WO2020134958A1 - 移动终端 - Google Patents

移动终端 Download PDF

Info

Publication number
WO2020134958A1
WO2020134958A1 PCT/CN2019/123587 CN2019123587W WO2020134958A1 WO 2020134958 A1 WO2020134958 A1 WO 2020134958A1 CN 2019123587 W CN2019123587 W CN 2019123587W WO 2020134958 A1 WO2020134958 A1 WO 2020134958A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
branch
antenna radiating
housing
radiating branch
Prior art date
Application number
PCT/CN2019/123587
Other languages
English (en)
French (fr)
Inventor
李日辉
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020134958A1 publication Critical patent/WO2020134958A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets

Definitions

  • the present disclosure relates to the field of communication technology, and particularly to a mobile terminal.
  • An overlay screen mobile terminal usually includes the following two types. One is to form two covers by folding or pushing and pulling a whole screen; the other is to form two covers by folding or pushing and pulling two separate screens. Two When the cover is opened, the two screens are on the same plane and are put together to form a large screen.
  • overlapping screen mobile terminals usually use a metal shell, and at the same time, the antenna radiating branch used to radiate the antenna energy is provided on one of the cover shells.
  • the metal shell of the other cover is opposite to the antenna radiating branch, which results in greater compression of the antenna radiation space, which in turn leads to poor antenna radiation capability.
  • An embodiment of the present disclosure provides a mobile terminal to solve the overlapping screen mobile terminal in the related art.
  • the metal shell of the other cover is opposite to the antenna radiating branch, which causes radiation to the antenna
  • the compression of the space is large, which in turn leads to the problem of poor radiation capability of the antenna.
  • an embodiment of the present disclosure provides a mobile terminal, including a first casing and a second casing that can be relatively moved to at least a partially overlapping closed state;
  • the first housing includes a first conductive body and a first antenna radiating branch electrically connected to the first conductive body; the first conductive body is grounded, and a feeding point is provided on the first antenna radiating branch, A first insulating zone is provided between the first end of the first antenna radiating branch and the first conductive body, and a first section is provided between the first side of the first antenna radiating branch and the first conductive body Second insulation zone;
  • the second housing includes a second conductive body and a second antenna radiating branch electrically connected to the second conductive body; the second conductive body is grounded, and the first end of the second antenna radiating branch is connected to the A third insulating area is provided between the second conductive bodies, and a fourth insulating area is provided between the first side of the second antenna radiation branch and the second conductive body;
  • the first antenna radiating branch is separated from the second antenna radiating branch and the second conductive body, and the second An antenna radiating branch is spaced from the first conductive body, the first insulating area is at least partially opposed to the third insulating area, the second insulating area is at least partially opposed to the fourth insulating area, and the first An antenna radiating branch is capacitively coupled with the second antenna radiating branch.
  • the first insulating region is at least partially opposed to the third insulating region
  • the second insulating region is at least partially opposed to the fourth insulating region
  • FIG. 1 is one of structural diagrams of a mobile terminal provided by an embodiment of the present disclosure
  • FIG. 2 is a second structural diagram of a mobile terminal provided by an embodiment of the present disclosure.
  • FIG. 3 is an exemplary diagram of a mobile terminal provided by an embodiment of the present disclosure.
  • FIG. 4 is one of structural diagrams of a high-pass filter circuit in a mobile terminal provided by an embodiment of the present disclosure
  • FIG. 5 is a second structural diagram of a high-pass filter circuit in a mobile terminal provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a mobile terminal, including a first housing 1 and a second housing 2 that can be relatively moved to a closed state at least partially overlapping;
  • the first housing 1 includes a first conductive body 11 and a first antenna radiating branch 12 electrically connected to the first conductive body 11; the first conductive body 11 is grounded, and a feeding point 121 is provided on the first antenna radiating branch 12; A first insulating area 13 is provided between the first end of the antenna radiating branch 12 and the first conductive body 11, and a second insulating area 14 is provided between the first side of the first antenna radiating branch 12 and the first conductive body 11 ;
  • the second housing 2 includes a second conductive body 21 and a second antenna radiating branch 22 electrically connected to the second conductive body 21; the second conductive body 21 is grounded, and the first end of the second antenna radiating branch 22 is connected to the second conductive body A third insulating area 23 is provided between 21, and a fourth insulating area 24 is provided between the first side of the second antenna radiation branch 22 and the second conductive body 21;
  • the first antenna radiating branch 12 is separated from the second antenna radiating branch 22 and the second conductive body 21, respectively, and the second antenna radiating branch 22 and the first conductive body 11 There is a gap, the first insulating region 13 is at least partially opposed to the third insulating region 23, the second insulating region 14 is at least partially opposed to the fourth insulating region 24, and the first antenna radiating branch 12 and the second antenna radiating branch 22 are capacitively coupled.
  • the mobile terminal may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (personal digital assistant (PDA), a mobile Internet device (Mobile Internet Device (MID) or a wearable Wearable Device etc.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA personal digital assistant
  • MID Mobile Internet Device
  • wearable Wearable Device etc.
  • the first housing 1 and the second housing 2 may be connected by a rotating shaft, or may be connected by a slide rail or a slide groove.
  • the first shell 1 and the second shell 2 may be relatively moved by folding to at least partially overlap the closed state;
  • the first housing 1 and the second housing 2 When the two housings 2 are connected by a slide rail, the first housing 1 and the second housing 2 may be relatively moved to a closed state at least partially overlapping by sliding (for example, sliding left and right or sliding up and down).
  • the material of the first antenna radiating branch 12 may be any electrical conductor, for example, copper, stainless steel, magnesium alloy, aluminum alloy, or the like.
  • the first antenna radiating branch 12 is electrically connected to the first conductive body 11, and the second end of the first antenna radiating branch 12 may be electrically connected to the first conductive body 11; more specifically, the first antenna radiating branch 12 may be The first conductive body 11 extends.
  • the first antenna radiating branch 12 may be in-line or L-shaped.
  • the material of the second antenna radiating support 22 may be any electrical conductor, for example, copper, stainless steel, magnesium alloy, aluminum alloy, etc.
  • the second antenna radiating branch 22 is electrically connected to the second conductive body 21, and the second end of the second antenna radiating branch 22 may be electrically connected to the second conductive body 21; more specifically, the second antenna radiating branch 22 may be The second conductive body 11 extends.
  • the above second antenna radiating branch 22 may be in-line or L-shaped.
  • the ratio of the length of the second antenna radiating branch 22 to the length of the first antenna radiating branch 12 is between two thirds and four thirds.
  • the above feed point 121 may be a point for electrical connection with an antenna feed; here, the antenna feed may be the second generation mobile phone communication technology specification (2-Generation wireless telephone technology (2G), the third generation mobile communication technology (3rd-Generation mobile communication technology, 3G), the fourth generation mobile communication technology (the 4th Generation mobile communication technology, 4G), the fifth generation mobile communication technology (5th-Generation mobile communication technology, 5G), wireless fidelity (WIreless -Fidelity, WIFI) or Global Positioning System (Global Positioning System, GPS) and other radio frequency modules.
  • 2G second generation mobile phone communication technology specification
  • the fourth generation mobile communication technology the 4th Generation mobile communication technology, 4G
  • the fifth generation mobile communication technology 5th-Generation mobile communication technology, 5G
  • wireless fidelity WIreless -Fidelity, WIFI
  • GPS Global Positioning System
  • the above-mentioned insulating region may also be referred to as an electrical insulating region; each of the above-mentioned insulating regions may be filled with a non-metallic material (eg, plastic).
  • a non-metallic material eg, plastic.
  • the above-mentioned insulation areas are embedded with grounded or ungrounded metal parts, such as speakers, cameras, USB, etc., and these metal parts and antennas There is a gap between the radiation branches.
  • the above-mentioned relative at least partially can be understood as at least partially aligned.
  • the first insulating region is at least partially opposed to the third insulating region
  • the second insulating region is at least partially opposed to the fourth insulating region
  • FIG. 3 is a mobile terminal in the related art and the mobile terminal shown in FIG.
  • a comparison diagram of the antenna resonance modes generated when the two casings are in a closed state where H 1 and H 2 represent the mobile terminal in the related art when the first casing and the second casing are closed
