WO2020135231A1 - 人机接口板及其控制方法、监控单元以及存储介质 - Google Patents

人机接口板及其控制方法、监控单元以及存储介质 Download PDF

Info

Publication number
WO2020135231A1
WO2020135231A1 PCT/CN2019/126750 CN2019126750W WO2020135231A1 WO 2020135231 A1 WO2020135231 A1 WO 2020135231A1 CN 2019126750 W CN2019126750 W CN 2019126750W WO 2020135231 A1 WO2020135231 A1 WO 2020135231A1
Authority
WO
WIPO (PCT)
Prior art keywords
gesture
user gesture
human
machine interface
interface board
Prior art date
Application number
PCT/CN2019/126750
Other languages
English (en)
French (fr)
Inventor
熊勇
李伟波
胡先红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020135231A1 publication Critical patent/WO2020135231A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a human-machine interface board and its control method, a monitoring unit of a communication power supply, and a storage medium.
  • Communication power supply as an indispensable and important part of mobile communication system, needs to provide safe, reliable, efficient, stable and uninterrupted power supply to communication equipment, and has the functions of intelligent monitoring, unattended, automatic battery management, etc. to meet the network The needs of the times.
  • the deep coverage of the mobile communication network also puts forward the demand for higher miniaturization and easy maintenance of the communication power supply: the power density of the rectifier is getting higher and higher, the volume is getting smaller and smaller, and the weight is getting lighter; It has also evolved from standard cabinets to embedded, wall-mounted, and pole-integrated installations. For example, for a 200A DC power supply system, the original structure may be a 1.6-meter floor cabinet. Now a standard 3U subrack is enough.
  • the monitoring unit Due to the characteristics of the communication power supply industry and the user's usage habits, the monitoring unit has always retained the functions of liquid crystal display and button interaction, which is convenient for project deployment and on-site maintenance. However, as the monitoring unit becomes smaller, this function becomes more difficult to implement.
  • a company's latest embedded power monitoring unit uses a high-density design, 84mm*40mm narrow front panel, densely arranged RJ45 network port, USB (Universal Serial) interface, 27mm*27mm LCD (Liquid Crystal Display), up/down/confirm/return four buttons, and fixed locks, etc. Because the height of the space is limited, the size of the four buttons is as small as 3mm*3mm; the spacing between the buttons is also 3mm.
  • the purpose of the embodiments of the present disclosure is to provide a human-machine interface board and its control method, a communication power monitoring unit and a storage medium, to solve the problem that the existing communication power monitoring unit has a small display area and a key interaction area , The problem of poor user experience.
  • a human-machine interface board includes a display screen, a gesture recognition sensor, and a microprocessor; the gesture recognition sensor is used to acquire the microprocessor The gesture detection instruction issued; according to the gesture detection instruction, detect the user gesture above the display screen and generate user gesture information; according to the user gesture information, generate an interrupt signal; the microprocessor is used to The gesture recognition sensor issues a gesture detection instruction; obtains the user gesture information according to the interrupt signal; recognizes the user gesture information, and outputs the recognized user gesture information.
  • a monitoring unit for a communication power supply includes a main controller and the above-mentioned human-machine interface board; the main controller is used to obtain the The recognized user gesture information output by the human-machine interface board, and returns the user gesture response information to the human-machine interface board.
  • a method for controlling a human-machine interface board includes: issuing a gesture detection instruction to a gesture recognition sensor; the gesture recognition sensor obtains a gesture detection instruction issued; According to the gesture detection instruction, detect the user gesture above the display screen and generate user gesture information; generate an interrupt signal according to the user gesture information; obtain the user gesture information according to the interrupt signal; Recognize and output the recognized user gesture information.
  • a storage medium that stores a control program of a man-machine interface board, and the control program of the man-machine interface board is executed by a processor to implement the above-mentioned man-machine The steps of the control method of the interface board.
  • FIG. 1 is a schematic structural diagram of a man-machine interface board according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a control method of a man-machine interface board according to a second embodiment of the present disclosure.
  • the monitoring unit is composed of a core motherboard, an HMI (Human Machine Interface) board, a power conversion board, a signal acquisition board, and a network communication board.
  • the core main board is generally the smallest application system of MCU (Micro Control Unit)/ARM, which carries and runs the main business software for monitoring, and also includes a GUI (Graphical User Interface) window menu.
  • the HMI board is relatively simple and mainly contains hardware circuits such as LCD, input keyboard, and status indication LED.
  • Gesture recognition technology although it has not yet been applied in the communications power industry, is currently used more in wearable devices and consumer electronics; there are also more programs to refer to. Gesture recognition technology can be roughly divided into three levels: 2D hand shape recognition, 2D gesture recognition, and 3D gesture recognition.
  • Two-dimensional hand recognition also known as static two-dimensional gesture recognition, recognizes several static gestures, such as a fist or five fingers spread out.
  • a typical application is a hand-type control player: the user raises his palm and puts it in front of the camera, and the video starts to play; when he puts his palm in front of the camera, the video pauses.
  • Two-dimensional gesture recognition has dynamic characteristics and can track the movement of gestures, and then recognize the complex movements of gestures and hand movements.
  • the scope of gesture recognition has really expanded to a two-dimensional plane.
  • three-dimensional gesture recognition requires spatial depth information
  • hardware requires three-dimensional imaging technology
  • the software recognition algorithm is more complex, can recognize various hand shapes, gestures and actions, and is used to play games or VR (Virtual Reality, Virtual reality).
  • VR Virtual Reality, Virtual reality
  • the gesture recognition sensor integrates an LED (Light Emitting Diode, light emitting diode) emitting light source, and a photodiode that senses infrared energy reflected back in four directions of up, down, left, and right.
  • LED Light Emitting Diode
  • the selected sensor also needs to have an independent photodiode that senses the ambient light intensity.
  • the selected sensors are equipped with standard I2C communication and interrupt interfaces so that information can be acquired and processed in real time.
  • a gesture recognition sensor on the existing HMI board, a gesture recognition sensor, an MCU (Micro Control Unit) implementing a gesture recognition algorithm, and peripheral devices are added.
  • MCU and sensor are connected by I2C communication and external interrupt signal interface, and through UART (Universal Asynchronous Receiver/Transmitter, universal asynchronous transceiver transmitter) interface, SPI (Serial Peripheral Interface, serial peripheral interface), or I2C (Inter- Integrated (Circuit, Integrated Circuit Bus) and other interfaces) output the gesture recognition results to the core motherboard; at the same time, the MCU provides a level output port with no less than the number of keys, which can simulate the output level before and after the corresponding key action; the level output port and the key circuit
  • the input terminals of the keys are compatible with each other, and after jitter elimination, they are output to the core boards to ensure the compatibility of the interfaces between the boards; that is, only the replacement of hardware such as HMI boards can complete the upgrade of the field monitoring unit to support the implementation
  • the front panel of the monitoring unit also needs to be adjusted in structure.
  • a transmission window transparent screen
  • a transmission window with a dark coating is commonly used to achieve an aesthetic effect; besides the diameter of the LED emission source and the photodiode, rubber isolation is added , Through the optical seal to reduce crosstalk, to achieve better results.
