WO2020135888A1 - 流量的传输方法及装置,物理拓扑结构 - Google Patents
流量的传输方法及装置,物理拓扑结构 Download PDFInfo
- Publication number
- WO2020135888A1 WO2020135888A1 PCT/CN2019/130141 CN2019130141W WO2020135888A1 WO 2020135888 A1 WO2020135888 A1 WO 2020135888A1 CN 2019130141 W CN2019130141 W CN 2019130141W WO 2020135888 A1 WO2020135888 A1 WO 2020135888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- election
- lag
- role
- result
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4641—Virtual LANs, VLANs, e.g. virtual private networks [VPN]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
Definitions
- This application relates to the field of communications, such as a method and device for transmitting traffic, and physical topology.
- Ethernet virtual private network (Ethernet Virtual Private Network, EVPN) technology is used as the main technology for the large layer 2 interconnection of data centers.
- the International Internet Engineering Task Force (The Internet Engineering Task Force, IETF) conducted its control plane in RFC7432.
- the detailed definition also defines the data plane of Multi-Protocol Label Switching (MPLS) EVPN.
- MPLS Multi-Protocol Label Switching
- IETF defined the control plane and forwarding plane of the virtual extended local area network (Virtual Xeensible Local Area Network, VxLAN) EVPN through "draft-ietf-bess-evpn-overlay-08".
- the control plane and forwarding plane of the operator's backbone bridge technology (Provider Backbone Bridge, PBB) EVPN are defined in detail. Whether it is MPLS, EVPN, VxLAN, EVPN, or PBB EVPN, there are corresponding descriptions for the scenario where the Ethernet segment (ES) is homed to the provider edge (PE) device, and the typical networking is shown in the figure. 1 shown.
- RFC7432 uses the Ethernet Segment Identifier (ESI) field to uniquely identify an ES with multi-homing access features in the EVPN route, and an ESI value of 0 indicates an ES with only single-homing access features.
- ESI Ethernet Segment Identifier
- An ES has multiple home devices connected to multiple PEs. Each PE connected to the ES is called an adjacent PE of the ES. The same ES has the same ESI on each adjacent PE.
- RFC7432 defines five types of EVPN routing.
- the fourth type of EVPN routing is called Ethernet segment routing, also known as RT-4 routing. It is used in MPLS EVPN, VxLAN EVPN, and PBB EVPN, and is set to Designated Forwarder (DF) for ES elections.
- DF Designated Forwarder
- DF election One function of DF election is to prevent broadcast, unknown unicast, or multicast (Broadcast, Unknown, Unicast, or Multicast, BUM) messages from the remote PE in the scenario of ES multi-homing access to the PE. Multiple adjacent PEs of the ES enter the ES at the same time, causing multiple packets. One of the adjacent PEs is elected as the DF, and the other adjacent PEs are the non-designated forwarders (non-Designated Forwarder, non-DF). Only the DF Able to forward BUM messages to the ES.
- DF election Another function of DF election is that in the scenario where ES is multi-homed to PE, when ES is in single-active mode, according to the standard requirements, DF should be used as the primary (Primary) PE.
- the Primary PE is responsible for the main node for service forwarding, and other adjacent PEs are responsible for the backup node for service forwarding.
- the DF election mechanism defined in the current standard mainly uses RT-4 routing and a set of election algorithms to select one of the adjacent PEs as the DF and the other adjacent PE devices as the non-DF among the multiple adjacent PEs of the ES.
- DF election is based on the granularity of ⁇ ES, VLAN>, for different virtual local area networks (Virtual Local Areas, VLANs) of the same ES, different adjacent PE devices can be elected as DFs.
- different access link ports (Attachment Circuit (AC) (corresponding to ⁇ ES, VLAN>) on the same PE and the same ES can have different DF roles.
- AC1 corresponding to ⁇ ESI1, VLAN1>
- AC2 corresponding to ⁇ ESI1, VLAN2>
- AC1 on PE1 is DF
- AC2 is non-DF
- AC1 on PE2 is non- DF and AC2 is DF.
- the dual-homing access scenario is the most common.
- Two adjacent PE devices are usually configured as a Multi-Chassis Link Aggregation Group (MC-LAG) mode.
- MC-LAG Multi-Chassis Link Aggregation Group
- the granularity of the MC-LAG master-slave election and ES DF election is different, which will cause the MC-LAG master-slave role and DF of adjacent PE devices Inconsistent roles will cause inconsistent bidirectional service paths between Customer Edge (CE) and PE, resulting in service forwarding being affected.
- CE Customer Edge
- the embodiments of the present application provide a traffic transmission method and device, and a physical topology structure, which avoids the two-way between CE and PE caused by the different granularity of the MC-LAG primary and backup elections and ES DF elections in the related art. Inconsistent business paths.
- An embodiment of the present application provides a method for transmitting traffic, including: a provider edge device PE determines an aggregated link group of the PE according to configured multi-device aggregated link group MC-LAG configuration information and protocol information LAG information; the PE conducts the designated forwarder DF election and determines the initial DF election result on the access link port AC; based on the LAG information and the initial DF election result, the PE pair is in the AC The decision of the DF election result on the PC is made; the PE determines the final role of the AC according to the DF election result after the decision.