  • Two antenna resonant modes, H 1-1 and H 2-1 represent the first antenna radiating branch 12 of the mobile terminal shown in FIG. 1 when its first housing 1 and second housing 2 are in a closed state
  • the generated two antenna resonance modes, H 1-2 and H 2-2 indicate that the second antenna radiating branch 22 of the mobile terminal shown in FIG. 1 is in a closed state between its first housing 1 and second housing 2
  • the resonant modes of the two antennas generated at the time where H 1 and H 2 represent the mobile terminal in the related art when the first casing and the second casing are closed
  • Two antenna resonant modes, H 1-1 and H 2-1 represent the first antenna radiating branch 12 of the mobile terminal shown in FIG. 1 when its first housing 1 and second housing 2 are
  • the mobile terminal shown in FIG. 1 except for the first antenna radiating branch 12 generates two antenna resonance modes H 1-1 and H 2 corresponding to the antenna resonance modes H 1 and H 2 respectively.
  • two antenna resonance modes H 1-2 and H 2-2 are additionally generated by the second antenna radiating branch 22.
  • the antenna resonance modes H 1-1 , H 2-1 , H 1 The total bandwidth of -2 and H 2-2 is greater than the total bandwidth of the antenna resonance modes H 1 and H 2 , which shows that the antenna bandwidth of the mobile terminal shown in FIG. 1 is wider than the antenna bandwidth of the mobile terminal in the related art. Ability is better.
  • FIG. 1 shows that the antenna bandwidth of the mobile terminal shown in FIG. 1 is wider than the antenna bandwidth of the mobile terminal in the related art.
  • Ability is better.
  • the bandwidth of the antenna resonance mode H 1-1 is wider than the bandwidth of the antenna resonance mode H 1
  • the bandwidth of the antenna resonance mode H 2-1 is more than the bandwidth of the antenna resonance mode H 2 Wide, which means that the second antenna radiating branch 22 can also expand the radiation space of the first antenna radiating branch 12, which in turn can improve the radiation capacity of the first antenna radiating branch 12.
  • the first antenna radiating branch 12 is electrically connected to the first conductive body 11 and the second antenna radiating branch is electrically connected to the second conductive body, the number of fractures on the first casing and the second casing can be reduced, thereby enabling Make the appearance of the mobile terminal better.
  • the first insulating region 13 and the third insulating region 23 are aligned with each other and/or the second insulating region 14 and the fourth insulating region 14 are aligned with each other.
  • the end surface of the first end of the first antenna radiating branch and the end surface of the first end of the second antenna radiating branch will also be aligned, so that both The interference of the two conductive bodies on the radiation branch of the first antenna and the reduction of the interference of the first conductive body on the radiation branch of the second antenna can also improve the coupling effect between the radiation branch of the first antenna and the radiation branch of the second antenna, which can further Improve the radiation ability of the antenna; In addition, it can make the appearance of the mobile terminal more symmetrical and neat.
  • the first side of the first antenna radiating branch and the first side of the second antenna radiating branch will also be aligned, so that the second conductive body can reduce the first antenna
  • the interference of the radiation branch and the reduction of the interference of the first conductive body to the radiation branch of the second antenna can also improve the coupling effect between the radiation branch of the first antenna and the radiation branch of the second antenna, thereby improving the radiation capability of the antenna; This makes the appearance of the mobile terminal more symmetrical and neat.
  • the first antenna radiation branch 12 and the second antenna radiation 22 are aligned with each other.
  • first antenna radiation branch 12 and the second antenna radiation branch 22 are aligned with each other
  • shape and size of the first antenna radiation branch 12 are The shape and size of the second antenna radiating branch 22 are consistent, and when the first housing 1 and the second housing 2 are in a closed state, the first antenna radiating branch 12 and the second radiating branch 22 are completely aligned.
  • the first antenna radiating branch and the second antenna radiating branch are aligned with each other, thereby both reducing the interference of the second conductive body on the first antenna radiating branch and reducing the first conductivity
  • the interference of the main body on the radiation branch of the second antenna can also improve the coupling effect between the radiation branch of the first antenna and the radiation branch of the second antenna, which can further improve the radiation capability of the antenna; in addition, it can make the appearance of the mobile terminal more symmetrical And neat.
  • the width of the first insulating region 13 is between 0.3 mm and 3 mm, and the width of the second insulating region 14 is between 0.3 mm and 8 mm; and/or,
  • the width of the third insulating region 23 is between 0.3 mm and 3 mm, and the width of the fourth insulating region 24 is between 0.3 mm and 8 mm; and/or,
  • the width of the fourth insulating region 24 is greater than or equal to the width of the second insulating region 14, and the width of the third insulating region 23 is greater than or equal to the width of the first insulating region 13; and/or,
  • the first antenna radiation branch 12 and the second antenna radiation branch 22 are separated by 0.3 mm to 2 mm.
  • the width of the first insulating region 13 may refer to the distance between the first end of the first antenna radiation branch 12 and the first conductive body 11 in the extending direction of the first antenna radiation branch 12.
  • the width of the first insulating region 13 is between 0.3 mm and 3 mm.
  • the width of the first insulating region 13 may be greater than or equal to 0.3 mm and less than or equal to 3 mm, for example, 1.2 mm.
  • the width of the second insulating region 14 may refer to the distance between the first side of the first antenna radiation branch 12 and the first conductive body 11 in the direction perpendicular to the extension direction of the first antenna radiation branch 12.
  • the width of the second insulating region 14 is between 0.3 mm and 8 mm, and the width of the second insulating region 14 may be greater than or equal to 0.3 mm and less than or equal to 8 mm, for example, 1.5 mm.
  • the width of the third insulating region 23 may refer to the distance between the first end of the second antenna radiation branch 22 and the second conductive body 21 in the extending direction of the second antenna radiation branch 22.
  • the width of the third insulating region 23 is between 0.3 mm and 3 mm.
  • the width of the third insulating region 23 may be greater than or equal to 0.3 mm and less than or equal to 3 mm, for example, 1.2 mm.
  • the width of the fourth insulating region 24 may refer to the distance between the first side of the second antenna radiation branch 22 and the second conductive body 21 in a direction perpendicular to the extension direction of the second antenna radiation branch 22.
  • the width of the fourth insulating region 24 is between 0.3 mm and 8 mm, and the width of the fourth insulating region 24 may be greater than or equal to 0.3 mm and less than or equal to 8 mm.
  • the distance between the first antenna radiation branch 12 and the second antenna radiation branch 22 is 0.3 mm to 2 mm, and the interval between the first antenna radiation branch 12 and the second antenna radiation branch 22 may be greater than or equal to 0.3 mm and less than or equal to 2 Mm, for example, 0.5 mm.
  • the first insulation region is between 0.3 mm and 3 mm, and the second insulation region is between 0.3 mm and 8 mm, it can not only make the radiation capability of the first antenna radiating branch better, but also make the first The appearance of a shell is better.
  • the third insulating region is between 0.3 mm and 3 mm, and the fourth insulating region is between 0.3 mm and 8 mm, it can not only make the radiation capability of the second antenna radiating branch better, but also make the second shell The appearance of the body is better.
  • the width of the fourth insulating region is greater than or equal to the width of the second insulating region, and the width of the third insulating region is greater than or equal to the width of the first insulating region, the radiation capability of the second antenna radiating branch can be made better.
  • the first antenna radiation branch and the second antenna radiation branch are separated by 0.3 mm to 2 mm, so that the first antenna radiation branch and the second antenna radiation branch
  • the coupling effect is better, which can make the antenna have better radiation ability, and can also make the appearance of the mobile terminal better when the first case and the second case are in a closed state.
  • the first housing 1 further includes:
  • a fifth insulating region 16 is provided between the first side of the third antenna radiation branch 15 and the first conductive body 11, and the third antenna radiation branch 15 is capacitively coupled with the first antenna radiation branch 12;
  • the second housing 2 also includes:
  • a sixth insulating region 26 is provided between the first side of the fourth antenna radiation branch 25 and the second conductive body 21, and the fourth antenna radiation branch 25 is capacitively coupled with the second antenna radiation branch 15;
  • the third antenna radiating branch 15 is separated from the second antenna radiating branch 22, the fourth antenna radiating branch 25, and the second conductive body 21, and the fourth antenna radiates
  • the 25 branches are spaced apart from the first antenna radiating branch 12 and the first conductive body 11, the fifth insulating region 16 is at least partially opposed to the sixth insulating region 26, and the third antenna radiating branch 15 and the fourth antenna radiating branch 25 are capacitively coupled.