  • the human-machine interface board 10 includes a display screen 13, a gesture recognition sensor 11 and a microprocessor 12.
  • the gesture recognition sensor 11 may be an infrared gesture recognition sensor; the infrared gesture recognition sensor internally integrates a light emitting source, a first photodiode that senses infrared energy reflected in different directions, and senses the ambient light intensity Second photodiode.
  • the gesture recognition sensor 11 and the microprocessor 12 are connected through an I2C (Inter-Integrated Circuit, integrated circuit bus) communication interface and an interrupt interface.
  • I2C Inter-Integrated Circuit, integrated circuit bus
  • the gesture recognition sensor 11 is used to obtain a gesture detection instruction issued by the microprocessor 12; according to the gesture detection instruction, detect a user gesture above the display screen 13 and generate user gesture information; according to the user Gesture information, generate interrupt signal;
  • the microprocessor 12 is configured to issue a gesture detection instruction to the gesture recognition sensor 11; acquire the user gesture information according to the interrupt signal; identify the user gesture information, and output the identified user Gesture information.
  • the microprocessor 12 can issue an instruction to the gesture recognition sensor 11 through the I2C protocol to drive the gesture recognition sensor 11 to perform short-range detection, gesture detection, and ambient light detection, and through the I2C communication interface and the interrupt interface, timely Read the detected data, judge, recognize and convert the detected data, and then analyze and get a variety of gestures such as approaching, flapping, and fast waving.
  • the microprocessor 12 After the microprocessor 12 issues a close-range detection instruction to the gesture recognition sensor 11 and generates an interrupt signal, the microprocessor 12 reads the close-range detection data.
  • This data is the intensity of light reflected by an object (such as a hand) received by the second photodiode that senses the ambient light intensity.
  • the magnitude of the light intensity value corresponds to the distance of the object: for example, if the value is lower than the lower limit, it means the movement gesture of "away”; if it is higher than the upper limit, it means the movement gesture of "close”.
  • Convert motion gestures into human-computer interaction input actions For example, a "close” gesture that lasts for a period of time (such as 1 second) is equivalent to the "confirm” button; a “distance” gesture that lasts for a period of time is equivalent to the “return” button; fast and repeated “close” and “away” “, equivalent to "double-click”.
  • a "close” gesture that lasts for a long period of time cannot be equivalent to pressing multiple "confirm” buttons in succession, and there must be a “away” action in the middle; a longer “close” and “Far away” (for example, more than 30 seconds) means that the user or operator "leaves”.
  • the front panel of the monitoring unit may be covered or blocked by objects (such as the closed cabinet door where the embedded power supply is located), and this situation can also be equivalent to the operator "leaving the field.”
  • First set parameters such as gesture entry and exit thresholds, data storage FIFO (First In First First Out) depth and other parameters, allowing gesture detection interruption.
  • FIFO First In First First Out
  • the microprocessor 12 After the microprocessor 12 issues a gesture detection instruction to the gesture recognition sensor 11 and generates an interrupt signal, the microprocessor 12 continuously reads data from the FIFO. These data are all the reflected light intensity data received by the first photodiode (for example, four sets of direction sensing LEDs up, down, left, and right, which are described below as an example) that sense infrared energy reflected in different directions during the entire movement of the gesture. Collection. By analyzing and positioning the light intensity data in the four directions of up, down, left, and right, the direction and distance of the gesture can be determined.
  • the first photodiode for example, four sets of direction sensing LEDs up, down, left, and right, which are described below as an example
  • the time-light intensity characteristic curves of the upper and lower perception LEDs basically overlap; while the time-light intensity curve diagrams of the left and right perception LEDs have similar curve envelopes, but there is a shift in time, that is, The translation characteristics in the time axis direction.
  • the time-light intensity characteristic curves of the left and right sensing LEDs basically overlap; while the time-light intensity curve of the upper and lower sensing LEDs shows a shift in the time axis, and the typical light intensity peak point shift time It is tens to hundreds of milliseconds, which is related to the speed of swing.
  • the gesture is recognized as the English letter "O", etc.; and if the trajectory of the peak point of the light intensity is determined to be mountain-like, such as " ⁇ ", then the The gesture is the English letter "A” and so on.
  • the microprocessor 12 After the microprocessor 12 issues an ambient light intensity detection instruction to the gesture recognition sensor 11 and generates an interrupt signal, the microprocessor 12 reads the data.
  • This data is the ambient light intensity data received by the second photodiode that senses the ambient light intensity.
  • the human-machine interface board 10 further includes a key circuit 14, a logic processing circuit 15, and a jitter cancellation circuit 16;
  • the microprocessor 12 includes a level output port (shown as P1, P2, P3, and P4 in the figure), and the key circuit 14 includes a key input end (shown as K1, K2, K3, and K4 in the figure);
  • the level output port and the key input terminal are connected to the input terminal of the logic processing circuit 15, and the output terminal of the logic processing circuit 15 is connected to the input terminal of the jitter cancellation circuit 16;
  • the microprocessor 12 is further configured to output a corresponding level signal through the level output port according to the recognized user gesture information
  • the logic processing circuit 15 is configured to perform logic processing on the level signal output from the level output port and the signal on the key input terminal;
  • the logic processing circuit 15 may be a logic and processing circuit, and the logic and processing circuit may include multiple logic and processing units (shown as L1, L2, L3, and L4 in the figure), each logic and The input terminal of the processing unit is connected to a level output port and a key input terminal, for example, the input terminal of the logic and processing unit L1 is connected to the level output port P1 and the key input terminal K1.
  • L1, L2, L3, and L4 logic and processing units
  • the jitter removal circuit 16 is configured to perform jitter removal on the logically processed signal of the logic processing circuit 15 and output the jitter-removed signal.
  • the jitter cancellation circuit 16 may be a Schmidt circuit, such as 74HC7001.
  • the button output on the human-machine interface board has been jitter-eliminated, and the signal quality is improved; the detection of each button input by the monitoring unit can be changed from the polling mode to the interrupt mode to improve the real-time response.
  • the human-machine interface board of the embodiment of the present disclosure realizes non-contact interaction of power supply monitoring through gesture recognition sensors and microprocessors; it solves the problem that the existing communication power monitoring unit has a small display area and key interaction area, and the user experience Poor problem; improved user experience.
  • the second embodiment of the present disclosure provides a control method for a man-machine interface board.
  • the man-machine interface board may refer to the first embodiment, and details are not described herein.
  • the method includes:
  • Step S21 issue a gesture detection instruction to the gesture recognition sensor; the gesture recognition sensor acquires the issued gesture detection instruction; according to the gesture detection instruction, detect a user gesture above the display screen and generate user gesture information; according to the user Gesture information, generate an interrupt signal.
  • the generating an interrupt signal according to the user gesture information includes: comparing the parameter value in the user gesture information with an upper limit or a lower limit of a preset threshold; in the user gesture information When the parameter value exceeds the upper or lower limit of the preset threshold, an interrupt signal is generated.
  • Step S22 Acquire the user gesture information according to the interrupt signal.