- An embodiment of the present application further provides a traffic transmission device, which is located in a provider's edge equipment PE, and includes: a determination module, an election module, a decision module, and a judgment module; the determination module is set as a multi-device according to the configuration Inter-aggregated link group MC-LAG configuration information and protocol information to determine the LAG information of the aggregated link group of the PE; the election module is set to conduct a designated forwarder DF election and is determined on the access link port AC The initial DF election result; the decision module is set to make a decision on the DF election result on the AC based on the LAG information and the initial DF election result; the judgment module is set to be based on the decision The result of the DF election determines the final role of the AC.
- An embodiment of the present application further provides a physical topology structure based on EVPN services, including: a first provider edge device PE, a second PE, a third PE, a first customer edge device CE and a second CE, wherein, The first CE is dual homed to the first PE and the second PE, and the second CE is connected to the third PE; wherein, the first PE and the second PE are set to Configure the MC-LAG configuration information and protocol information of the multi-device aggregated link group to determine the corresponding aggregated link group LAG information; conduct the designated forwarder DF election and determine the initial DF election on the access link port AC Results; the first PE and the second PE negotiate according to the corresponding LAG information and the initial DF election result; according to the negotiation result, the first PE and the second PE pair on the AC The DF election results are used for decision-making, and the final role of the AC is determined according to the DF election results after the decision.
- a physical topology structure based on EVPN services including: a first provider edge device PE
- Yet another embodiment of the present application further provides a storage medium in which a computer program is stored, and the computer program is configured to execute the traffic transmission method in any one of the foregoing embodiments during runtime.
- Another embodiment of the present application further provides an electronic device, including a memory and a processor, the memory stores a computer program, and the processor is configured to execute any of the foregoing implementations by running the computer program Examples of traffic transmission methods.
- FIG. 1 is a flowchart of a traffic transmission method according to an embodiment of the present application
- FIG. 2 is a structural block diagram of a traffic transmission device according to an embodiment of the present application.
- FIG. 3 is a structural block diagram of a physical topology structure provided by an embodiment of the present application.
- FIG. 4 is a structural block diagram of another physical topology structure provided by an embodiment of the present application.
- FIG. 5 is a structural block diagram of yet another physical topology structure provided by an embodiment of the present application.
- FIG. 1 is a flowchart of a traffic transmission method according to an embodiment of the present application. As shown in FIG. 1, the flow includes steps S102 to S108.
- the provider edge device PE determines the LAG information of the PE according to the configured multi-device aggregation link group MC-LAG configuration information and protocol information.
- step S104 the PE performs DF election and determines the initial DF election result on the access link port AC.
- step S106 based on the LAG information and the initial DF election result, the PE makes a decision on the DF election result on the AC.
- step S108 the PE determines the final role of the access link port AC according to the DF election result after the decision.
- the initial DF election result is the same as the DF election result after the decision.
- the PE determining the LAG information of the PE according to the configured MC-LAG configuration information and protocol information further includes: the PE according to the MC- LAG configuration information and protocol information to determine the active and standby role information of the PE.
- the PE makes a decision on the DF election result on the AC, including: When the active/standby mode is master, the PE determines that the AC's DF role on the PE is DF; when the active/standby mode is standby, the PE determines the AC's AC's role on the PE The role of DF is non-DF.
- the PE when the PE determines that the DF role of the AC on the PE is DF, the PE serves as a master device for traffic transmission.
- a traffic transmission device is also provided.
- the device is used to implement the foregoing embodiment, and the description has not been repeated.
- the term "module” may implement a combination of software and/or hardware that performs predetermined functions.
- the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
- FIG. 2 is a structural block diagram of a traffic transmission device according to an embodiment of the present application. As shown in FIG. 2, the device includes: a determination module 22, an election module 24, a decision module 26, and a judgment module 28.
- the determining module 22 is configured to determine the LAG information of the PE according to the configured multi-device aggregated link group MC-LAG configuration information and protocol information.
- the election module 24 is configured to conduct DF election and determine the initial DF election result on the access link port AC.
- the decision module 26 is configured to make a decision on the DF election result on the AC based on the LAG information and the initial DF election result.
- the judgment module 28 is set to determine the final role of the access link port AC according to the DF election result after the decision.
- the above modules can be implemented by software or hardware, and the latter can be implemented by the following methods, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination The forms are located in different processors.
- a physical topology structure is also provided.
- the physical topology structure is used to implement the foregoing embodiment, and descriptions that have already been described will not be repeated.
- FIG. 3 is a structural block diagram of a physical topology structure provided by an embodiment of the present application.
- the physical topology structure includes: a first provider edge device PE 31, a second PE 32, and a third PE 33, A first customer edge device CE 34 and a second CE 35, wherein the first CE 34 is dual-homed to the first PE 31 and the second PE 32, and the second CE 35 is connected to the first Three PEs 33; wherein, the first PE 31 and the second PE 32 are set to determine the corresponding LAG information according to the MC-LAG configuration information and protocol information of the multi-device aggregated link group configured by each, respectively; Conduct DF election and determine the initial DF election result on the access link port AC; the first PE 31 and the second PE 32 negotiate based on the corresponding LAG information and the initial DF election result; According to the negotiation result, the first PE 31 and the second PE make a decision on the DF election result on the AC, and determine the final role of the access link port AC (DF or non-DF).