  • the third antenna radiating branch 15 is electrically connected to the first conductive body 11, and the second end of the third antenna radiating branch 15 may be electrically connected to the first conductive body 11; more specifically, the third antenna radiating branch 15 It may be formed by the extension of the first conductive body 11.
  • the third antenna radiating branch 15 may be in-line or L-shaped.
  • the fourth antenna radiation branch 25 is electrically connected to the second conductive body 21, and the second end of the fourth antenna radiation branch 25 may be electrically connected to the second conductive body 21; more specifically, the fourth antenna radiation branch 25 may be The second conductive body 21 extends.
  • the fourth antenna radiating branch 25 may be in-line or L-shaped.
  • the width of the first insulating region 13 may refer to the distance between the first end of the first antenna radiation branch 12 and the first end of the third antenna radiation branch 15 in the extending direction of the first antenna radiation branch 12.
  • the width of the first insulating region 13 may be greater than or equal to 0.3 mm and less than or equal to 3 mm, for example, 1.2 mm.
  • the width of the third insulating region 23 may refer to the distance between the first end of the second antenna radiation branch 12 and the first end of the fourth antenna radiation branch 25 in the extending direction of the second antenna radiation branch 22.
  • the width of the third insulating region 23 may be greater than or equal to 0.3 mm and less than or equal to 3 mm, for example, 1.2 mm.
  • the radiation space of the first antenna radiation branch can be further expanded by adding the third antenna radiation branch
  • the radiation space of the second antenna radiation branch can be further enlarged by adding the fourth antenna radiation branch
  • the third antenna radiating branch and the fourth antenna radiating branch can also be capacitively coupled, so that the antenna's radiation capability and the antenna bandwidth can be further improved.
  • the first end of the third antenna radiation branch 15 and the first end of the first antenna radiation branch 12 are aligned with each other; and/or,
  • the first end of the fourth antenna radiation branch 25 and the first end of the second antenna radiation branch 22 are aligned with each other; and/or,
  • the third antenna radiation branch 15 and the fourth antenna radiation branch 25 are aligned with each other.
  • the coupling effect between the third antenna radiating branch and the first antenna radiating branch can be better, which can be improved
  • the radiation capability of the antenna can also make the appearance of the mobile terminal more neat.
  • the coupling effect between the fourth antenna radiation branch and the second antenna radiation branch can be made better, and the antenna The radiation capability can also make the appearance of the mobile terminal more neat.
  • the third antenna radiating branch and the fourth antenna radiating branch are aligned with each other, thereby both reducing the interference of the second conductive body to the third antenna radiating branch and reducing the first conductivity
  • the interference of the main body on the fourth antenna radiating branch can also improve the coupling effect between the third antenna radiating branch and the second antenna radiating branch, which can further improve the antenna's radiating capability; in addition, it can make the appearance of the mobile terminal more symmetrical And neat.
  • the fifth insulating area 16 and the sixth insulating area 26 are aligned with each other.
  • the fifth insulating region and the sixth insulating region are aligned with each other, the first side of the third antenna radiating branch and the first side of the fourth antenna radiating branch will also be aligned, so that the second conductive body can be reduced
  • the interference of the three-antenna radiating branch and the reduction of the interference of the first conductive body to the fourth antenna radiating branch can also improve the coupling effect between the third antenna radiating branch and the fourth antenna radiating branch, thereby improving the antenna's radiation capability; in addition It can also make the appearance of the mobile terminal more symmetrical and neat.
  • the width of the fifth insulating region 16 is between 0.3 mm and 8 mm; and/or,
  • the width of the sixth insulating region 26 is between 0.3 mm and 8 mm; and/or,
  • the third antenna radiation branch 15 and the fourth antenna radiation branch 25 are separated by 0.3 mm to 2 mm.
  • the width of the fifth insulating region 16 may refer to the distance between the first side of the third antenna radiation branch 15 and the first conductive body 11 in a direction perpendicular to the extension direction of the third antenna radiation branch 15.
  • the width of the fifth insulating region 16 is between 0.3 mm and 3 mm.
  • the width of the fifth insulating region 16 may be greater than or equal to 0.3 mm and less than or equal to 3 mm, for example, 1.2 mm.
  • the width of the above-mentioned sixth insulating region 26 may refer to the distance between the first side of the fourth antenna radiation branch 25 and the second conductive body 21 in the direction perpendicular to the extending direction of the fourth antenna radiation branch 25.
  • the width of the sixth insulating region 26 is between 0.3 mm and 3 mm.
  • the width of the sixth insulating region 26 may be greater than or equal to 0.3 mm and less than or equal to 3 mm, for example, 1.2 mm.
  • the distance between the third antenna radiation branch 15 and the fourth antenna radiation branch 25 is 0.3 mm to 2 mm, and the interval between the third antenna radiation branch 15 and the fourth antenna radiation branch 25 may be greater than or equal to 0.3 mm and less than or equal to 2 Mm, for example, 0.5 mm.
  • the width of the fifth insulating region is between 0.3 mm and 8 mm, it can not only make the radiation capability of the third antenna radiating branch better, but also make the appearance of the first housing better.
  • the width of the sixth insulation region is between 0.3 mm and 8 mm, it can not only make the radiation capability of the fourth antenna radiating branch better, but also make the appearance of the first housing better.
  • the third antenna radiation branch and the fourth antenna radiation branch are separated by 0.3 mm to 2 mm, so that both the third antenna radiation branch and the fourth antenna radiation branch
  • the coupling effect is better, which can make the antenna have better radiation ability, and can also make the appearance of the mobile terminal better when the first case and the second case are in a closed state.
  • the feeding point 121 is electrically connected to the antenna feed 4 through the capacitor 3; and/or,
  • a tuning point 221 is provided on the second antenna radiating branch 22, and the tuning point 221 is electrically connected to the grounded tuning circuit 5, which is a high-pass filter circuit or a switch switching circuit.
  • the feeding point 121 may be located at the first end of the first antenna radiating branch 12 or other positions; the tuning point 221 may be located at the first end of the second antenna radiating branch 22 or other positions.
  • the above-mentioned high-pass filter circuit may be used to adjust the resonance frequency of the first antenna radiating branch 12; specifically, the above-mentioned high-pass filter circuit may be equivalent to an open circuit or high impedance at low frequencies and a short circuit or low impedance at high frequencies .
  • the above-mentioned switch switching circuit may be used to adjust the resonance frequency of the second antenna radiation branch 22; specifically, the above-mentioned switch switching circuit may be a circuit used to turn on at high frequencies and turn off at low frequencies.
  • the feeding point 121 may be electrically connected to the capacitor 3 through springs, screws, FPC, or the like.
  • the tuning point 221 may be electrically connected to a grounded high-pass filter circuit or a grounded switch switching circuit through shrapnel, screws, or FPC.
  • the resonance frequency of the first antenna radiation branch can be adjusted, so that the first antenna radiation branch can generate two low-frequency and high-frequency resonance modes.
  • the resonance frequency of the second antenna radiation branch can be adjusted, so that the second antenna radiation branch can generate two low-frequency and high-frequency resonance modes .
  • the first antenna radiating branch can generate two low-frequency and high-frequency resonance modes
  • the second antenna radiating branch can be used to generate two parasitic resonance modes of high frequency and low frequency at the same time or time-sharing. This can not only improve the radiation ability and bandwidth of the antenna to the low frequency resonance mode, but also improve the antenna pair. Radiation capacity and bandwidth of high frequency resonance mode.
  • the aforementioned high-pass filter circuit is a circuit composed of an inductor and/or a capacitor.
  • the foregoing high-pass filter circuit includes a series inductance and capacitance; and/or,
  • the high-pass filter circuit includes parallel inductance and capacitance.
  • the above-mentioned high-pass filter circuit includes series inductance and capacitance. It can mean that the high-pass filter circuit is a series resonant circuit composed of a capacitor and an inductance in series. The resonance frequency of the series resonant circuit is set at high frequency, and the impedance is very low at high frequency. At low frequency, it is equivalent to a small capacitor with a high impedance.
  • the above-mentioned high-pass filter circuit includes parallel inductors and capacitors.
  • the high-pass filter circuit is a parallel resonant circuit composed of a capacitor and an inductor connected in parallel.
  • the resonance frequency of the parallel resonant circuit is set at a low frequency. At this time, the low frequency exhibits high impedance.
  • the high frequency shows large capacitance and the impedance is very low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Support Of Aerials (AREA)
  • Telephone Set Structure (AREA)