  • Step S23 Recognize the user gesture information, and output the recognized user gesture information.
  • the user gesture information is recognized, and the recognized user gesture information is output.
  • the method further includes: acquiring user gesture response information.
  • the control method of the human-machine interface board of the embodiment of the present disclosure realizes non-contact interaction of power supply monitoring through gesture recognition sensors and microprocessors; solves the problem that the existing communication power supply monitoring unit has a small display area and a key interaction area , The problem of poor user experience; improved user experience.
  • a third embodiment of the present disclosure provides a storage medium on which a control method program of a man-machine interface board is stored.
  • the control method program of the man-machine interface board is executed by a processor, it is used to implement the second embodiment.
  • the storage medium of this embodiment belongs to the same concept as the method of the second embodiment.
  • the storage medium of this embodiment belongs to the same concept as the method of the second embodiment.
  • the method embodiment for the implementation process, see the method embodiment in detail, and the technical features in the method embodiment are correspondingly applicable in this embodiment. Here No longer.
  • the storage medium of the embodiment of the present disclosure realizes non-contact interaction of power supply monitoring through gesture recognition sensors and microprocessors; it solves the problem that the existing communication power supply monitoring unit has a small display area and a key interaction area, and the user experience is poor Problem; improved user experience.
  • a fourth embodiment of the present disclosure provides a monitoring unit for a communication power supply.
  • the monitoring unit for a communication power supply includes a main controller and the man-machine interface board described in the first embodiment; the main controller is used to obtain the The recognized user gesture information output by the human-machine interface board, and returns the user gesture response information to the human-machine interface board.
  • a UART Universal Asynchronous Receiver/Transmitter
  • SPI Serial Peripheral Interface, serial peripheral interface
  • returning user gesture response information to the human-machine interface board includes but is not limited to the following situations:
  • a company has launched a new type of embedded communication power supply device, which is compact and high-density design.
  • the system capacity of 200A only needs 3U high and 19 inches wide space; it can be widely used in various telecommunications such as base stations, outdoor cabinets, wall hangings, etc.
  • the equipment consists of AC power distribution unit, DC power distribution unit, 4 rectifiers, environmental detection unit and a monitoring unit.
  • the monitoring unit is high-density, front maintenance design, the physical size is only 84mm (length) * 40mm (width) * 270mm (deep), less than 1U * 2U front panel space, distributed with a USB interface, an RJ45 ether Network port, a 27mm*27mm viewable area LCD, 4 buttons such as "up”, “down”, “confirm” and “return”, 3 LED indicators indicating power, operation and alarm, and fixed lock Wait for installation. Due to the extremely limited front panel space, the four buttons are very small, with a size of 3mm*3mm; the button spacing is only 3mm, which is prone to multiple and wrong presses; the man-machine interaction is very poor in operability. In order to improve the human-computer interaction experience, it is planned to increase the gesture recognition function, use simple and convenient operation gestures, realize a new user interface, and bring a new control experience to the power monitoring unit.
  • the circuit of the human-machine interactive interface board is optimized.
  • Gesture recognition sensor you can choose APDS-9960 of AVAGO company.
  • the gesture sensor has been successfully applied in Samsung Galaxy S5 and other products. Similar sensors include Si1153 of Silicon Labs, E909 of Elmos, and TMG399x of AMS.
  • APDS-9960 has the advantages of high integration and low cost.
  • APDS-9960 optical sensor which integrates gesture detection (Gesture Detection), proximity detection (Proximity Detection), ambient light detection (ALS, Ambient Light Sensing), color sensing (Color Sense, RGBC) and other functions, using dual photodiodes To approximate 0.01lux illumination and human eye's visual response, it can operate flexibly even after dark glass; built-in ultraviolet and infrared blocking filters, four separate diodes to achieve sensitivity in different directions; there is also an I2C compatible interface, To connect the microprocessor.
  • STM32F030 with Cortex-M0 core is selected.
  • the chip integrates FLASH, RAM, GPIO, TIMER, I2C, USART and other resources.
  • the hardware cost of the overall solution is very low. In fact, any other low-cost microprocessor with similar resources is also suitable.
  • STM32F030 and APDS-9960 are connected with I2C and interrupt interface; the four output ports of STM32F030 are respectively connected with the key input, and are output to the core processing board after removing the jitter through the Schmitt circuit (such as 74HC7001); the software recognizes the upward
  • the microprocessor software corresponds to the low-level pulse output of these four ports.
  • the pulse width is about 0.5 seconds, which is equivalent to simulating "up", "down",
  • the output of the "Confirm” and "Return” buttons can fully guarantee the compatibility with the original menu interface.
  • STM32F030 is based on C language.
  • the basic function is to obtain from APDS-9960 through the I2C interface, and recognize various gestures such as approaching, flapping, and fast waving, and then convert it into the corresponding key action, and output low-level pulses to the corresponding four ports.
  • the UART port sends gesture information to the core motherboard. Within the effective detection range, the following gestures are recognized:
  • Basic 2D gestures Up, down, left, and right waving gestures. After recognition, drive P1, P2, P1&P3, P2&P3 ports respectively, output low-level pulse, pulse width is 0.5 seconds; equivalent to simulate "up”, “down”, “left (up + confirm)", “right (Next + Confirm) button output;
  • the microprocessor outputs the detected ambient light intensity value (including analog key information if necessary) to the core motherboard through the UART interface.
  • the software of the core motherboard through the UART interface, receives the ambient light intensity value, and adjusts the LCD backlight size according to the value, providing a comfortable display effect for the operator.
  • the virtual key information corresponding to the gesture recognition is obtained, and the user interface is interacted.
  • there are only four original physical keyboards which can only represent four types of information: up, down, confirmation, and return; and gesture recognition can complete the effect of a combination of keys that are physically difficult to achieve, and at least output up, down, confirmation, 9 types of information, including back, left, right, help, fast increase, and fast decrease, greatly improve the efficiency and friendliness of the interaction.
  • the monitoring unit of the communication power supply of the embodiment of the present disclosure realizes the non-contact interaction of power supply monitoring through gesture recognition sensors and microprocessors; solving the problem that the existing communication power supply monitoring unit has a small display area and a key interaction area, and the user The problem of poor experience; improved user experience.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage medium includes both volatile and nonvolatile implemented in any method or technology for storing information such as computer readable instructions, data structures, program modules, or other data Sex, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and accessible by a computer.
  • the communication medium generally contains computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .
  • the human-machine interface board and control method thereof, the communication power monitoring unit and the storage medium of the embodiments of the present disclosure realize the non-contact interaction of power monitoring through gesture recognition sensors and microprocessors; solving the existing communication power monitoring
  • the unit has the problems that the display area and the key interaction area are small and the user experience is poor; the user experience is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种人机接口板及其控制方法、通信电源的监控单元以及存储介质,所述人机接口板包括显示屏、手势识别传感器和微处理器;手势识别传感器获取微处理器下发的手势检测指令;根据手势检测指令,检测显示屏上方的用户手势并生成用户手势信息;根据用户手势信息,产生中断信号;微处理器向手势识别传感器下发手势检测指令;根据中断信号,获取用户手势信息;对用户手势信息进行识别,并输出识别到的用户手势信息。