- DF
- the first PE and the second PE maintain the initial DF election result.
- the corresponding LAG mode is determined according to the configured MC-LAG configuration information and protocol information, It also includes: the first PE 31 and the second PE 32 are further configured to determine the main and backup role information respectively according to the MC-LAG configuration information and protocol information.
- the first PE 31 determines that the DF role of the AC on the first PE 31 is DF
- the second PE 32 determines that the DF role of the AC on the second PE 32 is non-DF.
- traffic is transmitted via the first PE 31, the third PE 33, the first CE 34, and the second CE 35.
- traffic is transmitted via the second PE32, the third PE33, the first CE34, and the second CE35
- the first PE 31 determines that the DF role of the AC on the first PE 31 is non-DF
- the second PE 32 determines that the DF role of the AC on the second PE 32 is DF.
- traffic is transmitted via the second PE 32, the third PE 33, the first CE 34, and the second CE 35.
- traffic is transmitted via the first PE 31, the third PE 33, the first CE 34, and the second CE 35.
- FIG. 4 is a structural block diagram of another physical topology in an embodiment of the present application. Taking MPLS EVPN as an example, MC-LAG is the main standby mode, and ES is Single-Active mode.
- the DF election and service forwarding process is as follows:
- a basic MPLS EVPN service is deployed on PE1, PE2, and PE3.
- CE1 is dual-homed to PE1 and PE2.
- the corresponding ES is ESI1.
- Single-Active mode is adopted.
- CE1 is configured with LAG, PE1, and PE2. Configure MC-LAG on the main and standby mode.
- the final DF election result is decided.
- AC1 on PE1 is DF
- AC1 on PE2 is non-DF.
- FIG. 5 is a structural block diagram of still another physical topology structure according to an embodiment of the present application.
- MC-LAG is a load sharing mode
- ES is an all-active mode.
- the DF election and service forwarding process is as follows:
- a basic VxLAN EVPN service is deployed on PE1, PE2, and PE3.
- CE1 is dual-homed to PE1 and PE2.
- the corresponding ES is ESI1. All-Active mode is adopted.
- LAG, PE1, and PE2 are configured on CE1.
- Configure MC-LAG on the load sharing mode.
- the MC-LAG modules on PE1 and PE2 calculate the active and standby roles of PE1 and PE2 according to the configuration information of MC-LAG and the running result of LACP protocol. Since they are in load sharing mode, both PE1 and PE2 are active.
- the DF role decision module on PE1 and PE2 decides the final DF election result based on the input information of the MC-LAG module and the EVPN control module.
- AC1 on PE1 is non-DF and AC1 on PE2 is DF.
- An embodiment of the present application further provides a storage medium in which a computer program is stored, wherein the computer program is set to execute the flow transmission method in any one of the above embodiments during runtime.
- the above storage medium may be set to store a computer program for performing the following steps: the vendor edge device PE determines the PE according to the configured multi-device aggregation link group MC-LAG configuration information and protocol information LAG information; the PE performs DF election and determines the initial DF election result on the access link port AC; based on the LAG information and the initial election result, the PE compares the DF on the AC The decision is made by the election result; the PE determines the final role of the access link port AC according to the DF election result after the decision.
- the above storage medium may include, but is not limited to: U disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), mobile hard disk, magnetic disk or optical disk, etc.
- U disk read-only memory
- RAM random access memory
- mobile hard disk magnetic disk or optical disk, etc.
- An embodiment of the present application further provides an electronic device, including a memory and a processor, where the computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any one of the foregoing method embodiments.
- the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
- the processor may be configured to perform the following steps through a computer program:
- the provider edge device PE determines the LAG of the PE according to the configured multi-device aggregation link group MC-LAG configuration information and protocol information Information; the PE performs DF election and determines the initial DF election result on the access link port AC; based on the LAG information and the initial election result, the PE performs the DF election on the AC Make a decision; the PE determines the final role of the access link port AC according to the DF election result after the decision.
- modules or steps of the present application can be implemented by a general-purpose computing device, they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices Above, by way of example, they can be implemented with program code executable by the computing device, so that they can be stored in the storage device to be executed by the computing device, and in some cases, can be in a different order than here
- the steps shown or described are performed, or they are made into individual integrated circuit modules respectively, or multiple modules or steps among them are made into a single integrated circuit module to achieve. In this way, this application is not limited to any specific combination of hardware and software.
- This application considers the LAG mode of PE on the DF election and needs to negotiate with other PEs that can be transmitted in the physical topology. Therefore, it can avoid the difference in the granularity of the MC-LAG primary and backup elections and the ES DF election.