Abstract

本公开提供一种移动终端,第一壳体包括第一导电本体和与第一导电本体电连接的第一天线辐射支;第一导电本体接地,第一天线辐射支设馈电点;第一天线辐射支第一端与第一导电本体之间设第一绝缘区,第一天线辐射支第一侧与第一导电本体之间设第二绝缘区;第二壳体包括第二导电本体和与第二导电本体电连接的第二天线辐射支;第二导电本体接地,第二天线辐射支第一端与第二导电本体之间设第三绝缘区,第二天线辐射支第一侧与第二导电本体之间设第四绝缘区;两壳体闭合时,第一绝缘区与第三绝缘区以及第二绝缘区与第四绝缘区均至少部分相对,第一天线辐射支与第二天线辐射支电容耦合。

Description

移动终端
相关申请的交叉引用
本申请主张在2018年12月25日在中国提交的中国专利申请号No.201811594255.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种移动终端。
背景技术
随着用户对大屏幕的追求,重叠屏移动终端(例如,折叠屏手机)逐渐进入人们的视野。重叠屏移动终端通常包括以下两种,一种是由一块整的屏幕通过弯曲对折或推拉形成两个盖体;另一种是由两个单独的屏幕对折或推拉形成两个盖体,两个盖体打开时两个屏幕处于同一平面而拼凑成一个大屏幕。
为了满足用户对移动终端的外观需求,目前市面上的重叠屏移动终端通常采用金属材质的壳体,同时,将用于辐射天线能量的天线辐射支设置在其中一个盖体的壳体上,当重叠屏移动终端的两个盖体重叠时,与天线辐射枝相对的是另一盖体的金属壳体,这导致对天线辐射空间的压缩较大,进而导致天线的辐射能力较差。
发明内容
本公开实施例提供一种移动终端,以解决相关技术中的重叠屏移动终端,由于两个盖体重叠时,与天线辐射枝相对的是另一盖体的金属壳体,这导致对天线辐射空间的压缩较大,进而导致天线的辐射能力较差的问题。
为解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种移动终端,包括能够相对运动到至少部分重叠的闭合状态的第一壳体和第二壳体;
所述第一壳体包括第一导电本体和与所述第一导电本体电连接的第一天线辐射支;所述第一导电本体接地,所述第一天线辐射支上设有馈电点,所 述第一天线辐射支的第一端与所述第一导电本体之间设有第一绝缘区,所述第一天线辐射支的第一侧与所述第一导电本体之间设有第二绝缘区;
所述第二壳体包括第二导电本体和与所述第二导电本体电连接的第二天线辐射支;所述第二导电本体接地,所述第二天线辐射支的第一端与所述第二导电本体之间设有第三绝缘区,所述第二天线辐射支的第一侧与所述第二导电本体之间设有第四绝缘区;
所述第一壳体与所述第二壳体处于所述闭合状态时,所述第一天线辐射支分别与所述第二天线辐射支、所述第二导电本体存在间隔,所述第二天线辐射支与所述第一导电本体存在间隔,所述第一绝缘区与所述第三绝缘区至少部分相对,所述第二绝缘区与所述第四绝缘区至少部分相对,所述第一天线辐射支与所述第二天线辐射支电容耦合。
在本公开实施例中,由于第一壳体与第二壳体处于闭合状态时,第一绝缘区与第三绝缘区至少部分相对,第二绝缘区与第四绝缘区至少部分相对,从而使得第一壳体与第二壳体处于闭合状态时,与第一天线辐射支相对的是第二天线辐射支或者是第二天线辐射支和绝缘区,这样,能够减小对天线辐射空间的压缩,进而能够提升天线的辐射能力;同时,由于第一壳体与第二壳体处于闭合状态时,第一天线辐射支与第二天线辐射支电容耦合,从而使得第一天线辐射支辐射的天线能量能够被传递至第二天线辐射支进行二次辐射,这样,能够进一步提升天线的辐射能力和增加天线带宽。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一实施例提供的移动终端的结构图之一;
图2是本公开一实施例提供的移动终端的结构图之二;
图3是本公开一实施例提供的移动终端的举例图;
图4是本公开一实施例提供的移动终端中的高通滤波电路的结构图之一;
图5是本公开一实施例提供的移动终端中的高通滤波电路的结构图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1和图2所示,本公开一实施例提供一种移动终端,包括能够相对运动到至少部分重叠的闭合状态的第一壳体1和第二壳体2;
第一壳体1包括第一导电本体11和与第一导电本体11电连接的第一天线辐射支12;第一导电本体11接地,第一天线辐射支12上设有馈电点121,第一天线辐射支12的第一端与第一导电本体11之间设有第一绝缘区13,第一天线辐射支12的第一侧与第一导电本体11之间设有第二绝缘区14;
第二壳体2包括第二导电本体21和与第二导电本体21电连接的第二天线辐射支22;第二导电本体21接地,第二天线辐射支22的第一端与第二导电本体21之间设有第三绝缘区23,第二天线辐射支22的第一侧与第二导电本体21之间设有第四绝缘区24;
第一壳体1与第二壳体2处于闭合状态时,第一天线辐射支12分别与第二天线辐射支22、第二导电本体21存在间隔,第二天线辐射支22与第一导电本体11存在间隔,第一绝缘区13与第三绝缘区23至少部分相对,第二绝缘区14与第四绝缘区24至少部分相对,第一天线辐射支12与第二天线辐射支22电容耦合。
其中,上述移动终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等。
上述第一壳体1和第二壳体2可以是通过转轴连接,也可以是通过滑轨或滑槽连接。当第一壳体1和第二壳体2通过转轴连接时,第一壳体1和第二壳体2可以是通过折叠相对运动至至少部分重叠的闭合状态;当第一壳体 1和第二壳体2通过滑轨连接时,第一壳体1和第二壳体2可以是通过滑动(例如,左右滑动或上下滑动)相对运动至至少部分重叠的闭合状态。
上述第一天线辐射支12的材质可以是任一导电体,例如,铜、不锈钢、镁合金、铝合金等。上述第一天线辐射支12与第一导电本体11电连接,可以是第一天线辐射支12的第二端与第一导电本体11电连接;更具体地,上述第一天线辐射支12可以是由第一导电本体11延伸形成。上述第一天线辐射支12可以是一字型或L型。
上述第二天线辐射支22的材质可以是任一导电体,例如,铜、不锈钢、镁合金、铝合金等。上述第二天线辐射支22与第二导电本体21电连接,可以是第二天线辐射支22的第二端与第二导电本体21电连接;更具体地,上述第二天线辐射支22可以是由第二导电本体11延伸形成。上述第二天线辐射支22可以是一字型或L型。上述第二天线辐射支22的长度与上述第一天线辐射支12的长度的比值介于三分之二至三分之四之间。
上述馈电点121可以是用于与天线馈源电连接的点;此处,天线馈源可以是第二代手机通信技术规格(2-Generation wireless telephone technology,2G)、第三代移动通信技术(3rd-Generation mobile communication technology,3G)、第四代移动通信技术(the 4th Generation mobile communication technology,4G)、第五代移动通信技术(5th-Generation mobile communication technology,5G)、无线保真(WIreless-Fidelity,WIFI)或全球定位系统(Global Positioning System,GPS)等射频模块。