Description

人机接口板及其控制方法、监控单元以及存储介质
本公开要求享有2018年12月26日提交的名称为“人机接口板及其控制方法、监控单元以及存储介质”的中国专利申请CN201811603732.4的优先权,其全部内容通过引用并入本文中。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种人机接口板及其控制方法、通信电源的监控单元以及存储介质。
背景技术
通信电源,作为移动通信系统必不可少的重要组成部分,需要安全、可靠、高效、稳定、不间断地向通信设备提供能源,并具备智能监控、无人值守、电池自动管理等功能,满足网络时代的需求。同时,移动通信网络的深度覆盖,对通信电源也提出了更高小型化、易维护的需求:整流器功率密度越来越高、体积越来越小、重量越来越轻;整个电源系统构成,也从标准机柜,向嵌入式、壁挂式、抱杆一体化安装等形态发展。比如一个200A容量的直流电源系统,原先结构形式可能是1.6米的落地机柜,现在标准的3U插箱就足以实现了。这些需求的变化,也促进了通信电源的监控单元向小型化、前维护方向快速发展。
由于通信电源行业特点和用户使用习惯,监控单元一直保留有液晶显示和按键交互这个功能,方便工程开局和现场维护。但随着监控单元日趋小型化,这项功能实现起来日趋困难。比如某公司最新的嵌入式电源监控单元,采用高密度设计,84mm*40mm狭小尺寸的前面板上,密集排布了RJ45网口、USB(Universal Serial Bus,通用串行总线)接口、27mm*27mm可视域的LCD(Liquid Crystal Display,液晶显示器)、上/下/确认/返回4个按键,以及固定锁扣等。因为空间高度受限,四个按键尺寸小至3mm*3mm;按键间距也为3mm。可以想象,由于尺寸太小,极易出现多按、按错,组合按键(多键同时按下)的操作基本无法实现,按键本身也容易损坏;交互的敏感度、可靠性都很不好,操作体验非常差。
发明内容
有鉴于此,本公开实施例的目的在于提供一种人机接口板及其控制方法、通信电源的监 控单元以及存储介质,以解决现有通信电源的监控单元存在显示区域和按键交互区域较小,用户体验差的问题。
本公开实施例解决上述技术问题所采用的技术方案如下:
根据本公开实施例的一个方面,提供的一种人机接口板,所述人机接口板包括显示屏、手势识别传感器和微处理器;所述手势识别传感器,用于获取所述微处理器下发的手势检测指令;根据所述手势检测指令,检测所述显示屏上方的用户手势并生成用户手势信息;根据所述用户手势信息,产生中断信号;所述微处理器,用于向所述手势识别传感器下发手势检测指令;根据所述中断信号,获取所述用户手势信息;对所述用户手势信息进行识别,并输出识别到的用户手势信息。
根据本公开实施例的另一个方面,提供的一种通信电源的监控单元,所述通信电源的监控单元包括主控制器和上述的人机接口板;所述主控制器,用于获取所述人机接口板输出的识别到的用户手势信息,并向所述人机接口板返回用户手势响应信息。
根据本公开实施例的另一个方面,提供的一种人机接口板的控制方法,所述方法包括:向手势识别传感器下发手势检测指令;所述手势识别传感器获取下发的手势检测指令;根据所述手势检测指令,检测显示屏上方的用户手势并生成用户手势信息;根据所述用户手势信息,产生中断信号;根据所述中断信号,获取所述用户手势信息;对所述用户手势信息进行识别,并输出识别到的用户手势信息。
根据本公开实施例的另一个方面,提供的一种存储介质,所述存储介质上存储有人机接口板的控制程序,所述人机接口板的控制程序被处理器执行时实现上述的人机接口板的控制方法的步骤。
附图说明
图1为本公开第一实施例的人机接口板结构示意图;
图2为本公开第二实施例的人机接口板的控制方法流程示意图。
本公开目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本公开进行进一步详细说明。应当理解,此处所描述的实施例仅仅用以解释本公开,并不用于限定本公开。
第一实施例
为了更好地理解本实施例,以下对手势识别以及现有人机接口板的改进过程进行说明:
现有的通信电源系统通常具备如下单元:交流配电、直流配电、电池组、整流器、以及作为系统核心的监控单元。监控单元由核心主板、HMI(Human Machine Interface,人机接口)板、电源转换板、信号采集板、网络通讯板等构成。其中,核心主板上一般为MCU(Micro Control Unit,微控制单元)/ARM的最小应用系统,承载和运行了监控的主体业务软件,也包括GUI(Graphical User Interface,图形用户界面)窗口菜单。HMI板相对简单,主要包含了LCD、输入键盘、状态指示LED等硬件电路。由于空间限制,输入键盘较少,多为“上”、“下”、“确认”、“返回”四个按键;部分监控单元还有“左”、“右”等按键。通过这些按键和LCD呈现的显示界面,实现了人机交互。但随着监控单元日趋小型化,现有通信电源系统的监控单元存在显示区域和按键交互区域较小,用户体验差的问题。因此对监控单元进行改进,通过手势识别实现非接触式交互。
首先,选择合适的手势识别技术和传感器方案。
手势识别技术,虽然还没有在通信电源行业得到任何应用,但目前在可穿戴设备和消费电子上,使用较多;也有较多方案可以参考。手势识别技术大致可以分为三个等级:二维手型识别、二维手势识别、三维手势识别。
二维手型识别,也称为静态二维手势识别,识别的是几个静态手势,比如握拳或者五指张开。一个典型应用如手型控制播放器:用户将手掌举起来放到摄像头前,视频开始播放;再把手掌放到摄像头前,视频暂停。