- the resulting inconsistency in the bidirectional service path between CE and PE makes the DF election mechanism more complete in ES multi-homing access scenarios.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本申请提供了一种流量的传输方法及装置,物理拓扑结构。该方法包括:供应商边缘设备PE根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定所述PE的LAG信息;所述PE进行指定转发者DF选举,并确定接入链路端口AC的初始DF选举结果;根据所述LAG信息和所述初始DF选举结果,所述PE对在所述AC上的DF选举结果进行决策;所述PE根据决策后的DF选举结果确定接入链路端口AC的最终角色。
Description
本申请要求在2018年12月29日提交中国专利局、申请号为201811643610.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及通信领域,例如一种流量的传输方法及装置,物理拓扑结构。
以太网虚拟专用网(Ethernet Virtual Private Network,EVPN)技术作为用于数据中心大二层互联的主要技术,国际互联网工程任务组(The Internet Engineering Task Force,IETF)在RFC7432中对于其控制面进行了详细定义,同时对多协议标签交换(Multi-Protocol Label Switching,MPLS)EVPN的数据面进行了详细定义。其后,IETF又在RFC7432的基础上,通过《draft-ietf-bess-evpn-overlay-08》对虚拟扩展局域网(Virtual eXtensible Local Area Network,VxLAN)EVPN的控制面和转发面进行了详细定义,在RFC7623中对运营商骨干桥接技术(Provider Backbone Bridge,PBB)EVPN的控制面和转发面进行了详细定义。无论是MPLS EVPN、VxLAN EVPN还是PBB EVPN,对于以太网段(Ethernet Segment,ES)多归接入到供应商边缘(Provider Edge,PE)设备的场景,都有相应的描述,典型组网如图1所示。
RFC7432使用以太网段标识符(Ethernet Segment Identifier,ESI)字段在EVPN路由中唯一标识一个具有多归接入特征的ES,而用ESI值为0表示只有单归接入特征的ES。某个ES多归接入了多个PE设备,每个被该ES接入的PE称为该ES的一个邻接PE,同一个ES在其每个邻接PE上的ESI都相同。
RFC7432定义了五类EVPN路由,其中第四类EVPN路由称为以太网段路由(Ethernet Segment Route),又称为RT-4路由,在MPLS EVPN、VxLAN EVPN和PBB EVPN中都有使用,设置为为ES选举指定转发者(Designated Forwarder,DF)。
DF选举的一个作用,就是在ES多归接入到PE的场景下,为了防止远端PE过来的广播、未知单播、多播(Broadcast、Unknown Unicast,or Multicast,BUM)报文,通过该ES的多个邻接PE同时进入到该ES中从而造成多包的情况,选举其 中的一个邻接PE作为DF,其它的邻接PE作为非指定转发者(non-Designated Forwarder,non-DF),只有DF能够转发BUM报文到该ES中。
DF选举的另一个作用,就是在ES多归接入到PE的场景下,在ES为单活(Single-Active)模式的情况下,按照标准要求DF应该作为主用(Primary)PE。
Primary PE负责作为业务转发的主用节点,其它的邻接PE负责作为业务转发的备用节点。
目前标准中定义的DF选举机制,主要是借助RT-4路由,通过一套选举算法,在ES的多个邻接PE中,选举其中一个邻接PE作为DF,其它的邻接PE设备作为non-DF。
实际上,由于DF选举是以<ES,VLAN>为粒度的,因此对于同一个ES的不同虚拟局域网(Virtual Local Area Networks,VLAN),可以选举不同的邻接PE设备作为DF。换句话说,就是同一个PE同一个ES上的不同接入链路端口(Attachment Circuit,AC)(对应于<ES,VLAN>),可以拥有不同的DF角色。例如对于PE1和PE2上的AC1(对应<ESI1,VLAN1>)和AC2(对应<ESI1,VLAN2>),PE1上的AC1为DF而AC2为non-DF,对应的,PE2上AC1就为non-DF而AC2为DF。
在ES多归接入场景中,其中以双归接入场景最为普遍,两个邻接PE设备通常会被配置成多设备间聚合链路组(Multi-Chassis Link Aggregation Group,MC-LAG)方式。在MC-LAG为主备模式,ES为Single-Active模式的情况下,由于MC-LAG的主备选举和ES的DF选举的粒度不同,会造成邻接PE设备的MC-LAG主备角色和DF角色不一致,会造成用户边缘设备(Customer Edge,CE)与PE之间的双向业务路径不一致,导致业务转发受到影响。
发明内容
本申请实施例提供了一种流量的传输方法及装置,物理拓扑结构,避免了相关技术中由于MC-LAG的主备选举和ES的DF选举的粒度不同所导致的CE与PE之间的双向业务路径不一致的情况。
本申请的一个实施例提供了一种流量的传输方法,包括:供应商边缘设备PE根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定所述PE的聚合链路组LAG信息;所述PE进行指定转发者DF选举,并确定在接入链路端口AC上的初始DF选举结果;根据所述LAG信息和所述初始DF选举结果,所述 PE对在所述AC上的DF选举结果进行决策;所述PE根据决策后的DF选举结果,确定所述AC的最终角色。
本申请的一个实施例还提供了一种流量的传输装置,位于供应商边缘设备PE中,包括:确定模块、选举模块、决策模块以及判断模块;所述确定模块,设置为根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定所述PE的聚合链路组LAG信息;所述选举模块,设置为进行指定转发者DF选举,并确定在接入链路端口AC上的初始DF选举结果;所述决策模块,设置为根据所述LAG信息和所述初始DF选举结果,对在所述AC上的DF选举结果进行决策;所述判断模块,设置为根据决策后的DF选举结果,确定所述AC的最终角色。