上述绝缘区也可以称为电绝缘区;上述各个绝缘区均可以是由非金属材料(例如,塑料)填充而成。需要指出的是,为了进一步提高空间利用率,在一些可选方案中,上述各个绝缘区内嵌设有接地或不接地的金属件,例如,喇叭、摄像头、USB等,且这些金属件与天线辐射支之间存在间隔。上述至少部分相对可以理解为至少部分对齐。
在本公开实施例中,由于第一壳体与第二壳体处于闭合状态时,第一绝缘区与第三绝缘区至少部分相对,第二绝缘区与第四绝缘区至少部分相对,从而使得第一壳体与第二壳体处于闭合状态时,与第一天线辐射支相对的是第二天线辐射支或者是第二天线辐射支和绝缘区,这样,能够减小对天线辐 射空间的压缩,进而能够提升天线的辐射能力;同时,由于第一壳体与第二壳体处于闭合状态时,第一天线辐射支与第二天线辐射支电容耦合,从而使得第一天线辐射支辐射的天线能量能够被传递至第二天线辐射支进行二次辐射,这样,能够进一步提升天线的辐射能力和增加天线带宽。
为了对本公开实施例的有益技术效果有一个更加直观的解释,此处举例说明,请参见图3,图3为相关技术中的移动终端与图1所示的移动终端在第一壳体与第二壳体处于闭合状态时所产生的天线谐振模态的对比示意图,其中,H 1和H 2表示相关技术中的移动终端在其第一壳体与第二壳体处于闭合状态时所产生的两个天线谐振模态,H 1-1和H 2-1表示图1所示的移动终端的第一天线辐射支12在它的第一壳体1与第二壳体2处于闭合状态时所产生的两个天线谐振模态,H 1-2和H 2-2表示图1所示的移动终端的第二天线辐射支22在它的第一壳体1与第二壳体2处于闭合状态时所产生的两个天线谐振模态。
由图3不难看出,图1所示的移动终端除了由第一天线辐射支12产生了与天线谐振模态H 1和H 2分别对应的两个天线谐振模态H 1-1和H 2-1之外,还由第二天线辐射支22额外产生了两个天线谐振模态H 1-2和H 2-2,显然,天线谐振模态H 1-1、H 2-1、H 1-2和H 2-2的总带宽大于天线谐振模态H 1和H 2的总带宽,这说明图1所示的移动终端的天线带宽较相关技术中的移动终端的天线带宽更宽,辐射能力更好。另外,如图3所示,天线谐振模态H 1-1的带宽较天线谐振模态H 1的带宽更宽,天线谐振模态H 2-1的带宽较天线谐振模态H 2的带宽更宽,这说明第二天线辐射支22还能够扩大第一天线辐射支12的辐射空间,进而能够提升第一天线辐射支12的辐射能力。
另外,由于第一天线辐射支12与第一导电本体11电连接,第二天线辐射支与第二导电本体电连接,从而能够减少第一壳体和第二壳体上的断口数量,进而能够使得移动终端的外观效果更好。
可选地,第一壳体1与第二壳体2处于闭合状态时,第一绝缘区13与第三绝缘区23相互对齐和/或第二绝缘区14与第四绝缘区14相互对齐。
这样,由于第一绝缘区与第三绝缘区相互对齐时,第一天线辐射支的第一端的端面与第二天线辐射支的第一端的端面也会对齐,从而,既能够进一 步降低第二导电本体对第一天线辐射支的干扰以及降低第一导电本体对第二天线辐射支的干扰,同时也能够改善第一天线辐射支与第二天线辐射支之间的耦合效果,进而能够进一步提升天线的辐射能力;另外还能够使得移动终端的外观更加对称和齐整。
由于第二绝缘区与第四绝缘区相互对齐时,第一天线辐射支的第一侧与第二天线辐射支的第一侧也会对齐,从而,既能够降低第二导电本体对第一天线辐射支的干扰以及降低第一导电本体对第二天线辐射支的干扰,也能够改善第一天线辐射支与第二天线辐射支之间的耦合效果,进而能够提升天线的辐射能力;另外还能够使得移动终端的外观更加对称和齐整。
可选地,第一壳体1与第二壳体2处于闭合状态时,第一天线辐射支12与第二天线辐射22支相互对齐。
其中,上述第一壳体1与第二壳体2处于闭合状态时,第一天线辐射支12与第二天线辐射支22相互对齐,可以理解为,第一天线辐射支12的形状和尺寸与第二天线辐射支22的形状和尺寸均一致,且当第一壳体1与第二壳体2处于闭合状态时,第一天线辐射支12和第二辐射支22完全对齐。
由于第一壳体与第二壳体处于闭合状态时,第一天线辐射支和第二天线辐射支相互对齐,从而既能够降低第二导电本体对第一天线辐射支的干扰以及降低第一导电本体对第二天线辐射支的干扰,同时也能够改善第一天线辐射支与第二天线辐射支之间的耦合效果,进而能够进一步提升天线的辐射能力;另外还能够使得移动终端的外观更加对称和齐整。
可选地,第一绝缘区13的宽度介于0.3毫米至3毫米之间,第二绝缘区14的宽度介于0.3毫米至8毫米之间;和/或,
第三绝缘区23的宽度介于0.3毫米至3毫米之间,第四绝缘区24的宽度介于0.3毫米至8毫米之间;和/或,
第四绝缘区24的宽度大于或等于第二绝缘区14的宽度,且第三绝缘区23的宽度大于或等于第一绝缘区13的宽度;和/或,
第一壳体1与第二壳体2处于闭合状态时,第一天线辐射支12与第二天线辐射支22间隔0.3毫米至2毫米。
其中,上述第一绝缘区13的宽度,可以是指在第一天线辐射支12的延 伸方向上,第一天线辐射支12的第一端与第一导电本体11之间的距离。上述第一绝缘区13的宽度介于0.3毫米至3毫米之间,可以是第一绝缘区13的宽度大于或等于0.3毫米且小于或等于3毫米,例如,1.2毫米。上述第二绝缘区14的宽度,可以是指在垂直于第一天线辐射支12的延伸方向上,第一天线辐射支12的第一侧与第一导电本体11之间的距离。上述第二绝缘区14的宽度介于0.3毫米至8毫米之间,可以是第二绝缘区14的宽度大于或等于0.3毫米且小于或等于8毫米,例如,1.5毫米。
上述第三绝缘区23的宽度,可以是指在第二天线辐射支22的延伸方向上,第二天线辐射支22的第一端与第二导电本体21之间的距离。上述第三绝缘区23的宽度介于0.3毫米至3毫米之间,可以是第三绝缘区23的宽度大于或等于0.3毫米且小于或等于3毫米,例如,1.2毫米。上述第四绝缘区24的宽度,可以是指在垂直于第二天线辐射支22的延伸方向上,第二天线辐射支22的第一侧与第二导电本体21之间的距离。上述第四绝缘区24的宽度介于0.3毫米至8毫米之间,可以是第四绝缘区24的宽度大于或等于0.3毫米且小于或等于8毫米。
上述第一天线辐射支12与第二天线辐射支22间隔0.3毫米至2毫米,可以是第一天线辐射支12与第二天线辐射支22之间的间隔大于或等于0.3毫米且小于或等于2毫米,例如,0.5毫米。
这样,由于第一绝缘区介于0.3毫米至3毫米之间,第二绝缘区介于0.3毫米至8毫米之间,从而既能够使得第一天线辐射支的辐射能力较好,也能够使得第一壳体的外观效果较好。
由于第三绝缘区介于0.3毫米至3毫米之间,第四绝缘区介于0.3毫米至8毫米之间,从而既能够使得第二天线辐射支的辐射能力较好,也能够使得第二壳体的外观效果较好。
由于第四绝缘区的宽度大于或等于第二绝缘区的宽度,且第三绝缘区的宽度大于或等于第一绝缘区的宽度,从而能够使得第二天线辐射支的辐射能力更好。
由于第一壳体与第二壳体处于闭合状态时,第一天线辐射支与第二天线辐射支间隔0.3毫米至2毫米,从而既能够使得第一天线辐射支与第二天线 辐射支之间的耦合效果较好,进而能够使得天线的辐射能力较好,也能够使得移动终端在第一壳体与第二壳体处于闭合状态时的外观效果较好。
可选地,第一壳体1还包括:
与第一导电本体11电连接的第三天线辐射支15,第三天线辐射支15的第一端与第一天线辐射支12的第一端至少部分相对且二者之间形成第一绝缘区13,第三天线辐射支15的第一侧与第一导电本体11之间设有第五绝缘区16,第三天线辐射支15与第一天线辐射支12电容耦合;
第二壳体2还包括:
与第二导电本体21电连接的第四天线辐射支25,第四天线辐射支25的第一端与第二天线辐射支22的第一端至少部分相对且二者之间形成第三绝缘区23,第四天线辐射支25的第一侧与第二导电本体21之间设有第六绝缘区26,第四天线辐射支25与第二天线辐射支15电容耦合;
