 2018-12-25 2019-08-13 茂莱(南京)仪器有限公司 激光平行度检测仪

Also Published As

Publication number Publication date
CN209246966U (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
JP2001508177A (ja) 針プローブ測定装置と組み合わせた光学表面計
WO2012083764A1 (zh) 差动共焦干涉元件多参数测量方法与装置
Chiu et al. Angle measurement using total-internal-reflection heterodyne interferometry
WO2020135891A1 (zh) 激光平行度检测仪
CN102679895B (zh) 反射式共焦透镜中心厚度测量方法
TWI436029B (zh) 光學式強度型三維表面形貌與顯微量測裝置及方法
WO2013091584A1 (zh) 一种检测基质内缺陷的方法及装置
CN103123251B (zh) 差动共焦内调焦法透镜光轴及厚度测量方法
CN109855743A (zh) 双频激光外差干涉相位测量大尺寸光学平面的装置及方法
WO2015154313A1 (zh) 高速多尺度振动和形变检测装置及方法
CN103759675A (zh) 一种用于光学元件非球面微结构的同步检测方法
CN102878935B (zh) 基于剪切散斑干涉的光学离面位移场测量装置及测量方法
CN109164063A (zh) 基于oct和数字图像技术自动测量材料折射率的方法
CN111397634B (zh) 星敏感器固定端面热变形的高分辨干涉检测装置及方法
CN205537546U (zh) 基于psd和楔形平晶微分干涉法的晶圆表面检测装置
CN107543502B (zh) 即时检测全场厚度的光学装置
Rico et al. Adjustment recommendations of a conoscopic holography sensor for a reliable scanning of surfaces with roughness grades obtained by different processes
WO2014039863A1 (en) Monitoring incident beam position in a wafer inspection system
CN102519405A (zh) 平面镜反射面平整度的检测装置及其使用方法
CN101975562A (zh) 一种测量光波阵列面或光学反射面表面平坦度的方法
CN106403829B (zh) 基于双光路红外反射法的涂层测厚仪
Tan et al. Angle-deviation optical profilometer
CN205581024U (zh) 透射型合成孔径数字全息术的光学元件表面疵病检测装置
CN104374548B (zh) 一种透镜折射率干涉测量方法
CN101900542A (zh) 一种磁辊表面粗糙度的无损测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20734628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20734628

Country of ref document: EP

Kind code of ref document: A1