本申请的一个实施例还提供了一种基于EVPN业务的物理拓扑结构,包括:第一供应商边缘设备PE,第二PE,第三PE,第一客户边缘设备CE以及第二CE,其中,所述第一CE双归接入所述第一PE与所述第二PE,第二CE接入所述第三PE;其中,所述第一PE以及所述第二PE,设置为分别根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定对应的聚合链路组LAG信息;分别进行指定转发者DF选举,并确定在接入链路端口AC上的初始DF选举结果;所述第一PE与所述第二PE根据对应的所述LAG信息和所述初始DF选举结果进行协商;根据协商结果,所述第一PE与所述二PE对在所述AC上的DF选举结果进行决策,并根据决策后的DF选举结果,确定所述AC的最终角色。
本申请的又一个实施例还提供了一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行上述任一项实施例中的流量的传输方法。
本申请的又一个实施例还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为通过运行所述计算机程序以执行上述任一项实施例中的流量的传输方法。
图1是本申请一实施例提供的一种流量的传输方法的流程图;
图2是本申请一实施例提供的一种流量的传输装置的结构框图;
图3是本申请一实施例提供的一种物理拓扑结构的结构框图;
图4是本申请一实施例提供的另一种物理拓扑结构的结构框图;
图5是本申请一实施例提供的又一种物理拓扑结构的结构框图。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种流量的传输方法,图1是本申请一实施例提供的一种流量的传输方法的流程图,如图1所示,该流程包括步骤S102至步骤S108。
在步骤S102中,供应商边缘设备PE根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定所述PE的LAG信息。
在步骤S104中,所述PE进行DF选举,并确定在接入链路端口AC上的初始DF选举结果。
在步骤S106中,根据所述LAG信息和所述初始DF选举结果,所述PE对在所述AC上的DF选举结果进行决策。
在步骤S108中,所述PE根据决策后的DF选举结果确定接入链路端口AC的最终角色。
在一实施例中,在所述LAG信息为负荷分担模式的情况下,所述初始DF选举结果与所述决策后的DF选举结果相同。
在一实施例中,在所述LAG信息为主备模式的情况下,PE根据配置的MC-LAG配置信息和协议信息,确定所述PE的LAG信息还包括:所述PE根据所述MC-LAG配置信息和协议信息,确定所述PE的主备角色信息。
在一实施例中,在所述LAG信息为主备模式的情况下,根据所述LAG信息和所述初始选举结果,所述PE对在所述AC上的DF选举结果进行决策,包括:在所述主备模式为主的情况下,所述PE确定在该PE上的AC的DF角色为DF;在所述主备模式为备的情况下,所述PE确定在该PE上的AC的DF角色为non-DF。
在一实施例中,在所述PE确定在该PE上的AC的DF角色为DF的情况下,所述PE作为主设备进行流量传输。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如随机存取存储器(Random Access Memory,RAM)/只读存储器 (Read-Only Memory,ROM)、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在本申请一实施例中还提供了一种流量的传输装置,该装置用于实现上述实施例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是本申请一实施例提供的一种流量的传输装置的结构框图,如图2所示,该装置包括:确定模块22、选举模块24、决策模块26以及判断模块28。
确定模块22,设置为根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定所述PE的LAG信息。
选举模块24,设置为进行DF选举,并确定在接入链路端口AC上的初始DF选举结果。
决策模块26,设置为根据所述LAG信息和所述初始DF选举结果,对在所述AC上的DF选举结果进行决策。
判断模块28,设置为根据决策后的DF选举结果确定接入链路端口AC的最终角色。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
在本申请一实施例中还提供了一种物理拓扑结构,该物理拓扑结构用于实现上述实施例,已经进行过说明的不再赘述。
图3是本申请一实施例提供的一种物理拓扑结构的结构框图,如图3所示,该物理拓扑结构包括:第一供应商边缘设备PE 31,第二PE 32,第三PE 33,第一客户边缘设备CE 34以及第二CE 35,其中,所述第一CE 34双归接入所述第一PE 31与所述第二PE 32,所述第二CE 35接入所述第三PE 33;其中,所述第一PE 31以及所述第二PE 32,设置为分别根据各自配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定对应的LAG信息;分别进行DF选举,并确定在接入链路端口AC上的初始DF选举结果;所述第一PE 31与所述第二PE 32根据对应的所述LAG信息和所述初始DF选举结果进行协商;根据协商结果,所述第一PE 31与所述二PE对在所述AC上的DF选举结果进行决策, 并根据决策后的DF选举结果,确定接入链路端口AC的最终角色(DF或者non-DF)。
在一实施例中,在所述第一PE 31和所述第二PE 32的LAG信息为负荷分担模式的情况下,所述第一PE和所述第二PE保持所述初始DF选举结果。
在一实施例中,在所述第一PE 31和所述第二PE 32的LAG信息为主备模式的情况下,分别根据配置的MC-LAG配置信息和协议信息,确定对应的LAG模式,还包括:所述第一PE 31和所述第二PE 32还设置为根据所述MC-LAG配置信息和协议信息,分别确定主备角色信息。
在一实施例中,在所述第一PE 31与所述第二PE 32的协商结果为所述第一PE 31为主,所述第二PE 32为备的情况下,所述第一PE 31确定所述第一PE 31上的AC的DF角色为DF,所述第二PE 32确定所述第二PE 32上的AC的DF角色为non-DF,在第一PE31及所属链路无故障的情况下,经由所述第一PE 31、所述第三PE 33、所述第一CE 34以及所述第二CE 35进行流量传输。在第一PE31或所属链路存在故障的情况下,经由所述第二PE32、所述第三PE33、所述第一CE34以及所述第二CE35进行流量传输