第一壳体1与第二壳体2处于闭合状态时,第三天线辐射支15分别与第二天线辐射支22、第四天线辐射支25、第二导电本体21存在间隔,第四天线辐射25支分别与第一天线辐射支12、第一导电本体11存在间隔,第五绝缘区16与第六绝缘区26至少部分相对,第三天线辐射支15与第四天线辐射支25电容耦合。
其中,上述第三天线辐射支15与第一导电本体11电连接,可以是第三天线辐射支15的第二端与第一导电本体11电连接;更具体地,上述第三天线辐射支15可以是由第一导电本体11延伸形成。上述第三天线辐射支15可以是一字型或L型。上述第四天线辐射支25与第二导电本体21电连接,可以是第四天线辐射支25的第二端与第二导电本体21电连接;更具体地,上述第四天线辐射支25可以是由第二导电本体21延伸形成。上述第四天线辐射支25可以是一字型或L型。
上述第一绝缘区13的宽度,可以是指在第一天线辐射支12的延伸方向上,第一天线辐射支12的第一端与第三天线辐射支15的第一端之间的距离。上述第一绝缘区13的宽度可以是大于或等于0.3毫米且小于或等于3毫米,例如,1.2毫米。上述第三绝缘区23的宽度,可以是指在第二天线辐射支22的延伸方向上,第二天线辐射支12的第一端与第四天线辐射支25的第一端 之间的距离。上述第三绝缘区23的宽度可以是大于或等于0.3毫米且小于或等于3毫米,例如,1.2毫米。
这样,由于通过增加第三天线辐射支能够进一步扩大第一天线辐射支的辐射空间,通过增加第四天线辐射支能够进一步扩大第二天线辐射支的辐射空间,且第一壳体与第二壳体处于闭合状态时,第三天线辐射支与第四天线辐射支也能够电容耦合,因而能够进一步提升天线的辐射能力和增加天线带宽。
可选地,第三天线辐射支15的第一端与第一天线辐射支12的第一端相互对齐;和/或,
第四天线辐射支25的第一端与第二天线辐射支22的第一端相互对齐;和/或,
第一壳体1与第二壳体2处于闭合状态时,第三天线辐射支15与第四天线辐射支25相互对齐。
这样,通过将第三天线辐射支的第一端与第一天线辐射支的第一端相互对齐,能够使得第三天线辐射支与第一天线辐射支之间的耦合效果更好,进而能够提升天线的辐射能力,另外还能够使得移动终端的外观更加齐整。
通过将第四天线辐射支的第一端与第二天线辐射支的第一端相互对齐,能够使得第四天线辐射支与第二天线辐射支之间的耦合效果更好,进而能够提升天线的辐射能力,另外还能够使得移动终端的外观更加齐整。
由于第一壳体与第二壳体处于闭合状态时,第三天线辐射支和第四天线辐射支相互对齐,从而既能够降低第二导电本体对第三天线辐射支的干扰以及降低第一导电本体对第四天线辐射支的干扰,同时也能够改善第三天线辐射支与第二天线辐射支之间的耦合效果,进而能够进一步提升天线的辐射能力;另外还能够使得移动终端的外观更加对称和齐整。
可选地,第一壳体1与第二壳体2处于闭合状态时,第五绝缘区16与第六绝缘区26相互对齐。
这样,由于第五绝缘区与第六绝缘区相互对齐时,第三天线辐射支的第一侧与第四天线辐射支的第一侧也会对齐,从而,既能够降低第二导电本体对第三天线辐射支的干扰以及降低第一导电本体对第四天线辐射支的干扰, 也能够改善第三天线辐射支与第四天线辐射支之间的耦合效果,进而能够提升天线的辐射能力;另外还能够使得移动终端的外观更加对称和齐整。
可选地,第五绝缘区16的宽度介于0.3毫米至8毫米之间;和/或,
第六绝缘区26的宽度介于0.3毫米至8毫米之间;和/或,
第一壳体1与第二壳体2处于闭合状态时,第三天线辐射支15与第四天线辐射支25间隔0.3毫米至2毫米。
其中,上述第五绝缘区16的宽度,可以是指在垂直于第三天线辐射支15的延伸方向上,第三天线辐射支15的第一侧与第一导电本体11之间的距离。上述第五绝缘区16的宽度介于0.3毫米至3毫米之间,可以是第五绝缘区16的宽度大于或等于0.3毫米且小于或等于3毫米,例如,1.2毫米。上述第六绝缘区26的宽度,可以是指在垂直于第四天线辐射支25的延伸方向上,第四天线辐射支25的第一侧与第二导电本体21之间的距离。上述第六绝缘区26的宽度介于0.3毫米至3毫米之间,可以是第六绝缘区26的宽度大于或等于0.3毫米且小于或等于3毫米,例如,1.2毫米。上述第三天线辐射支15与第四天线辐射支25间隔0.3毫米至2毫米,可以是第三天线辐射支15与第四天线辐射支25之间的间隔大于或等于0.3毫米且小于或等于2毫米,例如,0.5毫米。
这样,由于第五绝缘区的宽度介于0.3毫米至8毫米之间,从而既能够使得第三天线辐射支的辐射能力较好,也能够使得第一壳体的外观效果较好。
由于第六绝缘区的宽度介于0.3毫米至8毫米之间,从而既能够使得第四天线辐射支的辐射能力较好,也能够使得第一壳体的外观效果较好。
由于第一壳体与第二壳体处于闭合状态时,第三天线辐射支与第四天线辐射支间隔0.3毫米至2毫米,从而既能够使得第三天线辐射支与第四天线辐射支之间的耦合效果较好,进而能够使得天线的辐射能力较好,也能够使得移动终端在第一壳体与第二壳体处于闭合状态时的外观效果较好。
可选地,馈电点121通过电容3与天线馈源4电连接;和/或,
第二天线辐射支22上设有调谐点221,调谐点221与接地的调谐电路5电连接,调谐电路5为高通滤波电路或开关切换电路。
其中,上述馈电点121可以是位于第一天线辐射支12的第一端或其他位 置;上述调谐点221可以是位于第二天线辐射支22的第一端或其他位置。上述高通滤波电路可以是用于调节第一天线辐射支12的谐振频率;具体地,上述高通滤波电路可以是在低频时等效于开路或高阻抗,在高频时等效于短路或低阻抗。上述开关切换电路可以是用于调节第二天线辐射支22的谐振频率;具体地,上述开关切换电路可以是用于高频时导通,低频时断开的电路。
上述馈电点121可以是通过弹片、螺丝或FPC等与电容3电连接。上述调谐点221可以是通过弹片、螺丝或FPC等与接地的高通滤波电路或接地的开关切换电路电连接。
这样,通过在馈电点和天线馈源之间串入电容,能够实现对第一天线辐射支的谐振频率的调节,从而使得第一天线辐射支能够产生低频和高频两个谐振模态。
通过将第二天线辐射支与高通滤波电路或开关切换电路电连接,能够实现对第二天线辐射支的谐振频率的调节,从而使得第二天线辐射支能够产生低频和高频两个谐振模态。
由于通过在馈电点和天线馈源之间串入电容,并将第二天线辐射支与高通滤波电路或开关切换电路电连接,使得第一天线辐射支可以产生低频和高频两个谐振模态,同时使得第二天线辐射支能够用于同时或分时产生高频和低频两个寄生谐振模态,这样,既能够改善天线对低频谐振模态的辐射能力和带宽,也能够改善天线对高频谐振模态的辐射能力和带宽。
可选地,前述高通滤波电路为电感和/或电容构成的电路。
可选地,如图4所示,前述高通滤波电路包括串联的电感和电容;和/或,
如图5所示,高通滤波电路包括并联的电感和电容。
上述高通滤波电路包括串联的电感和电容可以是指,高通滤波电路是由一个电容和一个电感串联构成的串联谐振电路,该串联谐振电路的谐振频点设置于高频,高频时阻抗很低,而低频时则相当于小电容,阻抗很高。上述高通滤波电路包括并联的电感和电容可以是指,高通滤波电路是由一个电容和一个电感并联构成的并联谐振电路,该并联谐振电路的谐振频点设置于低频,此时低频呈现高阻抗,而高频呈现大电容,阻抗很低。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上 述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (10)