二维手势识别,拥有动态的特征,可以追踪手势的运动,进而识别手势和手部运动结合在一起的复杂动作。手势识别的范围真正拓展到二维平面了。
三维手势识别,相比于前两种,需要空间深度信息,硬件上需要三维成像技术,软件识别算法更加复杂,可以识别各种手型、手势和动作,应用于玩游戏或者VR(Virtual Reality,虚拟现实)上。
根据电源监控的实际应用场景和成本要求,可以选择相对不复杂的二维手势识别技术,并以红外手势识别传感器作为实现的主体方案。一般情况下,手势识别传感器内部集成有LED(Light Emitting Diode,发光二极管)发射光源,以及感知上下左右四个方向反射回的红外能量的光电二极管。同时,若希望改善电源监控单元的友好性,可根据环境光强自动调整LCD背光,则选择的传感器还需具有独立的感知环境光强的光电二极管。另外,选择的传感器具备标准的I2C通讯和中断接口,以便能实时地获取信息并进行处理。
其次,对现有的人机交互板进行优化,增加手势识别功能电路。
在一个实施例中,在现有的HMI板上,增加手势识别传感器、实现手势识别算法的MCU (Micro Control Unit,微控制单元)和外围器件。MCU与传感器间以I2C通讯和外部中断信号接口连接,并通过UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)接口、SPI(Serial Peripheral Interface,串行外设接口)、或者I2C(Inter-Integrated Circuit,集成电路总线)等接口)输出手势识别结果给核心主板;同时MCU提供不少于按键数量的电平输出端口,能够模拟输出对应按键动作前后的电平;电平输出端口与按键电路的按键输入端相与、并经过抖动消除,再输出给核心单板,保障单板间接口兼容;也就是说,只更换HMI单板等硬件,就可以完成现场监控单元的升级,以支持实现手势交互。
相应的,监控单元的前面板,在结构上也需要针对性的调整。比如在传感器位置上方,增加厂家推荐的塑料或玻璃材质的透射窗(透光屏),常用深色覆层的透射窗,达到美观效果;LED发射源、感光二极管的直径之外,增加橡胶隔离,通过光学密封减少串扰,以达到更好的效果。
基于上述的改进过程,如图1所示,本公开第一实施例提供一种人机接口板,所述人机接口板10包括显示屏13、手势识别传感器11和微处理器12。
在本实施例中,所述手势识别传感器11可以为红外手势识别传感器;所述红外手势识别传感器的内部集成有发射光源、感知不同方向反射的红外能量的第一光电二极管、以及感知环境光强的第二光电二极管。
在本实施例中,所述手势识别传感器11和所述微处理器12之间通过I2C(Inter-Integrated Circuit,集成电路总线)通信接口和中断接口连接。
所述手势识别传感器11,用于获取所述微处理器12下发的手势检测指令;根据所述手势检测指令,检测所述显示屏13上方的用户手势并生成用户手势信息;根据所述用户手势信息,产生中断信号;
所述微处理器12,用于向所述手势识别传感器11下发手势检测指令;根据所述中断信号,获取所述用户手势信息;对所述用户手势信息进行识别,并输出识别到的用户手势信息。
在本实施例中,微处理器12可通过I2C协议对手势识别传感器11下发指令,驱动手势识别传感器11进行近距离检测、手势检测、环境光检测,并通过I2C通信接口和中断接口,及时读取检测到的数据,对检测数据进行判断、识别和转换,从而分析得出接近、拍动、快速挥动等多种手势动作。
作为示例地,以下对不同手势的识别进行说明:
1、接近手势识别
首先设置近距离光强阈值的上限、下限、连续次数(滤波参数),允许阈值超限产生中断。
在微处理器12对手势识别传感器11下发近距离检测指令、并产生中断信号之后,微处理器12读取近距离检测数据。此数据为感知环境光强的第二光电二极管接收到物体(如手)反射的光强。光强数值的大小,对应着物体距离的远近:比如,此数值低于下限,表示“远离”的运动手势;高于上限,表示“靠近”的运动手势。
转换运动手势为人机交互的输入动作。比如持续一段时间(比如1秒)的“靠近”手势,等效为“确认”按键;持续一段时间的“远离”手势,等效为“返回”按键;快速交替反复的“靠近”和“远离”,等效为“双击”。
需要注意持续时间的处理。比如,持续较长一段时间(比如2秒)的“靠近”手势,不可等效为连续按下多个“确认”按键,中间须有“远离”的动作;更长时间持续的“靠近”和“远离”(比如30秒以上),表示用户或操作者“离场”的含义。在实际的应用场景中,可能会出现监控单元前面板被物体覆盖或遮挡(比如嵌入式电源所在的机柜柜门关闭),这种情况也可以等效为操作者“离场”。
2、手势检测识别
首先设置手势进入和退出阈值、数据存贮的FIFO(First in First out,先进先出)深度等参数,允许手势检测中断。
在微处理器12对手势识别传感器11下发手势检测指令、并产生中断信号之后,微处理器12从FIFO中连续读取数据。这些数据,是在手势整个移动过程中,感知不同方向反射的红外能量的第一光电二极管(例如,上下左右四组方向感知LED,以下以此为例进行说明)接收到的全部反射光强数据的集合。通过对上下左右四方向的光强数据分析、定位,可以判断手势的运动方向和距离。