在一实施例中,在所述第一PE 31与所述第二PE 32的协商结果为所述第二PE 32为主,所述第一PE 31为备的情况下,所述第一PE 31确定所述第一PE 31上的AC的DF角色为non-DF,所述第二PE 32确定所述第二PE 32上的AC的DF角色为DF,在第二PE32及所属链路无故障的情况下,经由所述第二PE 32、所述第三PE 33、所述第一CE 34以及所述第二CE 35进行流量传输。在第二PE32或所属链路存在故障的情况下,经由所述第一PE 31、所述第三PE 33、所述第一CE 34以及所述第二CE 35进行流量传输。
为了更好的理解上述的技术方案,在本实施例中还提供了如下的场景进行理解:
图4是本申请一实施例中的另一种物理拓扑结构的结构框图。以MPLS EVPN为例,MC-LAG为主备模式,ES为Single-Active模式下,DF选举和业务转发流程如下:
如图4所示,在PE1、PE2和PE3部署一条基本的MPLS EVPN业务,其中CE1双归接入到PE1和PE2,对应ES为ESI1,采用Single-Active模式,CE1上配置LAG,PE1和PE2上配置MC-LAG,采用主备模式。
1、根据RT-4路由,计算出PE1和PE2上对应的AC1的DF角色,假设 PE1上的AC1为non-DF,PE2上的AC1为DF。
2、根据MC-LAG的配置信息和链路汇聚控制协议(Link Aggregation Control Protocol,LACP)协议的运行结果,同时以及根据PE1与PE2之间的协商结果,计算出PE1和PE2的主备角色,其中,PE1为主,PE2为备。
3、根据MC-LAG模块和EVPN控制模块的输入信息,决策出最终的DF选举结果,PE1上的AC1为DF,PE2上的AC1为non-DF。
4、从CE1到CE2方向,因为PE1为LAG的主,因此业务从CE1发送的PE1,再从PE1到PE3,最后从PE3到CE2。
5、从CE2到CE1方向,因为PE1上的AC1为DF,因此业务从CE2发送到PE3,再从PE3发送到PE1,最后从PE1发送到CE1。
图5是本申请一实施例的又一种物理拓扑结构的结构框图。以VxLAN EVPN为例,MC-LAG为负荷分担模式,ES为多活(All-Active)模式下,DF选举和业务转发流程如下:
如图5所示,在PE1、PE2和PE3部署一条基本的VxLAN EVPN业务,其中CE1双归接入到PE1和PE2,对应ES为ESI1,采用All-Active模式,CE1上配置LAG,PE1和PE2上配置MC-LAG,采用负荷分担模式。
1、根据RT-4路由,计算出PE1和PE2上对应的AC1的DF角色,假设PE1上的AC1为non-DF,PE2上的AC1为DF。
2、PE1和PE2上的MC-LAG模块,根据MC-LAG的配置信息和LACP协议运行结果,计算出PE1和PE2的主备角色,由于是负荷分担模式,因此PE1和PE2都是主。
3、PE1和PE2上的DF角色决策模块,根据MC-LAG模块和EVPN控制模块的输入信息,决策出最终的DF选举结果,PE1上的AC1为non-DF,PE2上的AC1为DF。
4、从CE1到CE2方向,因为LAG为负荷分担模式,因此业务会根据散列(Hash)结果发送到PE1和PE2,再从PE1和PE2发送到PE3,最后从PE3发送到CE2。
5、从CE2到CE1方向,因为是All-Active模式,因此业务从CE2发送到PE3,再根据Hash结果发送到PE1和PE2,最后从PE1和PE2发送到CE1。
本申请的一实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一个实施例中的流量的传 输方法。
在一实施例中上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:供应商边缘设备PE根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定所述PE的LAG信息;所述PE进行DF选举,并确定在接入链路端口AC上的初始DF选举结果;根据所述LAG信息和所述初始选举结果,所述PE对在所述AC上的DF选举结果进行决策;所述PE根据决策后的DF选举结果确定接入链路端口AC的最终角色。
在一实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
在一实施例中,上述处理器可被设置为通过计算机程序执行以下步骤:供应商边缘设备PE根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定所述PE的LAG信息;所述PE进行DF选举,并确定在接入链路端口AC上的初始DF选举结果;根据所述LAG信息和所述初始选举结果,所述PE对在所述AC上的DF选举结果进行决策;所述PE根据决策后的DF选举结果确定接入链路端口AC的最终角色。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,示例性的,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
本申请由于在DF选举之上考虑PE的LAG模式,同时需要与物理拓扑结 构中其他能够传输的PE进行协商,因此,可以避免由于MC-LAG的主备选举和ES的DF选举的粒度不同所导致的CE与PE之间的双向业务路径不一致的情况,使得ES多归接入场景中DF选举机制更加完善。
Claims (13)
- 一种流量的传输方法,包括:供应商边缘设备PE根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定所述PE的聚合链路组LAG信息;所述PE进行指定转发者DF选举,并确定在接入链路端口AC上的初始DF选举结果;根据所述LAG信息和所述初始DF选举结果,所述PE对在所述AC上的DF选举结果进行决策;所述PE根据决策后的DF选举结果,确定所述AC的最终角色。
- 根据权利要求1所述的方法,其中,在所述LAG信息为负荷分担模式的情况下,所述初始DF选举结果与所述决策后的DF选举结果相同。
- 根据权利要求1所述的方法,在所述LAG信息为主备模式的情况下,所述PE根据配置的MC-LAG配置信息和协议信息,确定所述PE的LAG信息,还包括:所述PE根据所述MC-LAG配置信息和协议信息,确定所述PE的主备角色信息。
- 根据权利要求3所述的方法,其中,在所述LAG信息为主备模式的情况下,根据所述LAG信息和所述初始选举结果,所述PE对在所述AC上的DF选举结果进行决策,包括:在所述主备角色信息为主的情况下,所述PE确定在所述PE上的AC的DF角色为DF;在所述主备角色信息为备的情况下,所述PE确定在所述PE上的AC的DF角色为非指定转发者non-DF。
- 根据权利要求4所述的方法,其中,在所述PE确定在所述PE上的AC的DF角色为DF的情况下,所述PE作为主设备进行流量传输。