  1. 一种移动终端,包括能够相对运动到至少部分重叠的闭合状态的第一壳体和第二壳体:
    所述第一壳体包括第一导电本体和与所述第一导电本体电连接的第一天线辐射支;所述第一导电本体接地,所述第一天线辐射支上设有馈电点,所述第一天线辐射支的第一端与所述第一导电本体之间设有第一绝缘区,所述第一天线辐射支的第一侧与所述第一导电本体之间设有第二绝缘区;
    所述第二壳体包括第二导电本体和与所述第二导电本体电连接的第二天线辐射支;所述第二导电本体接地,所述第二天线辐射支的第一端与所述第二导电本体之间设有第三绝缘区,所述第二天线辐射支的第一侧与所述第二导电本体之间设有第四绝缘区;
    所述第一壳体与所述第二壳体处于所述闭合状态时,所述第一天线辐射支分别与所述第二天线辐射支、所述第二导电本体存在间隔,所述第二天线辐射支与所述第一导电本体存在间隔,所述第一绝缘区与所述第三绝缘区至少部分相对,所述第二绝缘区与所述第四绝缘区至少部分相对,所述第一天线辐射支与所述第二天线辐射支电容耦合。
  2. 根据权利要求1所述的移动终端,其中:
    所述第一壳体与所述第二壳体处于所述闭合状态时,所述第一绝缘区与所述第三绝缘区相互对齐和/或所述第二绝缘区与所述第四绝缘区相互对齐。
  3. 根据权利要求1所述的移动终端,其中:
    所述第一壳体与所述第二壳体处于所述闭合状态时,所述第一天线辐射支与所述第二天线辐射支相互对齐。
  4. 根据权利要求1所述的移动终端,其中:
    所述第一绝缘区的宽度介于0.3毫米至3毫米之间,所述第二绝缘区的宽度介于0.3毫米至8毫米之间;和/或,
    所述第三绝缘区的宽度介于0.3毫米至3毫米之间,所述第四绝缘区的宽度介于0.3毫米至8毫米之间;和/或,
    所述第四绝缘区的宽度大于或等于所述第二绝缘区的宽度,且所述第三 绝缘区的宽度大于或等于所述第一绝缘区的宽度;和/或,
    所述第一壳体与所述第二壳体处于所述闭合状态时,所述第一天线辐射支与所述第二天线辐射支间隔0.3毫米至2毫米。
  5. 根据权利要求1至4任一项所述的移动终端,其中:
    所述第一壳体还包括:
    与所述第一导电本体电连接的第三天线辐射支,所述第三天线辐射支的第一端与所述第一天线辐射支的第一端至少部分相对且二者之间形成所述第一绝缘区,所述第三天线辐射支的第一侧与所述第一导电本体之间设有第五绝缘区,所述第三天线辐射支与所述第一天线辐射支电容耦合;
    所述第二壳体还包括:
    与所述第二导电本体电连接的第四天线辐射支,所述第四天线辐射支的第一端与所述第二天线辐射支的第一端至少部分相对且二者之间形成所述第三绝缘区,所述第四天线辐射支的第一侧与所述第二导电本体之间设有第六绝缘区,所述第四天线辐射支与所述第二天线辐射支电容耦合;
    所述第一壳体与所述第二壳体处于所述闭合状态时,所述第三天线辐射支分别与所述第二天线辐射支、所述第四天线辐射支、所述第二导电本体存在间隔,所述第四天线辐射支分别与所述第一天线辐射支、所述第一导电本体存在间隔,所述第五绝缘区与所述第六绝缘区至少部分相对,所述第三天线辐射支与所述第四天线辐射支电容耦合。
  6. 根据权利要求5所述的移动终端,其中:
    所述第三天线辐射支的第一端与所述第一天线辐射支的第一端相互对齐;和/或,
    所述第四天线辐射支的第一端与所述第二天线辐射支的第一端相互对齐;和/或,
    所述第一壳体与所述第二壳体处于所述闭合状态时,所述第三天线辐射支与所述第四天线辐射支相互对齐。
  7. 根据权利要求5所述的移动终端,其中:
    所述第一壳体与所述第二壳体处于所述闭合状态时,所述第五绝缘区与所述第六绝缘区相互对齐。
  8. 根据权利要求5所述的移动终端,其中:
    所述第五绝缘区的宽度介于0.3毫米至8毫米之间;和/或,
    所述第六绝缘区的宽度介于0.3毫米至8毫米之间;和/或,
    所述第一壳体与所述第二壳体处于所述闭合状态时,所述第三天线辐射支与所述第四天线辐射支间隔0.3毫米至2毫米。
  9. 根据权利要求1所述的移动终端,其中:
    所述馈电点通过电容与天线馈源电连接;和/或,
    所述第二天线辐射支上设有调谐点,所述调谐点与接地的高通滤波电路或开关切换电路电连接。
  10. 根据权利要求9所述的移动终端,在所述第二天线辐射支上设有调谐点,所述调谐点与接地的高通滤波电路电连接的情况下,其中:
    所述高通滤波电路包括串联的电感和电容;和/或,
    所述高通滤波电路包括并联的电感和电容。
PCT/CN2019/123587 2018-12-25 2019-12-06 移动终端 WO2020134958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811594255.X 2018-12-25
CN201811594255.XA CN109729197A (zh) 2018-12-25 2018-12-25 一种移动终端