1)挥动手势的识别。根据四组反射光强数据的时间变化特征(时间-光强曲线图),判断手势的动作。显然,手接近感知LED时,则反射光强;远离感知LED时,反射光弱。因此,可以判断出,手势在挥动过程中,四组感知LED时间-光强特征曲线类似于正态分布曲线,手处于中间位置时反射光最强,越往两边的边缘部分,光强越小。比如左右挥动手时,上、下感知LED的时间-光强特征曲线基本重叠;而左、右感知LED的时间-光强曲线图,曲线包络相似,但有时间上的偏移,即呈现出时间轴方向的平移特性。同样,上下挥动时,左、右感知LED的时间-光强特征曲线基本重叠;而上、下感知LED的时间-光强曲线图,出现时间轴的偏移,典型的光强峰值点平移时间为数十到数百毫秒,与挥动速度有关。
2)复杂手势的识别。在人机接口单板上还可以增加驱动多颗距离相对较远的红外LED,以方便识别出斜向挥动、画圈、英文字母、数字等较为复杂的手势操作。基本原理和上下左右手势挥动识别算法类似,也是分析多点感知LED的时间-光强曲线图,对光强的峰值点轨 迹进行拟合判断出来的。比如判断出光强的峰值点轨迹近似圆形,则识别出该手势为英文字母“O”等等;又如判断出光强的峰值点轨迹近似山峰状,比如“Λ”,则识别出该手势为英文字母“A”等等。
3)环境光强识别
设置环境光强阈值的上限、下限、连续次数(滤波参数),允许阈值超限产生中断。
在微处理器12对手势识别传感器11下发环境光强检测指令、并产生中断信号之后,微处理器12读取数据。此数据为感知环境光强的第二光电二极管接收到的环境光强数据。
请再参考图1所示,在一种实施方式中,所述人机接口板10还包括按键电路14、逻辑处理电路15和抖动消除电路16;
所述微处理器12包括电平输出端口(图中的P1、P2、P3、P4所示),所述按键电路14包括按键输入端(图中的K1、K2、K3、K4所示);所述电平输出端口和所述按键输入端连接在所述逻辑处理电路15的输入端,所述逻辑处理电路15的输出端与所述抖动消除电路16的输入端连接;
所述微处理器12,还用于根据所述识别到的用户手势信息,通过所述电平输出端口输出对应的电平信号;
所述逻辑处理电路15,用于对所述电平输出端口输出的电平信号和所述按键输入端的信号进行逻辑处理;
在该实施方式中,所述逻辑处理电路15可以为逻辑与处理电路,逻辑与处理电路可以包括多个逻辑与处理单元(图中的L1、L2、L3、L4所示),每个逻辑与处理单元的输入端接入一个电平输出端口和一个按键输入端,例如:逻辑与处理单元L1的输入端接入电平输出端口P1和按键输入端K1。
所述抖动消除电路16,用于对所述逻辑处理电路15逻辑处理后的信号进行抖动消除,输出抖动消除后的信号。
在该实施方式中,所述抖动消除电路16可以为斯密特电路,例如74HC7001。通过抖动消除电路16,人机接口板上的按键输出经过了抖动消除,信号质量得以改善;监控单元对各按键输入的检测,可以从轮询方式改为中断方式,以提升响应的实时性。
本公开实施例的人机接口板,通过手势识别传感器和微处理器,实现了电源监控的非接触式交互;解决了现有通信电源的监控单元存在显示区域和按键交互区域较小,用户体验差的问题;提升了用户体验。
第二实施例
如图2所示,本公开第二实施例提供一种人机接口板的控制方法,人机接口板可参考第一实施例,在此不作赘述。所述方法包括:
步骤S21:向手势识别传感器下发手势检测指令;所述手势识别传感器获取下发的手势检测指令;根据所述手势检测指令,检测显示屏上方的用户手势并生成用户手势信息;根据所述用户手势信息,产生中断信号。
在本实施例中,所述根据所述用户手势信息,产生中断信号包括:将所述用户手势信息中的参数值与预设阈值的上限或者下限进行比对;在所述用户手势信息中的参数值超过所述预设阈值的上限或者下限的情况下,产生中断信号。
步骤S22:根据所述中断信号,获取所述用户手势信息。
步骤S23:对所述用户手势信息进行识别,并输出识别到的用户手势信息。
在一种实施方式中,所述对所述用户手势信息进行识别,并输出识别到的用户手势信息,之后还包括:获取用户手势响应信息。
本公开实施例的人机接口板的控制方法,通过手势识别传感器和微处理器,实现了电源监控的非接触式交互;解决了现有通信电源的监控单元存在显示区域和按键交互区域较小,用户体验差的问题;提升了用户体验。
第三实施例
本公开第三实施例提供一种存储介质,所述存储介质上存储有人机接口板的控制方法程序,所述人机接口板的控制方法程序被处理器执行时用于实现第二实施例所述的人机接口板的控制方法的步骤。
需要说明的是,本实施例的存储介质,与第二实施例的方法属于同一构思,其实现过程详细见方法实施例,且方法实施例中的技术特征在本实施例中均对应适用,这里不再赘述。
本公开实施例的存储介质,通过手势识别传感器和微处理器,实现了电源监控的非接触式交互;解决了现有通信电源的监控单元存在显示区域和按键交互区域较小,用户体验差的问题;提升了用户体验。
第四实施例
本公开第四实施例提供一种通信电源的监控单元,所述通信电源的监控单元包括主控制器和第一实施例所述的人机接口板;所述主控制器,用于获取所述人机接口板输出的识别到 的用户手势信息,并向所述人机接口板返回用户手势响应信息。
在本实施例中,所述人机接口板和所述主控制器之间通过UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)接口、SPI(Serial Peripheral Interface,串行外设接口)、I2C通信接口中的任一接口连接。
在本实施例中,向所述人机接口板返回用户手势响应信息包括但不限于以下几种情形:
1、用户开始操作时(接收到任何非“离场”信息),根据环境光强弱,自动调节LCD显示屏的显示背光。
2、操作人离场后,控制LCD显示屏的背光源关闭,用户操作中的菜单退出到屏保状态。该情形有利于节能、提高LCD使用寿命。