- 一种流量的传输装置,位于供应商边缘设备PE中,包括确定模块、选举模块、决策模块以及判断模块;所述确定模块,设置为根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定所述PE的聚合链路组LAG信息;所述选举模块,设置为进行指定转发者DF选举,并确定在接入链路端口AC上的初始DF选举结果;所述决策模块,设置为根据所述LAG信息和所述初始DF选举结果,对在 所述AC上的DF选举结果进行决策;所述判断模块,设置为根据决策后的DF选举结果,确定所述AC的最终角色。
- 一种基于EVPN业务的物理拓扑结构,包括:第一供应商边缘设备PE,第二PE,第三PE,第一客户边缘设备CE以及第二CE,其中,所述第一CE双归接入所述第一PE与所述第二PE,第二CE接入所述第三PE;其中,所述第一PE以及所述第二PE,设置为分别根据配置的多设备间聚合链路组MC-LAG配置信息和协议信息,确定对应的聚合链路组LAG信息;并进行指定转发者DF选举,确定在接入链路端口AC上的初始DF选举结果;所述第一PE与所述第二PE根据所述对应的所述LAG信息和所述初始DF选举结果进行协商;根据协商结果,所述第一PE与所述二PE对在所述AC上的DF选举结果进行决策,并根据决策后的DF选举结果,确定所述AC的最终角色。
- 根据权利要求7所述的物理拓扑结构,其中,在所述第一PE和所述第二PE的LAG信息为负荷分担模式的情况下,所述第一PE和所述第二PE保持所述初始DF选举结果。
- 根据权利要求7所述的物理拓扑结构,其中,在所述第一PE和所述第二PE的LAG信息为主备模式的情况下,所述分别根据配置的MC-LAG配置信息和协议信息,确定对应的LAG信息,还包括:所述第一PE和所述第二PE根据所述MC-LAG配置信息和协议信息,分别确定主备角色信息。
- 根据权利要求9所述的物理拓扑结构,其中,在所述第一PE与所述第二PE的协商结果为所述第一PE为主,所述第二PE为备的情况下,所述第一PE确定在所述第一PE上的AC的DF角色为DF,所述第二PE确定在所述第二PE上的AC的DF角色为non-DF,在所述第一PE及所述第一PE所属链路无故障的情况下,经由所述第一PE、所述第三PE、所述第一CE以及所述第二CE进行流量传输;在所述第一PE或所述第一PE所属链路存在故障的情况下,经由所述第二PE、所述第三PE、所述第一CE以及所述第二CE进行流量传输。
- 根据权利要求9所述的物理拓扑结构,其中,在所述第一PE与所述第二PE的协商结果为所述第二PE为主,所述第一PE为备的情况下,所述第一PE确定所述第一PE上的AC的DF角色为非指定者转发non-DF,所述第二PE 确定所述第二PE上的AC的DF角色为DF,在所述第二PE及所述第二PE所属链路无故障的情况下,经由所述第二PE、所述第三PE、所述第一CE以及所述第二CE进行流量传输;在第二PE或所述第二PE所属链路存在故障的情况下,经由所述第一PE、所述第三PE、所述第一CE以及所述第二CE进行流量传输。
- 一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行所述权利要求1至5中任一项所述的方法。
- 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至5中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811643610.8A CN111385182B (zh) | 2018-12-29 | 2018-12-29 | 流量的传输方法及装置,系统 |
CN201811643610.8 | 2018-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020135888A1 true WO2020135888A1 (zh) | 2020-07-02 |
Family
ID=71127547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/130141 WO2020135888A1 (zh) | 2018-12-29 | 2019-12-30 | 流量的传输方法及装置,物理拓扑结构 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111385182B (zh) |
WO (1) | WO2020135888A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100157793A1 (en) * | 2008-12-24 | 2010-06-24 | Ali Sajassi | Provider edge-controlled redundancy using pseudo link aggregation control protocol |
CN107566265A (zh) * | 2017-10-16 | 2018-01-09 | 中国联合网络通信有限公司广东省分公司 | 一种对称转发模型下的evpn vxlan 网关esi 冗余接入方法 |
CN108696414A (zh) * | 2017-04-05 | 2018-10-23 | 中兴通讯股份有限公司 | 多归接入方法、装置及多归属节点 |
CN108696416A (zh) * | 2017-04-12 | 2018-10-23 | 中兴通讯股份有限公司 | 一种vxlan单归和双归混合接入方法、装置和pe设备 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100583800C (zh) * | 2007-11-23 | 2010-01-20 | 清华大学 | 在软线式隧道中运用单一静态双向共享树进行组播的方法 |
CN102088400A (zh) * | 2009-12-03 | 2011-06-08 | 华为技术有限公司 | 虚拟专用网络中运营商边界设备及切换方法 |
CN101826983A (zh) * | 2010-04-02 | 2010-09-08 | 中兴通讯股份有限公司 | 双归保护倒换方法、装置和系统 |
CN102694718B (zh) * | 2011-03-25 | 2016-03-30 | 华为技术有限公司 | 一种vpls快速重路由方法和设备 |
US8787149B1 (en) * | 2012-02-01 | 2014-07-22 | Juniper Networks, Inc. | MAC address synchronization for multi-homing with multichassis link aggregation |
-
2018