Publications (1)

Publication Number Publication Date
WO2020134958A1 true WO2020134958A1 (zh) 2020-07-02

Family

ID=66296445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123587 WO2020134958A1 (zh) 2018-12-25 2019-12-06 移动终端

Country Status (2)

Country Link
CN (1) CN109729197A (zh)
WO (1) WO2020134958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022271321A1 (en) * 2021-06-23 2022-12-29 Microsoft Technology Licensing, Llc Parasitic antenna coupling in a physically configurable communication device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729197A (zh) * 2018-12-25 2019-05-07 维沃移动通信有限公司 一种移动终端
CN114845497B (zh) * 2022-05-09 2024-06-18 Oppo广东移动通信有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170110786A1 (en) * 2015-10-14 2017-04-20 Microsoft Technology Licensing, Llc Self-adaptive antenna systems for electronic devices having multiple form factors
CN107546469A (zh) * 2017-07-12 2018-01-05 瑞声科技(新加坡)有限公司 天线系统及移动终端
CN107887705A (zh) * 2016-09-29 2018-04-06 仁宝电脑工业股份有限公司 天线结构
CN108292796A (zh) * 2015-12-07 2018-07-17 三星电子株式会社 包括天线的电子设备
CN109729197A (zh) * 2018-12-25 2019-05-07 维沃移动通信有限公司 一种移动终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401192B1 (ko) * 2001-09-05 2003-10-10 삼성전자주식회사 복사특성을 조절할 수 있는 폴더형 단말기
CN108736140A (zh) * 2018-08-15 2018-11-02 维沃移动通信有限公司 一种天线控制方法及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170110786A1 (en) * 2015-10-14 2017-04-20 Microsoft Technology Licensing, Llc Self-adaptive antenna systems for electronic devices having multiple form factors
CN108292796A (zh) * 2015-12-07 2018-07-17 三星电子株式会社 包括天线的电子设备
CN107887705A (zh) * 2016-09-29 2018-04-06 仁宝电脑工业股份有限公司 天线结构
CN107546469A (zh) * 2017-07-12 2018-01-05 瑞声科技(新加坡)有限公司 天线系统及移动终端
CN109729197A (zh) * 2018-12-25 2019-05-07 维沃移动通信有限公司 一种移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022271321A1 (en) * 2021-06-23 2022-12-29 Microsoft Technology Licensing, Llc Parasitic antenna coupling in a physically configurable communication device

Also Published As

Publication number Publication date
CN109729197A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020134960A1 (zh) 移动终端
WO2020135046A1 (zh) 天线结构及通信终端
WO2020134958A1 (zh) 移动终端
CN108767450B (zh) 一种天线系统及终端
US9041253B2 (en) Direct feeding apparatus for impedance matching of wireless power transmission device, and transmitter and receiver using the same
CN102683861B (zh) 可调谐环形天线
TWI643402B (zh) 天線結構及電子裝置
WO2020135145A1 (zh) 天线结构及通信终端
WO2017156900A1 (zh) 金属外壳、天线装置和移动终端
JP6128399B2 (ja) アンテナ装置
KR20120097877A (ko) 이동 단말기
US9674321B2 (en) Mobile terminal antenna module housed within metal rear cover serving as a radiator
WO2014106490A1 (zh) 一种环形天线及相关电子设备
KR20120137117A (ko) 이동 단말기
WO2022142822A1 (zh) 天线组件和电子设备
CN107645055B (zh) 一种天线系统及移动终端
CN107742777A (zh) 可扩展天线带宽的天线装置及移动终端
JP2002290139A (ja) プレーナアンテナ装置
CN107611565B (zh) 一种gps-wifi天线及移动终端
WO2023151392A1 (zh) 天线组件和电子设备
US20160329625A1 (en) Wireless communication device and antenna thereof
TW484249B (en) Antenna module
WO2019052478A1 (zh) 一种双频wifi天线及移动终端
CN108879070B (zh) 一种电子设备
Chen et al. LTE MIMO closed slot antenna system for laptops with a metal cover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905107

Country of ref document: EP

Kind code of ref document: A1