3、如果支持英文字母、数字等复杂手势检测识别,可以改进交互响应的窗口界面,比如密码输入、参数设置等输入编辑菜单,实现更快捷、方便的信息输入和动作控制。
为了更好地阐述本实施例,以下结合监控单元的改造案例进行说明:
某公司推出了一种最新型号的嵌入式通信电源设备,小型化、高密度设计,200A的系统容量只需要3U高、19英寸宽的空间;可以广泛应用在基站、室外柜、壁挂等各个电信设备的供电。该设备由交流配电单元、直流配电单元、4个整流器、环境检测单元和一个监控单元组成。其中,监控单元为高密度、前维护设计,物理尺寸只有84mm(长)*40mm(宽)*270mm(深),不到1U*2U的前面板空间,分布有一个USB接口、一个RJ45的以太网口,一个27mm*27mm可视区域的LCD,“上”、“下”、“确认”、“返回”等4个按键,3个指示电源、运行和告警的LED指示灯,以及固定锁扣等装置。由于前面板空间极为受限,4个按键都非常小,尺寸为3mm*3mm;按键间距也只有3mm,很容易出现多按、错按;人机交互的可操作性非常差。为了改善人机交互体验,拟增加手势识别功能,用简单方便的操作手势,实现全新的用户界面,给电源监控单元带来全新的控制体验。
首先,参考图1,对人机交互接口板的电路,进行了优化。手势识别传感器,可以选择AVAGO公司的APDS-9960,该手势传感器已在三星Galaxy S5等产品中成功应用,相似的传感器还有Silicon labs公司的Si1153、Elmos公司的E909、AMS公司的TMG399x等。APDS-9960具有集成度高和成本低的优势。
APDS-9960光学传感器,内部集成了手势检测(Gesture Detection)、接近检测(Proximity Detection)、环境光检测(ALS,Ambient Light Sensing)、颜色感测(Color Sense,RGBC)等功能,使用双光二极管来近似0.01lux照度和人眼的视觉反应,即使在深色玻璃后也能高灵活运作;内置紫外线和红外线阻隔滤镜,四个单独的二极管实现不同方向的敏感;另有一个I2C兼容接口,以连接微处理器。
微处理器方面,选择Cortex-M0内核的STM32F030,该芯片集成FLASH、RAM、GPIO、TIMER、I2C、USART等资源,整体解决方案的硬件成本非常低廉。实际上,任何其他低成本、具备相似资源的微处理器也都是适合的。STM32F030与APDS-9960间以I2C和中断接口连接;STM32F030的4个输出端口,分别和按键输入相与,通过斯密特电路(如74HC7001)消除抖动后输出给核心处理单板;软件识别出向上挥动、向下挥动、接近、远离的手势动作后,微处理器软件对应着在这四个端口的低电平脉冲输出,脉冲宽度约0.5秒,相当于模拟了“上”、“下”、“确认”、“返回”按键的输出,可以完全保证与原来的菜单界面的兼容。
软件上,STM32F030基于C语言实现。基本功能就是通过I2C接口,从APDS-9960那里获取、并识别出接近、拍动、快速挥动等多种手势,转换成对应的按键动作,向对应的四个端口输出低电平脉冲,也通过UART口向核心主板送出手势信息。在有效检测范围内,识别到的如下手势:
1、基本2D手势:向上、向下、向左、向右四种挥动手势。识别到后,分别驱动P1,P2,P1&P3,P2&P3端口,输出低电平脉冲,脉冲宽度为0.5秒;相当于模拟了“上”、“下”、“左(上+确认)”、“右(下+确认)”按键的输出;
2、基本接近手势:持续达1秒的“靠近”手势、持续达1秒的“远离”手势。识别到后,分别驱动P3,P4端口,输出低电平脉冲,脉冲宽度为0.5秒;相当于模拟了“确认”、“返回”按键的输出;
3、组合手势:快速的多次左右摆手、上下摆手、快速交替的“靠近/“远离”三种手势,分别驱动P1&P2&P3,P1&P2,P3&P4端口,输出低电平脉冲,脉冲宽度为0.5秒;可以模拟了“快速增加(上+下+确认)”、“快速减少(上+下)”、“帮助(确认+返回)”等按键的输出。当然,这些组合按键的功能,可以根据业务需要,定义成其他的含义,比如“回到主菜单”、“锁屏”等。
另外,微处理器把识别检测到的环境光强数值(如必要,也包括模拟按键信息),通过UART接口输出给核心主板。
核心主板的软件,通过UART接口,接收环境光强数值,并根据数值来调节LCD的背光大小,为操作者提供一个舒适的显示效果。通过UART口或者按键检测输入口,得到手势识别对应的虚拟按键信息,进行用户界面的交互。显然,原来的物理键盘只有4个,只能表示上、下、确认、返回四种信息;而手势识别,能够完成物理上很难实现的组合按键的效果,并至少输出上、下、确认、返回、左、右、帮助、快增、快减等9种信息,大大提高了交互的效率和友好性。
本公开实施例的通信电源的监控单元,通过手势识别传感器和微处理器,实现了电源监控的非接触式交互;解决了现有通信电源的监控单元存在显示区域和按键交互区域较小,用户体验差的问题;提升了用户体验。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本公开实施例的人机接口板及其控制方法、通信电源的监控单元以及存储介质,通过手势识别传感器和微处理器,实现了电源监控的非接触式交互;解决了现有通信电源的监控单元存在显示区域和按键交互区域较小,用户体验差的问题;提升了用户体验。
以上参照附图说明了本公开的优选实施例,并非因此局限本公开的权利范围。本领域技术人员不脱离本公开的范围和实质内所作的任何修改、等同替换和改进,均应在本公开的权利范围之内。