- 2018-12-29 CN CN201811643610.8A patent/CN111385182B/zh active Active
-
2019
- 2019-12-30 WO PCT/CN2019/130141 patent/WO2020135888A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100157793A1 (en) * | 2008-12-24 | 2010-06-24 | Ali Sajassi | Provider edge-controlled redundancy using pseudo link aggregation control protocol |
CN108696414A (zh) * | 2017-04-05 | 2018-10-23 | 中兴通讯股份有限公司 | 多归接入方法、装置及多归属节点 |
CN108696416A (zh) * | 2017-04-12 | 2018-10-23 | 中兴通讯股份有限公司 | 一种vxlan单归和双归混合接入方法、装置和pe设备 |
CN107566265A (zh) * | 2017-10-16 | 2018-01-09 | 中国联合网络通信有限公司广东省分公司 | 一种对称转发模型下的evpn vxlan 网关esi 冗余接入方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111385182B (zh) | 2022-04-29 |
CN111385182A (zh) | 2020-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10862783B2 (en) | OAM mechanisms for EVPN active-active services | |
CN110166356B (zh) | 发送报文的方法和网络设备 | |
EP3378193B1 (en) | Designated forwarder (df) election and re-election on provider edge (pe) failure in all-active redundancy topology | |
US11128560B2 (en) | Data center failure management in an SDN deployment using switching node control | |
US9019814B1 (en) | Fast failover in multi-homed ethernet virtual private networks | |
CN109075984B (zh) | 计算的spring组播的多点到多点树 | |
US20200336420A1 (en) | Data center failure management in an sdn deployment using border gateway node control | |
EP3301861A1 (en) | Evpn designated forwarder state propagation to customer edge devices using connectivity fault management | |
US8102760B2 (en) | Method for reconvergence after failure in a dual-homing network environment | |
US11349749B2 (en) | Node protection for bum traffic for multi-homed node failure | |
WO2021031648A1 (zh) | Evpn和vpls共存双活的方法、设备及系统 | |
WO2019239189A1 (en) | Robust node failure detection mechanism for sdn controller cluster | |
WO2016174598A1 (en) | Sdn network element affinity based data partition and flexible migration schemes | |
US12021656B2 (en) | Method and system to transmit broadcast, unknown unicast, or multicast (BUM) traffic for multiple ethernet virtual private network (EVPN) instances (EVIs) | |
CN111064596A (zh) | 对于用于多宿主节点故障的bum流量的节点保护 | |
EP3456020A1 (en) | Mechanism for inline packet response generation in software defined networks | |
WO2017144947A1 (en) | Method and apparatus for spanning trees for computed spring multicast | |
Amamou et al. | A trill-based multi-tenant data center network | |
US20150036508A1 (en) | Method and Apparatus For Gateway Selection In Multilevel SPB Network | |
US20230254244A1 (en) | Path determining method and apparatus, and computer storage medium | |
WO2020135888A1 (zh) | 流量的传输方法及装置,物理拓扑结构 | |
WO2022053007A1 (zh) | 网络可达性验证方法及装置、计算机存储介质 | |
US11991068B2 (en) | Multichassis link aggregation method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19901510 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/11/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19901510 Country of ref document: EP Kind code of ref document: A1 |