Claims (10)

  1. 一种人机接口板,其中,所述人机接口板包括显示屏、手势识别传感器和微处理器;
    所述手势识别传感器,用于获取所述微处理器下发的手势检测指令;根据所述手势检测指令,检测所述显示屏上方的用户手势并生成用户手势信息;根据所述用户手势信息,产生中断信号;
    所述微处理器,用于向所述手势识别传感器下发手势检测指令;根据所述中断信号,获取所述用户手势信息;对所述用户手势信息进行识别,并输出识别到的用户手势信息。
  2. 根据权利要求1所述的人机接口板,其中,所述人机接口板还包括按键电路、逻辑处理电路和抖动消除电路;
    所述微处理器包括电平输出端口,所述按键电路包括按键输入端;所述电平输出端口和所述按键输入端连接在所述逻辑处理电路的输入端,所述逻辑处理电路的输出端与所述抖动消除电路的输入端连接;
    所述微处理器,还用于根据所述识别到的用户手势信息,通过所述电平输出端口输出对应的电平信号;
    所述逻辑处理电路,用于对所述电平输出端口输出的电平信号和所述按键输入端的信号进行逻辑处理;
    所述抖动消除电路,用于对所述逻辑处理电路逻辑处理后的信号进行抖动消除,输出抖动消除后的信号。
  3. 根据权利要求1所述的人机接口板,其中,所述手势识别传感器为红外手势识别传感器;
    所述红外手势识别传感器的内部集成有发射光源、感知不同方向反射的红外能量的第一光电二极管、以及感知环境光强的第二光电二极管。
  4. 根据权利要求1所述的人机接口板,其中,所述手势识别传感器和所述微处理器之间通过集成电路总线I2C通信接口和中断接口连接。
  5. 一种通信电源的监控单元,其中,所述通信电源的监控单元包括主控制器和权利要求1至4任一所述的人机接口板;
    所述主控制器,用于获取所述人机接口板输出的识别到的用户手势信息,并向所述人机接口板返回用户手势响应信息。
  6. 根据权利要求5所述的通信电源的监控单元,其中,所述人机接口板和所述主控制器之间通过通用异步收发传输器UART接口、串行外设接口SPI、I2C通信接口中的任一接口连接。
  7. 一种人机接口板的控制方法,所述方法包括:
    向手势识别传感器下发手势检测指令;所述手势识别传感器获取下发的手势检测指令;根据所述手势检测指令,检测显示屏上方的用户手势并生成用户手势信息;根据所述用户手势信息,产生中断信号;
    根据所述中断信号,获取所述用户手势信息;
    对所述用户手势信息进行识别,并输出识别到的用户手势信息。
  8. 根据权利要求7所述的方法,其中,所述根据所述用户手势信息,产生中断信号包括:
    将所述用户手势信息中的参数值与预设阈值的上限或者下限进行比对;
    在所述用户手势信息中的参数值超过所述预设阈值的上限或者下限的情况下,产生中断信号。
  9. 根据权利要求7所述的方法,其中,所述对所述用户手势信息进行识别,并输出识别到的用户手势信息,之后还包括:
    获取用户手势响应信息。
  10. 一种存储介质,其中,所述存储介质上存储有人机接口板的控制程序,所述人机接口板的控制程序被所述处理器执行时实现如权利要求7至9中任一项所述的人机接口板的控制方法的步骤。
PCT/CN2019/126750 2018-12-26 2019-12-19 人机接口板及其控制方法、监控单元以及存储介质 WO2020135231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811603732.4A CN111367401A (zh) 2018-12-26 2018-12-26 人机接口板及其控制方法、监控单元以及存储介质
CN201811603732.4 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020135231A1 true WO2020135231A1 (zh) 2020-07-02

Family

ID=71126117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126750 WO2020135231A1 (zh) 2018-12-26 2019-12-19 人机接口板及其控制方法、监控单元以及存储介质

Country Status (2)

Country Link
CN (1) CN111367401A (zh)
WO (1) WO2020135231A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112215195A (zh) * 2020-10-25 2021-01-12 蒋芳 一种箱柜内物品存取监控记录方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120311422A1 (en) * 2011-05-31 2012-12-06 Christopher Douglas Weeldreyer Devices, Methods, and Graphical User Interfaces for Document Manipulation
CN103576861A (zh) * 2013-11-18 2014-02-12 谢元澄 非接触手势控制系统
CN104866097A (zh) * 2015-05-22 2015-08-26 厦门日辰科技有限公司 手持信号输出装置和手持装置输出信号的方法
CN107122053A (zh) * 2017-04-27 2017-09-01 奥英光电(苏州)有限公司 一种显示器的控制方法、装置及显示器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2503527Y (zh) * 2001-08-03 2002-07-31 爱浪科技(中山)有限公司 具有解释功能的触摸按键装置
US8487881B2 (en) * 2007-10-17 2013-07-16 Smart Technologies Ulc Interactive input system, controller therefor and method of controlling an appliance
US20150193011A1 (en) * 2014-01-08 2015-07-09 Microsoft Corporation Determining Input Associated With One-to-Many Key Mappings
CN104460987B (zh) * 2014-11-07 2019-05-28 惠州Tcl移动通信有限公司 可通过非接触手势操控的电子设备
US20170209337A1 (en) * 2016-01-22 2017-07-27 Sundance Spas, Inc. Gesturing Proximity Sensor for Spa Operation
CN106776081A (zh) * 2017-01-10 2017-05-31 北京风行在线技术有限公司 在终端实现按键智能化控制系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120311422A1 (en) * 2011-05-31 2012-12-06 Christopher Douglas Weeldreyer Devices, Methods, and Graphical User Interfaces for Document Manipulation
CN103576861A (zh) * 2013-11-18 2014-02-12 谢元澄 非接触手势控制系统
CN104866097A (zh) * 2015-05-22 2015-08-26 厦门日辰科技有限公司 手持信号输出装置和手持装置输出信号的方法
CN107122053A (zh) * 2017-04-27 2017-09-01 奥英光电(苏州)有限公司 一种显示器的控制方法、装置及显示器

Also Published As

Publication number Publication date
CN111367401A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
US10416789B2 (en) Automatic selection of a wireless connectivity protocol for an input device
CN104461084A (zh) 一种控制装置及方法
US9389779B2 (en) Depth-based user interface gesture control
CN102902476B (zh) 一种触摸式终端控制电子设备的方法及其系统
CN103080887A (zh) 用于基于接近的输入的装置和方法
CN202995699U (zh) 一种采用触摸屏拍照的手持终端
CN208956098U (zh) 一种侧面指纹识别的全面屏
CN103581727A (zh) 一种基于智能电视平台的手势识别交互系统及交互方法
CN204423528U (zh) 界面自动识别与切换的红外感应系统
WO2020135231A1 (zh) 人机接口板及其控制方法、监控单元以及存储介质
CN108196780A (zh) 一种大屏幕显示终端触摸控制方法与系统
CN103076888A (zh) 一种kvm设备及该设备中usb键盘调用osd切换通道的方法
CN202995741U (zh) 内外网物理隔离计算机
CN109032547A (zh) 分屏处理方法、装置、存储介质及电子设备
CN106033286A (zh) 基于投影显示的虚拟触控交互方法、装置及机器人
CN109542218B (zh) 一种移动终端、人机交互系统及方法
CN203606780U (zh) 多点触摸和手势识别融合系统
CN105657187A (zh) 一种可见光通信方法、设备及系统
CN102253763B (zh) 无线交互系统和方法
CN105843368B (zh) 一种电子装置和响应方法
CN108924345A (zh) 拍照方法、拍照装置及移动终端
CN204883661U (zh) 一种具有光感触控按键的移动终端
CN105659193B (zh) 一种包括人机交互装置的数字装置
CN103197800A (zh) 基于视觉的整体式多点触摸设备
CN214476328U (zh) 应用于激光显示设备的激光投影主机和激光显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19902623

Country of ref document: EP

Kind code of ref document: A1